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ABSTRACT

Regression models are extremely popular in different areas conjunct
with systems analysis. The variety of these models is immense and now, as a
consequence, there exist many computerized versions of the corresponding
statistical methods. In this paper, we attempt to unify (from the computa-
tional viewpoint) at least some statistical approaches. We understand that
similar attempts have repeatedly been made in statistical practice (see, for
instance, BMDP 19883), but none of them can be considered completely suc-
cessful. Nevertheless, any new attempt (this one, we hope) gives a more
profound and comprehensive understanding of the situation and the future

directions of the investigations.

- iii -



CONTENTS

1. INTRODUCTION
II. TRADITIONAL REGRESSION MODEL AND LEAST SQUARE METHOD
III. MAIN LEAST SQUARE (L.S.) ALGORITHMS

IV. MODELS AND ESTIMATORS BASED ON THE LEAST SQUARE
METHOD

Variance of Errors of Observations Depending upon Unknown
Parameters

Estimation of Parameters of Distribution Density Function
Multiresponse Case
Regression-Autoregression Models
Observation of Deterministic Dynamic System
M-Estimates
Predictors Subject to Error
V. NUMERICAL EXAMPLES
REFERENCES

N

10
11
11
12
12
13
25



NUMERICAL ASPECTS OF SOME NONSTANDARD
REGRESSION PROBLEMS

V. Fedorov and A. Vereskov

I.  INTRODUCTION

The paper gives a short survey of models and estimation methods which
are closely connected with the least square method. The first two sections
are devoted to traditional regression models. All other models and estima-
tion methods are considered in the third chapter. The reason why the main
attention was paid to traditional case is very simple — all other models and
estimation procedures under consideration can be transformed in some way
to this case. Therefore statistical ideas and basic properties are practi-
cally the same for all considered statistical problems, and more or less
detailed analyses presented in the first two chapters allow, firstly,
avoidance of repetitions and, secondly, understanding of some common

features of these problems.
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The final chapter deals with technical aspects of ls-program set (which
were prepared in VNIISI, Moscow) and some numerical examples are

presented in it.

O. TRADITIONAL REGRESSION MODEL AND LEAST SQUARE METHOD

When functional relation between some variable ¥ (usually it is called
"response’) and variables z = (z,, ' - ,zt)T (control variables or predic-

tors) must be analyzed, based on empirical data, the model

vy, =n(zy , 8+ , 1 =1,n 1)
is traditionally used. In (1), y; is a result of an observation, z; are condi-
tions of this observation, 7(z,®8) is a given function, ® = (8,, - - - ,8,,)7 are

unknown parameters, subscript "t" stands for true value, ¢; is an "error’
of an observation, "i" is a number of an observation. The errors
g,1t = fﬁ. can describe either the deviation of function 7(z,8) from the
real function or "noise” of an experiment. To justify the model (1) it is
necessary to make some formal assumptions about their behavior as well. In
traditional cases, it is assumed that these errors are random with zero

means (E'[g;] = 0), independently identically distributed with finite variance

(E[ef] = 6272(:::1 ), where 8% can be unknown and ¥(z) is a given function).

Under these assumptions it is reasonable from a statistical point of

view to use the least square estimation (l.s.e.):

@n = Arg mén v2(8) , )

where v2(8) = i 7%z, )y, - n(z,,8)1%.
i1=1
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When 7(z,8) is a linear function of 8 (e.g., n(z,8) = 87r(z)) the

minimization problem can be solved explicitly and the solution is
8, =mty, |, 3

n n
where M, = E 7_2(::{ ) (z; )fT(:ci). Y, = 2 7_2(zi)y1f (z;). The sum of
i=1 i=1

residual squares gives the estimator of the variance:

B2 =(n —m) Wwi®) .
This result is too well known to be mentioned but formula (3) will be occa-
sionally used in what follows. The statistical properties of l.s.e. are subject
to classical linear regression analysis and can be found practically in any
serious statistical monograph (see, for instance, C.R. Rao 1985). For this
paper it will be enough to mention that D(@) = 32Mn"1 is a
dispersion (or variance—covariance) matrix of @n and
d[n(z,@)] = ngT(z)Mn'lf (z) is a wvariance of the forecasting:
7(z,8,) = 8,7 (z), at a point z.

In what follows the main attention will be paid to nonlinear models and
fortunately most of the properties of linear cases are fulfilled in general

situations at least asymptotically (see Jennrich 1969, Wu 1981).
Let us spell out the principal ones:
- L.s.e. are (strongly) consistent, i.e., they converge almost surely
to true value ®;, whenn -+ o,
—  The parameter &2 (when y(z;) =1 it is the variance of &;) con-
sistently estimated by 62 = (n —m)"1v2(8,).
- The dispersion matrix of \/77(@“ — B8,) is consistently estimated

by



-4 -

D(6,) =n"18% [} 5(z.6,)r T(z,.6,)172
i=1
where f(z,8) = dn(z,®)/ 36.

