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PREFACE

The purpose of this paper is to provide several character-
izations of controllability of differential inclusions whose
right-hand sides are convex processes. Convex processes are the
set-valued maps whose graphs are convex cones; they are the set-
valued analogues of linear operators. Such differential iﬁ-
clusions include linear systems where the controls range over a
convex cone f{(and not only a vector space). The characteristic
properties are couched in terms of invariant cones by convex
processes, or eigenvalues of convex processes, or a rank condi-
tion. We also show that the controllability is equivalent to

the observability of the adjoint inclusion.
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Chairman,
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CONTROLLABILITY OF CONVEX PROCESSES

J.P. Aubin, H. Frankowska, C. Olech

Introduction

n . . . .
A convex process A from R to 1tself is a set-valued map satisfying

(0.1) ¥ x,y€DomA, Xu=0, M E)+uA(y) © A(Ax+uy)

or, equivalently, a set-valued map whose graph is a convex cone. Convex
processes are the set-valued analogues of linear operators. We shall say that
a convex process is closed if its graph is closed and that it is strict if

its domain is the whole space.

We associate with a strict closed convex process A the Cauchy problem

for the differential inclusion

(0.2) for almost all t&€[0,T ] , =x'"(t) €A()) , x(0) =0

We denote by Ry the reachable set at time T defined by

(0.3) Rp = { x(T) }x

(¢) 1is a solutiom to (0.2).
We also say that

(0.4) R := v R.r is the reachable set
T>0

and that the differential inclusion (C.2) (or the convex process A ) is

controllable if the reachable set R 1is equal to the whole space R" .




Convex processes where introduced and thoroughly studied in Rockafellar
[1967 ], [1970 ], [1974 ] and in Aubin-Ekeland [ 1984 ], for instance.
Derivatives of set-valued maps (see Aubin-Ekeland, [ 1984 ], chapter 7)
provide examples of closed convex processes. These are used, for instance,
in Frankowska [ 1984 ], [ 1985 ] for deriving local controllability of
differential inclusions from the controllability of comvex processes which
"approximate" in some sense the original differential inclusion around the
equilibrium )

We know that for linear problems, the reachable sets are invariant.
Hence we have to extend the usual concept of invariant subspace by a linear
operator, This can be done in two different ways : let A be a convex
process and P be a closed convex cone contained in Dom A . We recall

that the tangent cone TP(x) at a point x € P is defined by

(0;5) T, = cl| U & ®-x)| = cl (B +Rx)
h>0
(x) Theorem (Frankowska). Let F be a set-valued map from RY into

the compact subsets of R™ , Lipschitzean around zero and 0 € F(0) .
Denote by F'(0) the derivative of F at zero and by L the closed

convex cone spanned by co F(0) (convex hull of F(0) ). Set
A(x) = F'(O)x + L

Then the differential inclusion
x' € F(x) ; x(0) = 0

is locally controllable around zero at time T if the "linearized"

inclusion

x' € A(x)

is controllable at time T . L]



We shall say that P is invariant by A 1if

(0.6) ¥x€E€EP, Ax) C TP(x)

and that P 1is a viability domain for A 1is

(0.7) ¥xEP, A(x) ﬂTP(x) # 0 .

When P 1is a vector space, then TP(x) = P , so that a subspace is invariant
by A if ¥ x€ P, A(x) CP and is a viability domain.for A 1if ¥ x € P ,
A(x) NP # ¢ .

A first example of invariant cone is provided by the closure of the

reachable set.

Theorem 0.1

Let A be a strict closed convex process. Then the closure of the
reachable set is the smallest closed convex cone containing A(0) which is
invariant by A , the subspace R - R spanned by R 1is the smallest

subspace containing A(0) invariant by A .

Furthermore, if R - R = R" and R # R® , there exists A €R such
that Im (A - AI) #R" . A

We could say that a real number X such that Im (A - AI) #ZRn is

an eigenvalue of A .

We shall prove this theorem by "duality'. Indeed, convex processes
can be transposed, as linear operators. Let A be a convex process ; we

. . *
define its transpose A by

*
(0.8) pEA(Q *© ¥ (x,y) €Graph A , <p,x> <<q,y>

We also replace the orthogonality between subspaces by polarity between
cones. If G is a subset of R" , we denote by G' its (positive) polar

cone defined by :



(0.9) ¢ = {(pER" | ¥xE€G, <p,x> >0}

We recall that the separation theorem implies that

(0.10) ¢ is the closed convex cone spanned by G .

Therefore, it is convenient to bear in mind that

* +
(0.11) (q,p) € Graph (A') <+ (-p,q) € Graph (4)
. ok

so that when A 1is a closed convex process, then A = A .

Example. Let F be a linear operator from R to itself, L be a closed

convex cone of controls and A be the strict closed convex process defined by

(0.12) A(x) = Fx + L

Then its transpose is equal to

b 4
F q if q € Lt

(0.13) A (g = .\
) if qEL

* *
When L = {0} , i.e., when A =F , we deduce that A = F , so that trans-
position of convex processes is a legitimate extension of transposition of

linear operators.

. *
When A 1is a strict closed convex process, we shall prove that A is
. . . *
upper semi-continuous with convex compact values, that A (0) = {0} ,
* + ., . . *
Dom A = A(0) is closed and that the restriction of A to the vector space

* * . . .
Dom A N = Dom A is a linear (single-valued) operator.

As expected, we associate with the differential inclusion (0.2) the

adjoint inclusion :




(0.14) for almost all t €[0,T] ,  -q'(t) € A (q(t))

We introduce the cones QT and Q defined by

i) Qp := {n | q(+) , a solution to (0.14) satisfying q(T)=n}
(0.15)
ii) Q := N .
T>O0 QT
To say that Q = {0} amounts to saying that the only solution to (0.14)
defined on [0, [ is q = 0 , or, in the language of systems theory, that

the adjoint system is observable.

The "duality" method lies in the following statement.

Theorem 0.2

Let A be a strict closed convex process. Then

+ +

(0.16) RT = QT and R = Q

Furthermore, a closed convex come P D A(0Q) 1is invariant by A if
*
and only if its polar cone P Cpom A is a viability domain for A
A

Indeed, it allows to derive theorem 0.! from

Theorem 0.3
Let A be a strict closed convex process. The cone Q 1is the largest
s e . * .
closed convex cone which is a viability domain for A and Q N - Q 1is

. . . *
the largest subspace invariant by (the linear operator) A .

