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PREFACE 

The purpose of this paper is to provide several character- 

izations of controllability of differential inclusions whose 

right-hand sides are convex processes. Convex processes are the 

set-valued maps whose graphs are convex cones; they are the set- 

valued analogues of linear operators. Such differential in- 

clusions include linear systems where the controls range over a 

convex cone (and not only a vector space). The characteristic 

properties are couched in terms of invariant cones by convex 

processes, or eigenvalues of convex processes, or a rank condi- 

tion. We also show that the controllability is equivalent to 

the observability of the adjoint inclusion. 

A.B. Kurzhanski 
Chairman, 
System and Decision Sciences 
Program 



CONTROLLABILITY OF CONVEX PROCESSES 

J . P .  Aubin, 8. Frankowska, C. Olech 

I n t r o d u c t i o n  

A convex p r o c e s s  A from lRn t o  i t s e l f  i s  a s e t - v a l u e d  map s a t i s f y i n g  

o r ,  e q u i v a l e n t l y ,  a se t -va lued  map whose graph is  a convex cone.  Convex 

p r o c e s s e s  a r e  t h e  se t -va lued  ana logues  of l i n e a r  o p e r a t o r s .  We s h a l l  say  t h a t  

a convex p r o c e s s  i s  c l o s e d  i f  i t s  graph  i s  c l o s e d  and t h a t  i t  i s  s t r i c t  i f  

i t s  domain i s  t h e  whole space .  

We a s s o c i a t e  w i t h  a s t r i c t  c l o s e d  convex p r o c e s s  A t h e  Cauchy problem 

f o r  t h e  d i f f e r e n t i a l  i n c l u s i o n  

(0.2) f o r  a lmos t  a l l  t E [O,T ] , x l ( t )  E A ( x ( t ) )  , x(0)  = 0 

We d e n o t e  by % t h e  r e a c h a b l e  s e t  a t  t ime T d e f i n e d  by 

is  a s o l u t i o n  t o  (0 .2 ) .  

We a l s o  s a y  t h a t  

(0.4) R := U % is  t h e  r e a c h a b l e  s e t  
T > O  

and t h a t  t h e  d i f f e r e n t i a l  i n c l u s i o n  ((2.2) ( o r  t h e  convex p r o c e s s  A ) i s  

c o n t r o l l a b l e  i f  t h e  r e a c h a b l e  s e t  R is  equa l  t o  t h e  whole s p a c e  lRn . 



Convex processes where introduced and thoroughly studied in Rockafellar 

[ 1967 ] , [ 1970 ] , [ 1974 ] and in Aubin-Ekeland [ 1984 ] , for instance. 
Derivatives of set-valued maps (see Aubin-Ekeland, [I984 1, chapter 7) 

provide examples of closed convex processes. These are used, for instance, 

in Frankowska [I984 1 ,  [I985 ] for deriving local controllability of 
differential inclusions from the controllability of convex processes which 

"approximate" in some sense the original differential inclusion around the 

equilibrium (*I 

We know that for linear problems, the reachable sets are invariant. 

Hence we have.to extend the usual concept of invariant subspace by a linear 

operator. This can be done in two different ways : let A be a convex 

process and P be a closed convex cone contained in Dom A . We recall 
that the tangent cone T (x) at a point x E P is defined by P 

(*) Theorem (Frankowska). Let F be a set-valued map from iRn into 

the compact subsets of iRn , Lipschitzean around zero and 0 E F(0) . 
Denote by F'(0) the derivative of F at zero and by L . the closed 

convex cone spanned by co F(0) (convex hull of F(0) ) . Set 

Then the differential inclusion 

is locally controllable around zero at time T if the "linearized" 

inclusion 

x' E A(x) 

is controllable at time T . 



We s h a l l  say t h a t  P  i s  i n v a r i a n t  by A i f  

(0.6) V X E P ,  A h )  C Tp (x) 

and t h a t  P  i s  a  v i a b i l i t y  domain f o r  A i s  

(0.7) V X E P ,  A(x) n T p ( x )  f 0 . 

When P i s  a  v e c t o r  space,  then Tp(x) = P , so t h a t  a subspace is  i n v a r i a n t  

by A i f  V x  E  P  , A(x) C P  and i s  a  v i a b i l i t y  domain . for  A i f  V x  E P , 
A(x) n P  f 0 . 

A f i r s t  example of i n v a r i a n t  cone i s  provided by the  c l o s u r e  of t he  

reachable  s e t .  

Theorem 0.1 

Let  A be a  s t r i c t  c losed  convex process .  Then t h e  c l o s u r e  of t h e  

reachable  s e t  i s  t h e  s m a l l e s t  c losed convex cone con ta in ing  A(0) which i s  

i n v a r i a n t  by A , t h e  subspace R - R spanned by R is  t h e  sma l l e s t  

subspace conta in ing  A(0) i n v a r i a n t  by A . 
Furthermore, i f  R - R = lRn and R f IRn , t h e r e  e x i s t s  X ElR such 

t h a t  I m  (A - XI) f lRn . A 

We could say  t h a t  a r e a l  number X such t h a t  I m  (A - XI) f lRn i s  

an eigenvalue of A . 

We s h a l l  prove t h i s  theorem by "dual i ty" .  Indeed, convex processes  

can be t ransposed,  a s  l i n e a r  ope ra to r s .  Let  A he a  convex process  ; we 

d e f i n e  i t s  t ranspose  A* by 

(0.8) p  E ~ * ( q )  * V (x,y)  E  Graph A , <p,x> < <q,y> 

We a l s o  r ep l ace  t h e  o r thogona l i t y  between subspaces by p o l a r i t y  between 
n 

cones. I f  G is  a  subse t  of lR , we denote by G+ i t s  ( p o s i t i v e )  po la r  

cone def ined  by : - 



We recall that the separation theorem implies that 

(0.10) G++ is the closed convex cone spanned by G . 

Therefore, it is convenient to bear in mind that 

(0.11) (4.~1 E Graph (A*) * (-p,q) E Graph (A)+ 

Int 
so that when A is a closed convex process, then A = A . 

Example. Let F be a linear operator from lRn to itself, L be a closed 

convex cone of controls and A be the strict closed convex process defined by 

Then its transpose is equal to 

* * 
When L = {O) , i.e., when A = F , we deduce that A = F , so that trans- 
position of convex processes is a legitimate extension of transposition of 

linear operators. 

* 
When A is a strict closed convex process, we shall prove that A is * 

upper semi-continuous with convex compact values, that A (0) = {o) , * * 
Dom A = A(o)+ is closed and that the restriction of A to the vector space * * 
Dom A n - Dom A is a linear (single-valued) operator. 

As expected, we associate with the differential inclusion (0.2) the 

adjoint inclusion : 



(0.14) f o r  almost a l l  t E [O,T ] , - q f ( t )  E ~ * ( q ( t ) )  

We in t roduce  the  cones QT and Q def ined  by 

/ i )  QT := I ( * )  , a s o l u t i o n  t o  (0.14) s a t i s f y i n g  q ( ~ ) = q )  

To say t h a t  Q = {O) amounts t o  saying t h a t  t he  only s o l u t i o n  t o  (0.14) 

def ined  on [O,= [ i s  q 5 0 , o r ,  i n  t he  language of systems theory,  t h a t  

t he  a d j o i n t  system i s  observable.  

