
NOT FOR QUOTATION 
WITHOUT PERMISSION 
OF THE AUTHOR 

NUMERICAL ASPECTS OF SOME NONSTANDARD 
REGRESSION PROBLEMS 

V. Fedorov 
A. Vereskov 

May 192 i  
WP-85-32 

Working Papers are interim r e p o r t s  on work of the International 
Institute f o r  Applied Systems Analysis and have received only lim- 
ited review. Views or  opinions expressed herein do not neces- 
sar i ly  represen t  those of the Institute or of i ts  National Member 
Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
2361 Laxenburg, Austria 



ABSTRACT 

Regression models a r e  extremely popular in different areas conjunct 

with systems analysis. The var ie ty  of these models is  immense and now, as a 

consequence, t h e r e  exist  many computerized versions of the corresponding 

statist ical  methods. In this paper ,  we attempt to  unify (from the  computa- 

tional viewpoint) a t  least  some statist ical  approaches.  We understand tha t  

similar attempts have repeatedly been made in statist ical  pract ice  (see,  f o r  

instance, BMDP 1983), but none of them can be  considered completely suc- 

cessful. Nevertheless, any new attempt (this one, we hope) gives a more 

profound and comprehensive understanding of the  situation and the  fu ture  

directions of t he  investigations. 
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NUMERICAL ASPECTS OF SOME NONSTANDARD 
REGRESSION PROBLEMS 

V. Fedorov and A .  Vereskov 

I. INTRODUCTION 

The pape r  gives a sho r t  survey of models and estimation methods which 

are closely connected with the  least  square method. The f i r s t  two sections 

a r e  devoted to  traditional regression models. All o the r  models and estima- 

tion methods are considered in the third chapter .  The reason why the  main 

attention w a s  paid t o  traditional case is  very simple - all  o ther  models and 

estimation procedures  under consideration can be  transformed in some way 

to  this case. Therefore statist ical  ideas and basic propert ies  are practi-  

cally the  same fo r  all considered statist ical  problems, and more or less 

detailed analyses presented in the  f i r s t  two chapters  allow, firstly,  

avoidance of repetit ions and, secondly, understanding of some common 

fea tures  of these problems. 



The final chapter  deals with technical aspects of 1s-program set (which 

were prepared in VNIISI, Moscow) and some numerical examples a r e  

presented in it. 

II. TRADJTIONAL REGRESSION MODEL AND LEAST SQUARE METHOD 

When functional relation between some variable y (usually i t  is  called 

"response") and variables x = (xi,  - . . ,xk ) (control variables o r  predic- 

to rs )  must be analyzed, based on empirical data ,  the model 

- 
y i  = v ( x i ,  a t )  + c i  , i = l , n  (1) 

is traditionally used. In ( I ) ,  y i  is a resul t  of an  observation, xi a r e  condi- 

tions of this observation, ~ ( x ,  8 )  i s  a given function, 8 = (81, . . - , 0, ) a r e  

unknown parameters,  subscript " t "  stands fo r  t rue  value, ci is  an  "error " 

of an  observation, "i" is  a number of an  observation. The e r r o r s  

ci , i = G, can describe e i ther  the deviation of function ~(z, 0 )  from the  

real function o r  "noise" of an experiment. To justify the model (1) i t  is  

necessary to  make some formal assumptions about the i r  behavior as well. In 

traditional cases,  i t  is  assumed tha t  these e r r o r s  a r e  random with zero  

means (E [ci ] = O), independently identically distributed with finite variance 

(E [cf] = b272(~ i  ), where bZ can be unknown and 7(x ) is a given function). 

Under these assumptions i t  i s  reasonable from a statistical point of 

view t o  use the least square estimation (1.s.e.): 

6, = Arg min TI:(@) , 
8 



When ~ ( x  ,@) is a l inear function of 8 (e.g., q ( x ,  B) = eTf' (x ) )  the  

minimization problem can be solved explicitly and the  solution is 

n n 
where Mn = 7-2(zi)f'(xi)f'T(xi). Yn = 7 - 2 ( x i ) ~ i f ' ( ~ i ) .  The sum of 

i =I i =l 

residual squares  gives the  estimator of the  variance: 

Z2 = ( n  -m)-'v,2(6) . 

