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ABSTRACT

Arguing by analogy with Aristotle's four distinct categories of causation
(material, formal, efficient and final), this paper argues that there are
correspondingly distinct categories of information, and that the same mathematical
language cannot be used to describe each of them. This fact leads to the conclu-
sion that our mathematical language is somehow deficient, and that it must be sup-
plemented by new structures. These considerations lead to a formalization of the
ideas of a complex system and anticipatory control.
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On Information and Complexity

FRobert Rosen

Introduction

We introduce the rather wide-ranging considerations which follow with a dis-
cussion of the concept of information and its role in scientific discourse. Ever
since Shannon began to talk of information theory (by which he meant a proba-
bilistic analysis of the deleterious effects of propagating signals through chan-
nels; c¢f. Shannon and Weaver, 1849), the concept has been relentlessly analyzed
and reanalyzed. The time and effor: expended on these analyses must surely rank
as one of the most unprofitable investments in modern scientific history; not only
has there been no profit, but also the currency itself has been debased to worth-
lessness. Yet, in biology, for example, the terminology of information intrudes
itself insistently at every level; code, signal, computation. recognition. It may be
that these informational terms are simply not scientific at all; that they are a tem-
porary anthropomorphic expedient; a facon de parler which merely reflects the
immaturity of biology as & science, to be replaced at the earliest opportunity by
the more rigorcus terminology of force, energy, and potential which are the pro-
vince of more mature sciences (i.e. physics), in which information is never men-
tioned. Or, it may be that the informational terminology which seems to force
itself upon us bespeaks something fundamental; something that is missing from
physics as we now understand it. We take this latter viewpoint, and see where it
leads us.

In human terms, information is easy to define; it is anything that is or can be
the answer to a question. Therefore, we preface our more formal considerations
with a brief discussion of the status of interrogatives, in logic and in science.

The amazing fact is that interrogation is not ever a part of formal logic,
including mathematics. The symbol "?" is not a logical symbol, as, for instance, are
A, 3 or "V, nor is it a mathematical symbol. It belongs entirely to
informal discourse and, as far as I know, the purely logical or formal character of
interrogation has not been investigated. Thus, if information is indeed connected
in an intimate fashion with interrogation, it is not surprising that it has not been
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formally characterized in any real sense. There is simply no existing basis on
which to do so.

I do not intend to go deeply here into the problem of extending formal logic
(always including mathematics in this domain) so as to include interrogatives. What
I want to suggest here is a relation between our informal notions of interrogation
and the familiar logical operation "="; the conditional, or the implication, opera-
tion. Colloquially, this operation can be rendered in the form “If 4, then B". My
argument involves two steps. First, that every interrogative can be put into a kind
of conditional form:

If4,then B "?

(where B can be an indefinite pronoun like who, what, etc., as well as a definite
proposition); and second, and most important, that every interrogative can be
expressed in a more special conditional form, which can be described as follows.
Suppose I know that some proposition of the form

If 4, then B

is true. Suppose I now change or vary 4. that is, replace 4 by a new expression,
64 . The resuit is an interrogative, which I can express as

If 64, then ¢5 ?

Roughly, I am treating the true proposition "If 4, then B", as a reference, and I
am asking what happens to this proposition if I replace the reference expression
A by the new expression 84. I could, of course, do the same thing with B in the
reference proposition; replace it by a new proposition 65 and ask what happens
to A. ] assert that every interrogative can be expressed this way. in what I call a
variational form.

The importance of these notions for us lies in their relation to the external
world; most particularly in their relation to the concept of measurement. and to
the notions of causality to which they become connected when a formal or logical
system is employed to represent what is happening in the external world; that is,
to describe some physical or biological system or situation.

Before discussing this, I want to motivate the two assertions made above,
regarding the expression of arbitrary interrogatives in a kind of conditional form.
I do this by considering a few typical examples, and leave the rest to the reader
for the moment.

Suppose | consider the guestion

"Did it rain yesterday?”
First, I write it as
"If (yesterday), then (rain)?”

which is the first kind of conditional form described above. To find the variational
form, I presume I know that some proposition like

"If (today), then (sunny)"”
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is true. The general variational form of this proposition is
"If 6(todzy), then 6(sunny)?”

Then, if I put
o(today) = (yesterday),
d(sunny) = (rain)

I have, indeed, expressed my original question in the variational form. A little
experimentation with interrogatives of wvarious kinds taken from informal
discourse (of great interest are guestions of classification, including existence
and universality) should serve to make manifest the generality of the relation
between interrogation and the implicative forms described above; of course, this
cannot be proved in any logical sense since, as noted above, interrogation remains
outside logic.

It is clear that the notions of observation and experiment are closely related
to the concept of interrogation. That is why the results of observation and experi-
ment (i.e. data) are so generally regarded as being information. In a formal sense,
simple observation can be regarded as a special case of experimentation; intui-
tively, an observer simply determines what is, while an experimenter systemati-
cally perturbs what is, and then observes the effects of his or her perturbation.
In the conditional form, an observer is asking a question which can generally be
expressed as

"If (initial conditions), then (meter readings)?”
In the variational form, this question may be formulated as follows: assuming the
proposition

"If (initial conditions = 0), then (meter readings = 0)"
is true (this establishes the reference, and corresponds to calibrating the
meters), we ask

"If O(initial conditions = 0), then é(meter readings = 0)?"
where, simply

é(initial conditions = 0) = (initial conditions)
and

d6(meter readings = 0) = (meter readings).

The experimentalist, essentially, takes the results of observation as the refer-
ence and asks, in variational form, simply

"If O(initial conditions), then d(meter readings)?"

The theoretical scientist, on the other hand, deals with a different class of
question; namely, those that arise from assuming a 65 (which may be B itself) and
asking for the corresponding 64. These are questions that an experimentalist can-
not approach directly, not even in principle. It is the difference between the two
kinds of questions which distinguishes between experiment and theory, as well as
the difference between the explanatory and predictive roles of theory itself;
clearly, if we give 64 and ask for the consequent 65, we are predicting, whereas
if we assume $F and ask for the antecedent 04, we are explaining.
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It should be noted that exactly the same dusality arises in mathematics and
logic themselves; that is, in purely formal systems. Thus, a mathematician can ask
(informally): If (I make certain assumptions), then (what follows)? Or, the
mathematician can start with a conjecture, and ask: If (Fermat's Last Theorem is
true), then (what initial conditions must I assume to construct explicitly a proof)?
The former is analogous to prediction, the latter to explanation.

When formal systems (i.e. logic and mathematics) are used to construct images
of what occurs in the world, then interrogations and implications become associ-
ated with ideas of causality. Indeed, the whole concept of natural law depends
precisely on the idea that causal processes in natural systems can be made to
correspond with implication in some appropriate, descriptive inferential system
(e.g. Rosen, 1984, where this theme is developed at great length).