The "dual i ty"  method l i e s  i n  t he  fol lowing s ta tement .  

Theorem 0.2 

Let  A be a s t r i c t  c losed  convex process .  Then 

(0.16) = QT and R+ = Q 

Furthermore, a c losed  convex cone P 3 A(0) i s  i n v a r i a n t  by A i f  * * 
and only i f  i t s  po la r  cone P+ C Dom A i s  a v i a b i l i t y  domain f o r  A . 

A 

Indeed, i t  al lows t o  d e r i v e  theorem 0.1 from 

Theorem 0.3 

Let  A be a s t r i c t  c losed  convex process .  The cone Q is the  l a r g e s t  

c losed  convex cone which i s  a v i a b i l i t y  domain f o r  A* and Q (-I - Q i s  

the  l a r g e s t  subspace i n v a r i a n t  by ( t h e  l i n e a r  ope ra to r )  A* . 
Furthermore, i f  Q i s  n o t  reduced t o  {O) and con ta ins  no l i n e ,  

t h e r e  e x i s t s  a s o l u t i o n  q $ 0 and h ER t o  t he  i n c l u s i o n  hq E A * ( ~ )  . 
A 

* 
We could say t h a t  such a q i s  a n  e ignevec tor  of A . 



It will be convenient to introduce the following definition. We say 

that A satisfies the rank condition if 

(0.17) 
the subspace spanned by the cone ~ ~ ( 0 )  is the whole space 

for some integer m >  1 

This is motiveted by the terminology used for linear systems. Indeed, when 

A(x) := FX + L where F is a linear operator and L is a convex cone of 
m- 1 controls, we observe that ~ ~ ( 0 )  = L +-F L +. . .+ F L .  

We shall derive from these results the following characterization of 

controllability of convex processes. 

Theorem 0.4 

Let A be a strict closed convex process. The following conditions 

are equivalent. 

a) differential inclusion (0.2) is controllable (i.e., R = IRn ) 

b) differential inclusion (0.2) is controllable at some time T > 0 
n 

(i.e., % = l R  1 

c) the adjoint inclusion (0.14) is observable (i.e., Q = {o) ) 

d) the adjoint inclusion (0.14) is observable at some time T > 0 
(i.e., QT a EO) 

e) IRn is the smallest closed convex cone containing A(0) which is 

invariant by A 

f) (0) is the largest closed convex cone which is a viability domain 
* 

for A 

g) A has neither proper invariant subspace nor eigenvalues 

h) A* has neither proper invariant subspace nor eigenvectors 

i) the rank condition holds true and A has no eigenvalues 

* 
j) the rank condition is satisfied and A has no eigenvectors. 

k) for some m > l , ~ ~ ( 0 )  = (-A) (0) = IRn A 



Example. Let F be a linear operator from to itself and L be a 

closed convex cone of controls. We consider the differential inclusion 

and its adjoint inclusion 

Corollary 0.5 

The following conditions are equivalent. 

a) the system (0.18) is controllable 

b) the adjoint equation (0.19) is observable (the only solution of * 
-ql = F q remaining in L+ on [ 0 ,- [ is q - 0 ) 

C) {O} is the Largest closed convex cone contained in L+ which is * 
invariant by F 

* 
d )  F has neither proper invariant subspace contained in LC nor 

eigenvector in L+ 

n- 1 e) the subspace spanned by L , F L , . . . ,F L is equal to IRn * 
and F has no eigenvector in L+ (see Brammer [1 1.1 

f) for some m > 1 , L + n +...+ F% = L - n +...+ (-l>%% = I R ~  

(See Korobov [ 198Q. 1:) .. A 

This example also illustrates another advantage of duality, because 

some properties bearing on the adjoint system have a simpler formulation. 

This explains why some criteria mentionned in Theorem 0.4 disappear in 

Corollary 0.5. 

When L is a vector space, statements c), d.) and f) are the same and the 

mention of eigenvector in statement e) is redondant. This is not the case 

when L is a proper cone. It is sufficient to consider the example : 



2  The rank condition is satisfied (A (0)  = IR) and the reachable set is IR+ . 

We summarize.in the first section the results on convex processes 

and their transpose that we will need later. Section 2  is devoted to the 

proof of the duality Theorem 0 . 2 ,  characterizing the positive polar cones 

of the reachable set. We then derive the characterization of the closure 

of the reachable set as the smallest invariant cone by A  and its dual 

version in section 3 and the existence of eigenvalues of A  and eigenvectors * 
of A  in the fourth section. These results are used to prove Theorem 0 . 4  

in the fifth section. 
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1 .  Convex p r o c e s s e s  and t h e i r  t r a n s p o s e s  

D e f i n i t i o n  1 . 1  

A se t -va lued  map from nn t o  nn i s  s a i d  t o  b e  a  convex p r o c e s s  

i f  i t s  g raph  i s  a  convex cone.  It i s  c l o s e d  i f  i t s  graph  i s  c l o s e d .  It i s  

c a l l e d  s t r i c t  i f  

DomA := { X E I R "  ( A(x) # @ I  i s  t h e w h o l e  s p a c e  . 
A 

D e f i n i t i o n  1.2 

L e t  X b e  a  H i l b e r t  s p a c e  and G C X b e  a  s u b s e t .  We d e n o t e  by G+ , 
t h e  ( p o s i t i v e )  p o l a r  cone  of  G , t h e  c l o s e d  convex cone d e f i n e d  by 

The s e p a r a t i o n  theorem i m p l i e s  t h a t  t h e  " b i p o l a r "  G++ i s  t h e  c l o s e d  

convex cone  spanned by G . We s h a l l  u s e  t h e  f o l l o w i n g  consequence of t h i s  

f a c t .  

Lenrma 1.3 (Closed image Lemma) . 
L e t  X , Y  b e  two H i l b e r t  s p a c e s ,  $ be  a  c o n t i n u o u s  l i n e a r  o p e r a t o r  

from X t o  Y and L  be  a c l o s e d  convex cone o f  Y . Assume t h a t  

(1 - 2 )  I m $ - L  = Y ( s u r j  e c t i v i  t y  c o n d i t i o n )  

Then * + 
(1 .3)  4-' (LI+ = $ (L A 

Proof .  
* + 

a )  We prove  f i r s t  t h a t  $ (L ) i s  c l o s e d .  L e t  q- E  L+ be  a  sequence 
* 11 

such t h a t  $ (4,) converges  t o  some p  i n  X* and l e t  u s  p rove  t h a t  p  * 
be longs  t o  $ (L+) . 

We b e g i n  by showing t h a t  qn i s  weakly bounded. Indeed ,  f o r  any v E  Y , 
t h e r e  e x i s t  x E  X and y E  L  _such t h a t  v = $(x)  - y . Hence : 



T h e r e f o r e ,  

s u b s e t  and 

i s  c l o s e d  

s i n c e  X i s  r e f l e x i v e ,  t h e  sequence 
q  n  i s  i n  a  weakly compact 

+ 
, a  subsequence a, converges  weakly t o  some q  E  Y* . S i n c e  L  

and convex,  and t h u s ,  weakly c l o s e d ,  q  be longs  t o  L+ . S i n c e  * 
i ( q  ,) converges  weakly t o  $ (q) and s t r o n g l y  t o  p  , we deduce t h a t  

"* * + 
P ' $  (q)  € 4  ( L )  . 

