
DOCUMENTATION FOR THE ADO/SDS
COLLECTION OF STOCHASTIC
PROGRAMMING CODES

Jonathan Edwards

Editor

January 1985
W P-85-002

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Developing methodology and tools for optimal decision making under
uncertainty was always a major part of research in System Decision Sci-
ences Area. For the last two years, the Adaptation and Optimization Pro-
ject was involved in developing methods and computer implementations
for one of the important parts of such methodology - stochastic program-
ming.

This paper is among those which describes one of the results of
these efforts -- the collection of routines designed to solve stochastic
programming problems. It contains concise documentation of this collec-
tion.

AB. Kurzhansld
Chairman
Systems and Decision Sciences
Program

Preface

This paper contains most of the documentation for a collection of
routines designed to solve problems in stochastic linear and nonlinear
programming. The programs were contributed to the Adaptation and
Optimization (ADO) project of the System and Decision Sciences program
by several researchers and represent the current state-of-the-art in sto-
chastic programming algorithms (several of the algorithms are discussed
in "Numerical Techniques for Stochastic Optimization Problems," Yu.
Ermoliev and R Wets eds., whose compilation has been a part of ADO'S
work recently). There is much work yet to be done - this paper describes
but a single brick in the foundation of stochastic programming tech-
niques. But one brick is vastly superior to no bricks.

Documentation for the ADO/SDS Collection of
Stochastic Programming Codes

Jonathan Edwards, ediior

Introduction
This working paper contains most of the documentation for a collection of

routines designed to solve problems in stochastic linear and nonlinear pro-
gramming. The programs were contributed to the Adaptation and Optimization
(ADO) project of the System and Decision Sciences program by several
researchers. The codes in the collection implement several of the algorithms
discussed in "Numerical Techniques for Stochastic Optimization Problems" (Yu.
Ermoliev and R. Wets eds.), whose compilation has been a part of ADO'S work
recently.

This paper consists of the User's Manuals for eight of the nine programs on
the ADO/SDS tape (the documentation for Alexei Gaivoronsky's ST0 routine is
itself a working paper - "Stochastic Quasigradient Methods and their Implemen-
tation" (IIASA WP-84-55). by Yuri Ermoliev and Alexei Gaivoronsky - and there-
fore i s not included). The tape itself includes the text for all the User's Manuals
(including Gaivoronsky's) as well as a table of contents (the first file).

The ADO collection may be obtained from

Project Secretary
ADO/SDS
IIASA
A-2361 Laxenburg
Austria.

Persons who would like a copy should send a blank reel of 9-track computer
tape t o the above address and should include a note indicating their prefer-
ences for density and character set (IIASA'S computer can generate unlabelled
tapes a t 1600 or 800 bits per inch using either the ASCII or EBCDIC character
codes).

NDSP User's Manual

J. Edwards

Introduction

This program is based on the Lshaped method of Van Slyke and Wets for
two-stage stochastic linear programs. The method is described in [I]. The algo-
rithm particular to this implementation (Nested Decomposition for Stochastic
Programming [NDSP]) was invented by John Birge and is described in [Z]. The
program was developed by John Birge a t the University of Michigan. The linear
programming sections were taken from the program LPM-1, developed by J.A
Tomlin a t Stanford University [3]. The program is written in FORTRAN IV. The
following description of the problem and the discussion of the algorithm are
adapted from [4].

The Problem

The multi-stage stochastic linear program under consideration is

minimize

e = c lz l + EC, min czzz + . - . + Ehlmin cTzTj I I
subject to

where ct is a known vector in R"' for t= 1. T, b , is a known vector in R ~ ' , tt is a
random mt vector defined on the probability space (Zt .&.Ft) for t=2, ..., T, and A(
and Bt are appropriately dimensioned known real valued matrices. "Eh"
denotes mathematical expectation with respect to 6,.

The Method

The L-shaped method of Van Slyke and Wets applies to this problem when
T=2. I t is an outer linearization procedure that approximates the convex objec-
tive term in the stochastic program by successively appending supporting
hyperplanes. In NDSP, the supports a re found by optimizing a nested sequence

of linear programs. Previous methods for the multi-stage problem have tended
to assume a specific s tructure for the problem; NDSP does not require any spe-
cial structure, although there must be a finite number of random variables Ct
and these must be discretely distributed.

NDSP is based on the observation that, given some realization Ct of the ran-
dom vector in period t and given the solution zt-l from period t-1, the decision
problem a t period t can be mi t t en

minimize

subject to

where Q, +,(zt) is a convex function, D f E R~~ for all 1, and rt s n++l.

Problem (2) is solved using a r e l a z e d m a s t e r p rob l em, viz.

minimize

ct zt + *t

subject to

where E: and e: are chosen so that e i - E:zt = Qt+,(zt) [i.e., (3.3) is equivalent
to .lPt 1 Qt+,(zt)]. rt and st count the number of constraints (3.2) and (3.3),
respectively, in period t and are initially set to zero. This problem is solved to
obtain (s t ,S t) for t=1. ..., T (for the first period, dl = 0 and (3.1) is replaced by
A l z l = b ,). The solution Zt -, from period t-1 is used on the right hand side of
(3.1) when solving (3) for period t.

If the problem (3) is infeasible in some period t, NDSP adds a "feasibility
cut" (3.2) to (3) in period t-1, adds 1 to rt-,, and solves (3) anew for all periods
T, ~ = t - l, T. Note that when an infeasibility occurs in period t and a feasibility
cu t is added to (3) in period t-1, the resulting problem in period t-1 may be
infeasible, requiring a feasibility cut to be added to the problem in period t-2.
In this manner, infeasibility can propagate back to the first period.

Once feasible solutions have been found for (3) in all periods, NDSP calcu-
lates Et and et in each period t using the solutions from period t+ 1 and the for-
mulas

Et = Irt+lBt+l (4)

where rt+, is the optimal dual vector in period t + l . If Et and st a re found such
that (3.3) is not satisfied for some period t, NDSP adds an optimality cut (3.3) to
the problem in period t and adds 1 to s t . Introducing the optimality cut

changes the problem in period t, so NDSP repeats t he process outlined in the
preceding two paragraphs t o find a new feasible solution. The "forward pass" to
obtain feasibility in each period and the "backward pass" t o solve (2) based on
the relaxation in (3) a r e repeated until the optimal solution has been found
(i-e.. until the constraints (3.3) may be satisfied in every period).

In t he above discussion, the t t s were fixed in the sense tha t a t each period
t one realization of tt was chosen and used to calculate the optimal solution for
use in the next period. To solve the problem fully, all realizations of the ran-
dom variable in a particular period mus t be examined.

For implementation with multi-stage problems, i t is assumed that there is
a finite number Kt of "scenarios" in each period t. Each scenario in a given
period corresponds to a problem (3) given a single realization of the random
vector in t ha t period. For every scenario j in period t, t = l ,.... T-1, there is a
unique "ancestor" scenario a (j) in period t-1 and one or more "descendant"
scenarios d (j) in period t + l . It is fur ther assumed that every scenario in a
given period has the same number of descendants as every other scenario in
the period. In o ther words, every se t d e) , j = l ,...,Kt contains exactly Kt+,/ Kt
scenarios in period t + l . The first set [d (l)] contains the first through the
Kt+,/ Kt t h scenarios, the second set [d (2)] contains the [(Kt +,/ Kt)+l] th
through the 2Kt+,/ Kt t h scenarios, etc.

In t he last period (T), the program uses Wets' "bunching" method [5] to
examine all realizations of # and find those for which a given basis is optimal.
This method represents an alternative to the "sifting" procedure of Garstka and
Rutenberg. In order t o apply this method, the algorithm assumes tha t the ran-
dom vector in period T contains a k e d number of independent random ele-
ments, t ha t these elements a r e discretely distributed, and tha t every scenario
in period T-1 is a n ancestor of every scenario in period T.

Adding multiple realizations to the original description effectively adds
superscripts t o problems (2) and (3) and changes equations (4). viz.

Equation (2) becomes minimize

subject t o

Equation (3) becomes minimize

subject t o

The equations for Et and et become

and

where p:+l is the probability that the random vector in period t + l assumes the
value associated with the kth scenario. The sum is taken over every descendant
of scenario j in period t (i.e.. k runs from [(j-l)(Kt+,/ K t) + l] to jKt+, / Kt).

Rather than solve one problem (3) a t each period t , NDSP solves (3') for all
j, j=1, ..., Kg using the solution to the appropriate ancestor scenario on the right
hand side of (3.1'). Similarly, during the backward pass, NDSP checks that (3.3')
holds for every scenario in each period.

Unboundedness may be handled explicitly following the procedure in [I],
but in this implementation all variables are upper bounded and hence unbound-
edness is avoided.

Input Overview

The input format for this program follows the MPS standard for mathemati-
cal programs [6] in most respects. However, the multi-stage nature of the algo-
rithm demands tha t the data be split into periods and scenarios within each
period. There is also some control information that does not comply with the
standard.

The program takes its data from unit 5. It is the user's responsibility to
connect this unit to the appropriate file before the program is invoked.

Control Information

The first line of the input contains five integers that control the program's
execution. Each is read using an 14 format and there are no blanks between the
integers. The numbers provide the following information and must appear in
the order specified:

- the problem number. This is used simply to identify the problem. I t
must not be zero.

- the row index of the objective rows. This integer identifies which of
the rows specified in the ROWS sections of the file are the objective
rows. If this number is zero or is omitted, a value of 1 is assumed.

- the number of iterations between matrix inversions when solving
the linear program (3'). NDSP uses a revised, primal-simplex
method to solve (3'). This is the number of iterations between inver-
sions of the basis. If this number is zero or is omitted, a value of
99999 is assumed.

- the maxirnium number of iterations allowed to solve the linear pro-
gram (3'). If this number is zero or is omitted. a value of 99999 is
assumed.

- the number of periods (T). This number must appear.

The next several lines contain the number of scenarios in each period tha t
have the same ancestor in the previous period (i.e., the values of Kt/Kt-,).
There is one such line for each period and the values are read using an 14 for-
mat. This value should be 1 for the first and last periods, since the right hand
side for the first period is deterministic and the right hand side for the last
period is entered separately a t the end of the data.

Data

The remainder of the input file provides the values for the ct s, the 4 s, the
Bt s, and the variables on the right hand sides (b and the tt s), as well a, Q bounds
for the solution. The user may also include sections that specify an initial basis
in any period for any scenario.

Note that no case conversion is performed and therefore all section
headers should be capitalized.

The following information must be provided for each (2, j = l , ..., Kt in a given
period t, t=1, ..., T-1, and once for the last period:

- the probability tha t the random variable assumes the realization ti.
This value is read using an FS.3 format. It should be 1.00 for the
first and last periods.

- two sections (ROWS and COLUMNS) in standard MPS format contain-
ing the values of ct and At. The values for ct are taken from the
entries for the objective row in the COLUMNS section. The
remainder of the entries in the COLUMNS section specify the con-
tents of At.

- an optional section (BASIS) which follows standard MPS format con-
taining an initial basis for the current period. This section contains
a list of column and row names indicating which variables are basic.
The column name appears in the first name field (columns 5
through 12) and the row name appears in the second name field
(columns 15 through 22). The program writes sections in this for-
mat to unit 7 containing the names of the basic variables in the
optimal solution (see the "Basis File" section below).

- a section (RHS) in standard MPS format containing the value of 62.
For the first period, this section contains the value of b ,. For the
last period, i t contains the values of any nonstochastic elements of
CT as well a s one value for each of the stochastic elements of tr.