Furthermore, if Q 1is not reduced to {0} and contains no line,

%*
there exists a solution q # 0 and A €R to the inclusion Aq € A (q)
A

. . *
We could say that such a q 1is an eignevector of A .




It will be convenient to introduce the following definition. We say

that A satisfies the rank condition if

(0.17) { the subspace spanned by the cone A"(0) is the whole space

n .
R~ for some integer m = |

This is motiveted by the terminology used for linear systems. Indeed, when

A(x) := Fx + L. where F 1is a linear operator and L 1is a convex cone of

controls, we observe that Am(O) = L+FL +...+ Fm-l.L

We shall derive from these results the following characterization of

controllability of convex processes.

Theorem 0.4
Let A be a strict closed convex process. The following conditions

are equivalent.
a) differential inclusion (0.2) is controllable (i.e., R = R" )

b) differential inclusion (0.2) is controllable at some time T >0
(i.e., Rp =R" )
c) the adjoint inclusion (0.14) is observable (i.e., Q = {0} )

d) the adjoint inclusion (0.14) is observable at some time T > 0
(i.e., QT = {0} )

n

e) R 1is the smallest closed convex cone containing A(Q0) which is

invariant by A

£f) {0} 1is the largest closed convex cone which is a viability domain

*

for A
g) A has neither proper invariant subspace nor eigenvalues

* . . . .
h) A has nelther proper invariant subspace nor eigenvectors
i) the rank condition holds true and A has no eigenvalues
. .. . . e * .
j) the rank condition is satisfied and A has no eigenvectors.

k) for some m =1, AT = (-a)T(0) =R" A



-7=

Example. Let F be a linear operator from R™ to itself and L be a

closed convex cone of controls. We consider the differential inclusion
(0.18) x'(t) € Fx(t) + 1L . x(0) =0
and its adjoint inclusion

(0.19) ~q'(t) = Fq(t) , %e>0, q() Lt

Corollary 0.5

The following conditions are equivalent.

a) the system (0.18) is controllable

b) the adjoint equation (0.19) is observable (the only solution of

o * .. . + . -
q' = F q remaining in L on [0, is q = 0)

. . . + . .
c¢) {0} is the largest closed convex cone contained in L which is

*
invariant by F

* . . . . . +
d) ¥ has neither proper 1invariant subspace contained in L nor
. . +
elgenvector 1n L

n—-]

e) the subspace spanned by L , FL ,...,F L 1is equal to R®

*
and F  has no eigenvector in L' (see Brammer [1 ])

£) for some m =21, L + FL +...+ F'L = L = FL +...+ (—l)mFmL = R"
(See Korobav [198Q ]). A

This example also illustrates another advantage of duality, because
some properties bearing on the adjoint system have a simpler formulation.
This explains why some criteria mentionned in Theorem 0.4 disappear in

Corollary 0.5.

When L 1is a vector space, statements c), d) and f) are the same and the

mention of eigenvector in statement e) is redondant. This is not the case

when L 1s a proper cone. It 1s sufficient to consider the example
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x' € -x +R, , x(0) =0

The rank condition is satisfied (AZ(O) =R) and the reachable set is R, .

We summarize in the first section the results on convex processes
and their transpose that we will need later. Section 2 is devoted to the
proof of the duality Theorem 0.2, characterizing the positive polar cones
of the reachable set. We then derive the characterization of the closure
of the reachable set as the smallest invariant cone by A and its dual
version in section 3 and the existence of eigenvalues of A and eigenvectors
of A* in the fourth section. These results are used to prove Theorem 0.4

in the fifth section.



Contents

l. Convex processes and their transposes

2. The duality theorem.

3. Invariant cones and viability domains.

4. Eigenvectors and eigenvalues of convex processes.

5. Characterization of comntrollable comvex processes.



-10-

1. Convex processes and their transposes

Definition l.!

n . .
A set-valued map from R to R" is said to be a convex process

if its graph is a convex come. It is closed if its graph is closed. It is

called strict if

Dom A := {x €ER" | A(x) # #} is the whole space
A

Definition 1.2

Let X be a Hilbert space and G € X be a subset. We denote by Gt ,

the (positive) polar cone of G , the closed convex cone defined by

4
(1.1) ¢" = {pEX |¥x€6, <p,x> =0}

. . . . + .
The separation theorem implies that the "bipolar™ G * is the closed
convex cone spanned by G . We shall use the following consequence of this

fact.

Lemma 1.3 (Closed image Lemma).
Let X,Y be two Hilbert spaces, ¢ be a continuous linear operator

from X to Y and L be a closed convex cone of Y . Assume that

(1.2) Im ¢ -L = Y (surjectivity condition)
Then
- S+ *
(1.3) ol = otah A
Proof.

] L . +
a) We prove first that ¢ (L) 1is closed. Let q, €L be a sequence
* *
such that ¢ (qn) converges to some p in X and let us prove that p
*
belongs to ¢ (L%) .

We begin by showing that q, is weakly bounded. Indeed, for any v €Y ,
there exist x € X and y €L such that v = ¢(x) - y . Hence :
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* *
<qn,V> = <¢ (Cln),X> - <qn;}’> < <¢ (qn) » X>
< g% (g1 Ixl

Therefore, since X 1s reflexive, the sequence q, is in a weakly compact
*

subset and a subsequence q,r converges weakly to some q €Y . Since Lt
is closed and convex, and thus, weakly closed, q belongs to L* . since
* *
¢ (q_,) converges weakly to ¢ (q) and strongly to p , we deduce that

Ty * _+
p=¢ (g €¢ (L) .

* - * .
b) We observe that ¢ (L+)+ = ¢ 1(L) because x € ¢ (L+)+ if and
*
only if <¢ q,x> = <q,$(x)> =20 for all q € Lt , i.e., if and only if

*
¢(x) belongs to AR Hence, since ¢ (L+) is closed, we deduce that
* * -
sah = oah™ = stw? .

We now recall some properties of convex process, some of them already
known (see Rockafellar [1967 ], [1970 ] § 39, [1974 ], Aubin-Ekeland, [1984 |,

chapter 3).