* + + =  * + +  
b) We o b s e r v e  t h a t  $ (L (1)  because  x  E  $ (L ) i f  and * 

o n l y  i f  <$ q ,x>  = < q , $ ( x ) >  b O  f o r  a l l  q  E L +  , i . e . ,  i f  and o n l y  i f  * + 
$(XI be longs  t o  L++ = L . Hence, s i n c e  $ (L ) i s  c l o s e d ,  we deduce t h a t  

We now r e c a l l  some p r o p e r t i e s  of convex p r o c e s s ,  some of them a l r e a d y  

known ( s e e  Rockaf e l l a r  [ 1967 1 , [ 1970 ] § 39, [ 1974 ] , Aubin-Ekeland, [ 1984 ] , 
c h a p t e r  3 ) .  

D e f i n i t i o n  1.4 * 
L e t  A be  a  convex p r o c e s s  from lRn t o  i t s e l f .  The t r a n s p o s e  A of 

A i s  t h e  se t -va lued  map from lRn t o  i t s e l f  g i v e n  by 

* 
(1.4) P E  A (q) * V (x ,y )  E  Graph (A) , <p,x>  < <q,y>  A 

I n  o t h e r  words,  

* * 
The t r a n s p o s e  o f  A i s  o b v i o u s l y  a  c l o s e d  convex p r o c e s s  and A = A 

i f  and o n l y  i f  t h e  convex p r o c e s s  A i s  c l o s e d .  When A i s  a  l i n e a r  o p e r a t o r ,  

iCs t r a n s p o s e  a s  a  l i n e a r  o p e r a t o r  c o i n c i d e s  w i t h  i t s  t r a n s p o s e  a s  a  convex 

p r o c e s s .  



Lemma 1.5 

I f  A i s  a c l o s e d  convex p r o c e s s ,  t h e n  

* + 
(Dorn A ) 

Proof 

We o b s e r v e  t h a t  y be longs  t o  A(0) i f  and o n l y  i f  0 = <p,O> < <q,y>  * * 
f o r  a l l  q E Dom A and p E A (q) , i . e . ,  i f  and o n l y  i f  <q,y> 2 0 f o r  * 
a l l  q E D o m A  . rn 

D e f i n i t i o n  1.5 

L e t  B d e n o t e  t h e  u n i t  b a l l .  When A i s  a c l o s e d  convex p r o c e s s ,  we 

d e f i n e  i t s  norm by 

(1.7) I I A I I  := sup i n £  l l y l l  E  [ o , - ]  . 
x E B  ~ D O ~ A  y E A ( x )  A 

P r o p o s i t i o n  1.6 

L e t  A b e  a s t r i c t  c l o s e d  convex p r o c e s s .  Then 

a )  V x , y  € 1 ~ ~  , A(x) C ~ ( y )  + 1 1 ~ 1 1  I ~ X - ~ / ~ B  e . ,  A i s  L i p s c h i t z e a n  

w i t h  f i n i t e  ~ i ~ s c h i t z  c o n s t a n t  e q u a l  t o  R A I I  ) . 
* * 

b) Dom A = A ( o ) +  and A i s  upper  semicont inuous  w i t h  compact convex 

images, mapping t h e  u n i t  b a l l  i n t o  t h e  b a l l  o r  r a d i u s  I I A Y  . 
* * 

C) t h e  r e s t r i c t i o n  of A* t o  t h e  v e c t o r  s p a c e  Dom A n - Dom A * 
i s  s ing le -va lued  and l i n e a r  (and t h u s ,  A (0) = 0 ). A 

Proof 

a )  The f i r s t  s t a t e m e n t  i s  a r e f o r m u l a t i o n  o f  Robinson-Ursescu's  theorem 

( s e e  Robinson [ 1967 1 ,  Ursescu [ 1975 1 ,  and Aubin-Ekeland [ 1984 ]  , C o r o l l a r y  

3.3.3,  p. 132).  

b) We o b s e r v e  t h a t  : 



* 
because, for all x E Dorn A = IRn , for all p E A (q) , we have 

SUP in, l l ~ l l  1 1 ~ 1 1  . 
x Enn y EA(x) 

* 
Then A maps bounded sets to bounded sets. Since its graph is a closed * 

convex cone we deduce that A is upper semicontinuous with compact convex 

images. By Lemma 1.5, Dorn A' = A (o)+ . Therefore it remains to prove that * * 
Dorn A is closed. Indeed let q_ E Dorn A be a sequence converging to * LA 

some q and let pn E A (4,) . The sequence {Pn} being bounded contains 

a subsequence {pn,} converging to some p . Thus 

* 
The graph of A* being closed, we proved that q E Dorn A . 

We observe that we always have 

Lemma 1.7 

Let A be a closed convex process. * 
For any xo E Int Dorn A , and qo E Dorn A , 

(1.9) sup <p,x> o = in£ <qo rY> 
P E A (qo) Y E Aho) 

(See Iioekafellar 1370 1 1. 



We now extend t o  t h e  case  of c losed convex cones t h e  concepts  of 

i n v a r i a n t  subspaces.  When K i s  a  subspace and F i s  a  l i n e a r  ope ra to r ,  

we r e c a l l  t h a t  K i s  i n v a r i a n t  by F when Fx E K f o r  a l l  x  E  K . When 

A i s  a  convex process ,  t h e r e  a r e  two ways of extending t h i s  no t ion  : we 

s h a l l  say t h a t  K i s  i n v a r i a n t  by A i f ,  f o r  any x  E K , A(x) C K 

and t h a t  K is  a  v i a b i l i t y  domain f o r  A i f ,  f o r  any x  E K , A(x) n K 

# 8 . We a l s o  need t o  extend these  not ions  t o  t h e  case  when K is  a  closed 

convex cone. We r e c a l l  t h e  

D e f i n i t i o n  1.8 

I f  K i s  a  c losed  convex set and x  belongs t o  K , we say t h a t  

i s  t h e  tangent  cone t o  K a t  x  . 

Lemma 1.9 

When K i s  a  v e c t o r  subspace, then ,  f o r  a l l  x  E K , T ~ ( x )  = K and 

when K i s  a  c losed  convex cone, then,  

(See Aubin-Ekeland, [ 1984 1 ,  Propos i t i on  4.1.9,  p. 171). 

NOW, we can in t roduce  

D e f i n i t i o n  1.10 

Let  K be a  c losed  convex cone and A be a  convex process .  We say 

t h a t  K i s  i n v a r i a n t  by A i f  

(1.11) V X E K ,  A(x) C TK(x) 

and t h a t  K i s  a  v i a b i l i t y  domain f o r  A i f  

(1.12) V x E K ,  A(x) n T K ( x )  # a 



These a r e  dual  no t ions ,  a s  t h e  fol lowing p ropos i t i on  shows. 