- an ENDATA card in standard MPS format (i.e., a card with the charac-
ters "ENDATA" in the first 6 columns).

- lower bounds on all variables except slacks. These values are read
using a 9F8.0 format. There must be enough lines to supply a lower
bound for every non-slac k variable.

- upper bounds on all variables except slacks. These values are read
using a 9F8.0 format. There must be enough lines to supply an
upper bound for every non-slack variable.

- two sections (ROWS and COLUMNS) in standard MPS format contain-
ing the values of Bt. Since Bt is used in period t + l , these two sec-
tions do not appear in the data for the last period.

- an ENDATA card in standard MPS format.

Following the last of these specifications (which gives the values of ct , At,
etc., for the last period) is a section (STOCH) containing the values for the sto-
chastic elements of 6 in the last period. This section follows standard MPS for-
mat: the row name of the element appears in the f i s t name field (columns 5
through 12), a value for the element appears in the first numeric field (columns
25 through 36), and the probability that the element takes the associated value
appears in the second numeric field (columns 50 through 61). Both numbers
are read using an F12.4 format. As many as five separate values may be
specified for each random element.

Output File

The program writes a log and most of i ts results to unit 6. It first prints
the problem number, the densities of the 4 matrices, and the values and pro-
babilities of the stochastic elements in the last period.

Basis File

The program writes the names of the variables tha t are basic in the
optimal solution to the linear program (3') in each period and for each scenario
to uni t 7 (an exception is the last period, for which the program m i t e s only the
names of t he variables which appear in the last basis found). The names a re in
the form "column name" "row name" and appear in t he first and second name
fields (columns 5 through 12 and 15 through 22). respectively. The names for
each scenario in each period a re preceded by a basis section header card.
These sections may be included in the input to provide the program with s tar t -
ing bases.

Data Structures

Many variables used by NDSP have a distinct value in each period and for
each scenario within a period (5 is a good example). To keep these values
separate yet readily available, the program uses multidimensional arrays. In
general, each array contains all the values for a single variable and an array
reference whose last three subscripts a r e (i,j,k) re turns the value tha t the vari-
able the array contains assumes in period i. If i is 1, j and k must also be 1
(other values of j or k reference storage tha t i s not used). If i is 2 and there a re
more than two periods, the value applies in the second period to the jth
scenario and k must be 1 (other values of k reference storage tha t is not used).
If i i s 3 and there are more than three periods, the value applies in the third
period t o the k th descendant of the jth scenario in t he second period. In this
case, k is not t he index of the scenario in the third period. It is the index of the
scenario within the set d (j) in the second period (i.e. l<&KS/ KZ). Whenever i is
equal to the number of periods (T), j and k must be 1 (since all scenarios a t
period T share the same ancestors).

As a n example, let u s assume that we have a four period problem and t h a t
there a r e two second period scenarios and six third period scenarios (i.e., each
second period scenario has three descendants). Let ml=m2=m3=M and let XKSI
have the smallest dimensions possible, i.e., M by 4 by 2 by 3. The elements of b
and t h e (s would appear in the a r ray XKSI as shown below, where m= 1, ..., M.

XKSI(m.1,1,2). XKSl(m,1,1,3), XKSl(m.1,2,1), XKSI(m,1.2,2), and
XKSI(m, 1,2,3) - unused

XKSl(m,2,1,2) and XKSI(rn,2,1,3) - unused

XKSI(m,2,2,2) and XKSI(rn,2,2,3) - unused

The data for the fourth period 1s appears elsewhere, but they would appear in
XKSI(m,4.1,1) otherwise.

The algorithm requires several matrices for each period (e.g., 4). These
matrices tend to be rather sparse, and the program represents them in a corn-
pact fashion to save space. To represent a large, sparse, two-dimensional array,
the program uses three smaller one-dimensional arrays. The first array con-
tains the nonzero elements of the matrix. These elements are ordered by
column. Each element of the second array contains the row index within the
sparse matrix of the corresponding element in the first array. The third array
contains the indices within the first two arrays where the entries for each
column of the sparse matrix begin. The ith entry in the third array is a pointer
to the beginning of the ith column.

Common Blocks and User-Accessible Parameters

Most of the major variables used by this program are commented within
the program and are of little concern to the user. Of potential interest, how-
ever, are several constants in the BLOCK DATA subroutine and the major array
dimensions. The constants are discussed below. An explanation of the array
dimensions appears in the section entitled "Limits and Extensions."

The following tolerances and limits appear in the named common block
"BLOCK" and are initialized in the BLOCK DATA subroutine:

- zero tolerance (ZTOLZE).

- pivot tolerance (ZTOLPV).

- reduced cost tolerance (zTCOST).
- maximum number of nonzero elements in any At array (NEMAX).
- maximum number of rows in any right hand side element of prob-

lem (3) (i.e., b l or 1)) (NRMAX).

- maximum number of columns in the 7) vector form of the basis
inverse (NTMAX).

The variables ZTOLSM and NEGINF, which also appear in the common block,
are not used.

The subroutine SHIFTR is used to move blocks of data around within certain
arrays. Due to the methods it uses, the arrays B, X, Y, and YTEMP must appear
as a group in tha t order within the blank common block.

Limits and Extensions

The current version of this program is somewhat experimental and several
limitations have been imposed during its development. This section
enumerates the limits and offers instructions concerning removing or extend-
ing them. 7his advice should not be regarded as gospel!

The current version of this program permits three periods with up to three
scenarios in the second period. The random vector in the last period may have
up to three independent random elements which may assume one of as many as
flve values for a total of 125 scenarios in the last period. Each scenario prob-
lem (3') is limited to 350 rows and 600 columns. Within a scenario problem (3'),
the matrix A(may have no more than 3000 nonzero elements and the matrix
Bt-l may have no more than 600 nonzero elements. The q vector form of the
basis inverse may have no more than 1000 columns and 3000 nonzero elements.

To change these limits, the user must change the dmensions on the
arrays listed below as directed. To change the maximum number of rows, the
maximum number of nonzero elements in the At matrix in each scenario prob-
lem (3'). and the maximum number of columns in the q form of the basis
inverse, the user must also update the constants NEMAX, NRMAX, and NTMAX,
respectively, in the BLOCK DATA subroutine. Following is a list of arrays, the
common blocks (or subroutines) in which they appear, and the dimensions
which they must have. "nzero" is the maximum number of nonzero elements
allowed in the At matrix in each scenario problem (3'), "nrows" and "ncols" are
the maximum number of rows and columns, respectively, allowed in a scenario
problem (3'), "neta" is the maximum number of columns allowed in the q vec-
tor form of the basis inverse, "nper" is the number of periods, "ntwo" is the
number of scenarios in the second period, "nthree" is the number of descen-
dants in the third period that belong to each scenario in the second period,
"nxi" is the number of stochastic elements in the random vector in the last
period. and "nrel" is the maximum number of values tha t each stochastic ele-
ment may assume. Note tha t nper cannot be larger than 4 and that nxi cannot
be larger than 3.

Blank Common
A(nzero,nper,ntwo, nthree)
ATMP(nzer0)
ABN(maximum number of nonzero elements in B,,nper,ntwo,nthree)
E(nzero)
IA(nzero,nper,ntwo,nthree)
IE(nzero)
IBN(maximum number of nonzero elements in Bt ,nper,ntwo,nthree)
ITMP(nzero)
JH(nrow,nper,ntwo,nthree)
KBTMP(ncol+ 2)
KINBAS(ncol+2,nper,ntwo,nthree)
LA(ncol+2.nper.ntwo,nthree)
LBN(ncol+ 2,nper,ntwo,nthree)
LE(ne ta+2)
LTMP(ncol+ 2)
NCOL(nper,ntwo,nthree)
NCOLP(nper,ntwo,nthree)
NELM(nper.ntwo,nthree)
NROW(nper,ntwo,n three)
NROWP(nper.ntwo,nthree)
NTH(nper, ntwo,nthree)
PROB(nper,n two,nthree)

BLOCK4
BND(nrow)
CBST(nxi.nre1)
IBST(nxi)
INST(nxi)
JSTCH(nrel,nrel,nrel)
N c u R (~ x ~)
NETND(see footnote below)
NXNF(nxi)
PRBV(nxi.nre1)
PRST(nrel,nrel,nrel)
YBx(nrow)
YPIBAR(ncol+ 2)
MXNST - this variable should be set to nxi.

Subroutine INPUT
ICN(ncol+2.2)
1 ~ ~ ~ ~ (n c o l + 2 , 2 , n p e r , n two,nthree)

Subroutine INVERT
MREG(nrow)
HREG(nrow)
VREG(nrow)

Subroutine W W U P
ICN~M(ncol+2.2,nper,n two,nthree)
XTEMP(ncol+Z)

There are many loops in the subroutine INIT and several loops in the sub-
routine INPUT whose upper limits must be changed to match those of the
dimensions of the arrays which the loops initialize.

The subroutine SHIFTR contains several constants which may need to be
changed. The numbers in the equations are formed as follows (the numbers in
parentheses to the right of the expressions refer to the value of IOLD and INEW
when the expression applies):

NETND(i) contains the number of r] vectors in the ith basis and its dimension sho-uld be
large enough to accomodate as meny bases as are likely to be generated.

nperenrmax* ntwo plus value (1) above. (2)

2* nper* nrmaxantwo (3)

nrmax plus value (3) above. (4)

The dimension of the array BARRAY should be a t least
2* nper* nrmax* ntwo + nrmax + ncol + 2.

Subprocedure Hierarchy

See the attached figure.

References

[I] R. Van Slyke and R. Wets, "L-Shaped Linear Programs with Applications to
Optimal Control and Stochastic Linear Programs," SIAM Journal o n Applied
Mathematics v. 17, pp. 638-663, 1969

[2] J. Birge, "Decomposition and Partitioning Methods for Multi-Stage Stochas-
t ic Linear Programs," Technical Report 82-6, Department of Industrial and
Operations Engineering, the University of Michigan, 1982

[3] C. E. Pfefferkorn and J. A. Tomlin, "Design of a Linear Programming System
for ILIAC IV," Technical Report SOL 76-8. Systems Optimization Laboratory,
Stanford University, 1976

[4] J. Birge, "An L-Shaped Method Computer Code for Multi-Stage Stochastic
Linear Programs," in Numerical Methods for Stochastic Optimization, Yu.
Ermol'ev and R Wets (eds), to appear in 1985

[5] R. Wets, "Stochastic Programming: Solution Techniques and Approximation
Schemes", in Mathematical Programming: State-of-the-Art 1982, Bachem,
Groetschel, and Korte (eds), 1983

[6] IBM Corp., Mathematical Programming Subsystem - Extended (WSX) and
Generalized Upper Bounding (GUB) Program Description. document
number SHZO-0968- 1

T h e I n t r o d u c t i o n to
STOCHASI?C QUASIGRADIENT METHODS AND THEIR

IMPLEMENTATION

Yuri h o l i e v and Alezei Gaivoronski

ABSTRACT

[Editor's note - What follows is an excerpt from the introduc-
tion to IIASA Working Paper WP-84-55, which serves as a user's
manual for Alexei Gaivoronski's program, STO. A complete copy of
that paper appears on the ADO/SDS tape.]

