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FOREWORD

Developing methodology and tools for optimal decision making under
uncertainty was always a major part of research in System Decision Sci-
ences Area. For the last two years, the Adaptation and Optimization Pro-
ject was involved in developing methods and computer implementations
for one of the important parts of such methodology -- stochastic program-
ming.

This paper is among those which describes one of the results of
these eflorts -- the collection of routines designed to solve stochastic
programming problems. It contains concise documentation of this collec-
tion.

A_B. Kurzhanski

Chairman

Systems and Decision Sciences
Program
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Preface

This paper contains most of the documentation for a collection of
routines designed to solve problems in stochastic linear and nonlinear
programming. The programs were contributed to the Adaptation and
Optimization (ADQ) project of the System and Decision Sciences program
by several researchers and represent the current state-of-the-art in sto-
chastic programming algorithms (several of the algorithms are discussed
in "Numerical Techniques for Stochastic Optimization Problems,” Yu.
Ermoliev and R Wets eds., whose compilation has been a part of ADO's
work recéntly). There is much work yet to be done - this paper describes
but a single brick in the foundation of stochastic programming tech-
niques. But one brick is vastly superior to no bricks.




Documentation for the ADO/SDS Collection of
Stochastic Programming Codes

Jonathan Fdwards, editor

Introduction

This working paper contains most of the documentation for a collection of
routines designed to solve problems in stochastic linear and nonlinear pro-
gramming. The programs were contributed to the Adaptation and Optimization
(ADO) project of the System and Decision Sciences program by several
researchers. The codes in the collection implement several of the algorithms
discussed in “Numerical Techniques for Stochastic Optimization Problems" (Yu.
Ermoliev and R. Wets eds.), whose compilation has been a part of ADO's work
recently.

This paper consists of the User’s Manuals for eight of the nine programs on
the ADQ/SDS tape (the documentation for Alexei Gaivoronsky’s STO routine is
itself a working paper - "Stochastic Quasigradient Methods and their Implemen-
tation” (IIASA WP-84-55), by Yuri Ermoliev and Alexei Gaivoronsky - and there-
fore is not included). The tape itself includes the text for all the User’'s Manuals
(including Gaivoronsky's) as well as a table of contents (the first file).

The ADO collection may be obtained from

Project Secretary
ADO/SDS

1IASA

A-2361 Laxenburg
Austria.

Persons who would like a copy should send a blank reel of 9-track computer
tape to the above address and should include a note indicating their prefer-
ences for density and character set (IIASA’s computer can generate unlabelled
tapes at 1600 or 800 bits per inch using either the ASCII or EBCDIC character

codes).
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NDSP User's Manual

J. Fdwards

Introduction

This program is based on the L-shaped method of Van Slyke and Wets for
two-stage stochastic linear programs. The method is described in [1]. The algo-
rithm particular to this implementation (Nested Decomposition for Stochastic
Programming [NDSP]) was invented by John Birge and is described in [2]. The
program was developed by John Birge at the University of Michigan. The linear
programmming sections were taken from the program LPM-1, developed by J.A
Tomlin at Stanford University [3]. The program is written in FORTRAN IV. The
following description of the problem and the discussion of the algorithm are

adapted from [4].

The Problem

The multi-stage stochastic linear program under consideration is

minimize
g =c,z; + Eg{min cpzz + - - - + Egimin crzy (1)
subject to
Biz) + Aezz = £

BriZqy + Arzr = {p
x>0 t=1,..T § €=, t=2,....T
where ¢; is a known vector in R™ for t=1,..,T, b, is a known vector in R™, £ isa

random m; vector defined on the probability space (Z;.F;.F;) for t=2,...,T, and A,
and B, are appropriately dimensioned known real valued matrices. "E&"

denotes mathematical expectation with respect to §;.
The Method

The L-shaped method of Van Slyke and Wets applies to this problem when
T=2. It is an outer linearization procedure that approximates the convex objec-
tive term in the stochastic program by successively appending supporting
hyperplanes. In NDSP, the supports are found by optimizing a nested sequence
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of linear programs. Previous methods for the multi-stage problem have tended
to assume a specific structure for the problem; NDSP does not require any spe-
cial structure, although there must be a finite number of random variables {;
and these must be discretely distributed.

NDSP is based on the observation that, given some realization {; of the ran-
dom vector in period t and given the solution z;_, from period t-1, the decision
problem at period t can be written

minimize
e Zy + Qaalze) (2)
subject to
Aczy = & + Byyze
Diz, >d} , l=1,..r;
z; >0 R

where Q;,,(z;) is a convex function, D} € R™ for all {, and r; < my,,.
Problem (2) is solved using a relazed master problem, viz.

minimize
Cezy + B (3.0)
subject to
Aczy = £ + Bz (3.1)
Dizy =d} , 1=1,..r, (3.2)
Elz, + 8, 2¢f , 1=1,..,5 (3.3)
£, =0 . | (3.4)

where E} and e} are chosen so that e} — Efz; = Q. (z,) [i.e., (3.3) is equivalent
to ¥; > Q.,(z;)]. r; ands; count the number of constraints (3.2) and (3.3),
respectively, in period t and are initially set to zero. This problem is solved to
obtain (z;,9;) for t=1,...,T (for the first period, ¥, = 0 and (3.1) is replaced by
Az, =b,). The solution Z;_; from period t-1 is used on the right hand side of
(3.1) when solving (3) for period t.

If the problem (3) is infeasible in some period t, NDSP adds a “feasibility
cut” (3.2) to (3) in period t-1, adds 1 to ry_,, and solves (3) anew for all periods
7, 7=t-1,...,T. Note that when an infeasibility occurs in period t and a feasibility
cut is added to (3) in period t-1, the resulting problem in period t-1 may be
infeasible, requiring a feasibility cut to be added to the problem in period t-2.
In this manner, infeasibility can propagate back to the first period.

Once feasible solutions have been found for (3) in all periods, NDSP calcu-
lates E; and e; in each period t using the solutions from period t+1 and the for-
mulas

Ei = m1Besy (4)
and
e = Merr1bten

where m;,, is the optimal dual vector in period t+1. If E; and e; are found such
that (3.3) is not satisfied for some period t, NDSP adds an optimality cut (3.3) to
the problem in period t and adds 1 to s;. Introducing the optimality cut




changes the problem in period t, so NDSP repeats the process outlined in the
preceding two paragraphs to find a new feasible solution. The "forward pass” to
obtain feasibility in each period and the "backward pass” to solve (2) based on
the relaxation in (3) are repeated until the optimal solution has been found
(i.e., until the constraints (3.3) may be satisfied in every period).

In the above discussion, the {s were fixed in the sense that at each period
t one realization of {, was chosen and used to calculate the optimal solution for
use in the next period. To solve the problem fully, all realizations of the ran-
dom variable in a particular period must be examined.

For implementation with multi-stage problems, it is assumed that there is
a finite number K, of "scenarios” in each period t. Each scenario in a given
period corresponds to a problem (3) given a single realization of the random
vector in that period. For every scenario j in period t, t=1,...,T-1, there is a
unique "ancestor” scenario a(j) in period t-1 and one or more "descendant”
scenarios d(j) in period t+1. It is further assumed that every scenario in a
given period has the same number of descendants as every other scenario in
the period. In other words, every set d(j), j=1....,.K; contains exactly K;,,/ K,
scenarios in period t+1. The first set [d(1)] contains the first through the
K./ K;th scenarios, the second set [d(2)] contains the [(K;,,/K;)+1]th
through the 2K,,,/ K, th scenarios, etc.

In the last period (T), the program uses Wets' "bunching” method [5] to
examine all realizations of ¢ and find those for which a given basis is optimal.
This method represents an alternative to the "sifting"” procedure of Garstka and
Rutenberg. In order to apply this method, the algorithm assumes that the ran-
dom vector in period T contains a fixed number of independent random ele-
ments, that these elements are discretely distributed, and that every scenario
in period T-1 is an ancestor of every scenario in period T.

Adding multiple realizations to the original description effectively adds
superscripts to problems (2) and (3) and changes equations (4), viz.

Equation (2) becomes minimize

czf + Qir(zd) (2)
subject to
Ajzf = ¢ + B,z
D}izf=>d}J , l=1,...rf
zf=0
Equation (3) becomes minimize
czf + 9/ (3.0")
subject to
Aczf = ¢ + B 28 (3.1)
Dlizf=d}¥ |, l=1,..rf (3.2")
Bl +8f=e}ld |, 1=1..5/ (3.3")
zf>0 . (3.47)

The equations for E; and g; become
Ei = prﬂ(n"kﬂB‘“) (47)
3




and

e? = prn "tkﬂftkﬂ
k

where pf,, is the probability that the random vector in period t+1 assumes the
value associated with the kth scenario. The sum is taken over every descendant
of scenario j in period t (i.e., k runs from [(j-1)(K;,;/ K{)+1] to jK; ../ K ).

Rather than solve one problem (3) at each period t, NDSP solves (3’) for all
j» j=1,...K; using the solution to the appropriate ancestor scenario on the right
hand side of (3.1*). Similarly, during the backward pass, NDSP checks that (3.3')
holds for every scenario in each period.

Unboundedness may be handled explicitly following the procedure in [1],
but in this implementation all variables are upper bounded and hence unbound-
edness is avoided.

Input Overview

The input format for this program follows the MPS standard for mathemati-
cal programs [6] in most respects. However, the multi-stage nature of the algo-
rithm demands that the data be split into periods and scenarios within each
period. There is also some control information that does not comply with the
standard.

The program takes its data from unit 5. It is the user's responsibility to
connect this unit to the appropriate file before the program is invoked.

Control Information

The first line of the input contains five integers that control the program's
execution. Each is read using an 14 format and there are no blanks between the
integers. The numbers provide the following information and must appear in
the order specified:

- the problem number. This is used simply to identify the problem. It
must not be zero.

- the row index of the objective rows. This integer identifies which of
the rows specified in the ROWS sections of the file are the objective
rows. If this number is zero or is omitted, a value of 1 is assumed.

- the number of iterations between matrix inversions when solving
the linear program (3'). NDSP uses a revised, primal-simplex
method to solve (3’). This is the number of iterations between inver-
sions of the basis. If this number is zero or is omitted, a value of
99999 is assumed.

- the maximium number of iterations allowed to solve the linear pro-
gram (3'). If this number is zero or is omitted, a value of 99999 is
assumed.

- the number of periods (T). This number must appear.

The next several lines contain the number of scenarios in each period that
have the same ancestor in the previous period (i.e., the values of X,/ X, _,).
There is one such line for each period and the values are read using an 14 for-
mat. This value should be 1 for the first and last periods, since the right hand
side for the first period is deterministic and the right hand side for the last
period is entered separately at the end of the data.




Data

The remainder of the input file provides the values for the ¢;s, the A;s, the
B;s, and the variables on the right hand sides (b, and the {;s), as well as bounds
for the solution. The user may also include sections that specify an initial basis
in any period for any scenario.

Note that no case conversion is performed and therefore all section
headers should be capitalized.

The following information must be provided for each E[, j=1,..., K; in a given
period t, t=1,...,T-1, and once for the last period:

- the probability that the random variable assumes the realization ¢/.
This value is read using an F5.3 format. It should be 1.00 for the
first and last periods.

- two sections (ROWS and COLUMNS) in standard MPS format contain-
ing the values of ¢; and A;. The values for ¢; are taken from the
entries for the objective row in the COLUMNS section. The
remainder of the entries in the COLUMNS section specify the con-
tents of A;.

- an optional section (BASIS) which follows standard MPS format con-
taining an initial basis for the current period. This section contains
a list of column and row names indicating which variables are basic.
The column name appears in the first name field (columns 5
through 12) and the row name appears in the second name field
(columns 15 through 22). The program writes sections in this for-
mat to unit 7 containing the names of the basic variables in the
optimal solution (see the "“Basis File" section below).

- a section (RHS) in standard MPS format containing the value of ¢/.
For the first period, this section contains the value of b,. For the
last period, it contains the values of any nonstochastic elements of
{7 as well as one value for each of the stochastic elements of ¢r.

- an ENDATA card in standard MPS format (i.e., a card with the charac-
ters "ENDATA" in the first 6 columns).

- lower bounds on all variables except slacks. These values are read
using a 9F8.0 format. There must be enough lines to supply a lower
bound for every non-slack variable.

- upper bounds on all variables except slacks. These values are read
using a 9F8.0 format. There must be enough lines to supply an
upper bound for every non-slack variable.

- two sections (ROWS and COLUMNS) in standard MPS format contain-
ing the values of B;. Since B; is used in period t+1, these two sec-
tions do not appear in the data for the last period.

- an ENDATA card in standard MPS format.

Following the last of these specifications (which gives the values of ¢; A,,
etc., for the last period) is a section (STOCH) containing the values for the sto-
chastic elements of £ in the last period. This section follows standard MPS for-
mat: the row name of the element appears in the first name field (columns 5
through 12), a value for the element appears in the first numeric field (columns
25 through 38), and the probability that the element takes the associated value
appears in the second numeric field (columns 50 through 61). Both numbers
are read using an F12.4 format. As many as five separate values may be
specified for each random element.



Output File

The program writes a log and most of its results to unit 6. It first prints
the problem number, the densities of the A; matrices, and the values and pro-
babilities of the stochastic elements in the last period.

Basis File

The program writes the names of the variables that are basic in the
optimal solution to the linear program (3') in each period and for each scenario
to unit 7 (an exception is the last period, for which the program writes only the
names of the variables which appear in the last basis found). The names are in
the form '"column name” "row name" and appear in the first and second name
fields (columns 5 through 12 and 15 through 22), respectively. The names for
each scenario in each period are preceded by a basis section header card.
These sections may be included in the input to provide the program with start-
ing bases. :

Data Structures

Many variables used by NDSP have a distinct value in each period and for
each scenario within a period (¢ is a good example). To keep these values
separate yet readily available, the program uses multidimensional arrays. In
general, each array contains all the values for a single variable and an array
reference whose last three subscripts are (i,j,k) returns the value that the vari-
able the array contains assumes in period i. If i is 1, j and k must also be 1
(other values of j or k reference storage that is not used). Ifi is 2 and there are
more than two periods, the value applies in the second period to the jth
scenario and k must be 1 (other values of k reference storage that is not used).
If i is 3 and there are more than three periods, the value applies in the third
period to the kth descendant of the jth scenario in the second period. In this
case, k is not the index of the scenario in the third period. It is the index of the
scenario within the set d(j) in the second period (i.e. 1<k<Kg/ K;). Whenever i is
equal to the number of periods (T), j and k must be 1 (since all scenarios at
period T share the same ancestors).

As an example, let us assume that we have a four period problem and that
there are two second period scenarios and six third period scenarios (i.e., each
second period scenario has three descendants). Let m;=mj=mg=M and let XKSI
have the smallest dimensions possible, i.e., M by 4 by 2 by 3. The elements of b,
and the ¢{s would appear in the array XKSI as shown below, where m=1,...,.M.

XKSI(m,1,1,1) - b,

XKSI(m,1,1,2), XKSI(m,1,1,3), XKSI{(m,1,2,1), XKSI(m,1,2,2), and
XKSI{m,1,2,3) - unused

XKSI(m,2,1,1) - £2
XKSI{m,2,1,2) and XKSI(rn,2,1,3) - unused
XKSI(m,2,2,1) - £2

XKSI{m,2,2,2) and XKSI(m,2,2,3) - unused



XKSKm,3,1,1) - ¢4
XKSI(m,3,1,2) - ¢3
XKSI{m,3,1,3) - £§
XKSI(m.,3,2,1) - ¢4
XKSI(m,3,2,2) - ¢35
XKSI(m,3,2.,3) - ¢§

The data for the fourth period {s appears elsewhere, but they would appear in
XKSI{m,4,1,1) otherwise.