This resul t  is too well known to  be  mentioned but formula (3) will be  occa- 

sionally used in what follows. The statist ical  propert ies  of 1.s.e. are subject 

t o  classical l inear  regression analysis and can be  found practically in any 

serious statist ical  monograph (see, f o r  instance, C.R. Rao 1965). For this 

paper  i t  will be  enough t o  mention tha t  ~ ( 6 )  =a2M,I is  a 

dispersion (or  variance-covariance) matrix of 6 and 

-2  T d [ ~ ( z ,  6 ) ]  = 6 f' (z  )ML'~' ( x )  is  a var iance of the  forecasting: 

~ ( z , 6 , )  = 6,Tp(x), at a point z .  

In what follows t h e  main attention will be paid t o  nonlinear models and 

fortunately most of t he  proper t ies  of l inear  cases are fulfilled in general 

situations at least  asymptotically (see Jennrich 1969, Wu 1981). 

Let us spell  out t h e  principal ones: 

- L.s.e. are (strongly) consistent, i.e., they converge almost surely 

t o  t r u e  value Bt when n + =. 

- The parameter  6' (when 7(xi ) r 1 it  is  the  variance of ci ) con- 

sistently estimated by 8; = ( n  - m )-I v,<Qn >. 

- The dispersion matrix of G ( 6 ,  - Bt) is  consistently estimated 

by 



i =l 

where j' (z,8) = a7j(x, 8)/ a8. 

- The asymptotical distribution (n -, 00) of 6 ( 6 ,  - Bt) is  normal 

with zero  mean and variance matrix 

n 
= lirn n x f (xi, Ot ) f '(zit Ot ) 
n +- i =1 

These propert ies  a r e  fulfilled under r a t h e r  mild assumptions which can be  

roughly formulated in the  following way: 

- Functions 7j(zi, 8) and f (xi, 8) = a7j(ziL, 8) / a@ are smooth enough 

for any zi in t he  vicinity of et, 

- The conditions of observations have t o  guarantee nondegeneracy 

of t he  estimation problem; for instance, t he  limit function 

n 
v 2  = lim n - I  x [7j(zi,8) - 7 j ( ~ ~ , @ ~ ) ] ~  

n +- i = l  

has t o  exist  in t he  vicinity of Bt and the  function v2(8) has t o  

have unique minimum f o r  8 = Bt . Additionally, the  limit 

n 
M(ot) = lirn n-I f (zi,ot)f T(zi,8t) 

n -.- i =I 

has t o  exis t  and matrix it(Ot) has t o  be  regular  (rank 

M(ot) =m). 

The above mentioned propert ies  allow us t o  use in prac t ice  t h e  follow- 

ing approximations: 



and t h e  value 

has  F-distribution with m -q and n -m degrees  of freedom, where  v , z ( ~ , )  

r e p r e s e n t s  t h e  res idual  sum of squares  obtained by fitting t h e  model with a 

reduced number q < m of f r e e  parameters .  

Minimization problem (2) can be considered as a specif ic  c a s e  of a 

non-linear minimization problem and any available genera l  algorithm can  b e  

used t o  ge t  i t s  solution 6. (In what follows index n will usually b e  omitted). 

However, as w a s  repeatedly  discussed in s ta t is t ica l  l i t e r a t u r e  (see,  f o r  

instance,  Chambers 1973, Fedorov end Uspensky 1975, Jennr ich and Ralston 

1978), due  t o  t h e  specif ic  s t r u c t u r e  of v 2 ( 8 )  some algorithms are much 

more effective than genera l  ones. Moreover, one should keep  in mind t h a t  

besides est imates 6 f o r  any s ta t is t ica l  analysis, i t  is necessary  t o  calcula te  

matrices ~ ( 6 )  and function d[7j(z, 8 n ) ]  f o r  a presc r ibed  set zl, . sXnp. 

Most of t h e  algorithms used in s ta t is t ica l  p r a c t i c e  c a n  b e  r e p r e s e n t e d  

in t h e  form 

Qs = Qs + P, Hs Ys ( 6 )  

where s is t h e  number of a n  i tera t ion,  p, i s  t h e  length of a s tep ,  Hs i s  

some matrix (positively semidef inite in most cases) ,  



If H, E I then (6) i s  an  algorithm of t h e  gradient  type.  

When 

H, = (M, + Y,A,)-' , 

where y, > 0 ,  A, r 0, and 

one deals  with algorithms of t h e  Gauss-Newton type.  The regu la r iza to rs  y, 

and A, are usually non-zero f o r  ill-conditioned minimization problem (2). 