1. INTRODUCTION
This paper discusses various stochastic quasigradient methods (see [1,2])

and considers their computer implementation. I t is based on experience
gained both a t the V. Glushkov Institute of Cybernetics in Kiev and a t IIASA

We are concerned here mainly with questions of implementation, such as
the best way to choose step directions and step sizes, and therefore little atten-
tion will be paid to theoretical aspects such as convergence theorems and their
proofs. Readers interested in the theoretical side are referred to [1,2].

The paper is divided into five sections. After introducing the main problem
in Section 1, we discuss the various ways of choosing the step size and step
direction in Sections 2 and 3. A detailed description of an interactive stochas-
tic optimization package (STO) currently available a t IIASA is given in Section 4.
This package represents one possible implementation of the methods described
in the previous sections. Knally, Section 5 deals with the solution of some test
problems using this package. These problems were brought to our attention by
other IIASA projects and collaborating institutions and include a facility loca-
tion problem, a water resources management problem, and the problem of
choosing the parameters in a closed loop control law for a stochastic dynamical
system with delay.

We are mainly concerned with the problem

min f F (z) : z EX] , F(z) = E, f (z,w) , (1)

where z represents the variables to be chosen optirnally. X is a set of con-
straints, and w is a random variable belonging t o some probabilistic space
(R.B,P). Here B is a Bore1 field and P is a probabilistic measure.

There are currently two main approaches to this problem. In the first, we
take the mathematical expectation in (I), which leads to multidimensional
integration and involves the use of various approximation schemes. This
reduces problem (1) to a special kind of nonlinear programming problem which
allom the application of deterministic optimization techniques. In this paper
we concentrate on the second approach, in which we consider a very limited
number of observations of random function f (z.o) a t each iteration in order to
determine the direction of the next step. The resulting errors are smoothed

out until the optimization process terminates (which happens when the s tep
size becomes sufficiently small).

We assume tha t s e t X is defined in such a way that the projection operation
z -r nx(z) i s comparatively inexpensive from a computational point of view,
where nx(z) = arg min llz - z 11. For instance, if X is defined by linear con-

.EX
straints, then projection is reduced to a quadratic programming problem
which, although challenging if large scale, can nevertheless be solved in a finite
number of iterations. In this case i t is possible to implement a stochastic
quasigradient algorithm of the following type:

zJ+l = nx(zB - psv8) . (2)

Here z8 is the cu r r en t approximation of the optimal solution. p, is the s tep
size, and v8 is a random s tep direction. This step direction may, for instance.
be a statistical es t imate of the gradient (or subgradient in the nondifferentiable
case) of function F (z) : then us = r such tha t

E (r 1 z1,z2 ,..., zs) = Ft(zs) + as , (3)

where as decreases a s the number of iterations increases, and the vector vs is
called a stochastic umigradient of function F(r). Usually ps -r 0 as s -+ m and
therefore llzs" - zsI -t 0 from (2). This suggests t ha t r e should take zs as the
initial point for t he solution of t he projection problem a t iteration number s +1,
thus reducing considerably the computational effort needed to solve the qua-
dratic programming problem a t each s tep s = 1,2, Algorithm (2)-(3) can
also cope with problems with more general constraints formulated in te rms of
mathematical expectations

E , f i (z , o) r O . i = =

by making use of penalty functions or the Lagrangian.

The principal peculiarity of such methods is their nonmonotonicity, which
may sometimes show itself i n highly oscillatory behavior. In this case i t is
difficult t o judge whether the algorithm has already approached a neighborhood
of t he optimal point o r not, since exact values of t he objective function a re not
available. The best way of dealing with such difficulties seems to be t o use an
interactive procedure to choose the s tep sizes and step directions, especially if
i t does not take much time to make one observation. More reasons for adopting
a n interactive approach and details of t he implementation are given in the fol-
lowing sections.

Another characteristic of t he algorithms described here is their pat tern of
convergence. Because of the probabilistic nature of t h e problem, the i r asymp-
totic rate of convergence is extremely slow and may be represented by

Here z* is the optimal point to which sequence zP converges and k is the
number of observations of random parameters w, which in many cases is pro-
portional to the number of iterations. In deterministic optimization a super-
l inear asymptotic convergence ra te is generally expected; a rate such a s (4)
would be considered a s nonconvergence. But no algorithm can do asyrnptoti-
cally any better than this for stochastic problem (1) in the presence of nonde-
generate random disturbances. and therefore the aim is to reach some neigh-
borhood of the solution ra ther than t o find the precise value of the solution
itself. Algorithm (2)-(3) is quite good enough for this purpose.

R E m m N C E S
1. Yu. Ermoliev. Methods o f S o c h a s t i c P r o g r a m m i n g (in Russian). Nauka,

Moscow, 1976.

2. Yu. Ermoliev. Stochastic quasigradient methods and t he i r applications t o
sys tems optimization. S o c h a s t i c s . 9 (1983) 1-36.

LFGM User's Manual

J. Edwards

Introduction
This program implements Rockafellar and Wets' Lagrangian Finite Genera-

tion Method (LFGM) for stochastic quadratic programs with simple recourse.
This technique is described in [I]. The program was developed a t IIASA by Alan
King. I t is written in FORTRAN 77. A complete description of the implementa-
tion may be found in [Z]. The following description of the problem and the dis-
cussion of the algorithm a r e adapted from [Z], which contains fur ther details
and a discussion of possible future developments.

The Problem
The standard formulation of the stochastic quadratic program with simple

recourse is to find z E Rn to muximize

subject to

where

19 is a piecewise linear-quadratic function given by

i f710

the hjs and & s a re square surnmable random variables, the other coefficients
a re fixed (nonstochastic) with d j r 0, ei > 0, and qi r 0, and "E" denotes
mathematical expectation.

The Method
The chief difficulty in solving (SQP) is t he computation of t he expectation

of the recourse penalties. Achieving reasonable accuracy requires a large
number of points a t which to evaluate t h e integrals. Of course, this vastly
increases t h e number of dunensions in the problem. The mainstay of LF'GM is a
special Lagrangian whose introduction yields a dual problem (DQP) involving

minimization over a function space Z. This problem is less tractable than
(SQP). but via t h e finite generation technique (DQP) may be reduced to a
sequence of quadratic programs with few dimensions. Each problem in this
sequence can be solved by MINOS [3]. A more detailed description of t he algo-
r i thm follows.

For various reasons, i t i s advantageous to include a strongly quadratic
t e rm in the 2s . The algorithm generates a sequence of points 19' , /~=l, . . . j t ha t
converges a t least linearly to the optimal solution of (SQP). The k + l t h point is
obtained by solving a modification (SQP,) of the original problem wherein the
"proximal" term !I$ s-'lz - 5q2 is added to the objective (s is a constant).

(Sapp) is solved by applying the finite generation technique to its dual,
(DQP,). This technique replaces minimization over Z with minimization over
the convex hull of a certain collection of elements. = [f , kj. (It i s this
minimization which is solved by MINOS.) The algorithm uses the information
gained by solving (DQP,) over co to generate a new collection r t ' and in this
way obtains a sequence)jiY.v=lj [the dual variables to (DQPJ] which con-
verges a t a linear ra te to the optimal solution of (SQP,).

The finite generation technique may be summarized as follows:

1) Find &",gV), t he saddlepoint of L"(2.z) over x x co Zv.
2) Find g v E argrnax L"w,z 1.

r € 2

3) Flnd Ft1 = [e. . . . ,cN"+lj 3 (~ v . g v j and re turn to s tep 1) with
v = v + 1 .

L" is the Lagrangian associated with t h e primal-dual pair ISQP,,DQP,].

The program itself is essentially two nested loops. The outer loop uses the
current value of 9' to establish (SQP,,) and i ts dual. The inner loop applies the
LFGM to obtain the sequence IjiYj, which converges to 3'''. The inner loop calls
MINOS to solve the resulting quadratic programs. An outline of the program €01-
lows:

0) Set /A = 0 and initialize 5'.

1) (Begin outer loop) Set SQP, = SQP +)$ s-'112 - 5y2 and establish
DQPp.

2) (Inner loop) Use the finite generation technique to generate IW{,
which converges to 3"".

3) (End outer loop) Test for convergence of IZp]. If t he sequence has
not converged, s e t p = k + 1 and go to s tep 1).

Convergence
Due to the limited precision of t h e computer's internal representation of

real numbers, it is not a simple mat te r to decide when the sequences
t?] and jjiYj have converged. The user therefore must specify a number of
tolerances which the program uses to determine whether the inner or outer
loop has completed its task. Furthermore. the ra te of convergence of the
sequence ITp] depends on the value of the constant s in problem (SQP,), and if
s is not chosen with care t h e sequence may not converge in a reasonable
amount of time. The program will ac t to increase the rate of convergence if
necessary but requires some guidance from the user to do so.

Three conditions cause t h e inner loop to terminate. They are

1) the current value of represents a "good" s tep in the sequence tZp{
(i-e., if the substitution 3"" = yields a linear rate of convergence
for the sequence jZp1). need not be precisely equal to the primal
half of the saddlepoint of I.,? i t is sufficient tha t

- ~ ~ (2 9 1 ~ s b2P - 2 9 ,

where Mp(Zp) is the primal half of the t rue saddlepoint of 1Y and d2 is
a nonnegative constant supplied by the user.

2) the values of successive r s a re changing very slowly or not a t all.
The inner loop halts and processing resumes in the outer loop if

r-r-'l/ M5xc .
where X, is a nonnegative constant supplied by the user.

3) the sequence jr{ has not converged as desired within a specified
number of iterations. In this case, the cu r r en t value of r is
returned a s Zp+' t o the outer loop and a warning message i s printed.

Similarly, three conditions cause the outer loop to terminate. They a re

1) the current value of Zp is sufficiently close to the optimal solution of
(SQP). This decision is made on the basis of the "duality gap." If the
normalized difference between the values of (SQP) and i ts dual a t 9'
is less than a constant supplied by the user. the program prints the
solution and halts.

2) the values of successive Zps a re changing very slowly or not a t all.
The program prints the solution and halts if

where g, is a nonnegative constant supplied by the user.

3) the sequence tSp{ has not converged a s desired within a specified
number of iterations. In this case, the value of s may be such tha t
the sequence is converging too slowly. The program therefore
increases t he value of s and at tempts to solve t h e problem once
again. The user supplies an initial value for s , a constant, a, used t o
generate new values of s according to t he rule s,,,=os,~~, and a
maximum permissible va!ue for s . If t h e program cannot solve the
problem using a value of s tha t is less than o r equal to the max-
imum value, it writes a message to that effect and halts.

Distribution of the Random Variables
The presentation of t he LFGM in [I] requires tha t t he random variables

&,- and 1, have finite, discrete supports. The program allows the user to specify
such a distribution in e i ther of two ways.

The user may allow each component of h and of 1 t o assume a value
independently of the other components. In this case, each A, and & is a ran-
dom variable, and the user specifies the number of points in t h e variable's sup-
port, t he value the variable assumes a t each point in i ts support, and t h e proba-
bility t ha t the variable assumes the value associated with each point in i t s sup-
port. This is called a n "independent distribution."

Alternatively, the use r may supply a s e t of two sample populations, one
containing observations of the vector h and one containing observations of of
the matrix 1. In this case, each element of h and of 1 is assigned t h e expected
value of the corresponding element of the observations in the appropriate sam-
ple. This is called a "Monte Carlo distribution." The user may obtain resul ts for

several sets of samples during a single invocation of the program. The user
specifies the number of observations in each sample in the first set, the
number of observations to add to each sample in the nth set to obtain the
(n+l)st set, and a maximum sample size. The program repeats its calculations
for every set generated in the manner described whose samples contain no
more than the prescribed maximum number of observations.

