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FOREWORD

This volume includes the Proceedings of the International Conference on Stochas
tic Optimization held at Kiev, USSR In September 1984. The conference was organ
ised by the Committee for Systems Analysis of the USSR Academy of Sciences, Interna
tional Institute for Applied Systems Analysis, the Academy of Sciences of the Ukrainian
SSR and V. Glushkov Institute of Cybernetics.

The purpose of the conference was to survey the latest developments in the field
of controlled stochastic processes, stochastic programming, control under incomplete
information and applications of stochastic optlmization techniques to problems In
economics, engineering, modeling of energy systems, etc.

Up to now, all these approaches to handle uncertainty followed an independent
development, but recently It became apparent that they are interconnected in a
number of ways. This process was stimulated by the development of new powerful
mathematical tools. For instance, martingale techniques originally developed in sto
chastic analysis are extensively used in the theory of controlled stochastic processes
and for proving convergence of stochastic programming methods. The theory of
measurable multifunctions (set-valued maps) primarily used in mathematical economics,
is now one of the main tools for the analysis of the dynamics controlled systems dif
ferential games, etc. Convex analysis is now widely used in stochastic optimization, but
it was first applied to deterministic extremal problems.

On the other hand, new aplications appeared in which it is necessary to consider
the problems of identification, filtering, control and large scale opllmization simul
taneously. This also leads to the integration of different approaches of stochastic
optimization. Therefore, it was decided to bring together scientists from these fields
and an internallonal programme committee was formed. This committee included
representallves from differnt fields:

V.S. Michalevich (USSR, Chairman)
A. Wierzbicki (Poland. Deputy Chairman)
V.I. Arkin (USSR)
K. Astrom (Sweden)
A. Bensoussan (France)
D. Blackwell (USA)
A. Veinot (USA)
R. Wets (USA)
Yu. M. Ermoliev (USSR)
A.B. Kurzhanskii (USSR)
A. Prekopa (Hungary)
A.V. Skorokhod (USSR)
A.N. Shiriaev (USSR)

More than 240 scientists from 20 countries particlpated in the conference. The
"Systems and Decision Sciences Programme" of the International Institute for Applied
Systems Analysis greatly contributed to the organisation of the conference and to the
preparation of the conference materials for publication. In recent years this lnstllute
has been involved in a collaborative research project on stochastic optimization
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involving scienlisls from differenl counlries. This collaboralion was very imporlanl in
achieving lhe high level of lhe conference.

The conference reflecled a number of recenl imporlanl developmenls in slochas
lic oplimizalion, nolably new resulls in conlrol lheory wilh incomplele informalion, slo
chaslic maximum principle, new numerical lechniques for slochaslic programming and
relaled soflware. applicallon of probabllislic melhods lo lhe modeling of lhe economy.

The conlribullons lo lhls volume are divided inlo lhree calegories:

1. Conlrolled slochaslic processes

2. Slochaslic exlremal problems

3. Slochalic opllmizallon problems wilh incomplele informalion.

Laxenburg, July 1985 V. Arkin
A.N. Shiriaev
R. Wets



TABLE OF CONTENTS

Section I: Controlled Stochastic Procesaes

A martingale approach to partially observable controlled
stochastic systems
R.J. Chitashvt.li (USSR)

On the limiting distribution of extremum points for certain
stochastic optimization models
A.Ya. Dorogovtsev and A.G. Kulcush (USSR)

The structure of persistently nearly-optimal strategies
in stochastic dynamic programming problems
E.A. Fainberg (USSR)

On the derivation of a filtering equation for a
non-observable semimartingale
L.I. Ga.L~ulc (USSR)

On the representation of functionals of a Wiener sheet
by stochastic Integrals
J.I. Gih711an (USSR)

The maximum principle for optimal control of diffusions with
partial Information
U.O. Hauss711ann (Canada)

Explicit solution of a consumption/investment problem
I. Karatzas. J. Lehoczlcy. S. Sethi and S. Shreve (USA)

On the asymptotic behavior of some optimal estimates of parameters of
nonlinear regression functions
P.S. Knopov (USSR)

On the f:-optimal control of a stochastic integral equation
with an unknown parameter
A.M. KoLodiy (USSR)

Some properties of value functions for controlled diffusion
processes
N. V. KryLov (USSR)

Stochastic control with state constraints and non-linear elliptic
equations with Infinite boundary conditions
J.-M. Lasry (France)

3

17

22

32

37

50

59

70

79

88

96



VI

On t.he weak convergence of cont.rolled seml-mart.lngales
N.L. Lazrieva (USSR)

Est.lmat.lon of paramet.ers and cont.rol of syst.ems wlt.h
unknown paramet.ers
S. Yo.. Malmo (USSR)

On recursive approxlmat.lons wlt.h error bounds In
nonUnear fllt.erlng
G.B. Di. Masi, W.J. Runggaldier and B. Armellin (Ito.ly)

On approxlmat.lons t.o dlscret.e-t.lme st.ochast.lc cont.rol problems
G.B. Di. Masi, W.J. Runggaldier and F. Chiariello (Italy)

On lexlcographlcal opt.lmaUt.y crlt.erla in cont.rolled Markov chalns
G.I. Mirzashvili (USSR)

Canonlcal correlat.lons, Hankel operat.ors and Markovlan represent.at.lons
of mult.lvarlat.e st.at.lonary Gausslan processes
Michele Po.von (Italy)

The maxlmum prlnclple In st.ochast.lc problems wlt.h non-fixed random
cont.rol t.lme
M. T. Saksonov (USSR)

Opt.lmal cont.rol of st.ochast.lc lnt.egral equat.lons
L.E. Shaikhet (USSR)

Some dlrect. met.hods for comput.lng opt.lmal est.lmat.ors for forecast.lng
and fllt.erlng problems lnvolvlng st.ochast.lc processes
A.D. Shatashvili (USSR)

On funct.lonal equat.lons of dlscret.e dynamlc programmlng
Karel Sladky (CSSR)

Rlsk-senslt.lve and Hamllt.onlan formulat.lons In opt.lmal cont.rol
P. Whittle (UK)

Martlngales In survlval analysls
A.I. Yashin (USSR)

Markov declslon processes wlt.h bot.h cont.lnuous and lmpulslve cont.rol
A.A. Yushkevich (USSR)

107

116

127

136

146

157

169

176

166

201

213

220

234



VII

Section II: Stochastic Extremal Problems

Stochastic programming methods: convergence and non-asymptotlc
estimation of the convergence rate
Ya.I. A'lber and S.v. Shilman (lJ~R)

Solution of a stochastic programming problem concerning the
distribution of water resources
I.A. Aleksandrov, v.P. Bulatov, S.B. Ogn1.vtsevand
F.I. Yereshko (USSR)

Limit theorems for processes generated by stochastic
optimization algorithms
v.v. Anisimov (lJ~R)

On the structure of optimality criteria In stochastic
optimization models
V.I. Arkin and S.A. Smolyak (USSR)

Strong laws for a class of path-dependent stochastic processes
with applications
B. Arthur (UK), Y. Ermol1.ev and Y. Kan1.ovski (USSR)

The generalized extremum In the class of discontinuous functions
and finitely additive Integration
V.D. Batuht1.n and A.G. Chentsov (USSR)

Convex multivalued mappings and stochastic models of the
dynamics of economic systems
N.N. Bordunov (USSR)

Stability In st.ochastlc programming - probabilistic constraints
Ji.tka Dupa~ova (CSSR)

Duality In Improper mathematical programming problems
under uncertainty
1.1. Erem1.n and A.A. Vatol1.n (USSR)

Equilibrium states of monotonic operators and equilibrium trajectories
In stochastic economic models
I. V. Evst1.gneev (lJ~R)

Finite horizon approximates of Infinite horizon stochastic programs
Sjur D. Flam (Norway) and Roger J.-B. Wets (USA)

Stochastic optimization techniques for finding optimal submeasures
A. Ga1.voronski (USSR)

Strong consistency theorems related to stochastic quasi-Newton methods
L. Gerencs~r (Hungary)

Stochastic gradient methods for optimizing electrical
transportation networks
M. Goursat, J.P. Quadrat and M. vtot (France)

On the functional dependence between the available Information and the
chosen optimality principle
V.I. Ivanenko and V.A. Labkovsk1.y (l/~R)

249

258

265

275

287

301

309

314

326

334

339

351

364

373

36B



VIII

Uncertainty in stochastic programming
Wasta. Ka.ncova. (CSSR)

Stochastic programming models for safety stock allocation
P~ter Kelle (Hunga.ry)

Direct averaging and perturbed test function methods for
weak convergence
Ha.rold. J. Kushner (USA)

On the approximation of stochastic convex programming problems
R. Lepp (USSR)

Extremal problems with probability measures, functionally closed
preorders and strong stochastic dominance

Y.L. Levin (USSR)

Expected value versus probability of ruin strategies
L. C. Ma.clea.n and W. T. Ziemba. (Ca.na.d.a.)

Controlled random search procedures for global optimization
K. Ma.rti (FRG)

On Bayesian methods in nondifferential and stochastic programming
J.B. Mockus (USSR)

On stochastic programming in Hilbert space
N.M. Novikova. (USSR)

Reduction of risk using a differentiated approach
I. Petersen (USSR)

A stochastic lake eutrophication management model
J. Pint~r and L. Somly6d.y (Hunga.ry)

A dynamic model of market behavior
I.G. Pospelov (USSR)

Recursive stochastic gradient procedures in the presence of
dependent noise
A.S. Poznya.k (USSR)

Random search as a method for optimization and adaption
L.A. Rastrigin (USSR)

Linear-quadratic programming problems with stochastic penalties:
the finite generation algorithm
R. T. Rocka.j'ella.r and R.J.-B. Wets (USA)

Convergence of stochastic infima: equi-semicontinuity
G. Sa.linetti (Ita.ly)

Growth rates and optimal paths in stochastic models of
expanding economies
A.D. Sla.stnikov and E.L. Presma.n (USSR)

393

402

412

427

435

448

457

475

487

496

501

513

522

534

545

561

576



IX

Ext.remum problems depending on a random paramet.er
E. Tamm (USSR)

Adapt.lve cont.rol of paramet.ers In gradient. algorlt.hms for
st.ochast.lc opt.lmlzat.lon
S.P. Urja.s'elJ (USSR)

St.ochast.lc models and met.hods of opt.lmal planning
A.I. Ya.stremskii (USSR)

Section ill: Problems with Incomplete Information

Dlfferent.lal Inclusions and cont.rolled syst.ems: propert.les of
solut.lons
A.V. BogatyrjolJ (USSR)

Guarant.eed est.lmat.lon of reachable set.s for cont.rolled syst.ems
F.L. Chernousko (USSR)

Met.hods of group pursuit.
A.A. Chi/crij (USSR)

An averaging principle for opt.lmal cont.rol problems wlt.h
singular pert.urbat.lons
V.O. Gaitsgory (USSR)

On a certain class of Inverse problems In cont.rol syst.em dynamics
M.I. OuselJ (USSR)

Simult.aneous est.lmat.lon of st.at.es and paramet.ers In cont.rol syst.ems
wlt.h Incomplet.e data
N.F. Kirichen/co and A.S. Slabospits/cy (USSR)

Approxlmat.e solut.lons of dlfferent.lal games using mixed st.rat.egles
A.F. KleimenolJ, V.S. Pats/co and V.N. Usha/colJ (USSR)

On t.he solut.lon set.s for uncertain syst.ems wlt.h phase const.ralnt.s
A.B. Kurzhanskii (USSR)

Exlst.ence of a value for a general zero-sum mixed game
J.P. Lepeltier (France)

Poslt.lonal modeling of st.ochast.lc cont.rol In dynamical syst.ems
Yu.S. OsipolJ and A.V. Krjazhims/cii (USSR)

Use of t.he H-convex set. met.hod In dlfferent.lal games
v.v. Ostapen/co (USSR)

A Unear dlfferent.lal pursuit. game
L.s. Pontryagin (USSR)

Met.hods of const.ruct.lng guarant.eed est.lmat.es of paramet.ers
of linear syst.ems and t.helr stat.lst.lcal propert.les
B.N. Pshenichnyj and V.O. Po/cotilo (USSR)

565

591

602

611

619

632

641

650

657

669

675

666

696

705

712

719



x

Stochastic and deterministic control. Differential Inequalilies
N.N. Subbotina, A.l. Subbotin and V.E. Tret'jakov (USSR)

The search for singular extremals
M.l. Zelikin (USSR)

On the smoothness of the Bellmann function In optimal control problems
with incomplete data
L.F. Zelikina (USSR)

728

738

747



Section I
Controlled Stochastic Processes





A MARTINGALE APPROACH TO PARTIALLY OBSERVABLE
CONTROLLED STOCHASTIC ~'YSTEMS

R.J. Chltashvlll
Mathematical Inslltute
Byelorusslan Academy of Sciences
USSR

1. INTRODUCTION

A number of stochasllc opllmlzation problems can be related to the problem of

optimal absolutely continuous change of measure In a space with flltering. The choice

of a control In such problems Is equivalent to the choice of some absolutely continuous

transformation of the original basic measure. This covers, for instance. the control of

the transition coefficient In non-generated diffusion-type processes.

In [:1-] we consider the problem of constructing probability measures correspond

ing to admissible controls, and the Hamlltonlan for general control problems wlth com

plete Information.

In the case of control problems with incomplete informallon, substantial dlfflcul

lles arlse In the constructlon of the HamlLtonlan. whlch is basically needed In order to

test the optlmallty of a glven control by making separate tests of each of Its values for

every fixed moment and the corresponding history of the controlled process.

While the adjoint process In the Hamiltonian expression for the necessary optimal

Ity condition Is simple enough, the structure of the adjoint process for the sufficient

opllmallty condillon Is non-trivial; the formal assertion of the existence of such a pro

cess will be Illustrated here by an example based on the discrete llme case.

2. DEFINITION OJ!' THE CONTROL PROCESS.
SOME ASSUMPTIONS AND NOTATION

Let (O,F.O ,P) be a probablllty space with the filters F =(Ft ). 0 =(Ot).

a ~ t ~ T, 0t eFt, satisfying the usual conditions, and pA = (pa , a E: A) be a family of

probabilities on F r which are equivalent to P, p a
~ P.

The elements a E: A are interpreted as actions, pa is a distribullon corresponding

to the action a; F t is the a-algebra of the events which describe the state of the con-
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troLLed system up to time t; Gt Is the a-algebra of the events which are observed up to

time t. It Is assumed that the space of actions A is finite.

The possibility of choosing a sequence of actions according to the accumulated

information Is expressed by the introduction of a class U of controls U E U, where

U = (Ut), o:S t :S T. Ut(c.J) is a G-adapted (measurable for every t with respect to Gt )

predictable process taking values in A .

FoLLowing the construction scheme given in [11, the class p u of probabilities

corresponding to the controls is defined In terms of densities.

Let pa = (Pf), O:S t ~ T, denote the local density of the measure pa with respect

to P. i.e ..

where pf = p a 1Ft , P t = P I Ft are contractions of measures on the a-algebra Ft.

O~t:ST.

Suppose for simplicity that Pg =Po and, hence, p(f =1. a E A (this Is a common

Initial condition).

It is weLL-known (see [2,3]) that pa can be represented In the form of an exponen

tial martingale

where M a Is a local martingale with respect to the flow F and the measure P, i.e .•

Ma E M\oc(F •P) and pa is a solution of the linear equation

Set MA = (M a •a EA), R A = (pa •a EA); for convenience we shall sometimes use

the more detailed expression Mf = M (t ,a). We can define MU E M\oc(F, P) for U E U

as a sum of stochastic integrals

t

Mf =}2 J l[u.=a]dM:
a 0

Now the class p u Is defined by the elements

p u =pU . P (pU (B) =J pUdp , B E F r)
B

(1)

Hence the construction scheme for the class of measures p u is represented by the fol

lowing chain of transitions:

(2)
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and the determining element of this chain is (1) for M U
•

In the general case, for non-finite (uncountable) A, (1) is replaced by a line

integral with respect to the family MA along the curve tL (see [1]).

The mathematical expectation with respect to the measure pu is denoted by EU

and that with respect to P by E.

We assume that all Ma are square-integrable, Ma E M:2(F, P), and that

where <. > is a square characteristic which implies (by virtue of the finiteness of A

and the condition liMi> -1, 0 ~ t ~ T, resulting from p a ~ p. see [3]) that pU > 0,

Ep¥ = 1, the pU are square-integrable and p u ~P, tL E U.

For the semi-martingale x with respect to the filter F and the measure P

represented by x = V + m, where V is a predictable process with bounded variation

and m E V}oc(F, P). the expression <x . M U
) Is assumed to be equivalent to <m , M U >.

For an F-adapted process V with integrable variation, V',G denotes a dual G

predictable projection, i.e .. a G-predictable process with integrable variation such

that

and m E M(G ,P). The dual predictable projection with respect to the measure p u is

denoted by yP"',G.

The relation between the projections with respect to the measures p u and P is

given by

yP"',G =(p~)-l. (p~' V)P,G , va =0

or, to be more precise,

t s
vf... ·G = J(p:_)-ld(J p~_dvTl,G

a a

where pU is a contraction of the density pU on the filter G

(3)

Of course. iJu may also be represented as an exponential martingale pU = £(Mu ) using

some martingale MU
• However. it should be noted that in this case the representation

AU '" A a
M = "" I [u =a 1 . M does not hold.

a
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Finally, we assume that L: <M a > is dominated by some G-adapted increasing pro
a

cess K and that

max d<m ,Ma >l,G
a

is equivalent to

max (d<m ,Ma>i,G/dKt )' dKt
a

3. ESTIMATORS OF CONTROLS. LINEAR EQUATIONS

Let 7/ be some Fr-measurable bounded random variable, and consider the problem

of maximizing the mathematical expectallon E U 7/. We shall introduce processes which

estimate the qualily of the control on segments of the time interval [t, T]:

Here S(t • u) is the conditional expected reward at time t with complete observations

if the past is fixed, and SV (t , u ) is the conditional expected reward with partial obser

vation if the control v was exerted before time t: with a fixed u-algebra of observable

events, the future average expected reward depends not only on the history of the sys

tem slates. bul also on the history of the conlrol.

Estimators S(t ,u) and SV (t ,u) can be defined as the solutions of certain sto-

chastic linear equations.

LEMMA 1. The estimator S(t ,u) is the unique solution of

dS(t ,u) = -d<s(',u),Mu>t + dmr (4)

with a boundary condition at the end of the interval s (T ,u) = 7/, given that

m U E: M(F,P).

In this case the martingale m U is uniquely defined by the equation and the boun

dary condition.

It is also possible to write some relations which on the one hand are equivalent to

(4), and on the other, are decompositions of Doob or Riecz-type estimators S (t • u )

with respect to moasures P or p v for some v E: U:

r
S(t , u) = E(7/ + J d <s (- , u) • MU >s 1Ft )

t

(5)

(6)



7

T
S(t,u) =s(t,v) +EV(jd<s(·,u),MU -Mv>s 1Ft )

t
(7)

All of lhese relalions may be derived using lhe generalized form of Girsanov's lheorem.

Tho following analogues of lhese relations hold for lhe estimalor SV (t , u ), U E: U,

v E: U;

LEMMA 2. The estimator SV (t ,u), U E: U, v E: U, is uniquely defined by

(8)

mU,V E: M(O ,P)

or by relations equivalent to (8):

T
SV(t, u) =Sv (t, v) + (p~)-1E(j d(p~' <s(', u), M U -M v >~,G lOt)

t

T
SV(t, u) = SV(t ,v) + EV(j d<s(' .u). MU _Mv >f'.G lOt)

t

(9)

(10)

(11)

We shall call S(t ,u) and SV (t ,u) lhe complele and partial esllmalors of lhe conlrol,

respecllvely.

4.. THE HAMILTONIAN. NECESSARY OPTIMALITY CONDITIONS

The need for an oplimalily condition arises in lhe following way. Suppose lhal

while conlrolling lhe syslem we reach lime t. The problem is lo make lhe besl choice

of lhe conlrol value u t. laking inlo accounl bolh lhe Information conlained In lhe

observed evenls from 0t and lhe previous conlrol values (vs ,s < t).

It seems nalural lo maximize lhe rale of growlh of lhe regular componenl In lhe

decomposilion of lhe estimalor SV (t •u ) when choosing Ut and, hence, by virlue of (8)

or (9), lo choose for Ut an acllon a for which lhe Hamillonian

v d a r" G - v -1 dht(p ,s(',u),a) = dK <s(-,u),M > '=(Pt-) dK
t t

(12)

achieves Ils maximum value. Bul h also conlalns lhe complele esllmalors s (. , u) which

depends on fulure values of lhe conlrol. Since lhe value of Ut Is lo be chosen wilh
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regard lo fulure opllmal conlrol, (12) should conlaln a complele esllmalor which

corresponds lo lhe opllmal conlrol.

Such heurislic reasoning expressing lhe Idea of dynamic programming aclually

leads lo lhe necessary oplimalily condillon In lhe case of parlial observallons If lhe

pasl conlrol (v s ,s <t) in (12) is also assumed lo be oplimal.

THEOREM 1 (Necessary oplimalily condillon). Let u' be optima.l. i.e.• EU
' 71 =

sup E U 71, Then
U

maxht(p' ,lI,a.) =ht(p' ,1I,u;) , /-L-a.e.
a

(13)

where /-L is a. mea.sure on the G-predicta.ble subset B of the spa.ce n x [O,T] a.nd is

defined by the process K (see [3]):

T

J.L<B) = E J IE (GJ , t)dKt
o

a.nd p' , 11 a.re solutions of the following system of equa.tions:

(14)

m E: M(F ,P)

In a.ddition p' =pU', 11 =s(', u ').

Maxlmizallon condillon (13) and lhe syslem of equalions (14) conslilule lhe max

imum principle, where lhe denslly pU' and lhe complele eslimalor s (. ,u') represenl

lhe oplimallrajeclory of lhe conlrolled process and lhe adjoinl process, respeclively.

The main sleps in lhe proof of lhe asserlion are given briefly below. Firsl, we

eslabllsh an Inequalily belween lhe parllal eslimalors for all u E: U and t:

Consequently, for any u E: U. t, s :s; t, we have

Thus lhe slep-wlse process

x/' = -2; EU '(EU (lIs -lIs -1i IFs -Ii)1 Gs - li )
sst

Increases wilh respecl to t and lhe process

Ytli = E U
' (2; E U (lIs -lIs -Ii IFs -Ii) IGt )

sst
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is a supermartlngale wllh respecllo G and lhe measure p U '.

On lhe olher hand, from Lemma 1 we have lhal lhe process

L; E U (-y,s - -y,s -ft. I Fs -ft.)
sst

converges lo - <-y" MU ' -Mu >.

The resuilis lhal lhe process

T

Yt = ll~ ytft. = E U
' ({ d <-y" MU

' -Mu >s I Gt )

lurns oullo be a supermartlngale and so lhe predlclable projecllon

Is an Increasing process for all u E: U. Applicallon of (3) lhen leads lo (13).

The necessary oplimalily condilion of form (13) for dlffuslon-lype processes was

eslabllshed In [4] and [5]. In lhis case lhe marllngales M a which define lhe measure

densllies corresponding lo lhe acllons a E: A are expressed by lhe slochaslic Inlegrals

tit
M[1 = J f(s ,w 1 ,a)dw - + J g(s ,w 1 ,a)dws

2

o s 0

wilh respecllo lhe Wiener processes wi, w 2• Here lhe non-anllclpallve funcllonals f

and g represenl drifl coefficienls of lhe observable and non-observable componenls,

respecllvely, wllh a-algebra flows induced by (w 1 ,w 2 ). w 2 can be used for fillers F

and G wilh lhe basic measure P which represenls lhe dislribulion (wi, w 2). The con

lrol problem lhus formulaled for a process wilh observable and non-observable com

ponenls (y,:z:) given by a syslem of equalions

dz t = f (t ,:z: , a )dt + dwl

dYt =g(t,:Z:,a)dt +dwl

is lhen covered by lhe general scheme.

5. BELI...M:AN'S EQUATION. CONTROL DEFECT FORlruLA. SUFFICIENT
OPTIMALITY CONDITION FOR COMPLETK OBSKRVATIONS ([1])

If F t = Gt , 0 ~ t ~ T, condilion (13) is reduced lo

max h t (S ,a) =max d <S ,Ma >t I dKt =h t (S ,ui)
a a

and for

S(t) =s(t,u') =supS(t,u) =-y,t
U

(15)
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equation (4) lakes lhe form of a non-linear equallon:

dS(t) =-max d<S,Ma>t +dmt ,m E: M(F,P) , S(T) =7)
a

From (7), wllh U = u· , v = u, we also have

T
S(t) -S(t,u) =EU(jmaxd<s,Ma -Mu>s 1Ft )

t a

(16)

(17)

Equalion (16) is Bellman's equalion for lhe value Sand (17) is lhe conlrol defecl for

mula. This shows lhal lhe cause of lhe non-opllmalily of lhe conlrol Is simply lhe accu

mulaled effecl (Inlegral) of lhe differences

max h t (S , a.) - h t (S ,Ut)
a

for every t. One of lhe consequences of lhe defecl formula Is lhal condllion (15) Is

sufflclenl for lhe oplimalily of U •.

6. SUFFICIENT OPTIMALITY CONDITION IN DISCRETE TIME.
ADJOINT PROCESS

The reason why lhe necessary condilion (13), (15) Is also sufflclenl in lhe case of

complele observallons Is lhal lhe complele estimalor S(t ,u) is Independenl of lhe

previous conlrols. In lhe case when F t = Gt , 0 s t s T, lhe oplimal conlrol u· on lhe

whole Inlerval [O,T] also lurns oul lo be opllmal on lhe inlerval [t, T] regardless of

lhe values of previous conlrols, I.e., Il follows from E U
' 7) = sup EU

7) lhal
U

s (t) = sup E U
(7) I F t ) = sup SV (t ,u) = sup Set ,u) = Set ,U ')

U U U

In lhe parllally observable case lhe siluallon Is different. Relurnlng lo lhe argumenls

for lhe derlvallon of lhe Hamillonian expression, we replace 1{1 in (12) by lhe adjolnl

process, which is esllmaled laking Inlo accounllhe facl lhal lhe opllmal conlrol In lhe

fulure (U; ,s > t) will depend on pasl fixed values (vs ,s < t).

Conslderalion of lhe discrele lime case helps us lo find lhe exacl expression for

lhls process.

Lel Ft and Gt be piecewise conslanl on lhe inlervals Ii > 0, (Ft = Fnt.,

n Ii s t < (n +l)Ii, Gt = Gnt.' nli s t < (n +l)Ii, n == 1,2, ... , N) and lel us consider

only dlscrele limes t == 0, Ii, 21i, •...• T == N Ii. The martingales Mf == M(t, a.) , a. E: A,

which define lhe densilies pa may be expressed in lerms of lransillon probabilily den

silles

q (t , Cl) == pf I pf-t. ' 0 < t s T , a. E: A
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which represenl conditional densities, Le., for BE: F t

p a (B I F t -t.) = J q (t ,a )P(dc.l I F t -t.) , 0 ,,; t s; 7'
B

Here

Mf='E (q(s,a)-l),Mf='E (q(s,us )-l)
s",t s~

and lhe densilies pa, pU are defined by lhe linear equations

Linear equallon (4) for lhe complele estimalor S (t , u) Is equlvalenl lo lhe common

recursive relallon

where E(6S(t, u)t:.M (t ,Ut) I F t -t.) Is an Incremenl in lhe mulual characlerisllc

<s (. ,u), M U > and /).mf = 6S(t ,u) - E(6S(t ,u) I F t -t.) Is an incremenl In lhe mar

lingale componenl of s (. ,u). Rearranging lhe summands we have

S(t - /)., u) = E(S(t , u)q (t ,Ut) I F t -t.) , S(T , u) = 71 (18)

Similarly, lhe non-linear equalion for lhe value (16) lakes lhe form of a common recur

sive relallon In dynamic programming:

S(t -/).) = max E(s(t)q(t, a) I Ft-t.) , S(T) = 71
a

(19)

tand lhe Hamlllonian h t (s ,a) (wllh respecl lo lhe counting process Kt = (~]) Is

expressed as

The dlscrele version of relallons (8) or (9) for a partial estimalor of S1J (t ,u) can

immedlalely be oblained from (18):

(20)

This relalion is fundamenlal for reasons explained below. Nole lhal, on lhe righl-hand

side of (20), lhe conlrol values (v s ,s < t), Ut, (us,s> t) are conlained In lhe expres

sions p1J, q (t , Ut) and S(t , u), respecllvely.



12

Lel !p' (t , v) denole lhe (G-prediclable) admlssible conlrol on a segmenl of lhe

lime Inlerval [t , T]

which maximizes lhe parllal eslimalor SV (t - 6., u) for given v E: U:

sup SV(t -6.,u) = SV (t -6., !p'(t ,v»
u

(There Is a cerlaln inconsislency In lhe Indices due lo lhe facl lhal in order lo incor

porale lhe discrele lime case Inlo lhe general conllnuous scheme we have lo shift lhe

conlrol Index lo lhe rlghl: u t Is Gt _to-measurable and aclually corresponds lo lhe lime

- 6..)

The value u;(v) = !p;(t ,v) clearly represenls lhe besl acllon allhe t-lh slep wllh

regard lo lhe hlslory of lhe conlrol and optimal behavior in lhe fulure.

Since

and max f (~ ,Y) = f (~' ,y') Implies max f (~ ,y') = f (x' ,y'), il follows lhal lhe
z.y z

expression which should be maximized wilh respecl lo a E: A in order lo oblaln lhe

value u;(v) Is

(21)

The mosl unsullable componenl In (21) is lhe random variable S (t , !p' (t , v », which

by ils conslruclion Is equallo lhe complele esllmalor S(t ,u) from lhe lime t when lhe

conlrol !p' (t ,v) (aclually, lhal parl of !p' (t , v) from t + 6. lo T) Is exerled, and

opllmal wllh respecllo lhe parllal esllmalor SV (t - 6., u ) from lhe momenl t - 6.,

We shall now lransform expression (21) inlo a form which can be generalized lo

lhe conllnuous lime case.

The maxlmlzallon condillon (21) does nol change If Inslead of S (t , !p' (t ,v» and

q(t .a) we Inserl

6.'¥if =S(t ,!p'(t ,v» -S(t -6.,!p'(t ,v» and 6.M(t ,a) = q(t ,a)-l

Then (21) Is reduced lo maximizallon of lhe expression

which is a discrele analogue of Hamlllonian (12) In which lhe process

'¥if = I: (S(s, !p'(s ,v» -S(s -6., !p'(s ,v»)
S ",t

(22)
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represenls lhe adioinl process.

Making lhe subslilulion u = <p'(t ,v) in (18) leads lo a recursive equalion for lhe

process 1/If. This can be given, for convenience, in a form similar lo (9):

where u;(v) is defined by

max ht(pV .1/Iv ,a) = ht(pV • 1/1V ,ui(v))
a

(23)

(24)

In order lo derive an equalion for lhe parlial value 8 v (t) = sup 8 v (t •u), con
u

sider lhe proces

Zf = 8(0. <p' (0. v)) + L: (8(s. <p' (s + to, v)) - 8(s • <p' (s ,v)))
s,s;t

It can easily be seen lhal

and hence lhe process if = E V (Zf I Gt ) is a submarlingale wilh respecl lo lhe filler G

and lhe measure p v .

Now (23), (24) and lhe obvious relation

leads lo an equallon for 8 v (t):

~V(t) = max (pf_/i)-lE(p?_/ito1/lfto(M(t. a)
a

(25)

and lhe defecl formula

T
8 V(t) -8V(t ,Vt) =EV(L: (maxhs(pV .1/Iv ,a) -hs(pV • 1/1V ,vs)) - C~) I Gt ) (26)

s =t a

which is equivalenllo (25).

In order lo oblaln lhe optimalily condillon in a necessary and sufficienl form we

shall make an addilional lransformallon. Il is evldenl from (26) lhal Ct ~ it? =

max h t (pV • 1/1V ,a) - h t (pV • 1/1V ,Vt). Lel us consider a new proces
a
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1/!tlJ = L; (l-q/h~)6.1/!:
s,;;t

Since ct/ ht is G-measurable. ~lJ also satisfies (23) and (24). Now the defect formula

(26) takes the form

This second formula implies that the condition

is necessary and sufficient for the optimality of v.

7. SUFfiCIENT OPTIMALI1'Y CONDITION FOR THE GENERAL CASE

THEOREM 2. For every v E: U there e:rists a semi-martingale ~lJ such that the

defect formula

T
SlJ(t) -SlJ(t, v) =E lJ ( J( max hs(plJ, ~lJ, a) - hs(pV, ~1J. vs}}dKs I Gt ) (26)

t a

holds. where

The necessary and sufficient control optimality condition is

(29)

The main steps of the proof are as follows:

(a) Identify the controls u E: U with densities pU, U E: U, where the set U is a

subset of the Hllbert space.

(b) For every v E: U. a measurable mapping qJ' exists such that

qJ' ( . , v ); 0 x (0, T] -+ U , sup S1J (t -, u) =S1J (t -. qJ' (t • v»
U

(c) A stochastic line integral with respect to the family (s (. ,u), U E: U) is

defined on the curve qJ' (. ,u):

t

1/!t =J S(ds. qJ'(s ,v}}
o

(30)
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(d) The process ir = sv (t) - E V (1/ItV Gt ) represents a submartlngale with

respect to the filter G and the measure p V
; the increasing process C V In the

decomposition i v = CV + m. m E:: M(G •J'V) Is absolutely continuous with respect

to the process K and

cl' =dC;' /dKt S ht
V =max ht(pV .1/Iv • a) - ht(pV .1/Iv • Vt)

a

(e) The semimartingale with respect to the measure P and the filter F

t

~l' = J(l -c~ / h~)d1/l~
o

satisfies the equation

d~l' = _d<~v ,M(·. u' (v »>t + diiil' • iiiv E: M(F .P) (31)

(f) Either (28) or the folloWing equivalent differential equation for a partial

value SV (0:

dSV(t) = - (max ht(pV ,~v ,a) - ht(pV ,~v ,V +»dKt + d<Sv • MV >t + dml' (32)
a

holds for m v E: M(G •P).

The main point in the construction of the adjoint process ~v Is the definition of

the llne Integral (30) which generallzes the discrete time expression (22). (The gen

eral approach to the line integral was proposed in [1].)

Assuming that A Is finite or L: <M a >T S c < 00 Is bounded slmpllfies the proof of
a

(b).

For the optimal control u', we have ~t = 1/1?' = 1/I t = S(t ,u ') and (29).ls

reduced to the necessary condition (13). Equation (31) Is transformed Into (16) and in
-v

the case of complete observations we have 1/It = s (t).

In contrast to the optimality conditions given In [6] for diffusion-type processes,

only the t-th (last) control value is checked at the t-th step in condition (25). In [6]

optimality Is tested using the expression

Finally, It seems interesting to find a relation between the Hamiltonian construction

considered in this paper. and the construction based on the Bellman-Mortense equa

tions for the value function in the Markov case which is considered elsewhere.
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ON THE LJ],{ITING DISTRIBUTION OF EXTREMUM: POINTS
FOR CERTAIN STOCHASTIC OPTIMIZATION M:ODELS

A.Ya. Dorogovtsev and A.G. Kukush
Kiev State University. Kiev, USSR

1. INTRODUCTION

The asymptotic behavior of infinite-dimensional parameter estimates has been stu

died in many papers (see [1-3] and the references therein). Particular attention has

been paid to the consistency or risk of the estimates. However. the problem of

obtaining weak convergence conditions for suitably normalized estimates turns out to

be rather complicated and has not been studied in any detail (although some specific

cases are treated in [1.3]). This paper gives weak convergence conditions for the nor

malized estimate of the drift coefficient for the simplest stochastic differential equa

tion. We assume that the unknown drift coefficient belongs to a certain compact subset

of the space of continuous functions with uniform norm. The drift coefficient is

estimated by maximizing the likelihood ratio over finite-dimensional projections of this

compact set. A similar method for constructing non-parametric regression estimates

was proposed in [2.3]. In [1], the properties of the drift coefficient estimate obtained

by maximizing the likelihood ratio over the whole compact set were explored; here we

calculate the estimate more simply. although the result Is somewhat less strict than In

[1].

2. PROBLEM: STATE:M:ENT

For fixed numbers a > 2 and L > 0 let

K = K(L) = ff: R -+ R I Vt E lR: f (t + 27\") = f (t)

where a.t (f). i ~ O. and b j (f), j ~ 1. are Fourier coefficients of the function f with

respect to the sequence

1"2 ' cos t , sin t , ...• cos (nt) • sin (nt) •... ; t E [0.27\"]
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In addition, let K o be the set K(L o) for a certain fixed and possibly unknown value

L o <L. Note that K c C1([O,2rr]) and that K contains all compact subsets of the space

C ([O,2rr]) with uniform norm.

Let (0, F, P) be a probability space and lw (t) , t 2: 0 I be a standard Wiener pro

cess. We consider the problem of estimating an unknown but fixed function So E K o on

the basis of observations on the segment [0, T], T > 0, of the values of a process

Ix (t) , t 2: 01 with a stochastic differential of the form

d.z (t) =s o(t )dt + dw (t) , t > 0

Note that estimates of So which are consistent as T -> + 00 were first considered in [4].

Let rrk : K -> K be the map defined as follows:

rrk(f)(t) =1:.. ao(f) + t (at (f) cos (it) + bt(f) sin (it»
2 t =1

JEK,kEN,tEIR

Let !n(m), m 2:01. n(O) =1, and !k(m), m 2:11 be fixed Increasing sequences of

natural numbers. For T 2: 2rr we define m (T) E IN such that

2rrn (m (T» ,s; T < 2rrn (m (T) + 1)

For each T 2: 2rr we define the estimate s T of the function So by means of the log

likelihood function

T T
1 r 1 r 2

QT(s) =T J s(t)d.z(t) - 2T J s (t)dt • s E K
o 0

as some value from rrk (m (T»K which satisfies the condition

(1)

Simple extension of the results given in [5] proves that for each T 2: 2rr the value sT

may be chosen to be a random element with values in C([0,2rr]) (see also [1]). The main

results of the present paper are summarized in the following theorem:

THEOREM L Assume that Jor some (J < 1/4 we have

11m (nlf(m)/ k Q(m» > 0
m-+w

Then the following statements hold a.s. as T -> + 00:

T

1. T 2")' J (sT(t) - rrk (m (T»s 0(t)2dt -> 0 'if7 <1/4
o

(2)
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2. max IST(t)-so(t)I--O
tER

3. T6 max IST(t)-rrt(m(T»sO(t)1 ->0 V6«a-1)/(2(2a-1»
t lOR

Moreover, the net of measures corresponding to the family of random processes

t

IWT(t): =(....1..)1/2 f (sT(u) -rrt(m(T»sO(u»du , t E: [0,2rr]!, T ~2rr
2rr 0

converges weakly to the measure corresponding to the standard Wiener process on

the segment [O,2rr] as T -+ + 00.

3. PROOF OF THE THEOREM

Statements 1-3 of the theorem are concerned with strict consistency and also with

the rate of convergence of the estimate to an unknown value. The proofs of these

statements are similar to those given In [1, § 2, Chap. IV] and are omitted here. To

prove the last part of the theorem we consider the sequence of values T: T(n) = 2rrn ,

n E: IN, m (T(n» = mn . It follows from the Inclusion So E K o' condition (2) and state

ment 1 of the theorem that the element rrt(m,,)sT(n) Is not an extreme point of the con

vex set rrt(m,,)K for all n O!: N«(,J). Thus

and the derivative Is the Frechet derivative of a real function defined on L 2([O,2rr]).

Using Taylor's formula, for n ~ N«(,J) and h E L 2([O,2rr]) we have

(3)

where

(4)

1 2n n-1
=- -- f (rrt (m,,)h )(t) ~ dw (t + 2i rr)

2rrn 0 (=0

(5)

The function h In (3)-(5) Is the function from L 2([0,2rr]) periodically continued on
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R.

Now consider the operator

A: L 2([O,271"D -+ C([0,271"D

.,.
A (h )(T) =J h (t)dt , T E: [0,271"] , h E: L 2([O,271"D

o

The conjugate operator A' acts from a space M([O,271"]) of signed finite measure on

[0,271"] toL 2«(0,271"D:

211'

A • (J.L)(s) = J J.L(dt) • s E: [0,271"] • J.L E: M([0,271"D
s

Let lep I be a sequence of functions of the trigonometric sequence from Section 2 which

are orthonormal on [0,271"]. For h =A • J.L we have

211' 2t<mn)+1.r 7Tt <mn)hdw(t) = L:
o P =1

211' 211'

J sp(t)dw(t) J A' J.Lep(s)ds =
o 0

211' 2n tJ 2t<mn)+1

J ep(t)dw(t) J (J ep(s)ds)J.L(dv) = <J.L, L:
o 0 0 P =1

211'

J ep(t)dw(t) J sp(s)ds>
o 0

The right-hand side of (4) may now be transformed to

1 n-1
- -2-71"n- <J.L, L:

1 =0

zt <mn)+1

L:
p=l

211'

J ep (t )dw (t + 2i 71") J sp (s )ds >
o 0

(6)

and the right-hand side of (5) for h =A • J.L may be written

It follows from (6), (7) and (3) that for n ~ N(GJ) we have

tJ

J (sT<n)(t) -71"t<mn)(so)(t»dt =
o

(7)

or

1 n-1
=- L:

n 1=0

2t<mn)+1 2n tJ

L: J sp(t)dw(t +2i71") J ep(s)ds • v E: [0,27T]
p=l 0 0

zt<mn)+1 211' tJ

L: J 6p(t)dw(t +2i7T) J ep(s)ds , v E: [O,27T]
p=l 0 0
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Let Pn (v), V E [O,2rr], be the right-hand side of (6). Then for all n ~ 1, the pro

cess !Pn (v) ,Os v S 2rr!ls a zero mean Gaussian process such that

U:(m,,)+1 Ve

E(Pn (vl)-Pn (vz»Z= E (!1Ip(s)ds)Z,OSVlsvzS2rr
p=l v 1

Hence,

Ep~ (v) ~ v , n ~ "" ; V E [O,2rr]

The convergence of the finite-dimensional distributions of this process to those of the

Wiener process Is obvious; lhe compactness of the distributions In the space C([O,2 rr])

follows from the Inequality for the fourth moments and the Kolmogorov compactness

condition. In addition, the difference between lhe left and right-hand sides of (6) lends

to zero a.s. uniformly on v because the number N(GJ) does not depend upon V E [O,2rr].

Then wr(n) ~ w In distribution on C([O,2rr]), n ~ "", thus proving the theorem.

Remark. The theorem also holds for the estimates obtained by maximizing Qr over the

whole compact set K, replacing rrt (m,.)s 0 by so' However, It Is necessary to have a> l:

for this (see [1]).
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THJo: STRUCTURE OF PJo:RSISTENTLY NEARLY-OPTIMAL
STRATEGIES IN STOCHASTIC DYNAMIC PROGRAMMING PROBLEMS

E.A. Fainberg
Deparlmenl of Applied Malhematics,
Moscow Instilule of Transporl Engineers (MIlT)
Moscow, USSR

1. INTRODUCTION

This paper deals wilh lhe slruclure of perslslently nearly-oplimal slralegles in

dlscrele-lime counlable-slale slochastic dynamic programming models. For models wilh

finile slale and acllon sels lhe problem has been complelely solved by Blackwell [1]

and Krylov [2]. Using differenl melhods, lhey bolh proved lhe exlslence of slalionary

oplimal slralegles. However, slallonary opllmal (or even nearly-oplimal) slralegles

may nol exlsl for models wllh infinile action sels [3,4]. In lhls connecllon lhe exlslence

of slallonary nearly-optimal slralegies has been proved for cerlaln classes of models

(for example, posilive models [5-7], models wilh finile or compacl aclion sels [8,9],

slrongly convergenl models [9-11], and conlractlng models [9,12]).

In lhe general case Fainberg and Sonin [13,14] have proved lhallf lhe value func

lion of lhe model Is replaced by lhe value funcllon of lhe class of slalionary slralegles

lhen uniformly nearly-oplimal slralegles exlsl. In Section 2 of lhis paper we consider

lhis resull and ils applicallon lo various special classes of models (slrongly conver

genl, conlractlng, elc.).

The class of Markov slralegies is a nalural exlension of lhe class of slallonary

slralegies. Van der Wal [15], Sonln [16], Falnberg and Sonin [13,14]. and Van Dawen

[17] have proved lhe exislence of persislently nearly-oplimal Markov slralegles.

Anolher approach lo lhe exlension of lhe class of slationary slralegies for finlle

slale sels has been offered by Everell [lB] and developed by Chllashvlly [19,20].

These aulhors considered slralegies which were slalionary on a subsel of lhe slale

space. For counlable slale models lhe exlslence of good slralegies of lhls lype has

been eslablished by Falnberg and Sonin [21] and Fainberg [22]. This approach allows

us lo prove resulls (see Section 3 of lhls paper) which are more general lhan lhose

concerning lhe exlslence of good Markov slralegles.
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Consider a Markov decision model J.L =Ix .A .A (.) • p • r I. where (i) X is a count

able state space; (11) A is a set of actions which is assumed to be endowed with a a--fleld

A containing all single to n sets; (111) A (:c) • :c EX. is the set of admissible actions if

the model is in state :c. A ( .) E A; (iv) P (z 1:c • a) is a transition probabUlty.

p(z l:c,a):o!:: 0 and ~ p(z l:c.a)~ 1; (v) r(:C,a) is a reward function. -oo~
2EX

r (% • a) < + 00 • % •Z EX, a EA. Functions p and r are assumed to be measurable in

a. We shall write Hn =(X x A)n x X , n =0,1 •...• 00, and H = u Hn . Products
O";n <-

of u-fields ZX and A generate u-fields Fnand F on Hn and H. respectively.

Consider three sets of strategies: the set of all (possibiy randomized and

history-dependent) strategies IT. the set of all (non-randomized) Markov strategies M.

and the set of (non-randomized) stationary strategies S. SCM C IT.

As usual the pair % EX and rr E IT defines the measure P: on (H... F..). Expecta

tions with respect to P; are denoted by E;. We shall consider the total expected

reward criterion

w 1r(%) =E: ~ r(%~. a~)
~ =0

(1)

The standard general convergence condition is assumed throughout: for each % e: X.

rre:IT

..E: ~ r+(:z:~ ,at) < 00

t =0

where g + = max (g ,0), g - = min (g .0) for any number g.

For rr e: IT and h = (:z: Oao ... %n) e: H. n = 0.1 • . . .• we define the strategy

rr[h] as follows:

for any h' = (% ~a~ ... %~) E H • m =0.1 .... Note that rp[h] =rp for rp E S. Let

w 1r(hn ) =w 1r[hnJ(:cn ).

For f1 cIT, h e: H we write v t.(h) =sup Iw"(h): rr e: f11. Let V =Vn. s =Vs' Note

that v (hn ) =V (%n)' S (hn ) :::: S (%n) for any h n = (% oa 0 .. , %n) e: H. If the function

r is replaced by r + (or r) in (1), we will write v + (or v _) instead of v.

Let g: X -+ [0, 00). A strategy rr is said to be g -optimal If w "(%) :o!:: V (%) - g (%)

for any % EX. A strategy rr is said to be persistently g-optimal if w 1r(hn ):o!::

v(%n) - g(%n) for any h n = (:Z:oao ... %n) e: H. Note that every persistently g

optimal strategy Is g-optimal, and that every stationary g-optlmal strategy is
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persist.ently g -optimaL

Let. Q[O, n], n = 0,1 •...• 00, denot.e t.he set. of all Markov times wlt.h respect. t.o

t.he flow IFm I,.;: =0 such t.hat. T =T(h_) ~ n, h_ E H_.

Define

For functions g: X -4 [ - 00, + (0) such t.hat. g ~ V+ and for a E A, consider t.he fol

lowing operat.ors (where g ~ / implies g (%) ~ / (%) for any % EX):

pO- g (%) = L: p (z I % , a)g (z) , Pg (%) = sup pa g (% )
zEX a€A(:z:)

Let. L o(g ,X) be t.he set. of all functions l: X --. [0, +00) such t.hat. l (%) = 0 for

% EX' and l(%) > 0, l(%) O!: max 19(%), P£(%>1 for % EX \ X', where X' ex and

g: X --. [ -00, + (0). Since (v + + l)lX\.x, E Lo(v ,X,>, we have t.hat. L o(v ,X,> ~ 4'. Not.e

t.hat.d ~s:lov and Lo(d ,X) :JLo(s ,X') :JLo(v ,X).

1.1. STATIONARY NEARLY-OPTIl[AL STRATEGIES

THEOREM: 1 (Fainberg and Sonln [14]). Fbr any l: > 0 and any l E Lo(d ,Xs ) there

uists a stationary strategy fjJ such that w" O!: s - d .

Theorem 1 has been proved for l ELo(s ,Xs ) e Lo(d ,Xs ) in [13]. This t.heorem

implies t.he result. obt.ained by Van Dawen and Schal [23] and Van Dawen [17], in which

t.he equalit.y s = v is assumed. Theorem 1 also implies s =Ts [13, Lemma 2.2]. The fol

lowlng corollary gives a general met.hod for proving t.he exist.ence of stationary (unl

formly) nearly-opt.imal st.rat.egies.

COROLLARY 1. If s =v and l ELo(d ,Xs ). then/or any l: >0 there uists a station

ary d-optimal strategy.

Not.e t.hat. if s = v t.hen Xs =Xn [22, Lemma 3.9]. The following result. has been

used in t.he proof of Theorem 1:

THEOREM 2 (Van der Wal [9], Theorem 2.22). If IA (%) I < 00 for any % E X, then

s =v.

Various generalizations of Theorem 2 are given in [6,21,22,24,25].

It. has been shown in [13] using Corollary 1 t.hat. Theorem 1 implies t.he result.

obt.ained by Ornst.ein [7] and Frid [6] and t.hat. Theorem 1 allows us t.o ext.end t.he result.
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obtained by Van der Wal [25]. We shall now consider applications of Theorem 1 to

strongly convergent and contracting models.

THEOREM: 3. IJwe have

llm sup E;s (zn) ~ 0
n ....

(2)

/Or som8 Z E X and lor any 7T EM, then s (z) =v (z).

Proof. If v(z) = -00 then s(z) = -00. let v(z) > -00. Fix an arbitrary £ >0. Using

the equalily vjf =v [26-28] we can choose 7T EM such that w"(z) ~ v(z) - £/4. Con

sider an Integer n such that

..
E; ~ r+(zt,at):S;£/4,E;s(zn)~-£/4

t=n

Let l E Lo(d ,41). Choose 6 > 0 such that 6l (z) :S; £/4. Using Theorem 1 we consider

"" E S such that w l ~ s - 6l. Let a be a non-randomized strategy defined as follows:

Then

n -1 n-1
wO'(z)=E;1 ~ r(Zt,at)+w1(zn>l~E;1~ r(zt,at)+s(zn)-6l(zn >l

t=l t=l

n~ n~

~ E; ~ r(Zt, at) + E;s(zn) - 6l(z) ~ E; ~ r(Ztat) - £/2
t =1 t =1

(note thatl (z) ~ Ez;"l (Zn)'

On the other hand,

n-1 ..
w"(z)=E;1 ~ r(Zt,at) + ~ r(Zt.at>!,s

t =0 t =1

n -1 .. n-1
:S;E; ~ r(Zt.at)+E; ~ r+(Zt,at):s;E; ~ r(Zt,at) +t;/4

t~ t~ t~

Consequently

Theorem 2 implies s (z) ~ W 0'(z). Since t; > 0 Is arbitrary, s (z) =v (z ).

COROLLARY 2. [I (2) holds lor any Z E lz EX: v(z) > -001 and any 7T EM, then

there ezists a stationary l:l-optimal strategy /Or any £ > 0 and any l E L o(d ,Xn)'
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Corollary 2 generalizes exlsllng results for slrongly convergenl models [4,9-11],

I.e., models sallsfylng lhe condillons

-Z • (z) =sup E: E Ir (zn ,an) I < co , Z E X
1Tc:r n =0

-11m sup E El Ir (Zt ,at) I =0 , Z E X
n"- 1Tc:M t=n

Ills obvious lhal (2) Is weaker lhan (4). If (3) holds lhen z· . l x 'x E Lo(d ,Xs )'•

(3)

(4)

The assumpllons of Corollary 2 and condilion (3) lhus Imply lhal for each I: > 0

lhere exlsls a slalionary I:z' -opllmal slralegy (lhls resull Is a generallzallon of

Theorem 4.3 In [4], see also [9,10]). The assumplions of Corollary 2 and lhe condillon

d. s K < co (nole lhal d. s s S v) Imply lhal for each I: > 0 lhere exlsls a stallonary 1:

oplimal slralegy.

Theorem 3 Implies lhe following resull:

THEOREM 4. If s ~ 0 then s =v.

Nole lhal we also have s =v In lhe following lwo cases:

THEOREM 5 (Van der Wal [25]). Ifv > 0 then s =v.

THEOREM 6 ([22]). If v < 0 then s =v.

Corollary 1 allows us lo prove some new resulls for conlracllng models. For

example, lhe equalily s =v has been proved for model I from [9, chapler 5]. However,

lhe exlslence of slallonary I:-opllmal slralegies Is nol proved in [9], only lhe exlslence

of slalionary I:J,£-opllmal slralegles, where J,£ may be unbounded. Bul U~e Inequalily

d. sOls proved for lhis model In [9, (5.10)]. Since lx, xn EL 0(0, Xn), Corollary 1

implies lhe exlslence of slallonary I:-opllmal slralegles for model I from [9, Chapler 5].

Nole lhal for delermlnisllc models Theorem 1 Is valid for funclions l E L 0(0, Xs )

[13]. This facl allows us lo prove lhe exlslence of good perslslenlly d-opllmal slra

legies for l E. L 0(0, Xn) when lhe model Is delermlnlsllc.

However, Il may happen lhal d. (z) > 0 for delerminisllc models. Il would be

Inleresling lo Idenllfy a funcllon d.' such lhal (I) il Is possible lo replace d. by d.' In

Theorem 1; (11) d.' s d.; (Iii) d.' s 0 for delerminlsllc models. The quesllon of whelher

such a funcllon exisls Is slill open. For inslance, Il Is nol clear If Theorem 1 Is valid

for

d. • (z) = lim sup 11m sup EIlts (x T) ~ N Is (x T)
N"- ,es n"- TEQ[O,n]
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2. PERSISTENTLY NEARLY-OPTIMAL STRATEGIES

Let B be a countable (or finite) set. f: H -+ B.

Definition 1 ([24]). A non-randomized strategy rp is said to be (f ,B)-generated If

rpn (hn ) = rp(f(hn ). x n ) for any h n = xoao ... x n E H, n = 0.1 .... Let BI denote the

set of all (f •B)-generated strategies.

Condition 1 ([14]). f and B generate a transitive statistic, see Shlryaev [29]). If

x n = x m and f(hn ) = f(h:n) for some h n • h:n E H. n.m = 0,1..... then

f(hnaz) =f(~az)foranyaEA, z EX.

Examples of (f ,B)-generated strategies satisfying Condition 1 (stationary. Mar

kov and others) are given In [14]. We shall consider one such example here.

Example 1 (Strategies of renewal on Y). Let Y c: X. For h n E H, n = 0,1 •... , we

define

_ { max Ii "'" 0: x( E Y. i ~ n I ,If x( E Y for some i ~ n

"(hn ) - +00 • Ifx( $t. Y for any i ~ n

A non-randomized strategy rp Is called a strategy of renewal on Y If there are

maps rp: Y x X x 10.1 ,... I -+ A and rp': (X \ Y) x 10,1 •... I -+ A such that for any

h n E H. n = 0.1 ....• we have

rp(x "<h.,,> • x n • n

rp'(xn •n) ,

- "(hn » . "(hn ) ~ n

"(hn ) =+ 00

Let R Y denote the set of all strategies of renewal on Y. Let

B = (Y u Iy l> x 10,1 .... 1. where y $t. Y Is an arbitrary point. Set

Then If f(h n ) = (x ,m). where x E Y u ly I. m = 0.1,,, .• we havef(hnaz) = (x ,m +1)

for z EX \ Y and f (hn az) = (z ,0) for z E Y.

A result ([14. Theorem 4.1]) similar to Theorem 1 has been proved for (f ,B)

generated strategies satisfying Condition 1. We shall not derive this result here. but a

corollary of this theorem (Lemma 1) for the class R Y Is given below.

For 6. c: n we shall write

d~(x) =sup lim Inf EJV(x T ). x EX
"e:t. n ~~ Te:Q[O.n]
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X+ = Iz EX: V(Z) >01, X- = Iz EX: V(Z) < 01, XO = Iz EX: V(Z) = 01

AC(z) = la EA(z): TQv(z) =V(z>l, z EX

LEMllA 1 ([22, Corollary 3.3]). Let 6 =R Y, where X+ eYe X, and v l1(hn ) =V (zn )

for any h n E H. Then for any l: > 0 and any l E Lo(d~ ,Xu) there erlsts a per

sistently d -optimal strategy 'P E 6.

Let Z c X and suppose that there exist functions r i (z ,a), i = 1,2, measurable In

a such that (I) r = r 1 + r 2, r 2 ~ 0, v 2 < + co, where vi Is the value of the model

J.Li = IX, A • A(') , p , r i I. i = 1,2: (II) Z = Iz EX: v 1(z) < 01. For example, for

r 1 =r-, r 2 =r+ we have z=lz EX:v_(z)<ol and for r 1 =r, r 2 =0 we have

Z =X-.

LEMllA 2 ([22], Theorem 5.2, Corollary 3.2). Let X+ eYe X+ u X- u Z and 6 = R Y.

Then lor any l: > 0 and any l E L o(d ~ •Xu) there ezists a persistently d -optimal

strategy 'P E: 6.

The proof of Lemma 2 Is based on Lemma 1, Theorems 5 and 6, and the construction

of the embedded model described in [24].

A non-randomized strategy 'P is said to be stationary on Y, Y c X, if

'Pn (hn ) = 'P(zn) for zn E Y (the set of all such strategies is denoted by SY). Note that

RY c SY, ~ = sX = S and write 6' = R X+ U X - u Z n SX' .

THEOREM 7 ([22, Theorem 2.1]). Fbr anyl E Lo(d ~. ,Xn) and any l: > 0 there erlsts

a persistently d-optimal strategy 'P E 6' .

COROLLARY 3. Let 6 =SX ·uZ. Then v 11 =v.

Example 2.1 in [22] shows that v 11 ~ v for 6 =R X•uz .

Condition 2. For any t,wo histories h n , h m E, H, n, m = 0,1 ,... , such that m > n,

h m =h n an zn +1 ... zm and zm =zn' we have I (hn ) ~ I (hm )·

Examples of classes BI satisfying Condition 2 (Markov, tracking and others) can

be found In [24]. The following theorem generalizes various results on the existence of

nearly-optlmal strategies which are stationary, Markov or stationary on subsets (see

[21], where the weaker result Is given).

TJlI':OIU:M 8 <I :!.2, Thoor'om 2.2], soo I\lso r21, Thoorom 2.1». Let J and 8 satisJ'y Con

dition 2. Then for any l: > 0 and any l E Lo(d ~. ,Xu) there erlsts a persistently

d-optimal strategy 'P E Sx·uz n BI.

We shall oonsider a method whloh allows us to extend sets for which It Is possible

to assert the existence of good stationary actions. Let the model
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lL =IX , A , A(.) , p • r l. where A(.) c A ('), be given and t.he value of t.he model lL
coincide wit.h v. Let. X' and Z denot.e t.he analogs of t.he set.s X' and Z for model "ji..

Then we can define /:,.' =R X+uX-2 n SIr in Theorems 7 and e, and q; E sX·u2 n Bf in

Theorem e. The following example shows t.hat. t.his really implies t.he ext.ension of

classes of set.s for which t.he exist.ence of good st.at.ionary actions can be proved (see

also t.he example in [19]).

Example 2. Let. X =1-1,0,11. A(') =A =[-1,0) u (0,1], p(' 10,a.) =0, r(O,a.) =-1

for any a. E A; p (0 Ii, a.) = a., p (i Ii, a) =1 - a.. r (i , a) =0 for i = ± 1. a E (0,1]

and p (-i I i ,a) =1, r (i ,a.) =a for i = ±1, a E [-1,0). Then it is possible t.o verify

t.hat. Z =t/J and Theorems 1 and 2 st.at.e t.hat good stat.ionary act.ions exist. only for

X' =101. However, if we consider ;(-1) = (0,1], ;(1) =[-1,0) t.hen it. is possible to

choose Z =111 so t.hat. persist.ent.ly nearly-opt.imal st.rat.egies exist which are stat.ion

ary on 10,11. Sett.ing;(-1) = [-1,0). A(1) = (0,1], we find t.hat persist.ently nearly

opt.imal strat.egies exist. which are stat.ionary on 1-1,01. (Since s ~ v, there are no

good st.at.ionary st.rat.egies in this example.)

We shall now return t.o t.he quest.ion of t.he exist.ence of st.at.ionary nearly-opt.imal

st.rat.egies.

THEOREM 9. If s (%) =0 for % E XO \ (Xc u Z) then s =v.

Proof. Fix % EX. e >0, l ELo(a.Xs). Let. q; ESX•uZ and w'(%) :!:v(%) -e (see

Corollary 3), and let. 'VI E Sand w.,,:!: s - &l (see Theorem 1). Consider a st.rat.egy (J'

which coincides with q; before t.he first. encount.er wit.h XO \ (XC u Z) and wit.h 'VI

t.hereafter. Then w U(%):!:v(%)-e(l+l(%». Since e >0 is arbitrary, Theorem 2

implies s (%) :!: V (%).
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ON THE DERIVATION OF A FILTERING EQUATION FOR
A NON-OBSERVABLE SE:MlMARTINGALE

L.I. Galduk
Kiev Stato University

Consider a probClbility space (n, F , P) with a non-decreasing family of a-algebras

F = (F t), G = (Gt ), t E R +, Gt ::s; F t satisfying the usual conditions. Let the a-algebra

Gt be generated by observations up to the time t. suppose that the process 19 = (19 t ),

t ec: R +, describes the system but cannot be observed. We have to derive a recursive

equation (a' filtering equation) for the process 1T(19) = (1Tt (19» , t E R +, where

1Tt(19) = E[19t I Gtl

We shall assume that the trajectories of the processes under consideration are

right-continuous and limited on the left.

Let A(F) , K(F) denote the spaces of integrable variation processes and mar

tingales with respect to the family F. The statement X E A\oc(F) (and analogously,

X E K\oc(F» implies the existence of a sequence of F-stopping times

To
(Tn) , n E INI , Tn too a.s. and that the process terminates X " E A(F) , Vn E INI.

We shall use O(G) and P(G) to denote the optional and predictable a-algebras on

n x R + corresponding to the family G. We also use T(G) to denote the family of all G

stopping times. (See [1] for further details of the concepts and notation used here.)

Assumption 1.. The process 19 is an F-semimartingale with the decomposition

19 = 190 + A + M

where 190 E F 0 ' E 1190 I < 00 , A E A\oc(F) , M E K\oc(F), and there Is a sequence

(Tn) , n E INI, of G-stopping times such that A Tn
E A(F), M Tn

E K(F) , Vn E INI.

Definition. Let Y be a non-negative measurable process. The O(G)-measurable pro

cess oy Is called the G-optional projection of the process Yif

The process oY exists and is unique, and in addition
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We see that at finite times T E: T(G), the process n(") coincides with 0". A more pre

cise statement is given by Lemma 1.

LE¥J(A 1. Let Z =(Zt) , t E: R +, be a measurable process with right-continuous

trajectories which are limited on the left. Let the famiLy of random variables

IZTIT<_ , T E: T(G>l, be uniformly integrable and n(Z) denote a right-continuous

modification of the process (E IZt IGt ]) , t E: R +. Then n(Z) =0Z up to indistingui

shability.

Proof. It suffices to show that for any T E: T(G) we have

We put T(n) = k2-n if (k -1)2-n :$ T < k2-n , oo(n) = 00, and have T(n) E: T(G)

T(n) > T , T(n) .. T. Also, for A E: GT we have

since A n IT(n) =k 2 -n I E. Gtz...... Hence

or

Let us take the limit as n -~ 00. Since the process Is right-continuous we have the fol

lOWing expression on the left-hand side:

On the right-hand side we have

because of the uniform integrability of the family IZTIT<_, T E: T(G) I and since

Gr<") .. GT· 0

Remark. Suppose that the process Z does not satisfy the uniform Integrability condi

tion assumed in the lemma. Suppose also that there Is a sequence (Tn) E: T(G), Tn f "",

a.s. such that for any n there exists a uniformly Integrable family IZTAT"IT<_,

T E: T(G>l. Then n(Z) =Oz up to Indistinguishability.
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We can now establish the nature of the process 0".