Algorithms of Gauss-Newton type are probably  most popular  in stat ist i-  

c a l  software.  They converge much f a s t e r  than algorithms of t h e  gradient  

type and de l ive r  some additional information ( fo r  instance matrix M;') 

which is  necessa ry  f o r  s ta t is t ica l  analysis. But they demand calculation of 

der ivat ives  f ( z i ,  8,) at e v e r y  s t e p  (by t h e  way, any algorithm (6) demands 

it).  Unfortunately, in modern empirical  r e s e a r c h ,  t h e  calculation of func- 

tions ~ ( z  ,@) and f ( z ,  0) happens  t o  b e  a se r ious  numerical problem (for  

instance,  ~ ( z ,  8) can b e  descr ibed by some system of differential  equations) 

or v e r y  tedious f o r  a programmer.  Of course ,  a s t ra ightforward use  of fin- 

i t e  d i f ference approximation 

where e, i s  a vec to r  with z e r o  components excep t  t h e  a-th one,  can  s a v e  

from tedious programming but i t  i s  not  reasonable  from numerical point of 

view. 

In genera l  nonlinear programming, t h e r e  is a var ie ty  of d i f ferent  

methods f o r  avoiding calculation of der ivat ives  (see ,  f o r  instance,  Chambers 



1973, Fedorov and Uspensky 19'75, Himmelblau 19'73). The most efficient 

among them are based on dif ferent  quadrat ic  approximations of v 2 ( @ ) .  But 

a l l  of them were defeated in s ta t is t ical  applications by methods which are 

based on l inear  approximation of ~ ( z ,  8) using t h e  "history" of i t e ra t ive  

p rocedure  in conjunction with t h e  idea of Gauss-Newton method. 

In these  methods (presumably, f i r s t  suggested by Peckham (1970)),  at 

every  s tep  of i t e ra t ive  p rocedure  t h e  following minimization problem must 

b e  solved. 

s'=s -1 
f i s  = Arg min C o S s r [ v ( z i , 8 , . )  - 7 7 ( ~ ~ , @ , - ~ )  - ~ T ( @ s *  - @s-1)I2 1 

fi ,'=(I 

where us, ,  are some weights. In t h e  simplest case (see  Ralston and 

- - . . .  Jennrich 19'78) us , ,  - u s , ,  -2 - = 1 and al l  rest weights equal to 

zero.  Similarly t o  (2) and (3). one can get tha t  

where 

I t  is  reasonable  t o  suggest  t h a t  approximately 

P (xi  * os -1) = .Pis , 

N o w  one can use  i t e ra t ive  p rocedure  (6) and ( 7 )  with 

A f t e r  some elementary transformation,  th is  p rocedure  can b e  presented in 

a more convenient f o r m :  



n 
where & = z y-'(xi )Uis ~ f T s  

i =1 

The propert ies  of i terat ive procedure (9) w e r e  studied by Vereskov 

(1981) and i t  should be pointed out tha t  they depend upon not only s t ruc tu re  

of ~ ( x  , 0 )  and sequence x l, . , x ,  but also upon sample c l ,  - - , E , .  In 

o ther  words, all  assertions about convergency, for instance have a proba- 

bilistic cha rac t e r  and t h e r e  exist  with non-zero probability s o m e  samples 

when the  procedure does not converge in spi te  of "good quality" of ~ ( x  ,@) 

The i terat ive procedure ( 9 )  is  the  basic p a r t  of all  algorithms dis- 

cussed below and realized in program LsO. 

IV. MODELS AND ESTIMATORS BASED ON THE LEAST SQUBRE 
METHOD 

Variance  of Errors  o f  Observat ions  Depending  upon Unknown 
Parameters  

In t he  traditional case,  i t  is assumed (see Ch. 2 )  t ha t  the  function 

y 2 ( x i )  is known. In t h e  more general case, it  i s  natural  t o  assume tha t  vari- 

ance of random values ci depends upon unknown parameters:  

If all  parameters  in ( 10 )  coincide with some parameters  of response func- 

tion ~ ( x  ,@) then the  estimator defined by the  i terat ive procedure: 

is acceptable f r o m  a statist ical  point of view (see Fedorov 19'74). To solve 

(12)  one can use i terat ive procedure (9). The corresponding algorithm is 



realized in program Lsl. 