User Supplied Routines
The user must write three subroutines, uinput, smp, and output. to per-

form various chores.

The program requires two distinct sets of input. The first set contains vital
parameters and control information. This data appears in a single file, has a
specific format (described in the section entitled "Control Information" below)
and is read automatically by the program. The second set contains the actual
data for the problem. i.e., the contents of the various matrices and vectors.
After the program reads its control information, i t calls the subroutine uinput
t o read this second se t of input. The calling sequence is

call uinput(a.b.c.~e.ee.ff.qplus.qminus,
1 x.
2 pcexp.tcexp.pprob.tprob.nsuppp.nsuppt.
9 nW1.m.n).

The values of npart. 1, m, and n are passed to the subroutine. The subroutine
nus t return valid data in a, b, c, d, e, ee, ff, qplus, and qminus. The remaining
variables need be assigned values only in certain cases. The parameters, their
types, and their dimensions (where applicable) are listed below.

a(m.n) (real*€!) upon return contains the values of the % s.

b(m) (real*€!) upon return contains the values of the bis.

c(n) (real*€!) upon return contains the values of the cjs.

d(n) (real*3) upon return contains the values of the djs.

e(1) real*^) upon return contains the values of the eis.

ee(n) (rea188) upon return contains the values of the eejs.

ff(n) real*^) upon return contains the values of the f f js. The program
automatically adjusts the problem so that the bounds on z change from
eej 1 2 , f f j t o O s z j l r j .

qplus(1) and qminus(1) (both real*^) upon return contain the penalty
coefficients for excess and shortage, respectively. The program automatically
adjusts the problem to the form required in (SQP) (i.e.. qminus = 0).

x(n) (real*8) upon return contains the value of 3, which is used to construct
the first problem (SQPp). The contents of this array are used only if the "initial-
ize x vector indicator" is set accordingly (see the section on control informa-
tion below).

pcexp(l.npart) (real*€!) upon return contains the values that the rows of the

vector & assume at each point in their respective supports. "pcexp(i,j)" con-
tains the value of & a t the jth point in its support. The contents of this array
are used only if the "independent distribution flag" is set accordingly (see the
section on control information below).

tcexp(l,n,npart) (real'8) upon re turn contains the values that the elements of
the matrix T assume at each point in their respective supports. "tcexp(i,j,k)"
contains the value of & a t the kth point in its support. The contents of this
array are used only if the "independent distribution flag" is set accordingly (see
the section on control information below).

pprob(1,npart) real*^) upon return contains the probabilities that the rows of
the vector h assume the values a t each point in their respective supports.
"pprob(i,j)" contains the probability that & assumes the value associated with
the jth point in its support. The contents of this array are used only if the
"independent distribution flag" is set accordingly (see the section on control
information below).

tprob(l,n,npart) (real*B) upon return contains the probabilities that the ele-
ments of the matrix T assume the values at each point in their respective sup-
ports. "tprob(i,j,k)" contains the probability that & assumes the value associ-
ated with the kth point in its support. The contents of this array are used only
if the "independent distribution flag" is se t accordingly (see the section on con-
trol information below).

nsuppp(1) (integer*2) upon re turn contains the number of points in the support
of each row of the vector h . "nsuppp(i)" contains the number of points in the
support of &. The contents of this array are used only if the "independent dis-
tribution flag" is set accordingly (see the section on control information below).

nsuppt(1.n) (integer82) upon return contains the number of points in the sup-
port of each element of the matrix 1. "nsuppt(i.j)" contains the number of
points in the support of hi. The contents of ths array are used only if the
"independent distribution flag" is s e t accordingly (see the section on control
information below).

npart (integer) is the maximum number of points that may appear in the sup-
port of a single row of the vector h or of a single element of the matrix 1.

1 (integer) is the number of random constraints.

m (integer) is the number of deterministic constraints.

n (integer) is the number of decision variables.

If the user has specified that a Monte Carlo distribution is to be used, the
program calls the subroutine smp to obtain sample populations of the vector h_
and of the matrix 1. The subroutine must generate a specified number of vec-
tors and matrices and must place these new observations into the appropriate
samples. The calling sequence is

call smp(nevsmp.numsmp.max~mp.Ln,p,t.dseedl)

All the parameters contain values when passed to the subroutine. which must

return valid data in p and t. The parameters, their types, and their dimensions
(where applicable) are listed below.

nersrnp (integer) is the index into the arrays p and t where the first of the new
observations should be placed.

numsmp (integer) is the index into p and t where the last of the new observa-
tions should be placed. The subroutine must therefore generate numsmp -
newsrnp + 1 observations of the vector h and the same number of observations
of the matrix 1.

maxsmp (integer) is the maximum number of observations tha t may appear in
a sample.

I (integer) is the number of random constraints.

n (integer) is the number of decision variables.

p(l,maxsrqb) (real*€!) contains the observations of the vector h_ generated by
previous calls to the subroutine. Upon return, "p(i,newsmp)," "p(i,newsmp+l),"
..., "p(i,numsmp)" contain the values of & generated by the current call.

t(l.n,rnaxsmp) (real*€!) contains the samples of the matrix T generated by previ-
ous calls to the subroutine. Upon return, "t(i,j,newsmp)." "t(i,j,newsmp+l)," ...,
"t(i,j,numsmp)" contain the values of & generated by the current call.

dseedl (real*€!) is provided for use as a random number generator seed.

Once the solution has been found, the program calls the subroutine output
to print the results in whatever format desired The calling sequence is

call output(x.
a.b.c.be.ee.r.q.
I a n .
discrt.
pcexp.tcexp.pprob, tprob.nsuppp.nsuppt.
p. t .numsmp).

All values are passed to the subroutine, although some do not contain valid
data. Furthermore, several of the values do not match those entered because
the program adjusts the problem as described in the discussion of the parame-
ters to the subroutine uinput, above. The parameters, their types, and their
dimensions (where applicable) are listed below.

x(n) (real*€!) contains the optimal solution to the adjusted problem.

a(mn) (real*8) contains the coefficients a,,-.

b(m) (real*€!) contains the values of the bis as modified by the program.

c(n) p real*^) contains the coefficients c, as modified by the program.

d(n) (real*8) contains the coefficients d, as modified by the program.

e(1) (real*8) contains the values of the eis.

ee(n) (real*8) contains the values of the ee,s.

r(n) (reale8) contains the values of the f f js a s modified by the program.

q(1) (real*8) contains the values of qplus as modified by the program.

I (integer) is the number of random constraints.

rn (integer) is the number of deterministic constraints.

n (integer) is the number of decision variables.

discrt (logical) is a flag indicating how the distribution of the random variables
has been specifled. If i t is .TRUE., the distribution is an independent one. If it
is .FALSE., the distribution is a Monte Carlo one.

pcexp(lnpart) (real*8) contains the values that the rows of the vector h assume
a t each point in their respective supports. This array contains valid data only if
the discrt flag above is .TRUE..

tcexp(ln,npart) (real*8) contains the values that the elements of the matrix T
assume a t each point in their respective supports. This array contains valid
data only if the discrt flag above is .TRUE..

pprob(1,npa.t) (real*8) contains the probabilities that the rows of the vector h_
assume the values a t each point in their respective supports. This array con-
tains valid data only if the discrt flag above is .TRUE..

tprob(ln.npart) (real*8) contains the probabilities tha t the elements of the
matrix T assume the values a t each point in their respective supports. This
array contains valid data only if the discrt flag above is .TRUE..

nsuppp(1) (integer*2) contains the number of points in the support of each row
of the vector h. This array contains valid data only i f the discrt flag above is
.TRUE..

nsuppt(ln) (integere2) contains the number of points in the support of each
element of the matrix r. This array contains valid data only if the discrt flag
above is .TRUE..

p(lnumsmp) (reale8) contains the observations of the vector h_ generated by
the subroutine smp. This array contains valid data only if the discrt flag above
is .FALSE..

t(1.n.numsm.p) (real*8) contains the samples of the matrix T generated by the
subroutine smp. This array contains valid data only if the discrt flag above is
.FALSE..

nurnsmp (integer) contains the number of samples in the arrays p and t.

F'ilenames and Unit Numbers
The user must specify a filename for each of the eight files used by the pro-

gram and must specify unit numbers for most of them. The files and the vari-
ables tha t correspond to their unit numbers are described in the next few sec-
tions. All files are opened (and their unit numbers established) in the subrou-
tine named "input."

Unit number 8 is reserved and may not be assigned by the user.

Control Information
The user must supply the program with several constants, tolerances, and

limits. This control information resides in a "specs" file. The variable "inp" con-
tains the unit number of this file.

The specs file contains the information shown below. Each value appears
on a separate line and all values begin in column 31 (the first thirty columns
may be used for comments). The information must appear in the order
specified below:

- name of the problem This is read using an A32 Format.
- number of random constraints (1). This value must not exceed the

constant "lmax" (see the section entitled "Common Blocks and
User-Acessible Parameters" below). I t is read using an I5 format.

- number of deterministic constraints (m). This value must not exceed
the constant "mmax" (see the section entitled "Common Blocks and
User-Acessible Parameters" below). I t is read using an 15 format.

- number of decision variables (n). This value must not exceed the
constant "nmax" (see the section entitled "Common Blocks and
User-Acessible Parameters" below). I t is read using an 15 format.

- independent distribution flag. This is read using an L10 format. If
the independent distribution flag is true, the user must provide an
independent distribution for the random variables (see the section
entitled "Distribution of the Random Variables" above). In this case,
the Monte Carlo distribution flag (see below) must be false and the
control variables dealing with Monte Carlo simulation (starting sam-
ple size, sample size increment, maximum sample size. and random
number generator seed) are read but are not used.

- independent distribution maaimurn number of partitions. This is the
maximum number of values that an element of the vector 5 or of
the matrix 1 may assume (i.e.. the maximum number of points in
the support of an element). The constant "smpmax" places a limit
on this value (see the section entitled "Common Blocks and User-
Acessible Parameters" below). I t is read using an 15 format. I t is not
used if the independent distribution flag is false.

- Monte Carlo distribution fhg . This is read using an L10 Format. If
the Monte Carlo distribution flag is true, the user must provide a
Monte Carlo distribution for the random variables (see the section
entitled "Distribution of the Random Variables" above). In this case,
the independent distribution flag (see above) must be false and the
control variable dealing with independent distributions (the max-
imum number of partitions) is read but is not used.

- Monte Carlo distribution starting sample size. This is t he number of
observations in each of the two sample populations in the first set.
This value must not exceed the constant "smpmax" (see t h e section
entitled "Common Blocks and User-Acessible Parameters" below). It
is read using an I5 format. It is not used if the Monte Carlo distribu-
tion flag is false.

- Monte Carlo distribution sample size increment. This is the number
of new observations to add to each sample in the nth se t t o obtain
the (n+ l) th set. This value is read using an 15 format. It is not used
if the Monte Carlo distribution flag is false.

- Monte Carlo distribution maaimurn sample size. This is the maximum
number of observations tha t may appear in a sample. This value
must not exceed the constant "smpmax" (see the section entitled
"Common Blocks and User-Acessible Parameters" below). It is read
using an 15 format. I t is not used if t he Monte Carlo distribution flag
is false.

- Monte Carlo distribution random number generator seed. This is
passed t o the user subroutine smp. This value is read using an F10.4
format. I t i s not used if the Monte Carlo distribution flag is false.

- maximum number of outer loop iterations. This value is read using
an I5 format.