Propos i t ion  1 . 1 1  

Let A be a  s t r i c t  c losed convex process  and K be a  closed convex 

cone conta in ing  A(0) . Then K i s  i n v a r i a n t  by A i f  and only  i f  K+ i s  

a  v i a b i l i t y  domain f o r  A* . A 

Proof 

By P ropos i t i on  1.6 b) t h e  condi t ion  A(0) C K impl ies  t h a t  K+ C ~ ( 0 ) '  * 
= Dom A . To say  t h a t  K i s  i n v a r i a n t  by A amounts t o  say ing  t h a t  

Lema  1 .9  s t a t e s  TK(x) =1Rx + K , TK+(q) = IRq + K+ . Therefore 

O n t h e o t h e r h a n d ,  Lema  1 . 7 i m p l i e s  t h a t  in£ < q , y > =  sup* <p ,x> .  
y  E  A h )  P E  A (q) 

Therefore cond i t i on  (1.13) i s  equiva len t  t o  t h e  cond i t i on  : 

q E K f  , +J x E ~ ~ + ( q ) +  , sup* <pyx>  2 0 
P  E A ( q )  

+ * 
By p ropos i t i on  1.6 b) f o r  a l l  q  E K t h e  s e t  A (q) is compact. The * 
sepa ra t ion  theorem impl ies  t h a t  A (q) has a  nonempty i n t e r s e c t i o n  wi th  

TK+(q) i f  and only i f  f o r  a l l  x  €IRn , sup* <p, x> 2 in£ <z,x> . 
P A (q) z E TK+(q) 

Since TK+(q) i s  a  cone t h e  l a t t e r  i n e q u a l i t y  is  equ iva l en t  t o  (1.15) .  This  

ends t h e  proof ,  

we in t roduce  now t h e  concepts  of e igenvalues and e igenvec tors  of 

c losed convex processes .  



Definition 1.12 

We shall say that X ElR is an eigenvalue of a convex process A if 

Im (A - XI) and that x E Dom A is an eigenvector of A if x # 0 

and if there exists X ElR such that Xx E A(x) . A 

We observe that half-lines spanned by eigenvectors of A* are viability 

domains for A* . 

Lemma 1.13 * 
Let A be a strict convex process. Then A has an eigenvector if and 

only if Im (A - XI) #lRn for some X ElR . A 

Proof 

a) Let n be an eigenvector of A* , a solution to An E ~*(n) , n # 0 . 
Thus, for all y E A(x) , <n,y-Ax> > 0 and thus, Im (A - XI) C {n}+ # lRn . 

b) Conversely, assume that for some X ElR , Im (A - XI) # lRn . 
Since it is a convex cone of a finite dimensional space, there exists a non 

zero n E I R ~  such that <n,z> > 0 for all z E Im (A - XI) . This implies 
that for all x €lRn and y E A(x) , 

* 
By the very definition of A* , we deduce that belongs to A (n) . 

Exemple 1.14 

Let F be a linear operator from lRn to itself, L be a closed convex 

cone of controls and A be the -strict closed convex process defined by 

A(x) := Fx + L . 
A cone K is invariant by A if 

V x E K .  Fx + L C TK(x) 

and X is an eigenvalue of A if 



I m  (F - X I )  + L f xn . 
* 

The transpose A of A is defined by 

* * 
A cone P C L+ = Dom A is a viability domain for A if and only if 

* 
An element q f 0 is an eigenvector of A if and only if q is an 

eigenvector of F* which belongs to the cone Lt . 



2. The duality theorem. 

We devote this section to the duality theorem, which characterizes the 

polar cones of the reachable sets. 

We denote by W' sP (0,~) , p E [ I ,m ] , the Sobolev space of functions 
x E tP (0,~s") such that x' (a ) belongs to tP (0 ,T*") . 

Let us consider the Cauchy problem for the differential inclusion 

( i) x'(t) E A(x(t)) for almost all t E [O,T ] 

(2.1) 1 ii) x(0) a 0 

We recall that the reachable set RT is defined by 

(2.2) RT : {x,(T) I x E W' ' '(0,~) is a solution to (2.1)) . 

We shall characterize its positive polar cone < . For that purpose, we 
associate with the differential inclusion (2.1) the adjoint inclusion 

i) - q t E ~*(~(t)) for almost all t E [O,T ] 

(2.3) 
ii) q(T) = q 

* 
and we denote by QT C Dom A the set Of "final" values q such that the 

differential inclusion (2.3) has a solution. 

(2.4) Q~ : {q 1 I s  E w~~~(o,T) a solution to (2.3)) 

The statement of the duality theorem is the following. 

Theorem 2.1 

Let A be a strict closed convex process. Then 



We need t h e  fol lowing t echn ica l  lemma. 

Lemma 2.2 

Let  A be a  s t r i c t  c losed  convex process .  Then t h e  W " ~ ( O , T )  s o l u t i o n s  

t o  (2.1) a r e  dense i n  wl'I(O,T) s o l u t i o n s  t o  (2.1) i n  t h e  met r ic  of uniform 

convergence on [O,T I .  A 

Proof - 
Indeed l e t  w E w'"(o,T) be a  s o l u t i o n  of (2.1) and E > 0  be a  given 

number. Denote by C 2 1 a  L ipsch i t z  cons tan t  of A which e x i s t s  thanks t o  

P ropos i t i on  1.6 a ) .  Le t  M C [ O , T  ] be such t h a t  w' i s  bounded on [ O , T ] \ M  

and 

Se t  

i f  t E M  
y '  ( t )  := 

otherwise 
and 

Then 

(2.7) Ily(t)-w(t) 11 G Ow' ( s )  llds < ~ / 2  

and 
I 

c l ly( t )  11 i f   EM 
p ( t >  := d i s t ( y f  ( t )  ,A(y ( t ) )  

~ l l w ( t ) - ~ ( t )  11 o therwise  

Thus 

(2.8) 



By a  F i l i p p o v  Theorem ( s e e  Aubin-Cel l ina  [ 1984 1 p. 120) t h e r e  e x i s t s  

a  s o l u t i o n  x ( - )  t o  (2 .1)  s a t i s f y i n g ,  by (2.6) and ( 2 . 8 ) ,  

S i n c e  p(m) i s  a  bounded f u n c t i o n  and y  E w ~ ' ~ ( o , T )  , t h e  s o l u t i o n  x ( * )  

belongs  t o  W 1  ' w ( ~ , ~ )  . Moreover by (2 .7 ) ,  ( 2 . 9 ) ,  f o r  a l l  t E [ 0,T 1 , 

S i n c e  E i s  an  a r b i t r a r y  p o s i t i v e  number t h e  proof  ensues .  

Proof of Theorem. 

a )  We d e n o t e  by S t h e  c l o s e d  convex cone of s o l u t i o n s  t o  t h e  d i f f e r e n t i a l  

i n c l u s i o n  (2.1) i n  t h e  H i l b e r t  s p a c e  

Cons ider  t h e  con t inuous  l i n e a r  o p e r a t o r  

* * 
The t r a n s p o s e  yT maps lRn i n t o  t h e  d u a l  X of X and f o r  a l l  q E R+ 

T 

By Lemma 2.2 ,  S i s  dense  i n  t h e  W 1  ' (0,T) s o l u t i o n s  t o  (2.1) i n  t h e  m e t r i c  

o f  uniform convergence on [ 0 ,T ] . T h i s  and (2.1 1 ) y i e l d  



Let  us s e t  

2  i )  Y : L (O,T%") x  ~ ~ ( 0 , ~ s ~ )  

i i )  L  := { ( x , y )  E Y : y ( t )  E ~ ( x ( t 3 )  a .e .1  

i i i )  D , t h e  d i f f e r e n t i a l  o p e r a t o r  def ined  on X by Dx = x '  

Then S = (1 x  D)-I (L) . The c losed  image Lemma 1.3 app l i ed  t o  t h e  cont inuous 

l i n e a r  ope ra to r  @ = (1 x  D) s t a t e s  t h a t  

provided t h a t  t h e  " s u r j  e c t i v i t y  assumption" 

i s  s a t i s f i e d .  

b)  It  can be w r i t t e n  

ff (u ,v)  E Y t h e r e  e x i s t s  x  E X such t h a t  
(2.16) 

x l ( t )  E A ( x ( t ) - u ( t ) )  + v ( t )  a .e .  