But the concept of causality is itself a complicated one; a fact largely over-
looked in modern scientific discourse, to its cost. That .causality is complicated
has already been pointed out by Aristotle, for whom all science was animated by a
specific interrogative: Why? He said explicitly that the business of science was to
concern itself with "the why of things". In our language, these are just the ques-
tions of theoretical science: If (F), then (what 4)? and hence we can say 5
because 4. Or, in the variational form, 65 because ¢4.

However, Aristotle argued that there were four distinct categories of causa-
tion; four ways of answering the question why. These categories, which he called
material cause, formal cause, efficient cause, and final cause, are not inter-
changeable. If this is so (and I argue below that, indeed, it is), then there are
correspondingly different kinds of information, associated with different causal
categories. These different kinds of information have been confused, mainly
because we are in the habit of using the same mathematical language to describe
each of them; it is from these inherent confusions that much of the ambiguity and
murkiness of the concept of information ultimately arises. Indeed, we can say more
than this: the very fact that the same mathematical language does not (in fact,
cannot) distinguish between essentially distinet categories of causation means
that the mathematical language we have been using is, in itself, somehow fundamen-
tally deficient, and that it must be extended by means of supplementary struc-
tures to eliminate those deficiencies.

The Paradigm of Mechanics

The appearance of Newton’s Principia toward the end of the seventeenth
century was surely an epochal event. Though nominally the theory of physical sys-
tems of mass points, it was much more. In practical terms, by showing how the
mysteries of the heavens could be understood on the basis of a few simple, univer-
sal laws, it set the standards for explanation and prediction which have been
accepted ever since. It unleashed a feeling of optimism almost unimaginable today:;
it was the culmination of the entire Renaissance. More than that: in addition to
providing a universal explanation for specific physical events, it also provided a
language and a way of thinking about systems which has persisted, essentially
unchanged, to the present time; what has changed has only been the technical
manifestation of the language and its interpretation. In this language. the word
information does not appear in any formal, technical sense; we have only words
like energy. force, potential, work, and the like.
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It is important to recognize the twin roles played by Newtonian mechanics in
science: as a reductionistic ultimate and as a paradigm for representing systems
not yet reduced to arrangements of interacting particles. The essential feature of
this paradigm is the employment of a mathematical language with an inherent dual-
ity, which we may express as the distinction between internal states and
dynamical laws. In Newtonian mechanics, the internal states are represented by
points in some appropriate manifold of phases, and the dynamical laws represent
the internal or impressed forces. The resulting mathematical image is thus what is
called nowadays a dynamical system. However, the dynamical systems arising in
mechanics are mathematically rather special ones, because of the way phases are
defined (they possess a symplectic structure). Through the work of people like
Poincaré, Birkhoff, Lotka, and many others over the years, however, this dynami-
cal system paradigm, or its numerous variants, has come to be regarded as the
universal vehicle for the representation of systems which could not, technically,
be described in terms of mechanics; systems of interacting chemicals, organisms,
ecosystems, and many others. Even the most radical changes occurring within phy-
sics itself, like relativity and quantum theory, manifest this framework: in quantum
theory, for instance, there was the most fundamental modification of what consti-
tutes a state, and how it is connected to what we can observe and measure; but
otherwise, the basic partition between states and dynamical laws is relentlessly
maintained. Roughly. this partition embodies a distinction between what is inside
or intrinsic (the states) and what is outside (the dynamical laws, which are formal
peneralizations of the mechanical concept of impressed force).

This, then, is our inherited mechanical paradigm, which in its many techni-
cal variants or interpretations has been regarded as a universal language for
describing systems and their effects. The variants take many forms; automata
theory, control theory, and the like, but they all conform to the same basic frame-
work first exhibited in the Principia.

Among other things, this framework is regardec as epitomizing the concept of
causality. We examine this closely here, because it is important when we consider
the concept of information within this framework.

Mathematically, 2 dynamical system can be regarded simply as a vector field
on a manifold of states; to each state, there is an assigned velocity vector (in
mechanics it is, in fact, an acceleration vector). A given state (representing what
the system is intrinsically like at an instant) together with its associated tangent
vector (which represents what the effect of the external world on the system is
like at an instant) uniquely determine how the system will change state, or move in
time. This translation of environmental effects into a unique tangent vector is
already a causal statement, in some sense; it translates into a more perspicuous
form through a process of integration, which amounts to solving the equations of
motion. More precisely, if a dynamical system is expressed in the familiar form

dz,/dt = £, (T4 ZTp) i =lem (7.1)

in which time does not generally appear as an explicit variable (but only implicitly
through its differential or derivation, dt), the process of integration manifests
the explicit dependence of the state variables z, = z, () on time,

t
2, () = [ £,024(Dhee T, (DT + 2, (20 - (7.2)
tD
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This is 2 more traditional kind of causal statement, in which the state at time ¢ is
treated as an effect, and the right-hand side of equation (7.2) contains the cawuses
on which this effect depends. )

Before going further, let us take a look at the integrands in equation (7.2),
which are the velocities or rates of change of the state variables. The mathemati-
cal character of the entire system is determined solely by the form of these func-
tions. Hence, we can ask: What is it that expresses this form (i.e. what determines
whether our functions are polynomials, or exponentials, or of some other form)?
And given the general form (polynomial, say). what is it that picks out a specific
function and distinguishes it from all others of that form?

The answer, in a nutshell, is parameters. As I have written the system (7.1)
above, no such parameters are explicitly visible, but they are at least tacit in the
very writing of the symbol f,. Mathematically, these parameters serve as coordi-
nates for function spaces; just as any other coordinate, they label or identify the
individual members of such spaces. They thus play a very different role to the
state variables, which constitute the arguments or domains of the functions that
they identify.

Here we find the first blurring. For the parameters which specify the form
of the functions f; can, mathematically, be thrown in as arguments of the fune-
tions f; themselves; thus, we could (and in fact always do) write

fi =i @gi Ty, Bg0enn @y) (7.3)

where a; are parameters. We could even extend the dynamical equations (7.1) by
writing da, /dt =0 (if the a; are indeed independent of time); thus, mathemati-
cally we can entirely eradicate any distinction between the parameters and the
state variables.

There is still one further distinction to be made. We pointed out above that
the parameters a, represent the effects of the outside world on the intrinsic sys-
tem states. These effects involve both the system and the outside world. Thus,
some of the parameters must be interpreted as intrinsic too (the so-called consti-
tutive parameters), while others describe the state of the outside world. These
latter obey their own laws, not incorporated in equation (7.1), so they are, from
the standpoint of equation (7.1), simply regarded as functions of time and must
be posited independently. They constitute what are variously called inputs, con-
trols, or forcings. Indeed, if we regard the states [z,(¢)], or any mathematical
functions of them, as corresponding outputs (that is, output as a function of input
rather than just of time) we pass directly to the world of control theory.