- maximum number of inner loop iterations. This value is read using
an I5 format.

- maaimum number of finite elements. This is t he maximum number
of elements 1 t ha t may appear in the collection E. This value must
not exceed the constant "nyrnax" (see the section entit led "Common
Blocks and User-Acessible Parameters" below). I t is read using an 15
format.

- proximal point algorithm control. This flag controls whether the
proximal point algorithm is u s e d I t is read using a n L10 format. If
this flag is true. t h e proximal point algorithm is used. If this flag is
false, t h e proximal point algorithm is not used and the proximal
t e rm does not appear in (SQPfi) (i.e.. (SQP,,) is identical to the origi-
nal problem).

- proximalpointalgorithmstartings-value(s).Thisisthevalueofs
used to obtain the first problem (SQP,,). This value i s read using a
D10.4 format.

- proximal point algorithm maximum s-value. This is t h e maximum
value of s for which t h e program will attempt to solve the problem.
This value is read using a D10.4 format.

- proximal point algorithm s-adjusting factor (0). This value must be
greater than 1 and is read using an F10.4 format.

- proximal penalty factor (6'). This value is read using an F10.4 for-
mat.

- minimumchangeindualsfortheouterloop~c).Thisvalueisread
using a D10.4 format.

- minimum change in duals for the inner loop (XE). This value is read
using a D10.4 format.

- minimum duality gap. This value is used to determine whether the
first stopping criterion for the outer loop is satisfied. It is read
using a D 10.4 format.

- initialize x vector indicator. This value controls whether an initiali-
zation subroutine is called to establish the value of t he first vector
in the sequence tFpj. If it is 1, no initialization is performed and the
value of z0 mus t be provided by the user subroutine uinput. This
value is read using an 15 format.

- print option. This controls the amount of information printed by the
program. This value i s read using an 15 format.

MNOS Flles

Five files a re used by MINOS. They a re listed below along with the variables
which contain their unit numbers.

MINOS File Unit Number in

specifications specs
input data mPs
output minpr
scra tch file (assigned to unit 8)
dump file mindmp

Output File
This file contains the resul ts generated by the program. The variable "out"

contains the unit number of this file.

Proximal Sequence Output File
This file contains the vectors in the sequence tZpj. The variable "eval" con-

tains the unit number of this file.

Data Structures

This program uses n o particularly complicated data s t ructures . However,
i t does use one (very large) a r r ay t o hold the contents of every mat r ix and vec-
tor used by the algorithm. Several pointers provide the necessary bookkeeping
information. The following list shows which values appear where within the
a r ray "zz."

Matrix or Vector Starting Index Ending Index

A 1 n 1
b n l + l n2
c n2+ 1 n 3
d n3+ 1 n 4
e n4+ 1 n5
e e n5+ 1 n6
ff n6+ 1 n7
qplus n7+ 1 n 8
qm inu s n8+ 1 n9
x n9+ 1 n10
PcexP n 10+ 1 n l l
tcexp n l l + l n12
P P I - O ~ n 12+ 1 n13

tprob
ns"PPP
nsuppt
nP
P
t
pie xp
tiexp

(for INIT)

(for LOOP)

chi
oldchi
zeta
dk
ck
lam
QexP
PexP
texp
w1
wo
w2
Y

Common Blocks and User-Accessible Parameters
The program uses several common blocks, most of which are contained in

three include files. The names of these blocks, the include files in which they
appear, and a description of the variables they contain follow.

Common Block Include File Contents

zzcore
ziodev
zdimen
zmxdrns
zparam
z se ed
zdistr
zpn trs

all global matrices and vectors
1/0 unit numbers
dimensions of matrices. current sample size
various maxima
s, u, d2, L, etc.
random number generator seeds
distribution description flags
bookkeeping indices into the array "zz"

The program currently imposes several limits on the size of the problem
(e.g., no more than four decision variables). To obtain results for larger prob-
lems, the user must change the constants in the include file "incl.core" as fol-
lows:

mnax must be set to the maximum number of decision variables (n).

lmax must be set to the maximum number of random constraints (1).

mmalr must be set to the maximum number of deterministic constraints (m).

nymax must be set to the maximum number of elements < in any set r.
smpmax must be set to the maximum number of points in the space over which
the integrals for the expected values of h and of T are calculated. For indepen-
dent distributions, i t is also used to allocate storage for a number of additional
arrays. "smpmax" must be set to the maximum number of members in any
sample if a Monte Carlo distribution of the random variables is given and to

max [Znpmax + 1 , npmaxnm"+'],

where npmax is the maximum number of points in any random variable's sup-
port, if an independent distribution of the random variables is given.

None of these values may be less than 1.

Subprocedure Hierarchy
See the attached figure.

Library Routines
The program uses version 3.9 of MINOS. The MINOS subroutine "go" has

been slightly modified to perform additional file assignments.

Notes
On occasion. MINOS will return an error code and the program will halt.

This is usually due to insufficient space or iteration limits. The MINOS
specifications file is written by the subroutine Imps, which may need to be
changed in such cases.

References
[I] R.T. Rockafellar and R. Wets, "A Lagrangian Finite Generation Technique for

Solving Linear-Quadratic Problems in Stochastic Programming," IIASA
Working Paper WP-84-25, 1984

[2] A King, "An Implementation of the LFGM," in Numerical Methods for Sto-
chastic Optimhation, Y. Errnol'ev and R. Wets (eds). to appear in 1985

[3] B. Murtagh and M. Saunders, "Large Scale Linearly Constrained Optimiza-
tion," Mathematical Programming v. 14, pp. 41-72, 1970

Descent Stochastic Quasigradient Methods

Kurt Marta

HSBw Muenchen, FB LRT
Werner-Heisenberg-Weg 39

D-80 14 Neubiberg/Muenchen

1. Introduction
The F'ORTRkhi code "SEMI STOCHASTIC APPROXIMATION" can be applied to

solve stochastic optimization problems of the following type

minimize F(x) s. t. XED, (1)

where D is a closed convex subset of R" and F=F(x) is the convex mean value
function defined by

F(x) = Eu[A(o) - b(o)], xmn. (1.1)

Here [A(o),b(o)] is an mx(n+l) random matrix and u is a convex loss function
on Rm such that the mean value F(x) in (1.1) is real for every x € P . We suppose
that the set D* of optimal solutions x* of (1) is nonempty.

Problems of the form (1) arise in many different connections, e.g.
Stochastic linear programming with recourse [7],[22]
Portfolio optimization [9],[23]
Error minimization and optimal design [2],[20]
Statistical prediction [I]
Optimal decision functions [5],[10].

Since the gradient (or subgradient) aF of F exists under weak assumptions
and is given then by the formula

6F(x) = E ~ (o) ~ a u [~ (o) x - b(o)]. (2)

where is the transpose of a matrix A and au denotes the subgradient of u, our
basic problem (1) could be attacked in principle by a gradient (or quasigra-
dient) procedure of the type

xk+l = P D (x ~ - pkgk), k=1,2,.. ., (3)

where pk>O is a s tep size, gk€aF(xk) and PD denotes the projection of Rn onto D.
However, in practice the computation of the gradient (subgradient) aF(xk)

is beset by one of the following difEculties:

Formula (2) cannot be evaluated a t all because only a stochastic estimate
Yk of an element gk€aF(xk) i s available [3],[21]. In this case we have only

yk = gk + noise with some gkcaF(xk) (4.1)

Although the integrand ATau(A.x-b) and the probability distribution PIA(.).b(.)~
of [A(w),b(w)] in (2) is known, the numerical evaluation of this formula -
which involves a multiple integral - is computationally infeasible. In this
case aF(x3 may be approximated by

Yk E ~ (D k) ~ a u [~ (U k) ~ k - b(Uk)l. (4.2)

where [A (~ k) , b (~)] is a realization of the random matrix [.4(c;),b(w)] gen-
erated independently of xk by means of a pseudo-random generator [l l] .

Consequently, in both cases (4.1) and (4.2) the gradient procedure of (3) cannot
be applied in practice. It is therefore often replaced by the stochastic quasigra-
dient method [3].[6]

= PD(Xk - pkYk), k=1,2, ..., (5)

where t h e random direction -Yk is defined by (4.1) or (4.2) as appropriate.

Selecting apriori a sequence of step sizes p,,pz, ... such that

&>o, z pk = +m. z pk2 <
loo loo

C
e.g., pk = - for some constants c>O and ~ E N u ~ O] , i t is well known [19],[21]

q+ k
tha t the sequence of random iterates X,,X ,.... generated by (5) converges with
probability one to the set Do of optimal solutions x * of (I), provided that the
approximates Yk of aF(xk) fulfill a certain uniform second order integrability
condition and that D* is a bounded set.

Unfortunately, due to their probabilistic nature, stochastic approximation
procedures have a very slow asymptotic rate of convergence of the type

EIXk - x*I2 = O(k-A),

where A is a constant such that O<A<l. Moreover, the main disadvantage of sto-
chastic quasigradient procedures such as (5) is their nonmonotonicity which
sometimes may manifest itself as a highly oscillatory behavior [4]. Hence, in
many cases it is not known when the algorithm has reached a certain neighbor-
hood of an optimal solution x*. To improve the convergence properties of (5),
several methods have been suggested, including those based on the adaptive
selection of the step sizes pk, see [El, and on the use of second order informa-
tion about F. see [lE] . An additional method - which has a partial monotonicity
property - is presented in the next section.

2. Semi-Stochastic Approrimation
As was shown in several papers [10:),[12],[14],[15],[17], for several classes U

of convex loss functions u and several classes n of distribution PLA(.),b(.)~ of the
random matrix [A(w),b(w)], our minimization problem (1) has the following
important

PROPERTY: (6)

A t certain "nonefficient" or "nonstationary" points XED there exists a deter-
ministic (feasible) descent direction h=h(x) of F which can be computed with
less effort than can an element gk of aF(xk). Moreover, h(x) is stable with
respect t o variations of the loss function UEU.

Consequently, if a t a certain iteration point Xk property (6) holds, then
clearly one can replace the stochastic direction -Yk. which is a descent dire(:-
tion only in the mean, by the descent direction hk=h(Xk) of F.

We thus obtain the following, as already described in [11].[13]:

Descent Stochastic Quasigradient Method

I PD(Xk + pkhk) if (6) holds a t Xk
'k.1 = PD(& - pkYJ otherwise.

In many important applications this hybrid procedure has the important
feature that property (6) is frequently satisfied, for example a t every other
iteration point Xk. In this case, (7.1) has the more convenient form

where N1,N2 is a known decomposition of the set of integers, N, e.g.
N1=11,2.3 ,... j and N2=12.4,6 ,... 1. As was shown in [13], if the step sizes p1.p2 ,...
are chosen such that

then the semi-stochastic approximation procedure (7) converges with probabil-
ity one to the set D' of optimal solutions x* of (1). As expected, several numeri-
cal examples [l l] show that the descent stochastic quasigradient method (7)
has a much better ra te of convergence than the pure stochastic quasigradient
method. In particular, the highly oscillatory behavior of the random iterates
Xl,X 2 , . . . observed in (5) is greatly damped by the use of the deterministic des-
cent directions hk in (7); moreover, the approximation to the set D* is more
exact. In a recent paper [16], the rate of convergence of (7) was estimated
using the following

THEOREMZ. 1

Denote by bk = EIXk - x*U2 and = qp(g - xqz the mean square error of the des-
cent stochastic quasigradient and pure stochastic quasigradient, respectively.

a) If the ratio of stochastic to deterministic steps taken in (7) is fixed, then
there exist constants Q1.Qz with O<Qlcl and Q1<Qz such that

Ql.bi s bk s Q2-% as k approaches infinity. (8.1)

Furthermore, Ql and Q2 are given by known formulas and Q2<l if N/M<Y.
where N and M are the number of stochastic and deterministic steps,
respectively, in one complete turn of iterations and 7 is a constant that
depends on the parameters of problem (1).

b) If the stochastic steps in (7) are made a t a decreasing rate, the rate of con-
vergence is increased from O(l/k) in the pure stochastic case to O(k-A),
where 1<X<2, in the semi-stochastic case.