Definition 1.4

*
Let A be a convex process from R" to itself. The transpose A  of

A 1is the set-valued map from R™ to itself given by

*
(1.4) pEA(qQ * ¥ (x,y) €Graph (A) , <p,x> < <q,y> N

In other words,

(1.5) (4,p) € Graph (A") # (-p,q) € (Graph a)"

* .
The transpose of A 1s obviously a closed convex process and A = A
if and only if the convex process A 1is closed. When A 1s a linear operator,
its transpose as a linear operator coincides with its transpose as a convex

process.
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Lemma .5

If A 1is a closed convex process, then

(1.6) A0) = (Dom A*)+ A

Proof

We observe that y belongs to A(0) 1if and only if O = <p,0> < <q,y>
* *
for all g€ DomA and p €A (q) , i.e., if and only if <q,y> =20 for
*
all q € Dom A . -

Definition 1.5

Let B denote the unit ball. Whem A 1is a closed convex process, we

define its norm by

(1.7) lal := sup inf Iyl € [0,+o ]
X E€EBMNDom A v E AX) A

Proposition 1.6

Let A be a strict closed convex process. Then

a) ¥ x,y eRr" , A) CA(y) + lal lx-ylB (i.e., A 1is Lipschitzean

with finite Lipschitz constant equal to lal ).

* + * . . .
b) Dom A = A(0) and A is upper semicontinuous with compact convex

images, mapping the unit ball into the ball or radius lall

. s * * *
¢) the restriction of A to the vector space Dom A M - Dom A

*
is single-valued and linear (and thus, A (0) =0 ). A

Proof

a) The first statement is a reformulation of Robinson-Ursescu's theorem
(see Robinson [ 1967 ], Ursescu [1975 ], and Aubin-Ekeland [ 1984 ], Corollary
3.3.3, p. 132).

b) We observe that :
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*
(1.8) ¥ q € Dom A , sup, foll < lal lql
p €A (q)

*
because, for all x € Dom A =R , for all p € A (q) , we have

Ipl = sup 5%4%1 < sup inf 5%4%2
x €ErR? ¥ x ER® vy € A(x) X

< sup ing A4l gl

x ERM vy € A(x)

Then A* maps bounded sets to bounded sets. Since its graph is a closed
convex cone we deduce that A* is upper semicontinuous with compact convex
images. By Lemma 1.5, Dom A = A(0)" . Therefore it remains to prove that
Dom A* is closed. Indeed let 9, € Dom A* be a sequence converging to
some q and let P, € A*(qn) . The sequence {pn} being bounded contains
a subsequence {pn.} converging to some p . Thus

, *
(q,p) = lim (q s 0) 5 (q s,p ¢} € graph A

n'+ «

* . *
The graph of A  being closed, we proved that q € Dom A .

=
We observe that we always have
sup <p,x_> < inf <q,y> -
p €A (q) y € Ax)
Lemma 1.7
Let A be a closed convex process.
*
For amy x_ € Int Dom A , and q, € Dom A ,
(1.9) su <p,x > = inf <qsy>
p €4%(q) y €Ax) A

(See Rockafellar Ti970 ]).
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We now extend to the case of closed convex cones the concepts of
invariant subspaces. When K 1is a subspace and F 1s a linear operator,
we recall that K 1is invariant by F when Fx € K for all x € K . When
A 1s a convex process, there are two ways of extending this notion : we
shall say that K 1is invariant by A 1if, for any x €K, A(x) €K
and that K 1is a viability domain for A if, for any x €K, A(x) NK
# @ . We also need to extend these notions to the case when K 1is a closed

convex cone. We recall the

Definition 1.8

If K 1is a closed convex set and x belongs to K , we say that

]
T, (x) := ¢l [ U — (K-%)
K h>o0 DB

is the tangent cone to K at x .

Lemma ].9
When K 1is a vector subspace, then, for all x €K , TK(x) = K and

when K 1s a closed convex cone, then,

(1.10) ¥ x €EK, TK(x) = cl (K + Rx) A

(See Aubin-Ekeland, [ 1984 ], Proposition 4.1.9, p. 171).

Now, we can introduce

Definition 1.10

Let K be a closed convex cone and A be a convex process. We say

that K 1is invariant by A if

(1.11) ¥x €EK, A(x) C TK(x)

and that K 1is a viability domain for A 1if

(1.12) ¥x €K, AR NTe(x) # @ A
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These are dual notions, as the following proposition shows.

Proposition 1.1!

Let A be a strict closed convex process and K be a closed convex
cone containing A(0) . Then K 1is invariant by A if and only if K" is

e 4 s . *
a viability domain for A . A

Proof
By Proposition 1.6 b) the condition A(0) CK 1implies that k" C INC)N

* . . .
= Dom A . To say that K 1s invariant by A amounts to saying that

(1.13) ¥xER,¥qET(® ,  inf <qy > 0
v € A(%)

Lemma 1.9 states TK(x) =Rx + K, TK+(q) =Rq + KT . Therefore

(1.14) Q€T ® g =0 , q€K * xET. (@
On the other hand, Lemma 1.7 implies that inf <q,y> = sup,  <p,x>.

y € A(x) p €A (q
Therefore condition (1.13) is equivalent to the condition :

+ +
(1.15) ¥qE€EK ,¥x€T, +(q) , sup <p,x> =2 0
X *
P <€A (g

*
By proposition 1.6 b) for all q € K" the set A (q@) 1is compact. The
. . * . . .
separation theorem implies that A (q) has a nonempty intersection with

TK+(q) if and only if for all x ER" , sup, <p,x> = inf <z,x>

Since TK+(q) is a cone€ the latter inequality is equivalent to (1.15). This

ends the proof, u

We introduce now the concepts of eigenvalues and eigenvectors of

closed convex processes.
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Definition 1.12

We shall say that A €R 1is an eigenvalue of a convex process A if
Im (A - \I) #iRn and that x € Dom A 1is an eigenvector of A if x # 0
and if there exists X €R such that ix € A(x) . A

. . * .
We observe that half-lines spanned by eigenvectors of A are viability

domains for A’

Lemma [.13
Let A be a strict convex process. Then A* has an eigenvector if and
only if Im (A - AI) #an for some )\ €R . A
a) Let n be an eigenvector of A* , a solution to An € A*(n) , n# 0.
Thus, for all y € A(x) , <n,y=Ax> >0 and thus, Im (A - AI) C {n}+ #RT .

b) Conversely, assume that for some X €ER , Im (A - AI) #IRn .
Since it 1s a convex cone of a finite dimensional space, there exists a non
zero n €R™ such that <n,z> >0 for all z € Im (A - AI) . This implies
that for all x €R"™ and vy € A(x) ,
A<n,x> € <n,y>

e, »* Y
By the very definition of A , we deduce that An belongs to A (n)

Exemple 1.14

Let F be a linear operator from R® to itself, L be a closed convex
cone of controls and A be the strict closed convex process defined by

A(x) = Fx + L .,

A cone K 1s invariant by A 1if

¥ x €K . Fx + L C TK(X)

and )X 1is an eigenvalue of A 1if
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Im (F - AI) +L # R".

