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ABSTRACT

We prove several equivalent versions of the inverse func-
tion theorem: an inverse function theorem for smooth maps on
closed subsets, one for set-valued maps, a generalized implicit
function theorem for set-valued maps. We provide applications
of the above results to the problem of local controllability of
differential inclusions.

I dedicate this paper to Professor Ky-Fan, who has
greatly influenced me, in particular, when I met him
in CEREMADE during the fall of 1982.

1. The Inverse Function Theorem

Let X be a Banach space, KCX be a subset of X. We recall
the definition of the tangent cone to a subset K at x intro-
duced in Clarke [1975]:

C,(x ) := {vex| lim d(x+hv,K) _ o3
K'7o h h
>0+
XX
o
X€K

We state now our basic result.

Theorem 1.1.

Let X be a Banach space, Y be a finite dimensional space,
KCX be a closed subset of X and X belong to K. Let A be a



differentiable map from a neighborhood of K to Y. We assume
that A' is continuous at X and that the following surjectivity
assumption holds true

(1) At (x)Cp(x)) =Y .

Then A(xo) belongs to the interior of A(K) and there exist con-
stants p and 2 such that, for all

y1,y2€A(xo) + pB and any solution X, € K to the

equation A(x,) =y, satisfying "xo-x1ﬂj_2p, there
(2) exists a solution X, €K to the equation A(x,) = Y,
satisfying ﬂx1-x2ﬂf_2"y1-yzﬂ. A
We recall
Definition

A set-valued map G from Y to X is pseudo-Lipschitz around
(yo,xo)EEGraph (G) if there exist neighborhoods V of Yq and
W of Xq and a constant & such that

i) ¥ye€ev, Gly) # 2
ii) ¥y, .y, €V, G(y1)ﬁWCG(y2)+2,||y1—y2||B . A

The above definition was introduced in Aubin [1982], [1984].
(See also Rockafellar [to appear] d) for a thorough study of
pseudo-Lipschitz maps.)

Hence, the second statement of Theorem 1.1 readsi

the map y-+A-1(y)r1K is pseudo-Lipschitz around
(Ax _,x ).
o'%o

(2)

Remark

If X, belongs to the interior of K, then CK(xo)==X. Then
assumption (1) states that A'(xo) is surjective, and we obtain

the usual "inverse function theorem”", also called the "Liusternik
theorem".



We deduce a characterization of the interior of a closed

subset of a finite-dimensional space given by Clarke [1983]:
onInt(K) - CK(xo) = X .

(We take X = Y and A to be the identity). A
The proof of Theorem 2.1 is based on the Ekeland varia-

tional principle [1974] and is given in Aubin-Frankowska [1985].

Corollary 1.2.
We posit the assumptions of Theorem 1.71. Let

A_1(A(xo))fWK be the set of solutions x€ X to the equation
Then there exist a neighborhood U of X and a

M:=
A(x) = A(xo)-
constant £ such that

¥XEKNU, d(x,M) < elax) -ax)l .

Furthermore
[ ]
CK(xo)rWKer A (xo)<:CM(xo) . A

We shall derive the extension to set-valued maps of the

inverse function theorem. Let X,Y be Banach spaces and F be a

map from X into the subsets of Y.
The derivative CF(xo,yo) of F at (xo,yo)GEGraph (F) is the

set-valued map from X to Y associating to any u€ X elements
VEY such that (u,v) is tangent to Graph (F) at (xo,yo):

VECF(xo,yo) (u) « (u,v) ecGraph (F) (xo,yo)

Theorem 1.3.
Let F be a set-valued map from a Banach space X to a finite

dimensional space Y and (xo,yo) belong to the graph of F. If

graph F is closed and CF (xo,yo) is surjective,

1

then F_ | is pseudo-Lipschitz around (y,,x ) € Graph (F~ ).



Proof
We apply Theorem 1.1 when X is replaced by Xx Y, K is the
graph of F and A is the projection from XxY to Y. a

Remark: A dual formulation.
Since the dimension of Y is finite, assumption (1) is
equivalent to

L « N
A (xo) CK(xo) is dense in Y
which can be translated as
. ] ¥ - _
if A (x,) q belongs to Cy(x_ ) , then q =0

If F is a set-valued map from X to Y, we define the coderiva-

*

tive CF(xo,yo) of F at (xo,yo)ezGraph (F) as the "transpose"

of CF(xO,yo), from Y* to x* defined by

pGECF(xo,yo)*(q) « sup (<p,u>-<q,v>) = 0

(u,v) € Graph CF(xo,yo)

Therefore, in Theorem 1.3, we can replace the surjectivity
assumption by the "dual assumption"

CF (x,.y,) ¥ (0) = (0}

2. Applications to Local Controllability

Let us consider a set-valued map F from R into compact

subsets of R'. We associate with F the differential inclusion
(3) x' €F(x) .