If function 7 2 ( z , 8 )  contains pa ramete rs  which are not involved in 

~ ( z ,  a ) ,  then a more complicated p rocedure  is  needed to ge t  t h e  est imator 

of unknown paramete rs  (see  Malyutov 1982): 

n 
Bq = Arg min x {7-'(zi, Oq - l ) [ ~ i  - l)(zi.  @)I' + 

@ i = 1  

The p r o p e r t i e s  of (13)  f o r  normally dis t r ibuted ci are studied by Malyutov 

(1982). In o t h e r  cases, es t imator  (13)  i s  st i l l  consistent  and asymptotically 

normally distr ibuted under  some reasonably mild conditions. 

Naturally, one  can  use  program LsO to solve (14) .  The computer reali-  

zation of (13)  and (14)  i s  included in t h e  system under  t h e  name Ls2. 

Estimation of  Parameters of Distribution Density Function 

Let z be  a random value with density p ( z , @ ) ,  z E X ,  8 E fl C Rm. The 

i - th  experiment consists  of ri observat ions  of numbers of cases nij when 

z E qj c X ,  X i j  u q1 = 0, j f L . The method of estimation of @ closely con- 

nected with t h e  1.s. method was suggested by Vereskov and Pshennikov 

(1983). They a l so  discussed i t s  links with tradit ional  approaches .  The 

corresponding numerical p rocedure  h a s  t h e  following form: 

n I t  Ni [uij  - p U ( @ ) l Z  
Bq = Arg min x x 

@ i = 1 j = 1  ~ i j ( @ q - l )  

T i  Ti 
where Ni = nil , p i j  (0) = / P  ( 2 .  @ ) d l  / x /P ( 2 .  @ ) d z l  uij = nij / N i .  

i =l xv j = q j  



In t h e  simplest case one can use approximation p i j ( 8 )  ' p  ( x i j , @ ) b i j ,  

d i j  = I d x .  In general  case ,  in tegrals  a r e  calculated numerically. The 
x, 

algorithm is  real ized in program ls3. 

Multiresponse Case 

If in model ( 1 )  t h e  response is  a vector ,  yi E R' , and E [ c i  ciT] = Di , 

where Di are given f o r  a11 i = l,n then t h e  solution of t h e  minimization 

problem 

n 
6 = Arg min x [ p i  - r l (xi ,  O ) I ~ D ~ - ' [ Y ~  - r l (xi ,  @ ) I  (15)  

i = 1  

can b e  used as t h e  est imate of 8. I t  is c l e a r  t h a t  (15)  has  t h e  same s t ruc -  

t u r e  as (2). The corresponding numerical p rocedure  i s  contained in pro-  

gram L s  4. 

If t h e  dispersion matr ices  Di are unknown bu t  t h e r e  is t h e  p r i o r  infor- 

mation t h a t  

E [ E ~ E [ ]  = D ( O t )  . rank  D ( e t )  = 1 , 

then t h e  es t imator  of 8 can  b e  defined by t h e  i t e ra t ive  p rocedure  (Fedorov 

1977, Phillips 1976) 

Under some mild condition 6 is strongly consistent  and asymptotically ran-  

dom values 6 ( 6  - O t )  are normally distr ibuted.  Moreover, 



is a consistent estimator of D ( B t ) .  

Procedure (16)  is  realized in program Ls5. 

Regression-Autoregression Models 

In this  case 

pi = 7 ) ( q  , p i  -1, ' ' ' ,Yi - k ,  0)  + ei . ( 1 7 )  

Formally, variables pi . . , y i  -k can be joined t o  t he  set of independent 

variables xi (see,  f o r  instance, Anderson 1971) and the  values 

can be used as estimates for 0. 

The problem (18)  practically coincides with ( 2 )  but fo r  convenience 

only set ( y i  ,xi ) In  i s  used as an input in Ls 6 

Observation of Deterministic Dynamic System 

In systems analysis very often a response function ~ ( x , 0 )  can be  

described by a system of ordinary differential equation 

This specific case of regression model ( 2 )  can be  t rea ted  with t he  help of 

Ls 7.  