—  The asymptotical distribution (n - @) of ‘/;(@n — 8,) is normal

with zero mean and variance matrix

Dy(8,) = lim 7 152 122:1 f(z;,8,)f T(z,,8)
These properties are fulfilled under rather mild assumptions which can be
roughly formulated in the following way:
- Functions 7(z;,0) and f(z;,8) = an(z,;,8)/ 88 are smooth enough
for any z; in the vicinity of 8,,
- The conditions of observations have to guarantee nondegeneracy

of the estimation problem; for instance, the limit function

v% = limn™1 i (n(z;,.®) — -r;(::i.(@t)]2

nEE =t
has to exist in the vicinity of 8, and the function v2(®) has to
have unique minimum for ® = 8,. Additionally, the limit
- n
H(8,) = lim n _liglf(xi,Gt)fT(xi,(@t)
has to exist and matrix If'f-t(®t) has to be regular (rank
M(8,) =m).
The above mentioned properties allow us to use in practice the follow-
ing approximations:
D(B,) = 3,2,[:2_317-2@ ) @y, 8,00 Ty, 8,017 )

din(z,8,)]1 =rT(=.8,)D(6,)r(=.6,) (5)



and the value

n —m V(8 —v2(@,)

m - q v2(8,)

has F-distribution with m —¢ and n —m degrees of freedom, where vf(én)
represents the residual sum of squares obtained by fitting the model with a

reduced number ¢ < m of free parameters.

HI. MAIN LEAST SQUARE (L.S.) ALGORITHMS

Minimization problem (2) can be considered as a specific case of a
non-linear minimization problem and any available general algorithm can be

used to get its solution 8. (In what follows index n will usually be omitted).

However, as was repeatedly discussed in statistical literature (see, for
instance, Chambers 1973, Fedorov and Uspensky 1975, Jennrich and Ralston
1978), due to the specific structure of v2(®) some algorithms are much
more effective than general ones. Moreover, one should keep in mind that
besides estimates & for any statistical analysis, it is necessary to calculate

matrices D(@) and function d{n(z, @n)] for a prescribed set =4, -+ * ,x,,..

Most of the algorithms used in statistical practice can be represented

in the form

B, =8, +p H Y, |, (6)

s

where s is the number of an iteration, pg is the length of a step, H is

some matrix (positively semidefinite in most cases),

7 A=)y = n(zy.85)17 (4, 8y).
1

2

Y. =

s
1
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If H, =7 then (6) is an algorithm of the gradient type.
When

HS = (MS + 7$AS)—1 4 (7)
where 7, >0, A, =0, and
n
Mg = Y v 3(zy)f (z;,85)r T(z;.8,) , ®)
i=1

one deals with algorithms of the Gauss-Newton type. The regularizators v,

and A, are usually non-zero for ill-conditioned minimization problem (2).

Algorithms of Gauss-Newton type are probably most popular in statisti-
cal software. They converge much faster than algorithms of the gradient
type and deliver some additional information (for instance matrix Mg ?)
which is necessary for statistical analysis. But they demand calculation of
derivatives f(z;,8;) at every step (by the way, any algorithm (6) demands
it). Unfortunately, in modern empirical research, the calculation of func-
tions 7n(z,8) and f(z,8) happens to be a serious numerical probiem (for
instance, n(z,®) can be described by some system of differential equations)
or very tedious for a programmer. Of course, a straightforward use of fin-

ite difference approximation

n(z,85 + Ace,) — n(z,8)
A 1

S

L o(z,85) =

where e, is a vector with zero components except the a-th one, can save
from tedious programming but it is not reasonable from numerical point of

view.

In general nonlinear programming, there is a variety of different

methods for avoiding calculation of derivatives (see, for instance, Chambers
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1973, Fedorov and Uspensky 1975, Himmelblau 1973). The most efficient
among them are based on different quadratic approximations of v2(B®). But
all of them were defeated in statistical applications by methods which are
based on linear approximation of n(z,®) using the "history" of iterative

procedure in conjunction with the idea of Gauss-Newton method.

In these methods (presumably, first suggested by Peckham (1970)), at
every step of iterative procedure the following minimization problem must

be solved.

s'=s—1
Sis = Arg n}in Z wes [M(zy, 85) — n(zy, 85 _4) _fir(es’ - B —1)]2 ,
1 s§°=0
where w.,. are some weights. In the simplest case (see Ralston and

Jennrich 1978) w¢ ¢ 4 Twg o= " =1 and all rest weights equal to

zero. Similarly to (2) and (3), one can get that

— -1
fis - Qs Uis ’
s'=s -1 r s‘=s -1
where Qs = Z wss’Ass‘Ass" Uis = 2 c"ss'Ass'uiss"
s'=0

s'=

Aggr = (B — B5 4), Uy = 1(2y,85.) = 1(zy, 85 ).
It is reasonable to suggest that approximately

f(zi'gs -—1) =Jis
Now one can use iterative procedure (6) and (7) with
&2 T
Ms = Z 7 (zi)fisfis
1=1
After some elementary transformation, this procedure can be presented in
a more convenient form:

- n
O = 85y + P @MY ¥ (@ Wys (wy — n(Zy,85 1)) | 9

i=1



- n
where M, = Y 7 *(z, U, UL.
i1=1

The properties of iterative procedure (9) were studied by Vereskov
(1981) and it should be pointed out that they depend upon not only structure
of n(z,®) and sequence z,, - ,z, but also upon sample &, "' ,&,. In
other words, all assertions about convergency, for instance have a proba-
bilistic character and there exist with non-zero probability some samples
when the procedure does not converge in spite of “good quality” of n(z,®)
and x4, """ &y .
The iterative procedure (9) is the basic part of all algorithms dis-

cussed below and realized in program [sO.

IV. MODELS AND ESTIMATORS BASED ON THE LEAST SQUARE
METHOD

Yariance of Errors of Observations Depending upon Unknown
Parameters

In the traditional case, it is assumed (see Ch. 2) that the function
¥%(z,) is known. In the more general case, it is natural to assume that vari-

ance of random values £; depends upon unknown parameters:
27 — 2
Ele;] = 7“(z;,8) (10)

If all parameters in (10) coincide with some parameters of response func-

tion n(zx,B8) then the estimator defined by the iterative procedure:

8= 1lim 8, , (11)
g »e
T
®q = Arg m(i;n 2 7'2(:5.‘.0)[1/1 - "7(31-®q _1)]2 (12)

t1=1
is acceptable from a statistical point of view (see Fedorov 1974). To solve

(12) one can use iterative procedure (9). The corresponding algorithm is



realized in program ls1.

If function 72(3:,@) contains parameters which are not involved in
7(z,8), then a more complicated procedure is needed to get the estimator

of unknown parameters (see Malyutov 1982):

6=1mo, . (13)
q -+
n
8, = Arg m‘i;niai'r‘z(xi,@q _Dly; — 0z, 8)1° + (14)

27408 MYy — (1.8 )1 = 7oz, B

The properties of (13) for normally distributed &; are studied by Malyutov
(1982). In other cases, estimator (13) is still consistent and asymptotically

normally distributed under some reasonably mild conditions.

Naturally, one can use program [sO to solve (14). The computer reali-

zation of (13) and (14) is included in the system under the name Is2.

Estimation of Parameters of Distribution Density Function

Let z be a random value with density p(z,8), z €X, 8 € J c R™. The
i-th experiment consists of r; observations of numbers of cases n;; when
z €X; €X, X; vX; =0, 7 #1. The method of estimation of 8 closely con-
nected with the l.s. method was suggested by Vereskov and Pshennikov
(1983). They also discussed its links with traditional approaches. The

corresponding numerical procedure has the following form:

® = lim 8

g =

q )

n TN [uy -2y (8))°
Gq = Arg min z iy LE
6 y=15=1 Py3(Bq )

Ty Ty
where N; = ), nyy.py5(8) = fp(:c,@)d:c/ Y fp(:c.@)dz, Uy = nyg /Ny
i=1 Xy 7 =1Xy
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In the simplest case one can use approximation p,u(B) Zp(z:”,@)dtj,

6” = f dz. In general case, integrals are calculated numerically. The
Xy

algorithm is realized in program 1s3.

Multiresponse Case

If in model (1) the response is a vector, ¥, € R', and Ele,; cf] =D,

where D; are given for all i =1,n then the solution of the minimization
problem
"~ . n T
@ = Arg mén 2 [y; — n(z, ,8)] Di-l[yt - 7n(z;.0)] (15)
i=1

can be used as the estimate of 8. It is clear that (15) has the same struc-
ture as (2). The corresponding numerical procedure is contained in pro-

gram Is 4.

If the dispersion matrices D, are unknown but there is the prior infor-

mation that

E’[aicir] =D(8,) , rank D(8,) =1 ,
then the estimator of ® can be defined by the iterative procedure (Fedorov

1977, Phillips 1976)

® = lim 8, . (16)

q-w

n
8, = Arg ménizl[yi - n(zy . O DY [y —n(24,0)] ,

n
.Dq -1 =7 -1 2 [yt - T’(z". .®q __1)][y1’ bl 7’(:1 '@q _1)]T .

1=1
Under some mild condition ® is strongly consistent and asymptotically ran-

dom values Vm (@ -~ 8,) are normally distributed. Moreover,
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DB =n1Y [y, - (z,.8)][y, - niz,, )7
i=1

is a consistent estimator of D(8,).

Procedure (16) is realized in program Is5.

Regression-Autoregression Models

In this case

Yy =Xy Y59, Yy 4.0 + &y . @am)
Formally, variables y,; 4. * " * ,%;  can be joined to the set of independent
variables z; (see, for instance, Anderson 1871) and the values

_ n

€ = Arg ménigl‘r"z(zi)[yi — Ty Yy -1 Y B (18)
can be used as estimates for 8.