LEMMA 2. Let" = ("t) , t E R <-' be an F-semimartingale satis.fzJing Assumption 1.

Then the process 0" is a G-semimartingale with decomposition

Proof. First we shall suppose that the process" can be decomposed as follows:

" = "0 + A + M

whereEI"ol <"",A e:·A(F),M e:M(F),Ao=Mo=O.

The optional projection is linear, so

The definition of optional projeclion implies that 0("0) e: 11 (G) , oM e: 11 (G). Since

A E: A(F), we have A = A (1) - A (2), where A (t) , i = 1,2, is an increasing integrable

process. We know that

The process °A (t), i = 1,2, is a G-submartingale: for s ,s; t we have

Since A (t) is an integrable process, 0A (t), i = 1,2, is a submartingale of the class (D).

Hence the process °A is the difference of two G-submartingales of the class (D). From

the Doob-Meyer decomposition, there is a P(G)-measurable process a = (at) with

integrable variation such that °A - a e: M(G). Thus

where a e: P(G) n A(G), Y e:M(G), ao = Yo = 0, and

This leads to a general case by combination.

Now we consider a special caf;e. Suppose there is a collection of continuous mar

tingales (X(l) •... , X(n» c 11 (G) and a random integer-valued measure !J. on the pro

duct of spaces R I- X R 1 , B(R 1-) ® B(R1). with a P(G)-compensator 1/ f;uch that any mar

tingale Z E 11 (G) can be represented in the form
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n
Z = ~ f(o·X(O +g * (",,-II)

( =1
(1)

Here functions f (1) •.••• f (n) are P(G )-measurable and function g Is fJ (G) =

P(G) ~ B(R1)-measurable. The functions f(l) , ...• f(n) are then defined by the sys

tem of equations

d <Z,X(l»

d<X,X>

Cf =

d <z X(n »
d <XX>

. f = t'"
(n)

[
d <X(O X(J»]C- '

• - d <X,X> (,J=l •. ..• n
(2)

The function g is defined by

n
<X, X> = ~ <X(O. X(O>

( =1

V(s)
g(s .x) = V(s ,x) + l-a fa~<l

s
(3)

where as = IIOS I . R 1), V = M~[M IP(G», and V(s) = f v (s •x )IIOS I . dx) (see [1]).
R1

M~[6Z IP(G» is a F(G)-measurable function such that for any P(G)-measurable non

negative function rp the following equality holds:

THEOREM: 1. Let the F-semimartingale " have a decomposition ,,= "0 + A + M.

A E A1oc(F). M E M:1oc(F) and satisfy Assumption L. Let the representation (1) hold

for any martingale Z E M: (G). Then

n
rr(") = rro(") + a + ~ f(O. X(t) + W * (",,-II)

( =1

where a is the process from Lemma Z. and the junctions f (1) ••••• f (n) are defined

by system (2) with the process Z replaced by Y = 0("0) - (0")0 + (oA -a) + OM,

u -
W =U + -- fa <1' lJ =M,J" IP(G» - rr _(") - 6.al-a r-

u(t) = f U(t ,X)II<lt I, dx)
R1
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The proof follows directly from Lemma 2 and the representation of the martingale

Y in the form (1)-(3).

Remark. The representation of martingales (1) was first assumed by Grlgellonis. A

filtering equation for semimartingales that can be represented as the sum of a mar

tingale and a continuous process of bounded variation is presented by him. In the gen

eral case the martingale Y from Lemma 2 can be decomposed Into (I) a component

belonging to a subspace generated by given processes X(1) •...• X(n) and measure J.L.

and (i1) a component orthogonal to this subspace:

THEORE)( 2. Let the F-semimartingale ~ have a decomposition ~ = ~o + A + M.

A E A\oc(F), M E )(loc (F), and satisj'y Assumption 1. Let there ezist continuous

martingales X(1) •... , X(n) E )( (G) and an integer-valued random measure J.L on

B (R ~.) ~ B (R1) with P(G )-compensator II. Then

n
11"(~) = 11"o(~) + IX + L: f(1.)· X(1.) + W" (J.L-II) + h .. J.L + Z

1.=1

where h = t.Y -M~[t.Y IP(G)], a, f(1) ••.. , f(n), W, Yare dlU'ined in Theorem 1.

Z E )(\oc(G) , Z, is orthogonal to martingales X(1) •.••• X(n) and without jumps on

the measure support J.L.

Remark. Yor [2] suggests another way of deriving the filtering equation. When the

martingale Y from Lemma 2 belongs to the Hilbert space )(2(G) of square-Integrable

martingales and the space )(2(G) is separable. the martingale Y can be decomposed

with respect to the basis of the space )(2(G).
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ON THE REPRESENTATION OF FUNCTIONALS OF
A WIENER SHEET BY STOCHASTIC INTEGRALS
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Any measurable functional F(w) of a Wiener process can be represented by a sto

chastic integral of the form

1

F(w) = J g(s)dw(s) + EF(w)
o

Here g (s) is an (F~-adaptedfunction such that

1

J g2(s)ds < 00 a.s.
o

(1)

and F~ denotes the <Mllgebra generated by variables w (t), t E: [0, s]. When applying

this theorem, in particular for the optimal control of stochastic systems, it is impor

Lantto have a "good" expression for the function g(s). The following result has been

obtained (see [1]).

Let F(:z:) be a Frtichet-differentlable functional defined on a space C of continu

ous functlons:z: =:z: (t), t E: [0,1]. A derivative VF(:z:) of this functional at any point Is

a continuous linear functional; we shall denote Its values on the function y = y (t) by

(VF(:z:), y).

From Riesz's theorem regarding the O'-algebra B [0,1] of Borelian sets of interval

[0.1), there exists a measure >"(ds) = >..(:z:;ds) such that

1

(VF(:z:) ,y) = ry (s )>..(:z: ;ds)
'0

Suppose that the follow~ng condition holds: for some positive constants K, 6, ex

IF(:z: +y) -F(:z:) - (VF(:z:),y) I :r:.K ilyiiH "(1+ii:Z:li")(1+ilyiia), ¥:z:.y E: C(z) . (2)

Here il:tliis a norm In the space C, i.e.,
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Ilxll = max Ix(t) I
Os;ts;l

mEOREM: 1. II the .functiona.l F satisfies condition (2), then

1

F(w) =J E[h(w;]t .1])/Fr]w(dt) a.s.
o

(3)

Formula (3) represenls a parl1cular l1nearizal1on of lhe funcl10nal F. In lhls

paper we shall consider lhe generalizallon of formula (3) lo funcl10nals of lwo vari

ables.

We musl firsllnlroduce some notallon. Lel R 2 be a sel of pairs u =(s • t) of real

numbers sand t ordered In some nalural manner. We shall consider a Wiener sheel

w = w(u) =w(s. t), where u e: [D,S] x [0. T].

Lel

D =Doo

For each funcllon J (u ) lel

J]u'.u"] =J(s".t") -J(s',t") -J(s",t') +J(s'.t') for u' <u

Lel C(D) be a space of. conllnuous funcllons on a rectangle D =[0. uo].

n =C(D) x C(D).

Inlroduce Inlo n a measure P Induced by a 2-dlmenslonal Wiener sheel (w(u).

w'(u», where w' Is a Wiener sheellndependenl of w. and a filler for lhe o-algebra

(Fu)u ED' where Fu Is a a-algebra generaled by random variables lw (u '), u' e: Du--l.

Lel x e: C(D), I.e., x =x (u) ,u e: D. be a conllnuous funcllon and F(x) be a con

lInuous funcllonal on C(D). We shall also consider lhls funcl10nal as a funcllonal on n.
Moreover. If c.J=(x,y). (x.y)e:C(D)xC(D), lhen F(c.J)=F(x). The following

lheorem Is due lo Wong and Zakal [2].

THEOREM: 2. Any square-integrable Fuo-measurable .functiona.l F(w) can be

represented in the Jollowing form:
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wz
F(w) =EF(w) + f g(u)w(du) + f f G(u' ,u'')w (du,>w (du")

D DxD
(4)

The first Integral In (4) Is an Ito Integral with respect to a two-parameter Wiener

sheet, while the second Is known as a stochastic Integral of the second type, which we

shall call a W-Z integra,l (Wong-Zakai Integral). For a description of this Integral,

see [2] or [3]. We wish to obtain formulae for the functions g and G which are analo

gous to those derived from (3), It turns out that we shall be using the second differen

tial of the functional F.

Suppose thatF(z), z E: C(D), Is twice Fr~chet-dlfferentlable.This means that for

all z ,h E: C (D) we have

F(z +h) -F(z) = (VF(z), h) + ~ (V2F(z)h ,h) + R(z, h) (5)

where IR(z ,h)1 = o~~1I2),I~11 = max Ih(u)I, VF(z) Isa linear functional In C(D) for
u€D

a fixed z, and V2F(z) Is a continuous bilinear functional. Moreover, (VF(z),h) Is a

value of the functional on the function h, and (V 2F(z)h 1 ,h 2) Is a value of the func

tional V2F(z) on the pair h 1,h 2• hI. E: C(D).

According to Rlesz's theorem.

(VF(z),h) = f h(u)>.(z;du)
D

(V 2F(z)h ,h) = f f h(u')h(u'')J.I.<z;du' ,du")
DD

where >.(z;·) Is a measure on D, and JJ.(z;' ,.) Is a measure on D 2•

Suppose that there exist positive numbers K, fl, {j such that

(6)

(7)

(6)

Without loss of generality we can suppose that fl Oi!: 1, (j E: ]0,1]. It Is easily shown that

the Inequalities

(9)

follow from (4). Note that Il:cliis the norm of the element z In the space C, I!V2F(z)llls

the norm of a bilinear functional. and IIVF(z)llls the norm of a linear functional on C.

The constant K here and elsewhere denotes a constant Independent of the elements In

C, and Its value may change during the course of this study. Instead of F(z) we shall
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write F(w), where w is the first component of the pair Col = (w , w'). From the

Doob-Cairoliinequauty EilwilP :s cp < 00 Vp > 1 so that the values IIV2F(w)iI,IIvF(w~1,

IR(w ,w ') I possess finite moments of any rank.

THEOREM 3. IJ F(:z:) is a twice-di,J'ft1rentiable Junctional satisfying condition (4),

then

wz
F(w) = EF(w) + J X(u )w(du) + 1.. J J v(u' ,u ")w (du ')w (du ") (10)

D 2 D)([)

where

for s :S S

for s' :S S

X(u) = E[A(w ; Du)1 Fu ]

, " 1E[}.£(w ,Du,XDu,,)1 Fs'l"]
v(u ,u ) =

E[}.£(w .Du , XDu,,)1 FS"I']

and v(u ' , u ") = 0 in other cases.

and t':s t

and t":s t

Proof. We utilize Clark's technique (see [1]), which uses the second differential of the

functional F. Subdivide a rectangle D into partial rectangles 0tJ at the points

(St,tJ ) = UtJ' O=so< sl< ... <sn = S, 0=t O <t 1 < ... <tn =T, taking the

lengths of the intervals aslc = ]St • sic H] (6t lc = ] tic • tic H]) to be equal.

Write D H: = D ±± and
tJ uti

w(S,t)

w(St ,t) + w'(s, t) - w'(St ,t)

w(s, tJ ) + w'(s. t) -w'(s, tJ )

w(St, tJ ) + w'(s, t) -w'(St. tJ )

when (s. t) E Dtj

when (s, t) E Dtr

when (s. t) E Dti+

when (s, t) E DtJ

A stochastic measure corresponding to the function WtJ coincides with a measure w in

domain Dtj- and with a measure w' outside domain Dtj-. The sheet WtJ is also stochast

ically equivalent to w. Further.

Det
Here FtJ = FS~li' Let

"'1tJ = E[F(w)1 FtJ ]

o..,tJ = "'1t H,J H - "'1t,J H - "'1t H.J + "'1tJ
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Obvlously, 7tJ = E[F(WtJ)1 Fnn ] so t.hat.

In addlt.lon,

(n -1 n -1)

~ D7tJ =7 nn - 70n - 7 no + 700
(t ,J)=(0,0)

and

7 nn = E[F(w)1 Fnn ] = F(w) , 7n o = 70n = 700 = E[F(w)1 Foo] = EF(w)

Thus,

(n -1 n -1)
F(w) = t D7tJ + EF(w)

t.J =(0,0)

It. can easlly be seen t.hat.

Set.t.lng

(11)

we lnt.roduce a t.ransposltion 16tJ ; i ,j = 1.2 •...• n 1for an arblt.rary series of ran

dom variables 16tJ ; i ,j = 0.1,2 •... , n I. It. follows from t.he previous equal1t.ies t.hat.

n -1
F(w) = l: dYtJ + EF(w)

t,J=o

We shall consider t.he Umlt. as n -+ 00 in t.his formula.

(12)

In Une wlt.h t.he decomposltlon of t.he funct.1onal F int.o t.he sum of t.hree t.erms in (5)

we let.

where

(13)

(14)

(15)
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(16)

(17)

We shall consider each of t.he t.ermsr:1"r~j' d7~J' d7~J' separat.eIY.

1. First. we shall obtain an expression for t.he funct.1on [Wtj' Subdivide a rectan

gle D int.o nine rect.angles Dt.1 = Df}, for each (i, j), /c,l =0,1,2:

D02 = Iu: S e: [0, stJ ' t e: ]tj +1' Tll

D 1O=lu:s e:]St ,St+d, t e:[O, tj 1I

D l1 =1u: S e: ]St • St +1] • t e: ltj , t j +111

D12 = Iu: S e: ]St ' St +1) , t e: ]tj +1' Tll

D 20 = lu: (s. t) e: ]St+1'S] x [0. tjll

D 21 = lu: (s. t) E ]StH'S] x ltj • tjHll

D 22 = lu: (s,t) e:]StH'S) X]tjH.Tll

Simple calculat.1ons show t.hat.

where I (A •u ) is an indicat.or of set. A, and

(u "u') =(min (s ,s'), min (t ,n), w;lu) =wi;(u) +wij(u)

and wi; =w(Otj) -Wtj(u),

Applying t.he expression for (VF ,h) we obt.ain

r:.:ry~j =w(tJtj)E[A(w.Dtj)/Ytj ] -E[f A(Wtj;du)wtJ(u)/Fnn ]

D'i

Since E[f A(Wtj ; du )w"(u)1 Ftn ] = O. we have
D'J

E[D7~jIYtn] = -E[f A(Wtj .du)wilu)/Ynn]
D1j
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It. follows from symmet.ry t.hat. E[Df'~JIFin] = E[O')'~JIFJn] = E[D')'~JIFiJ]' Int.roducing

t.he funclion ~u (A) = E[~(w;A)1 Fu ] we may writ.e an expression for d7~J in t.he form

o=,~J = w(OtJ)~i/W. DiJ ) - .r ~iJ(du)w;J<u)
1\j

where ~iJ (A ) = ~u't (A). Int.egraling by part.s we obt.ain

where

tj+l

!P~j = J ~iJ(]SH1'S] x ]tJ ,t])w(]si ,siH].dt)
tj

SHl

!PiJ = J ~iJ (]si ,s] x ]tJ H' T])w (ds . ]tJ ,tJ ...tJ)s,

2. Consider t.he variables d7~;. It. can easily be seen t.hat.

where

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Here dJ./.(WiJ ) denot.es J./.(WiJ •ds'dt', ds"dt ") = J./.(WiJ ,du ' •du ''). After some comput.a

lion we oblain

(27)
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We shall introduce the following notations here: if t is a random variable, then

[t]O is its central value. 1.e.. [t]O = t -E t and dJ./otJ(w) = E[dJ.l.(w) 1 F(J] =
E[dJ.l.(W(J)1 Fnn ]. We want to find appropriate expressions for variables ii;J' and

therefore need values for ~lW(J and ~2W(J. We have the following formulas:

W(J = W (]s( • S 1\ s( +1], t 1\ tJ ) • W;J = w·(]s( •S 1\ s( +1] • t 1\ tJ )

~2W(J = I 2(;t(J -tJJ;J) , 12 = I (D(t u ~J )

v v. ,
w(J = w(s I\s(, ]tJ • t I\tJ +1]) , w(J = W (s I\s(, ]tJ • t 1\ tJ +1])

The functions w(J' w(J. :;t(J are W -measures of various domains which lie outside D(J

and thus have no common points. Therefore. for all u e: D the variables w(J (u ),

- "w(J(u), w(J(u) are mutually independent and also Independent of the G'-algebra F(J .
. -' v.

An analogous assertion also holds for w(J. w(J and w(J. On the basis of the above con-

siderations we obtain

where

(28)

and if we rearrange the variables of integration u· • u .. then ~;J can be expressed in

an analogous form.

Now consider the variables ii~i' = J~J + ~~; defined by the formulae (26) and (11).

For variable ~~J we obtain

or

Integration by parts and some elementary transpositions lead to
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tJ SHI S, tJ+l

~~i =J J (J J JJ.ti (Du' x Du")w (du"»w (du '>
o S, 0 tJ

It. follows from symmetry that

tJH S, tJ S'H

~~j = J J (J J J..'ti(Du ' X Du")w (du"»w(du')
tJ 0 0 S,

We can now lake the limit as n -+ ... in equality (12).

(a) Let

(29)

(30)

St = L d';~i = Sf -S1 -S1' -S1"
t.i

where Sf = E w¢::l"i)~tjCDti)' S1 = E qJ~i ., .• S1" = E qJ~J" We shall prove that
t.i t.J

each of the sums S l' s;", S i." converges to zero in the mean square. Note that the

function ~(x.A) is a countably additive measure for fixed x. and if I ~ I (x ,A)

represent.s 't.he complet.e variation of t.his measure on a set. A. t.hen I~ 1(x .A) =

IIvF(x )/1. Thus we obt.ain t.he estimat.es

so t.hat. t.he st.ochastic measure I~u I(A) is uniformly bounded as a function of (u ,A)

and admit.s final moment.s of any rank. Analogous estimat.es also exist. for t.he complet.e

variation IJ.41 (w •A ) of a measure J.4(w •A):

Now consider t.he sum s;;. It. can easily be seen t.hat. t.he element.s of t.his sum are

ort.hogonal. Hence

E IS11
2 = L EJJ ~(D.tJ/]u • Ut u,Ju])w(ds. dt) 1

2 =
t.J o,.J

= L EJJ ~2(D.tJ/]u .Utu.Ju])dsdt:1O ICltJIEI~12(D)
t.J !JlJ

(it. was established above t.hat. t.he area I~J I of t.he rect.angle OtJ is independent. of

(i .j».
E(Si.')2 and E(S1")2 can be estimat.ed In a similar way:

tJ+l

E(S1')2 :10 E L J ~2(]St ;S] X ]tJ • t ])Ast dt
t.J tJ
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~E~ 6stlltjX2(]st+1'S] x ]t j .tj+d) ~ llt j SEX2(D)-0
t ,j

Now we shaLL consider lhe sum sf and show lhalil converges to the integral

J =J fXu(Du)w(ds .dt)
D

To do this we shaLL wrlte the difference J -Sf in the form

E(J-Sf)2 =EJJ(X~n)(D) -Xu(Du»2dsdt ~
D

where

X~(n )(Du ) =E[X(Du)1 Ftj ] • J.I.n (u) =E[X(Dtj 1 Du)1 Ftj ] for u E: Otj

Thus x~(n )(Du ) - Xu (Du ) =E[X(Du)1 Ftj ] - E[X(Du)1 Fu ]. If the u-algebra Fu = F:f

is left-conUnuous. then for each u we have E[X(Du)/Ftj ] - E[X(Du)/Fu ] a.s. as

n -. 00. Moreover. the variables (X~(n)(Du) - Xu (Du »2 admit an integrable majorant.

Hence

EJJ(X~(n)(Du) -Xu(Du»2dsdt -0
D

Furlher.

where (i (u) , j (u» are the indexes of the rectangle Dtj for the point u. A set of

those u for which X(Dt(U)j(U» does not tend to X(Du ) is contained in the sum of the

countable number of Lines paraLLel 1.0 the coordinate axes in R ~; this set has Lebesgue

measure O. Therefore J J X2(Dt(U)}(u) \Du)dsdt -.0 and if the integrands admit an
D

integrable majorant. then

rJ 2EJ X (Dt(u)j(U) \Du)dsdt -.0
D
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Thus. It Is proved that lim L; d7;j = J.

(b) We shall now find the limit of the sums

as n _ 00.

From expression (27) for the variables o.;j we have L: o.~j = S~ -S~ -S~. where

The terms In these sums admit finite moments of any rank. where wij(u) Is a Wiener

measure of a certain rectangle In Dtj' and I-'ij Is an Firmeasurable function. There

fore. when (i .j) ~ (i'. /) and either i < i' or j < j' we have (Sij = Fin V Fnj )

since the random variable Wij (u ')wi 'j'(u ") Is Independent of the u-algebra Sij' and

(wij (u )wij (u '')dlJ.i 'j'dlJ.ij Is Sirmeasurable. Thus. the terms In the sum S2 are

orthogonal. Hence

E(S~)2 = L; E( f f [wij (U')Wij(U")]OdlJ.ij)2 ~ 10ij IE 11-'1 2(w ; D XD)ST
i .j D1; >tDij

, 2
I.e.• E(S2) -+ O.

The sumsS~ andS~ may be treated In the same manner. We obtain

lImS~ = O. Ie = 2.3,4

(c) Analogously It can be shown that lim L; o.~; = O.
i.j

(d) We shall now compute a limit for the sum S 5 = L; o.~;'. o.~;' =P~j + P~;. where
i.j

a~j and a~j are given by formulas (29) and (30). Let
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Let

for s" s s' and t' s t";

for s' s s"; and t" s t' and II(S', t' , s" , t") = 0 if neither of these relations is vaUd.

I.e., either U s u" or u" < u'.

Let

for s' s s" , t" s and s" e: ]St ,St H]' t' e: ]tJ ,tJ +1]' i ,j = 1,2 •...• n.

lin (u' , u") = O. when u' <u" or u" < u'. since the current F(s.O is left-continuous,

we have lin (u' ,u ") -+ II(U' ,u ") a.s. for any u'. u" from D. We then have

wz
S5=S~ +S~' = J !lIn (u',u")w(du')w(du")

DltD

wz
where .r J is Wong-Zakaiintegral of the second type.

DltD

Since E III(u' ,u ") - lin (u' ,u ") I j; s Cj; • lc :i!: 2, we obtain

and

E IS5 - JJ lI(u',u")w(du')w(du")1 2 =
D'XD

= JJ E III(U', u") -lIn (U', u")1 2ds'dt'ds"dt" - 0
D"JiIJ

as n -+ 00. Thus

UmS5 = JJ lI(u',u")w(du')w(du")
D"JiIJ

and

UmS5 = Um E d7tJ = t JJ II(U' ,u ")w(du')w (du")
t.J D"JiIJ
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(e) Finally, we shall estimate the remainder terms r::r-,;j'.

Let

rl::.... -1 -2 -3
.... 'tJ = PtJ + PtJ + PtJ

where

n-1 ...
!.EJO(A 1. Um ~ o=,tJ = O.

t.J=o

Proof. We have

E(E[PlJl Fnn ])2 ~ E(PlJ)2 ~ KIE[l + IlwtJ 1I811 +

+ lIa1wtJ liB lI] x Ella1WtJI\8+4~I1/ 2 ~ K I6.5t 12+~

Thus.

lim ~ pIJ = 0 , Um ~ pEJ = 0 , k = 2.3
t,J t,J

This proves the lemma and also completes the proof of Theorem 3.
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THE MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL

OF DIFFUSIONS WITH PARTIAL INFORMATION
1

U. G. Haussmann

Mathematics Department

University of British Columbia

Vancouver, Canada V6T 1Y4

1. INTRODUCTION

Necessary conditions for the problem

min{J(u): u€ U}

E c(x
T

)

f(t,xt,u(t,y) )dt

h( t,xt )dt + dwt'

+ a(t,xt)dw
t

,

y = 0,
o

x
o

x ,
o

( 1.1)

( 1.2 )

( 1.3)

have recently been given by Bensoussan (1983), assuming much differentia

bility and boundedness of the data as well as uniform non-degeneracy of

a(t,x) = a(t,x)a(t,x)' ('denotes transpose), and convexity and compactness of

the set of control points U. In this work we relax most of these hypotheses.

We can add without difficulty a cost term fT
l(t,x ,u(t,y»dt, but more dif-

o t
ficult problem where constraints are present will be treated elsewhere. Note

that our method is based on taking strong variations of u and thus precludes

allowing a to depend on u, since a variation of u active for a period of time

e must give rise to a perturbation in x
t

of the order e. We only sketch

proofs in this article, details will be given elsewhere.

Bensoussan (1983) uses the stochastic Zakai equation to define the state

of the separated problem, and then the method of weak variations (Gateau

differentiability) to obtain necessary conditions. Much effort is devoted to

obtaining an (abstract) representation of the adjoint process, somewhat

similar to the work of Bismut (1978) for the case with complete observation.

Our approach consists of using weak solutions of the robust (non-stochastic)

form of the Zakai equation (Haussmann 1985) as well as using strong varia

tions. This allows us to find an explicit representation (in terms of

1This research was supported by NSERC under grant A8051.
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the data of the problem) of the adjoint process much as in the deterministic

case and the case with complete observation (Haussmann 1981). Although this

procedure requires regularity of the data including non-degeneracy of a, the

final representation does not, so that regularization can be used to obtain

the result under our weaker hypotheses.

In section two we give the setting of the problem and the assumptions as

well as some notation. In section three we apply the results from filtering

theory to give a representation of the adjoint process and to compute the

perturbation of J due to a strong variation in u. The maximum principle is

given in section four and in addition some remarks concerning the adjoint

process are made.

2. THE PROBLEM

The following hypotheses are made.

Borel set in some euclidean space.

U, the set of control points, is a

f: [o,T] x Rn
x U + R

n
is Borel measurable, u + f(t,x,u) is

continuous Y(t,x), x + f(t,x,u) is e1 Y(t,u),

a:[o,T] x R
n

+ R
n

S R
m

is Borel measurable, x + a(t,x) is e 1
Yt,

h: [o,T] x R
n

+ R
d

is Borel measurable, x + h(t,x) is e 1
Yt,

with modulus of continuity which is uniform in (t,x) in a compact

set,

Ixl ) -1 I I I I(1 + h(t,x) + h (t,x)
x

c: R
n

+ R is e1
,

Ic(x)1 + Icx(x)1 ~ K4 (1 + Ixl
q

), some q £ [o,~);

Note that c denotes the vector Oc/ox. = (c ) and h denotes the matrix
x 1 Xi x

is the i
th

component of h. Finally ax denotes the tensor with

We write C(o,T, R
d

) for the continuous functions

(hi ) where hi
x.

J
entries
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C [o,T] + R
d

and we denote its canonical Borel filtration by {G~}. For
d

~ E C(o,T: R ) let

The set of admissible controls is

U= {u:[o,t] x C(o,T: R
d

) + U, Borel, adapted, lu{t,~)1 ~Ku(1 + II~ lit)'

x
o

• Let (Q,F,P) be the canonical

an m + d dimensional standard Brownian

some K < CD}.
u

denote the distribution ofLetP
o

space of (x ,w,y) where (w,y) iso _

motion independent of x. Then
o

and P = P x pm x p
d

where p d is Wiener measure on C(o,T; Rd ). For u £ U
o W w w

let pU be the law of (xU,y) where xU is the unique (strong) solution on

co,F ,P) of

dx
t

= ((t,xt,u(t,y»dt + (J'{t,xt)dwt' x x
0'

(2.1)
0

and let pU be the law of (x
usx

,y) where
usx

is the unique (strong) solutionx
sx

of

dx f(t,xt'u(t,y) )dt + (J'(t,xt)dw
t

, t > s,
t

t ~ s,
(2.1)'

and let pU~ be the law of xu~sx, solution of
sx

t > s

t < s.
(2.2 )

Note that pU~ is a regular conditional probability distribution of pU~IFY,
sx sx

where FY is the subalgebra of F generated by y.

Let (Q,r,pu) be the canonical space of (xU,y), so that

Q C{o,T: R
n

) x C(o,T: R
d

). Define

(2.3)
t 1 t 2

exp{J h(e,xe )· dYe - 2 J Ih(e,xe)1 de}
s s

on (Q,r,pu). ZO can also be defined, in a consistent manner, on (Q,F,p
u

),
sx t
- - ~ u -o-unot just (Q,F,P

ox
). If dP = ZT dP , then (xt'Yt) is a solution of (1.2),

(1.3) on (Q,r,pu ), or similarly (and ambiguously, but this causes no

confusion) if dP
u = Z~udP (where Z:u is defined by (2.3) with x

e
replaced by
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usx u. u
xe ), then (xt'Y

t
) 1S a solution of (1.2), (1.3) on (Q,F,p). Since we have

weak uniqueness of the solutions of (1.2), (1.3) we are able to switch from Q
to Q and vice versa.

In what follows we shall use some concepts from differential equations

for which we now introduce some notation. Let H = L
2

(R
n

) with inner product

<v,g>. Define

H
1

= {v € H·... H' 1 }V,V € , 1 = , ••• ,n
1

where a,v is the x, component of the distributional derivative of vex). Let
-1 1 1 1 -1 1

H be the dual of H with pairing (v,g) for v € H , g € H. We use the

convention that repeated indices are summed. We use the following notation

a~j: x + aij(t,x)

bUT]i. fie (» 1 ij( ) [ ( ) h( )] _.1. aij(t x)t • x + t,x,u t,T] - 2 a t,x T] t· t,x x, 2 ' x
J j

where a h(t,x) is the distributional derivative of h (as a function on
o

R
n+ 1

) with respect to t. Finally define

2 1 dw 2 -1
W(0, T) = {v € L (0, T I H ): dt € L (0, T I H )} •

the distributional derivative of t + vet) E H
1

•

3. THE ADJOINT PROCESS

We shall compute here the perturbation in J(u) generated by a strong

variation of fi, an optimal control whose existence we assume (since we are

looking for necessary conditions).

Throughout this section we assume (A
1

) - (AS)' and until further notice

also

If(t,x,u)1 + la(t,x)1 + Ih(t,x)1 < K

a(t,x) ~ aI, a > 0,

Iia h(t,x) II < K
o L~«o,T)X Rn )

Ilc II 2 ~ K.
L (R

n )

On H
1

we can define a bilinear form.

1 ij uT]i 1 ij
2

<a a.~, a v> + <b
t

a1'~'v> + - <a (T] 'h )a ~, a v>
t1 j 2 ittt j

(3.2)
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Lemma 3.1 There exists a unique solution uTl in W(o,T) ofI!t

dl!t
v) + A~Tl(I!t'v)

1
( dt 0 v E H ,

I! = c exp(TlT o h
T

)·T

Moreover if

2 d
Po has a density Po such that Po E L (R ),

then

J(u) = E < l!uTl p >.
w 0' 0

(3.3 )

(3.4)

(3.5)

(3.6)

x.

d
Here E

w
is expectation with respect to P

w
• The lemma follows from Haussmann

(19B5) corollaries 2.1 and 5.1. Note that I!~Tl(x) exp[-TltOht(x)] is the

expected cost to go from t, given the observation is {Tl : 0 < S < T} ands - -
u

x
t

On (C(o,T; R
n

), G
T
n , pUTl) let ~uTl(t) be the fundamental matrix solution

sx sx
of

(3.7)

where ali) is the i th column of a, so that each column of ~uTl is a solution
sx

of (3.7) with ~uTl(s) = I. Moreover this can be done consistently so that
sx

~uy, considered on (Q,F,P ), is the fundamental matrix of
sx sx

(3.7)'

Let vUTl = I! uTl exp (-Tl
t

° h
t

)· Observe that
t t

past of Tl through u(t,Tl), and on the future of

(3.3). We wish to compute E {VvuTl(x) IGd
}w s s

Lemma 3.2. For each s, a.e. x, w.p.1

I!t' hence v t ' depends on the

Tl through the dynamics (3.2),

+ c(xT ) fTh~(t'Xt)~~~(t)(dY~- hi(t,xt)dt)] Z~IF~}
s

We observe that the right side of (3.7) is w.p.1 equal to

where E
U

is expectation with respect to p
U

, dP
u

sx sx sx

(3.B)

(3.9 )
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From Haussmann (1985), corollary 3.2, we have

or switching back to (Q,F, P)

so that

If ~u~(t) is defined as is ~~(t) but on (Q,F,p), and if ~u~(t) is the
sx sx sx

solution of (3.7) on (Q,F,p) with x replaced by xu~sx and with ~u~(s) ~
t t sx

(fixed), then

+ o( I~ I)·

The result follows.

Fix s, E. Then a strong variation (corresponding to (S,E» is an

element u E U such that

{
U(t'~)

u(t,~) = A '

u(t,~)

S<t<S+E

otherwise
(3.10 )

Let u be a strong variation of u corresponding to (S,E).

::'u
qs(x) (similarly without ~ if on (Q,F,P» and let

A A

U ~ A u
Gt(x) = qt(x)of(t,x,u(t,y» and Gt(x) = Gt(x).

Theorem 3.1 Assume (A 1 ) - (AS)' (3.1) and (3.5). Then

Let q (x)
s

J(u) - J(u)

S+E
E J [Gu(x) - G (x )]dt + OlE)

t t t t
s

(3.11)

t < s

~toht
e , v> if s < t ~ s + E

iiwhere E denotes expectation w.r.t. P = P •

"Proof": If ~E~ == ~u~ _ ~~ then ~E~ = 0 if
t t t' t

(~E~ , v) + A~(~E~, v) = {O if
dt t t -<Vvu~~f

t

t > s + E, and

where ~f f(t,o,u(t,~» - f(t,o,u(t,~». Then
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J(u) - J(u) E < ETJ
P >w 1-'0 ' 0

ETJ 'TJ
-y oh

E < e s s>
w I-'s ' Ps

;:., S+E
{ Is vv~Y(xt)MZ: dt If'Y} (TJ),

~TJ
E < E Ps

>
w sx s

S+E
E{ I qu(x)M dtZ

o
}. (3.12)

s t t Tp: is the unnormalized conditional density of x
t

given F~ on (Q,F,P).

Regularity of ~(x) allows us to replace it by ~(X) in (3.12) to obtain the

result.

Corollary 3.1 Assume (A
1

) - (AS). Then

S+E
E I <It (xt) [f (t, ~ t ' u ( t, y) - f (t,;;;t' ~ (t, y) ) ] dt + 0 ( E ). (3. 13 )

s

Here we have shifted back to (Q,F,p) and we use x
u

x , P

;:.,
and §2, and q, the equivalent on (Q,F,p) of q. The proof is by

regularization since both extremities of (3.12) are well defined without

(3 • 1) and (3. S ) •

4. THE MAXIMUM PRINCIPLE

The required necessary condition follows readily from (3.13) except that

it holds only a.e. (s), so

a countably generated set.

separable, and let V be a

we need to reduce the set of strong variations to
1 d d ~ ~

write U for L (C(o,T; R ),G ,P ;U) so that U is
ssw s

countable dense subset of U
T

such that each element

of V is bounded. Define the measurable map

is: (C(o,T; R
d

), G:) -+ (C(o,T; R
d

), G;)
by (isTJ)(t) = TJ(t 1\ s) where t 1\ s = min{t,s}. If V

s
= V 0 is then V

s
is a

countable dense subset of Us and

is a countable subset of U. Now let USE be the set of strong variations,

c.f. (3.10), corresponding to (S,E) with U E U.

We define

H(t,x,u,p) pof(t,x,u)

-E {c (~ )~ (T) + C(~T)
tx x T t

f (s,x ,u(s,y»~ (s)ds +
x s t

T . .
I h1(s,~ )~ (s)dw

1 IF Y}
t x s t s t

(i) ,~ i
Ox (s,xs)~t(s)dws' s > t
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Theorem 4.1 Assume (A
1

) - (AS)' If u is optimal then there exists a null

set N such that for tiN, u E U,

~{H(t,Xt'U'Pt(xt»IF~}

~ i{H(t,it,a(t'Y)'~t(Xt)IF~} w.p.1.

Proof: From (3.13) it follows that for t not in a null set N(u)

o > E{H(t,x ,v (y),~ (x » - H(t,x ,u(t,y),~ (x »},
- tt tt t tt

By denseness this holds for all v
t

E Ut' hence (4.1) follows with

N = U N(u).
VEU

(4.1)

We conclude with some remarks about the adjoint process. Observe that

VY(x)
s

the value function, i.e. the expected optimal cost to go, for the problem

with partial observation, given the past observations and the present state.

From (3.9) and lemma 3.2 ~ (x )' = -V VY(x ), w.p.1, so as usual the adjoint
t t s t

process is the negative of the gradient of the value function.

If we consider instead the equivalent separated problem, (Haussmann

1985, section 5), the optimal cost to go given the past observations and the

present "state" p is

with

Then it can be shown that

so that VyY = <vY,o>, i.e. the gradient of yY is (represented by) the value
s s s

function of the original problem.
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2 n *For the separated problem we define the Hamiltonian by (p E L (R ) )

~ u*
H(t,p,u,p) = p(L

t
p),

where for u E U

so that formally

y u*
<V

t
' L

t
p>

_ < LUVY p>
t t'

1 ij Y i Y-"2 <at bibjVt , p>-<f (t,o,u)biVt,p>

4>~ + <H(t,o,u,i\(o )l,p>.

Since 4> is independent of u, then again

4>~ + E{H(t,Xt,U'Pt(Xt)IF~}

< 4>~ + E{H(t,Xt,u(t'Y)'Pt(Xt»IF~}

~ A A ~Y

= H(t'Pt,u(t,y), - V V
t

) w.p.1,

i.e. u maximizes the Hamiltonian, and the adjoint process is the negative of

the gradient of the value function. The state space is, however, a functions

space.
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EXPLICIT SOLUTION OF A CONSUMPTION!Il'VESTMENT PROBLEM

I .. Karatzas J. Lehoczky, S. Sethi, S. Shreve

1. INTRODUCTION

This paper solves an optimal stochastic control problem which arises in

finance. Specifically, we characterize the optimal consumption and invest

ment policies of an individual who allocates his wealth into two investments,

one which is deterministic with rate of increase r, while the other is

given by a log Brownian motion process with rate

The individual seeks to maximize
2o .variance

of increase a 1 rand

=
E (J e-;3tu (c )dt), where

x 0 t

ct.?Orepresents the consumption rate, ~ is a discount factor, and U is a

utility function. We assume TIt represents an investment control and

denotes the fraction of wealth allocated to the log Brownian motion invest-

ment.

cess

The controls lC
t

, t > OJ and lTI , t > oJ give rise to a wealth pro-
- t /\-

lx(t), t.? OJ which satisfies the Ito stochastic differential equation

dx(t) (1.1)

x (0) x > 0,

where lWt , t.? OJ in a standard Brownian motion.

The model requires some assumption concerning what investment and con

sumption options are available if wealth reaches zero, since further con

sumption would result in negative wealth. We refer to the state of having

zero wealth as bankruptcy. Many bankruptcy models are possible, and we

incorporate all these models into one by stopping the problem and assigning

a value P when bankruptcy occurs. Specifically, we define

inf {t.? 0 I x(t) OJ. (1. 2)
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The individual thus seeks to maximize

(1. 3)

The parameter P is arbitrary; however, the value P = U(O)/p, the "natural

payment", plays a distinguished role. We will find that the optimal policies

for all P i U(O)/p are the same. The natural payment U(O)/p corresponds

to the individual consuming zero forever after bankruptcy occurs.

This paper is an abreviated version of [2], in which a more general

treatment is given. In [2], multiple and more general risky investments

are considered. The case U = r was considered in [3]. The finance back

ground for this kind of problem can be found in [3, 4, and 5].

2. ASSUMPTIONS

We assume that U is a real-valued function, strictly increasing,

+CO •

lim U(c) and
dO

U' (0) may be

U(O)

-co andU(O) may be

(0 ,CO). We seton

Note that

strictly concave and

U' (0) = lim U' (c).
dO

Furthermore, we impose the condition

lim
c--KX.;

U (c)

c
O. (2.1)

Define y %(u~r)2, and recall y > o. Consider the equation

2
YA - (r-l3-y)A - r 0, (2.2)

and let A > 0 and A < 0 be its two solutions. We assume
+

0... -A

I (U' /e» de <co, Vc > 0,
c

(2.3)

a condition stronger than (2.1). We note that (2.3) is a sufficient con

dition for the value function to be finite. Condition (2.3) is also a

necessary condition when U is of the HARA class (see [2]).

Let [W , J , t > 01 be a standard Brownian motion on a probability
t t -

space «(l,J,p), where [J
t

, t > OJ is a nondecreasing, right-continuous family

of O-fields. An admissible consumption process [c , t > OJ is a non-
t -
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negative process adapted to [J
t

, t > 0) which satisfies almost surely

t

I c ds <<D,
o S

t > o. (2.4)

The investment process

the (JtJ stopping time

(n , t > OJ is an [JtJ adapted process.
t -

We define

T(n)
t 2

sup (t 2. 0 I J n ds <eeJ ,
o s

and call an investment policy admissible at

or lim x(t) exists and is equal to zero.
tfT(n)

x if T(n) == or TO < T(n)

In [2], it is shown that (1.1)

has a solution for finite t < TO. Furthermore, the integral and expecta

tion in (1.3) are well-defined.

For given admissible c and n, we define

Vc C.) ,n (.) (x)

v*(x) = sup V () ()(x),
c (. ) ,n (.) c . ,n .

x > 0
(2.5)

We note V*(O) P.

3. SUMMARY OF RESULTS

If(i)

In this paper, we present a closed form solution of the problem posed

in sections 1 and 2. We summarize the qualitative results here.

p > l lim U(c), one should consume to bankruptcy quickly, and
- f3 c-KD

V*(x) = P. There is no optimal policY,since instantaneous bankruptcy

cannot be achieved.

(ii) If P < l U(O) and U' (0) ==, the optimal consumption is never zero- f3
but is not bounded away from zero, and the optimal wealth process

does not lead to bankr.lptcy.

(iii)
1

If P >~ U(O) and U' (0) ==, the optimal consumption is bounded

below by a positive ';onstant a, and the optimal wealth process

leads to bankruptcy with positive probability. The probability of

bankruptcy is equ:ll to on~ if and only if 13 > r + y.
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(iv) If U' (0) is finite and

A +1 co
p < p* ~ ~ U(O)

(U' (0)) J de
(3.1)-

~A A '- 0 (U' (e)) -

then for low levels of wealth the optimal consumption is identically zero.

If p ~ ~ U(O), bankruptcy occurs with positive probability which is equal

to one if and only if ~ > r + y. If U' (0) is finite and P > P*, the

optimal consumption is never zero and is bounded away from zero if and only

if P > P*. There Is a positive probability of bankruptcy, and this pro

bability is equal to one if and only if ~ > r + y.

4. THE BELLMAN EQUATION

The Bellman equation for our stochastic optimal control problem is

given by

~V(x)
1 2 2 2

sup [((Q.-r)1Ix+(rx-c))V' (x)+2"0 11 x V"(x)+U(c)], x > 0,
c2.0 ,11

(4.1)

V(0) P.

We prove in [2] the following standard theorem

Theorem 4.1

Let P be finite and V (O,CO) ~ (P,CO) be a
2

C function satisfying

(4.1). Then V(x) 2. V*(x), x > 0, provided either

(i) lu(o)1 <cu, or

(ii) U(O) = -co, but under any consumption/investment policy,

TO

E) e-~tu+(c )dt <co, where u+ = max (O,U).
o t

The assumption of unconstrained 11 (unlimited borrowing) allows the

individual to create a risky investment with arbitrarily large variance.

For initial wealth x
2

with 0 < xl < x
2

< x
3

' he can thus exit the

interval [x
l

,x
3

] in an arbitrarily short time with nearly linear exit pro

babilities. Consequently, v* satisfies
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which establishes the concavity of V* when it is finite. We thus solve

(4.1) under the assumption v" < 0, and we verify after the fact that this

assumption is justified. The maximizing TI is

TI
- (u-r)v' (x)

02xv" (x)
(4.2)

and when the constraint c > 0 is slack, the maximizing c = C(x)

satisfies

v' (x) u' (C(x». (4.3)

We assume C(·) has an inverse function X(.). Differentiation of

(4.1) with respect to c and (4.3) with respect to x and substitution

of (4.2) and (4.3) yield a linear, second-order ordinary differential

equation

yX" (c) = [(r-13-2y) ~.: ~~: + y~:,"(~~)] x' (c)

U" (c) 2
+ [~] (rX(c)-c).

The general solution of (4.4) is given by

A 1\ A
B (U' (c» + + B (U' (c) ) + X(c; a)

(4.4)

(4.5)

where A and A
+

are defined by (2.2) and

X(c;a)

A_ <Xl -A
+ (U't» I (u' (6» -de).

c

We define X(c;a,B), c > a by (4.5) with

the term (U· (c»A- (which grows too rapidly).

1\
B = O.

We set

(4.6)

This eliminates

X(a;a,B) =

lim X(c;a,B). We can show for a > 0 and B < 0 that X' (.;a,B) > 0 on
da

(a,<Xl) , and so X(.;a,B) maps [a,<Xl) onto [X(a;a,B),<Xl). Moreover, its

inverse function C(·;a,B) is C
2

, increasing and maps [X(a;a,B) ,CG) onto

[a,<Xl) .
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5. CANDIDATE OPTIMAL POLICIES AND THEIR PERFORMANCE EVALUATION

We fix a ~ 0, B < 0 and use the functions X(c) = X(c;a,B),

C(x) = C(x;a,B) of S4 to create a policy (c
t

, ~t' t > oj.
We will ultimately select a > 0, B < 0 so that X(a) > O. Let

S = X(a) and assume S > o. Given Xo > S, we define a wealth process

X(·) by (1.1), where

02x Un (c )C ' (x
t

)
t t

We derive a stochastic differential equation for Y
t

It~'S rule and (5.1) and (4.4) applied to (1.1). We find

(5.1)

(5.2)

We let U' have inverse I and solve (5.2) to obtain the candidate

optimal policies

(o.-r)
I (U ' (c ) exp [- (r-~+y) t - --- W

t
) ,o 0

(5.3)

(5.4)

Note that

inflt ~ 0 aJ inf(t ~ 0 U ' (ad.

If a = 0 and U' (0) ==, then T
S

=C0 a.s., because Y
t

does not explode.

Under such conditions, bankruptcy cannot occur. However, if S = 0 and

U' (a) is finite, bankruptcy will occur when Y
t

rises to U' (a). This

happens almost surely if ~ > r + Y, and with positive probability less

than one if ~ < r + Y,
To evaluate the expected return associated with (5.3), (5.4), we let

v Vc(.),IT(.) (S), and we assume v is finite. For Xo > S, let

V (x )
c (.),~ (.) 0

(5.5)
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Using Theorem 13.16 of Oynkin [1] (sometimes called the Feynman-Kac formula)

we can show that if H is well defined and finite, then it is C
2

on

(a,CO), satisfies

QH (c) -U' (c) _ ~ + Y u' (c) u'" (c) (U' (c» 2 "( )
I' = U""(Cj[r '" 2 ]H' (c) + Y u" (c) H c

(U" (c»
(5.6)

+ U (c), c > a

and, if U' (a) <co,

(5.7)

The general solution to (5.6) is

P 1\ P_
J(c;a,A,£:) f::, A(U' (c» + + A(U' (e» + JO(c;a) (5.8)

where p+ 1 + A+ are the roots of the equation

2YP - (r-t3+y)p - t3 0, (5.9)

and a particular solution to (5.6) is

U(c)
-t3- -

(5.10)

d8
A

a (U' (8» +

d6
A l.

c (U' (6» -

p OJ

+ (U' (c» - I
P

In [2], we prove the following theorems:

Theorem 5.1 If U' (a) <co and H(c) given by (5.5) is well-defined and

finite for all c > a, then H(c) J(e;a,A,O), c > a, where A satisfies

P+
A(U' (a»

Uta)
+ -fj- d8 = v. (5.11)

Theorem 5.2 If a = 0 and U' (0) = OJ and if H(c) is well-defined and

finite for every c > 0, then H(c) = J(c;O,O,O), c > O.
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6. SOLUTION WHEN THE CONSUMPTION CONSTRAINT IS INACTIVE

In this section, we summarize the results for all cases when the con-

surnption constraint can be ignored.

a class of feedback policies c and

Given a) ° and B < 0, we obtained
- 1\

TI given by (4.5) with B = ° and

(5.1). These policies yield expected return J(C(x;a,B);a,A,O), and so

J(.) ~ V*(·). We seek particular choices of a and B for which J

satisfies (4.1), and therefore, by Theorem 4.1, J(.) ~ V*(·). As a result

we will have then explicitly obtained V* and the optimal policies. In

[2] we establish the following theorem, which shows that the appropriate

choice of A is A+B/P+.

Theorem 6.1 For a) 0, B < 0, the function

V(x;a,B) ~ J(C(x;a,B);a,A+B/p+,O), x) X(a;a,B)

satisfies the Bellman equation (4.1).

We can now solve the case studied by Merton [4].

(6.1)

Theorem 6.2 Assume U'(O) =00 and P ~ U(O)/13. Then v* is obtained

by setting a = ° and B = ° in (6.1).

To obtain an explicit solution in other cases, we introduce the strictly

decreasing function

F(c)
P+

d6 - ~ U(c) +
A

+ cU' (c), c ) 0,
r

(6.2)

and seek positive solutions of the equation

F(c) (6.3)

We prove in [2] that (6.3) has at most one positive solution,and this

occurs if and only if F(O) + P+P ) ° where F (0) ~ lim F (c) •
- do

Given a

positive solution, c*, of (6.3), we take a = c* and B given by

a
A

B (U' (a)) + +
r

A CG -A
-:+(u=--'.,.,c(c:::a"--,)i-).....,.-- f (U' (6) ) d6
yA (A -A )

- + - a
0. (6.4)

Moreover, when F(O) + P+P ~ ° and both uta) and U· (0) are finite, we

define
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P* (6.5)

We can now state the following

Theorem 6.3

If any (i)-(iv) hold, then V* given by (6.1) with a

given by (6.4)

(i) U (0) = -CCJ, P finite,
1

(ii) U (0) finite, U' (0) = 0;:), P > 13U (0) ,

(iii) U(O) and U' (0) finite and P > P*i

(iv) U (0) and U' (0) finite P = p* . Here we set c* O.

7. SOLUTION WHEN THE CONSUMPTION CONSTRAINT IS ACTIVE

c* and B is

The only remaining case is that of finite U' (0) and P < P*. Under

these conditions, we establish the existence of x > 0 and B < 0 such

that the optimal consumption is given by

c

{

0

C(x;O,B) ,

o < x < x

x > x

(7.1)

where C(x;O,B) = 0 and C(x;O,B) > 0 for x > x. When
1

will have B = 0; when 13 U(O) < P < P*, we will have

1
P .s. 13 U (0), we

B (7.2)

where y is defined by

(L,

-~A [P - i U(O)] [I de A ]-1

o (U' (8))

Also,

(7.3)

x
A

B (U' (0)) +

A
(U' (0)) - 1CO

de
yA (A - A ) A

- + - 0 (U' (e))

(7.4)
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In the preceding sections, we chose consumption as an intermediate

variable. This is no longer appropriate as the mapping described in (7.1)
d

is not invertible. We will therefore allow y = dxV*(x) to play the role

of intermediate variable. We will discover that V* is strictly concave,

so the mapping from x to d~V*(X) is invertible. Moreover, when x ~ x,

we will have wealth and optimal consumption related by ~V*(x) = u' (C),
dx

so y = u' (c) for x > x.

Let us recall the function I (O,U' (0)] ~ [0,00) which is the inverse

of U' • We extend I by setting
I '" ° on [U' (0) ,CD). If V is

2
C

and strictly concave. The Bellman equation (4.1) can be written as

13v (x)
_Y(V'(X))2

V"(x) + [rx - I(V'(x))]V'(x) + U(I(V'(x))), x > ° (7.5)

By analogy with (5.8) with a

A < 0, B < 0,

° and c = I(y), we define for

l(y,B)
A-

By + 1 ()+ r I y

A-
1 + I(y) -A-

Y(A-A)[YA J (U'(8)) +de
+ - + °

P+ 1
;}(y,A) Ay + 1J U(I(y))

1 P+ I(y) -A-
(A -A- ) [Y.- I (u· (8)) +de

Y + - 1\ °

A-_ CD -A-
+ Xx-- I (u· (8)) -del,

- I(y)

p- CD -A-
+~ I (U' (e)) -del,

I(y)

y>0(7.6)

.y>o (7.7)

In [2] it is shown that L has an inverse

l,i(' ,B) (O,CD) ~ (0,00) if B 0, and
onto

!J (. ,B) [O,OJ) ~ (O,y) if B < 0.
onto

By analogy with Theorem 6.1, we have

(7.3)

Theorem 7.1

V(x)

Assume P < P*, (7.1)-(7.4), and define

A
+

;}(!J(x,B) 'p- B), x> 0.
+

(7.9)
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The function V is strictly increasing, strictly concave, satisfies the

Bellman equation (7.5) and lim V(x) = P.
x~O

We can now state the explicit solution when the consumption constraint

is active.

Theorem 7.2 Assume U(O) and U' (0) are finite.

(i) If P U(O)/13, then V*(x) = ,?(\J(x;O);O), x> 0

(ii) If U(O)/13 < P < P*, then V*(x) = V(x) of (7.9) with B given by

(7 . 2) and (7 . 3) .

Theorems 6.2, 6.3, and 7.2 provide a complete explicit solution to the

consumption/investment problem. These results have been specialized to the

HARA utility function case in [21.

REFERENCES

[1] E. B. Dynkin, Markov Processes, Vol. II, Academic Press, New York,
1965.

[21 I. Karatzas, J. Lehoczky, S. Sethi, and S. Shreve, Explicit solution
of a general consumption/portfolio problem, To appear: Math. Operations
Research.

[3] J. Lehoczky, S. Sethi, and S. Shreve, Optimal consumption and invest
ment pOlicies allowing consumption constraints and bankruptcy, Math.
Operations Research ~ (1983), 613-636.

[4] R. C. Merton, Optimum consumption and portfolio rules in a continuous
time model, ~. Economic Theory ~ (1971), 373-413.

[5] P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic
programming, Rev. Econ. Statist. 51 (1969), 239-246.

ACKNOWLEDGEMENT

Research was supported in part by the following grants: National

Science Foundation MCS-8202210 to Carnegie-Mellon University (Lehoczky and

Shreve), MCS-8103435 to Columbia University (Karatzas), and NSERC-A4619

and SSHRC 410-83-0888 to University of Toronto (Sethi).



ON THE ASYMPTOTIC BEHAVIOR OF SOME OPTIMAL ESTIMATES
OF PARAlIETERS OF NONliNEAR REGRESSION FUNCTIONS

P.S. Knopov
V.M. Glushkov Institute of Cybernetics
Ukrainian Academy of Sciences
252207 Kiev 207, USSR

This paper is concerned with periodic estimates of the unknown parameters of a

given deterministic signal of known structure, observed in the presence of random

noise.

We shall make the following assumptions:

1. Let n(t), t cR1 be a stationary random process with trajectories En(t) = 0,

En (s + t )n (s) = r (t) which are continuous with probability t and satisfying the follow

ing conditions:

c
sup !P(AB) - P(A )P(B) I :s; -1- , T > 0 , l: > 0 , C > 0

A e.rt__ IB EFt~ T +e

where ~ = a!n (t), t c [a ,b] I is the least a-algebra generated by the random process

n (t) , t E.. [a ,b].

2. For some 6 >..! we have Eln(t)14+~ < eo
l:

3. Let rp(t) be an almost periodic function of the form

-rp(t) = ~ Ctet>..tt
t=--

where Cir. and Air. satisfy the conditions

-L ICir. I < eo , Air. ~ 0 for k ~ 0 • At ~ Air. for l ~ k > 0
Ir. =-~

We study the problem of estimating unknown parameters A oand ColO of the following

observed random process
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x(t) = AO<p(ColOt) + n(t), t Era, T]

Consider the functional

Let ColT be the value of c.J for which QT(Col) attains its maximum value. Then the fol

lowing statement holds.

THEOREM 1. Let assumptions L-3 be satisfied and

: Ci e: > ICi I ,i ¢ ± i 0 ' i 0 > 0

Then

_ c.JT
ColT = -- -> a as T -> 00

Aie

with probability 1.

(1)

Let us briefly consider the main steps in the proof. Having fixed Col ¢ 0, we consider

the behavior of the value QT(Col) as T -> 00:

f'rom assumption 3 we have

Fr'om [1J it follows that

sup IIT(r.;): -> a as T -> 00 with probability 1

'"
Set

(2)
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From (2) we have

By means of simple formulae it is possible to show that for 0 < 6 < 6."'0/2 ,the follow

ing inequality holds with probability 1:

At the same time it is npt difficult to see that with probability 1

Let E = !e l be the space of elementary events and

where

(3)

From the above considerations we have pl'l'l =1. Now suppose that (;iT f--) "'0 with

probability 1. Let 'itt =Ie: C;;n-. ,",ol and the elementary event e E 'l't n 'l'.

For this event there exists a subsequence Tic -+ 00 for k -+ 00 such that

Take

6."'0
0< 6(e) <min (I""(e)-Ato"'ol '-2-)

Then, from

we have

On the other hand, by definition
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so that

This leads to a contradiction. Therefore, P!-Itd ::: 0 and G:i T -+ "'0 as l' -'00 with pro

bability 1. This proves the theorem. The stronger statement is also true.

THEOREM 2. Under the conditions of Theorem 1,

"'T
1'(-- - "'0) -. 0 as l' -+ DO with probability 1

AiO

The proof is based on the relation

which holds with probability 1.

(4)

From (4) it follows that, when the conditions of Theorem 1 are satisfied, the value

A ::: 1.. Ic I -1 Q 1/ 2(", )
T 2 to T T

represents a strongly consistent estimate of the parameter A o.

Now we shall turn our attention to the asymptotic distribution of the values "'T and

THEOREM 3. Let assumptions 1-3, condition (1) and f (At 0"'0) > 0 be satisfied,

where f (A) is the spectral density of the random process n (t). Then the value

1'3/2(", -A "')T toO

is asymptotically normal with a mean value of zero and dispersion

The proof is based on two lemmas which we state without proof.

LEMMA 1. Let the conditions of Theorem 3 be satisfied. Then we can write

where (Tl is an asymptotically normal random value with zero mean value and

dispersion
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and (T2 -> 0 as T -> 00 by probability.

LEMMA 2. Let assumptions 1-3 and condition (1) be satisfied. Then for any ran
v

dom value G)T satisfying the inequality

with probability 1, we have

by probability.

Now let us prove the statement given in Theorem 3.

Since G)TI Ato -> G)o as T -> 00 with probability 1, G)T will be an inner point of the

semi-axis (0,00) with probability approaching 1 for T -> 00. With the same probability

Qr(wT) = D, and the equality

(5)

holds, where some random value G)T satisfies the inequality

with probability 1.

From (5) it follows that

(6)

Equality (6) is equivalent to

(7)

By virtue of Lemma 2, the denominator of the right-hand side of (7) tends by probabil

ity to the value

Making use of Lemma 1, we obtain confirmation of the theorem.

Using Lemma 2 and Theorems 2 and 3 it is possible to prove a similar result for the

estimate AT' Let us formulate this result.
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THEOREM 4. Let assumptions 1-3. condition (1) and J O'toUJo) > 0 be satisfied.

Then the value

is asymptotically normal with parameters (0. 7T ICtol-Z J(AtoUJo)'

Now consider periodic estimates of the second type obtained by maximizing the func

tional

We shall assume that the unknown parameter UJ satisfies UJ E: (fol , c:i). lil > 0 • c:i < "".

We choose the value wT E. UiI, c:i] as an estimate of UJo. where QT(UJ) represents the

maximum value. We now introduce some statements regarding the asymptotic behaviour

of the estimates G:)T as T -+ 00. The proofs of these statements follow the same pattern

as those for .the values of UJT'

THEOREM 5. Let assumptions 1-3 be satisfied. Then. with probability 1,

T(G:)T -UJo) -+ 0 as T -+ "".

TIU~OREMS. Let assumptions 1-3 be satisfied, and

-
! Aj Cj ! < "". L: 1 Cj IZ J (Aj UJo) > 0

j=--

Then thp. value

is asymptotically normal with zero mean and dispersion

- -a Z =or.-A o
Z [ L: A~ !C v IZ]-1 L: A} ICjIZJ(AjUJo)

v=-- j=--

Let

AT = t( f: I C v IZ)-1Q'i;lZ(G:)T)
v=-oo

The above statements about strong consistency and asymptotic normality also hold

for AT'

THEOREM 7. Let assmptions 1-3 be satisfied. Then the value XT is a strongly con

sistent estimate oj the parameter A o.
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THEOREM 8. Let the conditions of Theorem 6 be fulfilled. Then the value

is asymptotically normal with zero mean and dispersion

- -
a2 = 271' 2: [Ct 12 f (Xt (,,)0)( 2: I Ct [2)-2

k=-- k=--

Now consider periodic eslimales of lhe paramelrs in lhe space H 2. We shall make lhe

following assumptions:

4,. Lel n (s , t) , (s , t) ~. H 2 be a homogeneons random field such lhal

En (s , t) = O. and which salisfies lhe following conditions [2]:

sup
A E8(s)
BE8(F)

CiP(AB) - P(A)P(B) I ~ i'(d (s ,F» ~ -2
d 1£

where 8(s) is a a-algebra generaled by a random field

n(s,t),(s,t)ES,d(s,F)=inf!:lx-YII,x ES,Y EFI. 'I'(d) .. O.d __ oX>

Here : Ix - Y I : is lhe euclidean dislance belween lhe elemenls x and y.

5. For some 6 > ~ we have E [n (s , t) 1
4+8 < oX>.

t:

6. rp(s, t) is a real function which is 271'-periodic wilh respecl lo bolh variables

and lakes lhe form:

rp(S,t)= f: Cttei(ks+lt)
t,t =--

where

2: :Ctt i < oX>

t.t =---

Consider a random field

x (s , t) = A Orp«(,,)10s , (,,)20t) + n (s , t)

observed in lhe domain Dr = [0, T] x [0, TJ,

Il is necessary lo eslimale (,,)0 = «(,,)10' (,,)20) from lhe observalion of x (s , t) in Dr.

Consider lhe funclionals
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Let (,)T = «(,)1T' (,)2T) be the value of (,) = «(,)1' (,)2) in D T at which the functional

QT«(,)1' (,)2) attains its maximum value. Then the following statement holds:

THEOREM 9. Let assumptions 4-6 and

(8)

be satisfied.

Then

(,)1T (,)2T
T(-.- - "'10) -+ 0 , T(-k- - (,)20) -+ 0 as T -+ 00

'1.0 0

with probability 1.

Let

A 1, e I -1 Q 1/ 2( )
T ="4 I toto

'
T (,)1T' (,)2T

THEOREM :IO. Let assumptions 4-6 and condition (8) be satisfied. Then AT -+ A o
as T -+ 00 with probabil'i.ty 1.

We shall now consider periodic estimtes of the second type.

Let

T T

QT«(,)1' (,)2) = i~ J J x (s • t)rp«(,)1' s • (,)2t)dsdt 1
2

Too

A::;:;ume that the unknown two-dimensional parameter (,)0 = «(,)10' (,)20) belongs to the

domain [1 = !(,): «(,)1' (,)2)' a <.f!11 < (,)1 < G:i1 < 00, 0 <.f!12 < (,)2 < G:i2 < ooj. As an estimate

of "'0 E 11 we take the value of (;iT E: Ii = 1(,) = «(,)1' (,)2)' 0 <.wI1 S (,)1 S W1 < 00,

o <.f!12 S (,)2 S W2 < ool for which the functional QT«(,)1' (,)2) attains its maximum value.

THEOREM 1.1.. Let assumptions 4-6 be satisfied. Then (;i T -+ (,)0 as T -+ 00 with

probability 1.

Let

A- 1 r ~ Ie 12]-1Q1/2(- -)T = '4 L..... kj T (,)1T' (,)2T
k,j=-~

THEOREM 1.2. Let assumptions 4-6 be satisfied. Then AT -+ A 0 as T -+ 00 with pro

bability 1.