The algorithm requires several matrices for each period (e.g., 4;). These
matrices tend to be rather sparse, and the program represents them in a com-
pact fashion to save space. To represent a large, sparse, two-dimensional array,
the program uses three smaller one-dimensional arrays. The first array con-
tains the nonzero elements of the matrix. These elements are ordered by
column. Each element of the second array contains the row index within the
sparse matrix of the corresponding element in the first array. The third array
contains the indices within the first two arrays where the entries for each
column of the sparse matrix begin. The ith entry in the third array is a pointer
to the beginning of the ith column.

Common Blocks and User-Accessible Parameters

Most of the major variables used by this program are commented within
the program and are of little concern to the user. Of potential interest, how-
ever, are several constants in the BLOCK DATA subroutine and the major array
dimensions. The constants are discussed below. An explanation of the array
dimensions appears in the section entitled "Limits and Extensions.”

The following tolerances and limits appear in the named common block
"BLOCK" and are initialized in the BLOCK DATA subroutine:

- zero tolerance (ZTOLZE).

- pivot tolerance (ZTOLPYV).

- reduced cost tolerance (ZTCOST).

-  maximum number of nonzero elements in any A; array (NEMAX).

- maximum number of rows in any right hand side element of prob-
lem (3) (i.e., b, or ¢/) (NRMAX).
- maximum number of columns in the 7 vector form of the basis
inverse (NTMAX).
The variables ZTOLSM and NEGINF, which also appear in the common block,
are not used.

The subroutine SHIFTR is used to move blocks of data around within certain
arrays. Due to the methods it uses, the arrays B, X, Y, and YTEMP must appear
as a group in that order within the blank common block.

Limits and Extensions
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The current version of this program is somewhat experimental and several
limitations have been imposed during its development. This section
enumerates the limits and offers instructions concerning removing or extend-
ing them. This advice should not be regarded as gospel!/

The current version of this program permits three periods with up to three
scenarios in the second period. The random vector in the last period may have
up to three independent random elements which may assume one of as many as
five values for a total of 125 scenarios in the last period. Each scenario prob-
lem (3') is limited to 350 rows and 600 columns. Within a scenario problem (3'),
the matrix A; may have no more than 3000 nonzero elements and the matrix
B;_, may have no more than 600 nonzero elements. The 7 vector form of the
basis inverse may have no more than 1000 columns and 3000 nonzero elements.

To change these limits, the user must change the dimensions on the
arrays listed below as directed. To change the maximum number of rows, the
maximum number of nonzero elements in the A, matrix in each scenario prob-
lem (3’), and the maximum number of columns in the 7 form of the basis
inverse, the user must also update the constants NEMAX, NRMAX, and NTMAX,
respectively, in the BLOCK DATA subroutine. Following is a list of arrays, the
common blocks (or subroutines) in which they appear, and the dimensions
which they must have. "nzero” is the maximum numnber of nonzero elements
allowed in the A; matrix in each scenario problem (3’), "nrows" and "ncols" are
the maximum number of rows and columns, respectively, allowed in a scenario
problem (3'), "neta” is the maximum number of columns allowed in the 7 vec-
tor form of the basis inverse, "nper"” is the number of periods, "ntwo" is the
number of scenarios in the second period, "nthree” is the number of descen-
dants in the third period that belong to each scenario in the second period,
"nxi" is the number of stochastic elements in the randorn vector in the last
period, and "nrel” is the maximum number of values that each stochastic ele-
ment may assume. Note that nper cannot be larger than 4 and that nxi cannot
be larger than 3.

Blank Common
A{(nzero,nper,ntwo,nthree)
ATMP(nzero)

ABN(maximum number of nonzero elements in B;,nper,ntwo,nthree)
E(nzero)

IA(nzero,nper,ntwo,nthree)

IE(nzero)

IBN(maximum number of nonzero elements in B, ,nper,ntwo,nthree)
ITMP(nzero)

JH(nrow,nper,ntwo,nthree)

KBTMP(ncol+2)

KINBAS(ncol+2,nper,ntwo,nthree)

LA(ncol+2,nper,ntwo,nthree)

LBN(ncol+2,nper,ntwo,nthree)

LE(neta+2)

LTMP(ncol+2)

NCOL(nper,ntwo,nthree)

NCOLP{(nper,ntwo,nthree)

NELM(nper,ntwo,nthree)

NROW(nper,ntwo,nthree)

NROWP(nper,ntwo,nthree)

NTH(nper.ntwo,nthree)

PROB(nper,ntwo,nthree)



XKSI{nrow,nper,ntwo,nthree)
XLB(ncol,nper,ntwo,nthree)
XLTMP(ncol+2)
XUB(ncol+2,nper,ntwo,nthree)
XUTMP(ncol+2)
YPI(nrow,nper,ntwo,nthree)
YTEMP1(ncol+22)
B(nrow,nper,ntwo,nthree)
X(nrow,nper,ntwo,nthree)
Y(nrow)

YTEMP(ncol+2)

BLOCK3
JPER(nper)
NND(nper)

BLOCK4
BND{nrow)
CBST(nxi,nrel)
IBST(nxi)
INST(nxi)
JSTCH(nrel,nrel,nrel)
NCUR(nxi)
NETND(see footnote below)
NXNF(nxi)
PRBV(nxi,nrel)
PRST(nrel,nrel,nrel)
YBX(nrow)
YPIBAR(ncol+2)
MXNST - this variable should be set to nxi.

Subroutine INPUT
ICN(ncol+2,2)
ICNAM(ncol+2,2,nper,ntwo,nthree)

Subroutine INVERT
MREG(nrow)
HREG(nrow)
VREG(nrow)

Subroutine WRAPUP
ICNAM(ncol+2,2,nper,ntwo,nthree)
XTEMP{(ncol+2)

There are many loops in the subroutine INIT and several loops in the sub-
routine INPUT whose upper limits must be changed to match those of the
dimensions of the arrays which the loops initialize.

The subroutine SHIFTR contains several constants which may need to be
changed. The numbers in the equations are formed as follows (the numbers in
parentheses to the right of the expressions refer to the value of IOLD and INEW
when the expression applies):

NETND(i) contains the number of 7} vectors in the ith basis and its dimension should be
large enough to accomodate as many bases as are likely to be generated.
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nrmax®*(JCUR - 1) + nper*nrmax*(JPER(2) - 1) (1)
+ nper*nrmax®*ntwo* (JCUR(3) - 1)

nper*nrmax®ntwo plus value (1) above. (2)

2*nper*nrmax®*ntwo (3)

nrmax plus value (3) above. (4)

The dimension of the array BARRAY  should be at least
2*nper*nrmax®*ntwo + nrmax + ncol + 2.

Subprocedure Hierarchy

See the attached figure.
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The Introduction to
STOCHASTIC QUASIGRADIENT METHODS AND THEIR
IMPLEMENTATION

Yuri Frmoliev and Alexet Gaivoronski

ABSTRACT

[Editor's note - What follows is an excerpt from the introduc-
tion to IIASA Working Paper WP-84-55, which serves as a user's
manual for Alexei Gaivoronski's program, STO. A complete copy of
that paper appears on the ADO/SDS tape.]

1. INTRODUCTION

This paper discusses various stochastic quasigradient methods (see [1,2])
and considers their computer implementation. It is based on experience
gained both at the V. Glushkov Institute of Cybernetics in Kiev and at I1ASA.

We are concerned here mainly with questions of implementation, such as
the best way to choose step directions and step sizes, and therefore little atten-
tion will be paid to theoretical aspects such as convergence theorems and their
proofs. Readers interested in the theoretical side are referred to [1,2].

The paper is divided into five sections. After introducing the main problem
in Section 1, we discuss the various ways of choosing the step size and step
direction in Sections 2 and 3. A detailed description of an interactive stochas-
tic optimization package (STO) currently available at 11ASA is given in Section 4.
This package represents one possible implementation of the methods described
in the previous sections. Finally, Section 5 deals with the solution of some test
problems using this package. These problems were brought to our attention by
other 11ASA projects and collaborating institutions and include a facility loca-
tion problem, a water resources management problem, and the problem of
choosing the parameters in a closed loop control law for a stochastic dynamical
system with delay.

We are mainly concerned with the problem
min {F(z):z € X} . F(z)=E, f(z.0) , : (1)

where z represents the variables to be chosen optirnally, X is a set of con-
straints, and w is a random variable belonging to some probabilistic space
(0,B,P). Here B is a Borel field and P is a probabilistic measure.

There are currently two main approaches to this problem. In the first, we
take the mathematical expectation in (1), which leads to multidimensional
integration and involves the use of various approximation schemes. This
reduces problem (1) to a special kind of nonlinear programming problem which
allows the application of deterministic optimization techniques. In this paper
we concentrate on the second approach, in which we consider a very limited
number of observations of random function f (z,w) at each iteration in order to
determine the direction of the next step. The resulting errors are smoothed
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out until the optimization process terminates (which happens when the step
size becomes sufficiently small).
We assume that set X is defined in such a way that the projection operation
z -+ niy(z) is comparatively inexpensive from a computational point of view,
where ny(z) = arg meii}”z -zl For instance, if X is defined by linear con-
t

straints, then projection is reduced to a gquadratic programming problem
which, although challenging if large scale, can nevertheless be solved in a finite
number of iterations. In this case it is possible to implement a stochastic
quasigradient algorithm of the following type:

! = my(z? - p,v?) . (2)

Here z* is the current approximation of the optimal solution, p; is the step
size, and v* is a random step direction. This step direction may, for instance,
be a statistical estimate of the gradient (or subgradient in the nondifferentiable
case) of function F(z): then v* = ¢ such that

E(¢ | z'2%....2%) = F,(z*) + a® , (3)

where a® decreases as the number of iterations increases, and the vector v? is
called a stochastic quasigradient of function F(z). Usually p; » 0 as s + = and
therefore llz#*! — z*|l - 0 from (2). This suggests that we should take z°¢ as the
initial point for the solution of the projection problem at iteration number s +1,
thus reducing considerably the computational effort needed to solve the gua-
dratic programming problem at each step s =1,2,.... Algorithm (2)—(3) can
also cope with problems with more general constraints formulated in terms of
mathematical expectations

E,f(z.w)20, i=1m

by making use of penalty functions or the Lagrangian.

The principal peculiarity of such methods is their nonmonotonicity, which
may sometimes show itself in highly oscillatory behavior. In this case it is
difficult to judge whether the algorithm has already approached a neighborhood
of the optimal point or not, since exact values of the objective function are not
available. The best way of dealing with such difficuities seems to be to use an
interactive procedure to choose the step sizes and step directions, especially if
it does not take much time to make one observation. More reasons for adopting
an interactive approach and details of the implementation are given in the fol-
lowing sections.

Another characteristic of the algorithms described here is their pattern of
convergence. Because of the probabilistic nature of the problem, their asymp-
totic rate of convergence is extremely slow and may be represented by

lz* -zl ~ %k . (4)

Here z° is the optimal point to which sequence z® converges and k is the
number of observations of random parameters w, which in many cases is pro-
portional to the number of iterations. In deterministic optimization a super-
linear asymptotic convergence rate is generally expected; a rate such as (4)
would be considered as nonconvergence. But no algorithm can do asymptoti-
cally any better than this for stochastic problem (1) in the presence of nonde-
generate random disturbances, and therefore the aim is to reach some neigh-
borhood of the solution rather than to find the precise value of the solution
itself. Algorithm (2)—(3) is quite good enough for this purpose.
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LFGM User’s Manual

J. Fdwards

Introduction

This program implements Rockafellar and Wets' Lagrangian Finite Genera-
tion Method (LFGM) for stochastic gquadratic programs with simple recourse.
This technique is described in [1]. The program was developed at IIASA by Alan
King. It is written in FORTRAN 77. A complete description of the implementa-
tion may be found in [2]. The following description of the problem and the dis-
cussion of the algorithm are adapted from [2], which contains further details
and a discussion of possible future developments.

The Problem
The standard formulation of the stochastic quadratic program with simple
recourse is to find z € R® to mazimize

Y ez ~% Y djzf -E[ ) et-qio(e:‘yi)] (SQP)
Jj=ln j=ln izl

subject to

E a;z; <b; , i=1l,...m

j=ln

eeJ' < Zj SffJ R j=1,....n R
where

w= ¥ bz —h .
j=in

9 is a piecewise linear-quadratic function given by

0 ifr=<0
¥(1)={%? if0o<T=<1 ,
T-%ifr=>1

the £;s and ks are square summable random variables, the other coeflicients
are fixed (nonstochastic) with d;j >0,e; >0 andg; =0, and "E" denotes
mathematical expectation.

The Method

The chief difficulty in solving (SQP) is the computation of the expectation
of the recourse penalties. Achieving reasonable accuracy requires a large
number of points at which to evaluate the integrals. Of course, this vastly
increases the number of dirnensions in the problem. The mainstay of LFGM is a
special Lagrangian whose introduction yields a dual problem (DQP) involving



-2.-

minimization over a function space Z. This problem is less tractable than
(SQP), but via the finite generation technique (DQP) may be reduced to a
sequence of quadratic programs with few dimensions. Each problem in this
sequence can be solved by MINOS [3]. A more detailed description of the algo-
rithm follows.

For various reasons, it is advantageous to include a strongly guadratic
term in the zs. The algorithm generates a sequence of points {z* u=1,...} that
converges at least linearly to the optimal solution of (SQP). The u+1th point is
obtained by solving a modification (SQP“) of the original problem wherein the
“proximal” term % s~!|z — z*? is added to the objective (s is a constant).

(SQP“) is solved by applying the finite generation technique to its dual,
(DQP,). This technique replaces minimization over Z with minimization over
the convex hull of a certain collection of elements, 2¥ = {{!, . . . ,{N"}. (1t is this
minimization which is solved by MINOS.) The algorithm uses the information
gained by solving (DQP,) over co 2" to generate a new collection 2**! and in this
way obtains a sequence {",v=1,...} [the dual variables to (DQP,)] which con-
verges at a linear rate to the optimal solution of (SQP,).

The finite generation technique may be summarized as follows:

1) Find (§".£"), the saddlepoint of 1#(x,z) over y x co Z".
2) Findz'e argmax 1IA(".z).
&

3) Find Z'=1{{. ... ,{N"“} > §2%,z% and return to step 1) with
v=v+1
1# is the Lagrangian associated with the primal-dual pair §{SQP,.DQP,].

The program itself is essentially two nested loops. The outer loop uses the
current value of z* to establish (SQP,) and its dual. The inner loop applies the
LFGM to obtain the sequence {§”], which converges to z#*!. The inner loop calls
MINOS to solve the resulting quadratic programs. An outline of the program fol-

lows:

0) Set u =0 and initialize Z°

1) (Begin outer loop) Set SQP, =SQP +}s7'Jz —z4° and establish
DQP,.

2) (Inner loop) Use the finite generation technique to generate {§*i.
which converges to 4%,

3) (End outer loop) Test for convergence of {z"]. If the sequence has
not converged, set u = u + 1 and go to step 1).

Convergence

Due to the limited precision of the computer’s internal representation of
real numbers, it is not a simple matter to decide when the sequences
{z#} and §¥¥} have converged. The user therefore must specify a number of
tolerances which the program uses to determine whether the inner or outer
loop has completed its task. Furthermore, the rate of convergence of the
sequence {z”] depends on the value of the constant s in problem (’SQP“), and if
s is not chosen with care the sequence may not converge in a reasonable
amount of time. The program will act to increase the rate of convergence if
necessary but requires some guidance from the user to do so.