When a r e s e a r c h e r  suspects  t h a t  between random values ci can  b e  out- 

lined t h e  so-called robus t  estimation methods are recommended. One of t h e  

most popular  methods i s  M-method and corresponding es t imators  are defined 

by t h e  minimization problem 

where p( I z / ) i s  usually some monotonous nondecreasing function of ( z j 

The solution of (20)  under  some mild conditions (see ,  f o r  instance,  

Mudrov and Kushko 1976) can b e  found with t h e  help  of t h e  i t e ra t ive  pro-  

cedure:  

.. 
O = lim Bq , 

q +- 

P [  I yi - T ( x ~ ,  Qp -1 I I 
Oq = Arg min [pi  - 77(xi , @ ) 1 2  

i'l - 7 ) ( q  ,a,, 

where t h e  auxil iary minimization problem is  t h e  1.s. problem. Usually t h e  

stabilization of Bq happens a f t e r  3-4 i terations.  P r o c e d u r e  (21)  i s  realized 

in Ls8 comprehensive discussion of s ta t is t ica l  p r o p e r t i e s  of (20)  can  b e  

found, f o r  instance,  in Ershov (1978), Huber (1972).  

Predictors Subject to Error 

If a r e s e a r c h e r  wished t o  observe  his  system under  conditions xi but 

because of some random impact they happened t o  b e  ui = xi + h i ,  then,  

instead of ( 1 )  one deals  with t h e  model 

- 
y i  = v ( x i  + hi ,@) + ri  , i = 1 , n  , (22)  

where a l l  ci and hi are independent and E [ $ ]  = 72(zi ) ,E [h i  h:] = D(xi  ). 



For model (22) the  following estimation can be used (see Fedorov 1974): 

6 = lim Oq , 
q +- 

TL 

Oq = Arg min X(zib Oq - l ) [ ~ f  - %zit @)I' 
0 f = l  

where 

The procedure (23) i s  realized in ls9. 

In conclusion w e  emphasize once more tha t  all  algorithms described in 

this section are based on IsO. 

V. NUMERICAL EXAMPLES 

To illuminate t he  possibilities of the considered s e t  of programs th ree  

simple regression problems will be considered. The data  a r e  borrowed from 

the  paper  by C. Marchetti, (1983) (see printout I ) ,  and a r e  extended f o r  a 

f e w  additional years.  They describe the c a r  population in Italy. In the  

cited paper  i t  w a s  suggested t o  use a regression model with logistic 

response function and with additive uncorrelated random errors (the l a t t e r  

statement is not expressed explicitly but it follows from the  context): 

where 8 = (ol,  Q2, a r e  unknown parameters,  zf stands f o r  time. 

Formula (24) does not describe completely the regression model. I t  is  

still necessary t o  clarify the  assumed propert ies  of e r r o r s  e f .  



Three possible variants will b e  considered here:  

1) Variance E[E:] is independent of zi and constant. 

2) Variance E [E:] is equal t o  62.r12(zf, @), where 6' has  t o  be  also 

2 estimated ( d E [ c f  ] / .rl(zf. @) = const. "relative e r r o r "  is con- 

s tant) .  

3) ~ [ r : ]  = 62.r1(zi,@). 

In the  f i r s t  case, program Is0 was used. The resul ts  are evident from prin- 

tout 1. 

It  is interesting t o  stress two facts. Firstly, t he  residuals (see column 

'Y-F" and "NO.RESM and comments in t h e  printout) have a tendency t o  

increase.  Secondly, t he i r  signs a r e  definitely not randomly distributed. 

Therefore,  one may suspect tha t  the  more complicated second case is 

c loser  t o  reali ty and moreover t he  e r r o r s  are correlated or response func- 

tion does not re f lec t  reali ty.  W e  are not concerned h e r e  with accura te  sta- 

tistical analysis of the  problem but only with illumination of how the  

software is working and therefore  w e  r e s t r i c t  ourselves only by struggle 

with nonhomogeneity of e r r o r s  using the  hypothesis of cases 2 and 3. 

The resul ts  are on printout 2. A s  initial values f o r  estimated parame- 

t e r s ,  the estimates f r o m  t he  previous case were taken. The relat ive 

discrepancy between estimates happened t o  be  more than 5%. Of course,  

this is not too much but is severa l  times more than the i r  standard e r r o r s .  

Therefore one can assert tha t  t he  correponding two models give signifi- 

cantly (in a statist ical  sense) different results.  

Unfortunately fo r  t he  second model, the  residuals have an  inverse ten- 

dency: they decrease  in average.  Recollecting that  in growth processes  t he  



observed value ve ry  often dis t r ibuted according t o  Poisson's l a w ,  t h e  th i rd  

version with = v ( z i ,  8) was analyzed. The final  r e s u l t s  are in printout 

3. I t  i s  c l e a r  t h a t  now residuals have no tendency t o  inc rease  o r  d e c r e a s e  

systematically but t h e i r  signs a p p e a r  in long se r ies .  