A particular case of (3) is the parametrized system (also called a
"control system")

(4) x' = f(x,u(t)) ’ u(t) €U

where U is a given set of controls; then F is defined by



F(x) = {f(x,u) : ueu}

Let T>0. A function xEEW1’1(0,T) (Sobolev space) is called a

solution of differential inclusion (3) if
x'(t) €EF(x(t)) a.e. in [0,T] .

For a point Eemn denote by ST(E) the set of solutions to (3)
starting from £ and defined on the time interval [0,T]. The
reachable set for (3) at time T from £ is denoted by R(T,£), i.e.

R(T,E) = {x(T) :xEST(E)}

The system (3) is called locally controllable around § if

for some time T >0
(5) £eInt R(T,E) .

The purpose of this section is to provide a sufficient
condition for (5) when £ is an equilibrium of F, i.e. 0€F(£).

We shall apply the results of Section 1. The set of solutions
ST(E) is closed in w1’1(0,T) whenever Graph (F) is closed in
R'x R Consider the continuous linear operator A from the
Banach space w1’1(0,T) into the finite dimensional spaceIIRn

defined by
A(x) = x(T) for all x65w1’1(0,T) .

Theorem 1.1 then states that if xo denotes the constant tra-

jectory xo(-) = £ and {w(T) : wecC = IRn then the re-

. 5.(5) (x )}
lation (5) holds true.

Let B denote the closed unit ball in R". We say that a
set-valued map F is Lipschitzian (in the Hausdorff metric) on
an open neighborhood V of ¢ if for a constant L>0 and all

X, YEV

F(x) CF(y) + Lix-ylB



Thanks to this property we can compute a subset of Cs (5)(xo):
T

Theorem 2.1. Assume that F has a closed graph and is Lipschitzian
around the equilibrium £. Then every solution of the differ-
ential inclusion

w'(t) ECF(£,0) w(t) a.e. in [0,T]
(6)

w (0) =0

belongs to C (xo). A

ST(E)
The proof of the last result is based on a Filippov
Theorem [1967].
We say that the inclusion (6) is controllable if its
reachable set at some time T >0 is equal to the whole space.
Theorems 1.1 and 2.1 together imply
Theorem 2.2. Assume that F has aclosed graph and is Lipschitz-
ian around the equilibrium §. The inclusion (3) is locally
controllable around £ if the inclusion (6) is controllable. A

Remark. Actually the idea of the proof of Theorem 1.1 allows us

to prove a stronger result: We denote by co F(g) the closed
convex hull of the set F(£).

Theorem 2.3. Assume that F has aclosed graph and is Lipschitz-

ian around the equilibrium §{. The inclusion (3) is locally

controllable around £ if the inclusion

w' ecl [CF(&,O)w+CcoF(€) (0)]
(7)
w(0) =0
is controllable. A

The proof requires a very careful calculation of varia-
tions of solutions (see Frankowska [1984]).

A necessary condition for the controllability of the in-
clusions (6), (7) 1is

Dom CF (£,0) :={we R":CF (£,0)w # g} = R"



Whenever it holds true the right-hand sides of (6), (7)
are set-valued maps whose graphs are closed convex cones.
Such maps, called "closed convex processes", are set-valued
analogues of linear operators. The controllability of such
differential inclusions is the subject of the next section.

First, we provide the following
Example.. Using Theorem 2.3 one can obtain a classical result
on local controllability of control system (4) without assum-
ing too much regularity. Let U be a compact set in R™ and let
f: R"xU+R" be a continuous function. Assume that for some
(£,0) e R"xU, £(£,d) = 0 and for some B>0, L>0 and all u € Uu;
X,y€ & + BB

hE(x,u) = £(y,u) I < Lix-yl

%5 (+,u) is continuous on £ + 8B

Theorem 2.4. If the sublinearized differential inclusion

w' 3t (g,E)w+cc

= (0)

o £(g,0)

w(0) =0

is controllable, then the system (4) is locally controllable

around £. A

3. Controllability of Convex Processes

A convex process A from R" to itself is a set-valued map

satisfying
vx,y€DbDom A , A,u >0 , AA(x) + UA(y) C A(Ax +uy)

or, equivalently, a set-valued map whose graph is a convex
cone. Convex processes are the set-valued analogues of linear
operators. We shall say that a convex process is closed if its
graph is closed and that it is striet if its domain is the

whole space. Convex processes were introduced and studied in



Rockafellar [1967], [1970]1, [1974] (see also Aubin-Ekeland
[1984]). We associate with a strict closed convex process A
the Cauchy problem for the differential inclusion

x'(t) EA(x(t)) a.e.
(8) {

x(0) =0

We say that the differential inclusion (8) is controllable if
the reachable set

1.1

R:={x(t):xEW (0,t) is a solution of (8), t> 0}

is eqgual to the whole space R".
A particular case of (8) is a linear control system

{x = Fx+GU ueu

(9)
x(0) =0

where U is an m—-dimensional space and FeL(]Rn, IRn) , GE L(IRm, ]Rn)
are linear operators.