The proofs of the statements made in Theorems 9-12 are analogous to those in the

one-dimensional case. Theorems on the asymptotic normallty of the above estimates

also exists, but their formulations are much more unwieldy and we shall not consider

them here.
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ON THE i:-OPTIMAL CONTROL OF A STOCHASTIC INTEGRAL
EQUATION WITH AN UNKNOWN PARAlIETER

A.M. Kolodiy
Institute of Applied Mathematics and Mechanics,
UkraInian Academy of Sciences, Donezk, USSR

1. INTRODUCTION

In this paper we shall consider an i:-optimal control problem leading to the solu

tion of Ito-Volterra stochastic integral equations with coefficients which do not

depend on a random parameter. The solution of this control problem will be obtained

by means of an auxiliary optimal control problem which can be constructed for any

controlled process in discrete time. This method is similar to that used in [1] to con

struct an i:-optimal control function for solution of stochastic differential equations

with known coefficients.

2. NOTATION

We shall use the following notation:

(0, F. P) is a complete probability space.

(FI )1::.0 is an increasing right-continuous sequence of complete a-algebras of F.

(w(t), t ~O) is an m-dimensional (FI)-Wiener process.

(lI(t ,A),t ~O.A cB(RQ
\ 101» is an (Ft)-Poisson measure with EII(t ,A) = tq(A)

[1]. Assume that wand II are mutually independent. Let ii(t, A) = lI(t, A) 

tq(A).

D is the space of all cadlag functions g: [a, T] -4 R Q (g is a cadlag function if it is

continuous on the right and has finite limits on the left; Ib III =sup Ig (r) I ;
r-Q

I ~

Ilbll~ =U Ig(s)1 2dK(s)ll/2 + L: ci Ig«t -sl)+)1
o 1=1

where K(') is a monotonically non-decreasing right-continuous function,

ct ~ a , L: CI = 1, SI E: [O,T] , K = K(T) - K(O) < 00.
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at is the minimal u-algebra generated by cylinder sets in D with bases over [0, T].

Ip(t) is a strongly increasing continuous function with 1p(0) =0 and
...
L 2 n1p 1p(2-n ) < 00, wherep > 1.
1

ff.p , p > 1, is the space of (Ft )-adapted processes ~ with trajectories in D and for

which EII~lr < 00.

If f (a, y) Is any function with y E: R d , a E: A. where A is an arbitrary set, then

[f(a)]p =If If(a,y)I Zq(dy)jllZ + If If(a,y)Pq(dy)jl/p

3. THE EXISTENCE AND UNIQUENESS OF A SOLUTION

Let ~ be any process. Then we define GJt,p(6, n for arbitrary 6> 0, p > 1, t > 0

as follows:

Utilizing methods from [2] we obtain the following assertion:

LElUIA 1. Let ~ be a measurable process with

t ...
f (E l{(s)IP)lIPds < 00; L 2nIPGJt,p(2---n ,~) < 00

o 1

for any p > 1 and all t > O. Then process ~ has a continuous modification t and

t ...
(EI\~Ir>l/P s c f(E I((s) Ip ) lIP ds + L p (t) L 2n Ip GJt ,p (2 ---n ,0 . ,

o 1

where c is any positive constant and Lp(t) is a monotonically non-decreasing (for

fixed p) positive function.

The proof of Lemma 1 may easily be obtained from the proof of Theorem 2 in [2]

with some simple transformations.

LE:MlIA 2. Let (J(t, s) and ..,(t, s ,y) be random, measurable, Fs-adapted }'unctions

with values in Rd ~Rm and R d , respectively. Assume that

1{J(t ,s)1 + [..,(t ,s)]p sF(t ,s)

where F(t, s) is a random, measurable }'unction which is monotonically non

t

decreasing in t and such that E f FP(t, s)ds < 00. Then the process
o
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t t
<-(t) = J (1(t, s)dw(s) + J J -,(t ,s ,y)ii(ds ,dy)

o 0

has a modij'f.cation with cadlag trajectories and

t
E 11~lr :!O c (t)E J F'P (t ,s )ds

o

where c (t) = c (t ,p , rp(.» is a locally bounded function.

Proof. It. is well known [3,4] t.hat. t.he t.raject.ories of t.he process

t t
It(t) = J (1(s, s)dw(s) + J J -,(s ,s ,y)ii(ds ,dy)

o 0

are cddidg and t.hat.

t
Eilltlll' :!O c·(t)E J (I (1(s ,s) IP + [-,(s •s )]C)ds

o

where c·(t) = c· (t ,p) is a locally bounded funclion. It. may easily be proved t.hat. t.he

process Itt = <- - It salisfies t.he condilions of Lemma 1. Thus Itt is conlinuous and

t
E Illtt"r :!O c"(t )E J F'P (t ,s )ds

o

where c ..(t) = c" (t ,p , rp( . » is a locally bounded funclion.

Consider t.he st.ochaslic int.egral equalion

t t
w) = t(O) + J a(t.s ,~)ds + J b(t ,s ,~)dw(s) +

o 0

(1)

t
+J Jc(t.s,~,y)iJ(ds,dy).tE[O,T]

o

where t(O) is an Fo-measurable d-dimensional vect.or; random funclions a(t, s • g).

b(t ,s • g) and c(t ,s ,g ,y) are measurable on t.he combinalion of t.he variables, and

for all t • s as funclions of (g, CJ) E D x 0 are measurable wit.h respect. t.o t.he a

algebra as x Fs ; a (.) and c (. ) t.ake values in R d ; b (.) t.akes values in R d ®Rm .

Using Lemma 2 and t.he usual met.hods employed in t.heorems on t.he exist.ence and

uniqueness of solulions of st.ochaslic int.egral equalions [3,5], It. is possible t.o prove

t.he following t.heorem:

THEOREM 1. Assume that there ensts a function rp and a number p ~ 2 which

satisfy the conditions given in Section Z and in addition:
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(a) E IHO) Ip < "";

(b) la(t ,s ,g)\ + ib(t ,s ,g)1 + [c(t ,s ,g)]p ~L(l+I'glls);

Ia (t + !:>, s ,g) - a (t ,s ,g) I + Ib (t + !:>, s ,g) - b (t ,s ,g) I +

+[c(t+!:>.s,g) -c(t,s,g)]p ~L(l+iblis)Ip(I:»;

(c) Ia (t ,s ,g) - a (t ,s ,g ') I + Ib (t ,S ,g) - b (t ,S ,g ') I +

+[c(t,s,g) -c(t,S,g')]p ~Llb -g'lls;

Ib (t + 1:>, S ,g) - b (t + 1:>, S ,g ') - b (t ,S ,g) + b (t ,S ,g ') I + [c (t + 1:>, S ,g) 

- c(t + 1:>, S ,g') - c(t, S ,g) + c(t ,S, g')]p ~ L Ib -g'lls 1p(1:».

Then there ezists one and only one process ~ E: Hp which satisfies the stochas

tic integral equation (1).

4. THE £-OPTIM:AL CONTROL

Consider a controlled process t with trajectories in D, which satisfies the sto

chastic integral equation

where

lJ. t

W) =J(t • t, 7/) = t(O) + J Mt ,S , t. 7/(s), <". ds) • t E: [0, T]
o

~(t ,S ,g ,u ,Z ,ds) = a (t ,S ,g •u ,Z )ds + b (t ,S •g ,U • z )dw (s) +

+ rc(t ,S ,g ,U, Z ,y)ii(ds .dy)

(2)

7/ is a control process with values in U (U is a compact subset of Rm ); <" is an Fo

measurable variable with values In a metric, complete, separable space Z and with a

known distribution p (. ); functions a (t ,S ,g •U , z), b (t •S ,g ,U ,z) and

c (t , S ,g , U , Z , y) are non-random, measurable on the combination of the variables,

and for all (t ,S ,y) as functions of (g ,U • z) are measurable with respect to the u

algebra as x B(U) x B(Z). Assume either that t(O) and <" are independent or that the

conditional distribution of t(O) with respect to <" has a continuous and strongly positive

density.

Suppose that a ('), b (- ) and c (.) satisfy the conditions (a) and (b) of Theorem 1

uniformly in (u • z) and that

Ia (t ,S •g ,U • z) - a (t •S ,g' ,u' ,z) I + Ib (t ,S ,g ,U ,z) - b (t ,S ,g' ,u' ,z) I +

+ [c(t ,S • g , U ,z) - c (t ,S ,g'. u'. z)]p ~ L(llb -g'llls + Iu' -u I)

Ib (t + 1:>, S ,g ,U ,z) - b (t + 1:>, S •g' ,u' ,z) - b (t ,S ,g • U ,z) + b (t •S ,g' ,u' ,z) I +
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+[c(t+li,s,g,u,Z) -c(t+li,s,g',u',z) -c(t,s,g,u,z) +c(t,S,g',U',z):!p:S:

Using Lemma 2 it can easily be proved that if (i) ~ and ( belong to Hp and (ii) 7)

T
and 7) are measurable, (Ft)-adapted processes with E f(I7)(OI +17)'(t)l>Pdt <00,

o
then

t
E IIJ(· , ~, 7)llf :S: c1 + Cz f E 11~lrds (3)

o

t

EllJ(·,~,7) -J(',{,7)')IIf:s:c3fE(III~-(lllr+ 17)(s)-7)'(s)IP)ds (4)
o

where Ct = Ct (L , T ,P ,<p('» ::!: 0, i = 1,2,3.

Let F denote the class of all functions f (t ,g): [0, T] x D -. U which are left

continuous in t and at-measurable In g (for t fixed) and which satisfy the Lipschitz

condition with respect to the seminorm 111·111.

Let 6 denote a subdivision of the interval [0, T] with dividing points

to =0 < t 1 < ... < t n =T, and let [6] = max (tt+1 -tt). Let F 6 denote the class of

functionals

n -1
f6(t,g)=fo(g)IfJl + E ft(g)IH~~tHtl

t =1

where the f t (g) are at~-measurablewith values in U.

For an arbitrary 6 and f 6 E: F 6 we define

(5)

t -1
~o =~(O) + 1613~X ; ~t = J(tt ,f6("~» + 1613(X~ + E J.'tr)' i =l,n

r=O

n -1 t -1 n-1
t(t) =J(t ,l,f6("~» + 1613(X~+ E E J.'trIU/t~+1( + E I-I-n,r1fH) (6)

t=1 r=O r=O

where /-100 and J.'t,r are mutually independent, normally-distributed random vectors with

zero means and single covariance matrixes; X = 1 If ~(O) and { are independent and

X = 0 otherwise.

Let U denote the space of processes 7)(0 = f (t ,D, where f E: F and ~ is a solu

tion of the equation Ht) = J(t , ~ .f (. ,~». Denote by U 6 the space of processes
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7/(t) = f 6(t ,b. where f 6 E F 6 and t is defined by (5). Let Uo = U U6. The class of
6

admissible controls U is given by U = iJ u Uo'

For each I: > D we wish to find a control 7/ £ E U such that

T(7/£) < inf IT(7/) , 7/ E UI + I: where T( 7/) = E +(t, 7/) is the cost functional and +(. , .) is

any measurable functional. Assume that +(. , . ) is bounded and continuous with respect

to the metric

T
p[(g ,f), (g' ,f')] = Ib -g'IIT + J if (t) - f'(t)ldt

o

LEMMA 3. Let ~ and ~ be defined by (5) and (6), and t6 be a solution of th.e equation

t 6(t) = J(t , t 6
, f 6(' ,~». Th.en

wh.ere c is independent of 6 and f 6'

Proof. From (3) we have 11~llr::s; 11~1f::s; c'. Looking at the inequalities for the moments

of stochastic integrals in [3], we have sup E 1~(t)-~(t)IP::s; c"(16IvrpP(161)). More-
t

over, c' and c" are independent of 6 and f 6' It follows from inequality (4) that

t

Ellt6_~llr::S;C3(Kl/2+1)P JEllt6_~llfds +
o

+ 3P-1c3T([(1l/2 +1) sup E I ~(t) -~(t)IP
t

The application of Gronwall's lemma completes the proof.

THEOREM 2. inf IT(7/) , 7/ E Uj = inf IT(7/) , 7/ E Uol.

Proof. Let 7/(t) = f (t ,V be any control from U. We define f 6 as f 6(t ,g) = f (tt • g)

for t E ]tt ,tt+1]' i =D.n -1, f 6(D,g) =f (D,g). Then f 6 E F 6 and f 6(t .g) -+ f(t, g)

as 161 -+ D. For 6 and f 6 we define ~ and t 6 using (5) and the equation

t6(t) = J(t , t6 ,f6('. ~». Let 7/6(t) = f 6(t • b. From inequality (4) we obtain

t t

EiI~ - t~lr ::s; 6"(J E If (s .~) - f 6(s ,t) IPds + J E lit - t 61lfds +
o 0

where 6" is independent of 7/ and 6. Therefore
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Hence lim E 1ir(~", 71") - ir(~ ,71) I = O. 0
I" I -+0

For fixed 6 we consider the controlled process (~t' 71t)t =O,n with performance

index Eir,,(~O •... , ~n .710' ...• 71n ), where (~t) is defined by (5), 71t = f t (l>;

ir,,(zo •...• zn ,uo • ...• un) = ir(x, u); x(t) = Zt for t E [tt ,tt +1[. i(T) = zn;

u(t) = Ut for t E ]tt ,tt +1]' u (0) = uo'

Let (~f) be the sequence defined by (5) for f ,,(t ,.) = u(t). Define the random

sequences tj ,t and ~j ,t as follows:

~+1

tjt = Zjt + J Xj(s ,zo.···. Zt, Ut, z ,ds) + 1613,ujt ' j = i +l,n • i = 0,;--1
tt

t j

~jt =Zjt + J Xj (s , Z 0 • . . . • Zt ' ~t +1, t • . . . • ~j -1, t ; u(s) , z ,ds) +
tt

j-1
+ I 61 3 ~ ,ujT ' j = i +2, n , i = 0, n -2

T =t

Here and elsewhere Xj(s ,zo •... , Zj_l'U(S),Z ,ds) = X(t j ,S ,x ,u(s),z ,ds),

Zt ,0 = zo; Zt ,t = Zt· Using the independence of ~j ,0 and (~o' «:"), and the independence

of ~j ,1 +1 and tj ,t' we obtain

PlqEAj ; j =O,rj =J Jpl~j,oEAj; j =l,r!PI~oEdzol «:"=zj =p(dz)
Z Ao

for r = 1,n and

Pl~j,t EAj ; j =i+l,r! =

=J ... J.r PI~j.t+1EAj;j=i+2."r!Pl'lj,t Edzj ,t+1;j =i+1."r!
Rd R d At +1

for r = 2.n; i = O,r -2. Therefore

Let Po(z 0 I z) denote the density of the conditional distribution ~o with respect to

«:". This density is obviously continuous in Z 0 and strongly positive.
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It can easily be verified that the joint distribution

has a continuous (for fixed z) and strongly positive density

The conditional distributions

can be found as the Radon-Nikodym density of the measure.

PI~~ E. A ; ~f E. dXi ; i =0, r -11 with respect to the measure P l~f E. dxi ; i =O,r-=iJ

Therefore the functions

xPO(XO I z)dX2dx2,1P(dz)' 11 PO,1(Z 'UO'XO'X1)PO(XO I z)p(dz)j-1
Z

T -1

P T(A Ix 0 •... , x T -1 ' U 0 ' ... , U T -1) = 1 r 1 ( IT Pi T (z , U i ' X 0 •... , xi
Z Rdr(r-l)/2 A i =0 .

T -2 T

xi +1 i ;,..; x T i ; xi +1 i +1 ;,..; x T i +1»Po(xo I z)dxT(IT IT aXj i +1)p (dz) x
• • " i=Oj=i+2 •

T -2

XlI r (ITPiT-1(Z'Ui'XO""'Xi;Xi+U;"';XT -U
z Rcf(r-n(r-j!)12 i =0 . .,

T -3 T-1
xi +1 i +1 ;,..; XT -1 i +1»PO(XO I z)( IT IT dXj i +1)p (dz)j-1 , r = 3,n

, , i =0 j =i +2 '

satisfy the following condition: 1 h (x )PT (dx I x 0 •...• X T -1 ' U 0 ....• U T -1) is a con

tinuous function for an arbitrary bounded and continuous function h (x).

Now, if (~i) corresponds to the control 'TIi =Ii(b, then by analogy with previous

arguments we can find PI~T E. A I ~O = xo'" . , x T -1 = xT-d. At this point we can note

that if ui =Ii (z) =ii (Xo • ... , xi)' then
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Hence, when studying the optimal control problem for process (~t ' 7)t), one can

consider this controlled process to be defined by the conditional distributions PT (. I . )

[1]. Function it4(') and distributions PT (. I .) satisfy the conditions of Theorem 1.5 in

[1]. Therefore, there exists a control 7)t' = f ;<i) which minimizes the criterion

Eit4(~0 ' ... , ~n ,7)0' ... , 7)n)' Functions f; are defined by (1.18) and (1.20) from [1].

THEOREM 3. Let

I it(g ,n - it(g°,f)1 :!01/t(r(g ,go»

where r (. I .) is the Skorohod metric in D and 1/t(t) is a bounded. positive function

for which 1/t(t) -+ 0 as t .. O. then

Inf T(7) = 11m Eit4(~0 0···' ~n ,7)~, ... , 7)~)
141 -+0

Le., the process

is the £-optimal control for the solution of equation (2), provided that I 61 is suffi

ciently small.

The proof of Theorem 3 is based on Lemma 3 and Theorem 2, and is analogous to

that of Lemma 3.13 and Theorem 3.18 in [1].
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SOME PROPERTIES OF VALUE FUNCTIONS FOR
CONTROLLED DIFFUSION PROCESSES

N.V. Krylov
Moscow Slale Universily
Moscow, USSR

1. INTRODUCTION

This paper is concerned wilh lhe general properties of value functions for con

lrolled diffusion processes halled on lhe boundary IJD of a given domain DeEd' Our

definilions are similar to lhose used in lhe lheory of Markov processes and differ from

lhe definitions given in [1,2], where lhe process is slopped when il firsl encounlers

Ed \D.

2. NON-HOMOGENEOUS CASE

We shall begin by considering lhe non-homogeneous case. Lel Ed be a Euclidean

space of dimension a, (0, F, P) be a complele probabilily space, (Wt' Ft ) be a aC

dimensional Wiener process on lhis space, and A be a separable melric space. Suppose

lhal for all OlEA, t E (-00,00), x EEd we are given a a x at malrix a(a, t ,x), a a
veclor b(a, t ,z) and real-valued cD.(t, x) ~ 0, fD.(t, x), g(t ,x). Lel a, b ,c./ ,g be

Borel, bounded, conlinuous in (a, x), and uniformly continuous in x wilh respecl to a

for every t; g be equicontinuous in (t ,x); and a, b be Lipschilzian in x wilh conslanls

independenl of a, t. Recall (see [3, §3.1]) lhal A is lhe sel of all progressively

measurable A-valued processes, lhallhe process a E A is called a strategy, and lhal,

for OlEA, SE(-OO,oo), xEEd , lhe solution of dzt=a(at,s+t,Xt)X

dWt + b (at,s + t ,Xt )dt ,Z 0 = x is denoled by xt,S ,x. Some additional nolation from

[3, §3.1] is also used.

Fix a bounded domain Q c Ed +1 = l<t ,x): t E (-00,00) , X E Ed I and define

t
I{Jt =I{Jt,S,x =J cD.T(x +T,x:,s,X)dT

o
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TQ

VQa(S ,X) =Es~:rJJ e -'lfal(s + t)dt +
o

The properties of the value function vQ wHl be studied using methods developed in

[4]. In fact our results are completely analogous to those of [4]. We shall therefore

suppose that there exists an.Qt E: A such that for the strategy JII E: A given by JIlt (Col) =:.Qt

and for all (s ,x) E Q the process

(1)

is an FCsubmarlingale, where (TQ' Xt ,~t) = (T8's,:r., Xtt1.S,:r., ~~s,:r.).

As in the proof of Theorem 1.1 in [4], it can be shown that if Ql , Q2 are domains,

Ql C Q2 C Q, then g::s; V
Q

1::S; VQI- Hence vQ(n) increases for domains

Q(n) C Q(n +1) C Q. n =1,2 •... and v ::s; vQ' On the other hand it Is obvious that

IIQ(n) -. vQa for every a E: A if we also have Q =U Q(n), and this Implies that
n

VQ(n) t vQ'

It is useful to note that (1) is a submartingale if, for example, g has derivatives

gt • g:r. ' g:r.:r. which are continuous in Q and L.Jl.g + fJa O!: 0 in Q. This follows immediately

from the Ito formula.

In what follows we suppose that Q C Hr : = (0, T) X Ed' T < 00. The value functions

corresponding to Hr are well-known (see [3]) so it is natural to use them to approxi

mate vQ' One way to do this is based on the growth of the stopping intensity near (jQ.

This method was developed in [4].

LEMlIA 1. Let the domains Q(n), n = 1,2 .... satisfy Q(n) C Q(n +1), Q = U Q(n).
n

Construct smooth functions Cn on Ed such that cn = 0 on Q(n), c n = 1 on

Ed \ Q(n +1),0:!i cn :!i 1. Fbr m 2; 0, S E: [0, T] define

t

~t,s·:r.(n ,m) =m J cn(s +T,x:,s,:r.)dT + ~r's,:r.

o

r-s
+ J [fal(s+t,Xt)+mcng(s+t,xt)]e-'I(n,m)dtl

o
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independent of(s ,.x) and e(n, m) -. Ofor m -. co. Consequently, in Hr:

v = lim lim vn,m = 11m 11m vn,m
Q n ...... .,n-:;"- n ...- m ... DO

Proof. We shall write

The function g is equiconlinuous and u, b , C ,f are bounded, so it is easy to see that

e1(n , m) -.0 if m -. co. From the lemma in Appendix 2 of [3], formula (1) will again

yield a submartingale if I() , f/& are replaced by I()(n ,m), fJl. + mcng. Hence the Bell

man principle (see [3, §3.1]) implies

vn,m(s .x):!:EQ !v n ,m(s+T(n+1).x )e-"T("+1)(n,m)+
, S ,% ' T(n +1)

T(n +1)

+ J [fJl.+mcng](s+t,.xt)e-,,(n,m)dt!:!:
o

(2)

.... E Cl. ,( (1) ) -"T("+1)(n ,m)"" S,% 19 s + T n + , .x T(n +1) e +

T(n +1)

+ J [f.!!+mcn g](s+t,.xt)e-"i<n,m)dtj- e1:!:g(s,.x)-e1
o

where T(n + 1) = TQ(n +1)' Again by the Bellman principle, we have

We shall now prove that v n •m ~ vQ(n+1) + e(n,m). From Lemmas 3.3.5 and 3.3.7

of [3], the process

(3)

t
+ J [fQT + mCn g](s + T, .xT)e -"T(",m)dT

o

is a continuous supermarlingale on [0, T -s] for every a: E A. (s ,.x) E: Hr , where

(.xt ,I()t(n ,m» = (.xt,S'%,I()f',S'%(n ,m». Hence the lemma from Appendix 2 of [3]

implies that
t

Pt = Pf',S,%: = V n ,7R(S + t ,.xt)e -1'/ + J [fQT + mCn (g _vn,m)](s + T, .xT)e -"TdT
o
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is also a supermarlingale and

The upper bound of the last expression over at E: A is equal to v n ,m (5 ,%) by

definition. Therefore

V n,m (5 ,%) = sup E: zPT(n +1) :S VQ(n +1)(5 ,%) +
(lEA '

(4)

+ l:1 + Tsup lm(g _vn,m)+; Q(n +1)\

To complete the proof it is sufficient to show that the last term tends to zero if

m -+ 00. Using the submartingale property of (1) (see also (2» and the Bellman princi

ple we find

TQ

+ !U(lt +mcng](s +t,%t)e-"'t(n,m)dtl
o

TQ

+ !U(lt + mcng](s + t, %t)e -"'t(n,m)dt I
o

-"'T (n,m) -"'T (n,m) --meT -T )
X e Q :S N sup E (l e Q :S N sup E (l e Q Q(n+l)

(lEA S,:I: (lE:A S,z

where N Is independent of s, %, n, m. We now use estimates of the moments of the sto

chastic integrals. Then for (s ,%) E: Q(n +1), Pn : =dist(Q(n + 1), BQ), m 2: 4p.;;2 It

follows that

:S e -,lin + P :,:1: I sup 1 I%t - % TQ(n+l) I 2: ~ Pn I :S

TQ(n+l)~t~TQ(n+l)+ ...;m:

:S e-...;m: +28p-8N.-2
n m
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where N is independent of s, :l:, n, m. Thus the last term in (4) tends to zero and the

lemma Is proved.

Analogously to [4], the following deductions can be made from this lemma:

COROLLARY 1. The function vQ is uniquely aefinea by u, b, c, J, g, Q, A ana will

not alter 'if the probability space or the Wiener process is changea.

COROLLARY 2. vQ is lower-semicontinuous in (s ,:l:).

The following fact is also useful:

COROlLARY 3. Let a E: A, (s,:l:) E: Hr, ana Tt = Tt (w) be real, bounaea. ana pro

gressively measurable. Then the process

(5)

tAT
+ J [fa.. + Tu vQ](s + 1.1. ,:l:u)e -flu -1"du

o

is a supermartingale Jor t E: [0, T -s] with (a.e.) right-continuous trajectories,

u

where (:l:u' lIIu ) = (:l:ua,s,r., 1II;:'s,r.), lIu = J Tp dp, T = TQ. Furthermore. Jor every
o

stopping time X we have

(6)

where N = sup iTt-(w) ; t ~ 0, W E: 01.

The proof of Corollary 3 for general T is reduced to the case T == 0 as In the

lemma from Appendix 2 of [3]. In fact this lemma has actually been proved for continu

ous supermartlngales but the arguments also apply, at least in our case, to supermar

tingales which are only right-continuous. Therefore it suffices to prove only the first

assertion of the corollary for T == O.

As noted above, the process "t from (3) is a continuous supermartlngale with

respect to IFd. It is evidently also a supermartlngale with respect to iFt + I. The

equality cn = 0 in Q(n) and the Doob theorem Imply that for k Ol!: n

tAT(n)
vt,m(s + t A T(n).:l:t AT(n »e -"IAT(n) + J JaT(s + T, :l:T)e -"TdT

o

Is an F t +-supermartingale. Letting m -+ 00, k -+ 00, the Fatou theorem Implies that

tAT(n)
vQ(s + t A T(n) ,:l:t AT(n »e -"IAt(n) + J J aT(s + T,:l: T)e -"Td T (7)

o
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Is an Ft t--supermartingale; from Corollary 2, Its trajectory is lower-semicontinuous

with respect to t. Now the arguments of Ray and Meyer (see [5, Chap. VI. §2, Theorem

16]) may be applied after obvious modifications to prove the right-continuity of (7)

(a.e.). The right-continuity of 7t follows immediately from the fact that It < TI =
u It S T(n)l. vQ(s +TAT'%TAT) = g(s +TAT, %TAT) if T ~ T. Application of the
n

Fatou theorem to (7) proves that 7t is a supermartingale (if T == 0).

The right-continuity of 7t for t =0 and Corollary 2 lead to:

COROLLARY 4. vQ is lower-continuous on Q:

VQ(s,%)= .!!.m vQ(t,y)
(t,y)-.(s,x)

Taking the upper bounds in (6) over a E: A. we obtain:

COROLLARY 5 (The Bellman principle). Let (s ,%) E: Hr , and suppose that for every

a E: A we are given an Ft -stopping time XQ
S T Q's ,x and a progressively measurable

bounded process Tr(W). Suppose that Tr(W) is bounded/rom below as a/unction

oj' (a , t ,w). Then

x
+ JUQU(s + U '%u) + Tu vQ(s + u '%u )]e -'U -;udu I

o

u

where t: =J T;dp.
o

3. HOMOGENEOUS CASE

We shall now consider the homogeneous case. Suppose that u, b, c, /, g are

independent of t and satisfy the conditions of Section 2; that c ~ f: with a constant

f: > 0, D is a bounded domain In Ed, and the process (1) is a submarlingale, with the

first exit time of %t'l-S,X from D substituted for TQ. It Is clear that %tQ,S,x is indepen

dent of s and coincides (a.e.) with %t,x: =%tQ,O,x. In the same way, lfJr,s,x = lfJr,o,x = :

lfJr'x and so on.

Define

TD

vr!(%) =E:[Je -,,/Q'(%t)dt + e -,TDg(%TD)]

°
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VD(X) = sup VIf(X)
ilEA

From the condition c ~ E it follows that the vrf are well-defined and uniformly

bounded, and that vD is bounded. Moreover, for every s > 0 we have

sup Ivrf(x) -v{'On)XV(s ,x)1 -+0, v{On)XV(s ,x) tVD(x)
ilEA' ,

(6)

if n -+ 00 (the increase of v (O,n)xD in n is proved in Section 2 after the introduction of

process (1».

THEOREM:

(a) The function vD is uniquely dfifined by u, b, c, J, g, D, A. It does not change

if the probability space, filtration IYt I or Wiener process are changed.

(b) Thefunction vD(x) is lower-semicontinuous in x.

(c) Let a E: A. x Eo. D, and Tt =Tt(W) be a real, bounded, progressively measurable

process. Then

(9)

u

is a cddltlg supermartingale Jor t ~ 0 (a.e.), where 1/Iu = J Tpdp,
o

(xu' Ipu ' T) = (x'::'% , 1p;:'%TG,X). Moreover. for every stopping time X we have

if NT < 00, where N = sup ITt-(w); t ~ 0, W E: OJ, T = sup lx(w); w E: 01
(0' 00 = 0).

(d) vD is lower-continuous on D.

(e) Let x E: D and suppose that Jor every a E: A we are given a stopping time

Xll ~ TG'% and a progressively measurable bounded process Tt. Suppose that

NIlTIl is bounded in a, where Nil =sup (Tr) -, Til =sup Xll (0' 00 =0).
t,w W

t
ThenJor 1/Ir: = J T;:du we have

o

)(

+ J [J Il" + T u vD](xu)e -". --1'''du I
o
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The proof of t.his theorem is obviously based on t.he result.s and met.hods of Section

2 and on t.he second formula in (8). The only point. t.hat. should be explained is t.he right.

continuit.y of "It. It. is sufficient. t.o consider t.he case Tt == 0; in t.his case "It from (9) is

t.he upper bound over n of t.he increasing sequence of right.-continuous supermar

t.ingales "I[L const.ruct.ed by formula (5), st.arting wit.h vQ =v (O,n »)([). From t.he

Ray-Meyer t.heorem, "It is t.hen right.-continuous (a.e.).
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STOCHASTIC CONTROL WITH STATE CONSTRAINTS AND NON-LINEAR ELLIPTIC EQUATIONS

WITH INFINITE BOUNDARY CONDITIONS

Jean-Michel Lasry

CEREMADE, Universite Paris-Dauphine

1. A STATE CONSTRAINT PROBLEM IN STOCHASTIC CONTROL

A large part of stochastic control theory is devoted to problems where

the state X(t) is a diffusion process driven by a stochastic differential

equation

dX a(X)dt + dB t

where Bt is a Brownian motion and where the drift a(X) is the feedback

control of this random dynamic.

For some problems the state X(t) is allowed to take any values in

RN while in other problems the state should remain in some bounded domain

IT . In this later case there is a non-zero probability that the state X(t)

reach the boundary if the control a(·) is bounded. One must then precise

what will be the dynamic at the boundary - and the cost involved. There are

mainly two usual cases : the first one is to introduce reflected motion at

the boundary, the second one is to introduce the exit time T - i.e. : the

first time the state escape from the open set ~ and to decide to stop

everything then and there at time T. The total cost take account of the

inside motion and of the boundary phenomena: a cost can be attached to

the "number" of reflection or to the "sale off" in the case of the stopped

dynamic at exit time T.

Contrasting with this two previous usual treatments of the boundary

to the state domain, we will be concerned here by the mathematical modeling

of a stringent constraint on the state X(t) : we will ask that the drift

control a(.) should prevent the state X(t) to reach the boundary a~

of ~. Such situations arise in practical cases when there is no available
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reflection mechanism at any cost, nor any possible stop and "sale off" at

the boundary. Then the feedback control a(·) should be designed in order

to keep the state X(t) in the open domain ~ , off the boundary d~

i.e. : admissible controls are those for which the exit time T is almost

surely T:= + 00 •

This state constrained problem is a natural modelisation of many

situations, as for example problems involving security threshold. Suprin

singly this question has not yet been studied for diffusion process with

drift control. One of our result - all the results herein come from a joint

work with Pierre-Louis Lions - might explain this lack : we will see that

low cost on the drift control a(.) combined with a (classical) high final

cost (sale off cost) at the boundary leads to the same optimal strategy as

our problem with state constraints. On the other side, when the drift cost

is high there is an optimal strategy for our problem which differs from any

solution of any problem with a classical treatment of the boundary. In this

case the state constraints problem could be viewed as a stopping time pro

blem with infinite final cost - which implies that any reasonnable control

should insure T:= + 00 almost surely.

2. THE CORRESPONDING HAMILTON-JACOB I-BELLMAN EQUATION

On the side of partial differential equations (P.D.E.) our problem

turn out to be a quasi-linear elliptic problem in a smooth bounded open

domain with singular boundary conditions. The connection between drift

control of diffusion process and quasi-linear elliptic problems is now

classic: H. Flemming started the theory on the grounds of Hamilton and

Jacobi, old deterministic theory and of R. Bellman dynamic programming.

There is a large, diverse, lively litterature on this topic (see bibliogra

phy in [I ], [2 ], [3 ], [8 ]) and of course a lot of conferences on it

in this book.

To be more precise it is time to introduce notations. As yet said

is a smooth open set of ffiN . Denote Bt a standard Brownian motion in

RN Let x in ~ be the initial value of the state X. Let a E Cl(~)

be the drift feedback. The motion of the state X is governed by the
I

stochastic differential equation

dX a(X)dt + Ii dB t (2. I)
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with initial condition

X(O) x (2.2)

The choice of the square root 12 in (I) is a normalisation only made to

avoid later supplementary constants (recall "EldBtl2 = dt" where E stands

for the expected value).

Denote by T the exit time from ~ .

Let g E C(~ x~N) be the Lagrangian function and let ~ E C(d~) be

the sale off cost or final cost at the boundary. Both functions g and ~

are supposed bounded below.

Let A > 0 be some given constant later refered as the discount

factor.

Finally let J(x,a) be the cost functionnal defined by

J (x, a)

This cost J is the sum of two terms : an integral term which repre

sent a distributed cost taking account of the motion inside ~, and a final

cost.

Suppose for simplicity that the functions f and ~ are smooth and

let us make the natural assumption that g(y,.) is strictly convex and

coercive, more precisely suppose that :

is positive defined for all x in ~,

and for all y in ~N

(2.4)

when (uniformly l.n x) (2.5)

Introduce, like in the deterministic Hamilton-Jacobi theory, the

Hamiltonian h defined by

h(x,p) -inf {pC( + g(x,a) I 0; E~N} (2.6)

Note that from the smoothness of g, and assumptions (4) and (5) one can

deduce that ~ belongs to C2(~ xmN)

Then a now classical result that the Bellman function defined by
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I
1 -Inf {J(x,a) a E C (~)} (2.7)

~s the unique solution of the quasilinear equation

- ~u(x) + h(x,Vu(x» + AU(X)

with boundary condition

o for all x in ~ (2.8)

u on (2.9)

(Recall that smoothness and above assumptions (2.4), (2.5) could be weakened

a lot, see for example [8 1 and the bibliography therein).

With some similarity to the reverse sided style of the existence

proofs of the direct method of calculus of variations which start by exis

tence of weak solutions continuing by a posteriori regularity to end up by

existence of a unique classic solution, the proof of the above stated

theorem goes backward: one first prove existence of solution of (2.8),

(2.9), then their regularity to end up by the deduction that any solution

of (2.8), (2.9) should be equal to the Bellman function defined by (2.7) 

and hence unique.

Let us recall another essential feature of this theory. The optimal

feedback control is unique and can computed from u by the formula

a(x) Arg • inf {Vu(x) 'a+g(x,a) I a E lR
N

} (2.10)

or by the equivalent formula

Vu(x)a + g~(x,a) o for a = a(x) (2. II)

By Fenchel equivalence (pa+g'(x,a) = 0 ~ a

another definition of the optimal feedback a

-hI (x,p» this gives
p

a(x) -h' (x,Vu(x»
p

(2. 12)

Now let us come to our specific problem which is to enter our state

constraint. Admissible feedback will function a E Cl(~) such that the

exit time verifies T = + almost surely. We will denote C the set of

such admissible controls a. Now to define the Bellman function for the

constraint replace the above definition (2.7) of u by the following one
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(2.13)

The question now arising is what boundary condition will replace the

previous one, namely : u : ~ on a~? It turns out that there are several

possible candidates - at least the three following ones :

u = +00 on a~ (i. e. u(x) -> +00 when x ->- a~ ) (2.14)

au
an +00 on a~

a
an is exterior normal derivation) (2.15)

u is the lowest solution of (2.8) which is greater than any

bounded solution of (2.8)
(2.16)

Let us explain why each of these conditions sounds, at least at first

sight, to be reasonable modelisation of the stane constraint.

For example the first one (2.14) introduce an infinite value of the

Bellman function u at the points where the constraint is not satisfied,

which regarding the minimisation problem looks economicaly reasonable. But

a closer economical look leads to the fact that the value should blow up

to +00 near the state constraint only if it is costly to drive the state

off a~ This reasonning will be just confirmed by the comparison of

theorem and 2 of section 2 : in the first one large drifts are costly

(q is large) and (2.14) holds, while in the second theorem - with less

expansive large drifts - (2.14) no more hold.

So on one hand (2.16) might seem the best because it always hold 

at least in the case that we have studied. On the other hand the other

conditions - (2.14) and (2.15) - will provide more specific information

when they will characterize the Bellman function.

All this heuristic considerations will find there mathematical

counter-part in the theorems of the next section.

3. RESULTS

Let us recall that the results given in this paper are part of a

joint work with P.L. Lions [6 I, [7 I.
We will now describe the results in the special case where the
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Lagrange function which enter in the cost (2.3) 1S of the following type

g(x,y) f(x) + mlylq v x E Si , V Y E lRN (with q> I ) (3.1)

(Same type of results also hold for more general Lagrange functions, see

[ 7 ] ) •

The function f in (3.1) will be supposed to belongs to CI(Si) for

simplicity (and (mq)Pm(q-l) = I to avoid later supplementary constralnts

in (3.2».

The value of q will play a crucial role in the choice of the "good"

singular boundary condition, between (2.14), (2.15), (2.16).

Due to (3.1), the Hamiltonian function h defined by (2.6) is now

with

h(x,z) -f(x) + IzlP V x E Si , V Y E lRN (3.2)

I/p .+ I/q (3.3)

So the Hamilton-Jacobi-Bellman (HJB) equation (2.8) 1S now

f(x) (3.4)

Note that we do not intend to detail here the best possible regularity

results, as our main interest is in the boundary behaviour of u: hence

f is Cl in Si and solutions of (2.4) will mean classical ones, i.e. :

u E C2 (Si) , at least.

The results on existence and unicity for this equation (3.4) under

the singular boundary conditions (2.14), (2.15) or (2.16) will differ very

much according to the behaviour of the function f near the boundary and

to the value of the constant q > I . Let us consider emphasize that these

results are related to strictly non linear phenomena and do not hold in the

homogeneous case p = I (which cen be considered as "almost linear").

We will first give the P.D.E.'s theorems (they have their own inte

rest; they belong to the growing flow of works on non linear P.D.E. with

singular boundary conditions). Then we will give the results concerning

the related stochastic problems.

The hypothesis in the next theorems can be expressed briefly (and

roughly speaking) as follow
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- theorem deals with large q (i. e. : q ~ 2) and bounded f

- theorem 2 deals with small q (i. e. : ,< q < 2) and bounded f

- theorem 3 deals with rapidly blowing up f

- theorem 4 deals with non discounted case

- theorem 5 and 6 gives stochastic control interpretation of the pre-

vious theorem.

In the first three theorems one can see that unicity of the solution

u of the HJB equation (3.4) is obtained under weak boundary conditions :

this is obvious for theorem 3 where there are almost no boundary conditions,

except the condition that u is bounded below in ~ , note also that condi

tion (2.5) is weak due to the fact that the speed of convergence of u(x)

to +00 when d(x) tends to 0 is specified only a posteriori.

The first two following theorems illustrate the possible appearance of

various singular conditions at the boundary as was announced before.

Finally the theorems 5 and 6 show that the Bellman function of the

stochastic control problem with state constraint is the unique solution of

the HJB with the suitable singular boundary condition.

Theorem' . Let q ~ 2 (so that < p ~ 2 (see (3.3)). Let f E C'(IT)
Then there exists a unique solution u to the Hamilton-Jacobi-Bellman

equation (3.4) such that

u(x) ->- + 00 when d(x) ->- 0 0.5)

where d denote the distance to the boundary

d (x) dist (x, am for all xE~ 0.6)

Theorem 2. Let q < 2 so that p > 2 . Let f E C'<IT) . Then all the

solutions u E C2(~) of HJB equation (3.4) are bounded in ~, and have a

continuous extension to IT.
There is a unique maximum solution u of (3.4), i.e. which satisfies

u ~ v for any solution v of (3.4) 0.7)

Theorem 3. Let fEe' (m , p >' and

f(x) [d(x) ] S when d(x) ->- 0 0.8)
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where S is a constant such that S > p and S > q . Then there exists a

unique bounded below solution of H.J.B. equation (3.4).

Actually we prove that this unique bounded below solution satisfies

the boundary condition (3.5).

Let us now turn to a result about the "non-discounted" case, i.e. :

to the study of the limit A + 0 (A > 0) • Such a study is relevant (accor

ding to the stochastic interpretation) when the state remains in a bounded

domain due to the geometry of the domain (see [5 ]), to reflection on the

boundary (see [4 J) or to induced "no escape" cases ( [ 10] in JRN) , and

which the case here (our state will live in ~ for all time t ~ 0 ).

Theorem 4. Let q ~ 2 (hence I < p ~ 2 ). Let

the unique solution of H.J.B. equation (2.4) which

theorem I). Given some point Xo E ~ there exists

such that

f E Cl(~) • Let u
A

be

verifies (2.4) (see

u E C2 (m and 8 E JR
o

v x E ~

v x E ~

(3.9)

(3.10)

and (v0,8) is the unique solution of the following system

- b.v + l'ilvl P + 8 f in ~ (3. I I)
0

vo(x) + + 00 when d(x) + 0 (see (2.6» (3.12)

vo(xo ) 0 (3. 13)

(choosing another Xo would just lead to replace

leave 8 unchanged).

vo by v + const.
o and

Recall that due to the special form of function g the formula (1.8)

reduces to

a(x)
p-2

- pl'ilul 'ilu(x) v x E ~ (3.14)

Theorem 5. Let u be the Bellman function of the stochastic control

problem with state constraint (as defined by (2.7». Then
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I) under the hypothesis of theorem I, u is the unique solution of

H.J.B. equation (3.4) which satisfies (3.5) and the feedback given by (3.14)

is the unique optimal feedback.

2) under the hypothesis of theorem 2, u is the unique solution of

H.J.B. equation (3.4) which satisfies (3.7).

3) under the hypothesis of theorem 3, u is the unique solution of

H.J.B. equation (3.4) which is bounded below, and the feedback a given by

(3.14) is the unique optimal feedback.

be the value of the following problem of stochasticTheorem 6. Let 0 E lRo
control of the main value cost (3.16) - under state constraints (compare to

(2.7)) :

inf {~(a) I a E C} (3.15)

the cost function ~ is defined by

~ (a) lim sup
T ->- +00

E
I
T rQ

(3.16)

Then under the hypothesis of theorem 4, 00 is equal to the constant 0

of theorem 4 and the feedback a given by (3.14) is the unique optimal

feedback.

The proof of these theorems (see [7 ]) relies on various comparison

arguments with numerous ad-hoc sub- or super-solutions together with a

repeated use of the following estimate due to P.L. Lions [7 I.

Theorem 7. If a function 2
u E C (w) verifies for some p>1

f in w

with f E Loo(w) , then it satisfies in w , w' Cw

Illul < c
00

L (w ')

where the constant c depends only on w' and If I
Loo(w)
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Note that p > 1 is an important feature of this estimate which stop

to be true for p ~ 1 - i.e. : this estimate is related to ~-linearity.

A first insight on this estimate comes out from the proof of the one dimen

sional case.

An explicit example

Let us finish by explicit example. In the special case p = q = 2 ,

the "ergodic" problem A = 0 can be reduced to a linear problem through

the transformation v = - log u . This enable both explicit solution (see

below) and new proofs of some log-convexity results (see [7 )).

As an example of explicit solution let us consider the problem

Minimize {Il(a) I a E C}

where Il is defined by

Il (a) lim 1
E r a(t)2 dt

T -+ +00 T
0

with a (t) a (X t ) where X is the solution of

(3.17)

(3.18)

dX

X(O) x o

IJ t ;:;;. 0 (3.19)

(J.20)

and where C is the set of feedback such that the state Xt satisfies

(almost surely)

-1 < X t < +1 for all t;:;;' 0 (3.21 )

Then the optimal feedback for this problem is given by

~(x) -2TT tg TTX IJ x E )-1,+1 [ (3.22)

and the optimal value is

inf Il(a)
a E C

This is a consequence of theorems 4 and 6 and of the possibility ~n this
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special case (p = q = 2, f = 0, ~ ~ ]-1,+1 [) to compute the solution

of equation (3.11), (3.12), (3.13), (3.14) which reduce here to

-v" + v,2 + 1\ o on ] -1,+ 1 [ (3.23 )

v(O)

~(x)

o v(x) -+- +00

-2v' (x)

when x -+- ±1 (3.24 )

(3.25 )

(note that the choice of m in (3.16) does not change the problem hence

the value of a here, due to f = 0 ).
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ON THE WEAK CONVERGENCE OF CONTROLLED SEMI-MARTINGALES

N.L. Lazrieva
Moscow State University

1. BASIC NOTIONS, PROBLElI FORllULATION, AND

STATEMENT OF THE MAIN RESULTS

In this paper we shall use the definition of a controlled process introduced in [1].

Let (O,F,P) be a probability space with the filler F=(Ft.Fs<FtcFr =

F, S :S; t :S; T) satisfying the usual conditions. The events in a-algebra Ft are assumed to

occur before time t.

Let (A ,A) be a measurable space, where the set A is interpreted as a set of solu

tions a Eo A. Each element is associated with a probability pa on FT' such that

pa ~ P. Let p4 = !pa ,a EA I. The opportunity to choose a certain action based on

the accumulated Information is expressed by the introduction of a class of controls ii

consisting of elements u = lu (t) = u (t • "'). t E [0, T] l which represent mappings of

o x [0, T] into A adapted to the filter F (i.e .. Ut E Ft ).

To formulate the controlled process we have to construct the measures pu

corresponding to the strategies U E ii, with the natural requirement pu = pa for

U '" a. The measures are constructed in the following manner:

Let pr = dPr /dPt be a local density. It is well-known from general martingale

theory (see, e.g., [2] and [3]) that the density pa can be represented as the exponen

tial martingale £(M a ) of some martingale Ma = IM(t, a). t E [O,TH, I.e .. as a solution

of the Dolean-Dade equation

The measures p u , U " U, are given by means of local densities pu = p1J. P which.

in turn, are the solutions of the equation

where M U = tM;' , t E [0, T] l is a stochastic line integral with respect to the class
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!Ma . a EA l along lhe curve U E U, and U is lhe class of admissible slralegies. Le ..

U = lu: a slochastic line inlegral M U exisls and E~T(MU) = 11.

The slochastic line inlegral was firsl considered by Gikhman and Skorohod (see

[4]) in lhe case where lhe square characterislic of lhe martingale M a salisfies lhe

Lipschilz and linear growlh condilions wilh respect lo a. The definilion of lhe line
t

inlegral for lhe more general silualion is given in [1]. The inlegral Mf' = J M (ds . us)
o

is defined in lhe following way. The continuous parl M U
'
c is conslrucled using lhe

Kunila-Walanabe lechnique, Le .. a continuous martingale MU'c is found such lhal for

any m E. Mfoc lhe mulual square characteristic <Mu ,c , m > is given by lhe equalily

t
<Mu ,c • m >t =J K(ds • us), where K(s, a) = <Ma,c ,m >. For lhe disconlinuous parl

o

Mu,d we look for a pure discontinuous martingale whose jump al time t is equal lo

We shall now give lwo examples which illuslrale lhe nolion of lhe slochaslic line

inlegral.

Example 1. A = lal.a2 .... I. Then

t
Mf' = 2: Jflus = ai ]M(ds • at)

t 0

Example 2. Lel lhe measure P have lhe properly of inlegral represenlation. Then

lhere exisl (i) a veclor marlingale m = (m t) wilh continuous componenls, and (ii) an

inleger-valued measure IJ. on a veclor space of jumps E, ~. such lhal for any

Ma • a E. A. we have lhe represenlation

t t
Mta = I (",(s ,a),dms ) + J I 7(S .x,a)(IJ.-II)(ds ,dx)

o 0 E

where II is lhe compensalor of lhe measure IJ.. Then

t t
Ml" = I (",(s ,us),dms ) + I J 7(S ,x ,Us )(IJ.-II)(ds .dx)

o 0 E

(1)

We can now formulale lhe oplimizalion problem (or lhe problem of oplimal abso

lulely conlinuous change of measure) as lhe problem of maximizing lhe funclional

SU =Eu 7} wilh respecllo lhe class U. Le., SU =Eu 7} -max. where 7} is some Ft 
U

measurable random variable wilh E 17} I < co and E U is lhe expectation wilh respecl lo

lhe measure p u .
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Define

s =sup E U 7J
UEU

We shall denole lhe optimal slralegy by u· , Le.,

s =Su' = sup EU 7J
uEU

and lhe so-called value process by St:

We shall now consider lhe problem of lhe convergence of conlrolled processes.

Lel a sequence of sels p~ = IP::,a EAl, n ~O. Pn ~P, be given. logelher wilh

corresponding families of marlingales M:: E Mtoc' n ~ O. Lel P;:, n ~ O. be a sequence

of sels of measures P;:, n ~ 0, corresponding lo admissible slralegies. Le ..

t

P;: = IP;: =p;:' P • U E U!, where p;: = c:(M;:), M;: =J Mn (ds ,us), We sludy lhe con
o

ditions under which lhe closeness of lhe classes P::, n ~ s, lo class P~ leads lo lhe

convergence of lhe values

S =sup SU -> S = sup SU , n -> 00
n U Ell nOll. Ell 0

and also lo lhe convergence

S
ur:o ->So, n -> 00

where U~ is lhe oplimal slralegy in lhe n-lh problem. The second of lhe above con

vergence shows lhal lhe oplimal slralegy oblained in lhe approximaled problem is

close lo lhe oplimal slralegy for lhe inilial problem.

We shall illuslrale lhe above slalemenls by looking al a diffusion-lype process

wilh a conlrolled drift coefficienl. In lhis case lhe measures P::, a E A, are dislribu

lions of lhe weak solulions of lhe slochaslic differenlial equalion

dXt = f n (t , Xt ' a)dt + dWt • n = 0,1,2 •...

and lhe value convergence condilions may be expressed in lerms of lhe convergence of

lhe drift coefficienls of lhe n-lh problem lo lhe coefficienl of lhe inilial problem. In

particular, one of lhe resulls slaled below for lhe general case has lhe following form:

if

T

sup (J f~(s ,xs ,us)ds) ~ c ,pw -a.s.
n,u EU 0
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where pW is a Wiener measure on (GrO,T]' BT) and z = !zs ,s E[O,T]! is a coordinate

process, then (A) ~ sup Var (p;t, P'!t) T -+ 00 , n -+ 00, where
uE"U

T

(A) = sup pw !f(fn (s ,zs ' us) - f o(s , Zs ' Us »2ds ~ £ l -+ 0 , n -+ 00 (2)
u Ell 0

In the above case the measures P~ become dominated by the Wiener measure pw

with local density

where

t

Mn(t ,a) = f fn(s ,zs ,a)dzs
o

The measures p;t are also dominated by the Wiener measure, the local denslties

being exponential martingales £(M;t), where

t

M;t,t = f fn(s ,zs ,us)dzs
o

It can be seen from equation (2) that sufficient conditions for the convergence of

the controlled processes may be expressed in terms of the convergence of square

characteristics of the martingales M;: , n ~ 1.

It turns out that the conditions for the convergence of controlled processes

retain the same form for the more general problem of optimal absolutely continuous

change of measure.

THEOREJl1. Let the conaition

sup <M;t>T S G
n,u

hola p-a.s., where G is some constant. Then

(A) ~ sup Var (P;t ,P~)T -+ 0, n -+ 00

uE"U

where

(A): sup P! <M'!t -M;t>T ~ £1 -+ 0, n -+ 00

uE"U

(3)

In the case of integral representation, Le., when the martingales M~ are given by

(1) with functions IjIn (s ,a) and ""n (s ,z ,a), condillon (A) has the form

T

sup P( II L (1jI~ -1jI~)(IjI~ -ljId)d <mt , m J >s +
u EU 0 t,J



111

T
+ J J (I'n(S ,x ,us) - I'O(S ,x ,Us »211(ds ,dx) - L; (I'n -1'0)21 ~ l:1 ~ 0 , (4)

o E s:s;t

where

-; = J I'(S , x , Us) lI{lS l , dx)
E

Note that the "integral representation" scheme is arrived at by considering the

control of processes satisfying stochastic equations with Wiener and Poisson parts

(control of the drift and the jump parts), as well as the control problem in discrete

time.

Condition (A) ensures a uniform (With respect to controls) convergence of the

measures P:::' to P)t with respect to variations, but is too strong for convergence of

values.

THEOREM 2. Let condition (3) of Theorem 1 hold. In addition, let ITJ I ~ c, P-a.s.

Then

where

(B): sup PII <m ,M:::' -M)t >T I ~ l:1 ~ 0, n -+ 00

uE-U

for any m E. Mfoc and <m ,M > is a mutual characteristic of the martingales m and

M.

Condition (B) is a condition for weak (uniform with respect to u) convergence of

the martingales M:::' to M)t. In the case of a diffusion-type process with controlled

drift, condition (B) has the following form:

T

sup p w ( IJ ({l(s ,x)(fn (s ,xs ,us) - f o(s ,xs ' Us })ds I ~ l:) -+ 0 , n ~ 00

u c-U 0

for all square-integrable functions ({l.

In the case of integral representation the convergence condition takes an analo

gOlls form.

To obtain a convergence condition for approximately optimal controls, I.e., the.
convergence S~" ~ So' it is necessary to strengthen condition (B).

THEOREM 3. If the conditions of Theorem 2 are satisfied, then

.
(C) ~S~" -+So, n ~ 00
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where

(C): sup P( I <m u ,Mit-Mit >T'I C'!: d -+ 0, n -+ 00

ucU

for any set of square-integrable martingales 1m U ,u E: Uj.

2. AUXILIARY RESULTS

As in the case of controlled Markov diffusion-type processes, the proof of all

statements in this paper is based on Bellman's equations for values.

A formal expression of the optimality principle is given in [1] for controlled

processes with the structure outlined in Section 1, Le., it is proved that a process of

value St, t E: lO, T], is a solution of the following non-linear stochastic equation with a

boundary condition at the end of the interval [0, T]:

d..-'i't =dm; - sup d <s ,Ma >t ,ST =1J
aEA

Here m' is a P-martingale which is a solution of the integral equation

(5)

(6)

and the expression sup d <s ,Ma >t is explained below. The process St, t E: [0, T], is a
aEA

special semi-martingale with a martingale part m·. Then <s ,Ma >t = <m' ,Ma >t and

where

sup d <s ,Ma >t = sup Ie (m •• t ,a)d <m • >t
aEA aEA

Ie(m' ,t, a) = d<m' ,Ma >t I d<m' >t

(7)

For instance, in the case of a diffusion-type process with a controlled drift coeffi

cient, we have

dtf = f (t ,Ut aU). ~u )dt + dWt ' ~o = 0

• t a
mt = S(O, 0) + J 1/I(s ,dws ) , 1/It = a;- S(t ,x) l:r =WI

o

St =sup EU(~(xT) 1Ft ) =S(t ,Wt)
U

and S(t ,x) is a solution of Bellman's equation

a a 1 aZ

atS(t,x)+s~p(a;-S(t,X)f(t,x.a»+2 axzS(t,x)=O,S(T,x)=~(x)
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Equation (5) is an analogue of the familiar recursive relations arising in discrete

time dynamic programming:

which can be written in the following equivalent form:

(8)

where

Equations (5) and (8) provide the basis for estimating the value difference

between the approximated and initial problems, I.e., the modulus of the difference

Sn,t -SO,t· Indeed, the relation

leads easily to the inequality

SO,T -Sn,T =0

It can readily be shown that the solution of this inequality has the form

It is also easy to estimate

Then, finaliy,

(9)

We shall also need an expression for the difference in benefit resulting from the

fixed strategy u E. U in the approximated and initial control problems, I.e.,

Using Girsanov's theorem it is not difficult to check the validity of the relation

(10)
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where <s, M>r = <S ,M>r - <S, M>t.

We shall use the following facts:

E <m' >r < "" (11)

(12)

where m' is a martingale satisfying equation (6) and m U is a martingale which appears

in the decomposition of the special semi-martingale Sr = EU (TJ I Ft ):

sr = mr +Ar

We shall now demonstrate the validity of (11). It is shown in [1] that the mar

tingale m' can be constructed using the sequential approximation technique in the fol

lowing way. Let

sup <Mu >r :s;; c < ""
uElJ

Define the Markov moments 0 = TO < Tl < ... < Tn using the relations

and construct a sequence of martingales m t , i = 0,1 , ... , n, which are solutions of

the equations

(13)

as the limits of sequential approximations m t,t , l -+ "",

(14)

The convergence of this procedure and the uniqueness of the solution of equation

(13) follow from the estimate

(15)

which can easily be checked for every 0 < i :s;; n. It may readily be seen that the

expression defined by the relation

,TO:s;;t <Tt

,Tt:s;;t <Tt+1 ,1~i ~n

is a solution of equation (6).
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From (15) we can derive the estimate

which. in turn. leads to (11).

Relation (12) may be proved in a similar manner.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. We have

sup Var (Plf r. P;: r) =sup sup IElf7J - E;:7J I ,s;
U EU • • U EU I '11 ~

(16)

,s; sup sup IEJ'7J - E;:7J I = sup sup IS~ - s;: I
l'II"'cUEU I'II~UEU

From formula (10) we have

(17)

since <Su • m > = <m U • M > for any P-martingale.

Note that by virtue of condltion (3). E(P;:.r)2,s; e C ([2]). The sequence P;:.r.

n ~ 1. is therefore uniformly integrable. By virtue of (12) the sequence P;:.t <m U >V 2

is also uniformly integrable. The assertion of Theorem 1 now follows from (17). condi

tion (A) and the fact that the sequence P;:.r<m u >V 2<Mlf -M;:>r. n ~ 1. converges

to zero with respect to the measure P and is bounded by a uniformly integrable

sequence.

Proof of Theorem 2. We have the estimate

(18)

Consequently.

ISo - Sn I ,s; sup E;:( I<S. Mlf -M;:>r I) =sup E(p;t r<m' .Mlf -Mlf -M;t>r)
uEU uEU I

and the assertion of the theorem immediately follows from condition (B), relation (11)

and the fact that the sequence P;:.r<m· .Mlf -M:;:>r. n ~ 1, is bounded by the uni

formly lntegrable sequence k (c )p;: t <m • >V 2.
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Remark L Using arguments similar to the above, it can easily be shown that under the

conditions of Theorem 2 we have Sn, T -> SO,t with respect to the measure P for every

t E[O,T].

Proof of Theorem 3. We know that

u·
But since Sn =Sn" we have

By virtue of Theorem 2, the first term in the last inequality converges to zero.

With regard to the second term, we have

and by arguments similar to those used above, it can be proved that under the condi

tons of the theorem

This completes the proof of Theorem 3.

Example L We shall illustrate the use of the theorem for the convergence of con

trolled processes by applying it to the problem of discrete approximations. The

Eulerian approximation of diffusion-type equations (smoothing) is a particular case of

the approximation scheme in which the martingales Mg have representation (1) and the

martingales M~ are given by (1) with the functions tpo and 1'0 replaced by tpn and I'n

defined as follows:

I'n (t, a.) = I'o(tn ,x. a.) , tnt ~ t < tn(t +1)

where ltnt ,i =r;7i I is a subdivision of the interval rO,T] such that

~ = max I tn (t +1) - tnt I -> °.n -> 00,
O"'t",n

Applying the results of the present paper, we can obtain sufficient conditions for

the convergence of the controlled processes !P;: =£(M;:) . P , U E Ul to the process

!P~ =£(M~) , P , U Eo. U I in terms of the continuity of the functions tpo and 1'0' Thus,

for instance, if the martingales w t in representation (1) are orthogonal and

v<!t l ' E) = 0, then in order to have
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sup Var (Pif,PIf)r -+ 0, n -+ 00

ucU

it is sufficient that

p
= sup sup I ~~(t , a) - ~~(s , a) 1

2 -+ 0
It -s I a cA

p
J (,)1'(ll.,x)v([O,T] , dx) -+ 0
E

where (,)I'(ll.,x) = sup sup lI'o(s ,x ,a) - I'o(t ,x ,a)1 2.
I t -s I'-'/:' a e:A

The problems of constructing approximations for controlled processes have been

considered by a number of authors (Kushner, Gikhman, Skorohod, Praguruskas, Cristo

pheit, etc.).

The convergence of controlled Markov chains to diffusion-type Markov processes

with controlled drift coefficients is studied in [5J, where, in addition to value conver

gence, convergence of the approximated optimal strategy was also proved.
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ESTIllATION OF PARAllETERS AND CONTROL OF
SYSTEMS WITH UNKNOWN PARAMETERS

S.Ya. Mahno
Institute of Applied Mathematics and Mechanics,
Academy of Sciences of the Ukrainian SSR, Kiev, USSR

At present we have a well-developed theory for estimating the unknown parame

ters of completely observed stochastic systems [1]. However, real objects do not

always permit direct observation, and in connection with this arises the additional

problem of parameter estimation under indirect observations. In this paper we shall

consider parameter estimations in a partially observed system and will study the pro

perties of maximum likelihood estimators. In particular, we shall obtain formulas for

computing their shifts and mean-square observations, and give a condition for asymp

totic normality. We shall also solve (for a linear stochastic system) the control prob

lem which arises when the equation of motion of an object contains non-random unknown

parameter and obtain direct formulas for optimal control.

The stochastic processes and variables considered here are defined on the main

probability space. We shall use EI . I and El ./. I to denote mathematical expectation

and conditional mathematical expectation, respectively.

Let (7}t ,~t) be a partially observable random process satisfying the following sys

tem of recursive equations:

(1)

~o = 0, t = 0,1 •...• T - 1

Here t:1(t) = (t:ll (t) , . . .• t:1e (t» and t:z(t) = (t:21(t) , ... , t:zq (t» are independent

components. Each of these components is Gaussian N(O ,1). The stochastic process 7}t

is a vector of dimension n, the process ~t is a vector of dimension m and" is an unk

nown parameter of dimension k. The coefficients of the equations are non-anticipative

functionals.
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The problem is t.o estlmat.e t.he paramet.er " using t.he result.s of observations tt.