Three conditions cause the inner loop to terminate. They are
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1) the current value of ¥ represents a "good” step in the sequence {z*}
(i.e., if the substitution z#*! = ¢ yields a linear rate of convergence
for the sequence {Z#]). ¥’ need not be precisely equal to the primal
half of the saddlepoint of L*; it is sufficient that

I — Mu(z¥)P < 63%* - z'F

where Mp(f“) is the primal half of the true saddlepoint of L* and 6% is
a nonnegative constant supplied by the user.

2) the values of successive ¥’s are changing very slowly or not at all.
The inner loop halts and processing resumes in the outer loop if

-7 B=x .
where y, is a nonnegative constant supplied by the user.

3) the sequence {¥*} has not converged as desired within a specified
number of iterations. In this case, the current value of ¥ is
returned as **! to the outer loop and a warning message is printed.

Similarly, three conditions cause the outer loop to terminate. They are

1) the current value of Z* is sufficiently close to the optimal solution of
(SQP). This decision is made on the basis of the "duality gap.” If the
normalized difference between the values of (SQP) and its dual at z*
is less than a constant supplied by the user, the program prints the

- solution and halts.

2) the values of successive Z*s are changing very slowly or not at all.
The program prints the solution and halts if

-z B s X, .
where ¥/, i1s a nonnegative constant supplied by the user.

3) the sequence {z*} has not converged as desired within a specified
number of iterations. In this case, the value of s may be such that
the sequence is converging too slowly. The program therefore
increases the value of s and attempts to solve the problem once
again. The user supplies an initial value for s, a constant, g, used to
generate new values of s according to the rule s, .y=0sy4 and a
maximum permissible value for s. If the program cannot solve the
problem using a value of s that is less than or equal to the max-
imum value, it writes a message to that effect and halts.

Distribution of the Random Variables

The presentation of the LFGM in [1] requires that the random variables
t;; and h; have finite, discrete supports. The program allows the user to specify
such a distribution in either of two ways.

The user may allow each component of A and of T to assume a value
independently of the other components. In this case, each §; and &; is a ran-
dom variable, and the user specifies the number of points in the variable's sup-
port, the value the variable assumes at each point in its support, and the proba-
bility that the variable assumes the value associated with each point in its sup-
port. This is called an "independent distribution.”

Alternatively, the user may supply a set of two sample populations, one
containing observations of the vector h and one containing observations of of
the matrix T. In this case, each element of A and of T is assigned the expected
value of the corresponding element of the observations in the appropriate sam-
ple. This is called a "Monte Carlo distribution.” The user may obtain results for



-4 -

several sets of samples during a single invocation of the program. The user
specifies the number of observations in each sample in the first set, the
number of observations to add to each sample in the nth set to obtain the
(n+1)st set, and a maximum sample size. The program repeats its calculations
for every set generated in the manner described whose samples contain no
more than the prescribed maximum number of observations.

User Supplied Routines

The user must write three subroutines, uinput, smp, and output, to per-
form various chores.

The program requires two distinct sets of input. The first set contains vital
parameters and control information. This data appears in a single file, has a
specific format (described in the section entitled "Control Information" below)
and is read automatically by the program. The second set contains the actual
data for the problem, i.e., the contents of the various matrices and vectors.
After the program reads its control information, it calls the subroutine uinput
to read this second set of input. The calling sequence is

call uinput(a,b,c.d,e,ee,ff.gplus.qminus,
1 X,
2 pcexp.tcexp.pprob.tprob.nsuppp.nsuppt.

3 npart,l,m,n).

The values of npart, 1, m, and n are passed to the subroutine. The subroutine
must return valid data in a, b, ¢, d, e, ee, fI, gplus, and gminus. The remaining
variables need be assigned values only in certain cases. The parameters, their
types, and their dimensions (where applicable) are listed below.

a(m,n) (real*8) upon return contains the values of the a;s.
b(m) (real*8) upon return contains the values of the b;s.
e(n) (real*8) upon return contains the values of the c;s.
d(n) (real*8) upon return contains the values of the d;s.
e(l) (real*8) upon return contains the values of the e;s.
ee(n) (real*8) upon return contains the values of the ee;s.

fi(n) (real*8) upon return contains the values of the ff;s. The program
automatically adjusts the problem so that the bounds on z change from
ee_,- SI,Sff, tOOSZJ ST,’.

gplus(l) and gminus(l) (both real*8) upon return contain the penalty
coefficients for excess and shortage, respectively. The program automatically
adjusts the problem to the form required in (SQP) (i.e., gminus = 0).

x(n) (real*8) upon return contains the value of £° which is used to construct
the first problem (SQP“). The contents of this array are used only if the "initial-
ize x vector indicator” is set accordingly (see the section on control informa-

tion below).

pcexp(Lnpart) (real*8) upon return contains the values that the rows of the
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vector A assume at each point in their respective supports. “pcexp(i,j)" con-
tains the value of h; at the jth point in its support. The contents of this array
are used only if the "independent distribution flag" is set accordingly (see the

section on control information below).

tcexp(Ln,npart) (real*8) upon return contains the values that the elements of
the matrix T assume at each point in their respective supports. "tcexp(i,j. k)"
contains the value of {; at the kth point in its support. The contents of this
array are used only if the "independent distribution flag” is set accordingly (see
the section on control information below).

pprob(L,npart) (real*B) upon return contains the probabilities that the rows of
the vector h assume the values at each point in their respective supports.
“pprob(i,j)" contains the probability that h; assumes the value associated with
the jth point in its support. The contents of this array are used only if the
"independent distribution flag" is set accordingly (see the section on control
information below).

tprob(l,n,npart) (real*8) upon return contains the probabilities that the ele-
ments of the matrix T assume the values at each point in their respective sup-
ports. "tprob(i,j k)" contains the probability that t;; assumes the value associ-
ated with the kth point in its support. The contents of this array are used only
if the "independent distribution flag"” is set accordingly (see the section on con-
trol information below).

nsuppp(l) (integer*2) upon return contains the number of points in the support
of each row of the vector h. "nsuppp(i)" contains the number of points in the
support of h;. The contents of this array are used only if the "independent dis-
tribution flag"” is set accordingly (see the section on control information below).

nsuppt(l,n) (integer*2) upon return contains the number of points in the sup-
port of each element of the matrix T. "nsuppt(i,j)” contains the number of
points in the support of ;. The contents of ths array are used only if the
"independent distribution flag" is set accordingly (see the section on control
information below).

ppart (integer) is the maximum number of points that may appear in the sup-
port of a single row of the vector k or of a single element of the matrix T.

1 (integer) is the number of random constraints.
m (integer) is the number of deterministic constraints.

n (integer) is the number of decision variables.

If the user has specified that a Monte Carlo distribution is to be used, the
program calls the subroutine smp to obtain sample populations of the vector A
and of the matrix T. The subroutine must generate a specified number of vec-
tors and matrices and must place these new observations into the appropriate
samples. The calling sequence is

call smp(newsmp,numsmp,maxsmp,ln,p,t.dseedl)

All the parameters contain values when passed to the subroutine, which must
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return valid data in p and t. The parameters, their types, and their dimensions
(where applicable) are listed below.

newsmp (integer) is the index into the arrays p and t where the first of the new
observations should be placed.

numsmp (integer) is the index into p and t where the last of the new observa-
tions should be placed. The subroutine must therefore generate numsmp -
newsmp + 1 observations of the vector A and the same number of observations

of the matrix T.

maxsmp (integer) is the maximum number of observations that may appear in
a sample.

1(integer) is the number of random constraints.
n (integer) is the number of decision variables.

p(l,maxsmp) (real*8) contains the observations of the vector h generated by
previous calls to the subroutine. Upon return, "p(i,newsmp)," “p(i,newsmp+1),"
..., "p(i,numsmp)" contain the values of h; generated by the current call.

t(l,n,maxsmp) (real*8) contains the samples of the matrix T generated by previ-
ous calls to the subroutine. Upon return, "t(i,j,newsmp),” "t(i.,j,newsmp+1)," ...,
"t(i,j,numsmp)" contain the values of t;; generated by the current call.

dseed]1 (real*8) is provided for use as a random number generator seed.

Once the solution has been found, the program calls the subroutine output
to print the results in whatever format desired. The calling sequence is

call output(x,
a,b,c,d,e.ee.r.q,
Lm,n,
discrt,
pcexp,tcexp,pprob,tprob,nsuppp.nsuppt,
p.t.numsmp).

All values are passed to the subroutine, although some do not contain valid

data. Furthermore, several of the values do not match those entered because

the program adjusts the problem as described in the discussion of the parame-

ters to the subroutine uinput, above. The parameters, their types, and their-
dimensions (where applicable) are listed below.

x(n) (real*8) contains the optimal solution to the adjusted problem.

a(m.n) (real*8) contains the coefficients ay;.

b(m) (real*8) contains the values of the b;s as modified by the program.

¢(n) (real*8) contains the coefficients c; as modified by the program.

d(n) (real*8) contains the coefficients d; as modified by the program.
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e(l) (real*8) contains the values of the g;s.

ee(n) (real*8) contains the values of the ee;s.

r(n) (real*B) contains the values of the f/;s as modified by the program.
q(l) (real*8) contains the values of gplus as modified by the program.

1 (integer) is the number of random constraints.

m (integer) is the number of deterministic constraints.

n (integer) is the number of decision variables.

discrt (logical) is a flag indicating how the distribution of the random variables
has been specified. If it is .TRUE,, the distribution is an independent one. If it
is .FALSE., the distribution is a Monte Carlo one.

pcexp(L.npart) (real*8) contains the values that the rows of the vector h assume
at each point in their respective supports. This array contains valid data only if
the discrt flag above is .TRUE..

tcexp(L.n,npart) (real*8) contains the values that the elements of the matrix T
assume at each point in their respective supports. This array contains valid
data only if the discrt flag above is .TRUE..

pprob(l,npart) (real*8) contains the probabilities that the rows of the vector h
assume the values at each point in their respective supports. This array con-
tains valid data only if the discrt flag above is .TRUE..

tprob{Ln,npart) (real*8) contains the probabilities that the elements of the
matrix T assume the values at each point in their respective supports. This
array contains valid data only if the discrt flag above is .TRUE..

nsuppp(l) (integer*2) contains the number of points in the support of each row
of the vector h. This array contains valid data only if the discrt flag above is

.TRUE..

nsuppt(l.n) (integer*®2) contains the number of points in the support of each
element of the matrix T. This array contains valid data only if the discrt flag

above is .TRUE..

p(L.numsmp) (real®8) contains the observations of the vector h generated by
the subroutine smp. This array contains valid data only if the discrt flag above

is .FALSE..

t(L.n.numsmp) (real*8) contains the samples of the matrix T generated by the
subroutine smp. This array contains valid data only if the discrt flag above is

.FALSE..

numsmp (integer) contains the number of samples in the arrays p and t.



Filenames and Unit Numbers

The user must specify a filename for each of the eight files used by the pro-
gram and must specify unit numbers for most of them. The files and the vari-
ables that correspond to their unit numbers are described in the next few sec-
tions. All files are opened (and their unit numbers established) in the subrou-
tine named "input.”

Unit number B is reserved and may not be assigned by the user.

Control Information

The user must supply the program with several constants, tolerances, and
limits. This control information resides in a "specs" file. The variable "inp" con-
tains the unit number of this file.

The specs file contains the information shown below. Each value appears
on a separate line and all values begin in column 31 (the first thirty columns
may be used for comments). The information must appear in the order
specified below:

- name of the problem. This is read using an A32 format.

- number of random constraints (I). This value must not exceed the
constant "lmax” (see the section entitled "Common Blocks and
User-Acessible Parameters” below). 1t is read using an I5 format.

- number of deterministic constraints (m). This value must not exceed
the constant “mmax" (see the section entitled "Common Blocks and
User-Acessible Parameters” below). 1t is read using an 15 format.

- number of decision variables (n). This value must not exceed the
constant '"nmax" (see the section entitled "Common Blocks and

User-Acessible Parameters” below). It is read using an 15 format.

- independent distribution flag. This is read using an L10 format. If
the independent distribution flag is true, the user must provide an
independent distribution for the random variables (see the section
entitled "Distribution of the Random Variables" above). In this case,
the Monte Carlo distribution flag (see below) must be false and the
control variables dealing with Monte Carlo simulation {starting sam-
ple size, sample size increment, maximum sample size, and random
number generator seed) are read but are not used.

- independent distribution maximum number of partitions. This is the
maximum number of values that an element of the vector h or of
the matrix T may assume (i.e.,, the maximum number of points in
the support of an element). The constant "smpmax" places a limit
on this value (see the section entitled “Common Blocks and User-
Acessible Parameters" below). It is read using an 15 format. It is not
used if the independent distribution flag is false.

- Monte Carlo distribution flag. This is read using an L10 format. If
the Monte Carlo distribution flag is true, the user must provide a
Monte Carlo distribution for the random variables (see the section
entitled "Distribution of the Random Variables” above). In this case,
the independent distribution flag (see above) must be false and the
control variable dealing with independent distributions {the max-
imum number of partitions) is read but is not used.
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Monte Carlo distribution starting sample size. This is the number of
observations in each of the two sample populations in the first set.
This value must not exceed the constant “smpmax" (see the section
entitled "Common Blocks and User-Acessible Parameters” below). It
is read using an 15 format. It is not used if the Monte Carlo distribu-
tion flag is false.

Monte Carlo distribution sample size increment. This is the number
of new observations to add to each sample in the nth set to obtain
the (n+1)th set. This value is read using an 15 format. It is not used
if the Monte Carlo distribution flag is false.

Monte Carlo distribution maximum sample size. This is the maximum
number of observations that may appear in a sample. This value
must not exceed the constant "smpmax” (see the section entitled
"Common Blocks and User-Acessible Parameters’ below). It is read
using an 15 format. It is not used if the Monte Carlo distribution flag
is false.

Monte Carlo distribution random number generator seed. This is
passed to the user subroutine smp. This value is read using an F10.4
format. It is not used if the Monte Carlo distribution flag is false.

maximum number of outer loop iterations. This value is read using
an 15 format.

maximum number of inner loop iterations. This value is read using
an 15 format.

maximum number of finite elements. This is the maximum number
of elements { that may appear in the collection Z*. This value must
not exceed the constant "nymax" (see the section entitled "Common
Blocks and User-Acessible Parameters" below). It is read using an 15
format.

proximal point algorithm control. This flag controls whether the
proximal point algorithm is used. It is read using an L10 format. If
this flag is true, the proximal point algorithm is used. If this flag is
false, the proximal point algorithm is not used and the proximal
term does not appear in (SQP,) (i.e., (SQP,) is identical to the origi-
nal problem).

proximal point algorithm starting s-value (s). This is the value of s
used to obtain the first problem (SQP,). This value is read using a
D10.4 format.

proximal point algorithm maximum s-value. This is the maximum
value of s for which the program will attempt to solve the problem.
This value is read using a D10.4 format.

proximal point algorithm s-adjusting factor (¢). This value must be
greater than 1 and is read using an F10.4 format.

proximal penalty factor (6%). This value is read using an F10.4 for-
mat.

minimum change in duals for the outer loop {¥,). This value is read
using a D10.4 format.

minimum change in duals for the inner loop (x;). This value is read
using a D10.4 format.
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- minimum duality gap. This value is used to determine whether the
first stopping criterion for the outer loop is satisfied. It is read
using a D10.4 format.

- initialize x vector indicator. This value controls whether an initiali-
zation subroutine is called to establish the value of the first vector
in the sequence §z*{. If it is 1, no initialization is performed and the
value of 7% must be provided by the user subroutine uinput. This
value is read using an 15 format.

- print option. This controls the amount of information printed by the
program. This value is read using an 15 format.