So let us review our position. Dividing the world into state variables plus
dynamical laws amounts to dividing the world into state variables plus parameters,
where the role of the parameters is to determine the form of the functions, which
in turn define the dynamical laws. The state variables are the arguments of these
functions, while the parameters are coordinates in function spaces. Further, we
must partition the parameters themselves into two classes; those which are
intrinsic (the constitutive parameters) and those which are extrinsic; that is,
which reflect the nature of the environment. The intrinsic parameters are intui-
tively closely connected with the system identity; that is, with the specific
nature or character of the system itself. The values they assume might, for exam-
ple, tell us whether we are dealing with oxygen, carbon dioxide, or any other
chemical species, and, therefore, cannot change without our perceiving that a
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change of species has occurred. The environmental parameters, as well as the
state variables, however, can change without affecting the species of the system.

These distinctions cannot be accommodated with the simple language of vec-
tor fields on manifolds; that language is too abstract. We can only recapture these
distinctions by (2) superimposing an informal layer of interpretation on the for-
mal language, as we have done above, or (b) changing the language itself, to render
it less abstract. Liet us examine how this can be done.

In order to have names for the various concepts invoived, I call the constitu-
tive parameters, which specify the forms of the dynamical laws, and hence the
species of system with which we are dealing, the system genome: the remaining
parameters, which reflect the nature of the external world, 1 call the system
environment, and the state variables themselves I call phenctypes. This rather
provocative terminoclogy is chosen to deliberately reflect corresponding biological
situations; in particular, I have argued (cf. Rosen, 1878) that, viewed in this light,
the genotype—phenotype dualism which is regarded as so characteristically bio-
logical has actually a far more universal currency.

The mathematical structure appropriate to reflect the distinctions we have
made is that of genome-parameterized mappings from a space of environments to a
space of phenotypes: that is, mappings of the form

fg :E P

specified in such a way that given any initial phenotype, environment-plus-genome
determines a corresponding trajectory. Thus, we have no longer a simple manifold
of states, but rather a fiber-space structure in which the basic distinctions
between genome, environment, and phenotype are embodied from the beginning.
Some of the consequences of this scenario are examined in Rosen (1978, 1983); we
cannot pause to explore them here.

Now we are in a position to discuss the actual relation between the Newtonian
paradigm and the categories of causation described earlier. In brief, if we regard
the phenotype of the system at time ¢ as effect, then

(1) Initial phenotype is material cause.
() Genome g is formal cause.
3 f g (a), as an operator on the initial phenotype, is efficient cause.

Thus, the distinctions we have made between genome, environment, and phenotype
are directly related to the old Aristotelian categories of causation. As we shall
soon discover, that is why these distinctions are so important.

Note that one of the Aristotelian categories is missing from the above; there
is no final cause. Ultimately, this is the reason why final cause has been ban-
ished from science; the Newtonian paradigm simply has no room for it. Indeed, it is
evident that any attempt to superimpose a category of final causation upon the
Newtonian world would effectively destroy the other categories within it.

In a deep sense, the Newtonian paradigm has led us to the notion that we may
effectively segregate the categories of causation in our system descriptions.
Indeed, the very concept of system state segregates the notion of material cause
from other catepgories of causation, and tells us that it is correct to deal with all
aspects of material causation independent of other categories: likewise with the
concepts of genome and environment. I, in fact, claim that this very segregation
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into independent categories of causation is the heart of the Newtonian para-
digm. When stated in this way, however, the universality of the paradigm perhaps
no longer appears so self-evident.

Information

We said above that information is, or can be, the answer to a question, and
that a question can generally be put in the variational form: If é4, then 6B7. This
serves as the connecting bridge between information and the Newtonian paradigm.
In fact, it has played an essential role in the historical development of Newtonian
mechanics and its variants, under the rubric of virtual displacements.

In mechanics, a virtual displacement is a small, imaginary change imposed on
the configuration of a mechanical system, while the impressed forces are kept
fixed. The animating question is: If such a virturzl displacement is made under
given circumstances, then what happens? The answer, in mechanics, is the well-
known Principle of Virtual Work: if a mechanical system is in equilibrium, then
the virtual work done by the impressed forces as a result of the virtual displace-
ment must vanish. This is a static (equilibrium) principle, but it can readily be
extended from statics to dynamics, where it is known as D'dlembert’s Principle.
In the dynamical case, it leads directly to the differential equations of motion of a
mechanical system when the impressed forces are known. Details can be found in
any text on classical mechanics.

In what follows, we explore the effect of such virtual displacements on the
apparently more general class of dynamical systems of the form

dz, /4t = fy (24,0 Zpy) 1 =17 (7.4)

There is, however, a close relationship between the general dynamical systems
(7.4) and those of Newtonian mechanics; indeed, the former systems can be
regarded as arising out of the latter by the imposition of a sufficient number of
nonholonomic constraints.[1]

As we have already noted, the language of dynamical systems, like that of
Newtonian mechanics, does not include the word information; the study of such
systems revolves around the various concepts of stability. However, in one of his
analyses of oscillations in chemical systems, Higgins (1967) drew attention to the
quantities

Uy g (T g0 Ty) = 8/ 8z, (dz; /dt) .

These quantities, which he called cross-couplings if 1 # j and self-couplings if
1 =7, arise fundamentally from the conditions which govern the existence of
oscillatory solutions to equations (7.4). It turns out that it is not so much the mag-
nitudes as the signs of these quantities that are important. In order to have a con-
venient expression for the signs of these quantities, he proposed that we call the
Jjth state variable, z;. an activator of the ith, in the state (zf z.,?). whenever
the quantity

8_ |4z
6z, | dt @2 2,)

u.tj (zf,...,z.’?) = >0
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and an inhibitor whenever
0 (¢}
'u.,ij(:1 e ) <0 .

Now, activation and inhibition are informational terms. Thus, Higgins’ ter-
minology provides an initial hint as to how dynamical language might be related to
informational language, through the Rosetta stone of stability.

Now let us examine what Higgins’ terminology implies. If z, activates z; in a
particular state, then a (virtual) increase in z, increases the rate of change of z,
or, alternatively, a (virtual) decrease of z, decreases the rate of change of z,. It
is, intuitively, eminently reasonable that this is the role of an activator. Con-
versely, if z; inhibits z,, it means that an increese in z, decreases the rate of
change of z,, etc.

Thus, the n? functions, Uy (Tg0en Ty )it F = 1., m, constitute a form of
informational description for the dynamical system (7.4), which I have elsewhere
(Rosen, 1978) called an activation—inhibition patiern. As we have noted, such a
pattern concisely represents the answers to the variational questions: If we make
a virtual change in = 4 what happens to the rate of production of z, ?.

There is no reason to consider only the quantities Uygy- We can, for instance,
go one step further, and consider the quantities

Uy g (T g Tp) = 8/ B2, [8/ Bz, (dzy /dAL)]

Intuitively, these quantities measure the effect of a (virtual) change in z, on the
extent to which zy activates or inhibits z,. If such a quantity is positive in any
particular state, it is reasonable to call 2, an agonist of z, with respect to z,; if
negative, an antagonist. That is, if Uy, IS positive, a (virtual) increase in z,
increases or facilitates the activation of z; by z,, etc. The quantities Uyigk thus
define another layer of informational interaction, which we may call an
agonisi—-antagonist patiern.