S ince  t he  domain of A i s  t h e  whole space,  then  A is  L ipsch i t zean  

The set-valued map F ( t , x )  := A (x-u( t ) )  + v ( t )  i s  then  measurable i n  t , 
Lipsch i t zean  wi th  r e s p e c t  t o  x  , has c losed  images and s a t i s f i e s  t h e  fo l lowing  

e s t i m a t e  : 

1 The func t ion  t + 1 1 ~ 1 1  Ilu(t)ll + llv(t)ll being i n  L  (0,T) w e  can  

apply  a  F i l i ppov  Theorem [ 1967 ] ( s e e  Clarke [ I 9 8 3  1 )  which s t a t e s  t h e  e x i s t e n c e  

of a  s o l u t i o n  x ( * )  t o  t h e  d i f f e r e n t i a l  i n c l u s i o n  x t ( t )  E F ( t , x ( t ) )  , 
x(0)  = 0 , s a t i s f y i n g  : 



Thus x  E X and t h e  s u r j e c t i v i t y  assumption (2.15) h o l d s  t r u e .  

c )  T h e r e f o r e ,  by (2.12) and (2 .14) ,  we o b t a i n  t h e  formula  

L e t  n E QT and q  be a  s o l u t i o n  t o  t h e  a d j o i n t  i n c l u s i o n  (2 .3 ) .  By Proposi-  

t i o n  1.6 b ) ,  q ( * )  E w " ~ ( o , T )  and f o r  a l l  x E S 

Th is  i s  non n e g a t i v e  by t h e  d e f i n i t i o n  of A* . Thus QT C Rf . To prove t h e  

o p p o s i t e ,  l e t  q be long  t o  < . By (2 .17) ,  t h e r e  e x i s t s  (p ,q)  E Lt such t h a t  

By t a k i n g  x  s o  t h a t  x(T) = Q we deduce t h a t  p  = Dq i n  t h e  s e n s e  of d i s -  
I 

t r i b u t i o n s .  S i n c e  p  and q  be long  t o  LL , we i n f e r  t h a t  q  be longs  t o  t h e  

Sobolev space  w " ~ ( o , T )  . Thus Dq = q '  . I n t e g r a t i n g  by p a r t s  i n  e q u a t i o n  

(2.18) and t a k i n g  i n t o  account  t h a t  x ( 0 )  = 0  , we o b t a i n  

The s u r j e c t i v i t y  of y i m p l i e s  t h a t  q = q(T) . Thus q ( * )  i s  a  s o l u t i o n  
T 

t o  (2.3) and ehen , q be longs  t o  QT . T h i s  a c h i e v e s  t h e  p r o o f .  



3. Invariant cones and viability domains. 

We devote this section to a thorough study of the viability domains for 

A* , the transpose of a strict closed convex process. We then derive ,thanks to 
the duality theorem, corresponding properties of the invariant cones. 

We consider the Cauchy problem for the differential inclusion 

(3.1) for almost all t E [O,T I , xf(t) E A(x(t)) , x(0) = 0 , 

the reachable sets % defined by (2.2), the adjoint differential inclusion 

(3.2) for almost all t E [ O , T ]  , -qf(t) E ~*(~(t)) 

* 
We associate with any i'l E Dom A the "solution set" S (n) of solutions T 
to the differential inclusion (3.2) satisfying q(T) = n and we denote by 

QT the domain of the "solution map" 
: 

We shall use the following technical lemma. 

Lemma 3.1 

Let A be a strict closed convex process. The following properties hold 

true * 
a) the graph of the restriction of ST. to any compact subset of Dom A 

n 
is compact in B x c(0,T$In) . 

* 
b) Any viability domain P for A is contained in QT . A 

Proof 
* 

a) Let C be a compact subset of Dom A and let us consider a sequence 

(TI,, qn) where " n E C and qn E ST(\) . Then a subsequence (again denoted 
nn ) of converges to some n E C because C is compact. 



For a lmos t  a l l  t E [ O , T  1 

(by formula  (1 .  a ) ,  because  -pA(t) E A*(P , (~) )  

Gronwall ' s Lemma i m p l i e s  t h a t  

(3  4 )  \ lpn(t) l l  C Iq II exp (IIAht-T)) n 

T h i s  and formula  (1.8) imply t h a t  f o r  a lmos t  a l l  t E [O,T 1 , 

(3.5) I I p ~ ( t ) l l  4 l l ~ l l  Ilq n II exp (IIAY(~-T)) 

Thus, b y ' t h e  Banach-Alaoglu theorem, ph 
l i e s  i n  a weakly compact s u b s e t  of 

L ~ ( O , T ~ " )  and by t h e  Ascol i -Arzela  theorem, pn l i e s  i n  a compact s u b s e t  

of ~ f . 0 , T g " )  . T h e r e f o r e  t h e r e  e x i s t s  a subsequence ( a g a i n  denoted)  p n ( * )  

and a n  a b s o l u t e l y  con t inuous  f u n c t i o n  p : [ 0,T ] + such t h a t  

i 
i )  pn converges  un i fo rmly  t o  p on I O , T  I 

(3.6) 
i i )  ph converges  weakly t o  p '  i n  L'  (o,Ts") 

1 
The weak convergence of t h e  p a i r  (pn,pA) i n  L~(o,Ts") x L tO,T$Rn) 

i m p l i e s  t h e  s t r o n g  convergence of convex combinat ions  of e lements  of t h i s  * 
sequence (Mazur's Lemma). S i n c e  ( p n ( t ) , p ; ( t ) )  be longs  t o  Graph A f o r  

a lmos t  a l l  t E [O,T ] and s i n c e  i t  i s  c l o s e d  and convex, we i n f e r  t h a t  * 
f o r  a lmos t  a l l  t € [ O , T  ] , ( p ( t ) , p l ( t ) )  € G r a p h  (A ) . Hence p ( = )  be longs  

* 
b) L e t  P b e  a v i a b i l i t y  domain f o r  A and q E P . We s h a l l  show 

t h a t  t h e r e  e x i s t s  a s o l u t i o n  p E ST(q) . 