We observe that the reachable set R(T,0) of (8) at time T
is convex. Since 0€A(0) the family {R(T,O)}T>0
Moreover, R =TEO R(T,0). Hence (8) is controllable if and only

if it is controllable at some time T>0, i.e.d T >0 such that

is increasing.

R(T,0) = R" ]

a) The rank condition

Let A be a strict closed convex process. Set A1(0) = A(0)

and for all integer i >2 set

a0y = a@ai (o))

Theorem 3.1. The differential inclusion (8) is controllable

if and only if



for some m > 1 Am(O) = (-A)m(O) = R" .

A

In the case of system (9) for all x€ R® Ax = Fx + Im G.
Thus

A™(0) = (~a)™(0) =ImG+ F(ImG)+...+F* ' (Im G) i

The Cayley-Hamilton theorem then implies the Xalman rank condi-

tion for the controllability of the linear system (9):

rk [G,FG,...,F* 6] = n .

Theorem 3.1 is a consequence of the following
b) "“Eigenvalue" criterion for controllability

We say that a subspace P of R" is invariant under a strict
closed convex process A if A(P) CP.

A real number A is called an eigenvalue of A if Im(A-AI) #
# If& where I denotes the identity operator.

Theorem 3.2. The differential inclusion (8) is controllable if

and only if A has neither a proper invariant subspace nor eigen-
values. A

It is more convenient to write the above c¢riterion in a
"dual form":

¢) "Eigenvector" criterion for controllability

The convex processes can be transposed as linear operators.
Let A be a convex process; we define its transpose A¥ by

pEA* (q) » ¥(xX,y) €Graph A, <p,x> < <qg,y> .

It can easily be shown that A is an eigenvalue of A if and
only if for some qéEIm(A-kI)l, qg# 0

AqGEA*q

We call such a vector g # 0 an eigenvector of A*. Theorem 3.2

is then equivalent to



Theorem 3.3. The differential inclusion (8) is controllable if

and only if A* has neither a proper invariant subspace nor eigen-
vectors. A

The proof of Theorem 3.3 is based on a separation theorem
and the KY-FAN coincidence theorem [1972]. (See Aubin-
Frankowska-Olech [1985]).
Examples: a) Let F be a linear operator from nflto itself, L
be a closed convex cone of controls and A be the strict closed

convex process defined by
A(x) :=Fx+1L .

Then its transpose is equal to
. F*g if geLt
A" (q) =
g if gqg LY .

When L = {0}, i.e., when A=F, we deduce that A*=F*, so that
transposition of convex processes is a legitimate extension of
transposition of linear operators.

Consider the control system

‘f = AXx+u, Uu€l
(10)
lx(0)== 0 .

Corollary 3.4.

The following conditions are equivalent.

a) the system (10) is controllable

b) For some m »1 L+ F(L)+...+F (L)=
L=F(L)+...+(=1)"F"(L) = R" (see Korobov [1980]).

c) F has neither a proper invariant subspace containing L
nor an eigenvalue A satisfying Im(F-AI) +L # RrR™ .

d) F* has neither a proper invariant subspace contained in
L* nor an eigenvector in L.

e) the subspace spanned by L, F(L),...,Fn"1

(L) is equal
to R®™ and F* has no eigenvector in Lt (see Brammer

[1972]) A



b) Consider the control system with feedback in ]R2

X =XxXv+y+u+xu u,weU=[0,1)

(11) f -X +W VEV(X) = t} zfg

x(0) = y(0) =0

Set F(x,y) = {(xv+y+u+xu, -x+w):(u,w,v) eUxUxV(x)}

Then 0€F(0), i.e. zero is a point of equilibrium. Direct
computation gives

CF(0,0) (x,y) = ”x|+Y+R+:‘X+RQ
Set A(x,y) = CF(0,0)(x,y). Then
A(0) = R_.xR_; -A(0) = R_xRR_

2
R, x R; (=a) "~ (0)

A2(0) Rx IR

2

a3 = ®r*  ; (-a)30) = R

Thus by Theorem 2.2 and 3.1 the control system (11) is locally
controllable around zero.
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