We can iterate this process, in fact to infinity, to produce at each state = a
family of n” functions, Uyy..r (T4 Z,). Bach layer in this increasing sequence
describes how a (virtual) change of a variable at that level modulates the proper-
ties of the preceding level.

So far we have considered only the effects of virtual changes in state vari-
ables, z,, on the velocities. dz, /d¢, at various informational levels. We could simi-
larly consider the effects of virtual displacements at these various levels on the
second derivatives, dzzi/ dt? (i.e. on the accelerations of z,;), the third derive-
tives d3z,t/ dt3, and so on. Thus, we have a doubly infinite web of informational
interactions, defined by the functions

dz ™
m - . 8 ..
wlin.r (B an) S 52| g

If we start from the dynamical equations (7.4), then nothing new is learned
from these circumlocutions beyond, perhaps, a deeper insight into the relations
between dynamical and informational ideas. Indeed, given any layer of informe-
tional structure, we can proceed to succeeding layers by mere differentiation, and
to antecedent layers by mere integration. Thus, knowledge of any layer in this
infinite array of layers determines all of them and, in particular, the dynamical
equations themselves. If we know, for instance, the activation—inhibition pattern
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Uy, (z4..... 2, ), we can reconstruct the dynamical equations (7.4) through the rela-
tionship

n
df; = > u,udzj (7.5)
j=1
(note in particular that the differential form on the right-hand side resembles a
generalized work), and then set the function f,(z,....,z,) so determined equal to
the rate of change, dx, / dt, of the i th state variable.

However, our ability to do all this depends fundamentally on the exact-
ness of the differential forms which arise at every level of our web of infor-
mational interaction, and which relate each level to its neighbors. If the forms
in equation (7.5) are not exact, there are no functions f;(z,.....z,) whose dif-
ferentials are given by it, and hence no ratle equations of the form (7.4). In such
a situation, the simple relationship between the levels in our web breaks down
completely; the levels become independent of each other, and must be posited
separately. So two systems could have the same activation—inhibition patterns,
but vastly different agonist—antagonist patterns, and hence manifest entirely dif-
ferent behaviors.

To establish firmly these ideas, let us examine what is implied by the require-
ment that the differential forms

n

L uydz,

7=1
defined by the activation—inhibition pattern be exact. The familiar, necessary
conditions for exactness here take the form

8 0

— S —

bz, Yig 8z, ik
for all 1, 7, &£ = 1.....,n. Intuitively, these conditions mean that the relations of
agonism and activation are entirely symmetrical (commutative); that z, as an
agonist of the activator z 3 is exactly the same as z; as an apgonist of the activator
z,.; and similarly for all other levels.

Clearly, such situations are extremely degenerate in informational terms.
They are so because the requirement of exactness is highly nongeneric for dif-
ferential forms. Thus, these very simple considerations suggest a most radical con-
clusion: that the Newtonian paradigm, with its emphasis on dynamical laws,
restrTicts us from the outset to an extremely special class of systems, and that
the most elementary informational considerations force us out of that class.
We explore some of the implications of this situation in the following section.

Meanwhile, let us consider some of the ramifications of these informational
ideas that hold even within the confines of the Newtonian paradigm. These con-
cern the distinctions made in the preceding section between environment, pheno-
type, and genome; the relations of these distinctions to different categories of
causation; and the correspondingly different categories of information which
these causal categories determine.

First, let us recall that according to the Newtonian paradigm, every relation
between physical magnitudes (i.e. every equation of state) can be represented as a
genome-parameterized family of mappings

fg:E-*P
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from environments to phenotypes. It is worth noting specifically that every
dynamical law or eqguation of motion is of this form, as is shown by

ax/dt = f (z. a) . (7.6)

Here, in traditional language, z is a vector of states, a is a vector of external con-
trols (which together with states constitutes environment), and the phenotype is
the tangent vector dz /dt attached to the state z.[2] In this case, then, the
tangent vector or phenotype constitutes effect; the genome g is identified with
formal cause, state z with material cause, and the operator f g (..., @) with efficient
cause. :
By analogy with the activation-inhibition networks and their associated
informational structures. described above, we can consider formal gquantities of
the form

8 d
Blcause) |at (effect) (7.7)

As always, such a formal quantity represents an answer to a question: If (cause is
varied), then (what happens to effect)? This is the same question as we asked in
connection with the definition of activation-inhibition networks and their corre-
lates, but now set in the wider context to which our analysis of the Newtonian
paradigm has led us. That is, we may now virtually displace any magnitude which
affects the relation (7.6), whether it be a genomic magnitude, an environmental
magnitude, or a state variable. In a precise sense, the effect of such a virtual dis-
placement is measured by the quantity (7.7).

It follows that there are indeed different kinds of information. What kind of
information we are dealing with depends on whether we apply the virtual displace-
ment to a genomic magnitude (associated with formal cause), an environmental mag-
nitude (efficient cause), or a state variable (material cause). Formally, we can now
distinguish at least the following three cases:

(1) Genomic information,

) d
d(genome) ‘dt (etfec )J

(2) Phenotypic information,

{
5 {8 rrent
d(state) |dt (effec')} ‘

(38) Environmental information,

) d
d(control) |dt (effeCt)} '

We confine ourselves herein to these three, which generzalize only the
activation—inhibition patterns described above.

We now examine an important idea; namely, the three categories defined
above are not equivalent. Before justifying this assertion, we must briefly dis-
cuss what is meant by equivalent. In general, the mathematical assessment of the
effects of perturbations (i.e. of real or virtual displacements) is the province of
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stability. For example, the effect on subsequent dynamical behavior of modifying
or perturbing a system state is the province of Lyapunov stability of dynamical
systems; that of perturbing a control is part of control theory: and that of per-
turbing a genome relates to structural stability. To establish this firmly, let us
consider genomic perturbations, or mutations. A virtual displacement applied to
a genome g replaces the initial mapping fg determined by g with a new mapping
fg,. Mathematically, we say that the two mappings. fg and f g~ are equivalent, or
similar, or conjugate, if there exist appropriate transformations

a:E - FE |
g:P P,
such that the diagram

commutes; that is, if
BLf g (e)] = £ [a(e)]

for every e in E. Intuitively, this means that a mutation g » g’ can be counter-
balanced, or nullified, by imposing suitable coordinate transformations on the
environments and phenotypes. Stated yet another way, a virtual displacement of
genome can always be counteracted by corresponding displacements of environ-
ment and phenotype so that the resultant variation on effect vanishes.

We have elsewhere (Rosen, 1978) shown at great length that this commuta-
tivity may not always obtain; that is, that there may exist genomes which are
bifurcation points. In any neighborhood of a bifurcating genome g, there exist
genomes g ‘' for which f g and f g fail to be conjugate.

With this background, we return to the question of whether the three kinds
of information (genomic., phenotypic, and environmental) defined above are
equivalent. Intuitively, equivelence would mean that the effect of a virtual dis-
placement dg of genome, supposing all else is fixed, could equally well be produced
by a virtual displacement of environment, da, or of phenotype, 6p. Or stated
another way, the effect of a virtual displacement dg of genome can be nullified by
virtual displacements —da and =dp of environment and phenotype, respectively.
This is simply a restatement of the definition of conjugacy or similarity of map-
pings.