3. Construction of Deterministic Descent Directions
Currently deterministic feasible descent directions may be constructed if

the distribution PLA(.),b(.)l is

stable [12]
invariant [15]
discrete [14].

Our implementation is based on the assumption tha t

[A(w),b(o)] has an mx(n+ 1) normal distribution

with mean (kg)

and covariance matrix

where the (n+ l)x(n+l) matrix Qi. denotes the covariance matrix of the i th and
jth rows of the random matrix [~(o).b(o)].

In addition to (9) we suppose

The objective function F of (1) is not constant on arbitrary line segments

From (9) is follows tha t the random m-vector A(o)x - b(w) has a normal dis-
tribution with mean - b and covariance matrix

I .1
where i =

The key to the construction of descent directions is now

THEOREM 3.1

Suppose tha t assumptions (9) and (10) are justified. If the n-vectors x and y f x
a re related according to

LC = 7iy (11.1)

and

Q, - Q, is positive semidefinite. (1 1.2)

then F(y) I. F(x) and h=y-x is a descent direction of F a t x. Moreover, if XED and
in addition -to (1 1.1) and (11.2) we have

 ED. (11.3)

then h=y-x is a feasible descent direction of F a t x.

NOTE

For a given x, (11.1) is a system of m linear equations for y. Relation (11.2)
means tha t the smallest eigenvalue of Qx - Qy is nonnegative. In the important
special case m = l . (11.2) i s reduced to t h e single quadratic constraint

If [~(o) ,b(o)] has stochastically independent rows, then (1 1.2) is equivalent t o

jiTQii ji r fTQiif for all i= 1,2.. .. ,m. (1 1.2b)

In this case, solutions y of (11) may be obtained by solving for a given vector x
the convex program

rninimze 9T~Q$ (12)

subject t o

where lsio<m is a fixed integer.

In the general case one must consider the program

maximize h(Q, - Qy)

subject to

Ay = A x
y ED,

where h(Q, - Qy) denotes the smallest eigenvalue of Q, - Qy

4. Implementation

4.1. Representation of the random matrix [A(w).b(w)]

[A(w),b(w)] is defined by

[A(w),b(w)] = [A O . ~ O] + z d[Aj,bj],
j=1,r

(14)

where [Aj,bj], j=O,l. ..., r. are mx(n+l) matrices to be selected by the user and
01,w2, . . . , wr a re independent normal random variables with mean zero and
variance one. A realization [~ (w ~) , b (~)] of [~(w),b(w)] is then given by

[A(wk),b(wk)] = [AO,~'] + z d[~j,b'] ,
j=l.r

where wk = (o:,~:, . . . , wi), k=0,1, ..., is a sequence of stochastically indepen-
dent realizations of the random r-vector w=(w1u2, . . . , wr) generated by means
of a pseudo-random generator that converts uniformly distributed pseudo-
random numbers into normally distributed ones based on the central limit
theorem.

4.2. Computation of the search directions
-

We suppose that rank = rank A0 = m < n. The matrix A = [Z,,Zz, . . . , &I,
where < is a column vector, must be partitioned by the user into a regular
mxm matrix

-
B=[Zkl.Zkp, . . . , ak,]

and an mx(n-m) remainder matrix
-

E=[&l.i&..,as+,].

The user must then define the index se t

Given the last iteration point xk, subroutine FUNCT computes a solution yk of
the relations (11.1)-(11.3). A t present only the case of D=Rn is implemented.
For the sake of generality the system of relations (11) is solved by means of the
program (13). If the situation demands it, the user need only replace this sub-
routine with a custom procedure for solving (1 1).

If yk#xk. then hk=yk-xk is a feasible descent direction (see theorem 3.1)
and the next iteration point x ~ + ~ is given by

~ k + ~ = xk + pk(~k - xk)*
where pk>O is a s tep size.

If yk=xk, then FUNCT fails to find a descent direction. The next iteration
point is then given by

Xk+ 1 = Xk - ~ k y k ,

where

Yk~~(ok>~au[~(o, '>xk - b(0k) 1.

4.3. Step size
At present, the step sizes pk, k=0,1, ..., are defined by

For a deterministic step the user may also take p k = l or pk=0.5.

4.4. Loss function u
The following classes of loss function are supported:

a) Quadratic loss function

U(Z) = c + q T ~ + ZWZ, zcRm,

where c is a fixed number, q is an m-vector, and W is a positive semidefinite
mxm matrix.

b) Pclynomial loss function

where s is a fixed integer.

c) Sublinear loss function

where fl.fi, . . . , fp a re fixed m-vectors.

4.5. Stopping criteria
The user must select a (small) positive number EPS>O, an integer ITMAX,

and a number TMAX. The program executes until one of the following condi-
tions is fulfilled:

bk+1 - XJ g EPS.

k>ITMAX (= maximum number of iterations),

T>TMAX (= maximum computing time)f,

where 1.1 denotes the Euclidean norm.

f Since system cdls t o determine the time and date vary from machne to machne, the
code has been changed so that t h s test is no longer performed - Ed.

Acknowledgment
The FORTRAN code was written by A. Boehme.

References
[I] Aitchison, J., Dunsmore. 1.R: Statistical Prediction Analysis. Cambridge:

University Press 1975

[2] Astroem, K.J.: Introduction to Stochastic Control Theory. New York-London:
Academic Press 1970

[3] Ermoliev, Yu.: Stochastic Quasigradient Methods and their Application to
System Optimization. Stochastics 9, 1-36 (1983)

[4] Ermoliev, Yu., Gaivoronsky. A: Stochastic Quasigradient Methods and their
Implemen tation. IlASA Working Paper, Laxenburg 1983

[5] Ferguson, T.S.: Mathematical Statistics. New York-London: Academic Press
1967

[6] Hirriart-Urruty, J.B.: Contributions a la programmation mathematique: Cas
deterministe e t stochastique. Thesis, University of Clermont-Ferrand 11,
1977

[7] Kall. P.: Stochastic Linear Programming. Berlin-Heidelberg-New York:
Springer 1976

[8] Kesten. H.: Accelerated stochastic approximation. Ann. Math. Statist. 29,
41-59 (1958)

[9] Marti, K.. Riepl, R.-J.: Optimale Portefeuilles mit stabil verteilten Renditen.
ZAMM 57. T337-T339 (1977)

[lo] Marti, K.: Approximationen stochastischer Optimierungsprobleme.
Koenigstein/Ts.: Hain 1979

[ll] Marti, K: On solutions of stochastic programming problems by descent pro-
cedures with stochastic and deterministic directions. Methods of Opera-
tions Research 33, 281-293 (1979)

[12] Marti, K.: Stochastic linear programs with stable distributed random vari-
ables. In: Optimization Techniques Part 2, J. Stoer (ed.), Lecture Notes in
Control and information Sciences 7. 76-86 (1978)

[13] Marti, K.: Solving stochastic linear programs by semi-stochastic approxi-
mation algorithms. In: Recent results in stochastic programming, P. Kall,
A. Prekopa (eds.), Lecture Notes in Economics and Mathematical Systems
179, 191-213 (1980)

[14] Marti, K.: On the construction of descent directions in a stochastic pro-
gram having a discrete distribution. ZAMM 64, T336-T338 (1984)

[15] Marti, K.: Computation of Descent Directions in Stochastic Optimization
Problems with Invariant Distributions. To appear in ZAMM 64 (1984), Heft
11

[16] Marti, K , Fuchs, E.: Rates of convergence of semi-stochastic approximation
procedures for solving stochastic optimization problems. Preprint in: Mit-
teilungen des Forschungsschwerpunktes Simulation und Optimierung
deterministischer und stochastischer dynamischer Systerne. HSBw Muen-
chen. November 1984.

[17] Marti, K.: Stochastische Dominanz und stochastische lineare Programme.
Methods of Operations Research 23, 141-160 (1977)

[18] Poljak B.T., Tsypkin, Ya.Z.: Robust pseudogradient adaption algorithms.
Automation and Remote Control 41, 1404-1410 (1980)

[19] Schmetterer, L.: Stochastic approximation. Proceedings 4th Berkeley
Symposium on Mathematical Statistics and Probability, Vol. 1, 587-609
(1960)

[20] Sorenson, H.W.: Parameter Estimation. New York-Easel: M. Dekker 1980

[23,] Wasan. M.T.: Stochastic Approximation. Cambridge: University Press 1969

[22] Wets, R.: Stochastic Programming: Solution Techniques and Approximation
Schemes. In: Mathematical Programming: The State of the Art, A. Bachem,
M. Groetschel, B. Korte (eds.), 566-603, Berlin-Heidelburg-New York
Springer 1983

[23] Ziemba, W.T., Vickson, R.G. (eds.): Stochastic Optimization Models in
Finance. New York-London: Academic Press 1975

SPORT User's Manual

J. Edwards

Introduction
This program, Stochastic Programming Optimizer with Recourse and

Tenders (SPORT), implements Nazareth and Wets' inner linearization method
for stochastic programs with recourse. It also includes an implementation of a
method for solving simple recourse problems tha t relies on the introduction of
bounded variables. The two methods a re called ILSRDD (Inner Linearization,
Simple Recourse, Discrete Distribution) and BVSRDD (Bounded Variables, Simple
Recourse, Discrete Distribution), respectively, and are described in [I], [2], and
[3]. The program was developed a t the University of California a t Berkeley and
a t IIASA by Larry Nazareth. It is written in FORTRAN IV. A description of the
implementation may be found in [I]. The contents of this manual a r e largely
taken from [I], [2], and [3].

The cu r ren t version of SPORT (Version 1.q) addresses problems with simple
recourse and stochastic right hand side elements with a given discrete proba-
bility distribution.

The Problem
SPORT is designed to solve two-stage stochastic linear programs with

recourse, whose general form is to find z E R ~ ' to minimize

subject to

where

Q(z,w) = inf[qy I Wy = h (w) - Tz] ,
UM

h (ur) i s a random vector with m2 elements defined on a probability space whose
events a re denoted by w ; z is the decision vector and contains nl elements; y
is the optimal recourse vector given some (z , w) and contains n2 elements; A, T,
and W are fixed matrices with dimensions mlxnl, m2xn,, and m2xn2. respec-
tively; b , c . and q a re fixed vectors containing m l , n l , and n2 elements, respec-
tively; and 'E,' denotes mathematical expectation with respect to w . Note tha t
only the right-hand-side, h (w) , is random.

As noted above, the cur ren t version of SPORT solves the above problem
only for simple recourse (i.e., W = [I,-I]), stochastic right-hand-side elements
with a given discrete probability distribution, a n d penalty vectors q + and q-
associated with shortage and surplus, respectively, in the recourse stage (1.1).