I t  seems t h a t  a l l  technical  details  on programming are c l e a r  from t h e  

pr intouts  and marginal comments. Usually t h e  content of input information 

a r e  defined by questions which a p p e a r  on t h e  s c r e e n  a f t e r  application t o  a 

program from t h e  considered set. Subprograms f o r  response functions and 

weight functions should be  located in auxil iary f i les  "resp" and "weight," 

correspondingly.  For  o t h e r  programs i t  becomes necessary  t o  use some 

additional auxil iary files. For  instance,  program ls3 uses  f i le  '?>EN" f o r  a 

density function p ( x , B ) ,  program ls6 uses  f i le  "AVT" f o r  autoregress ion 

function, program ls7 uses  f i le  "DIFUR" f o r  \k(z,B) (see (19)) and s o  on. 

More detailed information can b e  obtained from IIASA's Computer Services .  



see  I 
Note N o .  1 

I DATA: Y , X , W  

N a l c  (1) 

( 1 )  i 1  0.3428e+00 0 .  e+0a 0 .1000e+Ol 
I 2 a .6130e+00 0 -3000eK11 0.10OOeM1 
I 3 0 .6910e+00 0 .4000eMl  0.1000eK11 
I 4 0.8610e+00 0.5000e+01 0 .1000eMl 
I 5 0.1031e+01 0.6a110eMl Q .1000et01 
I 6 0.1231e+01 0.7000e+01 O.l0OQe+01 
I 7 0 -1393eM1 0 .B300et01 O .li130e+01 
I 8  0 . 1 6 5 9 e 4 1  0.900Qe+al a .lOr33e+31 
I 9  0.197GeMl 0.1000e+02 0 .lOa(le+Ol 
I 10 0 .2449e+01 0 .1100e+(32 0 .ldOOe+0l 
I 11 0 .3030e+01 0.1200eM2 (3 .1030e+al 
1 12 0 .3913eMl 0.1300e+02 0 .1000eMl 
1 13 0.4675e+01 0.14O(le+02 0 . 1 8 0 0 e 4 l  
1 14 0 .5473eMl 0.1513Oe+02 O .lr330e+Ql 
1 15 Q.G357e+01 0.1600e-2 O . lBJ0e41  
1 16 0.7295e+01 0.1700eK12 0.1090e+01 
1 17 0.8266e-1 8.1000e+02 0.1003e+01 
1 18 0 .9174eMl 0.1900e+02 0.1@30e+Ol 
1 19 0.1Q19e+02 0.2000eM2 0.1000e+0l 
1 20 0 .1129e+02 0.2100eM2 0 .lllllUe+Ol 
1 21 0.1248e+82 0.2200eM2 O.l000e+01 
1 22 0.1343eM2 0.2300e+02 Q .1000e+01 
1 23 0.1430eM2 0.2400e+02 0.1000eM1 
1 24 0 .1506e+02 0 .250ae+02 0 .10a0eK11 
1 25 0.1593e+02 0.2600e+02 0.10a0e+0l 
1 26 0.1647e+02 0.2708e+02 (I -1Q00eMl 
1 27 0.1624eM2 0.28(lOe+02 O .103Qe+al 
1 28 0.1713eM2 0.2900eM2 0.1000eMl 
1 29 0.1702eM2 0.3000e+02 0.1000eii31 
1 30 0.1778eK12 0.3100eM2 0 .1000eK11 
1 31 0 .1845e+02 0 .3200e+02 O .1Q0Oe+01 
I 

( 2 )  I NUMBER O F  P A M T E R S  3 
I NUNBER O F  VARIABLES 1 
I NUEIBER O F  C A S E S  3 1  
I I N I T I A L  PARAMETERS -0.1000e+32 Q .500Oe+00 0.2500eM2 
I 

Dala should b e  saved In Lhe aux i l i a ry  f i le  "enl.dn1a". The  f l r s l  column i s  
ohse rva l ions  (dependenl  v a r l a b l e  o r  r e sponse ) .  The  n e x l  columns contain  
t h e  values  of p r e d i c t o r s  ( independent  v a r i a b l e s ,  con l ro l s ) .  The  l a s l  column 
d e s c r i b e s  "weiphls" of obsorva l lons :  W[ = oc2 in Lhe simples1 c a s e .  When 

only r a l i o s  belween va r i ances  a r e  known, l h e n  W[ = &L7-2(2[),  where  &L 
will b e  estimated any Initially and r e a s o n a b l e  pos l l ive  number  c a n  b e  used In 
Inpul s l a l emen l  (dela i ls  s e e  In Lhc main Lev1 or In s u b s e q ~ i e n l  columns). If 
o n e  wish t o  g e l  f o r e c a s t i n e  a t  some prescribed po ln l s  whlch d o  no1 belong Lo 
"daLa" t h e s e  po in l s  may b e  ln l roduced  wllh "small" welghls (1.e.. lo4) .  