The v i a b i l i t y  theorem ( s e e  Haddad [ 1981 1 ) i m p l i e s  t h a t  f o r  a l l  to < T 

a s o l u t i o n  p  o f  t h e  d i f f e r e n t i a l  i n c l u s i o n  

d e f i n e d  on a  t ime i n t e r v a l  [ to ,T ] , c a n  be extended t o  a  s o l u t i o n  of (3.7) 

d e f i n e d  on a  l a r g e r  t ime i n t e r v a l  [ t l , T  ] , t l  < t o  . S e t t i n g  qn = q  i n  

(3.4) and (3.5) , we o b t a i n  t h a t  

/ i )  I lp ( t ) l  c .  llql f o r  a l l  t E [ t l , ~  I 
(3.8) 1 i i )  Ilp1(t)Il < l l ~ l l  l l r l l l  f o r  a.e.  t E [ t l , ~  ] 

A s  i n  t h e  c a s e  of o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s ,  one c a n  show t h a t  

p ( * )  c a n  be  extended t o  a  s o l u t i o n  ( a g a i n  denoted)  p ( * )  d e f i n e d  on t h e  t ime  

i n t e r v a l  [ 0 , T  1 . Thus p  ( -1  be longs  t o  ST (q) and t h u s ,  belongs  t o  QT . 
w 

We o b s e r v e  now t h a t  t h e  sequence o f  t h e  c l o s e d  domains QT d e c r e a s e s  : 

We i n t r o d u c e  t h e  i n t e r s e c t i o n  Q of t h e s e  cones 

Sn- 1 S ince  t h e  compact s u b s e t s  n Q, 
form a  d e c r e a s i n g  sequence,  we o b s e r v e  

t h a t  Q # 101 i f  and o n l y  i f  a l l  t h e  cones  QT a r e  d i f f e r e n t  from 0 . We 

s h a l l  s a y  t h a t  Q i s  t h e  l a r g e s t  v i a b i l i t y  domain, thanks  t o  t h e  f o l l o w i n g  

theorem. 

Theorem 3.2 

L e t  A be a s t r i c t  c l o s e d  convex p r o c e s s .  

Then t h e  c l o s e d  convex cone Q i s  t h e  l a r g e s t  c l o s e d  convex cone which * 
is  a  v i a b i l i t y  domain f o r  A . A 



Proof 

Leunna 3.1 b) impl ies  t h a t  Q i s  a  c losed  convex cone which con ta ins  

any v i a b i l i t y  domain P . It remains t o  prove t h a t  Q is  a  v i a b i l i t y  domain 

i . e .  t h a t  

Assume t h a t  Q + {O) . 
Thanks t o  the  necessary cond i t i on  of the  v i a b i l i t y  theorem ( see  Haddad 

[ I 9 8 1  I ) ,  i t  i s  s u f f i c i e n t  t o  prove t h a t  f o r  some T > 0 , 

(3.12) V q E Q , 3 P ( - )  E ST (q) which i s  v i a b l e  on Q . 

Since q belongs t o  QnT f o r  a l l . .  n  > 2 , t h e r e  e x i s t s  a  s o l u t i o n  p n ( - )  

E SnT(" . By the  very  d e f i n i t i o n  of Q t  , we know t h a t  p ( t )  E Q t  f o r  a l l  

t G n T  . 
Therefore,  t he  t r a n s l a t e d  func t ion  (  def ined  on [ 0,T 1 by 

belongs t o  S (q) and s a t i s f y  f o r  a l l  t E [ 0 ,T ] , k G n-1 
T 

By Lemma 3.1 a ) ,  ST (q) i s  compact i n  c (0 , T s n )  . Thus the re  e x i s t s  a  sub- 

sequence of Cn(-) converging t o  some $ ( * )  ST('l) uniformly on [ 0 ,T ] . - By 

(3.14) f o r  a l l  t E [ O , T  1 ,  k >  1 , $ ( t )  CQkT . Therefore 

$ ( t >  c n 
k > l  QkT = Q 

We t r a n s l a t e  now t h i s  r e s u l t  i n  terms of reachable  s e t s  
R~ ' 



Since 0 E A(0) the reachable cones R(T) do form an increasing 

sequence. We define the reachable set of the inclusion (3.1) to be 

It is a convex cone, which is equal to the whole space if and only if for some 

T > O ,  R(T) =iRn. 

- 
We say that the closure R of R is the smallest invariant cone by A . 

This definition is motivated by the following consequence of both Theorem 2.1 

and Theorem 3.2. 

Theorem 3.3 

Let A be a strict closed convex process. 
- 

Then the closed convex cone R is the smallest closed convex cone 

containing A(0) and invariant by A . 
A 

Proof - - 
Indeed Theorem 2.1 and the definition of R and Q imply that ?? = Q . 

- 
By Theorem 3.2 and Proposition 1.11, R is the smallest closed convex cone 

containing A(0) = (Dom A*)+ which is invariant by A . rn 

We consider now the largest subspace 

* * 
Q n - Q  C DomA n - D o m A  

Proposition 3.4 

Let A be a strict closed convex process. The subspace Q n -Q is * 
the largest subspace invariant by A and its orthogonal space R-R is 

invariant by A in the sense that : 

(3.17) V x E R-R , A(x) C R-R . 



Proof 

By P r o p o s i t i o n  1.6 c )  t h e  r e s t r i c t i o n  of A* t o  Q n -Q i s  a  l i n e a r  * 
( s ing le -va lued)  o p e r a t o r .  We have t o  check t h a t  A (Q n -Q) C Q n -Q . 
L e t  q  belong t o  Q n -Q . Then by Theorem 3.2, s i n c e  IRq C Q n - Q 

S i n c e  -q E Q n -Q , we a l s o  have 

* * 
A q  = -A (-q) C -Q 

Thus * 
A q  E Q n - Q  . 

--C 
S i n c e  Q = R , t h e  o r t h o g o n a l  space  t o  Q n -Q i s  t h e  ( c l o s e d )  v e c t o r  s p a c e  

spanned by R . S i n c e  we a r e  i n  f i n i t e  d imens iona l  s p a c e ,  we i n f e r  t h a t  

P r o p o s i t i o n  1 . 1 1  i m p l i e s  t h a t  t h e  v e c t o r  space  R - R is  i n v a r i a n t  by A , * 
because  we have proved t h a t  Q n -Q i s  a  v i a b i l i t y  domain f o r  A . rn 

k We c o n s i d e r  now t h e  cones  A(0) , (0)  := A(A(0) ) , . . . ,A (0 )  = A ( A ~ - '  (0 )  ) , 
e t c . . .  S i n c e  0  be longs  t o  A(0) , t h e s e  convex cones  £ o m  a n  i n c r e a s i n g  

sequence.  We i n t r o d u c e  t h e  cone 

and t h e  v e c t o r  subspace  

(3.20) M spanned by N 

Theorem 3.5  

L e t  A be  a  s t r i c t  c l o s e d  convex p r o c e s s .  Then 



- 
b) R C N C M C R - R  

Proof 

a) It is clear that A [ U Ak(0)] c N . 
k > l  

j Let x E N , y E A(x) and xn E U A (0) be a sequence converging 
i > l  - 

to x . Since A is Lipschitzean, there exists a sequence yn E A(xn) C N 

converging to y , which belongs to N because it is closed. 

b) Since N is a closed invariant cone containing A(0) , Theorem 3.2 - 
implies that N contains the reachable set R . On the other hand, 0 belongs 

to R - R and this vector space is invariant by A , thanks to Proposition 
3.4. Theref ore the cones ~ ~ ( 0 )  = A (A~-' (0)) are contained in R - R and so 

does M . 
C) We deduce the other inclusions by polarity, noticing that 

N + =  n A~(o)+ and 
k a l  

1 
M =  n ~~(0)' 

k > 1 

Remark 

When the reachable set R is a vector space, the subsets R , N , M 
and R - R coincide. This happens when, for instance, A is symmetric (in 

the sense that A (-x) = -A(x) ) , i .e. , when the graph of A is a vector 

subspace. 