*
The transpose A of A 1is defined by
*
- F q if q € Lt
Aq = .
@ if q€&L

* *
Acone PCLY =Doma isa viability domain for A  if and only if
b 4
¥q€P, Fq € Ty(q)

. * . .
An element q # 0 1s an eigenvector of A 1f and only if q 1is an

wr
eigenvector of F  which belongs to the cone L.
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2. The duality theorem.

We devote this section to the duality theorem, which characterizes the

polar cones of the reachable sets.

We denote by Wl’p(O,T) s PE[1,2] , the Sobolev space of functions
x € Lp(O,TﬂRn) such that x'(+) belongs to Lp(O,TﬂRn)

Let us consider the Cauchy problem for the differential inclusion

i) x'(t) € A(x(t)) for almost all t€[0,T ]

(2.1)
ii) x(@) = 0
We recall that the reachable set RT is defined by
(2.2) R, := {x(D | x€w'(0,1) is a solution to (2.1} .

T

. . . +
We shall characterize 1ts positive polar cone RT . For that purpose, we

associate with the differential inclusion (2.1) the adjoint inclusion

i) -q'(t) € A*(q(t)) for almost all t €[(0,T ]

(2.3)
i1) (@ = n

*
and we denote by QT C Dom A the set 6f "final" values n such that the

differential inclusion (2.3) has a solution.

(2.4) Qr = {n | dq EWI’I(O,T) a solution to (2.3)}

The statement of the duality theorem is the following.

Theorem 2.1

Let A be a strict closed convex process. Then

(2.5) R, = QT
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We need the following technical lemma.

Lemma 2.2

1’m(O,T) solutions

Let A be a strict closed convex process. Then the W
to (2.1) are dense in WI’I(O,T) solutions to (2.1) in the metric of uniform
convergence on [0,T ]. N

Proof
Indeed let w € Wl‘l(O,T) be a solution of (2.1) and € > 0 be a given
number. Denote by C 2 | a Lipschitz constant of A which exists thanks to

Proposition 1.6 a). Let M C[0,T ] be such that w' is bounded on [O0,T]\ M

and

(2.6) 2C (T+1) eCTJ Mw(s) l+lw )1y ds < e
M
Set
0 if tE€EM
y'(t) =
w'(t) otherwise
and
t
y(t) 1= [ y'(s) ds
(o]
Then
2.7) ly ()= (o) | < J la' (s)lds < e/2
M
and
cly(eyl if t €M
p(t) = dist(y'(£),A(y(E))) S
clw(e)-y(e)l  otherwise
Thus
T T
(2.8) J p(t)dt < C U ||w(t)||dt+f lw(t)-y(t)ldt
0 M 0

< [ (he(s)l + Tha' ()1 ds
M
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By a Filippov Theorem (see Aubin-Cellina [ 1984 | p. 120) there exists

a solution x(+) to (2.1) satisfying, by (2.6) and (2.8),
CT T
1) Ix(e)-y)l < e J p(e) dt < ¢/2

)
(2.9)

T
i) Ix'(o-y' () < ¢ eCT{ p(t)dt + p(t) a.e.
o]

Since p(+) 1is a bounded function and y € Wl’m(O,T) , the solution x(-)
belongs to Wl’w(O,T) . Moreover by (2.7), (2.9), for all t€][0,T] ,

Ix(e)-w(t)l < Ix()-ye)l + ly(e)-w(e)l < ¢
Since € 1is an arbitrary positive number the proof ensues. .

Proof of Theorem.

a) We denote by S the closed convex cone of solutions to the differential

inclusion (2.1) in the Hilbert space

(2.10) X := {x€w’%0,1) | x(0) =0}

Consider the continuous linear operator

vp P x(+) €X > x(T) €ER"
* n . * +
The transpose Yp maps R into the dual X of X and for all n € RT
* =
(2.11) ¥x €S, YphX> = <NyYgx> Z 0

By Lemma 2.2, S 1is dense in the Wl’l(O,T) solutions to (2.1) in the metric

of uniform convergence on [0,T | . This and (2.11) yield

(2.12) R; = {n: Y;n € s}
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Let us set

i)y L?0, TR x 1.2(0,TRY)

(2.13) ii) L {(x,y) EY : y(t) € A(x(t)) a.e.}

iii) D , the differential operator defined on X by Dx = x'

1

Then S = (1 x D) (L) . The closed image Lemma 1.3 applied to the continuous

linear operator ¢ (1 x D) states that

(2.14) s*

(1 x ¥ ah

provided that the 'surjectivity assumption'

(2.15) Im (l xD) -L =Y
1s satisfied.
b) It can be written

¥ (u,v) € Y there exists x € X such that

(2.16)
x'(t) € A(t)=u(t)) + v(t) a.e.

Since the domain of A 1is the whole space, then A 1s Lipschitzean

The set-valued map F(t,x) := A (x-u(t)) + v(t) is then measurable in ¢t ,
Lipschitzean with respect to x , has closed images and satisfies the following

estimate :
d(O,F(t,'O.)) < Al Tu¢e) b + Tw(e)l

The function t = lall lu(e)ll + lv(e)l being in LI(O,T) we can
apply a Filippov Theorem [ 1967 ] (see Clarke [ 1983 ]) which states the existence
of a solution x(+) to the differential inclusion =x'(t) € F(t,x(t)) ,

x(0) = 0 , satisfying :
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, lalr (T
')l < lal e d(Q,F(t,Q) )dt + d(0,F(t,0))
Q

Thus x € X and the surjectivity assumption (2.15) holds true.