We will suppose t.hat. t.he following condlt.lons are satisfied:

1. If g (t ,V Is one of t.he functionals a.~ (t • V. a.li (t , t). A~ (t • V. b:i(t • t). B:i(t • t),

r = 1.2. t.hen

E Ig (t • t) 1
2 < 00. t = 0.1 •...• T

2. Wlt.h probabilit.y 1. we have

3. The dlst.ribut.ion 7Jo is Gaussian N(mo, 70)'

Set. mt = EI7Jt IFll. 7t = E!<7Jt -mt)(7Jt -mt )' I Fli , Ftf = alto, ...• tt I. It. Is

known (see [2]) t.hat. If condit.ions 1-3 are satisfied, t.hen t.he random processes mt and

7t satisfy t.he equat.ions:

(2)

We used here t.he not.at.lon from [2]. In particular, b . b =blb~ + b2b~. b . B =blB~

+b~~.B·B =B1B~ +B~~.andA· is conjugat.emat.rlx t.oA. Not.et.hat.7t is a non

anticipative measurable functional Independent. of". From equat.ion (2) we have

(3)

where

t
a.Ol(t • t) = E gs +1(t)[a.o(s ,V - c (s • ~)Ao(s • m

s =0

t
a.u(t.t) = E gs+l(t)a.l(s.t)

s =0

t
l5(t +1, t) = E gs +l(t)c(s, t)ts +1

s =0

t
gu(t) = 11 [a.2(S,V-c(s,VA 1(s.V].gt+1(t) =1

s=u

g (t) = g o(t) , g o( -1) = 1
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-1
We shall assume that sums of the type 2: are equal to zero. From the relation between

s=o

t l and ml (see [2]), (13.78»:

and the equality (3), we have

(4)

for

From (4), the estimate of" can be represented as follows:

1 -1"1 =(2: A~1(S,t)(BllB~1)-1(s,t)All(S,m-1X
s =1

(5)

1 -1
X 2: Au(s, t)(BuB~l)-l(s,t)(ts +1 -A 01(s, m

s =1

Notice that the sumation in (5) starts at one (Au(O, t) = 0). This may be explained by

the fact that the dependence of tl on" only comes into effect with moment t = 2.

Define

1·1
u(t,t) = 2: Ail(s,t}{BllB il)-l(s,t)A ll(s,t)

s =1

1 -1
[(t,t) = 2: Ail(S,t}{Bu B il)-l(s,t)Bll(s,t)

s =1

1 -1
M (t , t) = 2: Ail (s , O(BllBil) -l(s , t)Bll (s , t)£3(s + 1)

s =1

and let U1j' r1j , M1 be the elements of the matrices u. r and vector M, respectively.

LEIDIA 1. Let 61j (t , t), i ,j = l,k, be a non-anticipative .functional and the follow

ing conditions hold for every "f < ,,~, i = l,k (written"l <"2 below for simpli

city):



121

(6)

for a = fJ =4. Then the }'unction E",6tj (t , ~) is differentiable on " and

If the inequalities (6) also hold for a =2fJ =16, then E",otj (t , ~) will be twice differen

tiable in " and

where SpA is the trace of matrix A.

Consider the properties of estimator (5).

THEOREM 1. If the }'unction rp(t) is such that lim rp(t) =00 and
t ..~

lim _(1 oo(t ,V = 00, where matriz u is nondegenerate, then the estimator "r is
t ..~ rp t)

consistent and the vector Yrp(T)("r -") is asymptotically normal N(O, 00-
1

). More

over, if the inequalities (6) hold for a =fJ =4 and o(t , V =u-1(t , ~), then the bias

of the estimator may be defined by the formula

Ifinequalities (6) hold for a =2fJ =16 and o(t , V =u-2(t , ~), then

These assertions are proved in [3].

COROLLARY. Let a partially observable random process be described by equations

(7)

~o =0 , t =0,1 , ...• T -1

Then the estimator (5) for partially observable process (7) is unbiased and con

sistent.
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Now consider the following control problem. Let a partially observable random

process (7Jt . ~t) be described by the equations:

(8)

~t +1 = A (t )7Jt + B(t )t:2(t +1)

with initial conditions ~o =O. 7Jo. where 7Jo is a Gaussian vector with parameter

(mo.70)' The problem is to choose the control Ut which minimizes the cost functional

T-1
I[u] =E[ L: (7J;Lt 7Jt + u;Ntut) + 7JrL T7JT]

t =0
(9)

The dimensions of the vectors in (8) are assumed to be the same as in (1) (the system

(8) is a particular case of (1) with ao(t .~) = at Ut), and the dimensions of Ut =

(ul •... , u[) is equal to r.

The class of admissible controls u consists of controls Ut which are

a!~o.h •... , ~t I-measurable functionals for any

independent of 17. and for which

=0.1 ..... T - 1. explicitly

r
L: E Iull 2 < 00 • t =0.1 , ... , T - 1

i =1

Assume ao = a1 = 0 (Le.. an observer starts to control the system only after

receiving some information about the unknown parameter). The cost functional I[u]

may be represented in the following way (see [2]. (14.71»:

T
I[u] =11[u] + L: spLl/ 27t Ll/ 2

t=o

T-1
I 1[u] =E[ L: (m;Lt mt + u;Nt Ut) + mrLTmT]

t =0

where the processes mt and 7t are defined by (2). In this case 7t is a non-random

matrix. Using Lemma 13.5 from [2]. we may write an equation for m t :

where Dt =a2(t)7tA' (t) [B(t)B' (t) + A (t)7tA' (t)]1/2.

Introduce a function Vi"'(%) =%'pt % + 17'Q;% + %'Qt17 + 17'Rt 17 + Kt • where Pt.

Qt. R t are matrix functions and Kt is a scalar function. These functions may be defined

as solutions of the following recursive equations:
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Pt = L t + ai (t )Pt HaZ(t) - ai (t)Pt H at [Nt + at'Pt +-1ad i x

x at'PtHaz(t) , P r =L r

Qt =a~(t)PtHal(t) + a~(t)QtH -a~(t)PtHat[Nt +at'Pt+-lat] x

x at'(Qt H +PtHa l(t». Qr = 0

R t = a~ (t )Pt+-lal(t) + a~ (t )Qt H + Qt'Hal(t) - (Qt H +P t Hal(t»' x

x at (Nt + at'Pt Hat) +- CXt'(Qt H + P t Hal(t» • R T = 0

Kt = Kt H + SpDt'Pt HDt • KT = 0

where A +- is the pseudo-inverse of matrix A.

Notice that we cannot use a random process mt in the control problem since it is

dependent on an unknown parameter". We shall therefore act in the following way.

Define the stochastic process Xt as the solution of the recursive equations:

Xt H = [az(t) -az(t )'YtA '(t )](B(t )B' (t) +A (t )'YtA '(t» -1 x

X A (t)]Xt + at Ut + az(t)'YtA '(t )(B(t )B' (t) + A (t)'YtA '(t» -1 ~t H

Then

Making use of (11) we can easily obtain

E[Vt"H (mt+-l) - Vt"(mt)] = - E[mt'Lt mt + Ut'Nt Ut] +

+ E[Ut + (at'Pt Hat + Nt) i CXt'Pt HaZ(t )Xt + (CXt'Pt Hat +Nt ) +- x

x at'(PtHaz(t)au(t -1) +PtHal(t) + Qt+-l)"]'(at'Pt+-1 CXt +Nt ) x

x [Ut +(at'Pt+-lat +Nt)+-at'PtHaz(t)Xt + (at'Pt Hat +Nt )+- x

x at'(Pt H az(t )a u (t -1) + Pt Hal (t) + Qt H)"]

(10)

(11)
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From this relatlon we then have

T-1
[1[1.1.] = V(1'(mo) + I; E[Ut + (at'Pt +1at +Nt )+at'Pt +1a.2(t)Z t +

t =0

(12)

We shall now show that the optlmal control has the following form:

(13)

where

t -1
"t = ( I; a.~1 (s -l)A '(s)(Bl1(S)B~l(s»-lA (s)a.l1(s _1»-1 x

s =1

(14)

t -1
X I; a.~l(S -l)A'(S)(Bl1(S)B~l(s»-l(tS+1-A(s)zs)

s =1

The estimator (14) Is none other than the estimator (5) expressed in terms of an auxill-

ary process Zt.

Let 1.1. be an arbitrary admissible control. Assume that

We then write the relation (12) In the form

Utll " th t· f d' t . (AA+)' -- AA+. A'AA+ -- A',lzmg e proper les 0 pseu o-mverse ma rices

AAA + = A [2], we transform the last expression to give

1 T-1
[1[1.1.] =vt(m o) + I; Eu;NtUt + I; Eu;(Tt T/-1I)'(Tt T/-1I)ut

t =0 t =2
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T-l
+ E E(" -TtUt)' Ti(" -Ttut )

t =2

where 11 is the unit matrix.

Hence, for any control u we have

T-l
[l[u] ~ V~(mo) + E E("-TtUt)'TiTt("-TtUt)

t =2

In view of the effectiveness of the estimator "t (see the Corollary) the sum on the

T-l
right-hand side is no less than E E(" -"t)' TiTt (" -"t). Thus, for any control u we

t =2

have

T-l
[l[u] ~ vt(mo) + E E(" -"t)'TiTt (" -"t)

t =2

Apply Theorem 1. Then

T-l
[l[u] ~V~(mo) + E Spq-l(t)(Pt+1a2(t)all(t -1) +

t =2

It is ciear from (12) that the equality is satisfied for the control (13). This proves the

following theorem:

THEOREM 2. An optimal control from the class of admissible controls for the sys

tem (8), (9) is defined by equality (13), where Xt can be found from (10) and "t from

(14). The optimal costj'unctional is then

T T-l
[0 = V~(mo) + E SpLl/2"'tLl/2 + E Spq-l(t)(Pt+1a2(t)all(t -1) +

t =0 t =2
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1. INTRODUCTION

We consider the following discrete-time nonlinear filtering problem: a

partially observable process (x .y ) ,x ,y Em, with x the unobservable and
t t t t t

Y the observable components, is given for t=O,l, ... ,T on some probability
t

space (n, §,P) by

x =a(x )+v
t+1 t t+1

y =c(x )+w
t t t

x =v
o 0

y =w
o 0

(1.1.a)

(1.1.b)

(1.2)

where {v } and {w } are independent standard white Gaussian noises.
t t

Given a measurable function f, the filtering problem consis~s in compu-

ting for each t=l, ...•T, assuming it exists, the least squares estimate of

f(x ), given the observations up to time t, namely
t

E{f(x ) !§y}
t t

where §y : =a{y Is~t}.
t s

More generally, the f ilter ing problem can be formulated as follows: given

a Markov process x with known transition densities p(x Ix ) and an observa
t t t-1 -

ble process y , characterized by a known conditional density p(y Ix ) it is
t t t

t
desired to compute for each t=l, ... ,T the filtering density p(x Iy) where

t t
Y :={y ,y , ... ,y L

o 1 t
A solution to this problem can be obtained by means of the recursive

Bayes formula
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t-1
p(y Ix ) p(x Iy )

t t t

r
t-1

ply Ix )p(x Iy )dx
) t t t t

r
t-1

ply Ix ) p(x Ix l)P(x Iy )dx 1
t t) t t- t-1 t-

(1. 3)

f r
t-1

ply Ix ) p(x Ix )p(x Iy )dx dx
t t) t t-1 t-1 t-1 t

However, there is an inherent computational difficulty with this formula

due to the fact that the integral

J
t-1

pIx Ix l)P(x 11y )dx 1
t t- t- t-

is parametrized by x ER.
t

This difficulty disappears in all those situations when

p (x Ix ) = £ <P (x ) 1JJ (x )
t t-1 i=o i t i t-1

( 1.4)

(1. 5)

in the combination can be recur

t=l, ... ,T
t-1

d (y )p(y Ix)<p (x);
itt i t
t-1

where the vector dey ) of the coefficients

In fact, letting ~ denote proportionality, it is easily seen that,with
t

(1.4),p(x Iy ) can actually be computed by means of (1.3) resulting in
t

t n
p(xIY)~.L

t ~=o

sively obtained as

i=O, ... ,nd. (yO) = r1JJ. (x )p(x )dx ;
~ ) ~ 0 0 0

t t-1
d(y)=d(y )B(y); t~l

t

with B(y ) = {b (y)} where
t ij t i,j=O, ... ,n

b (y) = rIjJ (x ) p (y Ix ) <p (x ) dx
ij t ) j t t tit t

(1.6.a)

(1.6.b)

( 1.6.c)

Notice that if in (1.4) we have n=O, the process x
t

reduces to a sequence

of i.i.d. random variables and the filtering problem reduces to a sequence

of standard Bayesian estimation problems for x
t

' where for all t the prior

recursivethe

exploit the computational advan
t

pIx Iy ) by means of ap
t

that can be explicitly computed in a

distribution of x is given by p(x )=<p(x ).
t t t

The purpose of the present study is to

tage resulting from (1.4) in order to approximate

t
proximating densities p (x Iy ), n~l,

n t
recursive way. Such p (x [yt) will be obtained by means of

n t
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Bayes formula (1.3) using approximations to p(x Ix ) given by suitable no~
t t-1

negative functions p (x Ix ) of the form (1.4). Furthermore the approxima
n t t-1

tion will be such that an explicitly computable bound can be obtained for an

appropriate approximation error; if in addition f(o) does

exponentially, then also E{f (x ) IffY} can be approximated
t t

with a corresponding error bound.

not grow more than

by rf(X)p (x 1/) dx
) tnt t

Approximations to the nonlinear filtering problem have been considered

by various authors ~or approaches concerning continuous-time nonlinear fil-

tering problems see e.g. (Kushner 1977), (Clark 1978), (Davis 1981), (Di M~

si and Runggaldier 1981), (Le Gland 1981), (Picard 1984), (Talay 1984)).

These approximations do not completely solve the practically important pro-

blem of obtaining explicit error bounds. In (Di Masi and Runggaldier 1982)

an approximation to a discrete-time nonlinear filtering problem with expli-

cit error bounds has been derived and in (Di Masi and Runggaldier 1985) this

approximation has been extended also to continuous-time problems. While in

(Di Masi and Runggaldier 1982) the approximation is obtained by approxima-

ting the model (1.1)-(1.2), here we follow the alternative approach of di-

rectly approximating the solution to the recursive Bayes formula (1.3).

In the next Section 2 we shall show that under suitable assumptions an

approximation p (x Ix )~O of
n t t-1

mations to p(x Iyt) as well as
t

the type (1.4) leads to corresponding approx..!.

E{f(x ) IffY} with explicit error bounds that
t t

go to zero as n~ro. In the final Section 3 we shall give two examples of

suitable approximations p (x Ix ) of the type (1.4).
n t t-1

2. CONVERGENCE OF THE APPROXIMATION AND ERROR BOUNDS

As mentioned in the

mations to the filtering

ter E{f(x ) IffY} .
t t

introduction, our purpose here is to provide approx..!.

t
density p(x Iy ) as well as the corresponding fil

t

t
To this end it will be convenient to provide approximations to p(x Iy)

t

in a suitable weighted norm of the type.

II gila := Ja(x) Ig(x) Idx (2.1)

In what follows we shall choose a(x) =expl~lxIJ, (a>O), as this will
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enable us to approximate E{ f (x ) IffY} for all those f (.) for which
t t

lexPI-alxllf(x) 1<+00; in particular, it will allow the approximation of all

the conditional moments, as long as they exist. Using explicit upper bounds,

we shall show that the convergence of

II • Ii
a

implies the convergence in the

p (x Ix ) ~O to P (x Ix ) in the norm
n t t-1 t t-1

t
same norm of p (x Iyt) to p(x Iy ) (Pro

n t t -

position 2.1 below) as well as the convergence of the conditional moments

(Corollary 2.1).

We shall need the following assumtions: there exist V(y ), U, W, z, Z
t n

such that

A.1 O<V(y )~p(y Ix )~U for all x
t t t t

A.2 f inf p (x Ix )dx ~W>O
x

t
_

1
n t t-1 t

A.3 IIp(xlx )11 ~Zforallx
n t t-1 a t-1

A.4 II p(x Ix ) - p (x Ix )11 ~Z for all x ,with lim Z =0
t t-1 n t t-1 a n t-1 n-) 00 n

From A.1 and A.3, using (1.3) and the fact that p (x Ix ) is nonnega
n t t-1

tive, we immediatley have by induction

Lemma 2.1. For all

t
P (x Iy )~O

n t

t
t, P (x Iy ) is a density function, i.e.

n t

and fP (x 1/) dx = 1
n t t

We then immediately have from the assumptions

Lemma 2.2. For all t~l

t-1
II p (x Iy )11 ~Z

n t a

and, letting for t~l

t
K(y )

t
K (y )

n

r I t-1
:= p(y Ix )p(x Y )dx

, t t t t

f
t-1

p{y Ix )p (x Iy )dx
t tnt t

(2.2)

(2.:n )

Lemma 2.3. For all t~l

t
K(y )~V(y );

t

t
K (y )~WV(y )

n t

We now prove the main result of this section

Proposition 2.1. Under A.l-A.4, for all t~l
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t t t _ s t
II p(x Iy )-p (x Iy ) II:;z l: (2U2.W lZ2) IT V- 2 (v )

tnt a n s=l u=t-s+1-u

Proof: Using (1.3), the definitions (2.2) and (2.3), the assumptions A.1-A.4,

as well as Lemmas 2.2 and 2.3, and assuming without loss of generality Z>l,

we have

II p(x I/)-p (x 1/) II :;
tnt a

t-1 t-1

J
p(x Iy ) p (x Iy )

:; a(x )p(y Ix ) t _ n t dx :;
t t t t t t

K(y ) K (y )
n

:; U falx ) IK (yt) Ip(x lyt-1)_p (x lyt-1) I +
t t} t I'n tnt

K(y )K (y ) -
n

t t t-1 I+ IK(y )-K (y ) I Ip (x Iy ) I dx ;';
n n t t

I r
t-1 Jr t-1 t-1

I p (x Iy )dx I a(x IIp(x Iy )-p (x Iy ) Idx +
t (t ) n t t t tnt t

K(y)K Y ) -
n

+ flp(x 1/-1
)_p (x 1/-1

) Idx . falx ) Ip (x 1/-1
) \dx I ;';

tnt t J tnt t

2U 2
;'; --'-----

t t
K(y )K (y )

n

2U 2
;'; --'----

t t
K(y )K (y )

n

t-1
II p (x Iy ) II

n t a

t-1
II p (x Iy ) II •

n t a

I
r

t-1
II p(x Ix )-p (x Ix ) II p(x Iy ldx +

} t t-1 n t t-1 a t-1 t-1

t-1 t-1 l
+ lip (x Ix )llllp(x \y l-p (x Iy )11 ;';

n t t-1 a t-1 n t-l a

I: t-1 t-1 -I;'; 2U 2
V-

2 (y )W-1Z z +zll p(x Iy )-p (x Iy ) II ;';
t n t-1 n t-1 a

;'; 2U 2 V- 2 (y )W-1Z21-z +11 p(x 1/-1
)_p (x 1/-

1
) 11-1

t n t-1 n t-1 a
- -

from which the conclusion follows.

CoroZZary 2.1. Under A.1-A.4, letting M>O be such that lexpl~alxllf(x)\;';M,

we have for all t~l
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3. EXAMPLES OF APPROXIMATIONS

In this section we present two examples of how to obtain nonnegative a£

proximations p (x Ix ) to p(x Ix ) of type (1.4) and satisfying A.2-A.4,
n t t-l t t-l

when x is given by model (1.1) on which we make the following assumptions:
t

H.l Ia (x) I$A<+oo

H.2 Ic(x) I$c<+oo

Notice that, due to the normalization in (1.3), we can take

=expl~l(y -c(x ):1 so that H.2 immediately implies A.l with
2 t t

- -

=exp 1--1(Iy t I+C) 2-1 and U=l.

- -

p(y Ix )=
t t

V(y ) =
t

Example 1. In this example we assume the following strenghtening of. H.l,

namely that a(·) in (l.l.a) can be uniformly approximated by step functions.

Then, denoting by I (x) the indicator function of the interval IT let
IT i

i

a (x)
n

n
l: a I (x)

i=o i IT
i

be a sequence of step functions such that

(3.1)

II a(x)-a (x) II $ A
n n

Ii a (x) II $A
n

n-i> 00

--;> 0 (3.2.a)

(3.2.b)

where II· II denotes the sup-norm.

We now let for nE'JN

p (x Ix )= / exp '-_l(x -, £ a I (x ) ) 2-1
n t t-l v2n 2 t 1=0 i IT, t-l

1 -

£ ~ expr_l(x -a ) 2-1 I (x )
i=o v2n I" 2 t i IT t-l

- i

(3.3)

which is nonnegative and of type (1.4).

It remains to show that for p (x Ix ) as defined by (3.3) the assump
n t t-l

tions A.2-A.4 are fulfilled. Notice that A.2 is only needed to prove the se-

cond inequality in Lemma 2.3. Since in this case p (x Ix ) is actually a
n t t-l

density, this second inequality can be proved as the first one so that A.2,

although true, is not needed here. Assumption A.3 can be immediately verified



133

with

Z=2exp & (A+a) 2]
For assumption A.4 we have the following

Proposition 3.1. For all t~l and all possible values of x , we have
t-l

IIp(x Ix )-p (x Ix )II~Z
t t-l n t t-l a n

with

Z =4 (A+ 1) exp IltA+a + 1) 2-1 A
n 12 n

Proof: Using the :nequalit:es lex_eYI~lx_yl (ex+eY), Ixl~elxl, l~elxl

II a2(x)-a2(x)II~2AII a(x)-a (x)ll, we have
n n

II p (x Ix ) -p (x Ix ) II ~
t t-l n t t-l a

(3.4)

(3.5)

and

~ .;1 "rexp1alx l-jexpl_..!..(X 2 -2X a(x )+a2 (x )-1
211) I~ t _ \~ 2 t t t-l t-l _

exprlx I-Iolla(x )-a (x )1+..!..la 2 (x )-a 2 (x )I-Idx +
t 1 t-l n t-l 2 t-l n t-l t

- - - -

+ .;1 fexp'alx 1-lexpl-..!..(X2+2X a (x )+a 2 (x »-10
211) I( t 1"2 t tn t-l n t-l

- - - -

exp[-Ix 1-llla(x )-a (x ) 1+..!..la2 (x )-a' (x ) I-[dx ~
t 1 t-l n t-l 2 t-l n t-l t- - - -

~ .;2 rexp1alx I-..!..Ix 12 +Alx I+Ix 1-\
211) I' t 2 t t t- -

(A+l) la(x )-a (x ) Idx ~
t-l n t-l t

~ 2exP &(A+a+1) 2] (A+l)A
n

0

o .;1 rexp I--..!..( Ix 1- (A+a+l) ) 2-1 dx ~
211) 2 t t

- -

~ 4 (A+l) exp &(A+a+l) 2]An

Remark 3.1: Notice that the approximation of p(x Ix ) by P (x Ix ) as
t t-l n t t-l

given in (3.3) corresponds to an approximation of the entire model (1.1) by

a model of the same type where a(o) is replaced by a (0) (see (Di Masi and
n

Runggaldier 1985), where such approach is used for the approximation of con-

tinuous-time nonlinear filtering problems).

Example 2 . In this example we shall consider an approximation that is based
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on the following Taylor-series approximation of the exponential function

(nE:N)

x '\,
e '" a (x) ~

n

i
2n x
l:

i~o i!
(3.6 )

As it can be easily verified, we have
'\, x

1 :;; a (x) :;; e for
n

x '\, Ix I
e < a (x) < e for

n

x? 0

x < 0

(3.7)

We now consider the following approximation to the transition density

I 1 I- 1 2 2 I '\,p (x x ) ~ ;- exp -(x +a (x )'a (x a(x »)
n t t-l 2n 2 t-l n t t-l

- -
which is nonnegative and of type (1.4).

Due to (3.7) we have

expl-Alx I-I :;; ~ (x a(x ):;; explAlx 1-'I" tnt t-l I' t
- - - -

so that, as can be easily seen, A.2 and A.3 are satisfied with

W~ 2[1-<1> (A)]

Z ~ 2exp R(A+a) 2-1

- -
where <I> is the standard normal cumulative. Finally, for A.4 we have

Proposition 3.2. For all t~l and all possible values of x , we have
t-l

II p(x Ix )-p (x Ix )11:;; z
t t-l n t t-l a n

with
2n+l

Z 2A exp [_-2
1

(A+a+l) 2-_1
n (2n+l)! I:

(3.8)

(3.9)

(3.10)

(3.11 )

Proof: Using the expression for the error in a Taylor-series approximation

n
and the inequality x :;;explxl, we have

II p(x Ix )-p (x Ix ) II :;; ;1 fexp1alx 'lexpl_.!x
2 -1·

t t-l n t t-l a 2n) I' t I" 2 t
- - - -

I 2n+l 2n+l I
x t a (x t _ 1) exp1lx a(x ) I-Idx :;;

(2n+l) ! 1 t t-l t
- -

2n+l
A

:;;
(2n+l) !

1 rexp I_.! x 2 + (A+a+l) Ix 1-' dx :;;
hn) I" 2 t t t



2n+1

A exp [_-2
1

(A+Cl+ 1) 2_-1_
(2n+1)! I:

2n+1

~ 2A exp \-_-2
1

(A+Cl+1) 2_-1
(2n+1) !
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1. INTRODUCTION

Consider the following discrete-time stochastic control problem: a

part ially observable process {x ,y }, x ,y E R with x the unobservable an
t t t t t

Y the observable components, is given for t = 0,1, ..• , T on some probabil ity
t

space {>l, Y;,P} by

a(x ,u ) + a(x)v 1
t t t t+

c (x ) + w
t t

x = v
o 0

y =w
o 0

(1. 1a)

(1.1b)

where {v } and {w } are independent standard white Gaussian noises and {u }
t t t

is a sequence of admissible controls, namely such that u takes values in
t

. b . ta g~ven set UcR and depends only on past and present 0 servat~ons y

{} t-1 { }' .Yo'''''Yt and past controls u : = u
o

, ... ,u
t

_
1

• Def~n~ng the value

function

T-1
E{ L:

t=O
r(x ,u }+b(x )

t t T
(1 .2)

where r(x,u) and b(x) are given functions, it is desired to find, for any

given E>O, and E-optimal control {u~}, Le. an admissible control such

that
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T-1
inf v(u ) + £

u T- 1

where the inf is over all admissible controls
T-1

u

The usual approach to this problem consists in transforming it into an

equivalent complete-observation problem by taking as new state at time t
t t-1

the conditional distribution of x given y and u (see e.g. (Dynkin and
t

Yushkevich 1979). The major difficulty that arises with this approach is

that the new state takes values in an infinite-dimensional space, namely

the space of all probability distributions over the real line.

There are however particular classes of stochastic control problem for

which the state of the equivalent complete-observation problem can be taken

as a finite set of conditional probabilities. One possible class of this

type is given by

n

L

i ,k=l

n

a. (k) lB' (x ) I U (u ) + L
1 1 t k t .

1=1
G. lB. (x)v 1

1 1 t t+
(1.3a)

n
L

i=l
c. lB. (x ) + W

1 1 t t
(1.3b)

T-1
v (u ) =

T-1
E{ L

t=O

I n

I L

li,k=l

1 n
r.(k)IB·(X )Iuk(u)1 + L

1 1 t t J i=l
b.IB.{x )} (1.4)

1 1 T

where a.(k), r.(k), G., b., c. (i,k=l, ... ,n) are given real numbers, {B.}
1 1 1 1 1 1

is a finite partition of the real line into intervals, {Uk} is a class of

disjoint intervals on R and the admissible control set is given by U = ~ Uk'

In other words, this class consists of problems (1.1) - (1.2) with a,r,G,b,c

step functions, and U a finite union of intervals.

It is clear from the particular structure of (1.3) - (1.4) that the

i I t t-1condit ional probabil it ies 1T : = p{x E B. Y ,u }, i = 1, ... ,n contain all
ttl

. f' . (t t-1 ) . h' I f Ithe Ln ormat10n on the past h1story y ,u Wh1C 1S re evant or contro
- 1 n-

purposes so that the vector 1T = L1T , ••• ,1T J can be taken as state variable
t t t

of the equivalent complete-observation control problem. It is also clear

from (1.3) - (1.4) that the choice of a particular value for the control u t
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reduces to the choice of a k=1, ... ,n so that in what follows we shall con-

sider U={1, ... ,nL

Furthermore, exploiting the particular structure of (1.3) (see (Di Masi

and Runggaldier 1983), it is possible to determine the transition law for

lTt; in fact, using the recursive Bayes formula, it is easily seen that
n i
1: IT p .. (u )f. (y 1)

i= 1 t ~J t J t+

(1 .5)

where

p .. (u )
~J t

·f. (y 1)
J t+

I
1/hlT I exp 1-

lB. L
J

- 1 1
1/hlT expl-

L 2

(x-a. (u )}l
~ t Idx

20: --l
~

i'
(y 1-c .) I

t+ J J

(1 .6)

(1. 7)

and the initial condition is given by

j
IT

o
p{x EB.}

o J
j = 1, ... ,n . (1.8)

Notice that the denominator in (1.5) is the conditional density
t t-1

g(y 1 ly ,u ).t+
The equivalent complete-observation problem, which in the sequel we

shall refer to as problem (p), is characterized by the state space IT =

= {TTllT~E@,1J, i=1, ... ,n; 2: lT
i

=1} by the state-transition law
i

IT = r(lT,y ,u)
t+1 t t+1 t

(1 .9)

as given in (1.5), by admissible control sequences {u } such that u EU
t t

depends only on lTt' and cost functions given, with abuse of notation, by

n
it t-1

r (IT ,u ) = E{r(x ,u )IY,u } 1: IT r. (u ) (1 .1 Oa)
t t t t

i=1
tIt

T T-1 n i
b(lT ) E{b(x ) IY,u } 1: IT b. (1.10b)

T T
i=1

T ~
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It is worth remarking that the particular class (1.3) - (1.4) is not only

interesting in itself, but proved also useful for the approximation of rather

general problems of the form (1.1) - (1.2). In fact it is shown in (Di Masi

and Ruggaldier 1983) that £-optimal controls for problems (1.3) - (1.4) lead,

under suitable assumptions, to £-optimal controls for problems (1.1) - (1.2).

However the derivation of £-optimal controls for (1.3) - (1.4) is by no

means trivial since the equivalent complete-observation problem (p) has still

an infinite state space.

It is the aim of the present paper to provide a method for obtaining

£-optimal controls for problem (p) and consequently for (1.3) - (1.4). Notice

first that, although (p) has the state taking values in a finite-dimensional

space, its possible values are still infinite. In analogy to some recent

work concerning Markovian decision problems by Bertsekas (1975), Hinderer

(1979) and"Whitt (1978), our approach consists in approximating problem (p)

by a problem (p) whose state space is finite and for which, since the control

set is also finite, an optimal control can be actually computed. This control,

suitably extended to the entire state space of (p), is shown to be £-optirnal

for (p). A direct application to problem (p) of the methods in (Bertsekas

1975), (Hinderer 1979) and (Whitt 1978) leads to various difficulties, in

particular that of determining the transition law of the approximating

finite-state problem. Therefore it appears more convenient to exploit the

partially observable nature of the original problem (1.3) - (1.4) and to first

discretize the observation process y .
t

In the next Section 2 we shall describe our approximation approach,

while in Section 3 we show its convergence properties and derive an algorithm

for the computation of the value of the approximating control.

2. THE APPROXIMATION TECHNIQUE

2
For mEN and m: = 2m + 2, let {Y., i = 1, ... ,m} be the partition on R

~

given by
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y.
~

- i-2L:-m +--,
m

i-1
-m+--)

m
i = 2, ... ,;;;-1 (2.0

y- ~,+oo)
m

and let {n. : n. E Y., i = 1, ••. ,;;;} be a set of representative elements of the
~ ~ ~

partition. Then, defining the projection

m
l:

i=l
n. I y . (y)
~ ~

(2.2)

we consider the process Yt given by

(2.3)

- t _t
with y given by (1.3b), and we set, with abuse of notation, y(y) y.

t

Furthermore, let

f . (n.)
J ~

p{y =n.lx EB.}
t ~ t J

l/IzTI r exp 1- 1 (y-C
J
,) 21 dy

J y . L 2 J
~

(2.4)

Analogously to what has been done in the Introduction for the definition

of problem (p), we now consider the vector {TI\ i = 1, ... ,n} of conditional
. .. _i -t t-l t ..

probab~l~t~es TI = p{x E B.ly ,u } and take as approx~mat~ng p.roblem for
t t ~

(p) the problem (p) characterized by the finite state space IT given by the

vectors TIt' by state transition law

TI
t+l

f(TI ,y ,u)
t t+l t

(2.5)

with r as the f ~n (1.5) with f.(y) replaced by f.(Y) as defined in (2.4),
J J

by admissible control sequences {u } such that u E U depends only on TI and
t t t

cost functions given, with abuse of notation, by

r(TI ,u )
t t

-t t-l n -i
E{r(x ,u ) Iy ,u } l: TI r.(u ) (2.6a)

t t i=l t ~ t

-T T-1 n -i
E{b(xT)ly,u } l: TITb i

(2. 6b)
i=l
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- - - -t t-l
Problem (p) admits an optimal control u (11 ) = U (y ,u ) which can be

t t t
derived via dynamic programming or, using the fact that the observation and

state spaces are finite, via the algorithm proposed by Smallwood and Sondik

( ) . . (t t-1) .1973 . Th~s control can be extended to every h~story y ,u of the or~-

nal problem (1.3) - (1.4) lettin8

- t t-1
u (y ,u )

t

- - t t-1
u (y(y ),u )

t
(2.7)

In the next section we shall show that

solution to problem (p) and consequently to

3. PROPERTIES OF THE APPROXIMATION

- - t -t-1
u (y(y ),u ) is an approximate

t

the original problem (1.3)-(1.4).

T-1 t t-1 - T-1 -t
In what follows we shall denote by v(u ; y ,u ) and v(u ; y ,

t t
t-1 -

u ) the cost-to-go functions at time t for (p) and (p) respectively,
T-l - T-1

v(u ) is the value function (1.2) for problem (p) and v(u ) is the value
- t t-1 - -t t-l

function for (p). Moreover, let v(y ,u ) and v(y ,u ) be the optimal

cost-to-go at time t for (p) and (p) respectively. In particular, for t = 0,

the optimal cost-to-go is the optimal value, which for problems (p) and (p)

will be denoted by v and v respectively.

3.1 Convergence results

The main purpose of this subsection is to show that as the partition

on the observation space becomes finer and finer, i.e. as m in (2.1) goes
-T-1

to infinity, the value v(u ), namely the value for (p) of the optimal

control for (P), converges to the optimal value v. This result is obtained

in the corollary to Theorems 3.1 and 3.2 below. The proofs of these theorems

are based on some preliminary results, the most important of which is Pro-

position 3.1 and whose proofs can be found in (Di Masi and Runggaldier 1983).

Lemma 3.1.

yER

j
\-lith r as defined in (1.5), we have for all 1I

1
'1I

2
ETI, uEU and

j j iii
max Ir (TT ,y, u) - r (TT ,y,u) I::; L max 111 1 - TT 2 '

j 1 2 i
0.1)
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where

L
n

2
(min p ih (u»
hiu

0.2)

o
Lemma 3.2. With r

j
and rj

as defined in (1.5) and (2.5) respectively, we

have for any j=l, ... ,n and all 1TEIl, uEU

j - j -
lim sup Ir (1T,y,U) - r (1T,y(y),ul

m+ OO y ° o
In what follows, when convenient, we shall make explicit the dependence

t t-l -t t-l
of 1T and 1T on (y,u ) and (y,u ) respectively. Then letting

t t

i t t-l -i - t t-l
sup max maxl1T (y,u )-1T (y(y ),u )1
yt ut-1 i

we have following

Proposition 3.1: For any t=O, ... ,T

lim V
m °

m+oo t

Letting B : = max{b. ,r. (k)}, we now have
ik ~ ~

(3.3)

o

Theorem 3.1. For any t=O, ... ,T and all

t t-l - -t t-l m
Iv(y,u ) - v(y,u ) 1 ~ U

t

where U
m

is defined recursively by
t

U
m m

nBV
T T

m
n B(T-t+l)V

m m
U +u

t t t+1

with
m

given (3.3) .V by
t

t t-l
Y ,u

(3.4)

(3. Sa)

(3.Sb)

Proof: The proof proceeds by backward induction. For t=T we have
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T T-l - -T T-l i T T-l -i T T-l m
Iv(y,u )-v(y,u )1=Il:b.(n(y,u )-n(y,u ))1~nBV 0.6)

i ~ t t T

so that (3.4) holds for t=T with Urn given by (3.Sa).
T

Assume now that (3.4) holds for t+l. Then, using the optimality

equations of dynamic programming and the properties of the control {u } op
t

timal for (P)

t t-l - -t t-l
v (y , u ) - v (y , u ) ~

it· t-l - i t t-l -
~l:n(y,u h.(u)+ l: n(y,u )P'h(u)

i t ~ t i,h,£ t ~ t

r t t-l _
Jy£ v«y 'Yt+l)'(u ,ut»fh(Yt+l)dYt+l-

-i -t t-l - -i -t t-l -
l: n (y,u )r.(u) + l: n (y,u )P'h(u) •.
i t ~ t i,h,£ t ~ t

- -t t-l - -
v«y ,n£),(u ,ut»fh(n£) ~

i t t-l -i -t t-l -
~l:I(n(y,u )-n(y,u »r.(u)l+
itt ~ t

i t t-l -i -t t-l - r t t-l -
+ l: In (y,u )-n (y,u ) Ip.h(u ) I Iv«y,y 1)(u ,u »Ifh(y l)dy 1+

~ h' t t ~ t I t+ t t+ t+L, ,)(, ''1£
-i -t t-l -

+ l: n (y,u )P.h(u)
i,h,£ t ~ t

r t t-l - - -t - t-l -
I Iv«y'Yt+l)'(u ,ut »-v«y'Yt+l)'(u ,ut »l·fh (Yt+l) dY t+l ~
Jy £

~ nBVffi+nB(T-t)Vffi+U
ffi

t t t+l
0.7)

t+l t
where in the last inequality we have used the fact that Iv(y ,u) I ~ B(T-t)

t+l t
for all y ,u. Furthermore, denoting by at a control such that r(n ,il ) +

t t
t+l t-l t t-l t t-l

+E{v(y ,(u ,il»IY,u }~v(y,u )+8for 8>0, we have
t

- -t t-l t t-l
v(y,u ) - v(y,u ) ~

-i -t t-l -i -t t-l
~ l: n (y , u h. (u ) + l: n (y , u ) p. h (il )

i t ~ t i,h,£ t ~ t
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i t t-l
-1: 1l(y,u )ro(il)- L

i t ~ t i ,h, Q,

i t t-l
'll (y ,u )Poh(u)

t ~ t

t t-l
v((y ,y ) ,(u ,il))f (y l)dy 1 + 0 ~

t+l t h t+ t+

r
I
JyQ,

-i -t t-l i t t-l
~ L I ('ll (y ,u ) - 'll (y ,u )) r . (U ) I +
itt ~ t

-i -t t-l i t t-l - -t t-l -
+ L I'll (y ,u ) -'ll (y ,u ) IPoh(il ) Iv((y ,n),(u ,il ))fh(nn)+

i ,h, Q, t t ~ t '" t '"

i t t-l
+ L 'll (y ,u )Poh(il)

i,h,Q, t ~ t

- -t - t-l t t-l
Iv((y,y 1)'(u ,il ))-v((y ,y 1)'(u ,il ))!fh(y l)dy 1+t+ t t+ t t+ t+

r
I
J YQ,

+ 0 ~ nBVm+nB(T-t)Vm+u
m

+0
t t t+l

(3.8)

By the arbitrariness of 0 , 0.7) and 0.8) show that 0.4) holds for

t with U: given by (3.5b). []

Using arguments analogous to those used in the first part of the proof

of Theorem 3.1, it is possible to prove the following

Theorem 3.2.
t t-1

For any t=O, •.. ,T and all y ,u

-T-l t t-l - -t t-l m
Iv(u ; y ,u ) - v(y ,u ) I ~ U

t t

m
where U is given by (3.5).

t []

From Theorems 3.1 and 3.2, (3.5) and Proposition 3.1, we immediately

have the following

Corollary 3.1

-T-l mIv (u ) - v I ~ 2U
o

where Urn can be obtained using 0.5). Furthermore Urn ->- ° as m->- 00.

o 0

[]
-T-l

Remark: Corollary 3.1 shows convergence of v(u ) to v. By suitably modi-

fying Lemma 3.2 and Proposition 3.1, we could obtain an upper bound for
-T-l

Iv(u )-vl. However, this bound would depend on L in 0.2) which, by



145

(1.6), is in general very large so that the bound would not be sharp.

3.2 Computation of the approximating value

As pointed out in the final remark of the proceeding subsection, our

approximation is not particularly effective for the actual determination of

£-optimal controls. However, the next proposition shows that our procedure
-T-l

allows the explicit computation of the value v(u ), which provides further

information on the quality of the suboptimal control {~ }.
t

Proposition 3.2. For any t=O, ..• ,T we have

-T-l t -t-l i t -t-l i-t
v(u ;y ,u ) = L TI (y ,u )p (y )
tit

(3.9)

-T-l t -t-l t-l
E{v(u ;y ,u )Iy }

t

i t-l -t-2 i -t-l
~ TI

t
_

1
(y ,u )6 (y ) (3.10)

P
i(y-t) i -t-lwhere and 6 (y ) (i = 1, .•. ,n) are defined recursively by

b.
~

i -t-l
6 (y )

i -t-l
P (y )

-
m n - -t-l -t-2 - j -t-l
L L P .. (u l(y ,u »)of.(llh)P (y ,llh)

h=l j=l ~J t- J

- -t-l -t-2 i -t-l
r.(u l(y ,u )+6 (y )
~ t-

(3.11a)

(3. lIb)

(3.11 c)

• l/IzTI

Proof: The proof proceeds by backward induction. We have

T -T-l i T -T-l
v(y ,u ) = ~ TIT(y ,u )b i

T -T-l T-l i T -T-l T-l
E{v(y ,u ) Iy } = L b.E{TI (y ,u )Iy }

i ~ T

r j T-l -T-2 -
Lb. Ir (TI (y ,u ) ,y ,u ) •
i ~J T-l T T-l

j T-l -T-2 -
L TI T_ 1 (y ,u )Pjh(uT_l)fh(YT)dYT

j ,h

(3.12)

(3.13)
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Equations (3.12) and (3.13) show that (3.9) and (3.10) hold t=T with
i -T i -T-l

P (y ) and S (y ) given by (3.11a) and (3.11b).

Assume now that (3.9) and (3.10) hold for t+l. Then we have

-T-l t -t-l i t -t-l - -t -t-l
v(u

t
;y ,u ) = Z n (y ,u )r.(u (y ,u » +

i t ~ t

-T-l t+l -t t
+ E{v(u ;y ,u Iy } =

t+l

i t -t-l - -t -t-l i -t
Zn(y,u )(r.(u(y,u »+S(y»
i t ~ t

Furthermore

-T-l t+l -t t
E{v(u ;y ,u) Iy }

t+l

(3.14)

Z
jh

'" j t -t-l
L. n (y ,u ) Z
j t i ,£

- - -t
P .. (u )f.(n)p.(y ,no)
J~ t ~ '" ~ '"

0.15)

o

Equations (3.14) and (3.15) show that (3.9) and (3.10) hold for t with
i -t i -t-l

P (y ) and S (y ) given by (3.11b) and (3.11c).

Notice that, since p .. (u) and f.(n ) are already available from the
~J J h

computations leading to the optimal control {~ } for the approximating
t

problem, Proposition 3.2 immediately provides a recursive algorithm to
-T-l

determine v(u ).
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ON LDUCOGRAPHICAL OPTIMALITY CRITERIA IN
CONTROLLED MARKOV CHAINS

G.!. Mirzashvlli
Mathematical Institute
Tbilisl, USSR

We shall consider a homogeneous Markov chain with a finite set of states S, an

arbitrary set of controls A and a family of transitional probabilities

P = !P:s': ~s' ~ 0, L: P:s ' = 1, S ,s' €oS ,a €oA I
s'

The set of all admissible strategies will be denoted by 7T, and the set of stationary (Mar

kov, non-randomized, homogeneous) strategies by F.

We shall first consider one possible approach, which leads to the consideration of

a control problem with an infinite horizon and different optimality criteria.

The simplest problem is a control problem with a discounted optimality criterion:

DO

R'[(s) = E; L: (1- 6)n T(Sn ,an) , S €oS
n=O

which can be written in vector form as

DO

R'[=En L: (1-6)n T(sn,an )
n=O

where T(S, a) is a bounded numerical function, S €oS, a €o A; the E;. S €oS, are

mathematical expectations with respect to measures P s
n, S €oS, 7T En, on the space of

histories of the controlled chain (sO,aO,sl.al •... , sn ,an •... ) starting from

So = S, S €oS, and generated by the strategies 7T En and the family P. The factor

(1 - 6), 0 < 6 ~ 1, represents the discounting coefficient. where 6 can be interpreted

as the probability of a break at the k-th step unless there has been a break earlier. If

T denotes the time of such a break. distributed geometrically with parameter 6, then

T

RF = En L: T(Sn ,an)
n=O

This expression shows that a control problem with a discounted optimality criterion Is
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not in fact a problem with an infinite control horizon. The control horizon becomes

infinite if () = O. but in this case the criterion Rr in general becomes indefinite. This

was the reason for the development of two approaches to the study of problems with
~

infinite control horizons: one involving an additive criterion En L: T(Sn' an) assum
n=O

ing not only the existence of cost but also other conditions. and the other using a func

tion of average expected cost per unit time

__ 1 N-l

lim N En L: T(Sn' an)
N..... n=O

(a lower limit is also possible) assuming different conditions for the chain and the sets

SandA.

An approach generalizing these two would imply a generalized understanding of

summation in the additive optimality criterion. and the replacement of the usual sum by

a generalized Cesiko or Abelian sum of a different order. The average expected cost

per unit time is a Cesiko sum of order -1 (the Cesi1ro limit) and the additive criterion,

when it is well-defined, coincides with the Ces~ro or Abelian sum of order zero. Thus

two classes of (k ,E)-optimality criterion (k = -1,0.1, ... , E ~ 0) can be suggested:

the Abelian criterion and the Ces~ro one.

Definition 1. The strategy 7T E n is (k, E)-optimal with respect to Rt , k = -1,0,1

E ~ O. if for every 7T' E n we have

lim (RGic(s) -RGt(s» ~ E. S ES
~ .... _ I ,

where

~

RE,t(s)=E;' L: {)-t(l-{)nT(sn,an),O<{)~l

n=O

Definition 2. The strategy 7T E n is (k, E)-optimal with respect to Vt , k = 1.0.1

E ~ O. if for every 7T' E n we have

where

nj;-l
L: T(Snj;' ant

nj;=O

We shall call (k ,a)-optimal strategies k-optimal. k = 1.0,1 •.... Replacing upper limits

by lower limits gives the criteria Bt and Yt , k =1,0.1 ,. ... The criteria Rt • k = -1,0,1
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, ... , are considered, for instance. in [1,2] for finite S and A, and In [3] for finite S

and arbitrary A. The criterion Vowas proposed by Veinott in [2].

In addition to providing a generalized understanding of summation, the new cri

teria also have another interesting property: they enable us to define the optimal

strategy without introducing the concept of cost. This involves some inconvenience 

in particular, control probiems invoiving the above criteria cannot be solved using

traditional techniques. i.e., by means of Bellman's equation.

Such difficulties can be partly overcome by the following expansion of R{ ,f E: F,

in a Laurent series in t.he neighborhood of 6 = 0:

R{ = f 6"p{
"=-1

(1)

(see [3]). The coefficients (Pl>"~-1 come from the Markov chain transition matrix pI

obtained using the strategy f E: F and the function T(S ,a); P!...1 = pi or! is the average

expected cost per unit time, P6 = HI T/, Plt = (-l)m (pI H/)m HI or! . m = 1,2 ,... . Here

or! is the coiumn vector (T(S ,f(s»)s ES. and pi and HI are, respectively, the marix of

stationary probabilities and the basis matrix corresponding to pi and related to it in

the following manner:

Expansion (1) shows that, at least in a class of stationary strategies, the optimal stra

tegy with respect to R" or D". le = 1,0,1 ,... (R" and D" coincide in F) is to sequentially

(lexicographically) optimize the components in the sequence (plt)-h;;m~. To make our

statements more precise we shall need the following definitions.

Definition 3. We say that a sequence of S-dimenslonal vectors (Xm )m~-1 is lexico

graphically larger than a sequence of S-dimensional vectors (Ym )m~-1' i.e .. (Xm )m~-1'

(Ym)m~-1' if for every S E: S the first non-zero element of the sequence

(Xm (s) - Ym (s »m~-1 is positive.

Definition 4. Let !(~)m"-1' i E: II be a set of sequences of S-dimensional vectors.

Let ~~ (~)m"-1 be the supremum with respect to lexicographical ordering - this is a

sequence of S-dimensional vectors (~)m"-1' the s-th components of which are recur

sively defined by the following relation:

~(S) = inf !sup~ (s): Xf<S) ~ X~(s) - I: , -lsle Sm S -11
tOOO
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Definition 5. The strategy 7T' E IT which corresponds to a set of sequences of S

dimensional vectors (X;::) -l~,s;t depending on strategies 7T E IT, is (R, e)-optimal with

respect to the lexicographical optimality criterion if for every 7T' E IT

and if for some s E S and some 7T' E n

so that

The above statement can now be reformulated as a theorem, making use of the above

definitions.

THEOREM: 1. The optimality criteria Ht , lit, Vt , Yt and lexicographical optimality

criterion Pt, k = -1,0,1 , ... , are strongly equivalent in F, which implies that for

an arbitrary e ~ 0, f 1 ' f 2 E F and k = -1,0,1 •... , the following assertions are

equivalent:

and if (p~l(S» -l~,s;t -1 =(p~2(S» -l,s;m,s;t -1' then pI \s) ~ p{ 2(S) - e;

(b) lim (R{~(s) -R{~(s» ~ -e ,s ES;
6 -~O I I

The equivalence of (a) and (b) follows from expansion (1) and (a) and (c) are equivalent

by virtue of the following lemma, which gives an analogue of expansion (1) for vt t,

f E F.

LEMMA 1. For any integer-valued k ~ 1 and f E F we have

__1 t [N + k - m] Ivl" p + a (1) , N -+ 00N,t - N L.... k - m + 1 m
m=-l

Proof. For K =-1, equation (2) implies that

(2)

For k =a the proof of (2) follows from the expression P6 =HI TI and the definition of

HI. Indeed,
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1 N-1 n 1 N+l
Pd(s) = lim E[ N L L [T(sk ,lJ.k) -P[l(S)] = lim [vk,o(s) - -N -2- P[l(S)]

N ~~ n =0 k =0 N ~~

1 rN] rN + 11
Hence V[,o (s) = N [ll Jpi(s) + l 2 J P£l (s)] + 0 (1) , N --> 00. An analogous proof

can be constructed for K ~ 1.

When investigating control problems with the lexicographical optimality criterion

Pk ' k = -1,0,1 , ... , it is possible to use the lexicographical version of Bellman's

equation

(Zm)-l~~ =f~T{(ZmL1~msJc ,k = -1,0,1, ... ,

where the operator T{, k = -1,0,1 , ... , transforms the sequence of vectors

(Zm) -l~~k into a sequence of vectors of the following form:

The solution of this equation is the cost sup (P~L1~~k and, in general, the problem
Ie'

can be solved in the usual way (see [3,4]). Thus we have solved the problem of finding

the optimal strategy in classF for the criteriaBk' Rk , Yk , Vk ' k = -1,0,1 ,....

It would be expected that the problem of finding a stationary strategy which is

(k , ~ )-optimal in the class of all strategies IT for the criteria Ek' Rk , Yk' Vk ,

k = -1,0,1 ... would be facilitated by considering control problems in which the lexi

cographical optimality criterion Pk' k = -1,0,1 .... is generalized to the class of gen

eral strategies IT, and by establishing the relation between them.

In order to do this we shall give four different expressions for the sequence

(P~)m;e-1' f EF. which coincide with each other in the class F (for convenience, how

ever, they are denoted by different symbols).

1 k -1 [N + k - m]
a.!'l = lim vt -1 ' a{ = lim (V[ k - N L k _ m + 1 ~), k <!: °

N .... gg I N .... gg I m=-l

~

B~l = lim EI 6 L: (1 - 6)n T(Sn ' lJ.n )
6 .... 1;1:) n =0

1 N-1
r:1I-1' -E/" ( )'" -1 - 1m N L. T Sn ' lJ.n

N··~ n=O
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B{(s) =limE! f: -(1-6)nB{_1(S,sn+1) , Ie ~1
6~0 n =0

1 N-l n
f3{(s) = lim - E! 2: 2: - f3l-1(S ,sm+1) , Ie ~ 1

N~~ N n =0 m =0

where

and B{(s ,sn+l)' f3{(s ,sn+l)' Ie ~ 0, n ~ 0, are defined in an analogous way. In the

class of general strategies n each of the above expressions has two forms - one with

upper and the other with lower limits. The resulting eight sequences of functions of

the criteria ~;:)m~-lo (;r,;:)m~-l' (ii~)m~-l' (g~)m~-l' (B;:)m~-l' (J1;:)m~-lo

(~';:)m~-l' (P';;')m~-l will generally be different. They define (see Definition 5) the

desired lexicographical optimality criterion and together with the criteria !Sic' Ric ' Ylc '

Vic' Ie =1,0,1 •... produce the combination of optimality criteria that we are interested

in:

(3)

We shall now partially order the criteria (3).

Definition 6. We say that the optimality criterion X is stronger than the optimality

criterion Y, Le., X > Y, if for an arbitrary l: > 0 a stationary strategy which is £

optimal with respect to X is also c;-optimal with respect to Y.

Definition 7. The optimality criteria X and Yare equivalent, Le., X ~ Y, jf X > Yand

Y >X hold simultaneously.

THEOREM 2. The optimality criteria (3) have the following partial ord.er (as speci

fied. in Definition 6):

(4)

(5)

(6)

(7)



The proof of Theorem 2 is rather long, so we shaLL only glve an outline of the proof

and point out the main steps. The asserllons of the theorem emerge from the following

sequence of relations:

(a) £1t <Bt <Rt <At;

(b) Ot <lit <St <Rt ;

(c) 1!t <Yt <Vt < at;

(d) l't <~t < ~t <Vt ;

(e) fJt <lJt <Bt <~t·

The "Abelian" criteria are compared in (a) and (b), and the "Ces~ro" criteria in (c) and

(d). Relallon (e) allows us to compare these different sets of criteria with each other.

The main aim with regard to (a), (b), (c), (d) is to obtain analogues of the series expan

sions (1) and (2) for R;, V';,t. Note that these analogues are interesllng in themselves.

since for non-stallonary strategies the expansion in series of R; is not a consequence

of matrix theory. One such analogue has the following form:

t t-1
L: 6mA::(s) + 6t A(6) ~R[(s) ~ L: 6mlJ"::'(s) + 6tlJtfT,6(s) , 6-+0

m=-1 m=-1

where A(6) -+ 0 as 6 -+ 0, Lim B t
fT,6 = Bt, Ie = -1,0,1 ..... The lefl-hand side of this

6-+0-- --

inequality can easily be proved using the deflnillon of the sequence e&;:)m;;"-1; the

right-hand side is obtained if the inequality

n~....£

L: T(sn~_li' an~--1!)
n~--1!=O

is used in the deflnillon of lJt. This inequality may be proved by induction. Finally, (e)

may be proved by means of well-known inequaLilies relating Ces~ro and Abelian sums

(see [5]).

Theorems 1 and 2 lead to the foLLowing condillonal theorem:

THEOREM: 3. If a stationary strategy e:z:ists which is £-optimal with respect to

some criterion from (3), for any £ > 0, then this criterion is equivalent to all cri

teria wealeer than itself.

Theorem 3 permits us to achieve our aim. In what follows we assume that A is a

compact subset of a Polish space and that the standard conllnuity conditions hold. The

following lemma is proved in [3] by applying lexicographical Bellman equallon tech

niques:

LEM:JU. 2. Let the following hold:
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(C)

Fie -1 =If E: F: (pt,. >-1..:.mSi. -1 =(p~ L 1",mSi. -d . k =-1,0 •... , in non-empty

Then rIm -1 is a set of (m -l)-optimal strategies with respect to A". -1' 0 :S m :S k.

It follows directly from Lemma 2 that under the above conditions

(P~L1$R..:./e = sup (A,:>-1",mSi. . k = -1.0.1 ....
1TETI

(8)

The existence of (k. t:)-optimal stationary strategies with respect to Ale'

k = -1,0.1 •... , t: > 0, follows in turn from (8) under conditions (C). And. finally.

Theorem 3 makes it possible to state the following result:

THEOREM: 4. Under conditions (C), all the criteria (4), (5) are equivalent. and

there exists a (k. t:)-optimal stationary strategy k =-1,0.1 •... , t: > 0, with

respect to each of them.

The following theorem also holds.

THEOREM: 5. Under the condition

(9)

all the criteria (4). (5) are equivalent, and there exists a (k ,t:)-optimal stationary

strategy with respect to each of them for all integer-valued k ~ -1.

Condition (9). which is stronger than (C), is at the same time weaker than the uni

form Markov condition (positiveness of the matrix (pf)n for sufficiently large nand

all f E: F) often imposed on the controlled chain.

Fainberg's results [6] show that there exists an t:-optimal stationary strategy with

respect to criterion Ci -1 for any t: > 0, so that. by Theorem 3. all (-l)-criteria from (3)

are equivalent. Using the martingale approach to controlled Markov chains. it can be

shown that under condition (C) equation (8) holds for the criterion ao' This implies

that all O-criteria from (3) are equivalent and that for each of them (including Vo) an

t:-optimal stationary strategy exists.

We are interested in the existence of t:-optlmal stationary strategies (t: > 0) for

criteria (3). It turns out that under conditions (C) such strategies exist for the cri

teria (4). (5) and also for the criteria (6). (7) with k = -1.0. It is hoped that this is

also the case for the criteria (6). (7) with k > O. However the conditions cannot be

Improved because there are well-known examples showing that if these conditions are
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not satisfied then l:-optlmal stationary strategies may not exist, e.g., for the criterion

R -1' The equivalence of the criteria (in terms of Definition 6) has been actively used

in the course of the proof.

It is possible to give a more general definition of the equivalence of the criteria,

in which stationary strategies are replaced by more general strategies, but this is not

necessary for our purposes.

When there are no l:-optimal stationary strategies (e.g., if F is non-compact) a

more general equivalence definition should be used and one should consider l:-optlmal

non-stationary (e.g., Markov) strategies.

Among various papers dealing with the equivalence of criteria we should mention

[7], where the equivalence of Ric and Vic k = -1,0,1 , ... is proved, in a broad sense, for

finite S and A. A similar result for Voand Ro (predicted by Veinott) was obtained ear

lier in [8]. And, finally, the equivalence of the same criteria in a class of Markov stra

tegies is proved in [9] for countable S with restrictions on the chain, a result which

leads, amon~ other things, to our condition (9).
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CANONICAL CORRELATIONS, HANKEL OPERATORS AND MARKOVIAN

REPRESENTATIONS OF MULTIVARIATE STATIONARY GAUSSIAN PROCESSES

Michele pavon 1

LADSEB-CNR, Corso Stati Uniti 4, 35020 Padova, Italy

1. INTRODUCTION

Let Y= {y(k);k EZ} be a centered, real or complex, m-dimensional Gaussian

process. We assume that y is stationary and regular /Roz/. Then y admits the

spectral representation

y(k) =fTI eiktdy(t)
-TI

where dy is a vector orthogonal stochastic measure satisfying

E {dydy ....}=(2n )-I f (eit)dt,

f(.) being the spectral density matrix-function and star denoting transpo

sition plus conjugation. For the sake of simplicity we suppose that y is

regular of full rank, namely that f has rank m a.e. on the unit circle T.

In the case when f is a matrix of rational functions y admits finite dimen-

sional Markovian representations such as

(1. a)

(lob)

x(k+l) = Ax(k)+Bu(k) ,

y(k) = Cx(k)+Du(k),

where u is normalized Gaussian white noise sequence of dimension p~m and

the eigenvalues of A are in the unit disk D. The stationary Markov process

x, which is required to be of smallest possible dimension, is called the

state process of the model (1). The Markovian representation problem con

sists in characterizing all models (1) given y and, possibly, an exogenous

process (see /LPP/-/Ruc-2/ and references therein).

The purpose of this paper is to study the dependence between the future of

y and the past of a noise u driving one of its minimal Markovian represen

tations. We do not restrict ourselves to the rational case, however, in

view of the abstract theory covering infinite-dimensional Markovian repre

sentation developed by Lindquist-Picci /LiP/ and Ruckebusch /Ruc-l/.

This research was conducted at the Institut fur Mathematische Stochastik,

Universitat Hamburg, Hamburg, West Germany with support provided by an

Alexander von Humboldt-Stiftung fellowship.



158

As is well known, the problem of characterizing the dependence

of the future at time k> 0 {y(k) ,y(k+l), •..} of a stationary process

yon its past at time zero {y(-l),y(-2), .•. } in terms of its spec

tral measure Ilas.received considerable attention in the past because

of its importance for the prediction and ergodic theories of Gaussian

processes, se /HeS-1/, /HeS-2/, /Yag/, /Roz/. /DyM/, /PeK/; /JeB /

/JeB/ Our problem turns out to be a twofold generalization of the

above since we consider mul tivariable processes and we recover the

classical problem in the case when u=u the innovations of y. This

because for Gaussian processes the most interesting types of depen

dence can all be characterized in terms of the corresponding Gaussian

spaces /Nev/ and the spaces induced by the past of u and the past of

y coincide.

Our motivation for considering such a generalization ~f the

classical problem is manyfold. On the one hand we like to extract

information on a particular representation of .Y which may prove use~·

ful when we need to approximate such a representation by low-order

models /JoH/-/Pav/ as well as when we try to identify the particular

representation at hand from input-output data as in /Aka, Section 1/.

Indeed, if u are the normalized innovations of a process z and we can

estimate the spectrum of z, the spectrum of y and the canonical cor

relati~ coefficients induced by past of z - future of y, our results

provide information of the u driven Markovian representation of y. On

the other hand, if the past of z represents the information available

to us in order to predict the future of y, our analysis permits to

characterize the best predictable functiona.Is of the future of y /Vag/

and provides a guideline for the approximate prediction problem, see

Section 4. Finally we would like to point out that, when specialized

to the past of y - future of y dependel"'.ce, our results appear, to the

best of our knowledge, as the first function-theoretic characteriza-
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tions of the classes of multivariable stationary Gausslan processes

satisfying certain regularity conditions among which Rosenblatt's ce-

lebrated stro~ mlxing conditio". IRosl (see Corollary 1), The deri-

vation relies on some results from vectorial Hankel operator-theory

I AAkl '/Pagl .

The outline of the paper goes as follows. In the next Section

we recall some defini tions and basic results from Markovian repre-

sentation theory. In Section 3 we describe the past of u - future

of y dependence in terms of certain (generalized) canonical correla-

tion coefficients. The various conditions are then rephrased in Sec_

tion 4 in terms of Hankel operators and their symbols.

The rational spectral density case has been studied in IPav/.

2. BACKGROUND MATERIAL

2 mxp
We denote by L the Hilber~ space of C valued, measurable func-mxp

t " Fdf" d IIF(eit)11lons e lne on T such that is square integrable on T,

where I ~(eit)1 f is the largest eigenvalue of F(e
it

)*F(e
it

). We de-

f " h d 1 2 (H-2 ) a" the 2lne t e~ c ass H _ subspace of L mxp of all
mxp mxp

functions whose Fourier coefficients of negative (positive) index va-

nish. Every function in H
2

mxp (H2
) possesses an al'la1ytic extensionmxp

into D (into z > 1) from which it may be recovered by strong non

2 2
tangential limits IFuh/. When p=l we simply write L m ,H m" etc. A

function FE H (H ) is called outer (conJuga~e outer or minimum
mxm mxm

{ . 2} 2" -2-2phase )if Fh, h e: H m = H m ( { Fh; h e: H rJ = H m10

Under the present assumptIons the spectral density f admits

factorizations of the form

( 2)
't it it·

feel ) = Wee )W(e )

-2
where ~I is mxp, p> m, and stable, Le. W e: H Among such faotors

t:: --- mxp

there exists a conjugate outer mxm factor W_ which is unique up to

multiplication01lthe right by a constant unitary matrix IHel, p.122/.
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Then the m-dimensional process u defined by

(3)
TI ikt it -1

u_(k) = f e VJ_(e ) dy(t)
_ TI

is the innovations process of y satisfying H- (u) Y
k

for all k.
k -

where H:(U) and Y: are the Gaussian spaces induced by the components

of {u (j ) ; j < \<} and { y (j) ; j.< k} • respectively. Let us also introduce

+ +
the spaces H

k
(u) •Yk' H(u) and Y induced by the components of{ u (j) ;

j~k} .{y(j);j~k}.{u(k);kEZ}and {y(k)j kEZ}, respectively,

When"k = 0 we delete the subscript. We assume that y is regular also

in the reverse time direction which amounts to ny"' = {oJ Then f
k£o k

(2)
2

also admits factorizations where W£H mXP' Among these there ex-

ists an essentially unique mxm outer factor 'II (the notation comes
+

from /LiP/) . Then the llor'mallzed backward innovations u+ of yare

given by

(4)

and satisfy

- (\ f1T ikt- ( it)-l A( )
u+,kl = '_71 e W+ e . dy t

(5 ) Y'"
k

k E Z •

Finally we assume that y is a strictly noncyclic process. This is

equivalent to the fact that W+ has a meromorphic pseudocontinuation

of bounded type to the outside of the unit disk. see /ru c-2/ where

further information on the significance of this assumption may be

found.