MINOS Files
Five files are used by MINOS. They are listed below along with the variables
which contain their unit numbers.

MINOS File Unit Number in
specifications specs
input data mps
output minpr
" scratch file (assigned to unit 8)
dump file mindmp

Output File
This file contains the results generated by the program. The variable "out”
contains the unit number of this file.

Proximal Sequence Output File
This file contains the vectors in the sequence {z*}. The variable "eval" con-
tains the unit number of this file.

Data Structures

This program uses no particularly complicated data structures. However,
it does use one (very large) array to hold the contents of every matrix and vec-
tor used by the algorithm. Several pointers provide the necessary bookkeeping
information. The following list shows which values appear where within the

array "zz."”

Matrix or Vector Starting Index Ending Index

A 1 . ni
b nl+1 n2
c n2+1 nd
d n3+1 n4
e nd+1 nd
ee nd+1 nb
ff né+1 n"?
gplus n7+1 n8
gminus nB+1 n9
X n9+1 nl0
pcexp nl0+1 nll
tcexp nll+1 nl2

pprob nl2+1 nl3



tprob
nsuppp
nsuppt
np

p

t

piexp
tiexp

(for INIT)

v0
vl
v

(for LOOP)

chi
oldchi
zeta
dk
ck
lam
qexp
Pexp
texp
wl
w0
w2

y
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nl3+1 nl4
nl4+1 nl5
nl5+1 nl6
nl6é+1 nl?7
nl7+1 nl8
nlg+1 nl9
nl9+1 n20
n20+1 n2l
n21+1 n22
n22+1 n23
n23+1 n24
nl9+1 n20
n20+1 n21
n21+1 n22
n22+1 n23
n23+1 n24
n24+1 n25
n25+1 n26
n26+1 n27
n27+1 n28
n28+1 n29
n29+1 n30
n30+1 n31
n31+1 n32

Common Blocks and User-Accessible Parameters

The program uses several common blocks, most of which are contained in
three include files. The names of these blocks, the include files in which they
appear, and a description of the variables they contain follow.

Common Block Include File

Contents

zzcore incl.core
ziodev incl.glob
zdimen incl.glob
zmxdms incl.glob
zparam incl.glob
zseed incl.glob
zdistr incl.glob
zpntrs incl.pntrs

all global matrices and vectors

1/0 unit numbers

dimensions of matrices, current sample size
various maxima

s, 0, 6% x.. ete.

random number generator seeds
distribution description flags

bookkeeping indices into the array "“zz"

The program currently imposes several limits on the size of the problem
(e.g.. no more than four decision variables). To obtain results for larger prob-
lems, the user must change the constants in the include file "incl.core” as fol-

lows:

nmax must be set to the maximum number of decision variables (n).
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Imax must be set to the maximum number of random constraints (1).
mmax must be set to the maximum number of deterministic constraints (m).
nymax must be set to the maximum number of elements ¢ in any set Z".

smpmax must be set to the maximum number of points in the space over which
the integrals for the expected values of h and of T are calculated. For indepen-
dent distributions, it is also used to allocate storage for a number of additional
arrays. 'smpmax' must be set to the maximum number of members in any
sample if a Monte Carlo distribution of the random variables is given and to

max [2npmax + 1, npmax™mexr+l],

where npmax is the maximum number of points in any random variable’s sup-
port, if an independent distribution of the random variables is given.

None of these values may be less than 1.

Subprocedure Hierarchy
See the attached figure.

Library Routines
The program uses version 3.9 of MINOS. The MINOS subroutine "go" has
been slightly modified to perform additional file assignments.

Notes

On occasion, MINOS will return an error code and the program will halt.
This is usually due to insufficient space or iteration limits. The MINOS
specifications file is written by the subroutine lmps, which may need to be
changed in such cases.
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Descent Stochastic Quasigradient Methods

Kurt Marti

HSBw Muenchen, FB LRT
Werner-Heisenberg-Weg 39
D-8014 Neubiberg/Muenchen

1. Introduction
The FORTRAN code "SEMI STOCHASTIC APPROXIMATION" can be applied to
solve stochastic optimization problems of the following type

minimize F(x) s.t. xeD, (1)

where D is a closed convex subset of " and F=F(x) is the convex mean value
function defined by
F(x) = Eu[A(w) - b(w)], x<R". (1.1)

Here [A(w),b(w)] is an mx(n+1) random matrix and u is a convex loss function
on R™ such that the mean value F(x) in (1.1) is real for every xcK®. We suppose
that the set D* of optimal solutions x° of (1) is nonempty.

Problems of the form (1) arise in many different connections, e.g.
Stochastic linear programming with recourse [7],[22]
Portfolio optimization [9],[23]
Error minimization and optimal design [2],[20]
Statistical prediction [1]
Optimal decision functions [5],[10].

Since the gradient (or subgradient) aF of F exists under weak assumptions
and is given then by the formula

8F(x) = EA(w)Tou[A(w)x - b(w)], (2)
where AT is the transpose of a matrix A and du denotes the subgradient of u, our
basic problem (1) could be attacked in principle by a gradient (or quasigra-
dient) procedure of the type

Xpey = Pplxg - pugl), k=12, (3)
where p,>0 is a step size, g,€8F(x;) and Pp denotes the projection of R" onto D.

However, in practice the computation of the gradient (subgradient) aF(x;)
is beset by one of the following difficulties:
. Formula {2) cannot be evaluated at all because only a stochastic estimate
Y, of an element g,€8F(x,) is available [3],[21]. In this case we have only

Y, = gy + noise with some g, €8F(x) (4.1)
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*  Although the integrand ATdu(Ax-b) and the probability distribution Piat)b
of [A(w),b(w)] in (2) is known, the numerical evaluation of this formula -
which involves a multiple integral - is computationally infeasible. In this

case 9F(x,) may be approximated by
Yy € A(wy) duA{w) %, — blwy)]. (4.2)

where [A(w,),b(w,)] is a realization of the random matrix [A(w),b{w)] gen-

erated independently of x; by means of a pseudo-random generator [11].
Consequently, in both cases (4.1) and (4.2) the gradient procedure of (3) cannot
be applied in practice. It is therefore often replaced by the stochastic quasigra-
dient method [3],[6]

Xee1 = Pp(X —pYi), k=1.2...., (5)
where the random direction -Yy is defined by (4.1) or (4.2) as appropriate.
Selecting a priori a sequence of step sizes p,,0;,... such that

PR>0, Y pp =+, Y pE < Heo,
k>0 k>0

e.g., py = q::-k for some constants ¢>0 and qeN ({0}, it is well known [19],[21]

that the sequence of random iterates X,,X,,... generated by (5) converges with
probability one to the set D® of optimal solutions x* of (1), provided that the
approximates Y, of 8F(x;) fulfill a certain uniform second order integrability
condition and that D° is a bounded set.

Unfortunately, due to their probabilistic nature, stochastic approximation
procedures have a very slow asymptotic rate of convergence of the type

EX, - x P = 0(k™),

where A is a constant such that O<A<1. Moreover, the main disadvantage of sto-
chastic quasigradient procedures such as (5) is their nonmonotonicity which
sometimes may manifest itself as a highly oscillatory behavior [4]. Hence, in
many cases it is not known when the algorithm has reached a certain neighbor-
hood of an optimal solution x°. To improve the convergence properties of (5),
several methods have been suggested, including those based on the adaptive
selection of the step sizes py, see [8], and on the use of second order informa-
tion about F, see [18]. An additional method - which has a partial monotonicity
property -is presented in the next section.

2. Semi-Stochastic Approximation

As was shown in several papers [10],[12],[14],[15].[17]. for several classes U
of convex loss functions u and several classes II of distribution Py} of the
random matrix [A(w).b(w)], our minimization problem (1) has the following
important

PROPERTY: (8)

At certain "noneflicient” or "nonstationary" points x€D there exists a deter-
ministic (feasible) descent direction h=h(x) of F which can be computed with
less effort than can an element g, of 8F(x,). Moreover, h(x) is stable with
respect to variations of the loss function ucU.

Consequently, if at a certain iteration point X, property (6) holds, then
clearly one can replace the stochastic direction -~Y,, which is a descent direc-
tion only in the mean, by the descent direction h,=h(X;) of F.

We thus obtain the following, as already described in [11],[13]:
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Descent Stochastic Quasigradient Method
Pp(Xy + pxby) if (6) holds at X,
kel = Pp(X, — pxYy) otherwise.

In many important applications this hybrid procedure has the important
feature that property (8) is frequently satisfied, for example at every other
iteration point Xj. In this case, (7.1) has the more convenient form

Pp(Xk + pxhy). kEN,
k+1 =

(7.1)

Pp(Xyx = piY1). KENy (7.2)

where N, N; is a known decomposition of the set of integers, N, e.g.
N,;={1,2,3,...] and N,={2.4,6,...}. As was shown in [13], if the step sizes p;.pa....
are chosen such that

A0 D o=+ Y pf < 4,
KeN, x>0

then the semi-stochastic approximation procedure (7) converges with probabil-
ity one to the set D’ of optimal solutions x° of (1). As expected, several numeri-
cal examples [11] show that the descent stochastic quasigradient method (7)
has a much better rate of convergence than the pure stochastic guasigradient
method. In particular, the highly oscillatory behavior of the random iterates
X,.X.... observed in (5) is greatly damped by the use of the deterministic des-
cent directions hy in (7); moreover, the approximation to the set D* is more
exact. In a recent paper [16], the rate of convergence of (7) was estimated
using the following

THEOREM?2.1
Denote by b, = E}X; — x°|? and bf = EJX§ — x J* the mean square error of the des-
cent stochastic quasigradient and pure stochastic quasigradient, respectively.
a) If the ratio of stochastic to deterministic steps taken in (7) is fixed, then
there exist constants Q;,Q; with 0<Q,;<1 and Q,<Qz such that
Q, b < b, < Qb as k approaches infinity. (8.1)

Furthermore, Q,; and Q; are given by known formulas and Q<1 if N/M<y,
where N and M are the number of stochastic and deterministic steps,
respectively, in one complete turn of iterations and y is a constant that
depends on the parameters of problem (1).

b) If the stochastic steps in (7) are made at a decreasing rate, the rate of con-
vergence is increased from 0{1/k) in the pure stochastic case to O(k™),
where 1<A<2, in the semi-stochastic case.

3. Construction of Deterministic Descent Directions
Currently deterministic feasible descent directions may be constructed if
the distribution Pps(y ) is
*  stable [12]
*  invariant [15]
*+  discrete [14].
Our implementation is based on the assumption that
[A{w),b(w)] has an mx{n+1) normal distribution (9)

with mean (A,b) (8.1)



and covariance matrix

@, Q2 - Qn]
Q21 Q22 Q?.m

Q=|... ... ... ... (9.2)
le sz Qmm

where the (n+1)x(n+1) matrix Q;; denotes the covariance matrix of the ith and
jth rows of the random matrix [A(Jw).b(w)].

In addition to (8) we suppose
The objective function F of (1) is not constant on arbitrary line segments Xy GFOf".

From (9) is follows that the random m-vector A{w)x - b(w) has a normal dis-
tribution with mean Ax — b and covariance matrix

iTQui ﬁTQlaiE Tt iTlex
£7Qz % X1Q% K" Qom%
Q = . ;
iTlei ii.erZ"‘i t iTQmmi
]
wherex =|_,|
The key to the construction of descent directions is now
THEOREM 3.1

Suppose that assumptions (9) and (10) are justified. If the n-vectors x and y#x
are related according to :

Ax = Ay ' (11.1)
and ‘
Q; — Qy is positive semidefinite, (11.2)

then F(y) < F(x) and h=y-x is a descent direction of F at x. Moreover, if x€D and
in addition to (11.1) and (11.2) we have

ye€D, (11.3)
then h=y-x is a feasible descent direction of F at x.

NOTE

For a given x, {(11.1) is a system of m linear equations for y. Relation (11.2)
means that the smallest eigenvalue of Q; — Q, is nonnegative. In the important
special case m=1, {11.2) is reduced to the single quadratic constraint

iTQ“i = f’TQu?- (11.2a)
If [A{w).b(w)] has stochastically independent rows, then (11.2) is eguivalent to
2TQu& = §7Qu¥ for all i=1,2,...,m. (11.2b)

In this case, solutions y of {11) may be obtained by solving for a given vector x
the convex program

minimze SVTQl-ojo)'r (12)

subject to



§7Q,¥ < £7Q;%, i=1,2,...,m
Ay = Ax
y €D,
where 1<ig<m is a fixed integer.
In the general case one must consider the program
maximize A(Q, — Qy) (13)
subject to
Ay = Ax
y €D,
where A(Q; - Qy) denotes the smallest eigenvalue of Q; — Qy.

4. Implementation

4.1. Representation of the random matrix [A(w).b(w)]
[A(w),b(w)] is defined by
[A(w).b(w)] = [A%b°] + 3 wi[Alb]], (14)
j=1r
where [Albl], j=0,1,...,r, are mx(n+1) matrices to be selected by the user and
wl,w? ..., 0" are independent normal random variables with mean zero and
variance one. A realization [A(w,).b(w,)] of [A(w),b(w)] is then given by
[A(w).b(wp)] = [A%D0] + 3 wilAlb],
j=1.r

where oy = (of.0f. . . .. of), k=0,1,..., is a sequence of stochastically indepen-
dent realizations of the random r-vector w=(w!w?, . . ., w") generated by means
of a pseudo-random generator that converts uniformly distributed pseudo-
random numbers into normally distributed ones based on the central limit

theorem.

4.2. Computation of the search directions

We suppose that rank A = rank A = m < n. The matrix A=[3,,3;, ... ,3qy],
where ay is a column vector, must be partitioned by the user into a regular
mXm matrix

B=[8), 3y, . . . .3,

and an mx(n-m) remainder matrix
E=[a, 80,8, ] '

The user must then define the index set
INDXAO={k, K. . . . . Kguk1Kzs - - - + Kporm)-

Given the last iteration point x;, subroutine FUNCT computes a solution yj of
the relations (11.1)-(11.3). At present only the case of D=R" is implemented.
For the sake of generality the system of relations (11) is solved by means of the
program (13). If the situation demands it, the user need only replace this sub-
routine with a custom procedure for solving (11).

If yu#x,, then hy=y,—x, is a feasible descent direction (see theorem 3.1)
and the next iteration point x,,, is given by
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Xear = X+ pi{yy — x0),

where p >0 is a step size.
If yi=x;, then FUNCT fails to find a descent direction. The next iteration
point is then given by

Xk+1 = Xk = PyY ko
where
Y, €A ) Tau[Aw,)x; = blwy) ]

4.3. Step size
At present, the step sizes p, k=0,1,..., are defined by
=1
Pe= v1

For a deterministic step the user may also take p, =1 or p, =0.5.

4.4. Loss functionu
The following classes of loss function are supported:

a) Quadratic loss function
u(z) = c + qTz + z'Wz, zER™,
where c is a fixed number, q is an m-vector, and W is a positive semidefinite
mXxm matrix.
b) Pclynomial loss function

u(z) = Y z®, z=(z,, . .., zn)TER™,

j=1.m
where s is a fixed integer.
c) Sublinear loss function

u(z) = maxflz, zeR®,
1%t=<p
where f;,fp, . . . .fp are fixed m-vectors.