¢) Therefore, by (2.12) and (2.14), we obtain the formula

(2.17) RN = (n y;n e xd) et

T
Let n€Qp and q be a solution to the adjoint inclusion (2.3). By Proposi-
tion 1.6 b), q(+) € W' ’®(0,T) and for all x € §

<L,x(T)> = <(q',q), (x,x")>y

*
This is non negative by the definition of A . Thus Qp c R; . To prove the
opposite, let n belong to R; . By (2.17), there exists (p,q) € L" such that

(2.18) My YpX> = <p,x> , + <q,Dx> ¥FxEX

2 2

L L
By taking x so that x(T) = Q we deduce that p = Dq in the sense of dis-
tributions. Since p and q belong to L2 , we infer that q belongs to the
Sobolev space WI’Z(O,T) . Thus Dq = q' . Integrating by parts in equation

(2.18) and taking into account that x(0) = 0 , we obtain

M YpX> = <pmql,x> 5, + <q(T),x(T)> = <q(T),x(T)>
L

The surjectivity of Yr implies that n = q(T) . Thus q(°*) 1is a solution

to (2.3) and then, n belongs to QT . This achieves the proof. .
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3. Invariant cones and viability domains.

We devote this section to a thorough study of the viability domains for
* . .
A , the transpose of a strict closed convex process. We then derive,thanks to

the duality theorem, corresponding properties of the invariant cones.
We consider the Cauchy problem for the differential inclusion

(3.1) for almost all t€[0,T] , x'(t) € A(x(t)) , =x(0) =0 |,

the reachable sets RT defined by (2.2), the adjoint differential inclusion

(3.2) for almost all t<€[0,T] , =-q'(t) € A*(q(t))

*
We associate with any n € Dom A  the "solution set" ST(n) of solutions
to the differential inclusion (3.2) satisfying q(T) = n and we denote by

QT the domain of the "solution map" ST :

*
(3.3) Q = {n€Doma | s.(n) # ¢}
We shall use the following technical lemma.

Lemma 3.1

Let A be a strict closed convex process. The following properties hold

true
a) the graph of the restriction of ST to any compact subset of Dom A
is compact in Rr® x C(O,TﬂRn)
- . *x . .
b) Any viability domain P for A 1is contained in QT .
A
Proof

* .
a) Let C be a compact subset of Dom A and let us consider a sequence
(nn,qn) where n, €C and q, € ST(nn) . Then a subsequence (again denoted

n, ) of n, converges to some N € C because C 1is compact.
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For almost all t€[0,T]

5 T (1% = 2[<p_(0),p](£)>]

< 2lp (ol Iplol < 2 lal upnmu2

(by formula (1.8), because —pé(t) S A*(pn(t))
Gronwall's Lemma implies that

(3.4) lo_ ()1 < lIn_I exp (lal(e-T))

This and formula (1.8) imply that for almost all t €[0,T ] ,

(3.5) Ip! (01 < lal In I exp (lall(e-T))

Thus, by the Banach—-Alaoglu theorem, pé lies in a weakly compact subset of
Lm(O,TﬂRn) and by the Ascoli-Arzela theorem, Py lies in a compact subset

of t(O,TﬂRn) . Therefore there exists a subsequence (again denoted) pn(-)

and an absolutely continuous function p : [O0,T ] *ﬁRn such that

i) p, converges uniformly to p on [0,T ]

(3.6)

ii) pé converges weakly to p' in Ll(O,TﬂRn)

. 1
The weak convergence of the pair (pn,pé) in Ll(O,TﬂRn) x L (0, TR™
implies the strong convergence of convex combinations of elements of this

*
sequence (Mazur's Lemma). Since (pn(t),pé(t)) belongs to Graph A for
almost all t €[0,T ] and since it is closed and convex, we infer that
*

for almost all t €[0,T] , (p(t),p'(t)) € Graph (A ) . Hence p(*) belongs
to ST(n) .

*
b) Let P be a viability domain for A and n € P . We shall show

that there exists a solution p € ST(n)
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The viability theorem (see Haddad [ 1981 ]) implies that for all t_ <T

a solution p of the differential inclusion

(3.7) ' () EAT(P(E)) ; p(t) €P ; p(T) = n

defined on a time interval [to,T ] , can be extended to a solution of (3.7)
defined on a larger time interval [tl,T 1, t1-< t, - Setting n, =N in

(3.4) and (3.5), we obtain that

1) lpe)l < lnl for all t€[t),T ]

(3.8)

1) lp'(e)h < lal dInl for a.e. t€[t,,T ]

1,
As in the case of ordinary differential equations, one can show that

p(*) can be extended to a solution (again denoted) p(+) defined on the time

interval [0,T ] . Thus p(+) belongs to ST(n) and thus, n belongs to QT .

We observe now that the sequence of the closed domains QT decreases

(3.9) if T1>T2 , then Qg CQT

1 2

We introduce the intersection Q of these cones

(3.10) Q = 0 Q

Since the compact subsets Sn—1 F‘QT form a decreasing sequence, we observe
that Q # {0} if and only if all the cones Qp are different from 0 . We

shall say that Q 1is the largest viability domain, thanks to the following

theorem.

Theorem 3.2
Let A be a strict closed convex process.
Then the closed convex cone Q 1is the largest closed convex cone which

. C e . *
is a viability domain for A . A
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Proof
Lemma 3.1 b) implies that Q 1is a closed convex cone which contains

any viability domain P . It remains to prove that Q 1is a viability domain

i.e. that

(3.11) ¥q€Q, A @NTYQ) # @

Assume that Q # {0} .

Thanks to the necessary condition of the viability theorem (see Haddad

[1981 ]), it is sufficient to prove that for some T >0 ,

(3.12) ¥neEqQ, 3p(-) € Sp(M) which is viable on Q .

Since n Dbelongs to QnT for all. n 2 2 , there exists a solution pn(')
€S .(n) . By the very definition of Q_ , we kmow that p(t) €Q, for all

t <nT .