Let u be a p-dimensional normalized white noise and W a stable

mxp spectral factor such that

(6 )

it
where W(e )

'"
y(k) '" .1: W;u(k-j),

J=o J

~ -i,jt
I.. Wje is the Fourier representation of 11'. Let X

';=0
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be the Gaussian space induced by the orthogonal projections of ele

ments of y+ onto H (u). Then X induces a Markovian representation of

y in the following sense. Let U be the unitary

shifts the coordinates, i.e. U~r(k)) = ur(k+l)

operator on H(u) which

. k
and let X

k
= U (X).

Then we have the following conditIonal orthogonality properties:

(i) ( v Xk ) 1 ( v Xk) I X
k ~o k~o

(ii ) X ,

/Ruc-l/ where V stands for closed sum.

Condi tions (I) and (ii.l may be shown -t;:) be the !"latllral infin1 -CE: di-

mensional counterparts of (1) where X plays the role afx (01 /kuc·l/.

Under the present assumptions X is regular, coregular and observable

/Ruc-2/ . We shall also assume that it is minImal, i" e. that there

exists no proper closed subspace of X which satisfies (i) and (ii).

we then have a true infInite-dimensional coun"Cerpart of (1). We

shall study the problem of characterizIng the dependence between H (u)

and Yk, k ~ 0 in terms of W. It is immediate that the deDendence of

Y~ on H-(u) only occurs through the state X so that equIvalently we

+study the dependence of Yk on X.

3. CANONICAL CORRELATIONS.

Consider two separable Gaussian spaces HI and H2 of random va

riables defined on a common probability space and let K:=H1 vH2 . Let

B be the operator P2Pl P2 mapping K into K where PI (P2 ) is the ortho-

gonal projection in K onto Hl (H2 ). Clearly B is a self-adjoint, po-
.1

si tive contraction. The square roots 0i of its (at most countably

many) nonzero eigenvalues of finite multiplicity where

l~ cro~ 01 ~ ... I are called the canonical_ correlation coefficients of

the pair (H,. H2 ) . The square root 0" of the supremum of the es~en

~ia!. spectrum of B /GoK/ is called the essential. ~orr~.!.-atlon ~oeffi-

cient. It IS readily seen thae our definition agrees with the classi-
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cal one /Kul/ in the case when H
l

and H
2

are finite dimensional. The

first canonical coefficient 00 =! IBII 2 is called the maximal corre-

lation coefficient of H
l

and H
2

.

Let us consider the family of pairs of Gaussian spaces (Hl ,H2 (k)),

k~ o. Such a family is called completely regular i ~ the correspond

ing sequence {a (k)} tends to zero as k tends to infini ty. Because
o

of the Gaussian assumption a completely regular family satisfies

Rosenblatt's strong,mixing condition /Roz, p.186/ which has been

successfully applied to limit theorems for weakly dependent random

variables /Ros/. /Roz, p.191/.

In the case when B is compact we define the mutual information

(7) logdet (I-B) -~ r
i=o

2log(l-Oi ).

In v iew of the results of Gelfand and Yaglom /GeY/ our defini-

tion is seen to be consistent with the usual one. Moreover we have

that I(HI ,H2 ) is finite if and only if B is a strict contraction with

fini te trace. We say that (HI" H2 (k) ) ,k ~ 0, is informationally regu

lar if I(H
I

,H
2

(k))+0 as k+ co. This type of regularity is stronger

than complete regulari ty and equivalent to Absolute regulari ty. see

IIbR, Chapter IV/.

Proposition 1. The family (HI ,H
2

(k)) is completely regular if and

only if k~oH2(k) = to} and B corresponding to (H
I

,H
2

(0») is compact.

The family (H
I

,H
2

(k)) is informationally regular if and only if it is

completely regular and B has finite trace.

Proof. A proof may easily be constructed along the same lines as in

Theorems 3 and 6 in /IbR, Chapter IV/. I,
I'

Let u and W be 2S at the end 0f Section 2. We shall denote by

B
k

the B operators corresponding ~o (H-(V),y~).
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4. GENERALIZED PAST-FUTURE DEPENDENCE VIA HANKEL OPERATORS.

Let FE L and denote by P+ the orthogonal projection in L2
pxm p

onto H2 (Riesz projection), Then the Hankel operator with symbol Fp

denoted by H
F

is defined as a bounded operator from H2m into L2 eH2
p p

by

Let

2
HF(h):= (I-P.)(Fh),h EH m'

where I is the identity o~ L
2

p , see /AAK/. , it \ 00 F ikt
Fl e I ~ L k e

K=-oo
be the Fourier representation of F. Then it is readily seen that H

F
2 mis unitarily equivalent to the operator induced on l+(C ) by the infi-

nite block-Hankel matrix H = (F )oc
F -r-s+l L,s=l

According to a gene-

ralization of Nehari's theorem the norm of H~ satisfies

(8)

/AAK/.

Let H
1

,n
2

be Hilbert spaces and A:H
1

+ H
2

be a linear bounded ooe

rator. Then the singular numbers sn(A), n~ 0, ar.e defined by

s (A) = inf{1 IA-ci j;C:H + H , rank C_~ nl.
r . 1 2

When A is compact {s (A), n ~ 0 J coincide with the eigenvalues of
n -

(A*A)i /PeK! (here star denotes adjoint).

Let x EH(u). Then x admits a representation

(9) x 11 ~ ( i L) I d" ' t)J x e u(.,
-'1

where dO is the vec~or StOCh9SttC measure of u and prime denote~

?
transposition. We deflne the unitary operator T

u
from H(u) ~o L-p b~

2
T 1(x) = X. Similarly we define T;-; from V -co L 'T1' We 2~e now ready

to establish a strict connection between the operators B
k

and certaln

Hankel operators WhJ.ct! allow ~lS to descrlbe tne dependence betweeL

H (u) and Y ~ In an effective fashlon

Lemma 1 Let: P and P~ be the orthogonal projections lX! K=H~ (u)'iV\.
1'.

onto H-(u) ana +
Y I";"' respectlvely. rhen
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( 10)
- -'-

P P
k

-1 -k
(T) H k ,- -1 P z T-

u z (W'i(W') + u
+ -'-

thatseewe

+ -1 k -kand P =(T_) z P z Tu-'
k u + +

T

-1
First observe that P = (T) (I-P)T

u + u
- -1

and x = T- (x). Since du+ W WdG
u+ +

the column function x as multiplication on the left
_ -1

by (W')(W:) - and the conclusion follows. /1

Next let x E Y
-1

T (T-) acts on
u u+

Proof.

_ _1

Let us denote by G the function (W' )(W') - which has norm one
+

a. e. on T. As observed by S. Mi tter /Mi t/ ,the function G may be

viewed as a scattering matrix according to the abstract LaX-Phillips

theory /LaP/, see also /AdA/.

- +
Theorem 1 The spaces H (u) and Y

k
are at a positive ang~e, i.e,

o (k) < 1, if and only if one of the following equivalent conditions
o

is verified:

(i)

(11 )

Proof. The result follows at once from (10) and (8)"//

I'his 1~e:3u1t may be viewed, in the. case 1M ~ W_, as a generaliza-

tion of some results of Helson and Szegb, and He1son and Sarason,

/HeS-l/, /HeS-2/. which are, however, phrased in terms of the spec-

tra1 density.

Theorem 2 Let { O"i}' i ~ 0 be the canonical correlation coefficients
- +

of (H (u),Y
k

). Then

(l1a;

~ lIb 1

where II· II denotes the essentlal
€

ncrrn of an operator;

stance from the closed subspace of compact operators.
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Proof. Since T
u

-k
and z T

u+
are unitary operators we get from (10)

that B
k

and (H k )*H k are unitarily equivalent. 1/
z G z G

?
Let us assume that (Jo(k)- is an eigenvalue of B

k
of finite multi-

plici ty. Then it is possible to characterize the best predictabl~

ponding

-1
T

u+

+. -
functionals /Yag/, /JeB-l/ on Y

k
glven H (u) introducing the canoni-

cal components corresponding to 0 (k). We describe the procedure fo~
o

2
k = o. Let p e:H m be an eigenvector of norm one for (HG)*H

G
corres-

2 -1
to the eigenvalue 0c and let q:= (0

0
) HG(p). Also let n =

~p)and I;=T-
l

rq). Then r, sy·:·,.; <:H-(t.:), !In!!=!I.;li=l and
u

(12) E {nO (5)
C

- -1
the latter following immediately from the fact that T (n)=W'(W')p .

u +

The elements nand .; are called canonical variables corresponding

to the canonical correlation coefficient 0 .
o

It is immediate that n

is a best predictable functional on the basis of H-(u) whiCh is uni-

mul tiplici tyhas
;:

PI corresponding ~o 0c and orthogonal

another pair of canonical variables

atherwiseone.

to p one gets in the same way

2
que if and only if a

c

with another unit eigenvector

corresponding to 0
0

, The same procedure may then be applied to 0
1
,°

2
and so on until, after obtaining a finite or infinite number of pairs

of canonical variables one reaches a 00 where the procedure stops.

Further details may be found in /JeB/. Notice that the canonical

variables .; so obtained belong to X and that they allow to solve the

approximate prediction problem where one tries to optimally predict

the elements of Y+ on the basis of a preassigned number of elements

in H (u).

In order -~o taKe advantage of 2. resul t fro~ ooerator' tl:!eor.:: .le

now assume that W is mxm. We remark that this lS eauival~nt tG a~sum-

ing that H(u)c:Y, Le. that the Markovian representation lS lnternal

or output induced, see e.g. /Ruc-2/.
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- +
Theorem 3 The family (H (u),V

k
), is completely regular if and only if

(13) G t: (H'" + C (T)),
mxm mxm

where C (T) are the mx~ continuous functions on T.
mxm

formationally regular if and only if

It is also in-

(14)

k=-'"

~ k trace (C * ,~ )<co
k=1 '-k ~-k

ikt
C e

k

Proof. It follo~ls from Proposit1on 1 and Theorf:,m 2 that (H-'(u),Y+ ),
k

k ~o. is completely regular if and only if H
G

1S compact; we now get

condition (13) from a generalization of Hartman's theorem due to Page

/Pag/. It also follows from Proposition 1 and Theorem 2 that the fa-

mily is informationBlly regular if and only if H
G

1S Hilbert-Schmidt.

This property is quickly seen to be equivalent ,0 (14).//

\'Ie now record an important particular case of th<3 above result.

Coroll~ The process y is completely regular (equ1valently it

satisfies the strong mixing condition) if and only if

- -1 co
W+ W c (H + C (T) ) •

mxm mxm

In the case when H is Hilbert-Schmidt with norm less than one
G

the information I(H-(u),Y+) is finite and given by
k

2
10g(1-s,(H k ) ).

1 Z G

The function G also yields some information on the singular va-

lues of H
W

: which, as argued in /Pav/, may be useful in some si tua

tions for the Hankel-norll! Bpproximat1on of Markovian representations.

Theorem 4 Suppose that f £ L
mxm

T!"',en

II fll ~ '" s, (H )
L 1, G

mxm
i= 0,1, ...

The proof is a trivial extension of that of Theorem 5 in /Pav/ and is

therefore omitted.
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THE MAXIlIUlI PRINCIPLE IN STOCHASTIC PROBLEMS
WITH NON-FIXED RANDOM CONTROL TIME

M.T. Saksonov
Tadjik Pedgogical Institute
Dushanbe, USSR

In this paper we shall consider the problem of controlling strong solutions of a

system of stochastic differential equations under finite-dimensional constraints. There

are two control parameters in the problem: the control itself, which Is an adapted

measurable function with values in the given set, and a random stopping time.

Our final result is that one additional optimality condition appears in the system of

necessary condItions [1]: a HamiltonIan function is equal to zero at the end of the

optimal control time.

Let a one-dimensional Wiener process (w t (Ft » be defined on a complete probabil

Ity space (0, F, P). We shall assume that F t =Fr uN, Fr =ulw,. , s :S t I. and that N is

a family of sets of P-zero measure in )0'. Consider the following control problem:

(1)

(Z)

(3)

(4)

where Tc is a positive number. The control Ut is a progressively measurable function

taking values in U. The problem is to minimize a functional (1) on the set of values

(x t ,ut ' T) satisfying conditions (Z)-(4), where u t Is a control and T is a stopping time

with respect to Ft.

Remark 1. In our case all stopping times are predictable lZ].

We shall assume that the functions f , u are continuous with respect to the
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aggregate variable (t ,x ,u), uniformly continuous In u, adapted to "t and continu

ously differentiable In x. Then there exists a constant K > a such that

Ilt;1I + lIu~ll,s; K , Iltll + Iloll,s; K(l + Ilxll)

Moreover, the function Q = (Qo, Ql) Is continuously differentiable. C is a closed con

vex set and U is a compact set. Let H(t ,p ,x, u) = <p ,f (t ,x ,u », where p E: R n

and <, > denotes a scalar product.

THEOREM 1. Let (xi, ui ' T'), a < T' < Tc ' be the solution of (1)-(4) ana our

assumptions be satisfiea. Then there exist functions Pt ,ht ana a vector

X = (Xo, Xl) such that

(a) Xo~ a, Xl is normal to C at the point Ql(Ex;"), Xl + IIxI12 = 1, Esup Ifpt"S < 00, V'
o<t <T.

T.

s > 0, EJ h t
2dt < 00. These functions are measurable ana aaaptea with respect to

o
"t ana are the solutions of the inverse stochastic equation

The formula for solutions of this equation is gi.ven in [1].

(b) sup H(t ,Pt ,xi,u) =H(t ,Pt ,x;,ui) ,l xp a.s. if t < T'.
uEU

(c) The function H(t ,Pt ,xi ,ut') is continuous in t on [a,T'] if the appropriate

moaification ofut has been chosen, ana moreover H(T' ,PT' ,uT') = a.

Some of our assumptions are not essential to prove the theorem. It is possible to

derive analogous results for the m-dimenslonal Wiener process, and moreover to show

that there exist some vector coordinates for which the result does not require growth

conditions or uniformly Lipschitz conditions.

The theorem can be proved in three stages. The first stage involves the construc

tion and investigation of sequences of auxiliary problems. The second Is a proof of the

second assertion of the theorem, while the third is a proof of the final assertion of the

t.hporem.

It is obvious that an optimal control cannot be unique because it Is arbitrary if

t > T' (w). Thus, for the sake of convenience, we shall assume that

u' (t ,w) = u' (2T - t ,w) if t > T' (w).

In accordance with the above, let T ~ , ... , T~ ..• be a sequence of stopping

times predicting T'. Let T';' be fixed. Consider problem (1)-(4) with (4) replaced by

(4m):

(4m)
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where Ur = Uif t < T~; ur = Ut' if t > T~, Obviously (Xt' , Ut' , T') is also a solution to

t.his problem. Let. d[(u 1('),T1),(u;::('),T;::)]= lXPl(t,c.l):ul(c.l)~ ul(c.l)l+

E IT 1 -T;::I be a met.rlc on t.he set. of cont.rol paramet.ers of t.he problem (1)-(4m).

Wit.hout. significantly complicating t.he proof in [3], It. Is easy t.o see t.hat. t.hls leads t.o a

Polish space, which we shall denot.e by X. This will be needed In t.he next. t.heorem [3].

THEOREM 2 (Ekeland). Let V be a. Polish space with metric d, and F: V --. R 1 be a

continuous function. For u °E: V and lO > 0, let Inf F ,s; F(u 0) ,s; inf F + lO' Then for
V V

all IC >0 there exists a vO E: V such that F(vo) <F(u 0); d (u 0, vo) < IC, F(v) ~

F(vo) _..!.. d(vo,v); '<;Iv E: V.
IC

Take cj = I<x o , x) E: R L +1, xo,s; Qo(Exj.,) - 1/ j • x E: C I and let.

0j(xox) =p«xo,x).cj ) be t.he dlst.ance bet.ween (xox) and Cj' Let. xl' denot.e t.he

phase variable corresponding t.o cont.rol Ut, From our assumptions t.he function

F(u ('), T) = Gj (Q(Ex¥» is contint.uous on X, Moreover, 0 ,s; 0j(Q(Ex¥-'» ,s; 1/ j,

Using E.keland's t.heorem wlt.h I:j =1/ j, ICj =1/ ...[J and set.t.lng

{
o u=v

T/(u ,v) = 1: u ~v

we deduce t.hat. t.here must. exist. a cont.rol <m)ul. a st.opplng time <m)Tj , and a phase

< ) I
(m)ui

variable m x = Xt t.hat. are solut.lons of t.he problem

0j(Q(Exr)} + ICj . EYT + ICjE IT -Tj I --. min

dYt =T/(Ut ,ul)dt • Yo =0

(5)

(6)

(7)

(B)

The funct.ion OJ Is cont.inuously differentiable In t.he neighborhood of t.he point. Q(EXTj)

because it. lies out.side t.he set. Cj' (For t.he properties of t.hls function see [4, II,

Theorem 3.16].) We shall make use of an addlt.ional index (m) t.o indicat.e values coming

from problem (l)-(4m). The following lemma is t.he simplest. necessary condlt.ion for

st.opping t.ime Tj t.o be optimal for problem (5)-(B).

LKMJ&A 1.

(a) We ha.ve

(9)
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for all sequences of stopping times fl predicting Tj on the set A E: FTj such that

A c I",: TJ > Tm I.

(b) We have

(10)

for all decreasing sequences of stopping times Tl tending to Tj . Here fA is an indi

fator function of the set A and

(11)

If we consider problem (5)-(8) with fixed (m)Tj • then we obtain the problem that was

considered earlier. The fact that Tj is a random variable is not important. For all

controls Ut from the maximum principle in integral form [5, Lemma 7], it follows that

(m)T
j

E J «(m)p/.f(t, (m)zl.ut) -f(t.(m)z{. (m)u{» -lCj7l(Ut, (m)u{)]dt sO (12)
o

where

(m)pl = (-(m).pl)·-l E[(m).p{'. (m)W 1Ft ], (m)p{ = const, t ~ Tj (13)

and (m).plls a matrix solution of the system

Without loss of generality we can assume that

as j -+ "". where (m)X E: R L +1. From the properties of functions Gj we have that

II(m)xll =1 and, moreover, (m)X Is normal to the set C_ = l<zo, z): Zo :$ 0 , Z E: C 1at

the point Q(Ez~.). This means that If (m)X is written as (m)X = «m)Xo • (m)X1), where

(m)X1 E: R L, then (m)xo ~ 0, (m)X1 is normal to the set C at the point Ql(Ezr.). We

shall use the notation (m)J.L = (m)X' . Q~ (Ez;. ),

(14)

Let .pt be a matrix solution of the system
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It is easy to see that under our assumptions we have

for all s > 1. Taking the limit in (12) we find that the integral maximum principle

(16)

holds for all Ut from problem (1)-(4).

Up to now we have considered problems with a restricted set of controls. Without

loss of generality we can suppose that (m)x -+ X. Ilxll = 1 and that X has the same pro

perty of normality to C as each of the (m )X. Let JJ. = lim (m) J.J- Obviously
m ..-

Taking the limit with respect to m in (16) for every control u t of problem (1)-(4), we

obtain

T'
E J <Pt ,j(t ,xi, Ut) - j(t ,Xt', ui)>dt ,s; 0

o
(17)

From the integral maximum principle, using standard methods based on measurable

choice theorems [5J, we obtain a pointwise maximum principle

sup H(t ,l.',X;,u) =H(t ,l.',X;,u;)
ucU

(l x P )-a.s. on the set t ,s; T' (l.').

(18)

Now from [4, II, Lemma 3.5J it follows that if the corresponding modification of the

optimal control has been chosen, the Hamiltonian H(t • l.', x; ,u;) is continuous in t on

[0, T' Jp-a.s. We shall assume that the optimal control has been chosen in this way.

To complete the proof of the theorem we must show that the Hamiltonian is equaL to

zero at time T'. We shall suppose that there exists a set °0 , p (00) = 6 >0, and £0 > 0

such that for every l.' E: 00 we have < -PT' ,j (T' ,l.', xj., ,uj.,» > £0 and argue by con

tradiction. Without loss of generality we can suppose that there exists a constant K 1

such that sup sup 16:;II,s; K 1 and that 00 E: Y1'"' Let m be sufficiently large that
"'1£00 o<t .,;T'

If j is sufficiently large then

"(m) .11 £0
II JJ. - #JJ ,s; 20K(K

1
+1) (19)
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(20)

(m}"j appears in the conditions of Lemma 1. Moreover, there exists a set O~,

p(O~) > ~, on which either (a) (m}Tj < T', or (b) (m}Tj =T', or (c) (m}Tj > T' and the

following inequalities hold:

(m}Tj > T m + Co (where Co is a constant)

(21)

(22)

(23)

It Is clear that O~ can be chosen such that O~ E: F(m}T/ Let us consider three cases (a),

(b), (c) separately and argue by contradiction. We shall begin by assuming that (a)

holds on the set O~ for the stopping time (m }Tj . It Is easy to see, from (20), that there

exists a set B j of positive measure Bj C O~ on which

sup Ilz
t
' - (m }:r;~1 ~ 4l:1

t <To 6

Let S t be an Increasing sequence of stopping times predicting (m) Tj . Consider an

increasing sequence of sets

t
It Is clear that Of E: F(m}T/ If k 1 Is sufficiently large then P(03 1) > O. If k Is suffi-

t
clently large, then 0 3

1 E: "SA: because the family Ft Is quasicontinuous.

Let fit be a sequence of stopping times

t 1We can obviously assume that fit > T m If (,J E: 03 , Our aim Is to demonstrate a
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cont.radiction wit.h Lemma 1. Indeed.

(mlTj

1 E J < (m 1JJ! .! (t , (m lzl. Ut') > dt =
E!St-(mlTjl slo

(mlTj

1 E J «mlJj.j.!(t,(m)z{,Ut'»- (Pt .f(t.zt',ut'»dt +
E\St-(mlTjl Slo

(mlTj

+ 1 E.r <-Pt.!(t,z;.ut'»dt
E!St-(mlTj I Slo

From t.he choice of °3, t.he second t.erm in t.he sum is great.er t.han ~o eo' Let. us est.i

mat.e t.he int.egrand in t.he first. t.erm:

~11(mlJj.!".llf(t.(mlZ{.U;)-f(t.Zt'.Ut')II+I «mlJj.j' +Pt.f(t.z;.u;l>1 ~

211~I'K' 4e1 +(iI(mlJj.j_(mlJj.II+II(mlJj._~I+IIJj.+Ptll)'2K(K1+1)~~+3eo =3.. eo
6 10 10 5

Thus for every St we have

eo
and at. t.he same time (m l ltj <-. This cont.radlct.s Lemma 1.

10

Let. us now suppose t.hat. t.here is no set. wit.h a measure great.er t.han 6/4 which

satisfies (a) st.artlng at. some i o' If (b) holds for an infinit.e subsequence it then all t.he

previous reasoning is st.ill valid and a cont.radiction is obtained in an analogous way.

Let. us consider t.his case. Suppose t.hat. for all i st.arting from some number i 0 t.here is

a set. 06 of measure great.er t.han 0/4 on which (m lTj > T'. We shall now use t.he sym

met.ry of t.he opt.imal cont.rol wit.h respect. t.o t.he moment. T'. Int.roduce t.he new st.o

chastic functions

t ~ nT' , T' + 1/5 [[

t E: nT'. T' + 1/5 [[

(24)

~ nT', T' +1/5[[

E: nT'. T' + 1/5 [[
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Choosing sand j sufficiently large we have

E sup II(s)x; - (m)x~i,s; £1
O<t~T.

and t.here exist.s a set. 06, P (06) > 6/4, on which T' < (m)'fj < T' + 1/sand (21)-(23)

hold wit.h Xt' and Pt' replaced by (s )Xt' and (s )Pt'. In t.his case, and if c.l E: OJ, t < (m )Tj ,

t.he funct.ions (S)Xt ' (S)Pt' and «S)p; ,! (t , (S)Xt', Ut'» are cont.inuous in t. A cont.rad

ict.ion wit.h Lemma 1 can t.hen be obt.ained by reasoning as in case (a) above.

We can t.hus show t.hat. t.he Hamiltonian cannot. be negative at. t.he end of t.he cont.rol

time. Let. us also show t.hat. it. cannot. be posit.ive. Let. < -PT' ,f (t ,Xt' ,u';',» < -£0 on

some set. 0 0 , P (00) = 6 > O. Once again, we shall argue by cont.radiction. Wit.hout. loss

of generalit.y we can assume t.hat. t.here exist.s a K 1 such t.hat. sup Ib:t'li < K 1 'Vc.l E: 0 0 ,
O~~T'

Choose m such t.hat. (19) holds. We shall now choose (m)Tj . For t.he sake of simplicit.y

we shall concent.rat.e on case (a): for t.he infinit.e sequence he t.here exist.s a set.

otlo , p(o&l0) > 6/4, on which T m + Co < Tj < T'. Case (c) leads t.o a cont.radiction in

t.he same way as (a) by substit.uting funct.ion (24), while case (b) is similar t.o case (c).

Thus from our assumptions t.here exist.s a number j such t.hat. (20) holds, and a set.

06, p(ot) > 6/4, on which Tm + Co < (m)Tj < T',

(m) , ') 19< -P(m)T ,!( Tj , X(m)T ,U(m)T > < - - £0
iii 20

and (22), (23) hold. Int.roduce t.he st.opping time

(m)Tj ,

T(c.l) = inf

(m)T
j

,s; t ,s; T'

c.l It 06

I
,. 9

t: <-Pt ,f(t ,Xt ,Ut» > -10 £0;

4£1
Ilx;11 > 2K1 ' Ilxt' - (m)x~1 > -6-1•

IPt + IJ.' \ > £0
20K(K1+1)

Using t.he same t.ransformations as before it. is easy t.o see t.hat. t.he second claim of

Lemma 1 does not. hold for t.he sequence of st.opping times T t = T A «m )Tj + 1/ i). This

concLudes t.he proof of t.he t.heorem.
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OPTIM:AL CONTROL OF STOCHASTIC INTEGRAL EQUATIONS

L.E. Shaikhet
Institute of Mathematics and Mechanics
Donetsu, USSR

1. INTRODUCTION

In this paper we study optimal control problems involving stochastic integral

equations with an integral cost functional, and obtain necessary conditions for optimal

ity of controls in this type of problem. The optimal control for a linear equation with a

quadratic cost functional is also given.

2. PROHLEll STATEllENT

Consider an optimal control problem I~u (t), I(u), U I with a trajectory ~u (t), a

cost functional I (u) and a set of admissible controls U. Let u 0 be the optimal control

of this problem, I.e., I(uo) = inf I(u), and u E be an admissible control which is
uEU

"close" to Uo for sufficiently small l: > 0 and identical to it for t = O. Since

I(u £) C!: I(uo)' the limit

" 1
I (uo) = lim - [(u£) - I(uo)]

£ ... 0 l:
(1)

must be nonnegative, if it exists. Thus the condition I" (u 0) C!: 0 is necessary for the

optimality control of uo"

Our aim is to find limit (1) for control problems with a trajectory that is described

by the stochastic integral equation

t

W) = 'T/(t) + i(t , 11t ' ~) + JA (t , S , 11s ~, u (s), ds)
o

110~ = !Po ' t E: [0, T]

A(t,s ,!p,u ,h) = a(t,s ,!p,u)h +b(t,s ,!p)(w(t +h) -w(t»

and by the cost functional

(2)
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T
I(u) =E[F(~T~) + J G(s '~s~,u(s»ds]

o
(3)

This has already been done for ordinary stochastic differential equations [1,2],

stochastic differential equations of the hyperbolic type [2,31 and stochastic Volterra

equations [4]. Proofs which are analogous to those given in [4] will be omitted here.

We shall first introduce some notation, assumptions and conditions. Let 10, u, PI
be a fixed probability space, and lIt, t E:[O,T]j be a family of u-fields, It E: u. H o(H1)

denotes a space of Io(ft)-adapted functions <p(t), t E: [-oo,O]([O,T]) for which \I~~ =

sup E 1 <p(s) 1
2 < 00 dlrpllf = sup E 1 <p(t) 1

2 < 00); ~t Hs) = W + s), to!:O , s :S; O.
s::.o ~t"'T

An arbitrary It-adapted l-dimensional function u(t) for which Ilul~ < 00 will be

called an admissible control.

Let D(a) be a space of It-adapted functions <p(t) for which E 1 <p(t) - <p(s) 1
2

:S;

Cit - s 1 Gl, and II be a set of nondecreasing functions K(T), T E: (-00,0], which are

o
right-continuous, lefl-limited and such that I dK(T) < 00.

Let there exist a 6 > 0 such that a function K( T) from II has a unique jump in zero

on the segment [ -I; ,0]. In this case we shall say that the function K( T) has an iSOlated

jump in zero. Let dK(O) = K(O) - K( -0) be the size of this jump.

Let 111 be the subset of functions K(T) from II which have an isolated jump in zero

and for which dK(O) < 1; Mo is the subset of functions K(T) from M1 for which

dK(O) = 0; L is a set of non-negative functions R(t ,T), t E: [0, T], which a,:"e nondreas

t
ing in T E. [O,T1 and for which sup JdR(t, T) < 00; II:! is the subset of functions K(T)

o,st,sT 0

from ]I for which the nucleus dK(T - t) has a resolvent in 1..

If X and Yare two normed spaces and B(x) is an operation from X into Y, then

VB(x) is the Gateaux derivative with respect to x of this operation. For fixed Xo E: X,

VB(x o) is a linear operation from X into Y. If Y = R 1, then <V B(xo)' x > is the value

of the linear functional VB(x 0) on element x EO X [5J.

We shall use C to denote arbitrary positive constants.

Scalar functions F(<p), G (t , <p, u), n-dimensional functions Ifl(t, <p), a (t , s , <p, u)

and an n x m matrix function b (t , s , <p) are defined for 0 :S; S :S; t :S; T, u E: R e , <p E: H.

Let w(t) be an It-adapted m-dimensional Wiener process, where w(t) and 71(t) are

independent. We shall consider the following conditions:
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Cl. <Po E. H O n D(a1).

C2. 7/ E:. H 1 n D(az).

C3. <po(O) = 7/(0) + 4>(0, <po)'

C4. uo E. Un D(a3)'

C5. The functions 4>(t ,<p), a (t ,5 ,<p, U ), b (t ,5 ,<p) satisfy

o
14>(t ,<p) I s J (1 + I<p(T) I )dKo(T)

o
la(t ,5 ,<p,u)I Z + Ib(t ,5 ,<p)I Z s J (1+ lu IZ + !<p(T)l z)dK1(T)

o
14>(t 1 ,<P1) -4>(t z ,<pz)1 s J [I <P1(T) -<pz(T)1 +

o
la(t 1 ,5 1 ,<P1,u1) -a(t z ,5z'<Pz,Uz)!ZS J [I <P1(T) -<PZ(T)\Z +

o
Ib (t 1 ,5 , <P1) - b (t z ,5 ,<pz) IZ s J [I <P1(T) - <PZ(T) I Z +

C6. The functions 4>(t ,<p), (a ,5 ,<P, U), b (t ,5 ,<p) have a Gateaux derivative with

respect to <P and

o
I V 4>(t ,<P1)<pzl sri <PZ(T) IdKo(T)

o
IV a(t ,5 ,<p1,u)<PzIZ + IV b(t ,5 ,<P1)<PzIZ s J I<pZ(T)l zdK1(T)

I (V 4>(t ,<P1) - V 4>(t , <pz) )<P3Iz + I (V a (t ,5 ,<P1' u) - V a (t ,5 ,<Pz' u ) )<P3 1z +

o
+ I(Vb(t,5,<P1) -Vb(t,5'<PZ»<P3Iz,s J I <P1(T) -<pz(T)!zl<p3(T)l zdK1(T)
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C7. The funct.lons F(IfJ) and G (t .1fJ. u) sat.lsfy

o
\F(IfJ)! + IG(t .1fJ.u)1 :!: J (1+ lu IZ + I IfJ(T) Iz)dK1(T)

o
+ J IlfJl(T) -lfJz(T)ldK1(T) +L(lfJl,IfJZ.Ul,Uz)ltl-tzIQe.J

o
L Z(lfJl' IfJz'u1,uZ):!: J (1+ IUliz + luz\z + IlfJl(T)lz + IIfJZ(T)lz)dK1(T)

CB. The functions F(IfJ) and G (t , 1fJ, u) have a Gateaux derivative with respect to

lfJand

o
:!:J (1+ lui + !lfJl(T)!)llfJz(T)ldK1(T)

In conditions C5-CB we assume that K 0 E III n liz, K 1 E M, and al •...• a8 are

definite positive constants.

THEORElI 1. Let conditions C1-CB hold. the stochastic variable v be f t o_c-adapted.

E Iv Iz < co, and

{

V tE[to-l:·to),O<l:<to<T

uc(t) = Uo(t') , tE[O,T]\[to-l:,t o) .

Then the limit (i), (4)for control problem (2), (3) exists and is equal to

r
+ <'il F("rto) , "rqo> + J <V G(s. "s~o' uo(s» , "sqo>ds]

to

Here q o(t). t E [t o' T], is a solution of the equation

t

qo(t) =7)o(t) + 4>o(t)"t q o + f Ao(t. s ,ds)"sqo
to

where

(4)
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and ~O(t) is a solution of equation (2) with control uo'

3. PROOF OF THE THEOREM:

To prove the theorem we need the following assertions:

LEJIKA 1. Let y (t) be a non-negative junction which satisfies the inequality

o
y(t) ~ ry(t +T)dK(T) + %(t)

O_t

Here % (t) is a non-negative, non-reduced, continuous function which is di,fferenti

able with respect to t and K E M:o n M:2. Then y(t) ~ C% (t).

Proof. Let yo(t) be a solution of the equation

o
yo(t) = J yo(t +T)dK(T) + %(t)

-t

which from [6] exists and is unique. Let dR(t, T) be a resolvent of the nucleus

dK(T-t). Then

t t

yo(t) = %(t) + J dR(t, T)%(T) ~ %(t)[l +J dR(t ,T)] ~ C%(t)
o 0

o
Assume that Z o(t) =y (t), zn (t) =% (t) + J Zn -1(t + T)dK(T), n =1.2 ..... It can

-t

easily be shown that zn (t) O!: Zn -1(t ) and Therefore

y(t) = Zo(t) ~ Zn (t) ~ yo(t) ~ C%(t), proving Lemma 1.

LEM:M:A 2. Let u E U and conditions C1-C3. C5 hold. Then equation (2) has a

unique solution, ~ E H 1 n D(o.), a = min [1, 0.1 ,0.2,20.4,0.5 ,0.7]'

Proof. Let "o~n =!Po' n O!: 0, ~o(t) = 77(t), and

t

~n +1(t) = 77(t) + ~(t , "t ~n +1) + J A (t • s , "s ~n ' U (s) ,ds)
o

Then

-0

I ~n +1(t) I (l-dKo(O)) :!O C + 177(t) 1 + J 1~n +1 (t + T) I dKO(T) +
-t

~ t

+ J I !po(t + T)ldKo(T) + I J A(t, s, "s~n' u(s),ds)1
o

(5)
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By virtue of Lemma 1 it can be shown (analogously to [6,7]) that zn (t) =
sup Eltn (s)1 2 isuniformlyboundedand lim sup Eltn (s)-tn _1(s)1 2 =0. There-

OSsst n -+- Ossst

fore there exists a process t(t) from H1 for which lim E 1 t n (t) - t(t) 1
2 =a uniformly

n -+-

on t E: [O,T]. And this process is the unique solution of equation (2).

We now only have to show that E I t<t 1) - t(t 2) 12 ,s; Cit 1 - t 21 Q for arbitrary t 1 and

t 2 from [0, T]. Let t 2 =O. t 1 =t. z (t) =E 1 t(t) - ~0(0) 1
2• From (2) and C3 for

1 Ht) - ~0(0) I we obtain inequalities analogous to (5). By virtue of inequalities

E 1 Ht + T) - ~O(T) 1
2 ,s;. Q[z (t + T) + I T I ClI] we can easily obtain

-0

z(t),s; C[t Q + J z(t +T)dKo(T)]
-t

Therefore (from Lemma 1) z (t) ,s; ct Q. Assume that t 2 =t < t 1 =t +~, z (t) =
E 1 Ht +~) - t(t) 1

2. In the same way it can be shown that z(t) ,s; C ~CI. thus proving

Lemma 2.

Let t c be a solution of equation (2) for control (4), and

toA t

'T/c(t) =1. J [A(t.s'~stc.v.ds) -A(t.s'~sto.uo(s).ds)]
l: to-c

Then q c(t) = 'T/c(t) + P c(t) + pc(t). t E: [O,T]. Let

1

4>c(t) =J V 4>(t , ~t A~)dz
o

1

Ac(t.s.h) =j VA(t.S·~sA~.UO(s).h)dz
o

Then
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t

p£{t) = J A£{t. s .ds)~sq £
to

t

q£{t) = 7/£{t) + (l£{t)~tq£ + J A£{t ,s ,ds)~sq£. t E [to. TJ
to

LElDIA 3. Let conditions Cl-C6 hold. 7hen

uniJ'ormly on t E [to. TJ.

LElDIA 4. Let conditions Cl-CB hold. Assume that

to

~(l:) = 1.. E J [G{s, ~s ~£' v) - G{s • ~s ~o' uo{s))]ds
l: to-£

7hen

The proofs of Lemmas 3 and 4 are analogous to those given in [4].

The proof of Theorem 1 follows from Lemmas 3 and 4, since

Note that the theorem also holds for equations with Poisson stochastic perturba

tions [2,4J.
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4. LINEAR SYSTElIS WITH QUADRATIC COST nJNCTIONALS

Consider the optimal control problem

o t

Ht) = 1)(t) + J dK(t, s)W + s) + J a(t ,s)u (s)ds
o

T
I(u) = E[f(T)HHT) + ru '(s)N(s)u(s)ds]

o

(6)

(7)

o
Here 1)E:H1 nD(a), 'Po (0) =1)(0) + J dK(O,s)'Po(s), a(t,s) is a non-random,

bounded n x l matrix which is Holderian for both variables, N(s) is a non-random l xl

matrix which is Holderian, bounded and uniformly positively definite on s, H is a non

random, non-negative definite n x n matrix, and K(t ,s) is non-random n x n matrix

such that

IdK(t ,s) - dK(T ,s) I :s It -TI flldKo(s)

For the optimal control problem (6), (7) we have

o
qo(t) = 1)0(t) + J dK(t ,s)qo(t + s)

Let dR(t ,s) be a resolvent of nucleus dK(t ,s - t), and

T

,¥-,(T,t,a)(',s)) =a(T,s) + rdR(T,T)a(T,s)
't

Then q o(T) = '¥-'(T , to, a ( .• t o))(v - u o(t o)) and we easily obtain

noting that E t . = E!' / It I·

Thus for l(uo) to be non-negative it is necessary and sufficient that the optimal

control has the following
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By virtue of (6), Etto(T) can be expressed as a functional of "tto (see [4]). Then

we finally obtain

t

uo(t) =a(t) + p(t)1/I(T, t, l)to(t) + J dRo(t ,T)~O(T)
o

Here 1 is the identity matrix,

t

a(t) =p (t)1/I(T, t ,b (. , t» + J Q(t ,s)p (s )1/I(T , s , b (', s »ds
o

p(t) = -N-1(t)1/I'(T,t,a(',t»H[1 +

T

+ J 1/I(T,s ,a(',s»N-1(s)1/I'(T,s ,a(',s»dsHr1

t

Q(t • s) is a resolvent of the nucleus p (t)1/I(T , t , at (. , s»,

t

dRo(t ,T) = J Q(t ,s)p(s)1/I(T ,s ,dKs (', T»ds +
T

+p(t)1/I(T,t,dKt (',T» + Q(t,T)p(T)1/I(T,T,I)dT

dKt(s , T) = dK(s ,T -s) - dK(t , T -t)

5. CONCLUSION

Optimal control in these types of equations is a natural development of the theory

of control for stochastic differential equations [6-11].

Numerous examples of applications for equations of this type demonstrate their

practical importance [6,12,13].
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SOME DIRECrf METHODS FOR COMPUTING OPTIMAL ESTIMATORS
FOR FORECASTING AND FILTERlNG PROBLEMS INVOLVING
STOCHASTIC PROCESSES

A.D. Shatashvili
State University, Donezk, USSR

1. INTRODUCTION

One of the main problems in the theory of stochastic processes is to find optimal

estimators fpr forecasting and filtering problems. The solution of linear forecasting

and filtering problems given by Wiener and Kolmogorov is optimal only for Gaussian

processes; for general processes the solution is optimal only for a class of linear esti

mators and in any given case may be far from optimal. Investigations by Wiener, Zade,

Stratonovitch, Shirjaev, Liptzer, Grigelionis and others have concentrated on efficient

methods for computing nonlinear estimators for the problems outlined above. How

ever, the results obtained by these authors are related, in generaL to some classes of

Markovian processes. The linear theory for the forecasting and filtering of stochastic

pr'ocesses can be considered to be fully developed. A detailed description of these

results can be found in [1]. Generalization of the linear theory to the case of optimal

estimators is complicated by the need to stUdy all possible finite-dimensionai distribu

Lions of processes. Thus nonlinear problems may be solved effectively only in the case

when the information about the finite-dimensional distributions of stochastic proceses

is of dosed form. One way of tackling this problem is to define the density of a meas

ure of the process under consideration with respect to a certain standard measure;

this is the approach used in this paper.

We shall first consider the class of stochastic processes which are solutions of

differential equations of the type

d.~~t) + u.!(t ,x(t» =(t) (1)

where u. is a parameter, Ht) is a Gaussian process, ! (t ,x) is a nonlinear function and

the equation itself is considered to exist over some finite-dimensional Euclidian or

separable Hilbert space.
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Here we shall propose one direct method for computing of optimal forecasting and

filter for a solution of (1) and for some functionals of these solutions. In the case

where a Is small, the estimators obtained will be expanded to the power of this small

parameter; moreover, in all cases of expansion the linear estimators will be the main

terms.

Note that if the function f(t ,z(t» is linear with respect to z(t), then z(t) is a

Gaussian process and the solution of the problems mentioned above follows from the

general theory of linear forecasting and filtering of stochastic processes. If (t) is

Gaussian "white noise", then equation (1) must be regarded as an Ito stochastic dif

ferential equation; the random process z (t) is a Markovian diffusion process when

corresponding conditions hold for the function f (t ,z (t». As mentioned above, the

problems involving such processes were solved by Shirjaev and others. Therefore the

class of processes studied in this paper may be considered as an extension of the class

of Gaussian and Markovian processes to include some non-Gaussian and non-Markovian

processes.

2. OPTIMAl. EXTRAPOLATION (FORECASTING) OF THE SOLUTION OF A

NON-LINEAR DIFFERENTIAL EQUATION WITH GAUSSIAN PERTURBATIONS

Let a certain random process z (t) be observed on the interval [0, T]. It is

required to forecast its value at a point T + h , h > 0, in the best possible manner. To

do this we choose a certain functional which is dependent on trajectories z (t ) on the

interval [0, T] and for which the mean-square deviation at z (T + h) will be a minimum.

These considerations can be formulated as follows: if F T is a a-algebra generated by

the behaviour of process z (s), s ~ T, then a functional of the required type will be

F T-measurable and, consequently, to find the optimal forecast of a variable z (T + h)

can be interpreted as finding an F T-measurable random variable T/ for which

E(T/ -z (T + h»2 takes its minimum value.

LElDlA 1 (see [6]). Let F T be a given a-algebra and consider a certain random

variable t. for which Et,,2 < 00. If another random variable T/, is measurable with

respect to the a-algebra F T and E(T/ -02 takes its minimal value, then

T/ =E(U F T ) (2)

Thus, if Ex 2(t) < 00, then the optimal forecast x(T + h) at a point T + h is of

the form

x(T+h) =E(x(T+h)/FT) (3)
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Below we shall suggest a method for computing the conditional mathematical

expectation on the right-hand side of (3). Let JLr and J.l.t be measures generated by

random processes x (t) and t(t)(O s t Sa), respectively, H be a separable HUbert

space, and Ca (x) be a space of functions defined on the interval [0, a] with values in

H. Assume that the random processes x(t) and t(t), t E [O,a], take values in Hand

that sample points belong to Ca (x). Let JL1 and J.I.[ denote a contraction of measures

JLr and J.l.t over the space CT(x) , T < a, and a density dJL!/dJL! (if it exists) be

denoted by PT(·). Let PT(· ) and PT+h (.) exist. Set

(4)

where the superscript (0 means integration over J.l.t' and Fr is the a-algebra gen

erated by t(s) , s8 S T.

THEOREM 1. Let the random processes x (t) and Ht) be observed on the interval

[0, a]. Let Pa ( . ) , T exist and T + h E [0, a]. Then

£(T +h) =E!x(T +h)/ FTI = (5)

Proof. Let 7 n =!(x(t 1) •... • x(tn» be a FT-measurable random variable, where

! (z 1 ' ...• zn) is a measurable bounded function. Utilizing the properties of condi

tional mathematical expectations we have the following string of equalities:

(6)

= Ex(T +h)7n . E aT 7 n =Ex(T +hhn
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Formula (6) is valid for all bounded Ji'T-measurable "'1n . Since any FT-measurable

variable "'1 may be approximated by a sequence "'1n • we obtain

(7)

taking the limit in (6). The last expression supports the validity of (5), thus proving

Theorem 1.

Formula (5) allows us to carry out the integration on another measure (naturally,

a standard measure) for the extrapolation problem. Unfortunately, however, it does

not help us to avoid the computation of the conditional mathematical expectation. How

ever, if Ht) is a Gaussian process, then we can make one more simplification.

Suppose that ~(t) is a Gaussian process defined on the interval [0, a.], and that

E~(t) =0 with correlation function R(t ,s). It is known from the theory of linear

extrapolation that on the interval [T. T + h] the Gaussian process ~(t) may be

represented in the form

where

~(t) =IT(t , ~(-) If) + ET(t) , t E [T • T + h] (8)

(9)

is the linear forecast of the Gaussian process Ht) and ET(t) is Gaussian but indepen

dent of the a-algebra F;. Consequently, if ~(t) is the Gaussian process from Theorem

1, then (5) may be expressed in the following form:

(10)

Ul =IT(T+h ,x('»

u2=x(-)IJ'

u3 = IT(' ,x(·»

where ET(t) =Ht) -IT(t).

Thus. formula (10) is qualitatively different from formula (5). It not only simpli

fies the computing of the unconditional mathematical expectation expressed by (5) but

also gives an algorithm for calculating the unconditional mathematical expectation,

i.e., it allows us to compute the oplimal forecast directly if the density Pa (.) is known.

The problems of the absolute continuity (Jl.x «Jl.~) or equivalence (Jl.r. ~ Jl.~) of meas

ures generated by solutions of differential equations of the type (1) with respect to the

measure of the Gaussian process on the right-hand side have been studied by many
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aut.hors (see [2-5]) and formulas for t.he densit.les have been obtained. These formulas

are given below.

Define a different.lal equat.lon In H:

~ .+ af (t ,x (t» = ~ (t) , 0 :s: t :s: a , x (0) = ~(O) = 0
dt

(11)

where a is a paramet.er, ~(t) is a Gaussian process wlt.h values in H, E~(t) = 0, and

R~(t ,5) is it.s correlat.ion funct.lon. If all t.he necessary condit.lons (see [2,3]) are

dJ.l.x
valid, t.hen J.I.x «JJ.E and Po. (V = -- (.) Is defined by t.he formula

. d JJ.E

0. ~ 0.

PaW'» =exp l-af(g(t) , dw(t) -~ fllg(t)ltzdtl
o 2 0

(12)

where (".) and II· II are t.he scalar product. and norm In H, respect.lvely, and

0.

f (g (t) , dw (t» is a st.ochast.ic It.o int.egral. The funct.ions g (t), R(t, w) and t.he
o

Wiener process w (t) are defined by t.he relat.lons

0. 0. 0.

f(t, W» = f R(t, U )g(u)du ,f Ilg(t)'I~dt < "", «t) = f R(t, u)dw(u)
000

0.

R~(t ,5) = f R(t ,u )R(u ,5 )du
o

It. may easily be verified t.hat. if we replace ~(.) by x (.) In p¥(~('», t.hen PT(x (.» is

FT-measurable. Therefore, if a solut.ion of equat.ion (11) is observed on t.he int.erval

[0, T] and it. Is necessary t.o find It.s optimal forecast. at. a point. T + h, t.hen from formu

las (10) and (12) and t.he relat.ion PtQh = ptE). PtiS?, where

we obt.ain

T+h ~ T+h
pH'll = exp I-a f (g (t) , dw (t) - ~ f IIg (t)lI~dt 1

T 2 T
(13)

Ul = IT(T+h ,x(·»

u~=x(')ll

u3=lT(',x('»

(14)

Assume now t.hat. a is a small paramet.er, and t.hat. l>"t 1and lq.>t (t)1 are t.he eigen

values and eigenfunctions, respect.lvely, of t.he correlat.lon operat.or funct.ion R(t ,5).

We expand t.he formula (14) as a power series in a:
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T+h 2 T+h T+h
eXPI-a: 1 (g(t),dw(t»-~ 1 Ib(t)l12dtl=1-a: 1 (g(t),dw(t»-

T 2 T T

(15)

2 T~ h 2 T t-h-~ r Ilg (t)1\2dt + ~( 1 g(t), dw(t»)2 + o (a:2)
2 ~ 2 T

We then insert (15) into (14) and taking into account the fact that Pt+h(O can be writ

ten in the form

~ 1 T+h T t-h

Pt+hW = 1- L: t- La: 1 1 (f(t, W» , fPk(t» (fPk(S»(s)dtds +
k =1 Ie T T

(16)

and making certain calculations we obtain

(17)

where LT(T + h ,x (.) I01) is the linear forecast of x (t), and the variables vi"} , vik } ,

vJtj} , V~k} are defined by f (t ,x), LT (') and by normal distributions of known Gaussian

variables GT(·)' For example,

- ~ Tt-h Tt-h
vik ) =1 1 1 1(f(t,LT(t,x(-»+z1, fPk(t)(lr(s,x(-)fPk(s)z2 X

-- -- T T

(18)

where p 2(z l' z 2' t , T + h) is the two-dimensional normal density of the distribution of

Gaussian random variables £T(t) and £T(T +h) (here £T(t) and £T(T +h) are random

processes at points t and T + h). The main term in expansion (18) is the linear fore

cast; the others adjust for the effects of linearity.

The densities of the measures are calculated for a system of differential equations

in H of the following type (see [5]):

d:~t) - A (t)x (t) + f (t ,x (t» = 7}(t)
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d~(tt) - A (t)Ht) = 1/(t)

o s t Sa, :z: (0) = ~(O) =0

(19)

where A (t) is a family of linear operators, generally unbounded, but they are gen

erated from a family of operators V(t ,s), ex is a parameter, and 1/(t) Is a Gaussian pro

cess E1/(t) = 0 with correlation operator function k (t , s). Under certain assumptions

it can be proved that J.i./r. ~ J.i.f and the density d. J.i.:r. d. J.i.f = Pa may be calculated from

a 2 a
Pa(u) =exp l"":a I <g(s ,1.1.('», dw(s» > _E....- I"g(s ,u(·)ll2ds! (20)

0 2 0

where g (s ,1.1. (.) and Wiener process w (t) are defined by f (t ,1.1. (.» =
a a a
Ik(t ,s)g(s ,u('»ds and 1/(t) = I k(t ,s) dw(s). The Integral 1<", > in (20)
o 0 0

should be interpreted as an expanded stochastic Integral (see [5]). Thus, in formulas

(10) or (14) we choose a pair of processes :z:(t) and Ht) as a solution of system (19),

where Ht) is a Gaussian process. Observing the process :z: (t) on the interval [0, T], we

define its optimal forecast %(T + h) at the point T + h by the formula (14) where

Tth 2 T+h

Pt+hW=exPI-a IT <g(s,t(-»,dw(s»-E....- I Ilg (s,Ho»ll2ds)l . (21)
2 T

2.1. OPTIJIAL (NONLINEAR) FILTERS FOR SOLUTIONS OF

DIFYERENTIAL EQUATIONS

Let one of the two random process :z: (t ) and y (t) defined on the interval [0, a] and

with values in H be observed on the Interval [0, T], T < a. Let this process be :z: (t)

and process y (t) be unobserved. Let YP> denote the a-algebra generated by the ran

dom process :z: (t) for t S To The optimal filtering problem Is to construct estimators

:z:(t) of the process y(s), s E [0, T], using the observed values of process y(s), such

that E(y (s) - Y (s»2 is minimal. It is clear that the estimator y (s) is a FtiL

measurable random variable. We will assume that Ey 2(s) < 00. Then

y(s) =Ely(s)IYP>1 (22)

We shall pursue the idea of the density of an Initial measure with respect to a certain

standard measure.

Let J.i.:r.,y be a measure generated by the pair of processes :z:(t) and y(t) defined

in the domain [0, a] x [0, a], and J.i.f,'" be a measure generated by another pair of

processes t(t) and 1/(t) defined in the same domain. We shall suppose that J.i.:r.,y «J.i.f,'"
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and that X(t ,1/) is the density, Le., X(t. 1/) = d~,yd~~..'r Define

(23)

where F:fP' is the a-algebra generated by the values of process t(t) for t ,s; To We will

now prove the following theorem:

THEOREM 2. Let measure ~,y be absolutely continuous with respect to measure

~~..rl~,y «~~,T}) and X(t.1/) =d~,y Id~~,T}o Then/or any s E: [O,T] the/ollowing

relation holds:

y (s) =(1(s ,% ( • »IJ' (24)

Suppose that t(s) and 1/(s) are a pair of Gaussian processes, and that

ij' (s) =ij' (s , H'» is a linear filter for the process 1/(s) under the values of t(s) on

the interval [0, T], s E: [0, T]. Then ij' (s) is a measurable variable and in this case

1/(s) =ij'(s) + e(s)

where e(s) is a Gaussian process independent of the a-algebra F ~ (1).

Define

ij(s) =ij' (s . H' » I t( .) =% (- )

Then

(25)

(26)

y(s) =[d~ <H0))]-t, E!(ij'(s) +e(s»X<H') , ij'(.) + ~(-»IF~(t)1 K) =%(.) =
d~~

(27)

d~x •=[-- (% (0 »r LE!(u (s) + £(s »X(z (. ) , u (0) + ~(- »!
d~~

z(-)=%(·)

U (-) =7j(.)

d~x
Taking into account the fact that E IX(z ( 0 ) , u (-) +~(. >l =-- (z (. » and making

d~~

further simplifications, we have

-( ) ( ) + EI(s)X(zO.uOH(-»!
y s =1/+ s EIMz('),u(')HO>!

z(-)=%(·)

u(-) = ij(.)

Now consider the system of differential equations of the type

(28)
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~ + af1(t ,%(t), y(t» = nt) 0 S t Sa
dt

~ ,
dt + af 2(t ,% (t) , Y (t» = 7J (t) %(0) = Y (0) = 7J(D) = HD) = 0

(29)

where ~(t) and 7J(t) are Gaussian processes in H, E~(t) = E7J(t) = 0, and a is a parame

ter. For the space H x H = H 2 this system can be rewritten as follows:

(f 1(t ,% (t), Y (t» , f 2(t ,% (t) , y (t» = F(t ,y (t» , 0 S t Sa

(30)

d%S) + aF(t ,y(t» = X'(t) y(D) =X(D) = 0

Then the measures ~ ,y and J.L~,'T/ will coincide with the measures J..l.y and ~. Applying

the conditions of the theorem from [2J to equation (11) in order to obtain JJ.g «~ or

~,y «JJ.t,'T/' we can write the following formula for the density:

dJJ. ~ a
~(~, 7J) = d (X) = exp !-a J (G, (dw (t»H2-

JJ.t,'T/ JJ.r 0

(31)

where

a a

F(t ,y (t» = J R(t ,u )G(u )du J IIG(u )11112
< 00

o 0

a a

X(t) =J R(t ,s)dw(s) , R 2(t ,s) =J R(t ,u)R(u ,s)du
o 0

Here (',' )H2 and II~ . IIH2 represent the scalar product and norm, respectively, in H2 ,

and R(t ,s) is the correlation operator function for Gaussian process X(t). If !/Pk(t)

and IXk l are vector eigenfunctions and eigenvalues of operator R2(t • s), then the den

sity X(~ , 7J) defined by formula (31) can be written in the form

~ a a

Xa(~,7J)=expl- L [-t-J J(F(t,X(t),/Pk(t»(x'(S),/Pk(S)dtds +
k =1 k 0 0

(32)

2 a
+~ (J(F(t ,X(t» , /pk(t»dt) 2 1

2 0
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Suppose now that only one of the components in system (29) is observed. Letthls

be z (t). Then, to find the optimal estimator il (t) for the other component we use for

mula (28), selling A«(, 1/) = Ar«(, 1/) as defined by (31) or (32). It can easily be seen

that if a is small in these formulas, then the right-hand side of formula (31) can be

expanded in powers of this small parameter. Moreover, it may easily be seen from (28)

that the main term in this expansion is a linear filler of the process y (t).

3. GENERAL FORJruLAS FOR NONLINEAR EXTRAPOLATION AND

FILTERING FOR FUNCTIONALS OF STOCHASTIC PROCESSES

We shall consider a certain random proces z (t) defined on the interval [0, a].

Let F r denote the a-algebra generated by variables z(t) for 5 ~ T, T E: [O,a]. If 1/ is

a random variable which is measurable with respect to Fa (such a variable is called a

functional of the process z (t», then the best (mean-square) estimator of the variable

1/ with respect to the a-algebra" c Fa is the ,,-measurable random variable fj for

which E(1/ -71) takes its minimal value. The best estimator 71 calculated by the formula

71 = E(1/ I Ie) exists when E1/2 < 00.

When studying the problems of optimal extrapolation and filtering of stochastic

processes, we take the variables 1/ = h (z (t» instead of 1/ and consider the a-algebra

F~ generated by b (z (5» instead of the a-algebra ", where h ( . ) and b ( . ) are certain

measurable functionals defined over the space H.

We shall also assume that the measure #4,,; corresponding to the function z (t) is

generated in the space of functions Lz![O,a] , HI = I~ defined on the interval [O,a]

a
and taking values In Hand J IIx(t)I~dt < 00. Consider two processes x(t) and «to) in

°
the space H with second-order finite moments and let #4,,; and j.J.{ be the corresponding

moasures in L 2' Suppose that #4,,; «j.J.t; or #4,,; ~ j.J.t; and that Pa (.) = d#4,,; romand j.J.t; is

the density of measures #4,,; with respect to measure j.J.t; on the interval [0, a]. Define

(33)

where Fr Is the a-algebra generated by b«((s» for 5 ~ T, t E: [0, a]. It can be shown

that

h(z(t» =Elh(z(t»1 F~l =')'(z('),t) (34)

If ( in (33) is a Gaussian process and b ( . ) Is a linear function on H, then the a-algebra

11' will be generated by Gaussian variables under the values of Gaussian processes

(t) for for t :s; T; we shall denote it by Fr. Therefore, as Is already known, «t) =

lr(t) + 'r(t), where lr(t)lr(t ,(.) = E I(t) IFrl is the linear estimator (t), which is
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measurable with respect to a-algebra FT, and 'T(t) is Gaussian and independent of a

algebra Fr. In this case formula (34) takes the form

= IT(t) =IT(t ,x (.» =lr(t , tC» I tC) =x (.) I (35)

u (t) = IT(t)

u(·) =IT(-)

t(·) = xC) , h (x (t» = Eh

where IT(t) = IT(t ,x(·» = lr(t, t C»I t(.) = x(·) and lTC) = IT(' ,x(·».

Formula (35) is a general formula sInce It gIves the optimal estImator h (x (t» for

the function h (x (t». For example, If t < T in (35), then h (x (t» is the optimal fore

cast for the function h(x(t»; If t = T, then h(x(t» is the optimal filter for the func

tion h (x (t»; and if t < T, then h (x (t» is the optimal interpolation of the function

h(x(t».

Suppose that the function x (t) and the Gaussian process t(t) are respectively a

solution of equation (11) and its right-hand side (or a solution of equation (19). Let

/-L.r. «J.i.€' and the densities be of the forms (12) and (13). Consider, for example, the

system of equations (19). In view of the comments made above regarding x (t) we can

use formula (35), replacing PT(') by expression (20). We therefore have

t 2 t

Elh(u (t)+£T(t »exp l-aJ<g (t),dw (t»- ~ JIIg (t)112dt I
h (x (t) = -;;;-__-'0'-- --;;;- 0"- _

T 2 T
expl-aJ<g(t),dw(t»- ~ JIIg(t)I~dt I

o 0

u (t) = IT(t)

u(-)=lT(')

t(·) = x (.)

(36)

where the function 9 (t) and the Wiener process w (t) are defined by the formulas (*)

and (**), respectively.

Expression (36) is the most general form. The solutions of all nonlinear extrapo

lation and filtering problems involving stochastic processes, and depending on the

choice of h ('), b ('), and point t, may be obtaned from this formula. If

9 ( .) = h ( .) = x ( .) , t > T, then (36) yields the formula for the optimal forecast of sto

chastic process x (t); and if the random process x (t) (viewed as a vector) consists of

two components band h (which may themselves be vectors, but with a dimension

smaller than that of x), and t s T, then (36) yields the optimal filtering formula for

one component (n (. » of the vector x (.) from observations of the other, i.e., b (').



199

If 0: is smaLL and IA" I and lip" (t) I are eigenvalues and vector eigenfunctions of the

correlation operator function RZ(t •s) of a Gaussian process, then expanding the

exponents in (36) in powers of 0:, one obtains the expansion of the estimator h (x (t» in

powers of this small parameter. We shaLL assume below that t = T + (l in (36) and to

simpLLfy the calculation we will consider equation (1). The density Pt (.) in (36) will

then be the same as in (12) for a. = t.

FoLLowing this procedure, we obtain the expansion

(37)

where C 1• Cz, and C 3 are defined by the linear system of algebraic equations

and the values Ai' A z, A 3, B z, B 3 are defined by the relations

Ai =Eh(u(T+{l) + t:r(T+{l»! u(T+{l) = lr(T+{l)

(3B)

(39)

_ r+fJ r+fJ
A Z =E!h(u(T+{l) +t:r(T+{l»[I:: +- f f U'(z,u(z)+t:r(z»,Ip,,(z»(v(s)+

"=1 " 0 0

(40)

u(·) =lrl(')

+ t:~(s), Ip,,(s»dzds]! I v(-) = lr(-)

_ r+fJ

A 3 =E!h(u(T+{l) + t:r(T+{l»[Ai - I:: +-( f (f(s ,u(s) +
"=1 " 0

_ r r

{lz = I:: +- f f (f(t ,x(t», Ip,,(t»(x'(s) , Ip,,(s»dtds
"=1 It:. 0 0

_ r

{l3 = {If - I:: +- (f (f(t .x(t», 1p,,(t»dt)2
"=1 " 0

(41)

(42)

(43)

Since x(t) is observed up to time T, we have that x(t) and x'(t) are known vari

ables in expressions (42) and (43). Now. choosing the values of hand {l in formulas

(39)-(43) and using (37), we obtain an expansion of optimal estimators for concrete

problems. Thus, for example, if {l > 0 and h (x (t» =x (t). formula (37) yields an

expansion of the optimal forecasting formula for x (t); if x (t) = x (b ,h) and {l > 0,

then (37) yields an expansion of the optimal filler h (x (t », entering at the point T + fl.

under observations b (x (t» up to time T.
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Moreover, formula (37) shows that for small nonlinearities the deviation of the

optimal extrapolation from the linear one is of the same order as the order of non

linearity. Thus the use of optimal estimators instead of linear ones results in an essen

tial improvement in linear estimators.
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ON FUNCTIONAL EQUATIONS OF DISCRETE DYNAMIC PROGRAMMING

Karel Sladky, Institute of Information Theory and Automation
Czechoslovak Academy of Sciences, Pod vodarenskou v~~i 4,
182 08 Praba 8-Liben, Czechoslovakia

1• INTRODUCTION

We consider at discrete time points n = 0, 1, ••• a system
with finite state space I = {1 ,2, ••• , N} whose utility vector
at time n, denoted x(n) (column N-vector), obeys the following
dynamic programming recursion

x(n+1) = max Q(f) x(n) = Q(f(n» x(n).
feF

( 1• 1 )

Here x(O» 0 is given, Q(f) is an (NxN)-nonnegative matrix de
pending on a decision vector f (i.e. N-vector whose i-th compo
nent f(i)eF(i) specifies the decision in state i, i.e. the i-th
row of the matrix Q(f») and F = F( 1) x ••• )( F(N) is a finite set
of all decision vectors at each time point. Recall that the set
F possesses an important "product property", L e. if f l' f 2 f: F
then there exists also feF such that [ Q(f1 )] i = [ Q(f)] i '

[Q(f2)]i
2
= [Q(f)]i

2
for each pair i 1,i 2 €I. [111'resp•

1
[A]ij'

denotes the i-th row, resp. ij-th element, of the matrix A.
Consequently, vectorial maximum in (1.1) always exists.