4.5. Stopping criteria

The user must select a (small) positive number EPS>0, an integer ITMAX,
and a number TMAX. The program executes until one of the following condi-
tions is fulfilled:

K1 — xJ < EPS,

k>ITMAX (= maximum number of iterations),
or

T>TMAX (= maximum computing time)t,

where || denotes the Euclidean norm.

t Since system cells to determine the time and date vary from machine to mechine, the
code has been changed so that this test is no longer performed - Ed.
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SPORT User's Manual

J. Edwards

Introduction

This program, Stochastic Programming Optimizer with Recourse and
Tenders (SPORT), implements Nazareth and Wets' inner linearization method
for stochastic programs with recourse. It also includes an implementation of a
method for solving simple recourse problems that relies on the introduction of
bounded variables. The two methods are called ILSRDD (Inner Linearization,
Simple Recourse, Discrete Distribution) and BVSRDD (Bounded Variables, Simple
Recourse, Discrete Distribution), respectively, and are described in [1], [2], and
[3]. The program was developed at the University of California at Berkeley and
at IIASA by Larry Nazareth. It is written in FORTRAN IV. A descriptien of the
implementation may be found in [1]. The contents of this manual are largely
taken from [1], [2], and [3]. '

The current version of SPORT (Version 14) addresses problems with simple
recourse and stochastic right hand side elements with a given discrete proba-
bility distribution.

The Problem
SPORT is designed to solve two-stage stochastic linear programs with
recourse, whose general form is to find z € R"! to minimize

cz + Eu[Q(z w)] (1)
subject to
Az =b
z=20
where
@z w) =,i’gg[qy | Wy =h(w) -Tz] , (1.1)

h(w) is a random vector with m, elements defined on a probability space whose
events are denoted by w; z is the decision vector and contains n, elements; ¥
is the optimal recourse vector given some (z,w) and contains n; elements; A, T,
and W are fixed matrices with dimensions m xn,, myxn,, and myxn,, respec-
tively; b, c, and g are fixed vectors containing m,, n,, and n; elements, respec-
tively; and 'E,,’ denotes mathematical expectation with respect to w. Note that
only the right-hand-side, h(w), is random.

As noted above, the current version of SPORT solves the above problem
only for simple recourse (i.e., W = [1,-1]), stochastic right-hand-side elements
with a given discrete probability distribution, and penalty vectors g* and ¢~
associated with shortage and surplus, respectively, in the recourse stage (1.1).



Thus, (1.1) may be written

Q(z.w) = min [g*y* +q7y |y -y~ =h(w) -Tz] (1.17)
vty =0
where
gt.g =0
and the ith row of h(w) may assume one of the values hy,, ..., hw,. where
h;; <h;j.+, with probabilities p;,, . .. P, SPORT also allows the user to

specify a weight for the recourse value [effectively adding a factor p to @(z,w)

in (1)].

The Methods

Both ILSRDD and BVSRDD require that the problem be cast into a more
tractable form before it is solved. Since the technology matrix is fixed, the sub-
stitution y =Tz may be made, thereby introducing the variables y, called
‘tenders,’ into (1) This transformation is useful because it generates a non-
linear program in which the number of variables occurring nonlinearly is m,
rather than n,, and usually m,;<«n,. The problem then becomes

minimize ez + ¥(x) ()
subject to
Az =b
Tz -x=0
z=>0
where
¥(x) = Eu[¥(xw)] .
¥(ew) = minlgy [Wy = h(w) -x] .
and the vector ¢ and the matrix W are reintroduced for notational convenience.

A further transformation involves introducing second stage activities into
the first stage. It is shown in [2] that (2) is equivalent to

minimize cz + qy + ¥(x) (3)
subject to
Az = b
Tz +Wy —x=0
| z>0, y=20

where ¥ and ¥ are defined as in (2). This form has significant advantages from
a computational standpoint.

Both ILSRDD and BVSRDD exploit the separability of ¥, which is due to the
presence of simple recourse and to the separability of the cost vector. Thus,
¥(x) may be written

¥(0 = ¥ ¥la) (4)
1=1,mg
Furthermore, since each component of h{w) is discretely distributed and since
the cost vector is two-piece linear, each ¥;(x;) is piecewise linear, viz.
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¥ (u) = ‘glfi‘(su)(i +ey) (4.1)

where

su=(g'+q7) Ypa-gq" O0sls<k .,
t=1.1

€4 =Qi+’71'. _(Qi++qt'—) Zh-i;pu . OSlSki .
t=11

ﬂ; is the expected value of the ith row of h(w), and by convention 2 = 0.1
1=1,0
ILSRDD is based on Wolfe's Generalized Linear Programming method (GLP),
which solves a sequence of problems obtained by inner (or grid) linearization of

(3) over the convex hull of the set of tenders {x', . . . . xX|. (Actually, because the
amount of memory in the computer is finite, SPORT uses a smaller set with a
fixed number of tenders, {xx’"”, e xKi) The problems are of the form
minimize cz + g*y* + gy + ), AY(F) (5)
k=1
subject to
Az =b
Tz +Iy* =1y~ — ) MNeXf =0 (5.1)
k=1
2 AN =1 (5.2)
k=1K
z,y N\ =0
The tenders !, . .. ,xX are assumed to have been generated previously. x!is set

to the expected value of h{w) prior to the first iteration. A new tender is
obtained in each cycle by solving the Lagrangian subproblem

minixmize ¥(x) + ™y (8)

where 7K is formed by the dual multipliers associated with the constraints (5.1)
in the optimal solution of (5).* The optimal solution of (8), ¥X*!, represents an
improvement provided

FOEM) + O < 9K

where 9K is formed by the dual multipliers associated with the constraints (5.2)
in the optimal solution of (5). If no such y can be found, the current solution is
optimal. Generally speaking, problem (5) lends itself to solution because only a
few tenders will have nonzero coefficients in the optimal solution and because a
good set of initial tenders can be provided given the underlying recourse pro-
gram.

The properties of ¥(x). particularly the convexity and piecewise linearity of
¥.(x;). permit the use of a simpler iterative technique. BVSRDD introduces new
variables z; for each interval over which ¥;(y;) is linear. It follows that

¥ (%) = ¥i(x?) + min[ Y osazylx =xt+ ) zal
1=0.k; 1=0.k,

where x? is the ith component of ¥, the base tender, and z; is bounded below
t Because ¥; is convex, the Sys form an increasing sequence (in fact, —q,;* <85y <q;.,

O<l<k, 3 It also happens that the €4 s form a nonincreasing sequence.
* Since ‘I/(x is separable, (B) is easily solved. See [2] for more detaéils.
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by zero and above by the length of the Ith interval. With this substitution for
¥:(x;). () becomes

minimize ez + Y, ) sgzg (7)
t=1m, 1=0,k,
subject to
Azr =
Tiz = ) zg =X . i=l..m,
‘=°.k{
z=0

where T; is the ith row of the matrix T. The z;s are constrained to the length of
the lth interval as before. This is a straightforward linear program.

Because of its dependence on the properties of ¥, BVSRDD is fairly limited
in its range of passible application. The algorithm has been implemented pri-
marily to provide some assurance that ILSRDD is working properly.

The program itself is essentially a front end to a customized version of
MINOS [4]. The program reads the data and establishes the appropriate form of
the problem [(5) or (7)], then calls MINOS routines to solve the resulting linear
program(s). Because there are two methods implemented, one of which
requires the solution of several linear programs, some of the MINOS procedures

have been modified.

Input Overview

SPORT requires three logically distinct sets of data. The first set is control
information. The second set contains most of the nonstochastic data for the
problem. The final set provides information about the tenders and the distribu-
tion of the random vector h{w). It is anticipated that in normal practice the
three sets of data will reside in three separate files.

Standard Input, Output, and Error Files

The program reads its control information from the standard input file
(usually connected to unit 5) and writes its results and error messages to the
standard output file (usually connected to unit 8). These files are assumed to
be standard from system to system and consequently they are not opened by
the program. The user may alter the standard input, standard output, and
standard error unit numbers as described in the section entitled ‘'User-
Accessible Parameters’ below. The user is responsible for opening these files if
necessary.

Control Information

The user must supply the program with various limits, file names and unit
numbers, and other options. This control information resides in a 'specs’ file.
The user must connect this file to the standard input unit before the program is
invoked.

The specs file contains a number of sections, some of which may be empty.
Each section is identified by a keyword which begins in column 1. In general,
entries within a section are identified by a keyword which begins in column 5
and the actual values begin in column 23. The keywords that identify each sec-
tion must appear even if default values are selected, although in this case the
section need not contain any entries. Unless otherwise specified, all character
values are read using a 2A4 format and all numeric values are read using an 18
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format. Keywords must be capitalized and only the first four characters of a
keyword (including trailing blanks) are significant. The sections are listed
below with their keywords in parentheses. The sections must appear in the

order specified.

name of the method ('ISLRDD' or 'BYSRDD’). This section selects
which algorithm shall be used.

start of control information ('BEGIN’). This identifies the beginning
of the control file.

file names and unit numbers ("UNIT’). SPORT uses nine files, three of
which are assumed to be standard on all systems. This section
specifies the unit numbers and file names for the remaining files
used by the program. There may be as many as six entries in this
section and they may appear in any order. Each entry consists of
two cards. The first card contains a keyword beginning in column 5
and an integer beginning in column 23. The second card contains a
character string in columns 1 through 20. The keyword identifies
one of the files used by the program. The integer specifies a unit
number for the file and the string is the file name for the file.
Unless otherwise specified, unit numbers and file names must be
unique. Although zero is a legal unit nummber on some systems, the
program will generate an error if the user attempts to assign this
unit to the core file, to the stochastics file, or to either of the MINOS
files. Valid entries and their keywords are

- core file ("CORE') This entry specifies the unit number and file
name for the 'core’ file (see the section entitled 'Core File’
below). If the unit number is the same as the standard input
unit number the file name is read but is not used (i.e., the core
data is assumed to follow the control information in the specs
file). The unit number may not be the same as the standard
output unit number or the standard error unit number.

- stochastics file ("STOCHASTICS') This entry specifies the unit
number and file name for the 'stochastics’ file (see the section
entitled 'Stochastics File’ below). If the unit number is the
same as the standard input unit number or the core file unit
number, the file name is read but is not used (i.e., the stochas-
tics data is assumed to follow the control information or the
core data in the appropriate file). The unit number may not be
the same as the standard output unit number or the standard
error unit number.

- MINOS specifications fille ('SPECS’) This entry specifies the unit
number and file name for the MINOS control file (see the sec-
tion entitled MINOS Files' below). The unit number may not be
the same as that of any of the standard files.

- MINOS data file ("MPS’) This entry specifies the unit number and
file name for the MINOS data file (see the section entitled
"MINOS Files’ below). The unit number may not be the same as
that of any of the standard files.

- debug file ('DEBUG’) (optional) This entry specifies the unit
number and file name for the debug file, which contains the
values of sy, 4,9 .X, and some variables internal to the program
at various points of execution. If ths entry is omitted, no debug
file is produced. A unit number of 0 also inhibits production of
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the debug file. If the unit number is the same the standard
output unit number or the standard error unit number, the file
name is read but is not used (i.e., the debug information is writ-
ten to the appropriate standard file). The unit number may not
be the same as the standard input unit number.

log file ('LOG') (optional) This entry specifies the unit number
and file name for the log file, which contains a trace of the
program’s execution and the contents of the stochastics file
and part of the core file as read by the program. If this entry is
omitted, no log file is produced. A unit number of 0 also inhi-
bits production of the log file. If the unit number is the same
the standard output unit number or the standard error unit
number, the file name is read but is not used (i.e., the log infor-
mation is written to the appropriate standard file). The unit
number may not be the same as the standard input unit
number.

maximum memory requirements ('DIMENSIONS') This section pro-
vides the program with the information necessary to set up a
number of arrays. The entries in this section may appear in any
order and all are optional. Each entry contains a keyword beginning
in column 5 and a value beginning in column 23 (an exception is the
"'TENDERS’ entry; see below). If an entry is omitted, the correspond-
ing variable assumes the default value indicated. These defaults
may be changed as described in the section entitled *User-Accessible
Parameters.’ Valid entries and their keywords are

maximum number of right-hand-side elements ("ELEMENTS®)
This is the maximum number of nonzero elements in the aug-
mented matrix, i.e., in [A|x] after the transformations in (2)
and (3) have been applied. This value must provide enough
space for generated tenders as well as those that are entered in
the input data. The default value is 5 times the maximurn
number of matrix columns (see below).

maximum number of matrix rows ("ROWS') This is the maximum
number of rows that may appear in the combined matrix [‘%]
The default value is 100.

maximum number of technology rows ("TECHNOLOGY’) This is
the maximum number of rows that may appear in the technol-
ogy matrix, T. This value may not exceed the maximum
number of matrix rows as specified in the 'ROWS’ entry. The
default value is 20. ,
maximum number of matrix columns ("COLUMNS’) This is the
maximum number of columns that may appear in the combined
matrix [4]|x]. where x is the matrix formed by the set of
tenders (each of which is a column vector with m, rows) used in
problems (5). The default value is 3 times the maximum
number of matrix rows (see above).

maximum number of values for h;(w) ("PROBABILTIES’) This is
the maximum number of points in the support of any row of
h{(w) [i.e., the maximum permissible k; in (4.1)]. The default

value is 30.



-7-

- tender information (ys) ('TENDERS') This entry contains three
subentries. Each subentry contains a keyword beginning in
column 9 and a value beginning in column 23. The subentries
may appear in any order and all are optional. Valid subentries
and their keywords are

- maximum number of user supplied tenders ('INPUT") This is
the maximum number of tenders that may be entered in
the stochastics file (see below). For BVSRDD, this value
must be 1. For ILSRDD, this value may not exceed the max-
imum number of tenders saved as specified in the 'GEN-
ERATED' entry. The default value is 1.

- maximum number of tenders saved ("GENERATED’) This is
the maximum number of tenders that will appear in the
set used to generate each problem (5) in ILSRDD (i.e., n).
The default value is 20.

-  maximum number of tender elements ("ELEMENTS’) This is
the maximum number of nonzero elements that may
appear in the tenders in the set used to generate each
problem (5) in ILSRDD or that may appear in the base
tender in BVSRDD. The default value is 2000.

row and vector names ("SELECTORS’) This section identifies which
row is the objective row and which vectors in the 'RHS," 'BOUNDS;’
and/or 'RANGES’ sections of the core file are to be used. The entries
in this section may appear in any order. Each entry contains a key-
word beginning in column 5 and a value beginning in column 23. If
an optional entry is omitted, the first applicable row or vector found
in the core file is taken to be the desired entry. Valid entries and
their keywords are
- name of the objective row ("OBJECTIVE') The type 'N' row with
this name in the 'ROWS’ section of the core file is taken to be
the objective row.

-  npame of the right-hand-side vector ("RHS') The entries in the
'RHS' section of the core file that contain this name in the first
name field (columns 5 through 12) form the vector b.

-  name of the bounds vector ("BOUNDS') (optional) The entries in
the 'BOUNDS’ section of the core file that contain this name in
the first name field (columns 5 through 12) provide bounds on
the decision variables.

-  name of the ranges vector ("RANGES’) (optional) The entries in
the 'RANGES' section of the core file that contain this name in
the first name field (columns 5 through 12) provide ranges for
the decision variables.

miscellaneous control information ("CONTROL') This section contains
a number of miscellaneous control parameters. The entries in this
section may appear in any order and all are optional. Each entry
contains a keyword beginning in column 5 and a value beginning in
column 23. If an entry is omitted, the corresponding variable
assumes the default value indicated. These defaults may be
changed as described in the section entitled 'User-Accessible
Parameters.’ Valid entries and their keywords are
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-  print control ("OUTPUT') This entry specifies how much infor-
mation is written to the log file and to the standard output file.
The default value is 2 and causes the program to place a certain
amount of information in the output files. A value less than 2
causes less information to be written to the log file and a value
greater than 2 causes additional information to be written to
the output file. See the sections describing the output and log
files below for more details.