4. Eigenvectors and eigenvalues of convex processes. 

When Q fl -Q = {O) (or R - R = lRn ) ,  there is no proper subspace 

invariant by A* (or there is no proper subspace invariant by A ) . Moreover, 
when Q # (0) (or R f lRn ) ,  we can still prove the existence of an eigen- 

value of A (see ~efinition 1.12 and Lemma 1.13), or eigenvectors of A* . 

Actually, eigenvectors 11 of A* , non zero solutions of the inclusion * 
Aq E A (n)  , do belong to the largest viability domain Q , because for all 
T > 0 the function p(t) := q exp (A(T-t)) belongs to ST(rl) . 

Theorem 4.1 

Let A be a strict closed convex process. 

If the largest viability domain Q for A* is different from {O} 
* 

and contains no line, then A has at least an eigenvector. A 

By Lemma 1.13 and duality theorem 2.1, the following dual version of 

this theorem holds true. 

Theorem 4.2 

Let A be a strict closed convex process. Assume that the reachable set 

R is different from lRn and spans the whole space. Then A has at least 

one eigenvalue. A 

First we recall the following property 

Lemma 4.3 

Let Q be a closed convex cone of lRn . The following properties are 
equivalent : 

i) Q n - Q  = (0) 

ii) Q is spanned by a compact convex subset which does not contain zero 

iii) The interior of Q+ is non-empty . 



+ 
I f  one of these  p r o p e r t i e s  hold t r u e ,  then f o r  a l l  xo E I n t  Q , t he  compact 

convex subse t  

spans Q . A 

Proof - 
We provide the  proof f o r  t h e  convenience of t he  reader .  

Condition i )  means t h a t  zero i s  the  extremal po in t  of Q , which i s  

equiva lent  t o  the  a s s e r t i o n  0 $! co (Q n S n-1 ) . Since the  compact convex s e t  

co (Q n sn-') spans the  cone Q we proved the  equivalence of i )  and i i ) .  
++ 

Condition i i i )  means t h a t  Q = Q conta ins  no l i n e ,  which i s  p r e c i s e l y  the  

statement i ) .  

I f  xo E I n t  Q+ and q,qi E M  , i = 1,2 ... a r e  such t h a t  <qi,x0> = 1 , 
l i m  q i / l l q i l l  = q E Q n sn-' . Then 

i + m  

x>/ l lq . l l  = l i m  Yq.ll-l 0 < <q,xo> = l i m  <qi,  
i + w  1 i + ~  1 

It  implies  t h a t  t h e  norms l l q i l l  a r e  bounded and, t h e r e f o r e ,  

M is  bounded. Obviously i t  i s  a l s o  convex and closed.  

Proof of Theorem 4.1 

Let xo E I n t  Q+ and l e t  M be defined by (4.1 ) . Then f o r  a l l  p E M 

We in t roduce  the  fol lowing p r o j e c t o r s  

For a l l  p EM and q E Q , <r (p )p ,xo>  = 0 = <r(p)q ,xo> . Hence the  p r o j e c t o r  

n(p) maps the  s e t  IRp + Q i n t o  TM(p) . Since TQ(p) = IRp + Q and ~ ( p )  is  

a continuous l i n e a r  ope ra to r ,  we ob ta in  : 



(4.4) f f p E M ,  ~ ( p )  maps T (p) into TM(p) Q 

* 
Consider the set-valued map p E M  + .rr(p)A (p) . It is upper semicontinuous 
with nonempty compact convex images. By assumptions of Theorem 4.1, for all * 
p E M c Q , A (p) n TQ(p) # @ Thus by (4.4) 

The assumptions of Theorem 6.4.11 p. 341 of Aubin-Ekeland [I984 ] are satisfied. - * - - * 
Therefore, for some p E M , 0 E T(~)A (p) . Hence there exists q E A ( 6 )  - - * - * 
such that <q,xo>p = q E A (;) . In other words p is an eigenvector of A - 
associated to the eigenvalue <q,xo> . 



5. C h a r a c t e r i z a t i o n  of c o n t r o l l a b l e  convex p r o c e s s e s .  

We s h a l l  deduce from t h e  p r e c e d i n g  r e s u l t s  s e v e r a l  c h a r a c t e r i z a t i o n s  

of t h e  c o n t r o l l a b i l i t y  of d i f f e r e n t i a l  i n c l u s i o n s  

(5 .1)  f o r  a l m o s t  a l l  t E  [O,T  ] , x '  ( t )  E  A ( x ( t ) )  , x(@r = 0  

o r ,  e q u i v a l e n t l y ,  of t h e  o b s e r v a b i l i t y  of t h e  a d j o i n t  i n c l u s i o n  

(5.2) f o r  a l m o s t  a l l  t E  [ 0,T I , - q l ( t )  E ~ * ( q ( t ) )  . 

D e f i n i t i o n  5.1 

We s h a l l  s a y  t h a t  (5.1) i s  c o n t r o l l a b l e  a t  t ime T  ( r e s p e c t i v e l y ,  

c o n t r o l l a b l e )  i f  RT = iRn ( r e s p e c t i v e l y ,  R = iRn ) .  We s h a l l  s a y  t h a t  t h e  

a d j o i n t  i n c l u s i o n  (5.2) i s  o b s e r v a b l e  a t  t i m e  T ( r e s p e c t i v e l y ,  o b s e r v a b l e )  

i f  QT = {0} ( r e s p e c t i v e l y ,  Q = {O} ) .  A 

We a l s o  o b s e r v e  t h e  f o l l o w i n g  p r o p e r t y .  

Lemma 5.2 

L e t  A b e  a  s t r i c t  c l o s e d  convex p r o c e s s .  T h e t h r e e  f o l l o w i n g  p r o p e r t i e s  

a r e  e q u i v a l e n t .  

a )  3 m > 1. such t h a t  Am(0) - Am(0) = iRn 

(5.3) b )  3 m > I such  t h a t  Arn(0)l  = {O) 

c )  3 m > 1 such t h a t  I n t  Am(0) # 0 

It  is conven ien t  t o  i n t r o d u c e  t h e  

Rank c o n d i t i o n  5.3. 

We s a y  t h a t  a  convex p r o c e s s  A s a t i s f i e s  t h e  r a n k  c o n d i t i o n  i f  one 

of t h e  e q u i v a l e n t  p r o p e r t i e s  (5.3) h o l d s  t r u e .  
A 

Lemma 5.4  

Cons ider  t h e  s t r i c t  c l o s e d  convex p r o c e s s  A(x) = Fx + L  , where F E i R n X n  



is a matrix and L is a vector subspace of Wn . Then A satisfies 

the rank condition if and only if An(0) - An(0) = Wn . A 

Proof 

The rank condition is satisfied if and only if for some m 2 1 the cone 
m- 1 L + AL +...+ A L spans the whole space. The Cayley-Hamilton Theorem ends 

the proof. 