Remember that f(n)€F is reserved for the decision selected
at time n, fen) is the maximizer in (1.1) over all fen), and
a policy (i.e. sequence of decision vectors) selecting f(n)=f
is called stationary. In what follows we shall denote by FeF
the minimal set of decision vectors possessing the "product
property" and containing all decision vectors occurring infini
tely often in (1.1). Observe that F depends on the considered
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(fixed) initial condition x(O).
Investigating Markov decision chains the respective dynamic

programming recursion for calculating maximum expected rewards
turns out to be a very special case of (1.1). Besides this very
specific form intensively studied in the literature, the general
case of (1.1) has many other interesting and useful applications
(e.g. supervised linear economic models, controlled branching
processes, Markov decision chains with multiplicative utility
functions - cf. ,Sladky (1980) for details).

It can be shown (cf. Sladky (1980), Zijm (1982), Rothblum,
Whittle (1982) and Chapter 35 of Whittle (1983» that the growth
of x(n) is given by an exponential as well as a polynomial part
(Le. [x(n)]i ';IS 6n n"-1 for some 6~0 and integer Y>1). These
facts, based on the Perron-Frobenius theorem and a "uniform
block-triangular decomposition" of the set {Q(f),feF}, are sum
marized in Section 2. Having found the growth rate on x(n) by
employing the "uniform block-triangular decomposition" of the
set {Q(f),f€F} we can construct polynomial bounds on respective
subvectors of x(n) and, by using similar methods as in Markov
decision chains, establish the asymptotic properties of x(n).
The results are discussed in Section 3; notice that, unlike in
Markov decision chains, considering the general case of (1.1)
all coefficients in the polynomial bounds on x(n) will depend
on the initial condition x(O) and boundedness of n-

v+1x(n) does
. h f -Hl ( )not J.mply t at, or n-CD, n x n converges or attains its

maximum in the class of stationary policies.

2. GENERAL ANALYSIS AND PRELIMINARIES

The material of this section is mostly adapted from Sladky
(1980). Considering the set {Q(f),f€F}, Qij(f) denotes the sub
matrix of Q(f) and 6i (f), resp. ui(f)~O (i.e. nonnegative, non
zero), is reserved for the spectral radius, resp. corresponding
right eigenvector, of the diagonal submatrix Qii(f). Recall
(cf. Gantmakher (1966» that by the well-known Perron-Frobenius
theorem ui(f)>>O (i.e. strictly positive) if and only if (by
possibly permuting rows and corresponding columns - i.e. for
suitable labelling of states in our model) Qii(f) can be writ
ten in the following upper block-triangular form
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Qii (f) = Qi( 11) (f)
o

( 2.1 )

oo Q1(rr) (f)

where Qi(jj)(f) are irreducible classes of Qii(f) such that
0i(j)(f) denotes the spectral radius of ~(jj)(f»

6i (j)(f)( 6i(f)~Qi(jk)(f)~O at least for one k~j

(2.1')
6i (j)(f)= 6i(f)~Qi(jk)(f)=O for all k~j.

Recall that if 6i (j)(f)=6i (f), resp. 6i (j)< 6i (f), the class
Qi(jj)(f) is called basic, resp. non-basic; using the terminol
ogy of Markov chain theory we can say that ui(f)>>O if and only
if each non-basic class of Qii(f) is accessible at least to one
basic cl~ss and each basic class is not accessible to any other
irreducible class of Qii(f).

On the base of the Perron-Frobenius theorem we can deduce
that, for suitable labelling of states, the matrix Q(f) can be
written in a block-triangular form with s(f) diagonal blocks
Qii(f)'s, each of them being of the form (2.1) and having
strictly positive eigenvector u i (f):»O corresponding to the
spectral radius 5i (f) of Qii(f). The decomposition can be sug
gested in such a way that 6 1(f) ~ 52(f) ~ ••• ~6s(f) (f) and,
furthermore, 6i (f) = 6i +1 (f) ===* "i (f) = \1i +1(f) + 1, where \1i (f)
(index of Qii(f» is defined as the largest number of irre
ducible classes having spectral radius 5i (f) that can occur in
a chain of irreducible classes successively accessible from the
class Qii(f). Such a decomposition has the property that the
diagonal blocks are the largest submatrices of Q(f) having
strictly positive eigenvectors corresponding to their spectral
radiL

Moreover, similar results can be extended to the whole set
{Q(f),f€F}, Le. we can suggest a "fixed" decomposition such
that using this decomposition each Q(f) with f€F is upper block
-triangular and the diagonal submatrices possess further addi
tional properties. These facts are very important for the anal
ysis of our model and are therefore summarized as
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Theorem 2.1. There exists some f€F such that for suitable per
mutation of rows and corresponding columns (i.e. for suitable
labelling of states) any Q(f) with feF is upper block-triangu
lar, i. e.

Q(f) = Qll (f) Q12(f) ••• Q1s(f)

o ~22(f) ••• ~2S(f)

(2.2)

o °
where for f = f and strictly posi tive eigenvectors

5 1(f) ~ 62(fn~ ••• ~6s(f)

5 i + l (f) = 6 i (f) ===?Yi (f) = 'V i + l (f) + 1

and moreover for any feF

6 i (f) U i (f) = Q
ii

(r) U i (f) ~ Qii (f) ui (f) .

ui<f')'s

( 2.3)

(2.3')

(2.4)

x. (n+1 )
~

Remark 2.2. Observe that if 5 i (f) > 0, Qii (r) ¥ 0 can be written
in a block-triangular form (2.1) fulfilling conditions (2.1');
however, it may happen that 6i (f)< 6i(f) and also Qii(f) need
not be upper block-triangular for any feF (even it may happen
that Q. i(f) = 0 for some feF). Moreover, if 6i (f) = ° then for

~ A A

any feF Q'i(f) = 0, and for 6. (f) = 0 with i<:8 Q. i+1 (f) ¥ 0 and
A ~ ~ ~,

~. (f) = s-i+1.
~

Remark 2.3. The results summarized in Theorem 2.1 were origi
nally established only under assumption 6s (r» 0, however,
taking into account the facts presented in Remark 2.2 we can
easily verify their validity even for 5s (f) = O.

From now on for any Q(f) the same decomposition as in (2.2)
will be considered. Using this "uniform block-triangular decom
position" in (1.1) we get for j= 1,2, ••• ,s

s
~ "'(n)
L- Qij(f ) xj(n). (2.5)

j=i+l

On the base of (2.3), (2.4), (2.5) we can evaluate the first
-order approximation of the growth of x(n). The results are
summarized as Theorem 2.4 (we abbreviate 5i (f), Vi(f) by 5i ,
vi respectively, the case 6i = 0 follows immediately using the
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reasoning sketched in Remarks 2.2 and 2.3).
Theorem 2.4. There exist (nonnegative) vectors ki (being of the
same dimension as xi (n)) such that if 6i> 0

n 'Vi -lxi(n) ~ ki 6 i n for all n- 0,1,... (2.6)

Moreover, if 6i = 0 then xi~ki for n= 0,1, ••• ,)1i-1, but
xi(n)=O for all n~'Yi.

Taking into account the results of Theorem 2.4 we can con
tinue our study concerning asymptotic properties of (2.5) under
the following general assumption:
Assumption GA. 6 i = 6 i (:f) > 0 for all i. 1, ••• , s (of course,
by (2.3) it suffices only to assume 6

8
(f) > 0 ).

3. POLYNOMIAL BOUNDS AND THE ASYMPTOTIC BEHAVIOUR OF THE
UTILITY VECTOR

Firstly, we rewrite the dynamic programming recursion for
the maximum utility in a more suitable form. Obviously, by
(1.1), (2.5) we get

i+\1.-1
~1.

= Q
ii

(f(n)) xi (n) + L-..
j=i+l

+ 0, (:f(n) ;n)
1. ( 3. 1 )

for j = i, j> i
where

xj(n) =6';:n xj(n),
s

01.' (f;n) = LQ'j(f) x,(n).
'_'+" 1. JJ-1. '1

Moreover, by (2.6) of Theorem 2.4 0i(f;n) converges to the
zero vector as n -CD and the convergence is exponential, i. e.
there exist vectors c~«O, ci»O and a number A€(O,l) such that

for any n = 0, 1, ••• (3. 1' )

(notice that (3.1') can be fulfilled for any A£(6i +\I/61'1)
and ci,c; selected according to the choice of A). 1.

Observe that the set {Qii(f),feF} is positively similar to
some set of (sub)-stochastic matrices, in particular by Theorem
2.1 there exists some ui » 0 such that for any fe:F Qii (f) ui ~u1'
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hence the similarity matrix Ui can be chosen as Ui = diag {ui} •
In what follows we shall also need convex combinations of

by the parameter f with generic F, i.e.
p

f; d. j (t) =

where f jE:F and cilj (f) are positive numbers for j = 1, ••• , p.
Observe (cf. the Perron-Frobenius theorem and analogy to stoch
astic matrices) that for the matrices Qii(fj)i s fulfilling :on
di tion Qii (fj) ui = 6i u i spectral radius of the matrix Qii (f)
arising by a convex combinat~on of Qii(fj)i s is again equal to
5i , each basi: class of Qii(f) is not accessible to any other
class of Qii (f) (and there exists at least one such a basic
class) and the periodicity of the basic class of Qii(f) is non
greater than the periodicity of each basic class of any Qio(fJo)

N 1
(recall that the periodicity of Qii(f) is given by the minimum

N '" "integer x= 1ft(f) such that the matrix (Qii (f» is aperiodic and
N nit.consequently lim(Qii(f» exists as n-(D ).

Sometimes we shall need to construct multi-step decisions
in the respective dynamic programming recursion. To this order
we introduce

Q(x)(f(n»=Q(f(n+x-l» Q(f(n+x-2» ••• Q(f(n+l» Q(f(n»

where Q(1)(f(n»=Q(f(n» and Q(O)(f(n»=I is an. identity

matrix. In particular, Q(K)(f)= (Q(f»~. Considering multi-step
decisions by (3.1) we obtain

xi(n+m) = Q(m) (f(n» x (n)
ii i

+ 0im) (f(n) in)

where ~j)(.) denotes the ij-th block of the matrix Q(m)(.) and

0im)(f(n)in)--+O as n-(D and the convergence is exponential.
To establish asymptotic properties of xi(n) we shall pro

ceed by induction on j= i+ vi -l, j= i+ Yi -2, ••• , j= 1. Observe
that (by our definition of the index vi) for all above jis
5 j =6i with Yj=Vi+i-j; however 6 j <6i for j~i+Yi. The first
step of the induction procedure, i.e. establishing asymptotic
properties of xi(n) with viz 1 and (cf. Theorem 2.4) with pure
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exponential growth, is relatively simple. To study asymptotic
properties of xi (n) with vi> 1 we must construct polynomial
bounds on certain subsequencies of xi(n).

3.1. Behaviour of Utilities with Pure Exponential Growth

Supposing "'t = 1 the second term on the RHS of (3.1) van
ishes and (3.1) then reads

- - "(n) - "(n)x i (n+1) = Qii(f ) xi(n) + 0i(f ;n) (3.3)

with o. (f(n) ;n) --+0 exponentially fast.
~

As it is shown in Theorem 3.1, the behaviour of {xi(n)} defined
by (3.3) heavily depends on the periodicity of a suitable con
vex combination of Qii(f)'s with f€F, say Qii(f) with f€F. It
can be easily shown that by a simple algorithmic procedure we
can construct Qii(f) such that
(i) For any fEF the states that may belong to some class of

Qii(f) whose spectral radius is equal :0 6i are also con
tained within some basic class of Qii(f).

(ii) There exists no other convex combination of Qii(f)'s with
feF fUlfilling condition (i) whose periodicity is less
than that of the matrix Qii(f).
Asymptotic properties of xi(n) defined by the recursive

relation (3.3) are summarized in
Theorem 3.1. Let ~i be the period of Qii(f). Then for xi(n)
given by (3.3) there exists

lim xi(n"i+m) = x~m) for m= 0, 1, ••• ,H.i -1 (J.4)
n ......oo ~

and the convergence in (3.4) is exponential.

The proof of Theorem 3.1 is sketched in the Appendix.
Remember that the sequence of decisions occurring in (3.4) need
not be stationary even if lim xi (n) for n _00 exists. Examples
can be constructed (cf. Sladky (1976» that for F = {fl' f 2} in
(J.3) :fen) = f 1 (resp. :fen) = f 2 ) if n is odd (resp. even).

3.2. Polynomial Bounds on Utilities

Supposing Yi >1 we show how to construct polynomial bounds
on the utility vector xi(n) calculated recursively from (3.1).
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To this order we shall suppose that for all x.(n) with j=i+1,

••• ,i+Yi -1 there exist vectors w~k,m) (compatible with xj(n»

such that for some integer :It and any m= 0,1, ••• ,x- 1
V._ 1
~~ (nx+m) (k )

z.(nx+m) = x.(nx+m) - L-. k w. ,m -0
J J k=O J

as n -. CD and the convergence is exponent ial, i. e.

vectors cj«O, cj»O and a number A€(O, 1) such that

, n < ( ) < " nc j A =Zj nx+m =c j A •

Our reasoning will be similar to that of Sladky (1981) (in

Sladky (1981) only the aperiodic case with 2t = 1 was considered).

First we write a recursive relation for zi(nx+m). ~ (3.2),

(3.5) we get (we set n=nlt+m, hence (n+1)x+m=n+ JfI )

v _1 _

z. (n+x) = x. (n+x) _ J (n+
1t

) w~k,m) = Q(1t)(f(n» x (n) +
1. 1. k= 0 k 1. iii

i+'II.-1 \1.-1 k -
+ L Q~~)(f(ii»x.(n)+o~x)(f(n);n)_>~ L(n~(1t )w~k,m) =

j=i+1 1.J J 1. k=O 1=0 1 j k-l 1.
i+\-1 '11.-1 -

= Q('X)(f(n~ Z (n) + L Q~~)(f(n»L(n)w~k,m) + 6(x)(f(n) ;n) +
11 i j=i+1 1.J k=O k J i

y - 1 - 'J. -1 k-1 -
+ (Q(~)(f(n»_ I) }---' (n) w~k,m) _ L L (n)( It ) w~k,m) (3.6)

i1. k=O k 1. k= 1 1=0 1 k-l 1. .
i+ Y.-1

( 6~'X)(f(n);n) = o~~)(f(n);n) + L1.~ Q~~)(f(n» Z .(n), by (3.5),
1. 1. j=i+1 1.J J

(3.5') 0I'X)(f(n);n)_o exponentially fast as n-CD ).

Using some algebraic manipulations for the second and the last

terms on the RHS of (3.6) we have

i+\I.-1 v.-1 - \).-2 - i+\I.-1-kL Q(~ )(f(Ii») ~-, (n) w~k,m) =}~ (n) )"1. Q(~)(f(n» w~k,m)
j=i+1 iJ k=O k J k=O k j=i+1 iJ J

t= ~ (n)( ~ ) w~k,m) = ~~(n))-1~1(X)w('p+l,m).
k= 1 1=0 1 k 1 1. 1=0 1 p= 1 P 1.

(v.-1,m) -(x) (\-1,m)
Introducing bi 1. (f) = (Q11 (f)-I)wi ' and



209

bik,m) (f) = (Qi~){f) - I) Wik,m)_

i+'l1
i

- k -l
+ L Q~~)(f) w\k, m)

j=i+l 1.;] ;]

v~-k-l
- (~) w~k+l,m) +

1= 1 1 1.

for k= ~i-2, ••• ,O

are bounded.

(observe that the argument f should be considered for a sequence
of ~ decision vectors f€F) recursion (3.6) can be written as

Now, by Proposition A.l of the Appendix, on the base of given
w3 k ,m)'s we can construct wik,m),s (successively for k= \-1,
••• ,0) such that

(-v i -l,m) - - (v.,m)l
bi (f) ~ ° for any fe(Fx .;. xF) = F 1.

and for k= v.-2, ••• ,1,0 :If. (3.8)1.
b(k,m) (f) ~ ° for any f € F{k+l ,m)

i (k m)
where {F ' ,k= vi -l, ••• ,l,O} is defined recursively by

F (k , m) = {f e: F (k+ 1,m): b? ' m) (f) = o} • (3 •8 ' )

Moreover, according to Proposition A.l, equality holds in (3.8)
at least for one fe:F{o,m), say f=f;.

Theorem 3.2: Let for Qii(f) occurring in (3.1) vi >l and let

(3.5), (3.5 ) hold for j= i+l, ••• ,i+Y.-l and any m= O, ••• ,ae-l.

Then there exist vect~rs wik,m) (k= o~ ••• , v
i
-1; m= 0, ••• ,llt-1)

such that (3.8), (3.8 ) are fulfilled and
v -1

Z • (n ae + m) = x. (n ae + m) _ 1 (n :le
k
+ m) w

i
(k , m)