Therefore, the translated function ﬁn(°) defined on [0,T ] by

(3.13) ﬁn(t) 1= pn(t+(n-l)T)

belongs to ST(n) and satisfy for all t €[0,T] , k <nu-I

(3.14) py(t) = pn(c+(n-1)T) € Qt+(n—l)T c Q(n—l)T C Qe

By Lemma 3.1 a), ST(n) is compact in C(O,TﬂRn) . Thus there exists a sub-

sequence of ﬁn(-) converging to some p(*) € ST(n) uniformly on [0,T ]. By

(3.14) for all t€[0,T], k=21, p()C QkT . Therefore

p(e) C N Qr = Q

We translate now this result in terms of reachable sets RT .
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Since 0 € A(0) the reachable cones R(T) do form an increasing

sequence. We define the reachable set of the inclusion (3.1) to be

(3.15) R := U R(T)
T >0

It is a convex cone, which is equal to the whole space if and only if for some

T>0, R(T) =R".

We say that the closure R of R 1is the smallest invariant cone by A .

This definition is motivated by the following consequence of both Theorem 2.1

and Theorem 3.2.

Theorem 3.3

Let A be a strict closed convex process.

Then the closed convex come R is the smallest closed convex cone
containing A(0) and invariant by A .

A
Proof

Indeed Theorem 2.1 and the definition of R and Q imply that R = Q .
By Theorem 3.2 and Proposition l.1l1, R is the smallest closed convex cone

*
containing A(0) = (Dom A )+ which is invariant by A . -

We consider now the largest subspace

* *
(3.16) QN"-Q € DomA N - Dom A
of Q.

Proposition 3.4

Let A be a strict closed convex process. The subspace Q N -Q 1is
] . * . .
the largest subspace invariant by A and its orthogonal space R-R 1is

invariant by A in the sense that :

(3.17) ¥ x €R-R , A(x) € R-R . N
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By Proposition 1.6 c) the restriction of A* to Q N -Q 1is a linear
(single-valued) operator. We have to check that A*(Q nN-Q) € QN-q.
Let q belong to Q N ~-Q . Then by Theorem 3.2, since Rq € Q N - Q

€t - W+ ® C Q+aN-qCQ
Since -q € Q N -Q , we also have

* *

Aq = -A(-q) C -Q
Thus

*

Aq € QN-Q .

Since Q =R , the orthogonal space to Q M -Q 1is the (closed) vector space

spanned by R . Since we are in finite dimensional space, we infer that
1
(3.18) QN-9 = R-R

Proposition 1.1] implies that the vector space R - R 1s 1lnvariant by A ,

*
because we have proved that Q N -Q 1is a viability domain for A -

We consider now the cones A(0) , AZ(0) := A(A(0)),...,AN0) = aa¥" (o)) ,
etc... Since 0 belongs to A(0) , these convex cones form an increasing

sequence. We introduce the cone

(3.19) N i= cl[ U Ak(O)]
k=21

and the vector subspace
(3.20) M spanned by N

Theorem 3.5

Let A be a strict closed convex process. Then

a) AN) € N
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B) R C N € M C R-R

o qn-g ¢ n Aot ¢ n Ak < q
k=21 k=21 A

Proof

a) It is clear that A [ U Ak(O)]C N .
k=21 .
Let x €N, vy €A(x) and X € u AJ(0) be a sequence converging
j =1
to x . Since A 1is Lipschitzean, there exists a sequence Yo € A(xn) CN

converging to y , which belongs to N because it is closed.

b) Since N 1is a closed invariant cone containing A(0) , Theorem 3.2
implies that N contains the reachable set R . On the other hand, 0 belongs
to R - R and this vector space is invariant by A , thanks to Proposition
3.4. Therefore the cones Ak(O) = A(Ak-l(O)) are contained in R - R and so
does M .

¢) We deduce the other inclusions by polarity, noticing that

o= 0 a%0" and
k=1
1 1
M = n Ak -
k=21
Remark

When the reachable set R 1is a vector space, the subsets R , N , M
and R - R coincide. This happens when, for instance, A 1is symmetric (in
the sense that A(-x) = -A(x) ), i.e., when the graph of A 1is a vector

subspace.
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4. Eigenvectors and eigenvalues of convex processes.

When QN -Q = {0} (or R =R = R" ), there is no proper subspace
* . . .
invariant by A (or there is no proper subspace invariant by A ). Moreover,
when Q # {0} <(or R # R ), we can still prove the existence of an eigen-

*
value of A (see Definition 1.12 and Lemma 1.13), or eigenvectors of A

*
Actually, eigenvectors n of A , non zero solutions of the inclusion
An € A*(n) , do belong to the largest viability domain Q , because for all
T >0 the function p(t) :=n exp (A(T-t)) belongs to ST(n)

Theorem 4.1

Let A be a strict closed convex process.

*
If the largest viability domain Q for A is different from {0}

. . * .
and contains no line, them A  has at least an eigenvector. A

By Lemma 1.13 and duality theorem 2.1, the following dual version of

this theorem holds true.

Theorem 4.2
Let A be a strict closed convex process. Assume that the reachable set
R is different from R" and spans the whole space. Then A has at least

one eigenvalue. A

First we recall the following property

Lemma 4.3
Let Q be a closed convex cone of R™ . The following properties are

equivalent :
i)y enNn-Q = {0}
ii) Q 1is spanned by a compact convex subset which does not contain zero

.. . . + .
iii) The interior of Q is non—empty .
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If one of these properties hold true, then for all X, € Int Q+ , the compact

convex subset
(4.1) M o= {qQ€Q :<q,x> = 1}
spans Q .

Proof

We provide the proof for the convenience of the reader.

Condition i) means that zero is the extremal point of Q , which is

n- .
1) Since the compact convex set

equivalent to the assertion 0 & co (Q NS
co (@ M Sn-l) spans the cone Q we proved the equivalence of i) and 1i).

Q contains no line, which is precisely the

.. ‘.- ++
Condition iii) meams that Q

statement 1).