We begin by stating characteristic properties of observability of the 

adjoint system (5.2) and then, use the duality results to infer the equivalent 

characteristic properties of system (5.1). 

Theorem 5.5 

Let A be a strict closed convex process. The following properties 

are equivalent 

a*) The adjoint inclusion (5.2) is observable 

b*) The adjoint inclusion (5.2) is observable at time T > 0 for some T 

c* 0 is the Largest closed convex cone which is a viability 

domain for A* 

d*) A* has neither proper invariant subspace nor eigenvectors 

* 
e*) the rank condition is satisfied and A has no eigenvectors. 

A 

Proof 
n- 1 a) Since the intersections QT n S of the cones QT and the unit 

sn- 1 sphere form a decreasing sequence of compact subsets, we deduce that 

Q n Sn-' is empty if and only if QT n Sn--I is empty for some T , i. e., 
that Q = 10) if and only if QT = 10) for some T > 0 . Thus af * bf . 

B) Property cf is equivalent to Q = {O) by Theorem 3.2, i. e. af * cf . 
y) When Q = (0) , then Q n -Q = (0) (there is no proper invariant 

subspace) and there is no eigenvector (because an eigenvector is contained 

in Q). 



When Q # {O) , then either Q n -Q # {O) and by Proposition 3.4 

there is a proper invariant subspace or Q n -Q = {O) and, by Theorem 4.1, * 
there exists at least an eigenvector of A . This proves the equivalence of * 
d, with Q = {O} , i.e. af - 4. 

k 6 )  Since the sequence of cones A (0) is increasing, the sequence of 

vector spaces Ak(0)' is decreasing, so that 

n Ak(0)' = 10) 3 m > 1 such that Am(0)' = 10) 
k > l  

* the rank condition is satisfied . 

Assume that Q = {O) . Then, by Theorem 3.5 c), and the above remark, the rank 

condition is satisfied and there is no eigenvector. Assume now that the rank 

condition is satisfied. Then Q n -Q = {O} by Theorem 3.5 c). Then, Theorem 

4.1 implies that if A* does not have an eigenvector, the cone Q is equal 
+. 

to {O) . Equivalence between e) and Q = {O) ensues. a 

Theorem 5.6 

Let A be a strict closed convex process. The equivalent properties 
+ t *  * 
a), b), c), d*) and e) of Theorem 5.5 are equivalent to the following properties 

a) Differential inclusion (5.1) is controllable 

b) Differential inclusion (5.1) is controllable at some time T > 0 

c) IEtn is the smallest closed convex cone containing A(0) which is 

invariant by A 

d) A has neither proper invariant subspace nor eigenvalues 

e) The rank condition is satisfied and A has no eigenvalues. 

f) for some m > l  , Am(0) = (-A)~(O) =IEtn 

Proof 

Statements a)-e) follow from the duality results (Proposition 1.11, 



Lemma 1.13 and Theorem 2.1) and Theorem 5.5. We shall show that a) is also 

equivalent to f ). 

* * 
Step 1. Consider the closed convex process Al(x) = A(-x) . Then A1 = - A . 
We claim that (5.1) is controllable if and only if the inclusion 

is controllable. 

* 
Indeed invariant subspaces and eigenvectors of A: and A coincide 

and our claim follows from Theorem 5.5 8) .  

Step 2. If (5.1) is controllable then by Step 1 and Theorem 3.5 b) 

U Ak(0) = U A!(o) = 1" . Since {Ak(0) 1 and {A~(o) 1 are increasing 
1 1 - 

k > l  k > l  
sequences of convex cones it implies that for some m > 1 , Am(0) = A~(o) = nn . 

I 

Moreover A~(o) = - (-A)~(o) . This implies f). 

Step 3. Assume that f) holds true. If (5.1) is not controllable then there * * 
exist A €1 , q EA(o)+ , q # 0 such that Aq E A  (q) . Then (-A)q EAl(q) . 
Therefore, 

* m 
Amq E (A ) (q) if A > O  

( - A ) ~ ~  E (~:)~(q) if A < o 

m If A > O  , then for all y EAm(0) , 0 = <A q,O> <<q,y> . If A G O  , then 
for all y E A~(o) , 0 = <(-A)~~,O> < <q,y> . In both cases we obtain a 
contradiction with f). The proof is complete. 

So, the conjunction of Theorems 5.5 and 5.6 imply Theorem 0.4'stated 

in the introduction. 

In the case when the set-valued map A is defined by A(x) := Fx + L , 
we derive known resul-ts due to Kalman when L is a vector space of control 

and to Brammer, Saperstone and Yorke when L is an arbitrary set of 

controls containing 0 . 



n Consider the linear control system in iR 

where F C ~ R ~  , G cIRn rn are constant matrices and U cIRm is the 

given control set. The control system ( 5 . 4 )  is said locally controllable around 

zero if zero is an interior point of the reachable set of ( 5 . 4 ) .  

To provide necessary and sufficient conditions for local controllability 

of ( 5 . 4 )  let us consider convex hull co U of U , and 

N := IR+ co U = cl {Xu : X > O  , u E co U} 

and the associated control system 

Lemma 5.7 

If 0 E GU then the control system ( 5 . 4 )  is locally controllable 

around zero if and only if the system ( 5 . 5 )  is controllable. A 

Proof 

The reachable set of system ( 5 . 5 )  is a convex cone equal to 



and containing the reachable set of (5.4). Hence the local controllability 

of (5.4) implies the controllability of (5.5). 

Because 0 Eco GU = G co U by a density argument,it is possible to 

verify that the cone given by (5.6) is equal to Rn if and only if 

t 
The sets {I eF(t-S)~u(s)ds : u(s) E U being convex and dense in 

n - 

{jt eF(t-s)~u(s)ds : t 2 0 , u(s) E co U (Lee-Narkus [ 1967 1 )  the inclusion 
0 

(5.7) is equivalent to 

By Lemma 5.4 the rank condition 5.3 for the closed convex process Ax = Fx + GN 
is equivalent to 

( N - N  = Rrn 

n- 1 rank [G , FG ,..., F G 1 = n 

This and Theorem 5.6 f) imply 

Theorem (Kalman) 

If U = Rm then the control system (5.4) is controllable if and only 

if rank [G , FG , .. . , Fn-'G 1 = n . A 

Theorem 5.8 

Assume that 0 E co GU . Then the system (5.4) is locally controllable 

around zero if and only if the rank condition (5.9) is satisfied and there is 

no eigenvector of F* in (Gulf . A 

Proof 

Observe that GU+ = (=)+ . By Lemma 5.7 it is enough to prove that the 



system (5.5) is controllable if and only if the rank condition 5.3 is satisfied 

and F* has no eigenvector in (z)' . But this follows from Theorem 5.5 3 
and (5.9). 

In particular when m = 1 we obtain the result from Sapers.tone-Yorke 

[1971 1 .  The above theorem is a generalization of Brammer's theorem [I972 ] 
(see also Jacobson [I977 1 ) .  Theorem 5.6 f) and Example 1.14 imply 

Theorem 5.9 

Let F be an n x n matrix and L be a closed convex subcone of iRn . 
The control system 

is controllable if and only if for some m > 1 

The last theorem together with Lemma 5.7 imply a result of Korobov 

[ 1980 I .  
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