N a l e  (2) 

Number of es l imaled p a m m e l e r s ,  number  of lndependen l  variables. number  
of ohse rva l ions ,  lnillal value of e s l lma led  p a r a m e l e r s .  



TARA?IE'I'ER ERROR = 0 
I.IAiII.IUM NU!,:RER OF I T E M ' T I O I J S  5 0  
t JUI :XR O F  F R E E  PhF.hFlETERS 3 
l f 4 E I R t i U b I E E R S  1 2 3 
DELTA 1 N I T I T A  11= O . l O e + O Q ,  DELTA LAST H 1 =  0 . 1 0 e 4 1  
L I K I T  FOR P I V O l ' I t I G :  T O k  O . 1 0 e - 0 9  
NUMBER O F  D I V I S I O N S :  K 1 =  2 
NUI.IEER O F  DIVISIO1:S F O R  RANDOM VECTOR: K 2 =  2 
CONSTANTS FOR CONVERGENCE C R I T E R I O N :  L 1 =  2 ,  L 2 =  2 

REDUCTION O F  RES.SUFi:  REDS= 1 . 3 3 0 d ! I e - 1 U 8  

I T E R .  ADD. R E S - S U M  PARAMETERS 

kote (3.1) 2 
If only t h e  r a t i o s  bctween v a r i a n c e s  of obse rva l ions  a r c  known. 
t h e n  0 should b e  usod.  If all v a r i a n c e s  ( o r  weip,hLs) a r c  known. 
t h e n  1 should b e  p u t  In. 

5 
w 

I 
Note (3.2) 

Somelimcs i t  i s  useful  to fix some of t h e  es t imated p a r a m e t e r s .  
8 

Then thei r -  n u m b e r s  should no t  a p p e a r  h e r e .  C c: 

Note (3.3) 2 
Def ine  t h e  s i z e  of opc rab l l f t y  r eg ion  of l i n e a r  approximat ion ( s e e  
p a g e  7) .  

Note (3.4) 

I Jppe r  bound f o r  a number  of s l ep - l eng th  divisions. 

Note (3.5) 

U p p e r  bound f o r  a number  of ha l f ings  of t h e  addi t ional  random 
v e c t o r  l ong lh .  Usually moving in some randomly chosen  d l r e c t i o n  
h e l p s  t o  avoid  s lngu la r i l y  of app rox ima l lon  (9). 

Note (3.6) 
t h e  number  of I t e r a t i o n s  when t h e  Inequal i ty  

v: 
2 < ld.' must b e  fulfil led (v,? = 5 Wiryt - q ( z i  .@,)]2) 

t  =1 
and  t h e  p r o g r a m  wlll b e  t e rmlna ted .  

Note (3.7) 

Additional c h o l c e  of t h e  terminat ing of t h e  p rog ram.  The  p r w  
pram wlll b e  t e rmfna ted  If v i / v :  >REDS. 



Printout 1 - continued 



RESIDUAL SUM / ( N - M )  
a . 3 8 6 7 0 2 e - 0 1  

STANDhRD DEVIATIONS OF PAWLMETER EST1t:ATES 
0 . 6 2 6 d - 0 1  0 . 4 1 4 d - 0 2  0 - 1 6 3 d + 0 0  

ESTIPUITE OF COVRRlANCE MATRIX 
0  . 3 9 1 d - 0 2  
- . 2 4 7 d - 0 3  8 . 1 7 2 d - 0 4  
0 . 6 2 5 d - 0 2  - . 5 3 5 d - 0 3  0 . 2 6 5 d - 0 1  

ESTIFVITE OF CORRELATlON MATRIX 
0 . 1 3 8 d M 1  
- . 9 5 3 d + Q 0  0 . 1 0 0 d + 0 1  
8 . 6 1 4 d c 3 0  - . 7 9 3 d + a 0  0 . 1 8 3 d + B 1  

H l S T O G W  OF KESlDUhLS Y-F 

NoLe ( 5 )  ~. 