If all forms of information are equivalent, it follows that there could be no
bifurcating genomes. We note in passing that the assumption of equivalence of the
three kinds of information defined above thus creates terrible ambiguities when it
comes to explanation of particular effects. We do not consider that aspect here,
except to say that it is perhaps very fortunate that, as we have seen, they are
not equivalent.
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Let us examine one immediate consequence of the nonequivalence of genomic,
environmental, and phenotypic information, and of the considerations which cul-
minate in that conclusion. Long ago (cf. von Neumann, 1851; Burks, 1866) von Neu-
mann proposed an influential model for a self-reproducing automaton, and subse-
quently, for automata which grow and develop. This model was based on the famous
theorem of Turing (1836), which established the existence of a universal computer
(universal Turing machine). From the existence of such a universal computer, von
Neumann asserted that there must also exist a universal constructor. Basically, he
argued that computation (i.e. following a program) and construction (following a
blueprint) are both algorithmic processes, and that anything holding for one class
of algorithmic processes necessarily holds for any other class. This universal con-
structor formed the central ingredient of the self-reproducing automaton.

Now, a computer acts, in the language we have developed above, through the
manipulation of efficient cause. A constructor, if the term is to bear any resem-
‘blance to its intuitive meaning, must essentially manipulate material cause. The
inequivalence of the two categories of causality, in particular manifested by the
nonequivalence of environmental and phenotypic information, means that we can-
not blithely extrapolate from results pertaining to efficient causation into the
realm of material causation. Indeed, in addition to invalidating von Neumann's
specific argument, we learn that great care must be exercised in general when
arguing from purely logical models (i.e. from models pertaining to efficient cause)
to any kind of physical realization. such as developmental or evolutionary biology
(which pertain to material cause).

Thus, we realize how significant are the impacts of informational ideas, even
within the confines of the Newtonian paradigm, in which the catepories of causa-
tion are essentially sepregated into separate packages. We now consider what hap-
pens when we vacate the comforting confines of the Newtonian paradigm.

An Introduction to Complex Systems

Herein, I call any natural system for which the Newtonian paradigm is com-
pletely valid a simple sysiem, or mechanism. Accordingly, a complezx system is
one which, for one reason or another, resides outside this paradigm. We have
already seen a hint of such systems in the preceding section; for example, sys-
tems whose activation~inhibition patterns Uyy do not give rise to exact differen-
tials ) u;,dz,. However, some further words of motivation must precede a conclu-
sion that such systems are truly complex (i.e. reside fundamentally outside the
Newtonian paradigm). We must also justify our very usage of the term complex in
this context.

What I have been calling the Newtonian paradigm ultimately devolves upon the
class of distinct mathematical descriptions which a system can have, and the
relations which exist between these descriptions. As noted earlier, the basis of
system description arising in this paradigm is the fundamental dualism between
states and dynamical laws. Thus, the mathematical objects which can describe
natural systems comprise a category which may be called general dynamical sys-
tems. In a formal sense, it appears that any mathematical object resides in this
category, because the Newtonian partition between states and dynamical laws
exactly parallels the partition between propositions and production rules (rules of
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inference) which presently characterize all logical systems and logical theories.
However, we argue that, although this category of general dynamical systems is
large, it is not everything, and, indeed, it is far from large enough.

The Newtonian paradigm asserts much more than simply that every image of a
natural system must belong to a given category. It asserts certain relationships
between such images. In particular (and this is the reductionistic content of the
paradigm), it asserts that among these images there is the universal one, which
effectively maps on all the others. Intuitively, this is the master description or
ultimate description, in which every shred of physical reality has an exact
mathematical counterpart; in category—theoretic terms, it is much like a free
object (a generalization of the concept of free semigroup, free group, etc.).[3]

There is still more. The ingredients of this ultimate description, by their
very nature, are themselves devoid of internal structure: their only changeable
aspects are their relative positions and velocities. Given the forces acting
between them, as Laplace noted long ago, everything that happens in the external
world is in principle predictable and understandable. From this perspective,
everything is determined: there are no mysteries, no surprises, no errors, no
questions, and no information. This is as much true for quantum theory as for clas-
sical; only the nature of state description has changed. And it applies to every-
thing, from atoms to organisms to galaxies.

How does this universal picture manifest itself in biology? First, from the
standpoint of the physicist, biology is concerned with a rather small class of
extremely special (indeed, inordinately special) systems. In the theoretical
physicist’'s quest for general and universal laws, there is thus not much contact
with organisms. As far as he or she is concerned, what makes organisms special is
not that they transcend the physicist's paradigms. but rather that their specifi-
cation within the paradigm requires a plethora of special constraints and condi-
tions, which must be superimposed on the universal canons of system description
and reduction. The determination of these special conditions is an empirical task;
essentially someone else's business. But it is not doubted that the relationship
between physics and biology is the relationship between the general and the par-
ticuiar.

The modern biologist, in generzal, avidly embraces this perspective.[4] Histor-
ically, bioclogy has only recently caught up with the Newtonian revolution which
swept the rest of natural philosophy in the seventeenth century. The three-
century lag arose because biology has no analog of the solar system; no way to
make immediate and meaningful contact with the Newtonian paradipgm. Not until
physics and chemistry had elaborated the technical means to probe microscopic
properties of matter (including organic matter) was the idea of molecular biology
even thinkable. And this did not happen until the 1930s.

At present, there is still no single inferential chain which links any impor-
tant effect in physics to any important effect in biology. This is a fact; a datum; a
piece of information. How are we to understand it? There are various possibilities.
Kant, long ago, argued that organisms could only be properly understood in terms
of final causes or intentionality; hence, from the outset he suggested that organ-
isms fall completely outside the canons of Newtonian science, which are applicable
. to everything else. Indeed, the essential telic nature of organisms preciuded even
the possibility that 2 “"Newton of the grassblade" would come along, and do for
biology what Newton did for physics. Another possibility is the one we have



On Information and Complezity 15

already mentioned; we have simply not yet characterized all those special condi-
tions which are necessary to bring biology fully within the scope of universal phy-
sical principles. Yet a third possibility has developed within biology itself, as a
consequence of theories of evolution; it is that.much of biology is the result of
accidents which are in principle unpredictable and hence governed by no laws
at all.[5] In this view biology is as much a branch of history as of science. At
present, this last hypothesis lies in a sort of doublethink relation with reduction-
ism; the two are quite inconsistent, but do allow modern biologists to enjoy the
benefits of vitalism and mechanism together.

Yet a fourth view was expressed by Albert Einstein, who wrote in a letter to
Leo Szilard: "One can best appreciate, from a study of living things, how primitive
physics still is*'.