If X € Int Q+ and 9,9 €M, i=1,2... are such that <qi,xo> =1,
n-1

lim q./lq.l = qg€qQnNs . Then
1+ 1 1
. . -1
0 < <q,xo> = .llm <qi,xo>/|lqi" = ‘]_]_m “ql"
1 > ™ 1 > @
It implies that the norms "qi" are bounded and, therefore,
M 1is bounded. Obviously it is also convex and closed. -

Proof of Theorem 4.1
Let X € Int Q+ and let M be defined by (4.1 ). Then for all p €M

(4.2) Ty(P) = {v € TQ(xo): W,x > = 01
We introduce the following projectors
(4.3) ¥pEM m(P)q = q = <q,x > p

For all p €M and q €Q, <ﬂ(p)p,xo> =0 = <W(p)q,xo> . Hence the projector
m(p) maps the set Rp + Q into TM(p) . Since TQ(p) = BRp + Q and T7(p) 1is

a continuous linear operator, We obtain :
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(4.4) ¥pEM, m(p) maps TQ(p) into TM(p)

. * . . .
Consider the set-valued map p €M -+ m(p)A (p) . It is upper semicontinuous
with nonempty compact convex images. By assumptions of Theorem 4.1, for all

pEMCQ, J@)ﬂ%@)#¢.mubymA>

(4.5) ¥pEu, T(e)a"(p) N T, () # 9

The assumptions of Theorem 6.4.11 p. 341 of Aubin-Ekeland [ 1984 ]| are satisfied.
- - % - - * -
Therefore, for some p €M, 0 € 7(p)A (p) . Hence there exists q € A (p)

- - - * -
such that <q,x >p = q € A (p) . In other words p 1is an eigenvector of A

associated to the eigenvalue <a,x°> .
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5. Characterization of controllable convex processes.

We shall deduce from the preceding results several characterizations

of the controllability of differential inclusions

.1 for almost all t€[0,T] , x'(t) € Ax()) , x@@y =0

or, equivalently, of the observability of the adjoint inclusion

(5.2) for almost all t €[0,T] , -q'(t) € A*(q(t))

Definition 5.1

We shall say that (5.1) is controllable at time T (respectively,
controllable) if RT = R" (respectively, R =R ). We shall say that the

adjoint inclusiomn (5.2) is observable at time T (respectively, observable)

if Qp = {0} (respectively, Q = {0} ). N

We also observe the following property.

Lemma 5.2
Let A be a strict closed convex process. The three following properties

are equivalent.

a) 3 m=21 such that Am(O) - Am(O) = R"
(5.3) B) I m>1 such that a®(0)* = {0}
¢) J m>1 such that Int A™(0) # ¢ R

It is convenient to introduce the

Rank condition 5.3.

We say that a convex process A satisfies the rank condition if one

of the equivalent properties (5.3) holds true.
A

Lemma 5.4

Consider the strict closed convex process A(x) = Fx + L , where F er*®
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is a matrix and L 1is a vector subspace of R™ . Then A satisfies
the rank condition if and only if An(O) - An(O) =R . A
Proof

The rank condition is satisfied if and only if for some m = 1 the cone
L + AL +...+ Am-lL spans the whole space. The Cayley-Hamilton Theorem ends

the proof. n

We begin by stating characteristic properties of observability of the
adjoint system (5.2) and then, use the duality results to infer the equivalent

characteristic properties of system (5.1).

Theorem 5.5
Let A be a strict closed convex process. The following properties

are equivalent

a) The adjoint inclusion (5.2) is observable

* .. . . . .
b ) The adjoint inclusion (5.2) is observable at time T > 0 for some

*
c ) {0} 1is the Largest closed convex cone which is a viability

. *
domain for A
* . . . .
d) A has neither proper ilnvariant subspace nor elgenvectors

.. . . e * .
e ) the rank condition is satisfied and A has no elgenvectors.
A

Proof

a) Since the intersections Qp N Sn—1 of the cones QT and the unit
n—-1 .
sphere S form a decreasing sequence of compact subsets, we deduce that

n-1

QN Sn-l is empty if and only if QT ns is empty for some T , i.e.,

that Q = {0} if and only if QT = {0} for some T >0 . Thus 55 ¢’BS .
B) Property és is equivalent to Q = {0} by Theorem 3.2, i.e. 55 “'83

Y) When Q = {0} , then Q N ~=Q = {0} (there is no proper invariant
subspace) and there is no eigenvector (because an eigenvector is contained

in Q).

T
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When Q # {0} , then either Q N -Q # {0} and by Proposition 3.4
there is a proper invariant subspace or Q N -Q = {0} and, by Theorem 4.1,
*
there exists at least an eigenvector of A . This proves the equivalence of

d’ with Q = {0} , i.e. 53 “’ds.

§) Since the sequence of cones Ak(O) is increasing, the sequence of

vector spaces Ak(O)l is decreasing, so that

A A%t =0} = Fm>1 such chat 4% = {0}
k> 1

+ the rank condition is satisfied .

Assume that Q = {0} . Then, by Theorem 3.5 ¢), and the above remark, the rank
condition is satisfied and there is no eigenvector. Assume now that the rank
condition is satisfied. Then Q N -Q = {0} by Theorem 3.5 c). Then, Theorem
4.1 implies that if A* does not have an eigenvector, the cone Q 1is equal
to {0} . Equivalence between gs and Q = {0} ensues. -
Theorem 5.6

Let A be a strict closed convex process. The equivalent properties

* x  *x *
a), b), ¢, 53 and e) of Theorem 5.5 are equivalent to the following properties

a) Differential inclusion (5.1) is controllable
b) Differential inclusion (5.1) is controllable at some time T >0

n

c) R is the smallest closed convex cone containing A(Q0) which is

invariant by A
d) A has neither proper invariant subspace nor eigenvalues
e) The rank condition is satisfied and A has no eigenvalues.

£) for some m=>1 , A"(0) = (-a)®@) =Rr"

Proof

Statements a)=-e) follow from the duality results (Proposition 1.11,
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Lemma 1.13 and Theorem 2.1) and Theorem 5.5. We shall show that a) is also

equivalent to £ ).

. * *
Step 1. Consider the c¢losed convex process Al(x) = A(-x) . Then A1 = - A

We claim that (5.1) is controllable if and only if the inclusion
G.1)!' x' €4,(x) ; x(0) =0

is controllable.

*

*
Indeed invariant subspaces and eigenvectors of A1 and A coincide

and our claim follows from Theorem 5.5 35.

Step 2. If (5.1) is controllable then by Step 1 and Theorem 3.5 b)

@] Ak(O) = U A?(O) =R® . Since {Ak(O)} and {AT(O)} are increasing
k=21 k=21
sequences of convex cones it implies that for some m =1 , Am(O) = AT(O) =R"

Moreover AT(O) = - (-A)m(O) . This implies f).