-  maximum number of cycles ('CYCLE') This is the maximum
number of linear programs (5) to solve when applying ILSRDD
(i.e., the maximum number of tenders generated or the max-
imum permissible value for K). It is not used by BVSRDD. The
default value is 1.

- scale factor (px100) ('SCALE') This is the factor by which the
recourse value is multiplied. It is expressed as a percentage
(i.e., a value of 100 results in a factor of 1.00). The default
value is 100.

MINOS specifications ("MINOS') This section contains any additional

MINGS options desired. Any cards whose first four columns are blank

will be echoed in the MINOS specifications file after the cards that

specify the objective row, rhs vector, bounds vector, and/or ranges
vector and before the card that gives the cycle limit.

This section need not contain any entries.

END card ('END’) This card marks the end of the control informa-
tion.

The core file contains the data for the decision variables. It specifies

the name and type of each row in the problem,
the objective, c,

the nonzero elements of A and T,

the deterministic right-hand-side, b, and

the bounds on the decision variables.

The core file is specified in standard MPS format [5]. The 'ROWS’ section
contains an entry for the objective and for each row of A and of T. The rows of A
and of T may be interleaved. The rows of T are normally equality rows, but the
program performs the necessary conversions if this is not the case (e.g., if
there is no penalty on surplus). The 'COLUMNS’ section contains the elements of
¢ and the nonzero elements of A and of T. The 'RHS' section contains the
nonzero elements of b. Nonzero elements of b that correspond to rows of the
technology matrix are ignored. The 'BOUNDS' and 'RANGES' sections may be
used to impose limits on the solution as in normal practice.

Stochastics File
The stochastics file specifies the information pertaining to the recourse
problem. It specifies

the names of the rows that constitute the technology matrix,
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- the distribution of each row of the stochastic rhs vector, h{w),
- the penalties on shortage and surplus, g* and ¢, and
- the set of initial tenders for ILSRDD or the base tender for BVSRDD.

The stochastics file is specified in a subset of an extended MPS format
developed for stochastic linear programs with recourse [6]. Like the core file,
the stochastics file consists of a number of sections. Field conventions similar
to those in standard MPS are employed. That is, section names begin in column
1; options on the same line as a section name begin in column 15. Data lines
have six fields {some of which may be blank): a code field {columns 2 and 3),
three name fields (columns 5 through 12, 15 through 22, and 40 through 47),
and two numeric fields (columns 25 through 36 and 50 through 61). The con-
tents of the code and name fields are interpreted as character strings. The sec-

tions are

NAME - This is an informative header card. The user may enter any charac-
ters desired in columns 15 through 72.

TECHNOLOGY - This section of the stochastics file specifies which of the
rows listed in the "ROWS' section of the core file constitute the technology
matrix, T. The data consists of a list of names corresponding to a subset of
the list of row names specified in the 'ROWS’ section of the core file. The
contents of these rows (as specified in the COLUMNS section of the core
file) constitute the technology matrix. One name appears per line, in the
first name field (columns 5 through 12).

DISTRIBUTIONS - This section of the stochastics file specifies the probability
distribution of the r.h.s., h{w). The data consists of sets of entries of the
form "rowname value probability.” There is one such set for each of the
rows named in the TECHNQOLOGY section. "Rowname" specifies the row
associated with the entry; it occupies the first name field on a line
(columns 5 through 12). "Value" and "probability" give a value for the row
and its likelihood, respectively. They occupy the first and second numeric
fields (columns 25 through 36 and 50 through 61), respectively.

The sum of the probabilities for a given row must be unity. Entries for
different rows must not be mixed together.

RECOURSE - This section of the stochastics file is included to provide com-
patability with files specified strictly according to the format described in
[6]. It contains no data.

OBJECTIVES - This section of the "stochastics” file specifies the recourse
objectives, g. The data consists of entries of the form "name value value”,
where "name" gives the name of a row of T. the first value gives the
corresponding value of g*, and the second value gives the corresponding
value of g~. The name occupies the first name field on a line (columns 5
through 12) and the values occupy the first and second numeric fields
{columns 25 through 36 and 50 through 61), respectively.
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TENDERS - This section specifies the value(s) for the initial tender(s) used
by the algorithms. The data consists of entries of the form '"name
rowname value," where ''name"” is a name provided for the tender,
"rowname" specifies the row of T associated with the entry, and “value” is
the value of the corresponding row in the tender vector. “name’ is
repeated for each row in the tender and there is one such name for each
tender specified. "name" and "rowname" occupy the first two name fields
(columns 5 through 12 and 15 through 22, respectively) and "value” occu-
pies the first numeric field (columns 25 throgh 36). If a set of tenders is
provided for ILSRDD, the first is used by BVSRDD (although all are read).

ENDATA - Indicates the end of the "stochastics” file.

MINOS Files

The program generates the MINOS specifications file and the MINOS data
file from the specs file and from the core and stochastics files, respectively.
The user may pass options to MINOS as described in the paragraph on MINOS
specifications in the section entitled

Output File

This file contains the results generated by the program. If the print control
variable is 2 or less, the program writes certain error messages and the follow-

ing data to the output file:

- the contents of the specs file,

- the proposed tender, current objective value, and lower bound for the
optimal objective value after each cycle,

- the standard MINOS output for the last linear program solved, and

- the first and second stage costs, the optimal tender, the dual multipliers
(prices) associated with the technology rows in the optimal solution, and
the probabilities of the equivalent change constrained programs.
If the print control variable is greater than 2, the output includes the stan-

dard MINOS output for each linear program solved.

Log File
This file contains a trace of the program's execution. If the print control
variable is 2 or more, the program writes the following data to the output file:
- various messages concerning the program's activity, e.g., reading stochas-
tics file, finished writing MINOS specs file,

- the contents of the stochastics file, and
- the 'NAME,” 'ROWS,' and 'RHS’ sections of the core file.

If the print control variable is less than 2, the 'ROWS’ and 'RHS’ sections of
the core file are not printed.

Data Structures

The matrices in problem (1) tend to be rather sparse, and the program
represents them in a compact fashion to save space. To represent a large,
sparse, two-dimensional array, the program uses three smaller one-dimensional
arrays. The first array contains the nonzero elements of the matrix. These ele-
ments are ordered by column. Each element of the second array contains the
row index within the sparse matrix of the corresponding element in the first
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array. The third array contains the indices within the first two arrays where
the entries for each column of the sparse matrix begin. The ith entry in the
third array is a pointer to the beginning of the ith column.

The program uses one (very large) array to hold the contents of most of
the matrices and vectors used by the algorithm. A similar scheme is used by
MINGQS, and this array is passed to the MINOS routines.

User-Accessible Parameters

The default values for the standard unit numbers and for the variables in
the specs file may be changed by changing the values of the appropriate vari-
ables when they are initialized at the beginning of the appropriate routines.
Jtems with default values are listed in the table below together with the variable
that contains the value of the item and the subroutine in which the default
value is established.

Value Variable Subroutine
standard input unit number in sport
standard output unit number iprint sport
standard error output unit number ierprt sport
debug file unit number idebug readsp
log file unit number iout readsp
maximum number of rhs elements maxele readsp
maximum number of matrix rows Maxrow readsp
maximum number of technology rows maxtrw readsp
maximum number of matrix columns mazxcol readsp
maximum number of values for h; (w) maxpro readsp
maximum number of user supplied tenders mazxten readsp
maximum number of tenders in set maxgtn readsp
maximum number of nonzero tender elements maxtel readsp
objective row name mobj readsp
rhs vector name mrhs readsp
bounds vector name mbou readsp
ranges vector name mran readsp
print control lvout readsp
maximum number of cycles ncycle readsp
scale factor (p) scale readsp*

* The value specified in the program for the scale factor is not a percentage.
That is, if p is one half, the variable 'scale’ should be set to 0.5, not to 50.

The variable 'ctol,' set in subroutine sport, is used as a tolerance to deter-
mine convergence. If

V(K1) + KK~ 9K > ctol
the optimal solution is taken to have been found. ‘ctol,” which must be nega-
tive, is currently —-1-1077.
There are a number of machine dependent parameters. They are

Parameter Variable Subroutine Current Value
positive infinity plinfy sport 10?0
double precision tolerance eps mlinit 2758
number of integers per real*B variable nwordi sport & m1linit 2
number of reals " nwordr mlinit 2

number of integer*2 variables " nwordh mlinit 4
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Subprocedure Hierarchy

See the attached figure. The MINOS routines shown have been modified.

Library Routines

The program uses version 4.9 of MINOS. Several routines have been

modified to reflect the special requirements of the program.
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FIM User’'s Manual

J. Fdwards

Introduction

This program implements Qi's Forest Iteration Method (FIM) for stochastic
transportation problems. The method is described in [1]. The program was writ-
ten by Liqun Qi at the University of Wisconsin and later was modified and
translated at IJASA. It is written in FORTRAN 77. The following description of
the problem and the discussion of the algorithm are taken from [1].

The Problem
The standard formulation of the stochastic transportation problem with a
dummy node is to find

min[ » Y cyziy + ) S"J'(XJ')]

X li=zim | j=1n j=in j
subject to
2 z;=a , i=l...m
J=in+l
2 zﬁ. =x,- . j=1.....n+1
i=l.m

zy = 0foralli,j

where g; is the total inventory at node i (a; > 0), ¢;; is the cost of shipping one
unit from node i to node j (¢ > 0), z;; is the amount of inventory shipped from
node i to node j, x; is the amount of inventory received at node j, ¢; is the
penalty due to surplus or deficit at node j, and node n+1 is the dummy node. g;
has the following form
0i06) = 45" [ O =2)dF(z) + 47 [ (25 - x;)aF(2))
85 <x; . £;>x;

where z; is the observed value of £;, the random variable for demand at j, Fj is
the marginal distribution function of Z; and is known, g;* is the salvage cost
per unit of excess inventory at node j ij“ > 0), g;~ is the penalty per unit of

inventory shortage at node j (g;~ = 0).

The Method
According to convex program theory, (z.y) is an optimal solution if and
only if there exist « in F™ and v in £**! such that

E z';j = a , i=1,...,m

j=ln+l



Yz =X » i=l...n+l

i{=i.m

zy = 0foralli,j

w +v; <cy forall i,j

zyley —w —v;) =0forallij
—v; € 3p;(x;) + J=l...nand

Up+ =0

where¢; ) =0, i=1,...m.

The algorithm starts with an estimate y of the optimal solution x* (e.g., Xi
could be set to the mean value of Z;). By fixing x = ' in the original set of equa-
tions, the problem becomes an ordinary transportation problem of the same
size. This is solved and z', the optimum value for z given y = x/, obtained. The
graph of all positive elements of z' forms a forest, f'. The triple (z'x.f') is
called a forest triple.

The algorithm solves a reduced version of (1), wherein the components of z
not on f' are restricted to zero and the nonnegative restriction on the rows of
z is removed. Let the optimal solution to the reduced problem be (£.%). If £ is
nonnegative (i.e., is a feasible solution of the original problem), the forest triple
(£.%.f') is called a base forest triple.

If £ is not a feasible solution of the original problem, the algorithm uses a
technique called "cutting” (fully discussed in [1]) to obtain a new forest triple
(z-.x—f —) whose z component (i.e., z—) is a feasible solution. The cutting
technique guarantees that the value of the objective function for (z —x—.f =) is
strictly less than the value of the objective function for (£,%.f'). The algorithm
"cuts” until a base forest triple is obtained.

Once a base forest triple has been found, the conditions involving %; and v,
are used to determine whether the base forest triple is the optimal solution to
the original problem. If »; + v; > ¢;; for some i and j, then the algorithm uses
one of two techniques (called "pivoting” and "connecting” in [1]) to obtain a
new forest triple. Again, these techniques guarantee that the value of the
objective function for this new triple is strictly less than the value of the objec-
tive function for the base forest triple from which the new triple was derived.
However, this new triple may not be a base forest triple, and the algorithm
again "cuts" as described in the preceding paragraph.

Since there are only finitely many base forest triples and since the tech-
niques employed by the algorithm produce strictly decreasing objective func-
tion values, it is clear that the optimal solution is reached in finitely many
steps.

User Supplied Routines

The program reads the values for m, n, the a;s, the ¢ys, and an initial esti-
mate for the x;s and proceeds to find the optimum solution based on values for
¢; supplied by the user. The user must write two routines, penalt and repenl,
toward this end. Penalt should be declared as

double precision function penalt(j,chij)
integer*2 j
double precision chij
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Penalt calculates the value of ¢,-(Xj) given the values of j and ;. Repenl should
be declared as

double precision function repenl(j,A,toler)
integer*2 j
double precision A,toler

Repenl returns a value from the subdifferential of ¢; (6;&,—) that is closest to the
constant A given the values of j and A and a tolerance.

If ¢; is continuous and strictly convex, repenl’s task reduces to finding the
value of x; so that ¢';(x;) = A. If ¢; is discrete (as it often is) or continuous but
not convex, repenl must generate a value based on 8y, and the tolerance.

If the tolerance is close to zero, repenl should return max{x; | A € agaj(x,-)j.
If the tolerance is not close to zero, but is less than the difference between the
minimum and maximum values in the set, repenl should return the minimum
value in the set instead of the maximum value and should set the tolerance to
its old value plus the difference between the maximum and minimum values. If
the tolerance is greater than the difference between the minimum and max-
imum values, repenl should return the maximum value plus the tolerance and
should set the the tolerance to zero.

To aid in obtaining any data that might be required to perform these calcu-
lations, this program calls the subroutine usedat after it reads its own data.
The user may place any code necessary to read or to initialize the appropriate
variables in this subroutine. The user may also access vital parameters (e.g.,
dimensions, 1/0 unit numbers) via the common block "forest.” The contents of
this block and their meanings are described later in this manual.

Input

FIM takes its input from unit 5. It is the user's responsibility to connect
this unit to the proper file before execution. The input to this program consists
of the following data in the order specified:

number of rows (m)

number of columns (n)

total inventory at each node (a;s)

cost matrix (cys)

initial estimate for the inventory received at each node (XJS)
data for user routines

The cost matrix is entered by row and each row must start a new line. To sim-
plify the process, all negative values are converted to a large number. Thus, to
indicate an unavailable element, -1 may be used. The program reads all its data
in free format (i.e., '*').

Output

FIM writes its output to unit 6. The output consists of a listing of the input
data, a trace of the program’s execution, and the optimal values for the u;s, the
v;s, and the x;s, the optimal direct, penalty, and total costs, and the values of

J
the nonzero flows.

After each normalization, the program writes the number of normaliza-
tions that have been performed, the number of cuttings required by the latest
normalization, and the current values of the direct, penalty, and total costs.
After a forest has been normalized and altered to satisfy the necessary
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conditions, the program writes one of two messages depending on which tech-
nique ("pivoting’ or Once the optimal forest is found, an appropriate message is

written.

Data Structures

The program uses four data structures (each of which requires several
separate arrays) to represent a transportation tableau and a forest of trees
within it. The tableau itself consists of four (m+1) by (n+2) arrays of cells (the
actual tableau only requires m by (n+1) arrays; the additional elements are
used for various bookkeeping chores). *celflo(i,j}" contains the value of Ty
"celnzr(i,j)" and "celnxc(i,j)" contain information about the structure of the
tree of which the cell is a part and "celopf(i,j)"" contains a value used to deter-
mine whether the tree of which the cell is a part is a base tree.

The algorithm requires occupied cells (i.e., those whose value of z,; is posi-
tive) that are in the same row or in the same column to be members of the
same tree, although the order in which nodes are visited as the tree is
traversed does not necessarily follow column or row index. For each occupied
cell i,j, "celnxr(i,j)"" contains the row index of a cell in column j and "celnxc(i,j)"
contains the column index of a cell in row i; these cells are cell i,j’s children.
The leaves of a tree (which have no children) have -1 for these indices.