Esl imatrs  of unknown parameters  and Lht:ir covar iance  and corre la l ion  
matrices .  I1 i s  uselul Lo remember LhaL residual surn/(N-M) = 2, s r e  a l s o  
NoLC? (1) .  8 

a 

NoLe (6.1) 

Addit.ional oritputs which can htr useful In t h e  modcl Leslinp and forcoasl inp 



T E S T  61: 1F:CCFCt:DEt:CE O F  K E S l D L ' P L S  

IJUWBER O F  P O I N T  D I S T N J S E  Y- F 

T A B L E  I 

Note (6.2) 
5 
w 

-- 7 - T  
N 

DISTANCE = d ( z ,  - z) (r ,  - I ) ,  G = N-' z , .  This InformaLion Is usrful I 
I =I  

in Lhe c a s e  or mulLidimensiona1 z .  8 u 

E 
& 



P R O G R A M  L S 1  

DATA: Y,X 

NUMBER O F  PARPMETERS 3 
NUMBER O F  VARIABLES 1 
NUMBER O F  C A S E S  31 
I N I T I A L  PARAElETERS - 0 . 4 3 0 0 e + 0 1  0 . 2 2 5 0 e + a 0  0 . 2 3 0 0 e + ( 1 2  

I 

l N T E R N A L  CONSTANTS N 

I Kumber n l  Iterations wlthln basic t s O .  Usually It s h o ~ l d  h c  equal to 3-5 
P 
I 

PARRFlETER ERROR = 0 
PUS IEWM NUMBERS O F  I T E R A T I O N S  
NUMBER O F  F R E E  PARAMETERS 3 
T I l E I R  NUMBERS 1 2 3 

5a a Number of iterations dsscrihed by (11). (12). .ape 8 

DELTA I N I T I A L  H =  0 . 3 0 e - D l ,  DELTA L A S T  H 1 =  0 . 5 0 e - 4 3 2  
L I M I T  FOR P I V O T I N G :  TOG- 0 . l O e - 0 9  
NUMBER O F  D I V I S I O N S :  K 1 =  2 
NUMBER O F  D I V I S I O N S  FOR RANDOM VECTOR: K2= 2 
CONSTANTS FOR CONVERGENCE C R I T E R I O N :  L 1 =  2 ,  L 2 =  3 

I T E R .  ADD. RES.SUM P A M E T E R S  



Tk1E RESIDUAL SUM W*(Y-F)**2 THE RESIDUAL SUM /(N-M) 
0.784476e-01 0.280170e-02 

ESTIMATE OF PARAMETERS 
-0 .416336eMl 0 .207376e+00 0 .202167e+02 

STANDARD DEVIATIONS OF PARAMETER ESTIMATES 
0 - 3 1 2 d 4 l  0 -3128-02 0 .550d+00 

ESTIMATE OF COVARIANCE MATRIX 
0.9768-0 3 
-.23Od-04 0.975d-55 
- .826d-02 - .l15d-02 0 . 3 0 2 d M 0  

S T A .  D E V .  F Nl 

ESTIMATE OF CORRELATION MATRIX 
0.100d+01 
- -235di00 0 . 1 0 0 d M 1  
- .481d+00 - .668d+30 0 . 1 0 0 d M l  



THE RESIDUAL SUN W f ( Y - F ) * * 2  THE RESIDUAL SUM / ( N - M )  
0 . 1 7 9 2 5 8 e + 0 0  0 - 6 4 0 2 0 6 e - 0 2  

E S T 1  MATE OF PARAMETERS 
- 0 . 4 2 4 1 2 5 e + 0 1  0 . 2 1 9 3 9 4 e 4 0  0 . 1 9 2 3 2 1 e 4 2  

STANDARD DEVIATIONS OF PARAMETER ESTIMATES 
0 - 3 7 8 d - 0 1  0 . 3 0 9 d - 0 2  0 . 2 2 2 d 4 8  

ESTIMATE OF COVARIANCE MATRIX 
0 . 1 4 3 d - 0 2  
- . 9 8 9 d - 0 4  0 . 9 5 6 d - 5 5  
0 - 2 6 2 d - 3 2  - . 4 9 0 d 4 3  0 - 4 9 4 8 - 0 1  

1. RES 

ESTIMATE OF CORRELATION FlATRM 
0 . 1 0 0 d W l  
- - 8 4 7 d W 0  0 .100d+01  
0 . 3 1 2 d U 3 a  - . 714d+00  0 . 1 0 0 d + 0 1  
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