The problem (18) practically coincides with (2) but for convenience

only set (y,,x; ){‘ is used as an input in is6

Observation of Deterministic Dynamic System

In systems analysis very often a response function 7(z,8) can be

described by a system of ordinary differential equation

On _
3z = V(. ©) (19)

This specific case of regression model (2) can be treated with the help of

is7.
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M-Estimates

When a researcher suspects that between random values &; can be out-
lined the so-called robust estimation methods are recommended. One of the
most popular methods is M-method and corresponding estimators are defined
by the minimization problem

- n
8 = Arg mini‘élp[lyi ~-n(z;,8)[] , (0)
where p(|z |) is usually some monotonous nondecreasing function of |z |.

The solution of (20) under some mild conditions (see, for instance,
Mudrov and Kushko 1976) can be found with the help of the iterative pro-

cedure:

8 = lim e, . (21)
q »w

n plly; —(z;,8, _41]

8, = Arg min ), L L g 12

i=1 [yi -n(xi,Gq _1)]

ly; — niz;, 8

where the auxiliary minimization problem is the l.s. problem. Usually the

stabilization of ®q happens after 3—4 iterations. Procedure (21) is realized

in ls8 comprehensive discussion of statistical properties of (20) can be

found, for instance, in Ershov (1978), Huber (1972).

Predictors Subject to Error

If a researcher wished to observe his system under conditions z; but
because of some random impact they happened to be u; ==z; + h;, then,

instead of (1) one deals with the model

Yy =z, + R8O+, i =10, (22)

where all &; and h; are independent and E[ef] = 72(3:1 LE[hy h.iT] =D(x;).



-13 -

For model (22) the following estimation can be used (see Fedorov 1974):

B = 1im 8

q-bw

¢ (23)

TL
8, = Arg méniz_:lk(z, 8, My — 7z, 81,

where

2
(z,8) = n(z,B) + E. D(x)_a_M '
2 dz 8z T

Az, 8) = P(z) + LLES) pg) T8
oz oz

The procedure (23) is realized in is9.

In conclusion we emphasize once more that all algorithms described in

this section are based on 1s0.

V. NUMERICAL EXAMPLES

To illuminate the possibilities of the considered set of programs three
simple regression problems will be considered. The data are borrowed from
the paper by C. Marchetti, (1983) (see printout 1), and are extended for a
few additional years. They describe the car population in Italy. In the
cited paper it was suggested to use a regression model with logistic
response function and with additive uncorrelated random errors (the latter

statement is not expressed explicitly but it follows from the context):

8,+86
@361 2Ty

yt = 1)(2:{ ,@) + Ei = + Ci ' (24)

+
1 + ¢O1*0e

where 8 = (@1,82,83)T are unknown parameters, z, stands for time.

Formula (24) does not describe completely the regression model. It is

still necessary to clarify the assumed properties of errors &;.
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Three possible variants will be considered here:
1) Variance £ [ef] is independent of z; and constant.

2) Variance E[eiz] is equal to ‘52772("5{-@)' where &% has to be also
estimated (\/ETEﬁ/ n(z;,8) = const, "relative error" is con-
stant).

3) E[£f] = é6%n(z,.0).

In the first case, program lsO was used. The results are evident from prin-

tout 1.

It is interesting to stress two facts. Firstly, the residuals (see column
"Y-F" and "NO.RES" and comments in the printout) have a tendency to

increase. Secondly, their signs are definitely not randomly distributed.

Therefore, one may suspect that the more complicated second case is
closer to reality and moreover the errors are correlated or response func-
tion does not reflect reality. We are not concerned here with accurate sta-
tistical analysis of the problem but only with illumination of how the
software is working and therefore we restrict ourselves only by struggle

with nonhomogeneity of errors using the hypothesis of cases 2 and 3.

The results are on printout 2. As initial values for estimated parame-
ters, the estimates from the previous case were taken. The relative
discrepancy between estimates happened to be more than 5%Z. O0f course,
this is not too much but is several times more than their standard errors.
Therefore one can assert that the correponding two models give signifi-

cantly (in a statistical sense) different results.

Unfortunately for the second model, the residuals have an inverse ten-

dency: they decrease in average. Recollecting that in growth processes the
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observed value very often distributed according to Poisson’s law, the third
version with E’[af] = n(z;,8) was analyzed. The final results are in printout
3. It is clear that now residuals have no tendency to increase or decrease

systematically but their signs appear in long series.

It seems that all technical details on programming are clear from the
printouts and marginal comments. Usually the content of input information
are defined by questions which appear on the screen after application to a
program from the considered set. Subprograms for response functions and
weight functions should be located in auxiliary files 'resp” and "weight,”
correspondingly. For other programs it becomes necessary to use some
additional auxiliary files. For instance, program ls3 uses file "DEN" for a
density function p(z,8), program 1s6 uses file "AVT" for autoregression
function, program 1s7 uses file "DIFUR" for ¥(z,®) (see (19)) and so on.