1. 1. k=O

~~~f. Supposing that wik,m),s are selected such that (3.5),

(3.5') hold, as F is finite there exists n.<a:> such that for
any n~ni (where n=nat+m) siii,m){f(ji))~O.1.so by (3.7) for any

n~ n i we get

Qi~)(f(n)) zi (n) + i5i~){f(n);n) ~ zi (n+ at) ~

~_ -Q{ at )( f" ) ( - ) + - ( at )( fll- . - )
ii m zi n °i m,n.
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( ) -(t)( (n)) < _Recalling that by 2.4 Qii f ui=ui for any t-1,2, •••
and by (J. 5') oi)() (. ;n) --+ ° exponentially as Ii. -+ Q), on iterat
ing (3.9) and using the above facts we conclude that zi(nae+m)
is bounded in n for all m= 0, ••• ,)(-1. 0

In virtue of boundedness of z. (nJe+ m), the same arguments
1. (nm)A(n)

as in the proof of Theorem 3.2 let us conclude that si ' (f

is bounded; hence (cf. (J.?)) sin,m)(f(fl)):= bio,m)(f(n)) for

sufficiently large n = n ~ + m. Applying these results to (3.7)
we immediately get
Corollary 3.3. There exists ni < Q) such that for any n =nae+ m~ni

zi (n + <Ie) = Q~~)(:f(ii)) z. (n) + b1.~°,m)(f(n)) + 0 ~ae)(f(ii);n) •
1.1. 1. 1.

3.3. Asymptotic Behaviour of the Utility Vector

Having constructed in Section 3.1 polynomial bounds on
xi(nae+m), to establish asymptotic properties of xi(n) with Vi> 1

it only suffices to show (cf. Theorem 3.2) that for suitably
selected wio,m)'s ....and Clei = aeiae, zi(naei+m)-Ofor any m=O, ••• ,
~.-1. The number ~. will heavily depend on the periodicity of

1. 1. (ae),-
a suitable convex combination of Qii (f) s with f€F; recall
that a class of Qi~)(f) will be called basic, iff its spectral
radius equals 6;. In particular, considering Qi~)(f)'S with
f€F(O,m) similarly as in Section 3.1 we can construct a convex
combination of Qi~)(f)'S with f€F(O,m), say Qi~)(f), whose pe
riodicity is equal to ~i' such that
(i) The states that may belong to some basic class of Qi~)(f)

with f€F(O,m) are contained within some basic class of
Qi~) (1).

(ii) There exists no other convex combination of Qi~)(f)'S with
f€F(O,m) fulfilling condition (i) whose periodicity is
less than that of the matrix Qi~)(f).

Asymptotic properties of xi(n) can be summarized as
Theorem 3.4. Let for Q.. (f) occurring in (J.l) Y.>l, (J.5),

1.1. 1.
(J.5') hold for j:=i+1, ••• ,i+Yi-1 and let ii be the period of
Qi(a:) (l). Then for 'ae. = aeiae there exist vectors w~O,m)

1. 1. 1.
(m= O, ••• ,at.-l) such that for n-Q)1.
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(3.10)(k,m) 0
Wi --

V. -1
,,1.- (n )(,i+ m)

zi (n xi+ m) = xi (n)(,i+ m) - ~ k

exponentially fast.

The proof of Theorem 3.4 is sketched in the Appendix (cf.
Proposition A.2, observe that we can restrict ourselves to the
recursion presented in Corollary 3.3 and employ estimates (3.9».

Combining Theorems 3.1, 3.2 and 3.4 we immediately get
Corollary t.5. For any i = 1, ••• , s there exist naturals Xi and
vectors wik,m) (k=O, ••• ,'J i -l; m=O, ... ,Ki -1) such that (3.10)
holds.
Remark 3.6. Observe that xi = iii ... ii+'J

i
-l' where ij's depend

on the periodicity of appropriate convex combinations of Q.. (f)_ _ JJ
with feF. In particular, if all Q.. (f) with feF are aperiodic,

JJ
then de. = 1 and X. (n) converges to some polynomial of degree

1. 1.
Vi -l. Considering the model with s=2, Qll(f) stochastic and
Q22(f) = 1 (hence Q12(f) is a column vector), then conditions
(3.5), (3.5') are trivially fulfilled, (3.1) reduces to the
functional equation for maximum expected rewards of a Markov
decision chain and the results of Theorem 3.4 are well-known
from the dynamic programming literature.

APPENDIX

Consider [Q(f) ,feF} such that Q(f) u~ Q(h u = u for some
A ,

U»O, feF and any f€F. So (cf. Theorem 2.1) Q(f) s are posi-
tively similar to (sub)-stochastic matrices; u(k), c(k) (f) will
denote column vectors of compatible dimensions.
Proposition A.l. Let c(k)(f)'s and the natural ~ be given.
Then there exist u (k) , sand f£F such that b(k) (f) = 0 (for
_) ( (r) ( ) (0) ( )-<k - O, ••• ,r , and for all f€F b f, ••• , b f) = 0

(1. e. lexicographically non-positive) where (c (r) (f) :: 0 )
r-k

b(k) (f) = (Q(f) - 1) u(k) _ L (:Ie) u(k+p) + c(k) (f).
p=l p

The proof can be performed by policy iterations similarly
as for x. = 1 in Sladky (1981).

Now (cf. Corollary 3.3) consider zen) (bounded in n) cal
culated recursively by z(n+l) = max [Q(f) zen) + b(f) +o(f;n)]

feF
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where b(f) ~O (with b(f) = 0 iff f€Foc F) and 0 (f;n) - 0 expo
nentially fast. Let Q(f) (with period x) be a convex combina
tion of Q(f)'s with feFo such that each state belonging to some
basic class of Q(f) with f€Fo is contained within some basic
class of Q(f).
Proposition A.2. For any m= 0, ••• ,x-1, z(nx+m)_z(m) as n-oo
and the convergence is exponentially fast.

To show that z(m),s exist we can proceed similarly as in
Schweitzer, Federgruen (1977). Then considering the ~-step de
cisions in the recursive relation for z (n ae+ m) - z (m) we can
show that the convergence is exponential. The first published
result in this direction seems to be that of Schweitzer, Feder
gruen (1981), different (and simpler) proofs can be found in
Zijm (1982) and Sladky (1983).
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RISK-SENSITIVE AND HAMILTONIAN FORMULATIONS IN OPTIMAL CONTROL

P. Whittle
Statistical Laboratory, University of Cambridge

1. INTRODUCTION

This paper is an amalgam of two sets of ideas. One is the introduction

into LQG (linear/quadratic/Gaussian) theory of the notion of risk-sensitivity

by use of an exponential-quadratic rather than a simply quadratic criterion.

In this way one can introduce a degree of optimism or pessimism on the part

of the controller, and so significantly generalise the classic LQG theory.

The other element is the use of an extended Hamiltonian formulation for

non-Markov models. This approach has been followed consistently by Whittle

(1983, Chapters 11 and 12) in the contexts of both estimation and control.

It now turns out that this theory has a natural and illuminating risk-

sensitive generalisation.

2. THE RISK-SENSITIVE CERTAINTY EQUIVALENCE PRINCIPLE

The validity of an appropriate certainty equivalence principle turns

out to be crucial. The classic risk-neutral principle (due originally to

Theil (1957)) has a direct but unobvious risk-sensitive version.

State structure is irrelevant; we give the principle in its most

general finite-horizon form. We make the assumptions

(al The actions to be taken over a finite horizon (O~t~hl take

values in finite-dimensional vector spaces.

(b) The action u
t

can be a function only of observables W
t

at t

previous actions U
t

_
l

{uO,u
l
"'. ,u

t
_

l
} and observation history

Yt = {YO'Yl'···'Yt} (O~t~h)

(c) The cost function 4: is a quadratic function Q(Uh_l'~) of the

control sequence U
h

_
l

= {uO,ul' ... ,u
h

_
l

} and an exogenous noise vector ~,

positive definite in U
h

_
l

for all ~.
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(d) ~ is normally distributed with known parameters, independent of

policy.

(e) Each is a policy-independent linear function of

The vector ~ is considered to embody all exogenous stochastics of the

problem: process noise, observation noise, and the stochastics of a

reference path which one may wish the controlled system to follow. The

actual observations y will in general depend upon control actions, but it

is enough that these can be corrected to exhibit the observations as being

effectively linear functions of ~.

The conventional (risk-neutral) criterion is that one chooses policy n

is the expectation operator induced by

u
t

is determined by minimising

Ut,Ut+l, ... ,uh_l ' where

to minimise En (£) , where En

The classic certainty equivalence principle is
(t)

Q{Uh_l'~ )

n

then that the optimal value of

with respect to

(l)

is the optimal estimator of ~ based upon W
t

. ("Optimal" in that it has

minimum mean square error; it is also the maximum likelihood estimate.)

Note that the certainty equivalence principle has two features:

(i) Conversion to free form. A minimisation with respect to functions

UT(W
T

) (T~t) , constrained in that u
T

may depend only upon W
T

' is

replaced by a free minimisation with respect to constants u
T

(ii) Separation. Optimisation of estimation and control are separated, in

that the estimate (l) is derived without reference to the determination of

the u
t

' and the u
t

are determined as they would be in the full

information case, with the simple substitution of ~(t) for ~.

Suppose now that the criterion that

to the criterion that

E (C)
n

be minimised is modified

(2)

be minimised with respect to n. Here 8 is a scalar parameter, the risk

sensitivity parameter. The case 8=0 corresponds to the risk-neutral case

E (C)
n
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In the case 8> 0 the optimiser is risk-seeking; he is more concerned

to reduce the frequent occurrence of moderate values of ~ than the

occasional occurrence of large values. In the case 8 <0 the reverse is

the case, and the optimiser is risk-averse.

It is remarkable that the features of the well-known risk-neutral case

have a version for the risk-sensitive case, although these are transformed

sufficiently that they are not immediately evident. To take the analysis

beyond the point reached by Jacobson (1973, 1977) required a certainty

equivalence principle, which Whittle proved, first for the state-structured

case (1981, 1982, 1983), and then for the general case (1985). However,

the line of proof for the general case is quite clear from those proofs

already published for the state-structured case.

Suppose that the exogenous noise vector ~ is normally distributed

with zero mean and covariance matrix V. Define

(3)

recognisable as occurring in the exponent of the ~-density, and define the

total stress,

(4)

This is a spontaneously occurring combination when one evaluates the

expectation in (2). d: is the component of stress due to cost (e.g. to

departures of u from zero) and lD the component due to implausibility,

(i.e. to departures of ~ from zero) .

We shall use the term extremisation to denote an operation which is

minimisation when 820 and maximisation when 8 <0 .

Theorem 1. The risk-sensitive certainty equivalence principle. Suppose

that one wishes to choose policy TI to minimise criterion (2). Then under

assumptions (a)-(e) above the optimal value of u
t

is determined by

simultaneously minimising ~ with respect to Ut,Ut+l, ... ,uh_l and

extremising it with respect to Yt+l'Yt+2""'Yh' In words: one minimises

stress with respect to all decisions currently unmade and extremises it with

respect to all quantities currently unobservable.
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This principle really does reduce to the risk-neutral version as 8+0 .

The stress-extremising value of unobservables tends to that minimising

for a given value of Y
t

' this leads exactly to the estimate ~(t) of ~

One can ask in what sense this is a certainty equivalence principle.

It certainly has the property (i) above, of conversion to free form. That

is, minimisation of Y
TI

with respect to pOlicies TI , i.e. with respect to

functions u,(W,) , has been replaced by a free minimisationjextremisation

of stress with respect to relevant decisionsjunobservables.

It does not have property (ii), of separation. Determination of optimal

control u
t

and of an effective current estimate of ~ are intertwined in

the minimisationjextremisation of stress.

This fact is inevitable. If "separation" is a meaningful concept at

all, it must surface in another and less evident form. This it does, as

demonstrated in Whittle (1981). In the state-structured case one can

evaluate extremal values of past stress and future stress at time t

separately, conditional on the true (but in general unknown) value of

current state x
t

This achieves separation, in that one has two decoupled

calculations of the familiar recursive form which separately yield an optimal

condensation of data and an optimal determination of control, both para-

metrised by the "pivot" x
t

Let the optimal control thus determined be

ut(x
t

) One now recouples these two calculations by choosing x
t

to

extremise total stress, already determined parametrically in terms of x
t

(t)
If the estimate thus yielded is x

t
then the optimal control is

Ut(X~t» This is very obviously a certainty-equivalence statement.

Moreover, separation holds in the sense that optimisation of estimation and

control have been decoupled by parametrisation of these sub-problems in

terms of

3. THE HAMILTONIAN FORMULATION

We suppose process variable x and control variable u and

observation y with respective (vector) values x
t

and u
t

,time t,

supposed discrete. We shall assume the conventional quadratic cost function

(x'Rx + u'Sx + x'S'u + uQu)t + (x'TIx)h
2

(5)
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where the notation )t implies that all quantities inside the bracket

are evaluated at time t. The times h
l

and h
2

are then respectively

the initial point and the horizon point, at which costing and decision

respectively begin and cease.

The state-structured case was analysed by Whittle (1981) and produced

analogues of the Kalman filter, the forward and backward Riccati equations

etc. Our aim is now to consider a non-Markov plant equation of the form

(6)

Here E is Gaussian white noise with covariance matrix N, T is the

backwards translation operator and the matrix operator coefficients have the,co j ,co j
form A(T) = Lj=O AjT ,B(T) = Lj=l BjT .

For simplicity we assume state observable at unit lag; the more general

case of imperfect state observation is considered in Whittle and Kuhn (1986).

Let u~ write the operator

associated operator A(T- l ), =

then be written

A(T) =
LA'T- j

j

simply as A, and the

The process equation (6) can

(Ax + Bu - E) t

We have

o (7)

C+
h

2
1, -1
- L (E'N €l
8 h t

1

(8)

where C is given by (5).

If sT is a quantity defined at time T let us use s~t) to denote

its "minimal-stress" estimate based on observations available at time t.

Theorem 2. The optimal value of u
t

is the quantity determined btl

solution of the equations

o (9)

with terminal conditions
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(t)

+ x
h

2

o
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(10)

(11)

The quantity

eNA (t)
T

has the interpretation

(12)

The proof follows by an application of the risk-sensitive certainty

equivalence principle with the evaluation (8) of stress.

The striking feature is the symmetric nature of the linear equation

system (9). Relations (9)-(11) constitute the optimality equation of a

stochastic maximum principle. Indeed, the risk-sensitive certainty-

equivalence principle is the stochastic maximum principle for this model.

Interpretation (12) is interesting: that a quantity such as A

(usually appearing as the Lagrangian multiplier associated with the

constraint of a deterministic plant equation) should be related to the

minimal-stress estimate of process noise.

Let us write equation (9) as

o (13)

Suppose that $(z) has canonical factorisation

l' (z) l' (z)1' (z)
- +

(14)

where 1'+, 1':1

controllability

increasing T

are analytic in IzloOl , etc. Then, under generalised

hypotheses 1; (t) goes to zero sufficiently fast with
T

that one can conclude from (13) that

o (T2t) (15)

in the infinite horizon. Equation (15) for T=t determines
(t)

u t ' the

optimal control at t, explicitly.

If state observation is imperfect then one deduces a pair of coupled

systems of type (9), both reducible as in (15) under generalised control la

bility/observability hypotheses (see Whittle and Kuhn (1986)).
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llARTlNGALES IN SURVIVAL A.NALYSIS

AnatoLi 1. Yashin
IIASA, A-2361 Laxenburg, Austria

1. INTRODUCTION

The problems of explaining the observed trends in mortality. morbidity and other

kinds of individuals' transitions generated the numerous attempts of incorporating the

covariates into the survival models. First models use the deterministic constant fac

tors as explanatory variables (Cox 1972, 1975; Bailey 1983). GraduallY It became

clear that the random and dynamic nature of the covariates should also be taken into

account (Anderson and Gill 1981; Prentice and Self 1983). This understanding has led

to the fact that the notion of random intensity became widely used in the analysis of

the asymptotic properties of the maximum Likelihood and Cox-regression estimators

(Cox and Oakes 1984; Elandt-Johnson and Johnson 1979).

Having the clear intuitive sense the notion of random Intensity can be introduced

in different ways. The traditional way Is to define the intensity In terms of probability

distributions of the failure time (Barlow and Proschan 1975; Lawless 1982; Nelson

1982). Another way appeals to the martingale theory (Jacod 1979) and defines the

intensity in terms of the predictable process, called "compensator" (Liptzer and Shir

yaev 1978; Jacod 1975). For the deterministic rates and simple cases of stochastic

intensities there are already results that establish a one-to-one correspondence

between two definitions. The correspondence is reached by the probabilistic

representation results for compensator (Liptzer and Shlryaev 1978; Jacod 1975). Mar

tingale theory guarantees the existence of the predictable compensator In more gen

eral cases. However the results on the probabilistic representation similar to simple

cases are still unknown. Meanwhile such representation is crucial, for instance, in the

analysis of the relations between the duration of the Life cycle of some unit and sto

chastically changing influential variables. This paper shows the result of such

representation for some particular case. The generalization on the more general

situations is straightforward. The consideration will use some basic notions of a "gen

eral theory of processes" (Jacod 1979; Dellacherie 1972).
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2. PRELDlINARlES

Let. T be t.he st.opplng time defined on some probabilit.y space (O,H, H,P), where

H = (Ht)t~ is t.he right.-continuous nondecreasing family of u-algebras in 0, such t.hat

H _ = Hand H 0 is complet.ed by P-zero set.s from H. If dist.ribut.ion of T is absolut.ely

cont.inuous t.he t.raditional definition of t.he Int.ensit.y }l.(t), relat.ed t.o t.he st.opping t.ime

T Is as follows

d.
diP(T,s; t)

X(t) = P(T > t) (1)

Martingale charact.erization defines t.he rat.e In t.erms of the process A (t) which is

supposed to be H-predict.able and such t.hat. t.he process M(t) defined as

M(t) = I(T ,s; t) -A(t)

is an H-adapt.ed mart.ingale. It. t.urns out. t.hat. for process M (t) t.o be mart.ingale, A (t)

should have t.he form

t

A(t) = J I(u ,s; T)X(u)d.u
o

where X(u) is given by (1). The family H in t.his case is generated by t.he indicat.or

process Xt = I(t ~ T). If t.he st.opping t.ime Tis correlat.ed wit.h some random variable

Z (w), t.hen t.he t.raditional approach defines t.he int.ensit.y in t.erms of conditional proba

bilities

d.
diP(T,s; t Iz)

}l.(t,z)= P(T>tjz)

Mart.ingale charact.erizat.ion shows t.hat. t.he process M% (t )

t
M% (t) = I(T s t) - J I(u s T)X(u ,z )d.u

o

(2)

is a mart.ingale wit.h respect. t.o t.he family of u-algebras W, generat.ed in 0 by t.he indi

cat.or process I(t ~ T) and random variable z. In t.he case of a discont.inuous condi

t.ional dist.ribution funct.ion for T, formula (2) should be correct.ed. The not.ion of cumu

lat.ed int.ensit.y Nt ,z) is more appropriat.e in t.his case. The formula for it. is

t
A(t z) = J d.P(T,s; u Iz)

, 0 P(T ~ u Iz)
(3)
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and martingale characterization is respectively (Llptzer and Shiryaev 1978: Jacod

1975):

t
MZ(t) =I(T s t) - J I(u s T)d.A(u,z)

o
(4)

The situation is not so clear however If one has the random processes, say Yt ,

correlated with stopping time T. Assume for instance that Yt simulates the changes of

the physiological variables of some patient In hospital and T is the time of death. It is

clear that in this case the process Yt should terminate at timeT, so observing Yt one

can tell about the alive/dead state of the patient, that is, can observe the death time.

It is clear also that the state or the whole history of the physiological variable

influences the chances of occurring death. The Question is how can one specify the

random intensity in terms of conditional probabilities in order to establish the

correspondence between intuitive traditional and martingale definitions of the random

intensities.

The idea to use A(t, Y) in the form

dP(T s t Ilfl')
d. A( t ,Y) = ------=--

P(T ~ t Ilfl')

where a-algebra lfl' is generated in 0 by the process Yu up to time t fails because lfl'
contains the event IT s t I. Taking Hl'- instead of Hl' seems to improve the situation,

however the event I '1' ~ t j is measurable with respect to lfl'-.
So to find the proper formula for random intensity one needs to get the proba

bilistic representation result for Ff!/ -predictable compensator. The representation

result will be used in calculating the new version of the Cameron and Martin result

(Cameron and Martin 1944, 1949).

3. REPRESENTATION OF COMPENSATORS

We will demonstrate the result and the ideas of proof on a simple particular case.

The generalization on a more general situation is straightforward.

Assume that stopping time T(Co) and the Wiener process Wt (Co) are defined on some

probability space (O,H,P). Define

Let HY = (Hl')t;",O . II = (FqJ)t;",o where
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The following statement is true.

Theorem 1. HY -predictable compensator A Y (t) of the process I (T ~ t) have the

following representation

t duP(T ~ u I~)
AY(t)::;:: J I(u ~ T)---=----~

o P(T ~ u I~)

The proof of this theorem can be found in (Yashin 1985).

(5)

Remark. It turns out that even if the a-algebra Hf has the more general struc

ture than in the example above. for instance. FfJ' ::;:: Hf v H;". the result of the proba

bilistic representation of the flY-predictable compensator of the process

X(t) ::;:: I(T ~ t) given by formula (5) is true.

Generalization of formula (5) for the compensator plays the key role In developing

a new approach to the solution of the Cameron and Martin problem (Cameron and Martin

1944. 1949).

4. THE CAMERON AND MARTIN RESULT

The well-known Cameron and Martin formula (Cameron and Martin 1944. 1949;

Liptzer and Shiryaev 1978) gives a way of calculating the mathematical expectation of

the exponent which is the functional of a Wiener process. More precisely. let

(n.H.p) be the basic probability space. H::;:: (Hu)u:ao be the nondecreasing rlght

continuous family of a-algebras. and H o is completed by the events of P-probability

zero from H::;:: H DO' Denote by Wun-dimensional H-adapted Wiener process and

Q(u) a symmetric non-negative definite matrix whose

elements Q1.j(u).i.i ::;:: 1.2 .....n satisfy for some t the condition

t n

J L: IQ1,j(u)idu < 00.

o1,j =1

The following result is known as a Cameron-Martin formula.

Theorem 2. Let (6) be true. Then

t t

E exp[ - J(Wu,Q(u )Wu)du] ::;:: exp[..1JSp I'(u )du J
0 2 0

(6)

(7)
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where (Wu ,Q(u )Wu ) is the scalar product equal to W~ ,Q(u )Wu • and f(u) is a

symmetric nonpositive dfV'l.nite matri:z:. being a unique solution of the Rtcatti

matri:z: equation

d flu' 2
~ = 2Q(u) - f (u)·

du '

f(t) = 0 is a zero matri:z:.

(8)

The proof of t.his formula given in (Lipt.zer and Shiryaev 1976) uses t.he property

of likelihood ratio for diffusion t.ype processes. The idea of using t.his approach comes

from Novikov (Novikov 1972). Using t.his idea Myers in (Myers 1981) developed t.his

approach and found t.he formula for averaging t.he exponent. when, inst.ead of a Wiener

process, t.here is a process satisfying a linear stochastic differential equation driven

by a Wiener process. His result. may be formulat.ed as follows.

Theorem 3. Let Y( t) be an m -dimensional di,j'J'u.sion process of the ./Orm

dY(t) = a (t)Y(t)dt + b (t)dWt ,

with deterministic initial condition Y(O). Assume that matri:z: Q(u) has the pro

perties described above. Then the ne:z:tformula is true:

t

E exp[ - JY' (u )Q(u )Y(u )du] =
o

t

exp[Y' (O)f(O)Y(O) + 8pJb(u )b' (u )r(u)du]
o

where f(u) is the solution ofmatri:z: Rtcatti equation

df(u) f'
du = Q(u) - ( (u) + f (u»a(u) -

~ (I'(u) + f' (u»b (u)b' (u )(f(u) + f' (u»,

with the terminal condition f(t) = O.

(9)

(10)

These result.s have direct. implement.ation t.o survival analysis: any exponent. on

t.he left-hand sides of (7) and (9) can be considered as a conditional survival function in

some life cycle problem (Myers 1981; Woodbury and Mant.on 1977; Yashin 1983). The

stochastic process in t.he exponent. is int.erpret.ed in t.erms of spontaneously changing

fact.ors t.hat. influence mortalit.y or failure rat.e.

Such int.erpretation was used in some biomedical models. The quadratic depen

dence of risk from some risk factors was confirmed by t.he results of numerous physlo-
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logical and medical sludies (Woodbury and Manlon 1977). The resulls are also applica

ble lo lhe reliabllily analysis.

The way of proving lhe Cameron-Marlin formula and ils generalizalions given in

(Cameron and Marlin 1944, 1949; Lipt.zer and Shlryaev 1978) does not. use an int.erpre

t.at.ion and unfort.unat.ely does not. provide any physical or demographical sense t.o t.he

variables f(u) t.hat. appear on t.he rlght.-hand side of t.he formulas (7) and (9). More

over, t.he form of t.he boundary condit.lons for equalion (8) and (10) on t.he right.-hand

side complicat.e t.he compuling of t.he Cameron-Marlin formula when one needs t.o calcu

lat.e It. on-line for many t.Ime moment.s t. These difficult.ies grow when t.here are some

addit.ional on-line observalions correlat.ed wit.h t.he influenlial fact.ors.

:l. NEW APPROACH

Fort.unat.ely t.here is t.he st.raight.forward met.hod t.hat. allows avoidance of t.hese

complicat.ions. The approach uses t.he innovat.ive t.ransformalions random int.ensit.ies or

compensat.ors of a point. process. Usage of t.his "marlingale" t.echniques allows t.o get. a

more general formula for averaging exponent.s which might. be a more complex func

t.ional of a random process from a wider class.

The following general stat.ement. gives t.he principal new solut.ion of t.he Cameron

and Mart.in problem.

Theorem. 4. Let Y(u) be an arbitrary H-adapted random process and

X(Y,u) is some non-negative HY-adaptivej'unction such that for some t ~

t

E JX(Y,u )du < oc>

o

Then

t t

E exp[ - JX(Y,u )du] = exp[ - JE [X(Y,u) IT> u ]du]
o 0

where T is the stopping time associated with the process Y(u) as follows:

t

P ( T > t I If/') = exp[ - JX(Y, u )du ]
o

(11)

(12)

(13)

and If/' = nu>t uIY(v),v ~ u is u-algebra generated by the history of the

process Y(u) up to time t • HY = (If/')t~ .

The proof of t.his stat.ement. based on t.he idea of "innovat.ion", widely used in mar

t.ingale approach t.o fllt.ralion and st.ochast.1c cont.rol problems (Lipt.zer and Shiryaev
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1976; Yashin 1970; Bremaud 1960) is given in (Yashin 1964).

Anolher form of lhis idea appeared and was explored in lhe demographical sludies

of population helerogeneily dynamics (Yashin 1963; Vaupel, Manlon, and Stallard 1979;

Vaupel and Yashin 1963). Differences among lhe individuals or unils in lhese sludies

were described in lerms of a random helerogeneily faclor called "frailly". This faclor

Is responsible for Individuals' susceptibilily lo dealh and can change over lime in

accordance with lhe changes of some eXlernal variables. Influencing lhe Individuals'

chances lo die (or to have failure for some unll If one deals wllh lhe reliabilily slu

dies).

When lhe Influence of lhe exlernal faclors on lhe failure rale may be represenled

In lerms of a funclion which is a Quadralic form of lhe diffusion lype Gaussian process,

lhe resull of Theorem 4 may be developed as follows:

Theorem 5. Let the m -dimensional H-adapted process Y(u) satis.fy the

linear stocha.stic differential equation

dY(t) = [ao(t) + a 1(t)Y(u)]dt + b(t)dWj • Y(O) = Yo'

where Yo is the Gaussian random variable with mean mo and variance "'10'

Denote by Q(u) a symmetric non-negative definite matriz whose elements satisj'y

condition (6). Then the nezt formula is true

j j

E exp[ - J(Y' (u )Q(u )Y(u »du] = exp[ - J (m~Q(u )mu
o 0

+ Sp (Q(u )"'Iu »du].

(14)

The processes mu and "'Iu are the solutions of the following ordinary differential

equations:

(15)

(16)

with the initial conditions mo and "'10' respectively.

The proof of lhis lheorem is based on lhe Gaussian properly of lhe conditional dls

lribulion function P (Y(t) ~ ziT> t) and is given in (Yashln 1964). This silualion

recalls lhe well-known generalization of lhe Kalman filler scheme (Liplzer and Shir

yaev 1976; Liplzer 1975; Yashin 1960; Yashin 1962).
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Note that a similar approach to the averaging of the survival function was studied

in (Woodbury and Manton 1977) under the assumption that the conditional Gaussian pro

perty take place.

Assume that Zt is a finite slate continuous time Markov process with vector ini

tial probabilities p 1.....P K and intensity matrix

R(t) = I Irt,j(t)1 I, i.j =1,K t ~O.

with bounded elements for any t ~ O. The process Zt can be interpreted as a formal

description of the individuals' transitions from one state to another in the multistate

population model. Denote Iff = al z,. ,u :S t I. The following statement is the direct

corollary of Theorem 4 (Yashin 1984).

Theorem 6. Let the process Zt be associated with the death time T as follows:

t

P (T > t I Iff) = eXP[-j"),,(z,.,u)du].
o

Then the ne:r:tformula is true:

t t t =K
Eexp[-j"),,(z,.,u)du] = eXP[-j L; ")"(i,U)lTt (u)du]

o 0 t =1

where the lTt (t) are the solutions of the following system of the ordinary differen

tial equations:

The variables lTj (t), j = 1.K can be interpreted as the proportions of the indi

viduals in different groups at time t.

6. FURTHER GENERALIZATIONS

Suppose one needs to analyze the survival problem for a certain population. The

duration of life for any individual in the cohort is the functional of the two-component

process Z(t) = X(t).Y(t).

Assume that dala which are available consist of the results of measurements of

component X(t) at some fixed times for the population cohort consisting of n individu

als.
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Let Xt (t 1)" ··.Xt (tt) be data-related to the i -th individual. Assume that both meas

ured and unmeasured processes influence the mortality rate and this impact is speci

fied as a quadratic form from both X(t) and Y(t), that is

, , [Q ll (t) Q1Z(t)] [X(t)]
~(t,X(t).Y(t»= (X (t)Y(t» QZ1(t): Qzz(t) Y(t) + J.Lo(t)

where Q ll (t), Qzz(t) are positive-definite symmetric matrices and

Note that one can always find the vector-function F and function G. such that the mor

tality rate ~t,X,Y) can be represented in the form

~(t,X,Y) = (Y -F)'Qzz(t)(Y -F) + G

where F and G are the functions of t and X

F(t .X) = Qzi (t )QZ1(t)X

G(t.X) =X'Qll(t)X -X'Q1Z(t)QZ-z!(t)Q21(t)X + J.Lo(t)

Assume that the problem is to estimate the elements of matrix Q on the base of

data Xt(t 1 /\ Tt), ... ,Xt(tt /\ Tt ), i = l.n, where Tt are the observed death times and

Note that some parameters specifying the evolution of the process Y(t) can also be

known.

Assume that processes X(t) and Y(t) are the solutions of the following linear sto

chastic differential equations

)Y(t)] = fl[a 01(t)] + [a ll (t) a 1z(t)] [Y(t)]ljd.t + fb(t)]d.[W lt ]
lx(t)J aoz(t) azz(t) azz(t) lx(t) la(t) W2t

where Qlt and W2t are vector-valued Wiener processes, independent on initial values

X(O),Y(O), and b(t),B(t) are the matrices having the respective dimensions,

To avoid complications, we will omit index i related to some particular individual

in the notations related to Xt (t).

Let :i (t) denote the vector X(t 1).X(t Z)' ... ,X(tj (t». where
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Define the conditional survival function S(t ,x) with the help of equality

S(t,x) =P(T > t Ix(t))

and let

jj.(t,X(t))=-~ InS(t,x)

The problem is to find the form of iU.t ,x (t)).

The following theorem about the form of /1.(t ,x (t)) is true.

Theorem 7. Let the processes X(t) and Y(t) be defined as above. Then jj.(t,x(t))

can be represented in the form

jj.(t ,x (t)) = (m '(t) - F'(t ,x))Q(t)(m (t) - F(t ,x)) + Sp (Q(t )7(t)) + 1J.o(t)

equations .

~cit = ao(t) + a (t)m (t) - 2m (t)Q(t)7(t)

ci~~t) = a (t)7(t) + 7(t)a*(t) + b(t)b*(t) - 27(t)Q(t)7(t)

where

At time t j , j = 1, ... ,k, the initial values for these equations are

m2(tj ) = X(tj )

711 (tj ) = 711(tj -) - 712(tj -)72:l(tj -)721(tj )
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The proof of this theorem can be done using for instance the approach developed

In (Yashin, Manton, and Vaupel 1983).

Example. The relevance of the results such as formula (5) becomes evident from

the following example. Assume that Wiener process Wt and stopping time T are interre

lated and the random intensity of occurrence T is l\(t )W/, Formula (5) gives immedi

ately the form of the conditional survival function

I

-f "(u)W,.2au

S(t IW~) =P(T > t IHt ) =e 0

In survival analysis the stopping time T is associated with the death or failure time and

the research is often focused on the properties of the survival function

S(t) =P(T > t) (Elandt-Johnson and Johnson 1979a; Nelson 1982; Lawless 1982; Cox

and Oakes 1984). The straightforward way of its calculation is the averaging of lhe

conditional survival function S(t IWb)' It turns out that (see for instance, Yashin

(1984»

I

-J "(u )W,.2au
Ee 0

I

-J"(u)E{WJI T > u)du
=e 0

For the Wiener process the conditional mathematical expectation on lhe right-hand

side of this formula can be easily calculated (the condition Wo = 0 is used \,here)

where 7(t) is the solution of the differential equation

.y(t) =1 - 2l\(t )72(t) , 7(0) =0 .

When l\(t) is constantly equal, say, to ~ the straightforward calculations lead to lhe

formula

I

--+ Jw,.P.au
Ee 0

1
= "cht

which coincides with the result based on the Cameron and Marlin formula (Liptzer and

Shiryaev 1978).
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7. CONCLUSION

Formula (5) can be generalized in more complex cases including the sequence of

observed stopping times and semimartingale as an influential stochastic process. It

can be useful in the field of survival analysis, reliability theory and risk analysis. It

shows which particular conditional distribution functions should be used in specifica

tion of the random intensities. The specification of the influential process and the

measurement schemas provide the particular forms for the distributions and the inten

sities. Some examples, related to the biomedical and demographical applications are

discussed in (Yashin, Manton, and Vaupel 1983: Yashin and Manton 1984; Yashin 1984).
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lIARKOV DECISION PROCESSES WITH BOTH CONTINUOUS AND
lMPULSIVE CONTROL

A.A. Yushkevich
Moscow Inst.it.ut.e of Transport. Engineering
Moscow, USSR

1. INTRODUCTION

In t.his paper we present. some progress in t.he t.heory of Markov decision

processes (MOPs) wit.h bot.h continuous and impulsive actions. This is based on analo

gues of Bellman's dynamic programming optimalit.y equation. We also discuss a modifi

cation of some basic concepts of general st.ochastic process t.heory t.hat. appears useful

in a formal t.reat.ment. of impulsive cont.rol problems.

Hist.orically one may t.race t.wo pat.hs in t.he development. of t.he t.heory of continu

ous time MOPs. The first., which is based on pioneering work by Bellman and Howard,

deals wit.h act.ions (we shall call t.hem controls) which influence infinit.esimal charac

t.erist.ics, i.e., t.he generat.or of t.he process and t.he reward rat.e. Here t.he problem of

t.he exist.ence of "good" policies is t.reat.ed following Blackwell and St.rauch's approach

from discret.e t.ime dynamic programming, and optimalit.y equations lie at. t.he heart. of

t.he investigat.ions. This pat.h is described, for example, by Miller, Kakumanu, PUsca,

Doshi, Yushkevich and Fainberg (for exact. references see [1]).

Anot.her approach is due t.o De Leve [2]. According t.o De Leve, decisions are

made at. isolat.ed moment.s and produce immediat.e changes In bot.h st.at.e and reward (we

shall call such actions impulsive controls); during t.he time int.ervals bet.ween deci

sions t.he syst.em is governed by a given Markov process. These concept.s were not.

widely recognised by specialist.s in MOPs at. first., but. have been given a new lease on

life in publications by t.he Net.herlands schoo1.

Schout.en [3] and Hordijk and Schout.en (4) have recently begun a syst.ematic st.udy

of MOPs involving actions of bot.h kinds. These aut.hors consider a model wit.h a det.er

mlnlstic drift. bet.ween jumps, and wit.h random jumps influenced by bot.h continuous and

impulsive cont.rols. In t.he works cit.ed above, particular at.t.ention is paid t.o discret.e

time approximation of optimal policies, and t.he relat.ed weak convergence problems on

a functional space differing from Skorohod's space in t.hat. t.hree different. sit.uations
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may occur at discontinuity points t: z: (t), z: (t -) and x (t +). This Is because Hordljk

and Schouten permit an Impulse to follow immediately after a jump generated by con

tinuous controls. but forbid instantaneous repetitions of impulses.

Impulsive controls have also been studied in connection with stochastic differen

tial equations, in some cases together with continuous controls (Bensoussan and Lions

[5], Kushner [6]). In general these authors did not exclude immediate repetition of

impulses (I.e., coincidence of stopping times). but such phenomena were treated in an

informal way. An essential tool in [5] and related publications is provided by quasi

variational inequallities (QVIs), which represent a substitute for Bellman's optimality

equation.

An approach to Hordijk-Schouten MDP models based on appropriate QVIs was pre

viously initiated. Here we describe and develop this approach.

Examples of MDPs with impulsive controls and deterministic drift arising in inven

tory. storage or queueing problems can be found in [3]. Deterministic drift also

occurs when a non-homogeneous jump model is reduced to a homogeneous model by

Including time as a space variable. A familiar example of an impulsive control problem

with only one permitted decision is the optimal stopping problem. Of course. this can

also be combined with continuous control (see Shlryaev [7], Krylov [8]).

Finally. we should mention that another treatment of (continuously) controlled sto

chastic processes without a diffusion component but with controlled drift and jumps is

given by Davis [9] and Vermes [10]. Processes of this type with a concentration of

small jumps have been studied by Pragarauskas [11] as a particular case of controlled.

possibly degenerated diffusion with jumps.

2. MODIFICATION OF SOME STOCHASTIC THEORY CONCEPTS

In a Markovian model it is natural to desire that In any current state the set of

posslble decisions should not depend on the history of the system. There are no physi

cal reasons to forbid jumps influenced by impulsive actions which bring the system into

a state where impulsive controls are available. Therefore we should permit any finite

number of successive impulsive decisions to coincide in time. so that at some random

moment t there will be several state positions x/o. xl. xl ..... The information avail

able after reaching x/o is less than after reaching xl. etc .• and so any fixed t will be

associated with various a-fields F? c: Fl c . .. . We shall kill the process after any

docomposition of z:(t) into countably many states xr. and possibly also on other occa

sions. We shall need stopping times" with respect to the enlarged family of u-fields

IFrl. We must obtain some measurability properties analogous to the usual ones. We

must also be able to identify all "split" time periods t and for this purpose we shall
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require that these periods be numbered in their natural order (maybe after some clas

sification by "size"). And we must require that all :z:~ are observable at split random

periods s. Le., they are measurable with respect to u-fields Fl' if s < t. because this

measurability does not follow automatically from the fact that :z:l' is adapted to Fl' in

the usual sense. So we arrive at the following definitions.

Denote by M the set of all pairs T = (t , n), t E R +, n E Z. called moments. We

shall define ordering in M by setting (s •m) < (t •n) if s < t or s = t, m < n. For

T =(t • n) with n ~ 1 define T- =(t • n -1). Suppose that a measurable state space

(X, X) and a measurable base space (0. F) are given. For any function ~ defined on

some subset D(n of 0 we write I~ E B I instead of ICol: Col E D(~). ~(Col) E B l. and we call ~

an F-measurable variable if D(n E Fand ~ is measurable with respect to F n D(n.

Definition 1. AT-process I:Z: T I on (0, F) with values in (X. X) is a map :z: (T , Col) =

:Z:T(Col) = :z:r(Col) from some D eM X 0 into X with the following properties:

(1) if (t ,n • Col) ED. n ~ 1. then (t ,m • Col) ED for m = 0.1 ....• n'

(2) if (t ,0. Col) ~ D. then (u .0. Col) ~ D for any u > t;

(3) if (t ,n . Col) E D for all n E Z +. then (u .0. Col) ~ D for any u > t;

(4) (0.0" Col) ED for any Col E 0;

(5) :Z:T(Col) is F-measurable for any T EM;

(6) there exists a function d from X X X into (0. 00) such that for any l: > 0 and

Col E 0 the set

IT = (t .n): n ~ 1. (T ,Col) ED, d(:Z:T_(Col). :Z:T(Coln > l:1

is empty or all its elements form a finite or countable ordered sequence

T/(Col) < T{(Col) < .... and Ti £ and :z:(T/(Col). Col) are F-measurable variables.

Definition 2. A class NT of events which are observable by means of I:Z:T I up to a

moment T. T E. M, is a minimal u-field in 0 such that (i) variables :z:s with SsT. (ii)

sets IT/ s Tl. l: > 0, i = 1,2 •...• and (i11) restrictions of variables Ti £ and :z:(Ti£) on

these sets. are all measurable with respect to NT'

As usual a filter IFTlis understood to be a family of u-fields FT' T EM. such that

F T e Fand Fs eFT ifS < T.

Definition 3. AT-process I:z:TI is said to be adapted to a filter 1FT! if NT eFT'

T EM. It is said to be progressively measurable with respect to 1FT I if for any

T EM. i = 1.2 •...• B E X; l: > O. we have

!<S • Col): :z:(S • Col) EB. S s TI E B T X F T
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l(s, Col): S = T{(Col) ,S :!IO TI E: Dr x '"r

where Dr denot.es a Borel a-field on IS: S :!IO T • S E: MI.

Definition 4. A function" from 0 int.o M U 1001 is said t.o be a stopping time of a T

process Ixr I wit.h respect. t.o a filt.er IFr I. if I" :!IO TI E: F r for any T E: M, and X~{",}(Col)

is defined for any Col E I" "" 001.

Many of t.he usual properUes of st.ochasUc processes remain valid wit.h slight.

modificaUons for T-processes. Using essenUally t.he same argument.s as in [12] one can

prove t.hat. (i) if (X, X), is a Borel space t.hen a progressively measurable T-process is

an adapt.ed process; (ii) if (X, X) is a met.ric space wit.h a Borel measurablllt.y st.ruc

t.ure, if Ixrl is aT-process adapt.ed t.o I'"rl. and if XtO(Col) is left.-conUnuous in t for any

Col E: 0, t.hen IxT! is progressively measurable wit.h respect. t.o IFrl; (lli) if lxrl is

adapt.ed t.o IFrl , t.hen all variables T. T E: M, and T{, t: > 0, i = 1,2 .. , (equal t.o +00

if xr does not. reach t.hem) are st.opping Urnes wit.h respect. t.o IFrl; (iv) if lxrl is

adapt.ed and progressively measurable wit.h respect. t.o IFrl t.hen X~{",}(Col) is F~

measurable,'whereA E F~ if IA ,"~Tl E: Fr for all T; and soon.

3. A MARKOV DECISION PROCESS

We shall const.ruct. an MDP wit.h det.erminisUc drift. and non-accumulaUng impulses

analogous t.o t.hat. defined in [3,4], but. allowing immediat.e repeUUon of impulses. In

cont.rast. t.o t.hose papers and also t.o [1] we now define policies in t.erms of T-processes

and st.opping times in a way similar t.o t.hat. adopt.ed in st.ochastic differenUal equat.lons.

In t.he next. definition we use t.erminology int.roduced by Gihman and Skorohod [13].

Definition 5. A controlled object Y is a collecUon (X ,J ,A ,A 1 ,A 2 ,A (x ), q) of t.he fol

lowing Borel-measurable element.s:

(1) a st.at.e space X;

(2) a drift. funcUon J (s ,x , t), x EX, S :!IO t E: R +' wit.h J (t ,x ,t) = x and an obvi-

ous semigroup propert.y;

(3) an acUon space A divided int.o 8 set. of impulsive cont.rols A 1 and a cont.rol set.

A 2 =A \ A 1;

(4) a non-empt.y set. of const.raint.s A (x ), X E: X, defined as t.he x -sect.lon of a set.

C E: B(X XA);

(5) a jump densit.y lo..(t ,x ,a) "" 0, t E: R +, a E: A(x), x E: X, bounded for a E: A 2,

and equal t.o + 00 for a E: A 1;
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(6) a jump dlslrlbulion q (t ,X ,a ,dy), Le., a probabilily measure on X \ Ix l.
t ER+, a EA(x), x EX.

Wilh any conlrolled objecl Y we assoclale aT-process lxrl in lhe following way.

Denole by 2: lhe sel of all skeletons ~, I.e., flnile or counlable collections of successive

pairs tA:xA: E R + x X of lhe form

:::: is a Borel space, and we consider :::: lo be an image of a base space (n, F) oblained by

means of a measurable map ~ =HCol) (for example, one may lel :::: =0).

Any skelelon HCol) defines a lrajeclory x (. , Col) by drlfl: If t E (tA: ' tA: +1) or if tA: +1

Is nol defined and t ~ (tA: ' + 00), lhen XtO = f (tA: ,xA: ' t); if i Is lhe smallesl number wilh

tt = t. lhen for any j <!: i such lhal tj = t we have xl-t(Col) = Xj in lhe case t = 0, or

x( t +1(Col) = Xj and XtO(Col) = f(tt -1' Xt -1' t) in lhe case t > 0; al olher momenls xr Is

nol defined. Definition 1 is salisfled here wllh d. = 1; variables T/ do nol depend on l:

for l: < 1, and we denole lhem by Tt ,i = 1,2 , ... , selling To = (0,0). It Is evidenl

lhallhe flrsl coordlnale of Tt equals tt.

Definition 6. For a conlrolled objecl Yand lhe T-process lxrl assoclaled wllh il, a

policy 71' Is a collection <larl ,'191 , 'I9z , ... ), where

(1) 'I9 t , i <!: 1 are slopping times of Ixrl, wllh respecl lo INr I such lhal 'I9t < 'I9t +1 or

'I9t = 'I9 t +1 = 00;

(2) Iarlls aT-process wllh values In A wilh lhe same domain D as !xrl; ills progres

sively measurable wllh respecl lo INrI. has ar(Col) E A (Xr(Col», and is such lhal

ar(Col) E: A l lf T equals any of 'I9t (Col) < 00 and ar(Col) E A Zfor all olher (T , Col) ED.

As usual, if lhe correspondence x -f A (x), X EX, admils a measurable seleclion,

lhen policies do exlsl. The following analytic represenlatlon of a policy (cf. [14] for

an analogous decomposllion of slopping times In jump processes) demonslrales lhal

chosen decisions are functions of hislorles t OX 0 ... t mx m t In lhe same sense as In

dynamic programming. Lel 'I9 t = (T t ,vt ) If 'I9 t < 00, and T t = +00 if 'I9 t = +00. Lel

i m (Col, 71') denole lhe number of momenls 'I9t < Tm'

LEIDIA 1. For any policy 71' there are measurablej'unctions b(toxo'" tmxmt) with

values in A(xm ), i(toxo ... tmxm ) with values in (0,1,2, ... , 00), and. g(toXo ...

tmxm ) with values in [tm , +00] (where m = 0,1,2, ... , elements toxo ... tmxm are

the same as in skeleton ~, and. t <!: t m ), such that, setting tA:xA: = tA:Xt(Col),

Tt = Tt(Col), we have
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(1) aT(GJ) =b (to%O .... tm%m t) Jar (T, GJ) E: D, where m =max Ik: Tic S T I. and t

is the ,first coordinate oj T;

(2) i m (GJ, 7T) = i (to%o ... tm%m) if tm (GJ) is defined;

(3) T t (GJ) =g (to%o '" tm%m) Jar i =i (to%o ... tm%m)' if tm (GJ) is de,fined, i(to%o

... tm%m) is ,finite, and either t m +-1(GJ) ::!:g(to%o ... tm%m) or t m +-1(GJ) is not

defined; in that case lit equals the second coordinate oj Tm iJ T t = t m• and

equals 0 iftm < Tt < 00.

Using Lemma 1, induction In m and the Ionescu-Tulcea-theorem, we construct a

probability measure Px.n on 0 corresponding to any Initial state % and polley 7T. Px.n Is a

unique measure on the u-f1eld N = 11m NT which satisfies the following conditions: for
T-+~

all m ::!: 0 (almost surely for conditional probabilities) we have

=

t
1-exp[-!:A(s,%(s),a(s))ds utmst <g(tO%o ... tm%m)

tin

1

where for brevity %(s) = J(tm '%m ,s), a(s) = b(to%o ... tm%ms). By E; we denote

expectation with respect to P;:.
The T-process IXTI constructed on the probability space (0, N,Pi') is a con

trolled stochastic T-process (with given Initial state and polley).

A policy 7T Is said to be a Markov polley If functions band g corresponding to 7T

(see Lemma 1) can be expressed In terms of a measurable function (called a selector)

rp(t ,%) on R+- x X taking values In sets A (%):

(1) b(tcfXo

(2) g(to%o

where

tm %m t) = rp( t ,J (tm ' %m ' t));

tm %m) = g.,( tm '%m ),

{
+oo if rp(u ,j (t ,% ,u)) E A 2 for all u ::!: t .

g.,(t .%) = min lu: u::!: t ,rp(u ,j(t ,x ,u)) EAtl otherwise
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and t.he minimum is necessarily at.tained. (If t.he last. condit.ion is not. sat.isfied, t.hen at.

t.he t.ime inf lu: ... j when t.he first. impulsive action after t occurs, t.he dist.ribution

of t.hat. act.ion is not. defined.) If ljI(t ,x) = ljI(x), t.hen t.he policy is said t.o be station

ary. Let. IT denot.e t.he set. of all policies in Y.

Definition 7. The cost structure of a cont.rolled object. Y is given by

(1) a horizon H E (0,00];

(H) a measurable real reward function r (t ,x , a), t E [0, H) n R +, a E A (x),

X EX;

(Hi) if H < 00, a measurable real final reward funct.ion R(x), x EX.

A cont.rolled object. Y wit.h a corresponding T-process Ixrl. a collection of poli

cies 7T and corresponding measures Pxn, and a cost. st.ruct.ure t.oget.her form a Markov

decision process.

For a given horizon H, a policy 7T is said t.o be admissible, if for any x EX wit.h

Pxn - probabilit.y 1, t.he variables 4n (or equivalently T'L) have no limit. point. on t.he

segment. [0, H] for H < 00 or on t.he int.erval [0,00) for H = 00. For an admissible policy,

t.he value XtO is almost. surely defined for any t ~ 0 in t.he case H = 00, and for some

> H in t.he case H < 00. The set. of all admissible policies will be denot.ed by ITo.

On t.he whole we shall deal wit.h an e.:z:pected total reward criterion

H

vn(x) = Ei'[ J r(t ,XtO, ap)dt + I: r(T'L ,x",, a",) + R(iiH )1(H < 00)]
o -"T,<H

where iit =x? wit.h n = max 1m: x?isdefinedj. Assuming t.hat. vn(x) is·well-defined

for all 7T E ITo' x EX, we int.roduce a value function

v(x) = sUI? vn(x) , X EX
nElla

If v is finit.e, t.hen a policy 7T E ITo is said t.o be optimal (I:-opt.imal) if

v n = v(vn~v -1:).

4:. OPTIMALITY CONDITIONS IN THE CASE OJ' A FINITE HORIZON

In addition t.o a given Markov decision process Z we consider a collection of MDPs

Zt obt.ained from Z by replacing t.he cont.rol period [0, H) by [t, H). Let. vt"(x) =

v n(t ,x) and Vt (x) = v (t ,x) be t.he crit.erion and value functions for Zt. We shall say

t.hat. Z is upper (or lower) bounded, if in t.he process Z obt.ained from Z by replacing

rand R by r + and R+ (r' and Rj t.he crit.erion funct.ion iin(t ,x) is uniformly bounded

from above (below).
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For bounded measurable functions F on X, the following operators Tt , Tl, Tl are

defined for t E. [0, H],:Z: E. X:

r(t ,:z: ,a) + ~(t ,:z: ,a) J [F(y) -F(:z:)]q(t,:z: ,a ,dy), a EA 2(:z:)
X

r(t,:z:,a)+JF(y)q(t,:z:,a,dy),a EA 1(:z:)
X

TlF(:z:) = sup TtF(:z:, a) ,
A l(x)

TlF(:z:) = sup TtF(:z:, a)
A 2(x)

Here Tl has the form of a Bellman operator In discrete time dynamic programming, and

Tt
2 has the same form for the continuous time case.

For brevity we shall write

-Du (>(u) O!: it(u) , U E 1

Instead of

t
(>(s) - (>(t) O!: J it(u)du for all s < tEl

o

even in the case when (> has no derivative. The equality Du o(l(u) =it(u), U E 1 has an

analogous meaning.

THEOREM 1 [1]. Suppose that all constraint sets A 2(:z:), :z: E X, are non-empty, that

the horizon H is finite, and t.hat MDP Z is upper (or lower) bounded. If a selector

rp(t ,:z:) generates a Markov policy 7l" E no' and if rp and a bounded measurable real

}'unction v (t ,:z:) = Vt (:Z:), t E [0, H], :z: EX, satisj'y the following conditions for any

t E [0, H], :z: EX:

-Duvu(f(t,:z:,u» =Tuvu[f(t,:z:,u) , rp(u,f(t,:Z:,u))] , u E[t,g,,(t,:z:)] ,(4)

VH(:Z:) O!: R(:z:) , vH(:Z:) =R(:z:) If rp(H,:z:) E A 2 (5)

then Vo is the value of Z and 7l" is an optimal policy in Z.

In fact conditions (1)-(5) are necessary and sufficient for Vt to be the value of Zt

for all t E. [0, H] and for selector rp to be an optimal synthesis, i.e., to produce an

optimal policy 7l"t in any MDP Zt (provided that 7l"t E no); we omit the exact
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formulations here (but see [1]). The proofs use arguments from dynamic programming,

the Markov property, and measurable selection.

Inequalities (1)-(2), with an equality sign in one of them at any point (t ,x) implied

by (3)-(4), form a set of quasi-variational inequalities (QVls) for the model under

consideration. The question arises as to whether the QVls are valid without the

assumption that an optimal synthesis exists. We shall give a partial answer to this

question in Section 5.

5. COUNTABLE HOMOGENEOUS NEGATIVE AND DISCOUNTED CASES

Here we shall make the following assumptions:

Assumptions 1.

(1) X is countable and f (s ,x , t) = x;

(ii) lo..(t ,x ,a) = lo..(x ,a), q(t ,x ,a ,dy) = q(x ,a ,dy), r(t ,x ,a) =r(x ,a)e-fH with

constant {J ~ 0, H = 00;

(iii) rIo is non-empty;

(iv) criterion function ij7T in t, obtained from Z by replacing r by r +, is bounded from

above;

(v) -oo<v(x)~K<+oo,XEX.

In the homogeneous case v (t ,x) = v (x)e -pt, so that tV (t ,x) = {Jv (t ,x), and in

the absence of drift (2) becomes (3vu ~ T~vu' Operators Tt , Tl, Tt
2 from Section 4 are

connected with the operators

j

r(x, a) + A(x ,a) ~ [F(y) -F(x)]q(x, a, y) , a E A 2(x)

TF(x ,a) = 1
r (x ,a) + L: F(y)q (x ,a ,y) , a E A (x)

y

by the formula TtF(x ,a) = e -pt T(e ptF)(x ,a). Thus inequalities (1)-(2) reduce to

v ~ T1v, {3v ~ T 2v. The denumerability of X allows us to avoid measurability difficul

ties, and dynamic programming arguments for both discrete and continuous time param

eters may be used to obtain the QVls.

THEOREM 2. Und.er Assumptions 1, we have

By induction over Tm it is possible to extend to the present case a defect formula

which has been known implicitly for a long time but was stated explicitly in [15] for

discrete and in [16] for continuous time.
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THEOREM 3. Und.er Assumptions 2, for any 7r E: flo we have

v (x) - V "(x) = " +

(6)

+E;l! e-fJt[{lv(xt) -Tv(xtO,ap)]dt +I; e-fJTi[v(x"l) -Tv(x"l,a"l)l!

° t

where " ~ 0, but if E;l I is finite then

" = lim E e -fJt v (x 0)
T~- :r t

(7)

According to Theorem 2, the terms in square brackets in (6) are non-negative. If

{l > 0 or v S 0 we have " S 0 (from (7», and therefore " = 0 (any policy is equaliz

ing). If a Markov policy 11" is generated by a selector rp(t ,x) which satisfies

{
V(X) If rp(t ,x) E: A 1 ,

Tv (x, rp(t ,x» = (lv(x) if rp(t, x) E: A2

(Le., 11" is a conservation policy), then E;l ... I =0 in Theorem 3. By selecting a con

serving 7r if the constraint set A(x) is finite, or a nearly conserving 11" in other cases,

one can obtain an optimal or E-optimal policy (of course, it is necessary to check that

r (x ,a) S 6 <0 for a E: A l(x) , X E: X (8)

then a polley 7r rt flo may provide a reward v 1f =- 00 because it may provoke infinitely

many impulses in a finite time. Using this remark and an analogue of (6) for 11" rt flo, it

can be shown that a nearly conserving policy must belong to flo. This leads to the fol

lowing result.

COROLLARY 1. Suppose that either fl =flo or (8) is valid..

(1) If (I) A (x) is finite, (Ii) (l > 0 or v SO, then a stationary optimal policy

exists.

(2) If (I) A l(x) is finite. (Ii) (l > 0, then for any E > 0 a stationary E-optimal

policy exists.

(3) If (i) A l(x) is finite, (Ii) v SO, then for any E > 0 a Markov E-optimal policy

exists.

A policy 7r will be said to be a tracking Markovian policy (a tracking stationary

policy), If 7r differs from a Markov (stationary) policy only in that the decision may

depend on i at stopping times 19t .
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COROLLARY 2. Assume that (6) holds. and let E > O. In the case (J > 0 (or v S 0) a

tracking stationary (or tracking Markovian) E-optimal policy exists.

6. FINITE HOMOGENEOUS CASE

The existence of stationary optimal policies can be proved for finite homogeneous

models. We shall make the following assumptions:

Assumptions 2.

(i) X and A are finite. f(s, x. t) = x;

(il) the same as (if) in Assumptions 1.

Let Xl denote the set of those states x in which only impulsive actions are admit

ted: A (x) = A 1(3:). A non-empty subset V C Xl is said to be closed if q (x •a •V) = 1 for

any a Eo. A (x). X E V. Starting at x E V, with probabillty 1 the system will never leave

V under any arbitrarily chosen policy, so that xr will be defined (only) for infinitely

many T = (0, n). In this case flo is empty. We shall therefore introduce the following

condition:

Condition 1. The set Xl contains no cosed subset.s.

Denote by 4' the set of all selectors Ip(t •x) that do not depend on t. According to

Section 3, every stationary polley 71" is associated with a selector Ip E 4'. If X is finite

(or countable) and if there is no drift. then the converse is also true; and in this case

"t equals the i-th successive time at which xr enters the set X; = Ix: Ip(x) E A 11. Any

selector Ip E: 4' generates a Markov chain C" on the state space X; with transition pro

babillties p ,,(x •y) = q (x • Ip(x) •y) and rewards r ,,(x) =r (x • Ip(x»; this chain

represents the alternation of states x~. n = 0.1 .... in the original T-process lxrl

under policy 71"; the chain is terminated as soon as x~ leaves X;. For any ergodic class

E of states in the chain C" there exists a unique stationary distribution p,,(x), x EE.

By the law of large numbers there exists an average expected reward in C" and for any

x E E this is equal to

1 n
g ,,(E) = lim -- E: L: r ,,(xW) =L: r ,,(y)p ,,(y)

n --- n +1 m =0 E

If g ,,(E) Is positive. then starting in E it is possible to receive an arbitrarily large

reward in the T-process lxrl without increasing t; we can therefore say that a selec

tor Ip Eo. 4' with g ,,(E) > 0 for some ergodic class E immediately provides an infinite

reward. We shall now Introduce a second condition:

Condition 2. there are no selectors which immediately provide an infinite reward in

z.
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THEOREll 4: [1]. Suppose that Assumptions 2 are satisfied., and. that {J > O. Then

the value v is finite and. a stationary optimal policy exists if and. only if Cond.i

tions 1 and. 2 are satisfied..

In the case when (J = 0, we shall denote by ZH(R) the MDP obtained from Z by fix

ing a finite horizon H and a final reward function R; let v~ be the value of ZH(R). We

say that a selector'll E lI> and real functions g and h on X form a canonical triple in Z

with (J = 0, if q; Is optimal In ZH(h) for any H ~ 0, and also

v/J(x) = g (x)H + h (x) , X EX, H ~ 0

THEOREll 5 [1]. Und.er Assumptions 2, Cond.itions 1 and. 2 are necessary and. suf

ficient for the existence of a canonical triple.

In both a discrete time MDP [17] and a continuous time MDP without impulsive

actions [18], a policy q; from a canonical triple is optimal for the average criterion

H

w"(x) = lim H
1 E;[I r(xtO,af)dt + I: r(x~"a~,)]

H --~ ° T,-s;Jf
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STOCHASTIC PROGRAJllIING METHODS: CONVXRGENCE AND
NON-ASYlIPTOTIC ESTIIIATION OF THE CONVERGENCE RATE

Ya.I. Al'ber and S.V. ShiL'man
Gorky University, Gorky, USSR

Iterative stochastic optimization algorithms are widely used to solve problems of

estimation, adaptation, learnlng, etc. It is clearly important to study the convergence,

rate of convergence, stability and other properties of such procedures. For some

time, the question of convergence has received a good deal of attention while the rate

of convergence has received relatively little. The few estimates of convergence rates

given In the Literature are generaLLy asymptotic in character. In addition, they have

been obtained only for those optimization problems which satisfy the condition of

strong convexity or the condition of strong pseudo-differentiabiLity (see the work of

Chung, Venter, Burkholder, ErmoLiev, Tsypkin, Polyak, etc.).

Again, when using iterative methods it is necessary to estimate the smaLLest

number of iterations required to obtain a given accuracy. It is clear that asymptotic

estimates of the convergence rate are not suitable for this purpose. In addition, such

estimates do not generaLLy suggest any course of action regarding the iterative pro

cess as a whole.

This paper summarizes results obtained recently by the authors on the non

asymptotic (valid from the first step) analytical estimation of the convergence rate of

stochastic iterative algorithms. We study both singular and non-singular problems,

including those subject to the conditions of strong and uniform pseudo

differentiability.

We shall consider a function f (x), X E: R l , and two types of minimization problems.

The first involves the finding of minimum points x' =arg min f (x) while the second is
:r EXeRl

concerned only with the lower edge of the function value f' = inf f (x). This distinc-
:r EXCRl

tlon is particularlY important when studying the singular cases. For problems of the

first type we shaLL estimate the mean square of the error >"n = E[pZ(xn ,X')], where

l:Z:n I is a random iterative sequence, E is the mathematical expectation, and p(.) is the

distance from the point :Z:n to the set of minimum points X', which Is assumed to be



convex and closed. For problems of t.he second t.ype we formulat.e t.he problem t.o

investigat.e t.he mean values of t.he difference An = E[f (.:z:n) -!.].

We shall consider It.eratlve st.ochast.lc mlnlmlzat.lon algorlt.hms of t.he form

(1)

where Sn (.:z:n) Is t.he vect.or of random observat.lons at. t.he n -t.h It.eratlon at. a point. .:z:n'

an ~ 0 Is t.he given numerical sequence, and 7Tx (.) denot.es t.he project.ion operat.or for

t.he closed convex set. X. If.:z: = R', t.hen 7Tx(' ) = I where I Is t.he unit. mat.rlx.

Formula (1) describes various conditional and unconst.rained st.ochastic optlmlza

t.ion processes. In what. follows we consider only t.he most. well-known of t.hese, alt.hough

t.his approach may also be applied t.o a much wider range of met.hods and problems.

(A) The Robbins-Monro algorithm. In t.his case t.he vect.or Sn (.:z:n) Is given by

where!'(.:z:) is t.he (sub)gradient. of t.he function! (.:z:) and 1'/n is a sequence of Indepen

dent. random vect.ors such t.hat. E[1'/n J = 0, EO~n112J ,s; a2 < "".

(B) The Kie.fer-Wo{J'owitz algorithm. In t.his case the vect.or Sn (.:z:n) has component.s

2~ [f(.:z:n +cnet) -!(.:z:n -Cnet) + 1'/n,tl, i = 1,l
n

at. each point. .:z:n' Here Iet I is t.he ort.honormal basis in R', 71n = [71n ,1 ' ... , 71n ,tlT Is

a vect.or charact.erizlng t.he error In calculat.lng difference of t.he functions, t.he set.

17ln I consist.s of random vect.ors which are independent. for each value of n and such

t.hat. E[71n J = 0, EU~nli2J ,s; ar < "", and cn ~ 0 Is a given sequence. For simplicit.y we

shall t.akecn = c(n +no)--T, C > 0, no ~ 0, r > O.

(C) The random search algorithms. In t.hls case t.he vect.or Sn (.:z:n) is defined by t.he

equalit.y

where 71n , cn are defined as in t.he Klefer-Wolfowlt.:iI algorit.hm and un is a sequence of

independent. vect.ors which are uniformly dlst.ributed over a sphere of unit. radius cen

t.ered at. zero. The set.s 11'/n I and IUn I are mut.ually independent..

Our aim is t.o give for each algorit.hm a worst.-case estlmat.e of t.he accuracy An for

a sufficiently wide class of functions! (.:z:). The choice of t.his class has an import.ant.

influence on t.he est.imat.e of t.he rat.e of decrease of An t.o zero.
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Non-asymptotic estimat.es of t.he convergence rat.e are derived from st.udies of t.he

behavior of t.he solutions of t.he recursive numerical inequalities

(2)

... ...
where fJn ~ O. Pn ~ O. 7 n ~ 0 E fJn < OIl, E Pn = 00. and >It(X) is a convex, st.rlcUy

n =1 n =1

Increasing function for X~ O. >It(0) =o.

The function >It(X) charact.erizes t.he degree of singularity of t.he optimization

problem, wit.h >It(X) = "X, ,,> O. corresponding t.o t.he non-singular case and >It(X) =
"Xp. p > 1. to the singular case. However. particularly st.riking result.s are obt.ained

when >It(X) = "Xp. (1+fJn)-1Pn~ b(n+no)-t. b >0, O<t,s;l. 7,s;d(n+n o)-S,

d > O. s > t. The corresponding st.at.ement.s are present.ed below. In this case we have

LEMMA 1. Let Xn ~ 0, n =1 •...• satisfY the inequality

where s > 1. t =1. no ~ O. no = const and let

r 2 +n0'116 rd 1r 1 ]S -1
u(x, C) =Cl--J ,v(x) = l-b Co+dJ l 1x+n o x+no-

Then lim Xn =0 and the following statements are true:
n .....

1. If b > s -1 and the arbitrary parameter Co (co> 1) is chosen such that

ab > s -1. a =co(co -1) -1, then

(3)

where C =max [A , C1] and % is the single root of the equation u (x • C) =v (x) on the

interval (2. 00).

Iffor A :S: C 1 we have ab ~ (s -1) (2 + no) (1 + no) -1. then the estimate (3) holds

for aU n ~ 2.

2.lfb >s -landab:S:s -l,oriJb:s:s-LthenXn:s:Cu(n.C),n~1.
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LEJDIA 2. Let Xn ;l!: O. n = 1 •... , satis.fll the inequality

where 0 < t < 1, s > t. no ;l!: 0, no =con"t., and let

u(:z:, C) =C exp 1- ab [(:z: +no)l-t - (2+no)1-t ll
1-t

Then 11m Xn =0 and we have the following estimates:
n -+~

Xn ~ Cu (n ,C) • if 2 ~ n ~ ii

(4)

Xn S Cv (n) • if n > ii

where C = max [A . C tl and ii is the single root of the equation 1.1, (:z: •C) = v (:z:) on

the interval (2. 00). Iffor A s C 1 and Co > 1 we have ab ;l!: (s -t)(2 + no) X (1 +no)-l,

then (4) holds for all n ~ 2.

LEJDIA 3. Let Xn ~ O. n =1 •...• satis.fll the inequality

where p > 1, s > 1. t = 1. no ~ 0, no = canst. and let

Then lim Xn = 0, and ifco > 1 is chosen to satisfy the condition
n -+~

d 1 s-l[(- c )lIp + dJP- ab S-
bOp

then
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Xn ~ Ou. (n •C) , C =max [A •Cd

for all n 2: 1.

LElDIA 4. Let Xn 2: O. n =1 •...• satis.fy the inequality

where'P >1. s > t, 0 < t < 1. no 2: 0, no =const. and let

1

u(x.C) =C{1+CP-1ab[;,=~] [(X +no)1-t -(2+n o)1-tWP
-
1

Then lim Xn =0 and the following statements are true:
n -.-

1. If s -t < 1 -t . then
'P 'P -1

(5)

Xn S; Cv (n) , if n > Ii

where C =max [A • C 1] and x is the single root of the equation u (x • C) =v (x) on

the interval (2. 00).

/J'A S; C 1 and co> 1 is chosen to satisfy the condition

d (2+n )t t
ab[(- cO)lIp + dJP-1 2: 0 s-

b (l+no)'" 'P

Ie =1 _ (s -t)(P -1)
'P

then (5) is validfor all n 2: 2.

2 s -t 1 -t J' ..... h J • t .. If-- 2: --1 an.. co> 1 l.S chosen to satisJ " t e con..1. 1.0n
'P 'P-

ab[(~ c )1/p +d]P-1 ~ s -t
b 0 'P
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then >"n ,s; Cu (n ,C) for all n ~ 1.

In minimization problems of the first type we define classes of functions using the

following conditions:

1. (f'(:Z:),:z: -:z:') ~ it(llz -:z:'II2),:z: EX;

2.II'(:z:)112,s;U2 +TII:z:-:z:'I12, U2~0, T~O,:z: EX.

When considering search methods it is also assumed that f' (:z:) satisfies the local

Lipschitz-Gelder condition:

Condition 1 describes the structure of functions f (:z:). condition 2 the order of

growth of f'(:z:) at infinity and condition 3 the smoothness of functions f(:z:). We note

that strongly convex functions satisfy condition 1 wth it(>..) =,,>.., " >0, (the non

singular case), and uniformly convex functions satisfy this condition, for example, with

it(>..) = ,,>..P, p > 1, even if >.. ,s; N (for a uniformly convex function with a power singu

larity). Arbitrary convex functions (with a non-regular singularity) do not in general

satisfy a coridition of type 1.

When analyzing minimization problems of the second type we shall take X = R L and

define classes of functions using the following conditions:

1'. 1!r'(:z:)112 ~ it[f(:z:) -f']

and there exists an N > 0 such that it(>..) =,,>..m, " > 0, 1 ,s; m ,s; 2, on the segment

[O,N];

2'. l!r'(:z:) - f'(11 )11,s; LII:z: -1II~, L > 0.0 < JJ.,s; 1, (the Lipschitz-Gelder condition

defining the class of function C1,~).

Instead of l' we may take an alternative condition:

1." EU!r' (:Z:n )112] ~ " [E(f (:Z:n) - f')]m, 1 ,s; m ,s; 2,

where :Z:n is the sequence generated by algorithm (1).

We have stated that, for convex functions condition 1" is satisfied if it(>..) =,,>..2

for algorithms (A)-(C). In the Robbins-Monro algorithm it is also necessary to have

~ -
algorithm r; an =00, r; a~ < 00 and in the search methods

n =1 n=l

r; an =00, r; an ct < 00, r; a~ cn- 2 < 00

n =1 n=l n =1

These assumpstions are commoniy made in theorems on convergence with probablllty 1.

Thus, condition 1" makes it possible to treat convex problems with a non-regular singu

larity. Strongly convex functions of the class C1,1 satisfy condition 1 when it(>..) =,,>..,

" > O.
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We shall now briefly describe the results concerning convergence and the conver

gence rate which can be derived from Lemmas 1-4. The classes of function introduced

above allow us to find recursive inequalities of form (2) for each of the algorithms

(A)-(C) [1-3]. In particular, taking a n = a(n+no)-t, a>O, O<t,s;l for the

Robbins-Monro algorithm we obtain Pn (1 + fJ n ) -1 O!: b (n + n 0) -t. In this case we have

b(a,~) > 0, "Yn ,s; d(n +no)-Zt , d(a, r?-, uz) O!: 0

for minimization problems of the first type and

for minimization problems of the second type.

Turning to Kiefer-Wolfowitz and random search algorithms, Pn (1 + fJ n ) -1 has a

form similar to that given above, "Yn ,s; d (n + no) -s, while

s = min 12(t -r), t + 2(2p -l)-lp IJ,TI

for minimization problems of the first type and

s = min It + 21J,T , (1 + lJ,)(t -T) I

for minimization problems of the second type.

All of this makes it possible to study the effects of the structure p(m) and the

smoothness of the function IJ" and the values of steps t and r, on the convergence of

the procedure and the estimates of its convergence rate. Depending on values of these

parameters, the estimates may decrease according to some power term (Lemmas 1,2,4)

or some logarithmic term (Lemma 3). As a rule, the form of the estimates is different

at the initial stage of the search and at large n. For example, the estimates may

depend on an exponential expression at small n and on some power term for n -+ ""

(Lemma 2). It can happen that the estimates are of the same form in both cases but

depend on power terms (Lemmas 1,4). This means that the results obtained in the initial

section of the search and as n -+ "" are essentially different. In the case when the

uncertainty of the II priori information on the position of the extremum is greater than

the uncertainty due to noise from estimations, it is reasonable to use a non-decreasing

step parameter at the initial stage of the search. Then if p(m) is fixed, the conver

gence rate increases as t decreases and at fixed t it decreases as p or m increases.

Asymptotic estimates for p = 1 (m = 1) coincide over orders with the results

obtained by Chung [4], although they differ slightly by maJorant constants. Our esti

mates differ from Venter estimates [4] over the order by a factor II, 0 < II < 1. but

they contain the maJorant constant which is absent in Venter estimates. For p > 1

(1 <m ,s;2) all of the results given above are new, including statements on the
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convergence of t.he process.

For n -+ 00, many of our estlmat.es are better. They allow us t.o find t.he paramet.ers

which produce t.he fast.est. decrease t.o zero In t.he estlmat.es as n -+ 00. We shall now

give some of t.hese paramet.ers.

1. For minimization problems of t.he first. t.ype and t.he Robbins-Monro algorlt.hm

1

we have t = t' = P 1 (2p -1) and EDl:z:n -x 'I~] 5; O[(..!.-) 2p -1]. For Klefer-Wolfowlt.z
n

and random search algorit.hms

=t' =(2p+pJ..L-1)/(1+J..L)(2p-1). r =r' =(2p-1)t'/2(2p+PJ..L-1)

and

In particular, for P =1 we obtain t' =1, r' =1/2(1+J..L), and EUb:n -x'IIZ]5;O

[n -/0'1 (1+/0')], If P = J..L = 1, t.hen t' = 1, r' = 1/4. and E[llxn -x'112] 5; 0 (n -1/2). This

coincides wit.h t.he result. obtained by Dupa6 for t.he Kiefer-Wolfowlt.z algorlt.hm.

2. For mlnlmizat.ion problems of t.he second t.ype and t.he Robbins-Monro algorlt.hm

we have t =t' =ml (m +mJ..L-J..L) and

If J..L = 1 we have t' = m 1 (2m -1) and

If m = 2, we have t' = 21 (2 + J..L) and

In particular. If J..L = 1 and m = 2 we have t' = 2/3 and

as J..L decreases t.he asympt.ot.lcally optimal rat.e falls and t' -+ 1.

If J..L =1 and m =1 we have t' = 1 and

, 1
E[f(xn ) -f ] 5; 0 (-;;:-)

For t.he Kiefer-Wolfowit.z and random search algorlt.hms we have
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t = t' = m(l +3~)/(m +3m~+2m~2-2~2), r = r' =~' / (1+3~)

In this case

If ~ = 1 we have t' = 2m/(3m -1), r' = m/2(3m -i), and

If m = 2 we have t' = (1 +3~)/ (1 +3~+~2), r' = ~/ (1 +3~+~2), and

In particular, if ~ = 1 and m = 2 we have t' =4/5, r' = 1/5, and

and m = 1 we have t' = 1, T' = 1/4, and

, 1
E[J(zn) -J ] ~ 0 (-)

n

If t ~ t' the rate may fall sharply. Thus if t = 1, m =2, then

, 1
E[J(zn) -J ] ~ 0 (-)

Inn
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SOLUTION OF A STOCHASTIC PROGRAlDIING PROBLEM CONCKHliING
THK DISTRIBUTION OF WATER RESOURCKS

LA. Aleksandrov1
, V.P. BUlatov1 , S.B. Ognivtsev2 and F.L Yereshko2

lsiberian Energy Institute, Irkutsk. USSR
2vASHNIL Cybernetics Institute. Moscow, USSR

1. INTRODUCTION

Many optimization problems with economic criteria can be solved using the follow

ing linear pr.ogramming formulation:

min lex: Ax S:b, x ~ol (1)

This expression is correct for deterministic values of the parameters, but requires

additional expianation if some or all components of the matrix A or the vectors band e

are random vaiues. Substitution of these by average values may mean that the model is

no longer an adequate representation of the initial problem. Game criteria should be

used only when this discrepancy results in a penalty large enough to reduce the effect

of minimization of the linear form to zero.

In [1] the stochastic linear programming problem is given as follows:

min lex: P(AxS:b) ~p. 0 <p S:l, x ~ol (2)

It is possible to consider the (linear) mathematical expectation ii% = E(ex) or its vari

ance E(ex -ii%)2 instead of ex. The conditions under which the constraints Ax s: bare

satisfied can be given as in (2) or for each line separateiy. In the latter case P is

replaced by the set Pi' i = 1,m, thus allowing the comparative values of individual ine

qualities to be taken into account. Problems of type (2) can often be reduced to deter

ministic problems. in particular to convex programming problems. Here we shall use

this approach to solve the problem of water resource distribution which arises when

planning the allocation of agricultural production.
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2. PROBLEM STATEMENT

We shall assume that there are K climatic zones In which I types of agricultural

output can be produced using J technologies and L sources of water.

We shall use the following notation:

Xijle - area allocated for cultivation of crop i using

technology j In region k

aijle ' Uijle ' Vijle ,Cijle - crop yielding, labor-Intensiveness, water

consumption rate and land price associated with

area Xijle

Yle labor supply In region k

zleL amount of water taken from source l in region k

d/cl discounted cost of water Intake zleL

wL total water available (flow) from source l

biD given total volume of crop i produced

bile given minimum volume of crop i produced in region k

t i sequence coefficient for crop i

fie amount of land available In region k.

Now we shall formulate a deterministic linear programming problem:

min ( ~ Cijlexijle + ~ d lel z/cl)
i,j,1e Ie ,l

~ aijlexijle ~ bu ' i E: I , k E: K
j

~ X ajle - t i Xijle ~ 0 , i E: I , j E: J • k E: K
ad

~ UijleXijle ~ Yle ' k E: K
i,j

~ Vijle Xijle - ~ Z/cl ~ 0 , k E: K
i,j l

X ijle ~ 0 ; ZIeL ~ 0 ; i E: I , j E: J , k E: K , l E: L

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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The unknown variables here are :r:tjt and Ztt (i E /, j E J. /c E K, l E L). Con

straints (4) and (5) fix the minimum volumes of agricultural output. constraint (6)

ensures that crop sequence conditions are satisfied. while constraints (7)-(10) relate

demands for labor. land and water resources to their given maximum values Yt. 11: and

Now assume that the matrix a and the vectors Y and ware no longer determinate.

Let the elements of the matrix a and the components of the vector Y be independent,

normally distributed random variables with mathematical expectations ;;;;. Yt and

variances aljt. 7;. and the components of the vector w be independent random vari

ables with a gamma distribution described by parameters wI and wl.
Furthermore, let PtO ~ 0.5. Ptt ~ 0.5. q and r be given probab1l1ties.

In this case constraints (4) and (5) may be replaced by the following inequalities:

P( L: atjt:r:tjt ~ bto) ~ PtO • iE/
j.t

which may be reformulated as follows [1]:

(12)

where ol> -1(p) is a quantile of the normal distribution.

E/,/cEK (13)

Constraints (7) and (10) may also be replaced by the probabilistic inequalities

P( L: Utjt:r:tjt :!iO Yt • /c E K) ~ q
t.j

P( L: Ztt :!iO w t ,l E L) ~ r
t

which may be reduced to the form

In q - L In [1- ol>(Yt)] :!iO 0
t

In r - L In [1- f(al • fll )] :!iO 0
I

where f(at • fl t ) is an incomplete gamma function with parameters

(14)

(15)
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a, = w, [~;) . p, = !~::]
In this case inequalities (7) and (10) still hold but the values Yt, Wt on the right-hand

sides should be interpreted as the desired values of corresponding components of the

random vectors Y and W •

The left-hand sides of inequalities (12)-(15) with PiO O!: 0.5, Pu <!: 0.5 are convex

functions. This therefore leads to a convex programming problem determined by con

ditions (3), (6)-(15).

3. SOLUTION PROGRAJIS

Two programs, MODEL and CONE, have been developed to solve problems of the

above type.

MODEL makes it possible to write down the problem conditions in a compact form,

to input the initial data with the required comments and names, and to specify print

formats by means of a specially developed procedure language. Using the recorded

data and problem conditions, MODEL forms a matrix of coefficients for linear con

straints, a vector of right-hand sides. a (row) vector of objective function coeffi

cients, and upper and lower bounds on the variables, as well as calculating an initial

approximation of the problem solution. For nonlinear constraints the program con

structs an information table including the type of constraint, a one-dimensional index

for each random variable, and the nature of the distribution law and its parameters

(the mathematical expectation and variance for the normal distribution, a and (j for

the gamma distribution, etc.). When the solution has been found, MODEL decodes the

results and prints them out, giving additional calculations, aggregating tables, etc., as

necessary.

CONE is designed to solve the general convex programming problem:

min Irp(z): z E: RI (16)

where rp(z) is a convex scalar function and R E: En is a convex set, int R ~ 1/1.

Before describing the support cone method [2] used in CONE we must first intro-

duce some definitions.

1. A direction s (i~li ::s; c < 00) at a point z ~ R is said to be admissible if there

exists a A > 0 such that z + AS E: R. The set of admissible directions will be

denoted by S(z).
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2. The set R" will be called a support set with respect to the convex set R at its

boundary point ii" if ii" is also a boundary point of R" and R" :J R.

Suppose that the set RO = l.:z:: ; :S.:z: :S ii I which contains the minimum point .:z:' of

1jI(.:z:) on R is known.

Let .:z: 1 = argmin !1jI(.:z:): .:z: E: RO I. If .:z: 1 E: R . .:z: 1 is the solution of problem (16). Oth

erwise. determine s 1 E. Sl(.:z: 1) and find the intersection point ii 1 of the ray

.:z: =.:z:1 + A1S 1, A1 > 0, with the boundary of R, and the convex closed support set R 1

corresponding to ii 1.

Determine

Then, in a similar way. we construct a convex set R 2 which is the support set with

respect to R at the point ii2 = .:z:2 + A2s 2 E: RG• where RG is the set of boundary points

of R; we then obtain the following approximation:

2
.:z:3 =argmin !1jI(.:z:):.:z: E: n RJ nROI

J=l

2
If .:z:3 E. n R& then

J=l

3
.:z:4 =argmin !1jI(.:z:):.:z: E: n RJ nROI

J=l

3
.:z:4 =argmin lljl(.:z:):.:z: E: n RJ nROI

J=2

Now we shall write down the general step. Let

.:z:" = argmin !1jI(.:z:):.:z: E: n RJ n R" -11
JO"-l

Suppose that.:z:" E: int RJ 'if j E: Ji-1 c J" -1 (the set Ji-l can be empty).

Determine

n RJ = n RJ n R" -1 n RO
J 0" J U"-11 1,,1_1

where RJ is a convex closed support set with respect to R at the point iiJ =.:z:J + AJ sJ

and find

.:z:" +1 = argmin lljl(.:z:): .:z: E: n RJ n R" I
JO"
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where Rt. is a convex closed support set with respect to R at the point it. .

Thus, the significance of the support sets Rj is checked at each step of the itera

tive process. If any such sets do not affect the problem solution, I.e., the minimum

point belongs to the interior of their intersection they are not included in the next

problem description.

The following theorem holds:

THEOREM 1. Let f{J(z) be strictly convez. Then

1. lim zt. = i ERG;
t. ..-

2. lim f{J(Zt.) = f{J(Z·).
t. ..-

In CONE we have f{J(z) =cTz, R = lz: Yj(z) SO, j = l,m l. and the sets Rt. are con

structed as the Intersections of half-spaces which are support sets with respect to R,

I.e.,

where At. is a non-singular n x n matrix.

Hence, the solution of problem (16) is reduced to the sequential solution of a sys

tem of algebraic equations At. z = bt., the matrices of which differ from step to step

only in one row and one column. If the inverse matrix (A t. -1) -1 Is known, the inversion

of matrix At. obviously presents no difficulty. Moreover, It Is quite unnecessary to

invert matrices of large dimensions as the number of active constraints of the general

type is, as a rule, considerably less than n.

This method gives a two-sided estimate of the error in the approximate solution at

each step. By virtue of the above construction we have

I.e., the iterative process terminates when

4. REJIARKS AND CONCLUSIONS

The model described above does not include all the constraints present in the ori

ginal (dealing with cattle breeding, fodder production, etc.), but these are not neces

sary for our purposes. The original model involved about 350 variables with 225 linear

constraints of the general type and 1-10 nonlinear constraints. Calculations were

performed for approximately 100 variants. The computation time per variant was, on

the average, 15-17 minutes using a BESM-6 computer. The number of active
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constraints in the optimal solution varied from 135 to 150 and the number of iterations

from 320 to 420. I.e .. the number of iterations exceeded the number of active con

straints by a factor of 2-3.

Our calculations have shown that the support cone method used for the solution of

convex programming problems works reliably and with high accuracy. It may be possi

bUe to increase the speed of the method. especially for a series of calculations with

small changes in the initial parameters. The program CONE is currently being modified

along these lines.

The calculations have also shown that the approach used to solve stochastic linear

programming problems offers substantially more scope for the analysis of the models

under consideration than variant calculations using the deterministic models. At the

same time the reduction of the initial stochastic model to a convex deterministic model

is often a non-trivial problem and may lead to a model which is no longer an adequate

representation of the phenomenon studied. However. even in this case the information

obtained can be useful in the analysis of initial models.
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LIMIT THEOREMS FOR PROCESSES GENERATED BY
STOCHASTIC OPTIMIZATION ALGORITHMS

V. V. Anisimov
Kiev State University, Kiev, USSR

Attempts to solve certain optimization, computation and estimation problems have

led to studies of the convergence of recursive stochastic algorithms. These arise in

connection with stochastic approximation problems (Robbins-Monro and

Kiefer-Wolfowitz procedures), random search methods, adaptive control procedures,

problems involving the recursive estimation of parameters, and so on. Sequential

iterations of such algorithms generate special classes of step processes in the

Skorohod space D which under sufficiently general assumptions converge to Markov

diffusion processes.

A new technique for investigating the convergence of such processes is suggested.

It uses and develops the results of Gihman and Skorohod [1,2] concerning the conver

gence of triangular arrays of random variables to a solution of a stochastic differen

tial equation (SDE).

The main features of this approach are outlined below. Consider a recursive vec

tor procedure

(1)

where the at. are real numbers, the "'It. are random vectors in R m whose distribution

may depend on %t. = (%0' ...• %t.) as on a parameter, and %0 is an initial value. Let

k ~ 0 be an increasing sequence of a-algebras such that %0 is Fo-measurable and "'It. is