So, the present prevailing view in biology is that the Newtonian canons are
indeed universal, and we are lacking only knowledge of the special conditions and
constraints which distinguish organisms from other natural systems within those
canons. One way of describing this with a single word is to assert that organisms
are complez. This word is not well defined, but it does connote several things. One
of these is that complexity is a system property, no different from any other pro-
perty. Another is that the degree to which a system is complex can be specified
by a number, or set of numbers. These numbers may be interpreted variously as
the dimensionality of a state space, or the length of an algorithm, or as.a cost in
time or energy incurred in solving system equations.

On a more empirical level, however, complexity is recognized differently, and
characterized differently. If a system surprises us, or does something we have not
predicted, or responds in a2 way we have not anticipated. if it makes errors; if it
exhibits emergence of unexpected novelties of behavior, we also say that the sys-
tem is complex. In short, complex systems are those which behave counter-
intuitively.

Sometimes, of course, surprising behavior is simply the result of incomplete
characterization: we can then hunt for what is missing, and incorporate it into our
system description. In this way, the planet Nepiune was located from unexplained
deviations of Uranus from its expected trajectory. But sometimes this is not the
case; in the apparently analogous case of the anomalies of the trajectory of the
planet Mercury, for instance, no amount of fiddling within the classical scenario
succeeded and only a massive readjustment of the paradigm itself (via general
relativity) availed.

From these few words of introduction, we can conclude that the identification
of complexity with situations where the Newtonian paradigm fails is in accord with
the intuitive connotation of the term. and is an alternative to regarding as com-
plex any situation which merely is technically difficult within the paradigm.

Now let us see where information fits into these considerations. We recall
that information is the actual or potential response to an interrogative, and that
every interrogative can be put into the variational form: If 64, then ¢6B? The
Newtonian paradigm asserts, among other things, that the answers to such interro-
gatives follow from dynamical laws superimposed on manifolds of states. In their
turn, these dynamical laws are special cases of equations of state, which link or
relate the values of system observables. Indeed, the concept of an observable was
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the point of departure for our entire treatment of system description and
representation (cf. Rosen, 1878); it was the connecting link between the world of
natural phenomena and the entirely different world of formal systems which we
use to describe and explain.

However, the considerations we have developed above suggest that this world
is not enough. We require also a world of variations, increments, and differentials
of observables. It is true that every linkage between observables implies a
corresponding linkage between differentials, but as we have seen, the converse is
not true. We are thus drawn to the notions that a differential relation is a general-
ized linkage and that a differential form is a type of generalized observable. A dif-
ferential form which is not the differential of an observable is thus an entity
which assumes no definite numerical value (as an observable deoes), but which can
be incremented. '

If we do think of differential forms as generzalized observables, then we must
correspondingly generalize the notion of equation of state. A generalized equation
of state thus becomes a linkage or relation between ordinary observables and dif-
ferentials or generalized observables. Such generalized egquations of state are the
vehicles which answer questions of our variational form: If 64, then 657

But as we have repeatedly noted, such generalized equations of state do not
usually follow from systems of dynamical equations, as they do in the Newtonian
paradigm. Thus, we must find some alternative way of characterizing a system of
this kind. Here is where the informational language introduced above comes to the
fore. Let us recall, for instance, how we defined the activation-inhibition net-
work. We found a family of functions Uy (i.e. of observables) which could be
thought of in the dynamical context as modulating the effect of an increment dz,
on that of another increment df,;. That is, the values of each observable, u,,
measure precisely the extent of activation or inhibition which z,; exerts on the
rate at which z, is changing. .

In this language, a system falling outside the Newtonian paradigm (i.e. 2 com-
plex system) can have an activation—inhibition pattern. just as a dynamical (i.e.
simple) system does. Such patterms are still families of functions (observables),
Uy and the pattern itself is manifested by the differential forms

wy T Puy,dx,

But in this case, there is no global velocity observable, f,., that can be inter-
preted as the rate of change of z,; there is only a velocity increment. It should
be noted explicitly that Ugy which define the activation—inhibition pattern, need
not be functions of 'z; alone, or even functions of them at all. Thus, the differen-
tial forms which arise in this context are different from those with which
mathematicians generally deal, and which can always be regarded as cross sections
of the cotangent bundle of a definite manifold of states.

The next level of information is the agonist—antagonist pattern, 1, ;. In the
category of dynamical systems, this is completely determined by the
activation=—inhibition pattern. and can be obtained from the latter by differentia-
tion:

Ui = oz, Uyy
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In our world of generalized observables and linkages, u,;; are independent of
Ugg and must be posited separately; in other words, complex (non-Newtonian) sys-
tems can have identical activation-inhibition patterns, but quite different
agonist—antagonist patterns.

Exactly the same considerations can also be applied to every subsequent
layer of the informational hierarchy; each is now independent of the others, and
so must be posited separately. Hence a complex system requires an infinite
mathematical object for its description.

We cannot examine herein the mathematical details of the considerations
sketched so briefly above. Suffice it to say that a complex system, defined by a
hierarchy of informational levels of the type described, is quite a different object
to a dynamical system. For one, it is quite clear that there is no such thing as a
set of states, assignable to such a system once and for all. From this alone, we
might expect that the nature of causality in such systems is vastly different to
what it is in the Newtonian paradigm; we come to this in a2 moment.

The totality of mathematical structures of the type we have defined above
forms a category. In this catepory the class of general dynamical systems consti-
tutes a very small subcategory. We are suggesting that the former provides a suit-
able framework for the mathematical imaging of complex systems, while the latter,
by definition, can only image simple systems or mechanisms. If these considera-
tions are valid (and I believe they are), then the entire epistemology of our
~approach to natural systems is radically altered, and it is the basic notions of
information which provide the natural ingredients.

There is, however, a profound relationship between the category of general
dynamical (i.e. Newtonian) systems, and the larger category in which it is embed-
ded. This can only be indicated here, but it is important indeed. Namely, there is a
precise sense in which an informational hierarchy can be approzimated, locally
and temporarily, by a general dynamical system. With this notion of approximation
there is an associated notion of limit, and hence of topology. Using these idesas, it
can be shown that what we call the category of complex systems is the completion,
or limiting set, of the category of simple (i.e. dynamical) systems.

The fact that complex systems can be approximated (albeit locally and tem-
porarily) by simple ones is crucial. It explains precisely why the Newtonian para-
digm has been so successful, and why, to this day, it represents the only effective
procedure for dealing with system behavior. But in general, it is apparent that it
can usually supply only approximations, and in the universe of complex systems
this amounts to replacing a complez system with a simple subsystem. Some of the
profound consequences are considered in detail in Rosen (1878).

This relationship between complex systems and simple ones is, by its very
nature, without a reductionistic counterpart. Indeed, what we presently under-
stand as physics is seen in this light as the science of simple systems. The
relation between physics and biology is thus not at all the relation of general to
particular; in fact, quite the contrary. It is not biology, but physics, which is too
special. We can see from this perspective that biology and physics (i.e. contem-
porary physics) develop as two divergent branches from a theory of complez sys-
tems, which as yet can be glimpsed only very imperfectly.