More detailed information can be obtained from IIASA's Computer Services.



sSee
Note No.

(1)

(2)

DATA: Y, X ,W

1 ©.3420e+00 B. e+09
2 9.6130e+00 0.30008e+01
3 ©0.6910e+88 0 .4000e+01
4 0.86l0et+d0 0.5080e+d1
5 0.103le+01 ©.6300e+31
6 ©.1231le+0]1 ©.7008e+01
7 0.1393e+d]1 ©.8300e+01
8 ©8.165%+3]1 @.9000e+01
9 0.1976e+31 @.1000e+032
18 ©.2449%e+01 0.11008e+02
11 ©.3030e+]1 ©@.1200e+d2
12 ©.3913e+3]1 5.1300e+02
13 0.4675e+01 0.1400e+402
14 ©@.5473e+d1 @ .1500e+02
15 B8.6357e+01 @.1600e+D2
16 @.7295e+01 ©.1700e+02
17 ©.8266e+d]1 ¢.1800e+02
18 ©0.9174e+31 ©.1900e+82
19 8.1019%e+82 0.2000e+82
20 0.112%e+02 0.2100e+d2
21 0.1248e+02 ©.2200e+02
22 0.1343e+02 0.2300e+02
23 ©0.1430e+02 0.2400e+02
24 0.1506e+82 ©.2500e+402
25 ©0.1593e+02 0.2600e+82
26 0.1647e+d2 0.2700e+02
27 9.1624e+02 0.2800e+082
28 ©@.1713e+32 ©.2900e+d2
29 0.1702e+02 0.3000e+02
30 0.1770e+02 ©@.3100e+82
31 ©.1845e+02 O .3200e+402
NUMBER OF PARAMETERS 3
NUMBER OF VARIABLES 1

NUMBER OF CASES

31

]

SRR SESEE SRR R R R R R R R RO R SR RS SR e R R RS R

P RUOCGRAM

-1900e401
.1000e+01
.1200e+01
-1820e+01
.1003e+01
.1200e+401
10308e+01
L1033 e+31
.1(030e+01
.1300e+d1
1033 e+d1
.1000e+01
1900e+31
.1280e+01
.1090e +31
-1838e+4021
-1083e+01
.1020e+01
.1000e+d1
.1000e+01
-1908e+01
.1000e+0d1
.10088e+01
.1030e+01
.1830e+01
.1000e+01
.1000e+01
.1000e+01
.1008e+d1
.1000e+01
.1000e+31

INITIAL PARAMETERS -0.1000e+32 0 .5000e+30

Lsd

Nate (1)

Dala should be saved in the auxiliary file "enl.dala”. The first column is
observations (dependent variable or response). The next columns contain
the values of predictors (independentl variables, conlrols). The lasl column
describes "weights” of observations: W; = a"z in Lthe simplesl case. When
only ratios belween variances are known, then W, = 027‘2(z¢). where o*
will be estimated any Initially and reasonable posiltive number can be used in
fnput statement (delails see in the main text or In subsequent columns). I
one wish to get forecasting at some prescribed points which do not belong to
"data” Llhese points may be Introduced with "small” weights (l.e., 10_9).

Nole (2)

Number of estimaled parameters, number of Independent variables, number
of observations, initlal value of estlmated parameters.

2 .2500e+02

[ MojuLg

_gt_



INTERNAL COKSTANTS

FARAMETER ERROR = @
MAX IMUM NUMBER OF ITERATIONS

NUNMBER OF FREE PAEMMETERS 3
THEIR NUMBERS 1 2

DELTA INITIAL H= 0.10e+00,

LIMIT FOR PIVOTING:
NUMBER OF DIVISIONS:
NUMBER OF DIVISIONS FOR RANDOM VECTOR: K2=
CONSTANTS FOR CONVERGENCE CRITERION: L1= 2,
REDUCTION OF RES.SUM:

ITER. ADD.
1 [4]
2 2
3 1
4 [4]
5 [
6 2
7 [
8 [
9 [

19 [
11 5}
12 2

RES .SUM

.11721e404
.16566e+04
.71478e+33
.58590%e+33
-14496e+03
-14117e+33
-53154e+02
.14038e+82
.28304e+01
0.27811e+01
0.19678e+01
2.16112e+31
2.19859%+01
0.10828e+01
0.10828e+d1
2.10828e+01

[SESRSESESESRESRS RG]