Thus, (1 . 1) may be written

Q (Z , W) = min [q+y+ + q-y- (ly+ - Iy- = h (w) - T z] (1 . 1 ')
u+.u-

where

and the ith row of h (w) may assume one of the values A,l, . . . ,b4, where

A,.j < h,j+l, with probabilities pil, . . . ,p*,. SPORT also allows the user to
specify a weight for the recourse value [effectively adding a factor p to Q (z , w)
in (I)] .

The Methods
Both ILSRDD and BVSRDD require that the problem be cast into a more

tractable form before i t is solved. Since the technology matrix is fixed, the sub-
stitution x = Tz may be made, thereby introducing the variables X, called
'tenders,' into (1) . This transformation is useful because i t generates a non-
linear program in which the number of variables occurring nonlinearly is m 2
rather than n l , and usually m2<<nl. The problem then becomes

minimize cz + + (x) (2)

subject t o

where

and the vector q and t h e matrix W are reintroduced for notational convenience.

A further transformation involves introducing second stage activities into
the first stage. I t is shown in [2] that (2) is equivalent to

minimize cz + qy + + (x) (3)

subject to

where + and $ are defined as in (2). This form has significant advantages from
a computational standpoint.

Both ILSRDD and BVSRDD exploit the separability of +, which is due to the
presence of simple recourse and to the separability of the cost vector. Thus,
+h) may be written

Furthermore, since each component of h (w) is discretely distributed and since
the cost vector is two-piece linear, each +,hi) is piecewise linear, viz.

+,hi) = max (sUxi + e,)
1=o*,

where

is the expected value of the ith row of h (w) , and by convention C = 0.7
1 =1.0

ILSRDD is based on Wolfe's Generalized Linear Programming method (GLP).
which solves a sequence of problems obtained by inner (or grid) linearization of
(3) over the convex hull of the set of tenders Ix', . , . ,pj. (Actually, because the
amount of memory in the computer is finite, SPORT uses a smaller set with a
fixed number of tenders, [XKn+', . . . ,a.) The problems are of the form

minimize c z + q+yf + q-y- + C &\k(,$)
k =1.K

(5)

subject to

The tenders x', . . . ,f are assumed to have been generated previously. x1 is set
to the expected value of h (w) prior to the first iteration. A new tender is
obtained in each cycle by solving the Lagrangian subproblem

minimize +&) + GX
x

(6)

where nK is formed by the dual multipliers associated with the constraints (5.1)
in the optimal solution of (5).* The optimal solution of (6). represents an
improvement provided

where dK is formed by the dual multipliers associated with the constraints (5.2)
in the optimal solution of (5). If no such x can be found, the current solution is
optimal. Generally speaking, problem (5) lends itself to solution because only a
few tenders will have nonzero coefficients in the optimal solution and because a
good set of initial tenders can be provided given the underlying recourse pro-
gram.

The properties of +(x), particularly the convexity and piecewise linearity of
+,(xi). permit the use of a simpler iterative technique. BVSRDD introduces new
variables zU for each interval over which +,hi) is linear. It follows tha t

where xp is the ith component of f, the base tender, and zil is bounded below

t Because +, is convex, the sils form an increasing sequence (in fact, -gi+ I sir I qi-,
0 I 1 S ki . It also happens thzt the eir s form a nonincreasing sequence.
* Since +(x 1 is separable, (6) is easily solved. See [2] for more details.

by zero and above by the length of the I th interval. With this substitution for
+,k,). (2) becomes

minimize c z + C C silzil
(=l.mz 1=0.k,

(7)

subject to

where T, is the ith row of the matrix T. The zils are constrained to the length of
the I th interval as before. This is a straightforward linear program.

Because of its dependence on the properties of +, BVSRDD is fairly limited
in its range of passible application. The algorithm has been implemented pri-
marily to provide some assurance that ILSRDD is working properly.

The program itself is essentially a front end to a customized version of
MlNOS [4]. The program reads the data and establishes the appropriate form of
the problem [(5) or (7)], then calls MINOS routines to solve the resulting Linear
prograrn(s). Because there are two methods implemented, one of which
requires the solution of several linear programs, some of the MINOS procedures
have been modified.

Input Overview
SPORT requires three logically distinct sets of data. The first set is control

information. The second set contains most of the nonstochastic data for the
problem. The h a 1 set provides information about the tenders and the distribu-
tion of the random vector h(w) . I t is anticipated that in normal practice the
three sets of data will reside in three separate files.

Standard Input. Output. and Error Files
The program reads i ts control information from the standard input file

(usually connected to unit 5) and writes its results and error messages to the
standard output file (usually connected to unit 6). These files are assumed to
be standard from system to system and consequently they a re not opened by
the program. The user may alter the standard input, standard output, and
standard error unit numbers as described in the section entitled 'User-
Accessible Parameters' below. The user is responsible for opening these files if
necessary.

Control Information
The user must supply the program with various limits, file names and unit

numbers. and other options. This control information resides in a 'specs' file.
The user must connect this file to the standard input unit before the program is
invoked.

The specs file contains a number of sections, some of which may be empty.
Each section is identified by a keyword which begins in column 1. In general,
entries within a section are identified by a keyword which begins in column 5
and the actual values begin in column 23. The keywords that identify each sec-
tion must appear even if default values are selected, although in this case the
section need not contain any entries. Unless otherwise specified, all character
values are read using a 2A4 format and all numeric values are read using an I8

format. Keywords must be capitalized and only the first four characters of a
keyword (including trailing blanks) are significant. The sections are listed
below with their keywords in parentheses. The sections must appear in the
order specified.

- name of the method ('ISLRDD' or 'BYSRDD'). This section selects
which algorithm shall be used.

- etart of control information ('BEGIN'). This identifies the beginning
of the control file.

- file names and unit numbers ('UNIT'). SPORT uses nine files, three of
which are assumed to be standard on all systems. This section
specifies the unit numbers and file names for the remaining files
used by the program. There may be as many as six entries in this
section and they may appear in any order. Each entry consists of
two cards. The first card contains a keyword beginning in column 5
and an integer beginning in column 23. The second card contains a
character string in columns 1 through 20. The keyword identifies
one of the files used by the program. The integer specifies a unit
number for the file and the string is the file name for the file.
Unless otherwise specified, unit numbers and file names must be
unique. Although zero is a legal unit number on some systems, the
program will generate an error if the user attempts to assign this
unit to the core file, to the stochastics file, or to either of the MINOS
files. Valid entries and their keywords are
- core file ('CORE') This entry specifies the unit number and file

name for the 'core' file (see the section entitled 'Core File'
below). If the unit number is the same as the standard input
unit number the file name is read but is not used (i-e., the core
data is assumed to follow the control information in the specs
file). The unit number may not be the same as the standard
output unit number or the standard error unit number.

- stochastics file ('STOCHAS17CSg) This entry specifies the unit
number and file name for the 'stochastics' file (see the section
entitled 'Stochastics File' below). If the unit number is the
same as the standard input unit number or the core file unit
number, the file name is read but is not used (i.e., the stochas-
tics data is assumed to follow the control information or the
core data in the appropriate file). The unit number may not be
the same as the standard output unit number or the standard
error unit number.

- YWOSspecificationsfile('SPECS')Thisentryspecifiestheunit
number and file name for the MINOS control file (see the sec-
tion entitled 'MINOS Files' below). The unit number may not be
the same as that of any of the standard files.

- MINOS data file ('KPS) This entry specifies the unit number and
file name for the MINOS data file (see the section entitled
'MINOS Files' below). The unit number may not be the same as
that of any of the standard files.

- debug 6le ('DEBUG') (optional) This entry specifies the unit
number and file name for the debug file, which contains the
values of Si t , eil ,g ,x, and some variables internal to t,he program
at various points of execution. If ths entry is omitted, no debug
file is produced. A unit number of 0 also inhibits production of

the debug ale. If t he unit number is t he same the standard
output unit number or the s tandard e r ror uni t number, the file
name is read but is not used (i.e., the debug information is writ-
ten to t he appropriate s tandard file). The uni t number may not
be t h e same a s the standard input uni t number.

- log He ('LOG') (optional) This entry specifies the unit number
and file name for the log file, which contains a t race of the
program's execution and the contents of t he stochastics file
and part of t h e core file as read by the program. If this entry is
omitted, no log file is produced. A unit number of 0 also inhi-
bits production of the log file. If the uni t number is the same
the standard output unit number or t he standard error unit
number, the file name is read but is no t used (i.e., the log infor-
mation is written to the appropriate s tandard file). The unit
number may not be the same a s t h e standard input unit
number.

- maximum memory requirements ('DIMJ3NSIONS) This section pro-
vides t h e program with the information necessary t o set up a
number of arrays. The entr ies in this section may appear in any
order and all a r e optional. Each en t ry contains a keyword beginning
in column 5 and a value beginning in column 23 (an exception is the
'TENDERS' entry; see below). If an entry i s omitted, t h e correspond-
ing variable assumes the default value indicated. These defaults
may be changed a s described in t h e section entitled 'User-Accessible
Parameters. ' Valid entries and the i r keywords a re

- maaimurn number of right-hana-side elements ('-')
This is the maximum number of nonzero elements in the aug-
mented matrix, i.e.. in [A1 after t h e transformations in (2)
and (3) have been applied. This value mus t provide enough
space for generated tenders a s well a s those t h a t a r e entered in
the input data. The default value is 5 t imes t h e maximum
number of matrix columns (see below).

- maximum number of matrix rows ('ROWS') This is t he maximum
A number of rows tha t may appear in t h e combined matrix

The default value is 100.
- maximum number of technology rows ('TECHNOL€)GY') This is

the maximum number of rows tha t may appear in the technol-
ogy matrix, T. This value may not exceed the maximum
number of matr ix rows a s specified in t h e 'ROWS' entry. The
default value is 20.

- maaimurn number of matrix columns ('COLUMNS') This is the
maximum number of columns tha t may appear in the combined
matr ix [A 1x1, where x i s t he matr ix formed by the se t of
tenders (each of which is a column vector with m l rows) used in
problems (5). The default value is 3 t imes the maximum
number of matrix rows (see above).

- maaimurn number of values for hi(w) (('PROBABILTIES') This is
the maximum number of points in the support of any row of
h (w) [i.e., the maximum permissible ki in (4.1)]. The default
value is 30.

- tender information h s) ('TENDERS') This entry contains three
subentries. Each subentry contains a keyword beginning in
column 9 and a value beginning in column 23. The subentries
may appear in any order and all a r e optional. Valid subentries
and their keywords a re

maximum number of u se r supplied tenders ('INPUT) This is
t h e maximum number of tenders tha t may be entered in
t he stochastics file (see below). For BVSRDD, this value
must be 1. For ILSRDD, this value may not exceed the max-
imum number of tenders saved as specified in the 'GEN-
ERATED' entry. The default value is 1.

maximum number of tenders saved ('GENERATED') This is
t he maximum number of tenders tha t will appear in the
s e t used to generate each problem (5) in ILSRDD (i.e., n).
The default value is 20.

- maximum number of tender elements ('ELEMENTS') This is
t h e maximum number of nonzero elements that may
appear in the tenders in the se t used t o generate each
problem (5) in ILSRDD or tha t may appear in the base
tender in BVSRDD. The default value is 2000.

- row and vector names ('SELECTORS) This section identifies which
row is the objective row and which vectors in the 'RHS,' 'BOUNDS,'
and/or 'RANGES' sections of t he core file a r e to be used. The entr ies
in this section may appear in any order. Each entry contains a key-
word beginning in column 5 and a value beginning in column 23. If
an optional en t ry i s omitted, t h e first applicable row or vector found
in the core file is taken t o be the desired entry. Valid entries and
their keywords a r e
- name of the objective row ('OB6ECXIVE') The type 'N' row with

this name in the 'ROWS' section of t h e core file is taken to be
the objective row.