Step 3. Assume that £) holds true. If (5.1) is mot controllable then there
* *
exist AER , q €A(0)T , q #0 such that Aq €A (q) . Then (~\)q € A (@

Therefore,

ABqg € (4)%(q) if A>0

-0% € (AT)m(q) if A <0

If A>0, then for all y € A"(0) , 0 = <A\"q,0> < <q,y> . If A <0, then
for all y € AT(O) , 0= <(-K)mq,Q> < <q,y> . In both cases we obtain a

contradiction with f). The proof is complete. u

So, the conjunction of Theorems 5.5 and 5.6 imply Theorem 0.4 stated

in the introduction.

In the case when the set~valued map A 1is defined by A(x) := Fx + L ,
we derive known results due to Kalman when L 1is a vector space of control
and to Brammer, Saperstone and Yorke when L 1s an arbitrary set of

controls containing O .



-37-

. . . n
Consider the linear control system in R

x' = Fx + Gu : u€U

(5.4)
x(0) = 0

m . .
where FCR™ * 1™ G CR™ * are constant matrices and U CR™ 1is the

given control set. The control system (5.4) is said locally controllable around

zero if zero is an interior point of the reachable set of (5.4).
To provide necessary and sufficient conditions for local controllability
of (5.4) let us consider convex hull co U of U, and

N := R ,coU = cl {au : A20, u€co U}

and the associated contreol system

x' € Fx + GN

(5.5)
x(0) = O

Lemma 5.7
If 0 € co GU then the control system (5.4) is locally controllable

around zero if and only if the system (5.5) is comntrollable. A

Proof
The reachable set of system (5.5) is a convex cone equal to

t
(5.6) {J T (E9)0(s) ds 1 £ 20, v(s) eaﬁ}
(o]
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and containing the reachable set of (5.4). Hence the local controllability

of (5.4) implies the controllability of (5.5).

Because 0 €co GU = G co U by a density argument,it is possible to

verify that the cone given by (5.6) is equal to R if and only 1if

t
(5.7) 0 € 1Int {J eF(t-s)Gu(s)ds : £t 20, u(s) € co U}
o

t
The sets {J eF(t-s)Gu(s)ds : u(s) € U} being convex and dense in
0

rt
{J eF(t-s)Gu(s)ds : =0, u(s) € co U} (Lee-Markus [ 1967 ]) the inclusion
o)
(5.7) is equivalent to

t F(t-s)
(5.8) 0 € Int ‘”o e Gu(s)ds : £ =20 , u(s) € U} "

By Lemma 5.4 the rank condition 5.3 for the closed convex process Ax = Fx + GN
is equivalent to

N-N = R®

(5.9)
rank [G6 , FG ,..., F G] = n

This and Theorem 5.6 f) imply

Theorem (Kalman)

If U =R® then the control system (5.4) is controllable if and only
if rank [G, FG ,..., Fn-lG ] = . a
Theorem 5.8

Assume that O € co GU . Then the system (5.4) is locally controllable
around zero if and only if the rank condition (5.9) is satisfied and there is

- x .
no eigenvector of F in (GU)+ . A

Proof

Observe that GU = (Eﬁ)+ . By Lemma 5.7 it is enough to prove that the
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system (5.5) is controllable if and only if the rank condition 5.3 is satisfied
%* —_
and F has no eigenvector in (GN)+ . But this follows from Theorem 5.5 és

and (5.9). s

In particular when m = | we obtain the result from Saperstone=Yorke
[1971 ]. The above theorem is a generalization of Brammer's theorem [ 1972 ]

(see also Jacobson [ 1977 ]). Theorem 5.6 £) and Example 1.14 imply

Theorem 5.9

Let F bean n xn matrix and L be a closed convex subcone of R" .

The control system

x' = Fx + L : x(0) =0
is controllable if and only if for some m = |

L+FL+...+ FIL = L - FL +...+(-D"F"L = R" N

The last theorem together with Lemma 5.7 imply a result of Korobov

[1980 ].



=40«

References

Aubin J.P., Cellina A. [ 1984 ]. Differential Inclusions. Springer Verlag.

Aubin J.P., Ekeland I. [1984 ]. Applied Nonlinear Analysis. Wiley-Interscience.

Aumann R.J. [1985 ]. 1Integrals of set-valued functioms. J. Math. An. Appl.,
12, 1-12.

Brammer R.F. [1972 ]. Controllability in linear autonomous systems with
positive controllers. SIAM J. Control, 10, 339-353.

Clarke F.H. [1983 ]. Optimization and Nonsmooth Analysis. Wiley Interscience.

Filippov A.F. [1967 ]. Classical solutions of differential equatioms with
multivalued right-hand side. English translatiomn :
SIAM J. Control, 5, 609-621.

Frankowska H. [1984 ]. Contrdlabilité locale et propriétés des semigroupes
de correspondances. C.R.A.S., 299, 165-168.

[1985 ]. Local controllability and infinitesimal generators of

semi~-groups of set-valued maps (to appear).

Haddad G. [1981 ]. Momotone trajectories of differemtial inclusions and
functional differential inclusions with memory. Israel
J. Math., 39, 83-100.

Jacobson D.H. [1977 1. Extensions of linear-quadratic control, optimization
and matrrix theory. Academic Press.

Korobov [1980 ]. A geometric criterion of local controllability of

dynamical systems in the presence of constraints on
the control, Diff. Eqs., 15, n°9, 1136-1142.

Lee E.B., Markus L. [1967 |]. Foundations of optimal control theory.
Wiley,

Olech C. [1976 ]. Existence Theory in Optimal Control, Control Theory
and Topics in Functional Amalysis v; I, Vienna.

Robinson S. [1976 ]. Regularity and stability for convex multivalued
functions, Math. Op. Res, 1, 130-143.



Rockafellar R.T. [1967 ]. Monotone processes of convex and concave type.
Mem. of Ann. Math. Soc. 77.

[1970 ]. Convex Analysis. Princeton University Press.

[1974 ]. Convex algebra and duality in dynamic models of
production. In Mathematical models in Economics, Los
(Ed.), North-Holland.

Saperstone S.M. [1968 ].

Saperstone S.M., Yorke J.A. [1971 ]. Controllability of linear oscillatory
systems using positive controls. SIAM J. Control 9,
253-262.

Ursescu C. [1975 ]. Multifunctions with closed convex graph. Czecos Math. J.

25, 438-441.