3

TOL=
Kl=

-8
-2
-0
-a
-0
-9
-2
-9
-0
-2.
-2
-0
-0
-0
-0.
-0

g.10e
2

REDS=

PARAM

100e+02
.106e+02
.100e+02
.11%e+032
.115e+32
.114e+32
.745e+01
.366e+01
.444e+01

446e+01

.433e+01
.426e+01
.431e+01
.430e+01

430e+01

.430e+01

50

-39

1.23000e+08

ETERS

0.503e+03
0.550e+00
0 .503e+00
0 .500e+00
B0 .598e+00
¥ .589% +)3
0 .388e+90
0 .201e+00
0 .23Be+00
0 .239%+00
2 .232e+00
0.226e+03
0 .224e+03
0 .224e+00
0 .224e+00
0 .224e+00

2

ST aaw

DELTA LAST Hl= 0.18e-01

L2= 2

.275e+02
.250e+32
.250e+2
.250e+d2
.178e+02
.178e+02
.177e+32
.184e+32
.18le+d2
.18le+@2
.184e+32
.187e+32
.19de+32
.193e+02
.190e+32
.199e+0@2

Rote (3.1)

If only the ratios between variances of observalions are known,
then O should be used. f all variances (or weighls) are known,
then 1 should be put in.

Note (3.2)

Sometimes it is useful to fix some of the estimated parameters.
Then their numbers should not appear here.

Note (3.3)

Define the size of operability region of linear approximation (see
page 7).

Note (3.4)

Upper bound for a number of step-length divisions.

Note (3.5)

Upper bound for a number of halfings of the additional random
veclor longth. Usually moving In some randomly chosen direction
helps Lo avoid singularity of approximation (9).

Note (3.6)

L ifs the number of Iterations when the Inequality
z
vy 4 —v n
A 16"® must be fulfilled (v2 = ‘Z Wiy, - n(x,.8)19)
s =1
and the program will be terminated.

Note (3.7)

Additional choice of the terminating of the program. The pro-
gram will be terminated If vg/v‘z = REIS.
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Printout 1 — continued
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(5)

(6.1)

RESIDUAL SUM W*(Y-F)**2

8.108277e+91

2.386702e-01

ESTIMATE OF PARAMETERS

-0.430109%e+31

0.224266e+20 ©0.193261le+d2

STANDARD DEVIATIONS OF PARMMETER ESTIMATES

P.6264-9)

0.414d-02 0.1634+029

ESTIMATE OF COVARIANCE MATRIX

0.3914-82

-.2474-93 9.172d-94
0.625d-02 -.535d4-03 ©.2654-01

ESTIMATE OF CORRELAT1ON MATRIX

2.123d+81

-.9534+00 0.1004d+31
3.614d+30 -.7934+30 0 .133d+01

HISTOGRAM OF RESIDUALS Y-F

INTERVAL
-0.47446
-0 .37957
-0 .28468
-3.18978
-3.09489
a.

9.09489
3.18978
9]
5]

.28468
.37957

DEKS1TY
8.2645
2.
.0323
.1935
8968
.2983
.2258
8323
3323
8323

RS RS RS RS RS RS RS

RESIDUAL SUM /(N-M)

Nole {5)
Estimates of unknown parameters and their covariance and correlalion
matrices. It is useful to remember Lhal residual sum/(N-M) = o2, see also
Nole (1).

Nole (6.1)
Additional outputs which can be useful] fn the model Lesling and forecasling.
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TEST OF INDETENDENCE OF KESIDUALS

|
|
| MEAN VALUE OF VECTOR X 16.9355
|

(6.2) { NUMBER OF POINT DISTANSE Y-F Note (6.2)
l S - N
| 1 16 8.264516 ?.060705 DISTANCE = V/(z; - z) (z, —z). £ =N"'} z;. This information is useful
] 2 15 0.935484 2.097943 1=1
] 3 17 1.8664516 J.902859 in the case of mullidimensional x.
| 4 14 1.935484 2.117423
| 5 18 2.064516 -0 .148624
| 6 13 2.935484 0.138824
[ 7 19 3.064516 -2.195855
| 8 12 3.935484 0.195772
| 9 20 4.064516 -0.135478
| 18 11 4.935484 ~3.139794
| 11 21 5.064516 P.857776
] 12 10 5.935484 -3.171706
[ 13 22 6.964516 8.067942
| 14 9 6.935484 -¢.177814
| 15 23 7.864516 B.396482
| 16 8 7.935484 -3.192172
} 17 24 8.064516 2 .090857
] 18 7 8.935484 -0 .041025
| 19 25 9.964516 0.285913
| 20 6 9.935484 2.067448
i 21 26 18 .364516 0.246853
| 22 5 10 .935484 2.989637
] 23 27 11.264516 -0.473549
] 24 3 11.935484 $.101202
| 25 28 12.964516 -3 .087725
| 26 3 12.935484 2.078933
| 27 29 13.864516 -0.459236
] 28 2 13.935484 8.128714
] 29 30 14.864516 -0.875956
| 33 31 15.264516 9 .439535
| 31 1 16.935484 9.987573
|
|
| TABLES OF RESPONSE F(X,P) AS FUNCTION OF X
|