The category of simple systems is, however, still the only one that we know
how to use. But to study complex systems by means of approximating simple sys-
tems resembles the position of early cartographers, who were attempting to map a
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sphere while armed only with pieces of planes. Locally, and temporarily, they
could do very well, but globally, the effects of the topology of the sphere become
progressively important. So it is with complexity; over short times and only a2 few
informational levels, we can always make do with a simple (i.e. dynamical) picture.
Otherwise, we cannot; we musi{ continually replace our approximating dynamics
with others as the old ones fail. Hence another characteristic feature of complex
systems; they appear to possess a multitude of partial dynamical descriptions,
which cannot be combined into one single compiete description. Indeed, in earlier
work (Rosen, 1877), we took this as the defining feature of compiexity.

I add a brief word about the status of causality in complex systems, and
about the practical problem of determining the functions which specify their
informational levels. Complex systems do not possess anything like a state set
which is fixed once and for all. Also, the catepories of causality become
intertwined in a way which is not possible within the Newtonian paradigm. Intui-
tively, this follows from the independence of the infinite array of informational
layers which constitutes the mathematical image of a complex system. Variation of
any particular magnitude connected with such a system typically manifests itself
independently in many of these layers, and thus reflects itself partly as material
cause, partly as efficient cause, and even partly as formal cause in the resultant
variation of other magnitudes. We feel that it is, at least for the most part, this
involvement of magnitudes simultaneously in each of the causal categories which
makes biological systems so refractory to the Newtonian paradigm.

Also, this intertwining of the categories of causation in complex systems
makes the direct interpretation of experimental results of the form: If ¢4, then
6B, extremely difficult. If we are correct so far, such an observational result as
it stands is far too coarse to have any clear-cut meaning. In order to be meaning-
ful, an experimental proposition . of this form must isolate the effect of a variation
6A on a single informational level, keeping the others clamped. As might be
appreciated, this will in general not be an easy task. In other words, the experi-
mental study of compiex systems cannot be pursued with the same tools and ideas
that are appropriate for simple systems.

One final conceptual remark is also needed. As mentioned earlier, the
Newtonian paradigm has no room for the category of final causation. This category
is closely linked to the notion of anticipation, which in turn is linked to the ability
of systems to possess internal predictive models of themselves and their environ-
ments, which can be utilized for the control of present actions. We have argued at
great length elsewhere (cf. Rosen, 1884) that anticipatory control is indeed a dis-
tinguishing feature of the organic world, and have described some of the unique
features of such anticipatory systems. Herein we have shown that for a system to
be anticipatory, it must be complex. Thus, our entire treatment of anticipatory
systems becomes a corollary of complexity. In other words, complex systems can
admit the catepgory of final causation in a perfectly rigorous, scientifically accept-
able way. Perhaps this alone is sufficient recompense for abandoning the comfort-
ing confines of the Newtonian paradigm, which has served so well over the centu-
ries. It will continue to serve us well, provided we recognize its restrictions and
limitations, as well a&s its strengths.
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Notes

(1]

Newton's original particle mechanics, or vectorial mechanics, is hard to apply to
many practical problems, and was early on (through the work of people like Euler
and Lagrange) transmuted into another form, generally called analytical mechan-
ics. This latter form is usually used to deal with extended matter (e.g. rigid
bodies). In particle mechanics,. the rigidity of a macroscopic body is a consequence
of interparticie forces, which must be explicitly taken into account in describing
the system. Thus, if there are N particles in the system (however large ¥ may be)
there is a phase space of 6N dimensions, and a set of dynamical equations which
expresses for each particle the resuitant of all forces experienced by that parti-
cle. In analytical mechanics, on the other hand, any rigid body can be completely
described by giving only six configurational coordinates (e.g. the coordinates of
the center of mass, and three angles of rotation about the center of mass), how-
ever many particles it contains. From the particulate approach the internal forces
which generate rigidity are replaced by constraints; supplementary conditions on
the configuration space which must be identically satisfied. Thus, the passage from
particle mechanics to analytical mechanics involves a partition of the forces in an
extended system into two classes: (a) the internal or reactive forces, which hold
the system together, and (b) the impressed forces, which push the system around.
The former are represented in analytical mechanics by algebraic constraints, the
latter by differential equations in the configuration variables (six for a rigid
body).

A system in analytical mechanics may have additional constraints imposed
upon it by specific circumstances; for example, a ball may roll on a table top. It
was recognized long ago that these additional constraints (which, like all con-
straints, are regarded as expressing the operation of reactive forces) can be of
two types, which were called by Hertz holonomic and nonholonomic. Both kinds of
constraints can be expressed locally, in infinitesimal form, as

n
Y U (g ZTp)@2y =0
1=1

where z,,...,Z, are the configuration coordinates of the system. For a holonomic
constraint, the above differential form is exact; that is, the differential of some
global function ¢(z,,...,Z,) is defined over the whole configuration space. Thus,
the holonomic constraint transiates into a global relation

¥(Z,,..:, 2, ) = constant .

This means that the configurational variables are no longer independent, and that
one of them can be expressed as a function of the others. The constraint thus
reduces the dimension of the configuration space by one, and therefore reduces
the dimension of the phase space by tweo.

A nonholonomic constraint, on the other hand, does not allow us to eliminate a
configurational variable in this fashion. However, since it represents a relation
between the configuration variables and their differentials, it does allow us to
eliminate a coordinate of velocity, while leaving the dimension of the configuration
space unaltered. That is, a nonholonomic constraint serves to eliminate one degree
of freedom of the system. I{ thus also eliminates one dimension from the space of
impressed forces which can be imposed on the system without violating the con-
straint.

Similarly, if we impose r independent nonholonomic constraints on our sys-
tem, we (2) keep the original dimension of the configuration space; (b) eliminate r
coordinates of velocity, and thus reduce the dimensionality of the phase space by
r; and (c) similarly, reduce by r the dimensionality of the set of impressed forces
which can be imposed on the system.
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Let us express these facts mathematically. A nonholonomic constraint can be
expressed locally in the general form

dz, dz., _
PlTqseers Ty W,..., St | (0]

which can (locally) be solved for one of the velocity coordinates (dz,/dt, say).
Thus, it can be written in the form

dzl az, az,
T SYIT, To0eer Ty 2 Tar

= ¥(z,, a)

where we have written & = (z,,....dz, /df). [At this point the reader is invited to
compare this relation with equation (7.6) in the main text.]

Likewise, if there are r nonholonomic constraints, these can be expressed
locally by r equations

dz, /dt =Y;(24,.... Ty, &) & =1,...,7

where now @ is the vector (z, ,4,.... 2, &2, ,,/4d¢,..., 4z, /dt). These equations of
constraint, which intuitively arise from the reactive forces holding the sysiem
together, now become more angd more clearly the type of equations we always use to
describe general dynamical or control systems.

Now what happens if  =n? In this case, the constraints leave us only one
degree of freedom, they delermine a vector field on the configuration space.
There is in effect only one impressed force that can be imposed on such a system,
and its only effect is to move the system; once moving, the motion is determined
entirely by the reactive forces, and not by the impressed force. Mathematically,
the situation is that of an autonomous dynamical system, whose manifold of states is
the configuration space of the original mechanical system.