- name of the right-hand-side vector ('RHS') The entries in the
'RHS' section of t he core file t ha t contain this name in t he first
name field (columns 5 through 12) form the vector b .

- name of the bounds vector ('BOUNDS') (optional) The entries in
the 'BOUNDS' section of t h e core file t ha t contain this name in
the first name field (columns 5 through 12) provide bounds on
the decision variables.

- nameoftherangesvector('RANGES) (0pt iona l)Theent r ies in
the 'RANGES' section of t h e core file tha t contain this name in
the first name field (columns 5 through 12) provide ranges for
the decision variables.

- miscellaneous control information ('CONTROL') This section contains
a number of miscellaneous control parameters. The entries in this
section may appear in any order and all a r e optional. Each entry
contains a keyword beginning in column 5 and a value beginning in
column 23. If an entry i s omitted, the corresponding variable
assumes the default value indicated. These defaults may be
changed a s described in t he section entitled 'User-Accessible
Parameters. ' Valid entries and the i r keywords a re

- pr in t control ('OUTPUT') This entry specifies how much infor-
mation is written to the log file and to t he standard output file.
The default value is 2 and causes the program to place a certain
amount of information in the output files. A value less than 2
causes less information to be written t o the log file and a value
greater than 2 causes additional information to be written t o
the output file. See the sections describing the output and log
files below for more details.

- maximum number of cycles ('CYCLE') This is the maximum
number of linear programs (5) to solve when applying ILSRDD
(i.e.. the maximum number of tenders generated or the max-
imum permissible value for K). It is not used by BVSRDD. The
default value is 1.

- scale factor (px100) ('SCALE') This is t he factor by which the
recourse value is multiplied. It is expressed as a percentage
(i.e., a value of 100 results in a factor of 1.00). The default
value is 100.

- MINOS specibcations ('MINOS') This section contains any additional
MINOS options desired. Any cards whose first four columns are blank
will be echoed in t he MINOS specifications file after the cards t h a t
specify the objective row, rh s vector, bounds vector, and/or ranges
vector and before the card that gives the cycle limit.

This section need not contain any entries.
- END card ('END*) This card marks the end of t h e control informa-

tion.

Core me
The core file contains the data for the decision variables. It specifies

- t he name and type of each row in the problem,

- t he objective. c ,
- the nonzero elements of A and T,
- t he deterministic right-hand-side, b , and
- t h e bounds on the decision variables.

The core file is specified in standard MPS format [5]. The 'ROWS' section
contains an entry for the objective and for each row of A and of T. The rows of A
and of T may be interleaved. The rows of T are normally equality rows, but the
program performs the necessary conversions if this is no t the case (e.g., if
there is no penalty on surplus). The 'COLUMNS' section contains the elements of
c and t h e nonzero elements of A and of T. The 'RHS' section contains t he
nonzero elements of b . Nonzero elements of b t ha t correspond to rows of the
technology matr ix a r e ignored. The 'BOUNDS' and 'RANGES' sections may be
used to impose limits on the solution as in normal practice.

Stochastics Flle
The stochastics file specifies the information pertaining to the recourse

problem. It specifies
- the names of the rows that constitute the technology matrix,

- the distribution of each row of the stochastic rhs vector, h(w) ,
- the penalties on shortage and surplus, q + and q- , and
- the set of initial tenders for ILSRDD or the base tender for BVSRDD.

The stochastics file is specified in a subset of an extended MPS format
developed for stochastic linear programs with recourse [6]. Like the core file,
the stochastics file consists of a number of sections. Field conventions similar
t o those in standard MPS are employed. That is, section names begin in column
1; options on the same line as a section name begin in column 15. Data lines
have six fields (some of which may be blank): a code field (columns 2 and 3),
three name fields (columns 5 through 12, 15 through 22, and 40 through 47),
and two numeric fields (columns 25 through 36 and 50 through 61). The con-
tents of the code and name fields a re interpreted as character strings. The sec-
tions are

NAb¶E- This is an informative header card. The user may en te r any charac-
ters desired in columns 15 through 72.

TM=HNOLOGY - This section of t he stochastics file specifies which of the
rows listed in t h e 'ROWS' section of the core file constitute the technology
matrix, T. The data consists of a list of names corresponding to a subset of
the list of row names specified in the 'ROWS' section of t h e core file. The
contents of these rows (as specified in the COLUMNS section of the core
file) constitute t h e technology matrix. One name appears per line, in the
first name field (columns 5 through 12).

DISBUBUTIONS - This section of t h e stochastics file specifies the probability
distribution of the r.h.s., h(w) . The data consists of sets of entries of the
form "rowname value probability." There is one such set for each of the
rows named in the TECHNOLOGY section. "Rowname" specifies the row
associated with t h e entry; i t occupies the first name field on a line
(columns 5 through 12). "Value" and "probability" give a value for the row
arid its likelihood, respectively. They occupy the first and second numeric
fields (columns 25 through 36 and 50 through 61), respectively.

The sum of the probabilities for a given row must be unity. Entries for
different rows must not be mixed together.

RECOURSE - This section of the stochastics file is included to provide com-
patability with files specified strictly according to the format described in
[6]. It contains no data.

OBJECTIVES - This section of t h e "stochastics" file specifies t h e recourse
objectives, q . The data consists of entries of t h e form "name value value",
where "name" gives t h e name of a row of T. t he first value gives the
corresponding value of q+ , and the second value gives t h e corresponding
value of q-. The name occupies the first name field on a line (columns 5
through 12) and t h e values occupy the first and second numeric fields
(columns 25 through 36 and 50 through 61), respectively.

TENDERS - This section specifies the value(s) for the initial tender(s) used
by the algorithms. The data consists of entries of t he form "name
rowname value," where "name" is a name provided for the tender,
"rowname" specifies the row of T associated with the entry, and "value" is
the value of the corresponding row in the tender vector. "name" is
repeated for each row in the tender and there is one such name for each
tender specified. "name" and "rowname" occupy the first two name fields
(columns 5 through 12 and 15 through 22, respectively) and "value" occu-
pies the first numeric field (columns 25 throgh 36). If a se t of tenders is
provided for ILSRDD, the first is used by BVSRDD (although all a re read).

ENDATA- Indicates the end of the "stochastics" file.

MNOS Flles
The program generates the MINOS specifications file and the MINOS data

file from the specs file and from the core and stochastics files, respectively.
The user may pass options to MINOS as described in the paragraph on MINOS
specifications in the section entitled

Output File
This file contains the results generated by the program. If the print control

variable i s 2 or less, the program writes certain error messages and the follow-
ing data to the output me:
- the contents of the specs file,

- the proposed tender, cur rent objective value, and lower bound for t h e
optimal objective value after each cycle,

- t he standard MINOS output for the last linear program solved, and
- the first and second stage costs, the optimal tender, t he dual multipliers

(prices) associated with t h e technology rows in the optimal solution, and
the probabilities of the equivalent change constrained programs.

If the print control variable i s greater than 2, the output includes the s tan-
dard MINOS output for each linear program solved.

Log File
This file contains a t race of t h e program's execution. If the print control

variable is 2 or more, the program writes the following data to the output file:
- various messages concerning the program's activity, e.g., reading stochas-

tics file, finished writing MINOS specs file,
- the contents of the stochastics file, and
- the 'NAME,' 'ROWS,' and 'RHS' sections of the core file.

If the print control variable is less than 2, the 'ROWS' and 'RHS' sections of
t he core file are not printed.

Data Structures
The matrices in problem (1) tend to be rather sparse, and the program

represents them in a compact fashion to save space. To represent a large,
sparse, two-dimensional array, t he program uses three smaller one-dimensional
arrays. The first array contains the nonzero elements of the matrix. These ele-
ments a re ordered by column. Each element of the second array contains the
row index within the sparse matrix of the corresponding element in the first

array. The third array contains the indices within the first two arrays where
the entries for each column of the sparse matrix begin. The ith entry in the
third array is a pointer to the beginning of the ith column.

The program uses one (very large) array to hold the contents of most of
the matrices and vectors used by the algorithm. A similar scheme is used by
M I N O S , and this array is passed to the M I N O S routines.

User-Accessible Parameters
The default values for the standard unit numbers and for the variables in

the specs file may be changed by changing the values of the appropriate vari-
ables when they are initialized a t the beginning of the appropriate routines.
Items with default values are listed in the table below together with the variable
that contains the value of the item and the subroutine in which the default
value is established.

Value Variable Subroutine

standard input unit number
standard output unit number
standard error output unit number
debug file unit number
log file unit number
maximum number of rhs elements
maximum number of matrix rows
maximum number of technology rows
maximum number of matrix columns
maximum number of values for & (w)
maximum number of user supplied tenders
maximum number of tenders in set
maximum number of nonzero tender elements
objective row name
rhs vector name
bounds vector name
ranges vector name
print control
maximum number of cycles
scale factor (p)

in
iprint
ierprt
idebug
iout
maxele
maxrow
maxtrw
maxcol
maxpro
maxten
maxgtn
maxtel
mobj
mrhs
mbou
mran
lvou t
ncycle
scale

sport
sport
sport
readsp
readsp
readsp
re adsp
readsp
readsp
readsp
readsp
readsp
readsp
readsp
readsp
re adsp
readsp
readsp
re adsp
readsp*

The vzlue specified in the program for the scale factor is not a percentage.
That is. if p is one half, the variable 'scale' should be set t o 0.5, not to 50.

The variable 'ctol,' set in subroutine sport, is used as a tolerance to deter-
mine convergence. If

(k(ptl) + nKXK+l -gK2 ctol

the optimal solution is taken to have been found. 'ctol,' which must be nega-
tive, is currently -l.lo-?.

There are a number of machine dependent parameters. They are

Parameter Variable Subroutine Current Value

positive i n h i ty plinfy sport lpO
double precision tolerance ePs mlinit 2 -55

number of integers per real*8 variable nwordi sport & mlini t 2
number of reals " nwordr m lini t 2
number of integer*2 variables " nwordh rn linit 4

Subprocedure Hierarchy
See the attached figure. The MINOS routines shown have been modified.

Library Routines
The program uses version 4.9 of MINOS. Several routines have been

modified to reflect the special requirements of the program.

References

[I] J.L. Nazareth and R. J.-B. Wets, 'Stochastic Programs with Recourse: Algo-
rithms and Implementation.' IIASA Working Paper, forthcoming

[2] J.L. Nazareth, 'Algorithms Based Upon Generalized Linear Programming for
Stochastic Programs with Recourse,' IIASA Working Paper WP-84-81, 1984

[3] J.L. Nazereth and R J.-B. Wets, 'Algorithms for Stochastic Programs: The
Case of Nonstochastic Tenders,' IIASA Working Paper WP-83-5, 1983

[4] B. Murtagh and M. Saunders, 'Large Scale Linearly Constrained Optimiza-
tion,' Mathematical Programming v. 14. pp. 41-72. 1978

[5] IBM Corp., Mathematical Programming Subsystem - Extended (W!5X) and
Generalized Upper Bounding (GUB) Program Description, documen t
number SH20-0968-1

[6] J. Edwards, J. Birge, A King, and L. Nazareth, "A Standard Input Format for
Computer Codes which Solve Stochastic Programs with Recourse and a
Library of Utilities to Simplify Its Use," IIASA Working Paper, forthcoming