(6.3) ‘ TABLE 1

! F(X,P) X(1) , . . .
l 1 0.2544 o.
| 2 9.7598 5.0000
| 3 2.1538 10 .9009
! 4 5.3556 15.0000
| 5 10 .3869 20 .3000
| 6 14.9691 25.0000
| 7 17.4822 30 .0000
| 8 18.4939 35.0090
| 9 18.8494 40 .p000
| 19 18.9682 45.8030
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P ROGRAM LSI

2 mojunryg

DATA: Y ,X
27

1 0.3420e400 O e+30 Elef) = o*n(z,.8)
2 0.6130e+80 0.3000e+81

3 0.6910e+00 @.4000e+01

4 0.8610e+080 ©.5080e+81

29 0.1702e402 ©0.3000e+02

30 0.1770e+82 ©.3120e+02

31 (.1845¢402 ©.3200e+02

NUMBER OF PARAMETERS 3

NUMBRER OF VARIABLES 1

NUMBER OF CASES 31
INITIAL PARAMETERS -0 .4300e+81 0.2250e+30 ©.2308e+02

|
INTERNAL CONSTANTS 0
Number of {terations within basic Is0. Usually it should be equal to 3-5. "
PARAMETER ERROR = @ / !
MAX IMUM NUMBERS OF ITERATIONS 3 53
NUMBER OF FREE PARAMETERS 3 ‘\ Number of iterations described by (11), (12), page 8.
THEIR NUMBERS 1 2 3
DELTA INITIAL H= @.30e-01, DELTA LAST Hl= 0.50e-{2
LIMIT FOR PIVOTING: TOL= @.10e-09
NUMBER OF DIVISIONS: Kl= 2
NUMBER OF DIVISIONS FOR RANDOM VECTOR: K2= 2
CONSTANTS FOR CONVERGENCE CRITERION: L1= 2, L2= 3

ITER. ADD. RES.SUM PARMMETERS

0.44965e+00 -0 .430e+01 0 .232e+03 0.20%e+02
0.38465e+00 -0.443e+01 @ .225e+00 0 .290e+32

0.31867e+00 -0 .430e+01 @ .225e+00 O .200Ce+d2
0.23643e+30 -0.430e+01 0.225e+000 0.200e+02
1 ? ©0.8l424e-91 -0.412e+01 0 .206e+00 O .200e+02
2 B ©.78516e-01 -0.416e+01 @ .206e+08 @ .204e+02
3 B 0.78314e-01 -0.415e+01 0.206e+00 O .203e+02
@3.2770% +00 -0 .428e+@81 0 .206e+00 D .203e+02
0.7844%-01 -0.416e+01 0.207e+00 ©0.202e+02
6 4 ©@.78449%e-01 -0.416e+01 0 .207e+00 0 .202e+02
9.79161e-01 -0.416e+d1 0.207e+00 0 .203e+02
0.84577e-01 -0 .418e+]1 0 .207e+00 @ .202e+32
0.80401e—01 -@.416e+01 O .208e+00 0.2J2e+02
0.78449%-01 -@.416e+8]1 B.207e+00 0.202e+32
7 2 ©.78448e-01 -0.416e+81 0 .207e+00 ©0.202e+02



Y

1 0.3420
2 2.6130
3 0.6910
4 9.8610
5 1.0310
6 1.2310
7 1.3930
8 1.6599
9 1.9768
19 2.4492
11 3.90304d
12 3.9130
13 4.6750
14 5.4730
15 6.3570
16 7.2950
17 8.2660
18 9.1740
19 10.1919
20 11.2940
21 12.4840
22 13.4250
23 14.3040
24 15.0600
25 15.92508
26 16.4660
27 16.2419
28 17.1250
29 17.9230
30 17 .6960
31 18.4500

THE RESIDUAL SUM W*(Y-F)**2

0.784476e-01

F

0 .30966
2.56933
0.69602
0.84967
1.03544
1.25919
1.52744
1.84727
2.22610
2.67131
3.18977
3.78714
4.46723
5.23013
6.07332
6.98995
7.96509
8.98485
190 .902831
11.87347
12.89821
13.28211
14.906795
14.86282
15.63845
16.33109
16.94089
17.471087
17.92785
18.31553
18.64389

ESTIMATE OF PARAMETERS

-0.416336e+d1

3.207376e+00

Y-F

0.93234
0.04367
-0 .00582
9.01133
-0 .80444
-0.92819
-0.13444
-9.18827
-0 .25010
-9.22231
-0.15977
2.12586
0.20797
8.24287
@ .28368
2 .30595
8.30091
2.18915
4.16269
2.22053
@.38579
0.34289
0 .29605
2.19718
@ .28655
2.13491
-0.69989
-0 .34607
-9.90485
-8.61954
-2.19389

AR RREN RN~ W

W

.4313
8861
9649
-3857
.9331
.6309
.4288
.2932
.2019
L1402
.3983
.8698
.3501
0366
Q271
D205
.3158
2124
8899
.#882
.3068
.3058
.8051
.8845
8041
.2038
.9035
8033
.88 31
.00 308
.0029