This relationship between dynamics and mechanics is quite different from the
usual one, in which the manifold of states is thought of as generalizing the mechani-
cal notion of phase, and the equations of motion as generalizing the impressed
force. In the above interpretation, however, it is quite different; the manifold of
states correspond now to mechanical configurations, and the equations of motion
come from the reactive forces.

The reader should be most careful not to confuse two kinds of propositions, which
are equivalent mathematically but completely different epistemologically and
causally. On the one hand, we have a statement like

dz /dt =fg(z, a) .

This is a local proposition, linking a tangent vector or velocity dz / df to a state
z, a genome g, and 2 control a. Each of these quantities is derived from observ-
ables assuming definite numerical vaiues at any instant of time, and it is their
values atl a common instant which are related by this proposition.

On the other hand, the integrated form of these dynamical relations is

t
z(t) = [ fylz,e(DldT .
to

This relationship involves time explicitly and links the values of observables at
one instant with values (assumed by these and other observables) at other
instants.

Each of these epistemically different propositions has its own causal struc-
ture. In the first, we treat the tangent vector dx /df as effect and define its
causal antecedents as we have done. In the integrated form, on the other hand, we
take 2(t) as effect and find a correspondingly different causal structure. In gen-
eral, the mathematical or logical equivalence of two expressions of linkage or
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relationship in physical systems does not at all connote that their causal strue-
tures are identical. This is merely a manifestation of what was discussed earlier,
that the mathematical language we use to represent physical reality has
abstracted away the very basis on which such causal discriminations can be made.
It should be recognized that this reductionistic part of the Newtonian paradigm can
fail for purely mathematical reasons. If it should happen that there is no way to
effectively map the master description onto some partial description, then this is
enough to defeat a reductionistic approach to those system behaviors with which
the partial description deals. This is quite a different matter from the one we are
considering here, in which no Newtonian master description ezists, and the pro-
gram fails for epistemological reasons, rather than mathematical ones.

This statement is not simply my subjective assessment. In 1970 there appeared a
volume entitled Hiology and the Future of Man, edited by Philip Handler (13870),
then President of the National Academy of Sciences of the USA. The book went to
great lengths to assure the reader that it spoke for biology as a science; that in it
biologists spoke with essentially one voice. At the outset, it emphasized that the
volume was not prepared as a (mere) academic exercise, but for serious pragmatic

purposes:

Some years ago, the Committee on Science and Public Policy of the National
Academy of Scienoes embarked on a series of ‘surveys’ of the scientific dis-
ciplines. BEach survey was to oommence with an appraisal of the '‘state of the
art’... . In addition, the survey was to assess the nature and strength of our
national apparatus for continuing attaok on those major problems, e.g., the
numbers and types of laboratories, the number of scientists in the field, the
number of students, the funds available and their sources, and the major
equipment being utilized. Finally, sach survey was to undertake a projection
of future needs for the pational support of the discipline in question to
assure that our national effort in this regard is optimally productive... .

To address these serious matters, the Academy proceeded as follows:

....Panels of distinguished scientists were assigned subjects... . Each panel
was given a general charge...as follows:

The prime task of each Panel is to provide a pithy summary of the status of
the specific sub-field of science which has been assigned. This should be a
clear statement of the prime scientific problems and the major questions
currently confronting investigators in the field. Included should be an indi-
cation of the manner in which these problems are being attaoked and how
these approaches may change within the foreseeable future. What trends can
be visualized for tomorrow? What lines of investigation are llkely to sub-
side? Which may be expected to advance and assume greater importance?...
Are the questions themselves...likely to change significantly?... . Having
stated the major questions and problems, how close are we to the answers?
The sum of these discussions, panel by panel, should constitute the equivalent
of a complete overview of the highlights of current understanding of the Life
Sciences.

There were twenty-one such Panels established, spanning the complete gamut
of biological sciences and the biotechnologies. The recruitment for these Panels
consisted of well over 100 eminent and influential biologists, mostly members of the
Academy. How the panelists themselves were chosen is not indicated, but there is
no doubt that they constituted an authoritative group.

In due course, the Panels presented their reports. How they were deall with
is described in colorful terms:

... . In a gruelling one week session of the Survey Committee... each report
was mercilessly exposed to the criticism of all the cther members... . Bach
report was then rewritten and subjected to the searching, sometimes scath-
ing, criticisms of the members of the parent Committee on Science and Public
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Policy. The reports were again revised in the light of this exercise. Finally,
the Chairman of the Survey Committee...devoted the summer of 1968 to the
final editing and revising of the final work.

Thus we have good grounds for regarding the contents of this volume as con-
stituting a truly authoritative consensus, at least, as of 1970. There are no minor-
ity reports; no demurrails; biology does indeed seem guaranteed here to speak with
one voice. ’

What does that voice say? Here are a few characteristic excerpts:

The theme of this presentation is that life can be understood in terms of the
laws that govern and the phenomena that characterize the inanimate, physi-
cal universe and, indeed, that at its essence life can be understood only in
the language of chemistry. [emphasis added]

A little further aiong, we find this:

Untll the laws of physics and chemistry had been elucidated, it was not pos-
sible even to formulate the important, penetrating questions conoeruning the
nature of life... . The endeavors of thousands of life scientists...have gone
far to document the thesis... ({that) living phenomena are indeed intelligible
in physical terms. And although much remains to be learmed and understood,
and the details of many processes remain elusive, those engaged in such
studies hold no doust that answers will be forthcoming in the reasonably
near future. Indeed, only two major guesitions remain enshrouded in a cloak
of not guite fathomable mystery: (1) the origin of life...and (2) the
mind-body problem...yet (the extent to which biology is urderstood) even
now constitutes a satisfying and exciting tale. [emphases added]

Still further along, we find things like this:

While glorying in how far we have come, these chapters also reveal how
large is the task that lies ahead... . If (molecular biology) is exploited with
vigor and understanding...a shining, hopeful future lies ahead. [emphasis
added] :

And this:

Molecular biology provides the closest insight man has yet obtained of the
nature of life - and therefore, of himself.

And this:

It will be-evident that the huge intellectual triumph of the past decade will, in
all likellhood, be surpassed tomorrow - and to the everlasting benefit of
mankind.

It is clear from such rhapsodies that the consensus reported in this volume is not
only or even mainly a scientific one; it is an emotional and aesthetic one. And
indeed, anyone familiar with the writings of Newton's contemporaries and succes-
sors will recognize them.

The volume to which we have alluded was published in 1970. But it is most sig~
nificant that nothing fundamental has changed since then.
In the inimitable words of Jacques Monod (1971, pp 42=43):

We can assert today that a universal theory, however completely successful
in other domains, could never encompass the biosphere, its structure and its
evolution as phenomena deducible from first principles... . The thesis I shall
present...is that the biosphere does not contain a predictable class of
objects or events but constitutes a particular occurrence, compatible with
first principles but not deducible from these principles, and therefore
essentially unpredictable. [emphasis added]
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