Since all occupied cells in a given column or row must belong to the same
tree, it is convenient to group a number of columns (and rows) together to form
a tree. There are two data structures (one for rows and one for columns) to
accomplish this. Each structure requires four arrays. For each column (row) i,
"elsdex(i)" ("rwsdex(i)") specifies the row (column) index of the cell in column
(row) i to be visited first as the tree is traversed, "clsnxt(i)" ("rwsnxt(i)") con-
tains the index of the next column (row) in the tree, and "clsdad(i)" and
"elsimp(i)" ("rwsdad(i)" and “rwslmp(i)") contain two values used by the algo-
rithm for general bookkeeping.

Finally, there is a data structure (consisting of three arrays) which organ-
izes the trees into a forest. For each tree i, "trsdex(i)” specifies the column
index of the root node (the row index may be obtained from the column data
structure described in the previous paragraph), “trsslv(i)” contains a flag indi-
cating whether the tree is a base tree, and "trsnxt(i)" contains the index of the

next tree in the forest.

Common Blocks and User-Accessible Parameters

The data structures described in the previous section and several other
variables appear in the named common block "incl.forest.” Most of these global
variables are adequatiely commented in the source code and are of little con-
cern to the user. Of potential interest, however, are the three constants MAX-
ROW, MAXCLM, and MAXVAL. The first two give the maximum number of rows and
the maximum number of columns, respectively, that may appear in the tran-
sportation tableau and the cost matrix. If the preset limit of 51 rows and 51
columns is insufficient, these constants must be changed and the program
recompiled. MAXVAL is the value placed in the cost matrix when negative
numbers are read in the input file. The preset value of 5 10%° may be too large
for some machines.

Among the variables that the user is likely to need are numrow and
numeclm, which give the actual number of rows and columns, respectively, in
the transportation tableau.



Subprocedure Hierarchy
See the attached figure.

References

[1] L. Qi, "Forest Iteration Method for Stochastic Transportation Problems," to
appear in Math. Prag. Study






STOSUB User’s Manual
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Introduction

This package contains routines to solve stochastic programs using an algo-
rithm that employs 'stochastic subgradients” at each step. The method is
described in [1]. The program was developed by Andrzej Ruszczynski at the
Institut fur Operations Research of the Universitat Zurich in Switzerland and is
completely described in [2]. The program is written in FORTRAN 77. The con-
tents of this manual are largely adapted from [2].

The Problem
The stochastic linear program under consideration is

minimize
[F(z) = B{f 1(z.8,())] + E{f 2z 82(w))]] (1)
subject to
Az [ﬁ]b
z; 20, j€d,

where z is an n; vector of decision variables, ¥, and ¥ are vectors of random
problem parameters, f, and f, are real-valued functions, "“E" denotes
mathematical expectation, A is an m xn, matrix, b is an m, vector, and J is a
subset of {1,2,....n}.

The function f, is assumed to be explicitly defined, e.g., f,(z.9,) = ¢z, and
it must be possible at each {z,%,) to calculate the gradient or subgradient of f,

with respect to z.
The function f, is assumed to be the optimal value of the linear program-
ming problem (the "recourse” or "second-stage' problem)

minimize
g (w)y (2)
subject to
o)z + Woky [E]r (o)
y=>0

dependent on z and the random parameters ¥3(w) = [g{«).T(w).W(w),h{w)]. The
user must provide realizations of these parameters to the package.



The Method

The method used to solve the above problem is a recursive stochastic algo-
rithm that employs so-called stochastic subgradients, ¢, of the objective func-
tion F in (1) at current points z¥, k = 0.1,.... Stochastic subgradients are ran-

dom vectors and have the property that

E{¢* | z*{ = VF(z*)
if Fis differentiable or

Ef¢* | %} € aF(z®)

if Fis a nondifferentiable convex function (here, 8F denotes the subdifferential
of F). These random vectors are used to calculate directions, d*, k =0,1,..., by

the formula
dad = 60'

+yd*!
po 8N

1+ Tk
Successive steps are made according to

z**! = Projy(z® - 1,d*) .

where Projy denotes orthogonal projection onto the set defined by the con-
straints in problem (1). The coefficients ¥, and step sizes 7, are controlled
automatically by the algorithm.

The package uses the IMSL double-precision subroutine zx3lp to solve
linear programs.

d

Stochastic Subgradients and User Supplied Routines
The stochastic subgradients ¢* of the function F are composed of two parts,
¢ and ¢£, corresponding to the two parts of F. The user must prepare a subrou-
tine to calculate the stochastic subgradients of E{f,(z,8,)}; the stochastic
subgradients of E{f 5(z.8¥;)} are calculated automatically by the package. Some
techniques for calculating £F are
- if f, is smooth and does not depend on 3,, set ¢(F = Vf ,(z*);
- if f, is smooth in z for all ¥,, draw at random B8} and set ¢(¥ = Vf (z*.9F)
[finite-difference estiation of the gradient of f ,(-,8f) is also acceptable ];
- if £, is nonsmooth and convex in z for all ¥,, sample ¥f and choose

le € a,f,(zk,'df).
The user’'s routine may have any desired name; the calling sequence is
call name(nx,my,myi,ny.t,w,h,c.q)
The values of nx, my, and ny are passed to the subroutine, which must return
valid data in myi, t, w, h, c, and q. The parameters, their types, and their
dimensions (where applicable) are listed below.
nx (integer) is the dimension of the first stage vector, z (i.e., nx = nz).

my (integer) is the number of constraints in the second stage problem, (2).

myi (integer) upon return contains the number of inequality constraints in the
second stage problem. The first myi constraints in (2) are inequalities and the
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remaining my-myi constraints are equations.
ny (integer) is the number of second stage variables.

t(my.nx) (real*8) upon return contains the second stage constraint coefficients
that correspond to z in (2) (i.e., the contents of the matrix T).

w{my,ny) (real*8) upon return contains the second stage constraint coefficients
that correspond to y in (2) (i.e., the contents of the matrix W).

h(my) (real*8) upon return contains the right sides of the second stage con-
straints.

c(nx) (real*8) upon return contains the (stochastic) gradient of the first stage
cost.

q(ny) (real*8) upon return contains the cost coefficients for the second stage
variables in (2).

All output parameters may be random, in which case their values should be
generated in the subroutine by pseudo-random generators with the appropriate
distributions.

If there is no second stage in the problem, set ny and nx to zero and use
real variables for t, w, h, and q. The subroutine should return without assign-

ing any values to them.

Invoking the Package

The user must write a driver for the package. The driver may do no more
than define a work area and call the package with some preset data, or it may
read a data file and print intermediate solutions as well. The calling sequence

for the package is

call stoslp(mx.mxi,nx,nxi,my.ny.x.a,b,
. name,nex,rk,eps,lsm,is,ip)

All values are passed to the subroutine, which returns data in x and ip. The
parameters, their types, and their dimensions (where applicable) are listed
below.

mx (integer) is the number of constraints in the first stage problem (i.e., the
number of rows in A in (1)).

mxi (integer) is the number of inequalities in the constraints in (1). The first
mxi constraints are inequalities and the remaining mx-mxi constraints are

equations.
nx (integer) is the dimension of the first stage decision vector, z.

nxi (integer) is the number of components of z that are restricted in sign. The
first nxi components are bounded below by zero and the remaining nx-nxi com-
ponents may have any sign.

my (integer) is the number of constraints in the second stage problem, (2).

ny (integer) is the number of second stage variables.
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x(nx) (real*8) contains the starting point, which need not be feasible. Upon
return, it contains the coordinates of the (intermediate) solution.

a(mx,nx) (real*8) contains the coefficients of the first stage constraints.
b(mx) (real*8) contains the right hand sides of the first stage constraints.

name (subroutine) is the name of the user supplied routine to generate sto-
chastic subgradients of the first stage cost and data for the second stage prob-
lem.

nex (integer) is the number of observations of the stochastic subgradients to
generate at each iteration.

rk (real*8) is the initial change in z per iteration (Euclidean norm).

eps (real*8) is a stopping criterion. The package halts if two successive values
of z differ by this amount or less.

Ism (integer) is the maximum number of iterations. When combined with the
"ip" parameter (see below), Ism can be used to periodically halt the execution
of the package so that intermediate results may be displayed.

is (integer) is the dimension of the work vector w in the common block optc
(see below). This variable must be at least 6xnx + mxXxnx + 5xXxmx + mxi +
3xnxi + (my + 1)x(nx + 8) + (my + 3)x(ny + 2) + max{(my,ny) + (my + 2)* +
{(mx - mxi)xnx.

ip (integer) is a control parameter and a return code. If ip is one when passed
to stoslp, the package performs a number of initialization steps and begins to
solve the problem. If ip is greater than one when passed to stoslp, the package
bypasses the initialization, i.e., continues where it left off. Thus, the caller
could print all intermediate solutions by setting the mazimum number of itera-
tions (see Ism above) to one and calling stoslp without changing Ism.

ip is also used as a return code. Table 1 shows possible return values and their
meanings.

Value Meaning

2 "Convergence" achieved (successive z values
are within eps of each other)

3 Maximum number of iterations (Ism) reached

4 Insufficient space in the work vector, w

5 Inconsistent constraints in problem (1)

6 The second stage problern has an unbounded
solution

7 Maximum number of iterations exceeded in
the IMSL routine zx3lp

8 The feasible set for the second stage problem
is empty




Common Blocks

The program regquires the user to declare a workspace in the named com-
mon block optc. This workspace should be a double precision array whose
dimension is greater than or equal to the parameter "is" passed to the package
(see above).

Library Routines
The program uses a routine from the IMSL double precision library to solve
linear programs.

Subprocedure Hierarchy
See the attached figure.

Notes

STOSUB only takes advantage of the general statistical properties of (1) and
is therefore applicable to a broad class of problems with a nonlinear first stage
cost and arbitrary distributions of ¥, and ¥, This generality makes it
inefficient for linear problems with easy-to-handle distributions and implies
that even for simple problems the package must perform a large number of
iterations (usually more than 100) to obtain a sufficiently good approximation
of the solution. On the other hand, the accuracy after 300 to 500 iterations is
within about 5 percent of optimal and can hardly be improved.

Although STOSUB determines stepsizes automatically, its efficiency does
depend on the value of the input parameter rk, which is used to calculate the
initial stepsize. It is advisable to choose rk so that 0.1xr<rk<r, werer is the
estimate of the distance from the starting point z° to the solution.

Because of the stochastic nature of the method, extremely high accuracy
is not possible. A choice of 0.01xrk for the parameter eps is usually sufficient.
The current average of the increments made to the decision variables (which is
compared to eps to determine when to stop) can be found in the variable shift
in the named common block opts.

Finally, it is advisable to run the method with many different starting
points and to compare the solutions obtained in order to gain insight into the
real accuracy provided.
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T. Szantai and J Fdwards

Introduction

This program solves problems in probabilistic constrained stochastic pro-
gramming. It is based on Veinott's supporting hyperplane algorithm. The
method is described in [1]. The program was developed by Tamas Szantai at the
Technical University in Budapest and later was modified at IIASA. It is written

in FORTRAN 77.

The Problem
The program solves stochastic programs with probabilistic constraints of
the form

minimize
€Ty +CaZg + *** +CpTp (1)
subject to
Az =b
z =0,
and
P(Dz=8)=p
where A is a known mxn matrix, D is a known sxn matrix, 4 and p are known
and of the appropriate dimensions, and 8;, . . . ,8; have joint normal probability

distribution with expected values

E(B) =1 . E(Bs) =5 .
with variances

D%g) = 6f. ... . D¥(B,) = 67 .

and with correlation matrix

[ 1 le Tis ]

T2 1 T2s
R=

Ts1 Tse 1

The linear constraints may include inequalities as well and it is also possible to
specify explicit upper bounds on the variables.



The Method

A complete description of the supporting hyperplane algorithm is given in
[1]. To obtain a starting point in the interior of the feasible domain, the pro-

gram solves the linear program

maximize
S (dz, + o+ dinza — i) /6
i=1,n
subject to
Az =b
Dz>pu+té
x>0

where d;; is the element of D in the ith row and jth column and ¢ is a constant
specified by the user. t’s value should be chosen based on the desired probabil-
ity level, p; 3.0 is recommended for high probabilities.

To obtain a starting point outside the feasible domain, the program solves
the linear program

minimize
CiT,+ " +CpI,
subject to
Az =b
and

z=20

.In the case of an unbounded objective, one must provide additional constraints
on the variables which do not disturb the probabilistic constraint.

To find the boundary point of the probabilistic constraint at each iteration
the program uses an interval bisection algorithm with a sophisticated stopping
rule. The values of the joint normal probability distribution function are calcu-
lated by a Monte Carlo simulation technique. This technique is also used to
determine the gradient vector of the distribution function.

To solve the linear programs the program uses code from Land and Powell

(2]

Input Overview

PCSP requires two data files and a control file. It takes its control data
from unit 5; it is the user’s responsibility to connect this unit to the appropri-
ate file before the program is invoked. PCSP writes prompts for the control
information to unit 6 and so the user may provide that data interactively.

Control Information

PCSP’s control information consists of the names of four files, all of which
are described in subsequent sections. File names may contain up to 80 charac-
ters. They are read in the following order:



- linear data file name

- stochastic data file name
- output file name

- log file name.

Linear Data File
This file is connected to unit 7. It contains some control parameters as
well as data specifying the linear portion of the problem. It contains the follow-
ing information:
- control parameters. Six integers appear on the first line of the linear data
file. They are read using an 110 format. The numbers are

the number of constraints, m.

the number of variables, n.

the number of bounded variables. If this number is -1, all the vari-
ables are assigned an upper bound of 1.

print control parameter. This parameter controls whether the pro-
gram prints the input cards and the contents of the matrix after each
inversion. Possible values and the data printed in each case are
shown in the table below.

Value | Input Cards | Inverse
Printed? Printed?

0 yes no
1 yes yes
2 no yes
3 no no

the maximum number of iterations. If this number is 0, the max-
imum number of iterations is set to 3x(m +mn +the number of
bounded variables).

the maximum number of re-inversions.

- the nonzero columns of the objective function, ¢. As many lines as are
necessary to specify the contents of the nonzero columns of the objective
function appear. Each line contains up to eight entries of the form "index
value,” where "index" is the column index of a nonzero column of ¢ and
"value” is the corresponding value. Each entry is read using a (I3,X,F6.0)
format. The first entry on a line whose "index" is O (i.e., a blank entry) sig-
nals the end of the line.

- a line marking the end of the section specifying the nonzero elements of
the objective function. This line contains the number 9999999999 (ten 9s)
in the first ten columns.