WY{Y-F)**2

0.21091
8.00588
0 .20345
¢ .20018
0 .00082
¢ .00050
8.00775
01039
31263
60693
.60 251
00111
00217
88216
.09218
00192
80143
08044
.300 26
00040
82102
20069
.00045
.60018
.80034
.00007
80171
.008339
88254
00114
8.00011

SRS SE SRS ECE SRS SR SRR SESR SR ORISR S ]

THE RESIDUAL SUM /(N-M)

0.282167e402

STANDARD DEVIATIONS OF PARAMETER ESTIMATES

9.3124-91

ESTIMATE OF COVARIANCE MATRIX

9.9764-03

2.3124-82

-.2304-04 0.9754-35

-.826d-02 -.115d-02 0 .3024+08

8.5504+00

ESTIMATE OF CORRELATION MATRIX

2.1904+21

-.2354+00 0.1004+01

-.481d+990 -.6683+30 0 .1804+01

0.280170e-32

STA.DEV.F NO.RES

H0913
.d1246
.41369
41504
-U1660
.01855
02119
J2486
.32993
.83668
-84527
.B5567
06762
08064
.09428
210712
11992
.12927
.13793
.14582
.15452
16601
-18188
.20273
.22797
.25626
.28606
.31594
.34476
.37177
0.39648

(GRS RS ESESE SRR R SRS ESESESECEARS RS ESES RS RS RS RS RS RS

5.65
2.53
B.02
0.67
2.21
2.19
2.97
3.97
4.82
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Y
1 0.3420
2 0.6130
3 0.6914
4 0.8610
5 1.6310
6 1.2310
7 1.39332
8 1.6592
9 1.9768
10 2.449
11 3.0300
12 3.91308
13 4.6750
14 5.4738
15 6.3570
16 7.2950
17 8.2660
18 9.174¢
19 16.1910
20 11.2940
21 12.4840
22 13.4250
23 14.3040
24 15.0600
25 15.9258
26 16.4660
27 16.2410
28 17.1258
29 17.9230
30 17.6960
31 18.4500

THE RESIDUAL SUM W*(Y-F}**2

2.179258e+20

F

0.27282
0.52302
8.64332
8.79462
8.97963
1.2049
1.47777
1.80625
2.19871
2.66340
3.208781
3.83772
4.55616
5.36225
6.25021
7.20879
8.22129
9.26639
10.31983
11.35656
12.353@87
13.28948
14.15885
14.92781
15.61632
16.21695
16.73376
17.17324
17.54321
17.85205
18.18803

ESTIMATE OF PARAMETERS

-0 .424125e+01

2.219394e+20

Y-F

2.96918
@2.869298
3.84768
7 .06638
9.85137
3.02610
-0 .48477
-0.14725
-9.22271
-8.21440
-9.17781
37528
.11884
.11075
-18679
88621
24471
-2 .89239
~-3.12883
-3 .06256
2.13093
#.13552
#.15315
2.13219
2 .30868
0.24905
-0 .49276
-2 .04824
-0.52021
-9.15685
2.34197

(ST R I RS R

R R R R R B e RS S IS SR - AR RS SIS S RS ISR Sl ]

W

.6626
.9219
.5536
.2579
0204
.8296
.6765
.5535
.4547
.3754
.3117
.2606
.2195
.1865
.1620
.1387
.1216
L1879
.3969
.0881
.2819
0752
8787
D670
D640
8617
.3598
.4582
0570
8560
8552

W*(Y-F)**2

2.81753
0 .81662
8 .83353
® .08554
9 .00269
2 .90857
2 .00486
2.01200
D .02255
¥.01726
9 .20985
2.20148
9 .90310
2.00229
¥.00182
¥ .90103
9 .00024
9 .908092
2.00161
g .00034
2.88139
0.00138
2 .98166
0.098117
P .92610
2 .00382
2.01451
2 .00014
0 .01542
3 .908136
Q.20646

THE RESIDUAL SUM /(N-M)

2.192321et82

STANDARD DEVIATIONS OF PARAMETER ESTIMATES

2.3784-01

ESTIMATE OF COVARIANCE MATRIX

3.1433-82

9 .3094-02

-.989d4-04 0.9564-05

0.2624-02 -.4984-03 6.4944-91

2.2224+82

ESTIMATE OF CORRELATION MATRIX

2.1084+01

-.8474400 0.10804+01

0.3124433 -.7144+00 ©.10084+01

0.640206e-02

STA.DEV.F NO.RES

9.15310

2.96
2.85
2.61
9.95
.46
9.10
9.83
2.85
3.83
2.91
1.66
2.25
9.52
p.39
9.31
g.18
.24
g.16
9 .28
2.06
3.24
0.23
.28
2.20
1.83
2.66
2.54
9.02
2.84
2.26
1.26

Elel) = Uznz(:(.E)
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