- an optional section specifying the upper bounds on any bounded variable.
If there are no bounded variables, this section does not appear. If there
are bounded variables, this sections contains as many lines as are neces-
sary to specify the upper bounds on the variables. Each line contains up to
eight entries of the form “index value,” where "index" is the row index of a
bounded row of z and "value" is the corresponding upper bound. Each
entry is read using a (I3,X,[/6.0) format. The first entry on a line whose
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"index" is O (i.e., a blank entry) signals the end of the line.

a line marking the end of the section specifying the upper bounds on the
variables. This line contains the number 9999999999 (ten 9s) in the first
ten columns. This line does not appear if there are no bounded variables.

the elements of the constraint vector, b, and the type of inequality for
each row. As many lines as are necessary to specify the contents of the
constraint vector appear. (Any rows that are not specified are assumed to
be equality rows and the value of such rows of b is taken to be a large
number.) Each line contains up to eight entries of the form "index type
value,” where "index" is the column index of a nonzero column of ¢ and
“value" is the corresponding value. "type" indicates the type of inequality;
it is 0 for "=" rows, 1 for "<" rows, and 2 for "2" rows. Each entry is read
using a (13,11,F6.0) format. The first entry on a line whose "index" is 0 (i.e.,
a blank entry) signals the end of the line.

a line marking the end of the section specifying the contents of the con-
straint vector. This line contains the number 9999999999 (ten 9s) in the

first ten columns.

the nonzero elements of the constraint matrix, A. As many lines as are
necessary to specify the contents of the constraint matrix appear. Each
line contains the index of a row of A in columns 5 through 10, followed by
up to seven entries of the form "index value,” where "index"” is the column
index of a nonzero element of A in the current row and "value" is the
corresponding value. The first entry begins in column 11 and each entry is
read using a (I3,X,F6.0) format. The first entry on a line whose ""index" is 0
(i.e., a blank entry) signals the end of the line.

All the elements on a line must belong to the same row but need not be in
correct column order. However, the rows must appear in strictly ascend-
ing order.

a line marking the end of the section specifying the contents of the con-
straint matrix. This line contains the number 9999999999 (ten 9s) in the
first ten columns.

a line indicating whether the data for additional problerns appears in the
linear data file. If the value in the first ten columns of this line is nonzero,
all the sections previously described are repeated and define another prob-
lem. The last card of the second problern may specify that there is a third
problem, and so on. PCSP repeats its calculations for each problem that is
defined in this file and in the stochastic data file.

Stochastic Data File

This file is connected to unit 8. It contains information describing the dis-

tribution of the stochastic elements in the problem. It contains the following
information:

control parameters. Five integers appear on the first line of the linear
data file. They are read using an 110 format. The numbers are

the number of random variables, s.
the maximum number of generated supporting hyperplanes.
the probability level, p.

a tolerance on the probability level, p,. The actual effective probabil-
ity level is p +p,.
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the constant, ¢, used to find the initial inner point.

- the expected values, u, of the random variables. As many lines as are
necessary to specify the expected value of each random variable appear.
Each line contains up to eight entries of the form "index value,” where
“index” is the row index of a row of § and "value" is the corresponding
expected value. Each entry is read using a (13,X,F6.0) format. The first
entry on a line whose "index" is O (i.e., a blank entry) signals the end of the
line.

- a line marking the end of the section specifying the expected values of the
random variables. This line contains the number 9999999999 (ten 9s) in
the first ten columns.

- the dispersions, 4, of the random variables. As many lines as are necessary
to specify the dispersion of each random variable appear. Each line con-
tains up to eight entries of the form "index value,” where "index” is the row
index of a row of 8 and "value" is the corresponding dispersion. Each entry
is read using a (13,X,F6.0) format. The first entry on a line whose "index" is
0 (i.e., a blank entry) signals the end of the line.

- a line marking the end of the section specifying the dispersions of the ran-
dom variables. This line contains the number 9999999999 (ten 9s) in the
first ten columns.

- the elements of the correlation matrix, R. As many lines as are necessary
to specify the contents of the correlation matrix appear. Each line con-
tains the index of a row of R in columns 5 through 10, followed by up to
seven entries of the form "index value,” where "index" is the column index
of an element of R in the current row and '"value" is the corresponding
value. The first entry begins in column 11 and each entry is read using a
(13,X,F6.0) format. The first entry on a line whose "index" is 0 (i.e., a blank
entry) signals the end of the line.

All the elements on a line must belong to the same row but need not be in
correct column order. However, the rows must appear in strictly ascend-
ing order.

- a line marking the end of the section specifying the contents of the corre-
lation matrix. This line contains the number 9999999999 (ten 9s) in the
first ten columns.

- the elements of the probabilistic constraint matrix, D. As many lines as
are necessary to specify the contents of the probabilistic constraint matrix
appear. Each line contains the index of a row of D in columns 5 through
10, followed by up to seven entries of the form "index value,” where "index"
is the column index of an element of D in the current row and "value” is
the corresponding value. The first entry begins in column 11 and each
entry is read using a (I3,X,F6.0) format. The first entry on a line whose
"index" is O (i.e., a blank entry) signals the end of the line.

All the elements on a line must belong to the same row but need not be in
correct column order. However, the rows must appear in strictly ascend-
ing order.

- a line marking the end of the section specifying the contents of the proba-
bilistic constraint matrix. This line contains the number 9999999999 (ten
9s) in the first ten columns.

The sections previously described are repeated as many times as is necessary

to define the number of problems that appear in the linear data file. PCSP
repeats its calculations for each problem that is defined in this file and in the



linear data file.

Output File
PCSP echoes its input and writes its solution to this file, which is con-
nected to unit 10.

Log File

PCSP writes the actual inner point, limit point, and cutting plane
coefficients at each iteration as well as the corresponding objective function
values and probability levels to this file, which is connected to unit 8.

Limits and Extensions
Several limits are currently imposed on the problem (e.g., no more than 25

rows in the £ vector, 300 nonzero elements in A). To extend these limits, the

values of the appropriate constants in the include file "constants.h” must be
increased. The constants are

- MAXVAR, the maximum number of variables {n )

- MAXCTR, the maximum number of deterministic constraints {m)

- MAXELM, a bound on the number of elements in the deterministic con-
straint matrix, A. MAXELM should be twice the maximum number of
nonzero elements in A

- MAXPLM, the maximum number of nonzero elements in the probabilistic
constraint matrix, D

- MAXSTO, the maximum number of probabilistic constraints (s )

Library Routines
PCSP uses the GGNSM module from the International Mathematical and
Statistical Libraries, Inc., IMSL library.

Subprocedure Hierarchy
See the attached figure.
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Introduction

This program solves stochastic programs whose recourse is a pure network.
It is based on the L-shaped method of Van Siyke and Wets for two-stage stochas-
tic linear programs. The method is described in [1]. The algorithm particular
to this implementation (which uses Schur complements for pure networks to
update the basis without a matrix inversion) was invented by Stein W. Wallace
and is described in [2]. The program was developed by Stein W. Wallace at Chr.
Michelsen Institute in Bergen, Norway. It is written in FORTRAN 77. The follow-
ing description of the problem and the discussion of the algorithm are adapted

from [2].

The Problem
The multi-stage stochastic linear program under consideration is

minimize
ez + Q(z) (1)
subject to
Az =p
z =0,

where

Q(z) = [Q(z.n)dF(n).
Q(z.n) = minfgqy | Wy =9 - Tz, y >0},

A is a known m,;xn, matrix, W is a known myxn, matrix, b, ¢, and T are known
and of the appropriate dimensions, % is a stochastic variable and F is its distri-~
bution function.

Since the recourse is a pure network, W may be written as
I ol
[ 1
where E is the node-arc incidence matrix for the network with the first row
deleted (the program arbitrarily takes the first node to be the dummy node).

The program assumes that the stochastic variable, 7, is finitely distri-
buted.



The Method

The L-shaped method of Van Slyke and Wets is an outer linearization pro-
cedure that approximates the convex objective term in the stochastic program
by successively appending supporting hyperplanes. It introduces the new vari-
able ¥ into the problem, which becomes

minimize
cz + 1 (2)
subject to
Az = b
9= @(z)
z =0

The method begins with an approximation z, to the actual solution (z,
need be little more than a wild guess) and the problem

minimize
cz + 9 (3.0)
subject to
Az =b (3.1)
Uz=yw , i=1l,..,s (3.2)
Lz +9=z; , i=1,...t (3.3)
z>0 . (3.4)

where Z; and z; are chosen so that @(z) = max{z; — Z;z} [i.e., (3.3) is equivalent
]

to 3= @{z)]. s and t count the number of constraints (3.2) and (3.3), respec-
tively, and are initially set to zero.

The first step in the algorithm is to determine @(z,) If @(z,) is infeasible,
the algorithm creates a “feasibility cut” (3.2) and adds one to the value of s. If
@(z,) is feasible, the algorithm creates an "optimality cut”" (3.3) and adds one
to the value of t.

The algorithm generates successive approximations to the optimal solution
by solving (3) given some number of constraints {3.2) and (3.3). Let the optimal
solution at the vth step be (z,,1,0,4;)- If @(z,.;) is infeasible, the algorithm
creates a new feasibility cut, adds 1 to s, and solves {3) with the new cut added.
If @(z,,,) is feasible, the algorithm checks for convergence. 1f ¥,,,= @(z,.,).
the optimal solution has been found. Otherwise, the algorithm creates a new
optimality cut, adds 1 to t, and solves (3) with the new cut added. Of course, @
may no longer be feasible.

Calculating @(x)

It is important to use an efficient method to find @(z) in (1). The following
scheme is used: let § =% —Tz. Since 75 is finitely distributed, so is £ Find ¢,
the expected value of {(, and calculate Q(¢). Associated with the optimal solu-
tion of Q(ﬁ) is a basis, W,, with the property that Wi'¢>0. Furthermore,
because the solution is optimal, all reduced costs are nonpositive. Thus, ¥, is
the optimal basis for all values of ¢ such that W'¢=> 0. Since the L-shaped
decomposition requires the dual soluticn and since all values of £ with the same
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optimal basis also share a single dual solution, it is sufficient to retain a fairly
small number of bases, all of which satisfy dual feasibility. It is also necessary
to record the total probability mass of the values of ¢ for which each basis
represents a primal feasible, and therefore optimal, solution. The coeflicients
needed to create an optimality cut may then be found from

m= ZP:' T
]

where p; is the total probability mass of the values of ¢ for which W;'¢ = 0 and
7; is the dual solution associated with W;. Then

Z=nT

and

where I(i) is the set containing the indices of the ¢s for which W; was the
optimal basis. (Recall that @(z) may be defined in terms of z and Z.)

The program generates a search tree, whose nodes contain the Schur com-
plements of the bases that satisfy dual feasibility. For each value of £, the pro-
gram systematically searches the tree to find a basis for which W;l¢=>0. If
none exists, the program pivots a column out of the last basis checked to obtain
a new basis. The pivoting continues until an optimal basis is generated and the
new basis is added to the search tree.

Approximations

In practice, an approximation to @(z) must be used since the number of
right hand sides can become prohibitively large even for simple problems. The
approximation used by STOCHNET (see [3]) generates upper and lower bounds
U(z) and L(z) on @(z). To test for convergence, the program does not compare
¥ to @(z) as described above; rather, STOCHNET uses the bounds as follows: if ¥
is close to the lower bound and the bounds are close to each other, the program
balts. Specifically, if ¥,4) = L{Z,,)(1 — a) and U(z,+,) < L(z,+,)(1 + B), the pro-
gram prints the solution. Otherwise processing continues. a and g are con-
stants and are initialized via a "DATA" statement in the main program. The
current values are a = 0.035 and 8 = 0.05.

Input Overview

STOCHNET requires four data files and a control file. It takes its control
data from unit 5; it is the user's responsibility to connect this unit to the
appropriate file before the program is invoked. STOCHNET writes prompts for
the control information to unit 6 and so the user may provide that data interac-

tively.

Control Information

STOCHNET's control information consists of the names of five files, all of
which are described in subsequent sections. File names may contain up to 80
characters. They are read in the following order:
- dump file name

- network data file name



first stage data file name
right hand side data file name

initial z data file name.

Network Data File

This file is connected to unit 7. It defines the network that is used to gen-

erate the recourse matrix, W and contains the following information:

"BEGIN" line. This line indicates the beginning of the network data file. It
contains the characters "BEGIN” in columns 1 through 5.

name line. This line contains the name of the problem. The user may
enter any characters desired in columns 1 through 80.

“"ARCS" line. This line indicates the beginning of the arcs description sec-
tion. It contains the characters "ARCS" in columns 1 through 4.

arcs description section. This section contains a line describing each arc
in the network. The line for each arc contains

the index of the node at which the arc originates (columns 7-12),
the index of the node at which the arc terminates {columns 13-18),
the cost of transporting one unit along the arc (columns 21-30), and
the capacity of the arc (columns 31-40).

All these values are integers. The entries in this section must be ordered
by the index of the originating node (e.g., the lines for all arcs which ori-
ginate at node 1 must appear before the lines for arcs originating at node
2).

"END" line. This line indicates the end of the network data file. It contains
the characters "END” in columns 1 through 3.

First Stage Data File

This file is connected to unit 8. It contains the dimensions and contents of

the matrices A and T and the elements of the vectors ¢ and . These values are
read using a free format (i.e., **) and must appear in the order shown below.

Each major section must begin a new line.

the number of rows and the number of columns in A, the constraint
matrix.

the contents of the matrix A and the vector b along with the type of ine-
quality for each row. This information is expressed in the format used by
the routines of the Numerical Analysis Group (""NAG"): the contents of a row
of A appear, followed by an integer that gives the type of inequality for the
row (-1 implies <, 1 implies =, and 0 implies =), followed by the element of
b that corresponds to the row. The entry for each row must begin a new
line.

the contents of ¢, the cost vector.

the number of nonzero rows and the number of columns in T, the technol-
ogy matrix.

the indices of the nodes to which the nonzero rows of T correspond.

the contents of T. specified by row. The entry for each row must begin a
new line.



Right Hand Side Data File
This file is connected to unit 10. .It defines the distribution of the stochas-

tic right hand side, n. It provides the number of random elements of 7, their

indices, and their distributions. These values are read using a free format (i.e.,

'*") and must appear in the order shown below. Each major section must begin

a new line.

- the number of stochastic elements in 7.

- the indices of the nodes to which the stochastic elements of % correspond.

- the distribution of each stochastic element of 7. An entry defining the dis-
tribution contains two parts and there is one such entry for each stochas-
tic element of 7. The first line in an entry contains n, the number of
values the element may assume, and s, the smallest such value. The pro-
gram assumes that permissible values for the element are s, s+1, ...,
s+n —1. Subsequent lines give the probabilities that the element assumes
each value; the ith number is the likelihood of s +i —1.

Initial z Data File

This file is connected to unit 7. It contains the initial approximation to the
actual solution (z,) used by the algorithm to generate the first cut (3.2) or

(2.3).

Output File
The program writes prompts for control information and the optimal
values for z and 4§ to unit 6.

Dump File

STOCHNET writes a trace of its execution to the dump file, which is con-
nected to unit 9. The trace includes the current values of z, ¥, Tz, and the
expected value of b. The coefficients of the vectors U; and Z; and the values of
u; and z; that appear in the current set of constraints (3.2) and (3.3) are also
printed These constraints appear in a modified NAG format: the first number
on a line indicates the type of inequality, the next several numbers give the
coefficients by which the rows of the z vector and ¥ are multiplied, the number
just before the last number identifies the type of constraint (0 implies a feasi-
bility cut, 1 implies an optimality cut), and the last number on the line is the
value of the appropriate row of the right hand side. For example,

-1 10 -4 2000 5
represents the feasibility cut
10z; —4z; + 20z3< 5
and
-1 10 4 20 -1 1 10
represents the optimality cut
10z; — 4z, + 2023 -9 < 10

The dump also includes the cuts which could be generated for a given value of x
and the corresponding values of Q.



Limits and Extensions

Several limits are currently imposed on the problem (e.g., no more than 21
arcs, 100 nodes, 8 rows in the z vector). To extend these limits, the values of
the appropriate constants in the include file "Head.h" must be increased.
Among the constants are the maximum number of arcs, the maximum number
of nodes, the maximum number of rows in the z vector, the maximum number
of points in the support of any row of 7, the maxmum number of stochatic ele-
ments in 7, and the maximum number of rows in the technology matrix. These
constants are adequately documented in the source code.

Library Routines
STOCHNET uses the standard NAG library.

Subprocedure Hierarchy
See the attached figure.
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