Ft.H-measurable for every k. Hence at. = a(%o •...• %t.) eFt., k >0. We study the

convergence of the processes

k k+1
-st<--,t~O
n n

(2)

where B n is a normalizing factor. Put 7In t. = Bn%t., k ~ O. Then (1) can be rewritten

[1] in the form

(3)
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where am (ilt ), bnt (ilt ) are a ut-measurable vector and matrix, respectively, and t rt

is a ut-difference martingale determined as follows. Let

Then

(4)

and

so that by construction

(Here and elsewhere a' denotes the transpose of the row vector a, and (a, b)

represents the scalar product \a 1 2 = (a ,a), 1A 1
2 = sup (Ax, Ax). and q~t =

I>: I =1

(qxo' ...• qXt), k C!: 0).

p
Note that for any fixed k we generally have 11nt -+ 0, n -+ 00 and the coefficients

are unbounded. Thus the standard technique which assumes convergence of the initial

values and regUlar coefficients is not applicable. For this reason the investigation of

(1), (2) is divided into the following stages:

1. Conditions are found under which the measures corresponding to 11n (t) are

weakly compact in D on each segment [6, T], 6 > O.

2. Conditions for step processes (sums of the t m converging to a square

integrable martingale "/I(t» are found.

3. Under certain assumptions about the coefficients (4) (bounded growth rate,

convergence to sufficiently smooth functions a (t ,y), b (t ,y». we prove conver

gence by subsequences in Don [6, T] of the processes 11n (t) to the process 11(t).

This is the solution to an SDE of the form

d11(t) =a(t, 11(t»dt + b(t, 11(t»d"/l(t), t C!: 6 (5)

and 11(6) is a proper initial value whose distribution is generally speaking unk-

nown.
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4. Using the properties of the class of equalions (5). we take the limit as 0 -+ 0,

thus getling rid of the unknown value 1/(0) and establishing the uniqueness of the

representation of 1/(t) on (0, T], T > O.

This approach was first applied in [3] to procedures of the Robbins-Monro type

with weakiy dependent disturbances in the observalions. and was extended in [4.5] to

more general stochastic oplimizalion algorithms.

We shall now state a general theorem which is useful when inveslIgaling the con

vergence of such processes. We w1ll assume for simplicity that the coefficients

ant (Yt). bnt(Yt) depend uniformly with respect to k on only a finite number of argu

ments. I.e .• there exists an integer N such that for any k Ole N we have ~t(Yt) =

ant(Yt-N' Yt-N+1.· .. , Yt) (the same is true for bnt (·»· Write Ilytll= max IYil.
O:si~

k Ole O. We shall consider a normalizing factor of the form Bn = n fJ. fJ > O.

THEOREM 1. Let the following conditions hold for any 6 > 0:

1. lim k2~E I %t 1
2 < K < 00;

t ... -

2. Fbr any n > 0, n 0 ~ k ~ nT. we have

[nt I
3. The finite-dimensional distributions of the processes L: ' tnt' 0 ~ t ~ T. con-

t =0

verge weakly to those of a square-integrable martingale "/t(t) with independent

increments;

4. Functions a(t ,y). b(t ,y) e:t:ist such thatjor any L > 0 we have

5. Functions a (t •y) b (t • y) satisfy the conditions L > 0 for any 0 ~ t ~ T and

max (I y I, Iz I) :!i L, and

I a (t ,y) - a (t ,z) 1 + 1b (t •y) - b (t ,z) I ~ C ~2) • 1y - z I

1a (t ,y) - a (s ,y) I + 1b (t ,y) - b (s •y) 1 ~ p( 1t -s I) , t - s -+ 0

6. Solutions of (5) possess the following property: if 1/(t .0, D. t Ole O. is the solu

tion of (5) on [0, T] with an initial value t which is independent of incre

ments in "/t(t) for t > O. then for sequences om .0 and t "In such that
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for any t > 0, the distribution of TI(t .6m • ~ "rn) converges weakly to the distri

bution of some random variable TIt as m -+ "" (independent of the choice of 6m

and ~"rn)'

Then the measures generated by TIn (t) converge weakly in D on any segment

[a • T]. a > O. to the measure generated by the process TI(t). t > O. Here. on any seg

ment [6. T]. 6> o. TI(t) is the solution to the SIX!: (5) with initial value TI". Thus for

any t > 0 the distribution of TI(t) and TIt coincide.

Proof. For arbitrary 6 >0, consider TIn (t), t O!: 6. It can easily be shown from Condi

lion 1 that

(6)

Then by Chebyshev's inequality the sequence TIn (6) is weakly compact in Rm .

Together with Condition 2. this implies (see [1.2]) weak convergence of the measures

generated by TIn (t) on [6, T].

Choose an arbitrary subsequence nt -+ "". Then a subsequence (denoted again by

nt) can be selected from it such that the sequence TInt (6) converges weakly to a

proper random value ~". It then follows from Conditions 3-5 and results given in [1,2]

that the measures generated by TInt (t) on [6, T] converge weakly to the measure gen

erated by the process TI(t .6 . ~ ,,) - the solution to (5). The inequaLily (6) implies that

62fJ E I ~,,12 ~ K. Now choose a sequence 6m ,j. 0(61 = 6) and using the diagonal method

select a subsequence of n t (again denoted by nt) such that for any 6m . TInt (6m ) con

verges weakly to a proper value ~"rn' Thus from (6) 6:t E I ~"rn 1
2 ~ K. Then by con

struction the distributions of TI(t .6m . ~"rn) coincide for t O!: 6 as the Limit of Tlnt(t).

and by Condition 6 the distribution of TI(t .6m . ~6m) for any m O!: 1 coincides with that

of TIt. Since subsequence nt is arbitrary, we may conclude that the weak limit of

TIn (t) exists. is unique and coincides with TIt for any t > O. This completes the proof of

the theorem.

Note that verification of Conditions 1. 3, 6 can be rather complicated for concrete

examples.

The results given In [3-5] on the convergence of procedures of the stochaslic

approximalion type can also be obtained In the framework of Theorem 1. In the one

dimensional case, the coefficients given In [5] were Linear:

a(t .'11) = -~(a'll +bt-fJ ). b(t .y) = .~ (C'/I +qt-fJ )
t vt

(7)
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wlt.h const.ant.s defined t.hrough t.he paramet.ers of t.he procedure and where

-y,(t) = w (t) is a st.andard Wiener process. In part.icular, for c = 0 we have

(B)

where aa > fl. The result.s obtained generalize t.hose of [6] concerning t.he conver

gence of Robbins-Monro processes.

The investigation of algorlt.hms which are Inhomogeneous in time and affect.ed by

random dlst.urbances generat.ed by a random environment. leads t.o models wlt.h more

complicat.ed random coefficient.s which may not. satisfy Condition 4 for uniform conver

gence of t.he coefflclent.s. In such cases one can use t.he result.s given in [7], where a

t.heorem on convergence t.o t.he solution of (5) under conditions of an int.egral t.ype on

ant ('), bnt (.) is proved using t.he t.echniques described in [B,9]. We shall st.at.e here a

modification of Theorem 1 In which Condit.ion 4 is replaced by a weaker condition

emerging from [7].

Suppose t.hat. a random sequence Znt' k 2: 0, t.aklng values in a measurable space

(Z, Hz) and adapt.ed t.o an increasing sequence Fnt of a-algebras is given. Let. t.he 'TInt

be defined by t.he inequalities

(9)

where ant (y • z), bnt (y ,z) are HR", x Hz-measurable functions and ~nt is an Fnt 

difference martingale wit.h E[~nt ~~t IFnt] = .1.-, k 2: O.
n

Here we assume for simplicit.y t.hat. t.he paramet.ers of t.he algorit.hm at. t.he IC-t.h

st.ep depend only on t.he k -t.h it.eration 'TInt and on t.he st.at.e of t.he random environment.

Znt. Define

- P IZnt Eo A !p lZnt +j E: B II ,k 2: 0 , j > 0 (10)

THEOREM 2. Let Conditions 1, 3, 6 of Theorem 1 hold with -y,(t) = w (t), and the

remaining conditions be replaced by the following:

2'. For any n > 0, no ::s; k < nT, Z E: Z, we have

and for any L > 0 there exists a function qL,IJ(u) 2:0 such that qL,IJ(+O) =0
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and. for max ( I% I , Iy I ) <L, n c5 ::!O k ::!O nT, we have

4'. Functions a(t, y), b(t, y) exist such that for any y Eo R m , c5 > 0, we have

.!.
1" n

max II - L: anj (y) - r a (t , y )dt \ +
n6~:snT n j=[n6] ·6

5'. The }'unctions a (t ,y), b (t ,y) satisfy Cond.ition 5 and.

Ia (t ,y) \ + Ib (t ,y) I s C 6(1 + Iy I ) , c5 s t ::!O T , c5 > 0

7'. lim lim sup 'Pn " (j) = O.
j .... n .... It;>O

Then the statement made in Theorem 1 holds with "/I(t) =w (t) in (5).

We shall now consider applications of Theorem 2 to concrete stochastic optimiza

tion algorithms. Let a procedure (which for simplicity we shall assume to be one

dimensional) of the Robbins-Monro type in a Markov random environment be defined by

the formula

(11)

Here the ~,,(% ,z) are independent famllles of random variables whose distribu

lions depend measurably on the parameters (%, z), and z" is a z-valued Markov chain.

Set

(12)

Put B n =n fl . Then in (9)

(13)

Suppose that the chain z" is homogeneous and ergodic, I.e., for any A , B E ~ we

have

PlZ"EBlzOEAI- .... rr(B)
,,~-

(14)
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where lr(B) Is the stationary measure on Z.

We shall write

f(y) =J f(y, z)lr(dz), at(y) =J at(y, z)lr(dz)
z z

bl(y) = J bl(y, z)lr(dz)
z

THEOREM 3. Let (14) hola. ana assume that kat -+ a > 0, k -+ 00 ana positive con

stants A, C, N l' N 2 exist such that for all z E: Z we have

1. xf(x,Z)~Ax2,f(x,z)2::S;C(1+x2),-00 <x <+00;

2. lim sup (nil lan (yn-II ,z)1 -N1IYI) <00;
n"'- y,z

3. lim sup (nll-1/2Ibn(yn-II,z)1 -N2 Iy!) <00;
n"'- y,z

4. For all z E: Z, k ~ 0 ana any L > 0, we have

::s; CL Ix -u I

where max (I x I , I u I) <L;

5. 2aA > a2N1 + 2aN1 + 2fJ;

6. f' (0) = r > 0 ana constants a • b , u exist such that for any y E: R , 6 > 0, we

have

t 211 tin
+ I 2: .!!.....- b 2(yn -II) - J t -211-1u2dt I I -+ 0

·2 j
j=[n6] J 6

7. For any L > 0 we have

Then the measures generatea in D by the sequence n IIx [n +-t] converge weakly

on any segment r6, T], 6 > 0, to the measure generatea by the process

1 ab
7J(t) = -""ti" a(r+a)-fJ

1 au w(t 2a(Tf-a)-211)
ta(Tf-a) -v2a(r+a)-2fJ

(15)

Proof. Condition 1 of Theorem 1 follows in a standard way from Conditions 1-3,5 above

(see [10], p. 169). Using (13) and Conditions 2-4 above, one can Immediately verify
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Condition 2' of Theorem 2. Condition 3 of Theorem 1 (with "J!(t) = w (t» follows from

Condition 7 of the Llndeberg type and the formula for ~nt. Furthermore, Condition 6

above evidently implies Condition 4 of Theorem 2 with

a(t ,y) = -at-1«r +a)y + bt-II ) , b(t ,y) = aat-lI-lIZ (16)

These functions automatically satisfy Condition 5', while Condition 7' of Theorem 2

follows from (14). Thus we only have to verify Condition 6 of Theorem 1. Consider

equation (5) with coefficients given by (16). Solving this equation on [6, T] with the

initial value ~6 using the formulae in [11, p. 37], we obtain

t
7J(t , 6, ~6) = 7J6( ~ )o(Tt-o) - J (7) 0 (Tt-O ).

6

(17)

.s:u (b ds + av'S dw (s »

Furthermore, it Is clear from Condition 1 above that r ~ A and from Conditions 2

and 6 that Ia I s N l' Then from Condition 5 we have ar > a Ia I + fl, and hence

a(r + a) > fl. Condition 1 of Theorem 1 implies that E7Ji S K () -'loll (see (6». Hence

E(7J6('£')O(T+O»Z SKt-O(T+O). 6Z(o(T+o)-II) -0, () -0. It can easily be seen that the
t

integral In (17) has a limit in the quadratic mean for () - 0 which is equivalent to the

process 7J(t) (see (15». Thus in the quadratic mean 7J(t, (), ~6) - 7J(t), 6 - 0, I.e.,

Condition 6 of Theorem 1 is fulfilled and Theorem 3 holds.

Remark 1. Condition 6 is fulfilled, for example, if for some fixed N > 0

nil n+N
lim N 'E at (yn -II) = ay + b
n"'- t =n +1

n+N
'E bl(yn -II) = a Z

t=n+1

which takes in the case of circularly altering parameters.

Remark 2. In Condition 6 of Theorem 3 we confined ourselves for the sake of clarity to

the linear functions a (t ,y), b (t ,y). The case b (t ,y) = cy + q was studied in [5],

with the limiting distributions being non-Gaussian. In the general case it can be shown

that under the assumptions of Theorem 3 the coefficients in Condition 6 must be of the

form t -l-lIa (yt II) and t -11 Z-lIb (yt ll ). Taking into account the function J (x), the coef

ficients in (5) will be

a ny+1 R

a(t ,y) = -i( til a(yt ..»
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(18)

We shall assume that the functions a (y) and b (y) are such that a solution to equa

tion (5) exists and is unique. When studying this equation we introduce a new process

("(u) =e UP7j(e U ), u > -00, thus reducing the problem to the solution of the equation

d("(u) =«fl - ar )("(u) - aa «"(u )))du -

(19)

- ab«"(u»dw(u) u >-00

for which, from (6) EI("(u)12~K, u > -00. If the function b(u) is nondegenerate In

every bounded domain, then using Conditions 2, 3, 5 it is possible to verify that the

coefficients of equation (19) satisfy the ergodlclty condition and the condition for the

existence of a stationary solution in [12]. Thus In this case Condition 6 of Theorem 1 is

satisfied (since 15m .. 0 and the time parameter t is replaced by eU
, the Initial moments

In (19) will be U m = In 15m , u m -+ - 00 ) and the stationary solution to equation (19)

acts as a limiting solution. (Note that such models with homogeneous coefficients and a

non-random environment were investigated In the multivariate case in [13].) This leads

to a theorem generalizing Theorem 3:

THEOREM 4. Let the conditions of Theorem 3 hold, taking the integrals of

t -l-Pa (yt p), t -1/2 -Pb (yt P) in Condition 6. and the function b (y) be nondegenerate

in every bounded domain. Then the measures corresponding to n P:z; [nt] converge

weakly in D on any segment [6, T] to the measure corresponding to the solution

7j(t) of equation (5) with coefficients given by (18) with "/I(t) =wet), and initial

value 716 = 6 -P(". Here (" is the stationary solution to (19).

Theorems 2-3 show that an algorithm operating in a random environment is

equivalent to the same algorithm with its parameters averaged over the environment

state space and over lime, provided that the environment satisfies the mixing condition

and the coefficients satisfy Conditon 2' .
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ON THE STRUCTURE OF' OPTDlALITY CHlTERIA
IN STOCHASTIC OPTDlIZATION MODELS

V.I. Arkin and S.A. Smolyak
Central Economic-Mathematical Institute. Moscow. USSR

1. INTRODUCTION

This paper is concerned with the problem of estimating the efficiency of economic

actions under uncertainty. and its correct formulation. Optimization problems in

economics are often reduced to the choice of the best of a finite or sometimes infinite

number of given a.lterna.tives. Le.• different economic actions or decisions. Here it is

very important both to justify the optimality criterion and to estimate the efficiency

achieved as a result of choosing the best alternative. In the deterministic case each

alternative is characterized by some profit (income. efficiency. gain) and a rational

choice can be made using the criterion of profit maximization. In this case if two alter

natives both have the same profit value then one cannot be preferred to the other;

however. this does not exclude the choice of one as the best on the basis of some other

criterion. This of course presupposes that a method for evaluating profit In the deter

ministic case has been established.

In practice the profit resulting from some real economic action actually depends

on the conditions under which the action takes piace. which are generally not known in

advance. The methods by which this uncertainty regarding the profit of various

economic actions is taken into account should be uniform so that decisions taken in dif

ferent economic sectors will be consistent. I.e .• local decisions should be consistent

with the global optimum. We shall call the criterion which takes into account informa

tion about lhe possible values of lhe profil ~ of allernative ~ (lhe ailernalives and

lheir profits wHl be denoled by lhe same symboi) the expected profit and denole it by

E(t). Lel us consider lhe slruclure of lhis crilerion. To do lhis we should firsl formal

ize the concepl of uncertainly. There are lwo melhods by which lhis could be done.

The firsl is lo formalize lhe causes and effecls of lhe uncerlainly. The cause of

lhe uncertainly in lhe profil ~ is incomplele information aboul lhe conditions under

which lhe allernalive ~ wHl be implemenled. Thus lhe uncerlainly may be trealed as a

combinalion of lhree elemenls:
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a known function t(s) expressing the dependence of the profit t on external con

ditions s;

the set 8 of possible external conditions s:

information I about "the degree of possibility" (e.g., the probability) of specific

conditions s ~ 8 occurring.

Thus the uncertain profit t is considered to be a function t(s) on the "information

probability" space 18 , I I and the expected profit is a functional of this function.

The disadvantage of this method is the possible dependence of the structure of the

functional on the set of possible conditions 8. For example. let 8 = Is l' ...• sn I and

the information I comprise known probabilities of ooourrence Pt for each condition St.

It is obvious that the functional

EW = [L: t(St )z1'i] I L: z1'i
t t

(1)

possesses "good" properties but on this probability space only. If we replace any con

dition St bY' two other conditions with the same total probability but each having the

same profit as the original, the value of the criterion will change.

To avoid such situations the expected profit criteria for different "information

probability" spaces should be linked. Such an approach is developed in [1-3] in con

nection with probability uncertainty (see Section 2). Below we shall consider another

method of formalizing the uncertainty concept which leads to more general criteria but

which limits itself to describing the effects of uncertainty only, ignoring its causes.

Here the uncertainty is characterized by two elements: the set X = X(t) of possible

profit values and information I on "the degree of possibility" (e.g., probability distri

bution) of each value;r; E: X(t) of the profit. These elements must determine the value

of the expeoted profit E(t).

This method allows us to compare alternatives from different "information proba

bility" spaces. Alternatives with equal values of expected profit will be called equally

profitable. e.g., alternatives with the same profit probability distribution are equally

profitable. We shall consider only alternatives for which the set X is bounded (finite

alternatives).

We shall first discuss the main features of the proposed method in order to clarify

the structure of the expected profit criterion and its results under conditions of pro

bability uncertainty.
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2. PROBABILITY UNCERTAINTY

We shall say that an alternative t is stochastic and its profit is characterized by

probabtlit1l uncertaint1l if this profit is a random variable with a known probability

distribution function P = P f(t) c:: pit s; t I. The limiting case of stochastic alternatives

is deterministic alternatives (t = const.). which corresponds to degenerate probability

distributions. Finite alternatives correspond to finite (Le.. contained in a bounded

interval) distributions. The expeoted profit E(t) is now considered to be a functional

of p f' The conventional functional of this type is the mean (denoted by an overbar):

E(t) = 1. It has many "good" properties but a lot of economists have criticized this

criterion because it does not take into account the scatter in the profit values. e.g ..

they do not agree that alternative t. which has zero profit. and alternative 71. which

has a profit of one million or a loss of one million with equal probability. are equally

profitable. Thus they repeatedly propose the criteria:

EW = "i -leDW or EW = 1 -Ie VDW (2)

where D (t) = <t - "i)2 . Ie > O. These proposals are discussed in [4]. Consider the

alternatives

(=0

71 : P 171 =01 =p • P 171 =A I =1 - P

The values of A > 0 and 0 <P < 1 can be chosen in such way that E( 71) <E( () for

both criteria in spite of the fact that 71 is preferable to (. It is shown in [5] that func

tions of the mean profit value or any of its central high-order moments or other

"dispersion indexes" are equally inappropriate.

A better criterion can be constructed by formulating certain reasonable sugges

tions about criterion properties as axioms. Various combinations of these axioms lead

to optimality criteria of different structures. In the deterministic case this approach

leads to a criterion consistent with traditional economic representations [2.3]. Thus

we can hope that this approach can be adapted to the non-deterministic case.

Let us now consider such "reasonable" (from the economic point of view) axioms

separately. They can be divided into three groups.

The first group contains statements of a general character; some examples follow.

Consistency between estimates of the efficiency of deterministic and stochastic

alternatives is guaranteed by the first axiom:
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Cl. E(~) = ~ if ~ Is det.ermlnlstlc.

The st.ablllt.y of expect.ed profit. t.o small changes In t.he t.echnlcal or economic

paramet.ers of t.he alt.ernatlves Is guarant.eed by axiom C2:

C2. The functlonal E(~) Is contlnuous.

In order for t.his stat.ement. t.o be rigorous we shall suppose t.hat. t.he weak conver

gence t.opology generat.ed by t.he Ll'lvy met.rlc Is Int.roduced Int.o t.he space of probabll

It.y dlst.rlbutlons.

Sometlmes one alt.ernatlve Is obviously preferable t.o ot.hers for economic reasons.

For example, ~ Is obviously preferable t.o 7) If ~ ~ 2 , 7) ~ 1, or If ~ and 7) can only t.ake

t.he values 0 or 1, but. t.he value 1 Is more probable under alt.ernatlve t. We would

expect. t.he crlt.erlon of expect.ed profit. In t.hese cases t.o suggest. t.he choice of t.he

obviously preferable alt.ernaUve. Thus we Int.roduce t.he obvious prfderence rela.tion

(») as follows:

(3)

This is t.he well-known st.ochasUc prevalence relation.

Conslst.ency bet.ween t.he expect.ed profit. crlt.erlon and t.he obvious preference

relaUon Is expressed by t.he axiom of monotonicit1l:

C3. If ~ » 7) t.hen EW > E(7).

This axiom Is not. satlsfled by crlt.erlon (2) above. Not.e t.hat. t.here Is a nat.ural

desire t.o ext.end C3 t.o guarant.ee E(O > E(7) whenever t(s) ~ 7)(s) and t(s) > 7)(s) for

any s. Such (supermonot.onlc) crlt.erla can exist. In any probablllt.y space (e.g., crl

t.erion (1», but. any at.t.empt. t.o coordlnat.e t.hese crlt.erla In different. probablllt.y spaces

falls. As far as we are concerned, supermonot.onlc crlt.erla do not. exlst.! For example,

If t(s) ~ 7)(s), but. Pl~(s) > 7)(s>l = 0, t.hen P t = P~ and t.herefore ~ and 7) are equally

profitable.

The axioms of t.he second group reflect. nat.ural economic Int.erpret.aUons of t.he

"convexit.y" of t.he set. of equally proflt.able alt.ernaUves. Let. t.he expect.ed profit. of

alt.ernaUves ~ and 7) be not. great.er t.han some e. We would like alt.ernaUve ~, which

has t.echnlcal and economic paramet.ers bet.ween t.hose of ~ and 7), also t.o have an

expect.ed profit. less t.han e. This will be formalized lat.er In t.he weak invariance

axioms C4, C6. Let. (~, 7) and (~1' 7)1) be t.wo pairs of equally proflt.able alt.ernatives.

Consider t.he pair formed by t.aking values midway bet.ween t.he first. and second ele

ment.s of t.hese pairs. We would like t.he resulUng alt.ernaUves also t.o be equally profit.

able. This will be formalized lat.er in t.he st.rong invariance axioms C5, C7. To enable

such formalizaUon t.o t.ake place, however. it. Is necessary t.o Int.roduce operaUons

which can be used t.o find t.he "middle" of dlst.ributlon functlons. We shallint.roduce t.wo
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such operations - miring 0 and a.vera.ging (D).

The mizture ~ 0 T/ = T/ 0 ~ of alternatives ~ and T/ Is defined as the alternative ("

obtained by choosing ~ and T/ with equal probability. It corresponds to the following

mizture of distribution functions:

(4)

The a.verage ~ 0 T/ = T/ 0 ~ is defined as the alternative (" associated with a profit

which is the mean of profits ~ and T/. It corresponds to the following composition of

distribution functions:

(5)

We can now formulate aU of the axioms in this group.

Weak invariance with respect to averaging:

C4. If E(O =E(T/) =e then E(~ 0 T/) =e.

Strong invariance with respect to averaging:

C5. If E(~) = E(T/) then E(~ 0 (") = E(T/ 0 (") for aU (".

Weak invarlance with respect to mixing:

C6. If E(D =E(T/) =e then E(~ 0 T/) =e.

Strong invariance with respect to mixing:

C7. If E(t) = E(T/) then E(t 0 (") = E(T/ 0 (") for all (".

The third group of axioms includes the property of "additivity", which makes it

possible to describe the effect of several alternatives implemented simultaneously by

summing the individual effects of these alternatives. However. this property cannot be

written E(~ + T/) = E(~) + E(T/). Such an equation makes no mathematical or economic

sense. Firstly, the operation of addition is defined for random variables, not for their

distribution functions. Moreover, the distribution function of a sum of two random

variables cannot be expressed in terms of the distribution functions of the Individual

variables. Secondly, this axiom does not take into account the synergic (assuming the

economic system to be closed) effects which can arise when two actions take place

simultaneously.

However, there are two special cases in which the above axiom does make

mathematical and economic sense.

1. Let alternatives ~ and T/ be independent (from the economic point of view) and

their profits be independent random variables. Now consider the simultaneous imple

mentation of ~ and T/ as a new alternative (" = ~ • T/ = T/ • ~, with a distribution function
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P t = P(' * P"l (the convolullon of P t and P~. The following I-addillvily axiom says that

the expected profit of a number of Independent alternatives Implemented simultane

ously Is equal to the sum of the proflts of the Individual alternatives:

CB. E(~ * 7/) = EW + E(7/).

This property reflects the real economic situation quite adequately. since If the

Implementation of one alternative affects the efficiency of another then their effi

ciency Is estimated jointly In practical calculations.

In the special case where 7/ = e = constant is a deterministic alternative. CB

becomes invariant to translation (I.e., to changes In the profit origin):

C9. E(~ * e) = E(~) + e for all e.

2. Suppose that alternative ~ can be repeated, producing the same effect each

time. This corresponds to the scale operation <" = k 0 ~ with distrlbullon function

P ('(t) = P t(t I k). For such alternatives, which are said to have a limited dependence

on each other, the additivity demand Is transformed Into an axiom of homogeneity:

Ci0. E(k 0 ~) = kE(~).

Suppose that Ci0 Is valid for all k Including k :!Ii O. Suppose also that 0 ~k = 0,

and If k < 0 consider an alternative k ~ ~ which compensates for the effect of alterna

tive Ik I 0~. The distribution function in this case Is 1 - P t(t I k -0). Condition Ci0

allows us to take "compensating" economic actions Into account In the efficiency calcu

lations, and to calculate the expected profit of repeating an action by mUltiplying the

number of times It Is repeated by the specific expected profit, as Is usually done In

economic calculations.

The structures of criteria which satisfy certain combinations of the above axioms

are given In Table 1.

We shall now clarify some of the statements made In Table 1.

Statement 1 is almost trivial. Form the sequence ~1 =~, ~n +1 = ~n 0 ~n (n 2:1).

From C4 we deduce that E(~"l) = Ea) for any n. Further, for n --+ 00 the distributions

of the ~n converge to a degenerate distribution concentrated at the polnt~. Hence

and from Cl and C2 we deduce that E(~) =~. Thus condition C4 is sufficiently strong

and there Is no need to replace It by the stronger C5.

Statement 2 Is well-known and widely cited in mathematical texts. e.g .• [6,7],

although In other formulations.

Statements 3. 7, B are proved In [5]; the other statements are simple corollaries

of these three. We shall now prove some of them.

Proof of Statement 4. Let axioms Cl-C3, C7, C10 be satisfied. From C2 there

must exist a continuous monotonic function u (z) such that E(~) = z is the root of the
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Table 1 The st.ruct.ure of crlt.erla E(t) = % which satisfy cert.aln combinations of ax
ioms.

No. Axioms

1. Cl, C2, C4

2. Cl-C3,C7

3. Cl-C3, C7, CB

4. Cl-C3, C7, Cl0

5. Cl-C3, C7.CB, Cl0

6. Cl-C3, C7, C9,Cl0

7. Cl-C3,C6

B.

9.

10.

11.

12.

Cl-C3, C6. CB

Cl-C3, C6, CB, Cl0

Cl-C3, C6, Cl0

Cl-C3, C6. C9

Cl-C3, C6,C9, Cl0

Crit.erla St.ruct.ure

% = ~

The root. of t.he equation u(%) =u(t), where u(%)
(t.he "utlllt.y function") Is continuous and st.rlctly In
creasing.

As above but. wlt.h u (%) = exp (c%) for c ". 0 or
u(%) = %.

As above but. wlt.h u (%) = 1% IP sign (%) , P > O.

% = ~

% = ~

The root. of t.he equation u (% • t) = 0, where u (% ,t)
(t.he compared ut.llIt.y function) Is continuous on %,
st.rlctly Increasing on t, vanishing for t = % and such
t.hat. u (% .01 U (% ,s) > u (y .01 u (y ,s) for any
s<y<%<t.

As above but. wlt.h u(%, 0 = exp (a.(% -t» - exp
(c (% - t » for a. ~ 0 ~ c, a. ". c, or u (% , t) = % - t .

% = ~

The root. of t.he equation u (;-:1) = 0, where u (% , t) Is
continuous on % and may be represent.ed by t.he follow
Ing formula:

{

V (t 1 %)1 v (1 + 11 %) for % ".0
U (% ,t) =.. f - 0It I" sign (0 or % - .
In addition p > 0 • v (1) = 0, and v (y) Is a continuous.
st.rictly Increasing function on y .

The root. of t.he equat.lon u (t -%) = 0, where u(%) Is a
continuous, st.rlctly increasing functlon on %,
u(O) = O.

As above but. wlt.h u (%) = 1% IP sign (%) ,p > O.

equation u (%) = U (t).

WIt.hout. loss of generallt.y we can t.ake u (0) = 0 , u (1) = 1. Choose any

% >O,y <0 and assign t.hem t.he probabilities Plt=%I=u(y)/(u(y)-u(%»,

P! t = y I = U (%)1 (u (%) - U (y». It. Is not. difficult. t.o show t.hat. u (t) = 0, and t.hus

E(t) = o. Therefore, using Ci0 we have E(k ~ t) = 0, and t.hus u (k%)P It = %!

+u(ky)Plt=y! =0. From t.hls we can deduce t.hat. u(k%)/u(%) =u(ky)/u(y).

This means t.hat. bot.h part.s of t.hls expression are equal t.o t.he same const.ant., Indepen

dent. of % and y. The value of t.his constant. can be found by making t.he substlt.utlon

% = 1, when we obtain u (k%) 1 U (%) = u (k) for all % ". O. The continuous solution of

t.hls equation has t.he form u (%) = I% IPslgn (%) ,p > o.
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Proof of Statement. 11 and 12. From St.at.ement. 7 and C9 t.here must. exist. a

"compared ut.llIt.y funct.lon" u (z , t) such t.hat. u(z-;-t) = 0 implies u (z+ i":"T+ e) = 0

for any e. Making t.he subst.lt.ut.lons e = -z and u (0, z) = u (z) leads t.o St.at.ement. 11.

The proof of Stat.ement. 12 is now complet.ely analogous t.o t.hat. of Stat.ement. 4.

Conslderat.lon of Table 1 shows t.hat. weak combinat.lons of axioms lead t.o wide

classes of crlt.eria, while st.rong comblnat.lons lead t.o unique mean crlt.erla. For prac

t.Ical purposes we recommend t.he use of only one- or t.wo-paramet.er crlt.erla from

Stat.ement.s 3. 4, B, 12. All of t.hese revert. to t.he mean crlt.erlon for specific paramet.er

values, while for ot.her values t.hey take Into account. t.he scat.t.er In t.he profit.. The

most. Int.erest.lng crlt.erlon is t.he Invariant. t.o mixing, /-addit.lve crlt.erlon from St.at.e

ment. 3. proposed by Mass~ [4]:

E(~) = 1/I(c)/ c , where 1/I(c) = In ( exp (c~» (6)

Iff ~ has a normal dist.rlbut.lon t.hen E(~) has t.he form E(t) =1 + O.5cDa). The

paramet.er c may t.herefore be t.reat.ed as a special norm which takes int.o account. t.he

scat.t.er In t.he profit.. Ot.her propert.les of crlt.erla from Stat.ement.s 3 and Bare

analyzed in [5].

3. UNCERTAINTY OF GENERAL FORM

The axlomat.lc approach can be adapt.ed for use In slt.uat.lons when t.he profit. dis

t.ribut.lon funct.lon ~ Is not. known precisely. Suppose t.hat. t.he avallable Informat.lon

only enables us t.o describe t.he class H f of dlst.rlbut.lon funct.lons which cont.alns t.he

unknown dlst.rlbut.lon funct.lon P f' In such slt.uat.lons we wlU say t.hat. t.he profit. ~ Is

charact.erlzed by uncertainty of general form and consider t.he expect.ed profit. to be

a funct.lonal of t.he corresponding class H t Thus we will somet.lmes use t.he expres

sions: "expect.ed profit. of class ... " and "classes ... are equally profitable ". Uncer

talnt.y of general form becomes probablllt.y uncertalnt.y If t.he class H cont.alns only one

dist.rlbut.lon funct.lon. We shall demonst.rat.e t.his by means of t.wo examples.

1. Let. profit. ~ be a non-random variable and t.he only avallable Informat.lon be

a s ~ s b. Then H f Is L (a ,b), i.e., t.he class of all degenerat.e dlst.rlbut.lons on t.he

int.erval [a ,b].

2. Let. ~ = A (z 1 •... , zn) be a "lot.t.ery" which guarant.ees gains

zl' ...• z2' ...• zn wit.h unknown probabllit.les. Then H f cont.alns all dlst.rlbut.lons

(p 1 ' ••.• Pn ) on t.he set. lz1 •...• Zn I· If we know in addit.lon t.hat. gain Z 1 Is most.

probable. t.hen H f contains only dist.rlbut.lons for which 0 s P2 •...• P n <PiS 1.

The formulations of all axioms remain unchanged under t.hese conditions If t.he

deflnit.lons of t.he corresponding concept.s. operat.lons and relat.lons are ext.ended t.o
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classes of dlsLribut.lon funct.lons. This can be done using Lhe same naLural approach.

An alLernat.lve t is said La be deterministic if Lhe class H ( conLains a unique dis

Lribut.lon concenLraLed aL Lhe poinL t. Now Lhe axiom Cl has some meaning.

The distance beLween Lwo classes is deLermined using Lhe Hausdor!f-L~'Ymetric,

i.e., Lhe supremum of Lhe Ltivy disLance beLween an elemenL of one class and Lhe

nearesL elemenL of Lhe oLher. This meLric allows us Lo define convergence for

sequences of classes and makes sense of axiom CZ.

The obvious preference relation may be inLroduced by Lhe rule: t» 7/, if every

disLribut.lon P E: H ( dominaLes (as defined by (3» every disLribut.lon Q E: H"I' This

allows us La describe Lhe monoLoniciLy properLy by axiom C3. Many economisLs con

sider Lhis formulat.lon La be very weak. They would like La inLroduce inLo Lhe space of

classes an ordering relat.lon LhaL corresponds La Lhe relat.lon » (i.e.,

P >>Q ~ IP I IQ I> and sat.lsfies one of Lhe following condit.lons:

(M) H' H" ~ HuH' HuH" for any H,

(M') P» Q~ IPI IP.QI IQI
H' H", H n H' =H n H" =If> ~ HuH' HuH"

(M") P»Q»R»T~IP,Q.TI IP,R,TI

IL is found LhaL such orderings do noL in facL exisL! If M is satisfied, Lhen for

P »Q » T we have:

IPI IQI~lp,Tlulpl Ip,TluIQI~IP,TI IP,T,QI

IQI ITI~IP,TlvIQI IP.TluITI~IP,T,QI IP.TI

which is impossible. 0

If M' is sat.lsfied, Lhen for P » Q »T we have [B]:

IPI IQI ~ IPI Ip.QI ~ITI vlPI ITI u IP,QI ~ Ip,Tl IP,T,QI

IQI ITl~IQ,TI ITI~lpluIQ,TI IPluITI~lp,T,QI IP,TI

which is impossible. 0

If M" is sat.lsfied, Lhen for R +T we have IP, Q,TI Ip, TI. Similarly, for

P »R »Q »T.R tP, iL follows from M" LhaL IP,TI IP,Q,T!. which is impossi

ble. 0

OLher similar examples of Lhe impossibiliLy of exLending ordering relat.lons on any

seL La a power seL are discussed in [B,9] and in oLher papers in Lhe same issue of Lhe

journal.

To preserve Lhe formulat.lon of axioms C4-C10 we shall define Lhe average (mix

Lure, convolut.lon, eLc.) of classes H( and H"I as Lhe class of various averages
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(mixt.ures, convolutions, et.c.) of t.heir element.s P E H t and Q E H.". and define t.he

scale operation by t.he formula: k ~ H = Ik ~PIP E HI.

Let. ; (6 denot.e t.he supremum and v (~) t.he infimum of possible values of t.he mean

of t.he random value v (~) for dist.ribuUons PtE: H t

;(6 = sup J v (t)dP(t) , vW = inf J v (t)dP(t)
P€H( P€H(

Let. us consider t.he st.ruct.ure of crit.eria which satisfy Cl-C3.C5. Form t.he

sequence H1=H(.Hn+1=HnDHn(n~1). Under t.he assumed met.ric Hn(n-+ oo)

t.ends t.o t.he class L (m ,M) of all degenerat.e dist.ributions concent.rat.ed at. [m .M],

where m = ~ , M =~' Just. as it. follows from C5 t.hat. all of t.he Hn are equally profit.

able. so Ea) is equal t.o t.he expect.ed profit. f(m ,M) of class L(m • M).

Let. F(m ,M) denot.e t.he class which cont.ains a unique dist.ribution concent.rat.ed at.

t.he point. f (m •M). It. follows from Cl t.hat. F(m ,M) and H ( are equally profitable.

Furt.her. t.he function f is continuous (Cl, C2) and f(z .z) = z. Hence and from C3 it.

follows t.hat. .

(7)

Making use of t.he averaging operation we have:

m+m1 M+M1
L(m. M) DL (m1. M 1) =L (--2-' -2-)

We shall now replace L (m ,M) and L (m l' M 1) by t.he equally profit.able classes

F(m, M) and F(m1' M1). Then from C5 we obtain:

(8)

It. is not. difficult. t.o prove t.hat. every continuous solution (7)-(8) can be writ.t.en in

t.he form:

f(m,M)=XM + (l-;>")m • (0~;>"~1)

Thus axioms Cl-C3, C5 are sat.isfied only for crit.eria such t.hat.

EW = ;>..~ + (1 - ;>..)~. (0 ~ ;>.. ~ 1)

(9)

(10)

For classes of degenerat.e dist.ributions t.hese crit.eria are known as Hurwicz's

"optimism-pessimism" criteria [10], and are justified in [1,3].

A wider class of crit.eria, which are also designed for profit. maximization. is
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Justified in [11].

Parameter ~ from (10) may be viewed as a norm which takes into account the

uncertainty in the mean of the profit. It has a different interpretation to norm c

from criterion (6) - it aUows us to take into account the dispersion of the profit

around its known mean.

Criterion (10) is continuous, monotonic, homogeneous, I-additive and invariant to

averaging and translation. This suggests the use of this criterion in practical estima

tions of the efficiency of economic actions. The centralized regulation of parameter ~

allows us to adjust local decisions made under uncertainty with national economic

interests.

Criteria with the following structure satisfy axioms Cl-C4:

(11)

where f (m ,M) is the solution of equations

f(m, M) =z + ~(z) =m + (M -m)~(z) (12)

Here ~(z) is any continuous non-increasing function on (-00, +00) such that

o :!O ~ (z) :!Oland z + M:z:) is a non-decreasing function.

For ~(z) = const. this criterion reverts to (10), while in other cases it is non

homogeneous and non-I-additive.

We cannot establish the structure of criteria satisfying Cl-C3, C7 or C6. How

ever, between these there are criteria which take into account the scatter in the pro

fit, e.g., E(t) =z, where z is a root of the equation u (z) =~u (t) + '(1 - ~)u (t) ,

(0 S ~ S 1), and u(:z:) is a continuous monotonic function. However, If u(z) is non

linear, such criteria are not I-additive. although with appropriate u (z) they may be

homogeneous or invariant to translation.

Consideration of Table 1 suggests that we may hope to construct "good"

parametric criteria, which take into account the scatter of the profit around the mean

and the uncertainty in the mean itself, under combinations of axioms Cl-C3. ce. C7 or

C6. However, the structure of such criteria and even their existence are uncertain.

Let us try to combine (6) and (10). This leads to the following criterion:

EW = ~ In (exp(c{) )/c + (1-~) In (exp (ct»1 c

which is monotonic and I-additive, but for 0 < ~ < lis non-invariant to mixing.
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In many simple sequential processes (rolls of a die say), outcomes at

each time may be labelled by category or type (the die turns up 1, or 2, or

3, etc.), with type i having fixed probability q(iJ, and I q(iJ = 1. The
~

strong law of large numbers then tells us that over time the proportion of

outcomes of each type must converge to the probability for that type.

We consider an important generalization of such processes, wherein the

probability q(iJ is no longer fixed, but becomes itself a function of the

proportions at each moment. This is the case, for example, where new firms

in a growing industry each in turn make a locational choice between N

possible cities, but where the probability that a given city is chosen next

for location depends on the number of firms already located there. Transi

tions in the proportions of the industry in the various cities now depend

upon the path these proportions follow. We seek strong laws for processes

of this path-dependent type.

It is convenient to formulate such path-dependent processes as

generalized urn schemes of the Polya kind. Consider an urn of infinite

capacity that contains balls of N possible colors or types. Let the vector

X = (Xl X2 ~J describe the proportions of balls of type 1 to Nn n' n'"'' n

respectively, at time n; and let {qn}~=l be a sequence of Borel functions

from the N-dimensional unit simplex S into itself. One ball is added to the

i
urn at each time n; it is of type i with probability qn(XnJ. Starting with

1 2 N
an initial vector of balls b1 = (b1, b1, ... b1J the process is iterated to

yield Xl' X2' X3' We investigate conditions under which Xn converges



288

to a liQit random vector X, and the support set of X, under different spec~·

fications of the urn functions qn' In general, we find that where qn

possesses a limit function q and where the process converges, it converges

to a limit which belongs to a subset of the fixed points of q.

The literature on this problem is small. In a recent elegant paper,

Hill, Lane and Sudderth [1] analyze the special case where N=2 and the urn

functions qn are stationary. Blum and Brennan [2] present strong laws for a

related problem (with N=2) where additions to each category are not restricted

to 0 or 1. In this paper we extend our own previous results [3] for the

general N-dimensional, time-varying case. We use, for the most part, Lyapunov

techniques and stochastic approximation methods. We pay special attention to

unstable points (fixed points of q that are not in the support of X); and to

convergence to the vertices of the simplex (where a single color dominates).

We also present examples of path-dependent processes in economic theory, opti

mization theory, and chemical kinetics, for which this N-dimensional, non

stationary, path-dependent process is a natural model.

Non-stationary functions arise even in simple urn schemes. Consider

Example 1.1. A Sampled Urn. (a) An urn contains red and white balls.
< <

Sample at random r balls. If m, where 0 = m = r, or more are white, replace

the sample and add a white. Otherwise add a red. (b) As before, but if m

or more are white, replace the sample and add a red. Otherwise add a white.

In (a) the probability that a white is added is

r
L H(k; n, nw' r)
k~

where H is the Hypergeometric distribution parametrized by n, r, and nw' the

number of white balls at time n. In this sampled urn scheme the urn function

(path-dependent on nw) is non-stationary: the Hypergeometric varies with n.

As a simple N-dimensional urn example consider

Example 1.2. An urn contains balls of N colors. Choose one ball. If it is

of type j replace it and add a ball of type i with probability q(i, j), where
N
L q(i, j) = 1, for all j. For example, when N=3, we might have the rule:

£=1
Choose one ball, replace it and add a ball which is one of the two possible

other colors with equal probability one half.

Notice that the well-known basic Polya scheme [1] (sample one ball and

replace it together with a ball of the same color) is a special case both of

1.1 (a) (where rand mare 1) and of 1.2 (where q(i, i )=1 and N=2). For this
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scheme, the proportion of white balls, nu,/n, converges almost surely to a

random limit variable that has a beta distribution with parameters dependent

on the initial urn composition. This case however, is singular. When 1~ in

1. 1 (a) is greater than 2, our resul ts below show that nl/n converges to a

random variable with support {a, 1} only. In 1.1 (b) they show that it

converges to a single interior point {p}. The process of 1.2 also converges,

as we will show later.

The general scheme above covers other path-dependent processes.

Example 1.3. A Position-Dependent Random Walk. Consider a simple one-dimen

sional random walk, where Y
i

= i1, with the position at n given by partial
n

sum S = L Yi , but with position-dependent transition probabilities
n i=1

P(Y.=+l) = P (S). If we add a white ball to the urn when Y" = +1, a red
1.- n n v

ball when Y
i

= -1 (starting from an empty urn), the position of the random

walk, S , is
n

the total n.

given by (2Xn-1)n, where Xn is the proportion of white balls in

We can then treat the limiting behavior of the random walk

2.

within our present framework.

The general N-dimensional time-varying urn process described above does

not always converge. Theorem 3.1 establishes a test for convergence,

expressed in terms of the existence of a limit function for {q } and of an
n

appropriate Lyapunov Function. Theorem 6.1 shows more general conditions,

for the particular case where the qn functions are separable. In general,

continuity of the qn functions is not required for convergence. Where the

process does converge and the qn functions are continuous, the s4Pportof the

limit vector lies within the set {X : q(X) = X q(X) = lim q (X), XES}, that
"' n--'7-O:J n

is, within the set of fixed points of the liuit function q. (A slight modifi-

cation is required for non-continuous urn functions.) However, not all fixed

points of q are in the support. Theorems 5.1 and 5.2 show that certain fixed

points can be classed as stable and unstable, with stable fixed points in the

support, but unstable ones excluded. We pay particular attention in theoreres

4.1 and 6.4 to conditions under which the vertices of the simplex are in the

support, that is conditions under which the process tends to single-color

dominance. In a final section applications in economic theory, optimization

theory, and chemical kinetics are outlined.

Pl'e l iminar'ies
1 2 rv

The general process starts at time 1 with a vector b1 = (b1, b1, . .. bi)

of balls in the urn, with total y = Lb i . Balls are added indefinitely,
. 1

1.-

according to the urn ~robability functions qn' At time n, define the
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random variable i

= {~
with probability q (x)

G'" (;CJ
n

n
with probability 1-q'" (x), i 1, N= .. -.)n

Then additions of i-type balls to the urn follow the dynamics

b
i = b

i
+ Gi(Xn) i = 1, •• -.J N

n+1 n n

Thus the evolution of the proportion of i-types, Xi
n

ib /(y+n-l) , is
n

described by

with

1 ri
y+n n

Gi(X )J
n n

1, 2, ... (1)

:Ne can rewrite (1) in the form

i __1_ ri
n y+n n

. 1 i
q'" (X )} + .- n (X )

n n y+n n n
(2)

where
i

.11 (X )
n n

i
Noting that the conditional expectation of nn with respect to X

n
is zero,

xFigure 2

1

DI<-- ----"=~-----~

}(;c
Figure 1

1

D*'- ~

we can derive the expected motion of Xn+1 as

E{Xi IX} = X'" __1_ (X1: _ L i(X)) (3)
n+1 n n y+n n 7n n

Thus we see that motion tends to be directed by the term qn (Xn ) - Xn- In

Figure 1, for example, this tendency is toward D or 1. In Figure 2 it is

toward X.
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3. A C'onvei'gence 1'es-,;

We begin with a convergence theorem that is a stochastic analog of the

Lyapunov asy~ptotic stability theorem for deterministic systems. It serves

as a very general test for convergence in the N-dimensional case. We denote

the N-dimensional unit simplex by S, and use II ·11 to denote the Euclidean norm.

Theorem 3.1. Given continuous urn functions {q }, suppose there exists an
Borel function q: S~S, constants {a }, and a (Lyapunov) function v: S~R such

n
that:

(a) sup Ilqn(x) - q(x) II
XES

:0. an a In < =n

(b) The set

B = {x : q(x) = x, XES}

contains a finite number of connected components

~ c) ( i) V is twice dif f eren t iable

(ii) v(x) ~ 0 , XES

(iii) (q(x) - X , Vx (x) < o , xcS\U(B)

where U(B) is an open neighborhood of B.

Then {x } converges to a point of B or to the border of a connected component.
n

Proof. The theorem follows from stochastic approximation results of Nevelso~

and Hasminskii [4], Ch. 2. Applied to our problem, we can summarize the argu

ment as follows. Note first that v(X ) eventually becomes a non-negative
n

supermartingale on S. On the set S\U(B) , V has expected increment always less

than some -0; hence the process must exit this set in finite time. It thus

enters U(B) infinitely often. Next, the cumulated perturbations

t 1I (11+
1

) form a martingale and converge; thus after sufficient time the
n=O
process cannot cumulate sufficient perturbation to counter expected motion a~d

exit an L-neighborhood surrounding U(B). Now the B-components are separated

by finite distances. Hence the process converges to a single component of B

or its border. Finally, since expected motions within B are zero, and cumu

~ated perturbations conver~e, the process cannot visit distinct points inside

B infinitely often. ThJS {X } converf,es to a Doint of B, or to the border 0.':
11

a connec ted component. 0

For the most general cases, an appropriate Lyapunov function may be

dif f icul t to find. For the special case N = 2, an appropriate Lyapunov

function is simply the norD

providing q is differentiable. (For this reason a norm can be used in place
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of Lyapunov functions in the two-color case in [1]. We can also construct a

Lyapunov function in the case N>2, providing the qi are differentiable and

symmetric in the sense that

. k k i
3q~ /dX = dq /dX , XES.

Remark 3.1. In the case of example 1.2 it is easily shown that

qn(X)

where the matrix Q

We can take v(x)

B

QX

(q(i,j)).

((I-Q)x, x> for

{x : (I-Q)x O}

where 1 is the identity matrix.

The theorem then tells us that the scheme converges to a fixed point x Qx.

4. Conver'gence to the Vertices

We next establish conditions under which the urn may converge to single

color dominance, that is, conditions under which X
n

may converge to a vertex

of the simplex S. Without loss of generality we take the vertex to be

(0,0, ... , 1).

Theorem 4.1. Given the process characterized by initial urn vector b
1

and

{q}. Let bi b~1', for i := 1, N-l ; Il bN + n-l.
n n N-l. b ...... ~ n J

( '\ ~ n 2-
If a) L q (y+ -1) < n -

i=l n n

and

then

(b)
N-l

l: l:
n=l i=l

. b
a ~ (~_n~) < 00

'n Y+n-l

11-1
p{ n [lim xi

i=l n>oo n

Proof. Let

OJ} > 0 •

A
n

then

i l, .", N-l; b~
N

b
1

+ n-l }

N-l
Xip { n [lim OJ} ;; p{ n A }

i=l n->co n n.=l n

N-l
i

b
IT 1.1 - l: qn (-T---7) } > 0

n=l i=l
"y n-

the inequality following from standard results on the convergence of infinite

products. The theorem then follows. 0
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Notice that this theorem is independent of the previous one--no special

conditions are imposed on the {qn } beyond the condition (a) that the vertex

is reacr.able from the starting point, and the condition (b) that l(X)

approaches sufficiently fast as X approaches the vertex.

5. Stable and Unstable Fixed Points

We now wish to show that convergence is restricted to only certain sub-

The argument follows that in [1]. if {X } converges to
n

8, the process must be contained within U from some stage k onward and must

{f } and {g } respectively.
n n

Suppose all urn functions map the interior of S into itself, and suppose f
n

and gn agree a.e. in a neighborhood U of the point G. Then {X } converges to
n

o with positive probability if and only if {y } does.
n

In essence,

sets of the fixed points of q. We will find useful a lemma of Hill, Lane,

and Sudderth [1] extended to the N-dimensional case.

Lemma 5.1. Suppose {X } and {y } are generalized urn processes with the same
n n

initial urn compositions and with urn functions

Proof·

therefore have reached some point a within U at that stage. Since the qn map

the interior of the simplex into the interior, a must also be reachable by

{y } at stage k with positive probability, and once in this state a at k the
n

two processes become identical. Hence {y } converges to 0 with positive
n

probability, and the lemma is proved. [)

We now consider fixed points G of q of two special types. Given G and a

neighborhood U of G, we will say that G is a stable point if there exists a

symmetric positive-definite matrix C such that

(C[x-q(x)J, x - 8> > 0 , x 1= 8 XEU fl S (4 )

Similarly we will call 8 an unstable point if 0 is such that

(C [x-q (x) I, x - 8) < 0 , for x 1= 8 XEUn S ( 5)

Notice that we impose no requirement that q is continuous within U.

In the N = 2 case, stable points are those where q downcrosses the diagonal,

unstable ones are where q upcrosses the diagonal. In N-dimensions downcross

ing and upcrossing are inappropriate: the Lyapunov criterion (4) tests

whether expected motion is locally always toward 8, the Lyapunov criterion

(5) tests whether it is locally always away from O.

We now show that the process converges to stable points with positive

probability:

Theorem 5.1. Let 8 be a stable point in the interior of S. Given a process

with transition functions {qn} which map the interior of S into itself, and

which converge in the sense that
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sup I I q (x) - q (x) II
XEUCS n

~a- n I
n=l

a /nn
< 00

then

p{X -+ 8} > o·
n

Proof. Construct the functions {q } and {q} which are identical to {q } and
n n

{q} respectively within the neighborhood U, and are equal to 8 outside it.

Let {y } be the urn scheme corresponding to {q } , with initial state
n n

identical to that of the X-scheme. It is clear that {q } converges to q, in
n

the sense given above, and that 8 is the unique solution of q(y) = y. Now

introduce the function

v(y) = (C(y-8), y - 8)

using the fact that 8 is a stable point to select C, a positive-definite

symmetric matrix. It is easy to check that V is a Lyapunov function, as

specified in Thm. 3.1. It follows from Thm. 3.1 (the discontinuity in q
does not affect the argument) that {y } converges to 8 with probability 1.

n
as a pair fulfill the conditions of Lemma 5.1. There-Finally, {X } and {y }

n n
fore {Xn } converges to 8 with positive probability, and the theorem is proved 0

Remark 5.1. If the Lyapunov criterion (4) holds over the interior of S, so

that 8 is the only stable point, then, by Thm. 3.1 or as shown in [3], {X }
n

converges to 8 with probability 1.

We now wish to establish that, given an additional Holder condition,

convergence to unstable points has probability zero. We adapt a stochastic

approximation result of Nevelson and Hasminskii [4] (Chapt. 5) in the lemma

that follows. Consider the process

where

where

zn+1 = z - a F (z ) + 13 Yn(znJ w) ( 6)
n n n n n

F R
N

-+ R
N , where Yn

is a random vector,
n

F, and where I 2 I 13
2

F converges uniformly to a < 00 < 00

n n J

n=l nn=l

Lemma 5.2. Given the process described by (6), such that:

(a) If B = {z : F(z) = O} J and E is a subset of B such that, for

Z E E and z in a neighborhood of Z, there exists a symmetric

positive-definite matrix C such that (C(z-z) J F(z) < 0 ;

(b) {y } has bounded fourth moments, and there exist positive
n

constants a
1

and a
2

such that

a 1 ~ Tr D(n,z) ~ a 2

where D(n,z) is the matrix (E [y~(zJw) x ~(z,W)J
n n
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(c) IF(z) 12 + ITr{D(n,z) - D(n,z)} I ~ k I,z-zl~

for some k and some ~ E (O,l).

Then P {z ->- Z E B} = 0 .
n

Proof. See [4]. Proof involves constructing a Lyapunov function w, infinite

on B. and such that w(z ) becomes a non-nep,ative su~ennartingale. {z} then
n h

cannot converge to any zEB.
lJe noH apply this len"a to our urn scheme {x },

n
assuminf, as before that

{q } converges to some function q.
n

Theorem 5.2. Suppose 8 is a non-vertex unstable point with a neighborhood U

such that:

'I!q(x) - q(8) II ~ k Ilx - 811 11 for xEU, and for some k, and ~ E (0, n.
Then p{x ->- 8} = O.

n

PY'oof. Using the previous lemma, and the dynanic enuation (2), we identify

z with X , F w·ith (X-q (X)), Y with n , and z with 8. Then condition (a)
n n n n n n

of the lenua is Iulfilled and \ve need only check (b) and (c). Now nn and qn

are bounded and n has a fourth moment. It is easy to see that the diffusion
n , .

matrix D(n, X) = (E{n'" (X) x nJ (X)) approaches a limiting matrix D(X)
n n

uniformly for x E U. We also have

(1 - q~(X))

(D(8)} " = 8. (1-8,).

'" '" '" '"

all requirements of Lemma 5.2 are fulfilled

8 ,(1-8 ,) ,we have Tr D(8), given 8 non-vertex,

'" '"

N-l. .
I q"'(x"'))

i-l

and since q(8) 8, we have
N

Finally, since Tl' D(8) = L
i=l

bounded above and below. Then

mrl the theorem follows. 0
Remark 5.2. If 8 is the sole non-vertex fixed point, if it is unstable, if q

is continuous, and if the process converges, then it must converge to one of

the vertices.

6. Separable Urn Functions

Until now we have used Lyapunov techniques to prove or rule out conver

gence to points in the simplex. For a certain restricted class of urn func

tions we can dispense with Lyapunov techniques and instead use martingale

methods, the restrictions allowing US to sharpen our results. We will say

that the urn function q is separable if
1 1 2 2 N-l N-l N

q(x) = (q (r), q (x ), ... , q (x ), q (x) = 1 -

where the indices are of course arbitrarily determined. Note that this

restricted class always includes the important case where N=2. We further

impose a requirement that the urn function does not cross the diagonal "too
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often." That is, we suppose that for each open interval J E [0, lJ and i 1,

... , N-l, there exists a subinterval J
1
CJ such that .,/ - qiCi)::: 0, or

" i i L ix q (x) - 0 for x E J
1

The theorems in this section assume separable

urn functions that fulfill this condition. For reasons of brevity, we state

the theorems that follow in terms of a stationary urn function q. All proofs

extend rather simply to the non-stationary case, providing {q } converges to
n.

q in the sense given in Theorem 3.1 and providing that {q } fulfills the above
Y/

subinterval condition (with the same subinterval for all qn) for n greater

than some time n
1

.

We begin by establishing convergence to the fixed points of q.

Theorem 6.1. Given a continuous (and separable) urn function q, {X }
n

converges with probability one to a random variable X which has support in

the set of fixed points of q.

PY'oof· Let En be the a-field generated by Xl' X2' ... , Xn ' Using the

dynamical system (2), consider, for index i:

Since

i i
E(n

t
I B

t
) = 0, and In

t
I.;;, 2,

"" . i
l

2the pair W , B , for n ~ 1 define a martingale, wlth Elw < constant.
n n n

It follows that there exists a Wi < 00 such that w~

From (2) we thus obtain the convergence:

1:
~ W with probability one.

Xi _ Xi + I [Xi _ qi(XiJl (y+t)-l~u (6)
n+l 1 t=l t t

i
for all events w in Iii! the set where W

n
converges. (Note that p{n i} = 1.)

Now, to establish the convergence of X~ on suppose the contrary,

that is,

Under our specified condition, we may now choose a subinterval J
1

of

(lim Xi , lim i) within which (without loss of generality) xi - q(xi ) ~ O.
-- n TI

Choose within this a further subinterval (ai, hi). There must exist times

/TIl<' I'll<' m
lc

< nk~ k 1, .; such that", •• a ,

i< i X" >
,i i

~ Xi ~ b
i

a , b and a for m
k

< n < Tl
km

k uk n

Summing (2) between mk and nk we have
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i
11m.

k
+

~ a i _ bi

which, for k large enough, contradicts (6). Convergence for index i with

ryrobability one to a point Xi is established.

Now suppose Xi fails to converge to a fixed point of q. That is that.. n
Xi _ q& (X&) = 6 > O. From the argume~t above, the quantity

I [X~ - i(x~)} (y + t)-l -+ 0
t=T

(7)

fixed point of qj, on the set ~ ..
J

Since Xi converges to xi, it
n

where, by continuity of

> 6/2. But then the summation in (7) becomes infinite, which

Thus Xi converges to a fixed point of qi.
n .

argument holds for other indices j (/: N): XJ converges to a
N-1 n

We have p{ n~.} = 1. Therefore the
1 J

A similar

with probability one, as T goes to infinity.

eventually lies within a neighborhood U of Xi
iii iq , Xt - q (Xt )

contradicts (7).

residual, ~, is constrained to converge, with probability 1, to a fixed

point
N

X
N

• The theorem is proved. 0q

Remark 6.2. Note that continuity of q is required only for the fixed-point

property, and not for the overall convergence of the process.

As before, we wish to narrow the set of points to which the process may

converge. We call the interior fixed point 8 a downerossing point of the

function q, if for all indices i = 1 through N - 1 in some neighborhood U

of 8:
iiix < q (x )

& i i
x > q (x )

where

where
N N N N

(It is easy to check that it follows that x < q where x < 8 , and
N N N N

x > q where x > 8 , so that the term downcrossing is consistent.)

Upcrossing can be defined analogously.

TheoY'em 6.2. If q: Int S -+Int S, then the process converges to downcrossing

points 8 with positive probability.

PY'oof. Let 8 be a downcrossing point. Then the function

N-1 <. i' i i) /xN N N N N)I x& - q (x&), X - 8 + 'e - q (x ), x - 8
i=l

is positive where x/:8 in a neighborhood U of 8. Hence 8 qualifies as a



6.1. If e is the only fixed point of q continuous on S, and if
i

x 0, for all i = 1 to N - 1, then e is a downcrossing point and

298

stable point and, by theorem 5.1,

P {X -, e} > 0 •
n

Remark 6.3. The restriction that q should map the interior of S into the

interior of S ensures that the neighborhood of e is reachable from any start

ing conditions. This is a stronger condition than normally required in

practice.

COi'oUary

qi > 0 at

convergence to e follows with probability 1.

Theorem 6.3. If for any single index i, qi upcrosses the diagonal at e, and

the upcrossing satisfies the Holder condition of Thm. 5.2, then

P {X -+ e} = O.
n

Proof. Follows from Theorem 5.2.(1

Finally, we give a useful condition for convergence to the vertices. ~e

will say that q possess the strong S-property, if it has a single interior

fixed point e, which is a point of upcrossing for each index i, and where each

upcrossing sa tisf ies the Holder condition (see Thm. 5.2).

Then the process converges

Proof. Consider index i.

fixed points {a, ei , 1}.

TheOi'em 6.4. Suppose q is continuous and satisfies the strong S-property.

to one of the vertices with probability one.

The function qi, it is easy to show, must have

By Theorem 5.2 convergence to ei
has probability

zero. In combination over all indices, the only other fixed points are

vertices. 0

7. ConcZiu'io1l

To summarize, we can conclude that where a limiting urn function exists and

where a suitable Lyapunov function can be found (we have shown several), the

process in N dimensions converges. If the limiting urn function is continuous,

only fixed points of this urn function belong to the support of the limiting

random variable. Where expected motion is toward a reachable fixed point, it

is in the support: where it is ffiJay from a fixed point, it is not in the

support. In the special case of separable urn function, we may talk about

"upcrossing" and "downcrossing" in tv dimensions, with results that become

extensions of the two-dimensional case. And where the strong S-property is

fulfilled (see also [3]), the process must converge to a vertex.

8. Arl' li eat-/- 1l.e:

8.1 E'em;,1mie ALLocation. Economic agents, drawn from a large
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pool, each demand a single unit of a durable good that comes in N different

types or brands. The agents, in general, are heterogeneous and they choose

in random sequence. Where there are increasing or decreasing supply costs;

or where agents' preferences are endogenous (their tastes are influenced by

the purchases of others); or where agents gain information on the products by

learning of other agents' use of them; then the probability that the nth agent

to choose purchases brand i depends upon the market-share proportions of the

N brands at his time of purchase. Harket-share dynamics for this type of

allocation problem are thus path-dependent and we may enquire as to the

limiting market share outcome as the market expands to an indefinitely large

size. For the case where agents choose between competing technologies,

rather than goods, see [6]. This market-share problem becomes more complex

[7] when sellers of goods (or technologies) can strategically price to gain

market share; but the overall structure remains the same.

8.2. Industrial Location. As outlined in the introduction, firms in a

growing industry may each make a locational choice between N cities in

random sequence. Choice will be influenced both by internal firm needs

and by economies of agglomeration--returns from locating where other firms

of the industry have established themselves. lie might inquire as to whether

cities eventually share the industry, or whether the industry coalesces and

agglomerates in a single city (in a vertex solution). For analysis of this

locational problem see [8].

8.3. Chemical Kinetics. Consider the dual autocatalytic chemical reaction:

S + 2W ->- 3W + E

S + 2R ->- 3R + F

A single substrate molecule S is converted into either W or R form (with

waste molecules E and F) according to whether it encounters two W-molecules

before two R-molecules. Given initial concentrations, we may inquire as to

the final proportions of chemical products. Notice that this example is

equivalent to Example 1.1 (a) above; if we think of the process as "sampling"

the next three W or II molecules encountered and adding one to W or R accord

ing as 2 out of the 3 molecules sampled are W or R. Hore general

N-dimensional kinetics can be similarly modeled.

8.4 otoclzastic Optimization. In stochastic optimization methods based on

the Kiefer-Ilolfowitz procedure or its modern variants, an approximation to

the solution is iteratively updated as:

x = X
17+1 Ii

(7)
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where X
>~

is an N-dimensional vector in JIV., the step-size On satisfies

" co

and Y
n

is a random vector, serving as an estimate for or approximation to the

gradient of the function to be minimized. Often it is computationally

expedient to calculate only the sign of Y
n

procedure [9]:

This gives the Fabian

(8)Xn+1 = Xn - On sgn (Yn(Xn ), iJlJ

We leave it to the reader to show that (8) can be put in the form of (2).

Thus convergence of the Fabian algorithm to a local minimum can now be

established.
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THE GENERALIZED EXTREMUM IN THE CLASS OF DISCONTINUOUS
FUNCTIONS AND FINITELY ADDITIVE INTEGRATION

V.D. Batuhlln and A.G. Chentsov
Institute of Mathematics and Mechanics
Sverdlovsk, USSR

In this paper we consider an approach to the solution of extremum problems

involving discontinuous functions, defined on finite-dimensional spaces. Using the con

cept of the approximate gradient introduced in [1,2], necessary and sufficient condi

tions for the extremum of discontinuous functions are obtained, a numerical method is

constructed 'and some classical theorems of analysis are generalized. Integration with

respect to a finitely additive measure on a semi-algebra of sets is defined. We give

statements concerning conditions for the universal integrability of bounded functions,

the integrability of functions defined on the Cartesian product, and the relations

between measurable spaces.

Definition 1. We shall say that the minimum of the bounded function 1 (x) is reached

at a point x· E R n , if there exists a neighborhood V(x') of the point x· such that for

all x ~ V(x') the inequality 1 (x') ~1 (x) holds, where 1 (x) is the lower limit of the

function 1 at the point x .

Problem. Let a bounded measurable (Lebesque) function of n variables

1 (x) = 1 (x 1'x 2 •...• x n ) be defined on the closed set D eRn' Find the minima of this

function.

To solve the problem we proceed as follows. We extend the function 1(x), defined

on D, onto the whole space Rn . This extension may be achieved in a number of dif

ferent ways, but should be such that none of the new minimum points appears on D. The

simplest such extension has the form

• x _ ~ 1 (x) , XED

1 ( ) - l "" = const , x ~ D

where"" = sup 1 (x). The extension of 1 (x) allows us, firstly, to analyze the minima of
xED

the function not only at inner points of D, but also on the boundary, and secondly, the

extension of 1 (x) in fact removes the constraints in extremum problems. Further, we
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consider the extension of the function 1 onto Rn , denoting it by 1 ..

For an arbitrary point x' E D set

O(x'; T) = Ix: Itx -x'll ~ Tl

o = Is: s = x -x' ,x E O(x' ; T)!

Let p (s) be the distribution density of the continuous random variables

~t =St, i E1,n, and let it satisfy the following conditions: p(s) =0, if s ft. 0:

p (s) 01: 0 if s E 0;

J p(s)J.L<ds) =1 , E[(st -E[sd)(Sj -E[sj])] =0, i "" j
n

. ~ 2
t ,j E 1, n , E[sd = 0 , E[st ] "" 0

Let us replace the function 1 (x) on O(x' ; T) by the 1inear function

<p(x' +s; O,p,f) = ao(x'; O;p ;/) + <a(x'; O;p;f) ,s>

where a(x';O;p;/)= (al(x·;O;p;/) •... , an(x';O;p;/» and the coefficients

ao. at are defined by the minimum condition of the functional

,.(x· ; ao; a ; 0; p) = J [f (x' + s) - ao - <a ,s >]2 X P (s )J.L<ds)
n

These coefficients may be represented as follows:

. J'ao(x ; O;p ;f) = I(x +s)p(s)J.L<ds)
n

at (x'; O;p;f) = (E-1[sl])-1.r stl(x' +s)p(s)J.L(ds). i E 1.n
n

Definition 2. A point x· E D is said to be an approximate stationary point of the

function 1 (x) on D for fixed 10, p I if

at (x'; O;p ;/) = 0, i E 1,n

Definition 3. A point x· ED is said to be an approximate local minimum of the

function 1 (x) on D for fixed 10, p I if there exists a neighborhood V(x') of the point

x· such that

<a (x ; 0; p ;I) , x - x· > 01: 0

for each point x E V(x·).
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Definition 4. A point x' ED is said to be a generalized stationary point of the

function f(x) on D if there exist sequences O(k), p(k), k = 1,2 •...• J.L{O(k) > 0 for

each k and a sequence x(k) of approximate stationary points for O(k), p(k) such that

J.L{O(k» -+ 0, x(k) -+ x' as k -+ 00.

Definition 5. Let the points x(k) in Definition 4 be approximate minima. Then we call

the point x' = lim x (k) as k -+ 00 the generalized local minimum.

It turns out that for a wide class of discontinuous functions the extremum points

and the generalized extremum points are the same. This allows us to replace the prob

lem of finding the extt"emum of the function by the problem of finding its approximate

extremum. The approach described above permits us to obtain necessary and suffi

cient extremum conditions for discontinuous functions from one side, and, using these

conditions, to construct numerical methods for finding extrema. The approximate gra

dient a (x ; 0 ;p ;f), not the actual gradient of the function f (x), serves as the basis of

these numerical methods.

We shall now give some statements which illustrate the above points.

THEOREM 1. Let p be a continuously differentiable function on Rn . Then the

functions ao(x;O;p;f) and at(x;O;p;f), i E l,n, are also continuously diJ'

ferntiable on D.

In what follows we assume that the function p is continuously differentiable (it

shouid be noted that this function may be chosen by the experimenter).

THEOREM 2. Let a function f: R 1 -+ R 1 be piecewise-monotonic with a finite

number of semiintervals of monotonicity and discontinuities of the first type.

Then the point x· E [a ,b] c R 1 is a minimum point of the function f if and only if

there exist sequences T(k). p(k), where T(k) > 0 for each k, T(k) -+ 0 as k -+ 00, and

a sequence of approximate minimum points x (k) for these T(k). P (k) such that

x(k) -+ x'.

We say that f E G if lim ao(x ; O;p ;f) = f. (x) as ~(O) -+ 0 for ail x ERn' and

a o(x ; 0; p ; f) converges to f (x) ~almost everywhere on Rn . It should be noted that

if the function f is discontinuous, then f. is also discontinuous in the general case.

Let us define the iterative procedure by the equality

(i)

where ~(O(k» -+ 0 as k -+ 00, and the step length o:(k) is defined by the following con

dition:

min h (k)(o:) :5:; h (k -l)(o:(k» :5:; min h (k)(o:) + 6(k)
Q~ Q~O



304

(ii)

O(k)~O, 'E O(k)=O<oo
k =0

Define

E(x (0) ; 0) = Ix: f. (x) ~ f. (x (0» + oj

E-(o) = Ix EE(x(O); 0): x = lim X(k), X(k) E E(x(O); 0)
k=>~

lim at (x (k ) ; 0 (k ) ;p (k ) ; f) =a , i E 1, 7i: I
k ->~

THEOREM 3. Let a bounded measurable function f E G, defined on Rn , satisfY the

condition

!a(x·;O;p;f)-a(x.;O;p;f)! ~L 'lx'-x.1

where L is the Lipschitz constant, which for fixed p is the same for all x" x' ERn'

but in general depends on O. Then the iterative procedure (i), (Ii) ensures that the

sequence f, (x (k» is monotonically decreasing and

11m [f.(x(k»-f.(x(k+1»)]=O
k ->~

regardless of the choice of x (0). If. in addition, L is the same for all k, J.L< O(k» > 0,

then

lim at (x(k); O(k);p (k);f) =0, i E 1,n
k ->~

and since the set E(x (0) ; 0) is assumed to be bounded,

lim p(x (k), E~(o» = a
k ->~

It should be noted that many statements analogous to those derived in the classical

analysis of smooth functions can be proved for discontinuous functions using approxi

mate gradients. For example, results which are extensions of the theorems of Rolle,

Fermat, Lagrange, and Cauchy turn out to hold for the class of discontinuous functions.

THEOREM 4 (mean value theorem). Let f E G. Then

f,(c) -f.(b) = <a(x(O); 0: p: f) + ~(x(O), 0), c -b>

x(O)E[b,cJ, 1~(x(O),O), ~O as tL(O)~O

if (f I K) E C, where is compact, then f (c) - f (b) =
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<a(x(O); O;p ;f} + (1(0) , C - b >, 1(1(0) I -+ 0 as ,u(0) -+ O.

The use of constructions based on the concept of approximate extrema and, in

particular, the use of these constructions in the optimization of functionals on

infinite-dimensional spaces, requires some means of integrating with respect to

abstract (and, possibly, finite additive) measures, thus allowing the easy estimation of

integrais by finite sums.

Consider one class of discontinuous functions. Let M be a non-empty set, I. be a

semialgebra ([3, p. 46]) of subsets of M. Bo(M • I.) be the linear span of the set IXL:

L Eo: 1.1 of characteristic functions XL of the sets L E: L, and B(M , I.) be the closure of

Bo(M, I.) with respect to the sup-norm 11·11 of the space IB(M) of all real bounded func

tions on M. A set-valued function ,u operating from I. to R 1 is said to be a finite acJ.cJ.i-

m
tive measure (FAM) on L, if ,u(L) = ~ ,u(L t ) for all L E: I. and all finite subdivisions

t =1

(L 1 E. I., ... , Lm E: I.) of the set L. If,u is non-negative on I. it is said to be a positive

FAM, or FAM+, on L. Any FAM that may be represented as the difference of positive

FAMs we call a FAM with bounded variation, or FAMBV. If,u is a FAM and g E: Bo(M , L),

then the elementary integral is defined by the finite sum ([4]; [5, p. 15]). If,u is a

FAMBV, g c B (M , I.), then the ,u-integral g is defined [5, p. 18] as c = J g (x ),u(dx); if
M

(gl E. Bo(E, L), g2 E: Bo(M, L) ,.,,), I~t -gii -+ 0 is satisfied for all gt, then this implies

that the ,u-integrals of functions gt converge to c. If,u is a FAMBV on L, then J d,u

denotes the functional on B(M , I.) which associates each bounded function g E: B(M • L)

with its ,u-integral.

The mapping ,u f-+ J d,u is ([5, p. 18]) an isometric isomorphism of the space

B'(M, L), of the topologically conjugated space (B(M, L) 11·11), and of the space of finite

additive measures with bounded variation on L with the (strong) norm variation (see [5,

p. 17]). The indefinite integral is introduced in a standard way ([5, p. 19]) by the

integration of the "reductions" g XL of the functions g E: B(M , L) as described above

(indefinite ,u-integrals at functions g E: B(M • L) are FAMBVs on L if ,u is a FAMBV on L).

Elementary indefinite integrals are defined for any finite additive measure and

bounded function from Bo(M, L) by means of finite sums (see [5]). In addition, an ele

mentary indefinite integral with respect to a FAMBV uniformly on L approximates the

indefinite integral if the integrands in the elementary indefinite Integral approximate

the integrand of this indefinite integral with respect to 11·11 (see [5, p. 20]). Following

[5], we introduce for all g E.B(M) the sets B~(M,L,g) and B~(M,L,g) of all

minorants and majorants, respectively, of g contained in Bo(M ,L). Here and else

where ordering is assumed to be pointwise. If,u is a FAM+ and g E: IB(M), then the set

of all elementary indefinite ,u-integral functions s E: B ~ (M , L, g) (s E: B ~ (M , L, g» is
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bounded above (below) in an ordered full linear lattice of all FAMBVs on L. The least

upper bound and the greatest lower bound of the above sets are properly defined and

are called the upper and lower finite additive Darboux indefinite integrals of bounded

function g with respect to the FAM + J.L. If the Darboux indefinite Integrals of g are the

same for all FAM+, then bounded function g is said to be universally integrable [5, p.

45]).

THEOREM: 5 ([5, p. 45]). The set of all universally integrable bounded functions is

equal to B(M , L), and the Darboux integral for these bounded junctions is the inde

finite integral constructed by extending the elementary integral from Bo(M ,1.) to

B(M, L) by taking the limit with respect to II· I!.

Let X ¢ ¢, y ¢ ¢, and X and Y be the semialgebras of subsets of X and Y respec

tively. Let J.J. be a FAMBV on X and II be a real-valued function on X xY such that [4],

[6]:

(a) II(·,H)E-B(X,X) '<;tHEY;

(b) II(X,·) V'x EX S a FAMBV on Y

(c) x 4 II(X,·) is a (strongly) bounded function with values in the space of FAMBVs on

Y with norm variation.

The semlalgebra Xl xl Y for the subsets of X x Y is defined as the family of all

"rectangles" U x V, where U E X and V E Y. We define the set-valued function J.J. ~ II on

Xl x IY, taking the value (J.J.~II) (K xL) of this for all K E X. LEY as the J.J.-integral

11(· ,L) on the set K [4,6]; J.J. (il;) II is a FAMBV.

THEOREM: 6 ([4,6]). Let g E B(X x Y, Xl xl Y). Then J J g(x, Y)II(X ,dy)J.J.{dx) is

properly defined and coincides with J g(z)(J.J.~II)dz):

J J g(x ,y)II(X ,dy)J.J.{dx) = J g(z)(J.J.~II)(dz)
U V UxV

If II(X , .) = const we have the following corollary [4,6]:

JJ g(x ,y)J.J.{dx)lI(dy) = J Jg(x, y)lI(dy)J.J.{dx)

Another corollary: let X be a strongly bounded set of FAMBVs on Yand X be a

semialgebra for subsets of X which are locally closed ([7, p. 42]) in terms the weak*

topology induced in X from the set Y (i.e., the family of all intersections G n F, where

G is open and F is closed. Let II(X ,L) = x (L) for all x E X and LEY. Then II satisfies

(a), (b), (c) and, since J.J. is a FAMBV on X.

JJ g(x, y)x(dy)J.J.{dx) = J g(z)(J.J.~II)(dz)
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on Xl x I Y. We shall consider lhe relations belween (B(X, X) , B' (X, X») and (B(Y, Y),

B' (Y, Y)). Lel us define lhe producl in X and Yas lhe inlersection, we consider, as in

[8], lhe homomorphisms Ip acling from X inlo Y such lhal if L E: X and (L 1 E: X .... ,

L m E: X) is finile subdivision of X \ L, lhen (g (L 1) , ... , g (Lm )) is subdivision of

Y\ g(L). Such homomorphisms are said lo be ciecomposition homomorphisms [8].

Each decomposition homomorphism Ip defines operalors T 1, T z (T( = T( (Ip)), where T1

acls from B(X. X) inlo B(Y, Y), and T z operales from lhe space of FAMBVs on Yinlo lhe

space of FAMBVs on X [8]. The operalor T1 on Bo(X, X) satisfies lhe condition

and is conllnuously exlendable on B(X • X) in lerms of lhe sup norms B(X) and B(Y).

Here xl = XL' L E. X. is a characleristic function defined on lhe sel X (xl is defined

analogously). The operalor T z Is defined by lhe condition:

(TZ(J.I.))(L) =J.I.(Ip(L)) = (J.I.' Ip)(L)

where J.I. is a FAMBV on Y and L E: X The following lheorem [8] is analogous lo lhe for

mula for change of variables (see [9, p. 200]). However, lhe lheorem does nol use lhe

concepl of mappings which are measurable wilh respecllo X. Yon lhe sels X, Y.

THEOREM 7 [8]. If J.I. is a FAMBVon Yanci g E: B(X, X), lhen
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CONVEX MULTlVALUED MAPPINGS AND STOCHASTIC MODELS
OF THE DYNAM:ICS OF ECONOM:IC SYSTEMS

N.N. Bordllnov
V. Glushkov Institute of Cybernetics. Kiev, USSR

This paper gives a brief description of some results obtained by using the theory

of convex multivalued mappings ll] to investigate a reasonably general stochastic

model of the dynamics of economic systems. All proofs are given in [2]; see also [3J.

We shall first give some definitions from [1]. Let Land L' be Banach spaces. A

mapping a of the space L into the set of all subsets of L' is said to be convex if

is a convex subset of the cartesian product L XL'. We shall write

dom a = fl I a (l) '# c,/l!

w (l , l") = inf I<t" ,t'> I t' E: a (l) l

where l" is from the conjugate space L··. Here and elsewhere we shall suppose that

inf c,/l = + 00. Obviously, if t" is fixed. then w (l • t'.) is a convex function of l. The sub

differential of w at the point t E: L will be denoted by a • (t. t'.). Thus. if l is fixed, we

can consider a mapping a' (l , .) which associates a set a' (l . l") c L' (possibly the

empty set) with every l" Eo L ". This mapping is said to be conjugate to a at the point

l.

Now we shall construct a stochastic optimization model of the dynamics of

economic systems. Necessary and sufficient conditions for maxima and minima are for

mulated below. A similar model was investigated in [4].

Let (0, F •P) be the basic probability space, fFt l t=o be a non-decreasing

sequence of u-subalgebras of F, and T be a fixed natural number. We suppose that F is

complete with respect to P and the inclusion A E: F holds for all A EFt. 0 :s: t :s: T.

P(A) = O. The finite-dimensional normed space R n is assumed to be endowed with a

Borel u-algebra Bn . Let S~ denote an open ball with radius f: and centre 0 in R n , and

L_. t denote Banach spaces of Ft-measurable, Rn-valued, bounded random variables x t

with the norm
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In addition, let L 1,t,' denote Banach spaces of F t -measurable, (Rn )' -valued random

variables xi with finite mathematical expectations; in L 1,t,' the norm is

where E represents mathematical expectation.

Let:co EL_,o be fixed. We shall take :Co as the initial state of model. Let random

variables f ~ , ... , f;', f tEL l,t,' , and multivalued mappings lJ.t: R n x 0 -+ R n ,

1 s t s T, be given. We shall assume that the following conditions are satisfied:

(C1) Mappings lJ.t (-, GJ): R n -+ R n are convex multivalued mappings for 1 s t s T,

GJ E 0; graphs gr lJ.t (. , GJ) are non-empty closed subsets of R n x R n .

(C2) Mapping lJ.t is measurable (see, for example, [5]) with respect to on ~Ft.

(C3) If U t -1 L R n , 1 S t s T, is a bounded set, there exists a bounded set Ut eRn

(possibly dependent on Ut -1) such that lJ.t (x, GJ) CUt for all (x ,GJ) E Ut -1 x O.

(C4) There exist Rn-valued, Ft-measurable random variables Xt and positive numbers

c t , 1 s t s T, such that

P-a.s. for 1 < t sT.

(C5) The sets dom lJ.t (. , GJ) are closed for 1 < t sTand all GJ E 0; the mullivalued map

ping Dt : 0 -+ R n , where Dt (GJ) = dom lJ.t (. , GJ), is Ft-measurable.

(C6) For all (x, GJ) ERn x 0, 1 s t < T, we have

Consider the following extremum problem: find random variables xl' ... , xT

such that

T
L Ef;xt -+ min

t =1

E IXt I Ft l = Xt (a.s.) ,is t s T

(1)

(2)

(3)

(4)
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To simplify the notation we shall no longer indicate every dependence on Go); we

shall write. for example, Xt E at (Xt -1' Go) (a.s.) instead of (2).

A reasonably detailed economic interpretation of this model can be found in [2,6];

of course, this interpretation is very similar to that given in [4]. Comments on condi

tions (C1)-(C6) are given in [2.7]. Condition (C6) is very important here; using (C6) we

can deduce extremum conditions for (1)-(4) (see Theorem 2 below). The idea of using

conditions of type (C6) was first proposed in [8].

Note. If we replace (1) by the criterion

T
L: Eft(xt(eJ),c.l)
t =1

where the f t: R n X 0 --+ R 1 are On ~Ft -measurable functions which are convex with

respect to x (where Go) is fixed), then the conclusions and results obtained in [2]

require only weak and obvious modifications.

Now we shall introduce Bellmann's function for (1)-(4). Let

T
Bt(Xt) =inf IL: Ef;XT xTEaT(xT_1'c.l) (a.s.)

T=t

assuming that f ~ = 0 (a.s.). It is easy to verify that the B t are proper convex func

tions, B t : L~,t --+R1
U !+<>:>I.

Let X; E (L ~,t)'. It is known (see [9]) that X; = X;a + X;s. where X;a and x;s are

the absolutely continuous and singular components of X;. respectively; this represen

tation is unique. Absolutely continuous functionals from (L ~,t)' possess the following

property: for every Xt'a E (L ~,t)' there exists one and only one random variable x; E

L 1 ,t,' such that for all Xt E L~,t

THEOREM 1. Let 1 s t S T, iit E dom B t = IXt EL~,t I Bt(xt) ¢ +<>:>j. and X; E

aB t (.xt). Then

for all Xt Edam B t .
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The essence of Theorem 1 (but not its proof) was prompted by Corollary lB of

Theorem 1 in [10]. Theorem 1 plays a central role in the proof of Theorem 2, which

states solution conditions for problem (1)-(4).

THEOREM 2. The sequence xl' .... xT is a solution of (1)-(4) if and. only if there

exist random variables x;, ii;, 1 < t s T, such that x;, ii; E:. L 1,t,' and. the following

relations hold. with probability 1:

(5)

(6)

(7)

(8)

The proof of Theorem 2 allows us to see the connection between the conjugate

variables x~, ... , x~ and the subgradients of the Bellmann function. If

F 0 = F 1 = = F T = F = !4> , O! (the deterministic case), then x; E: B Bt (Xt) [11].

The idea of applying dynamic programming methods to the problem (1)-(4) was origi

nally suggested in [11]; see also [4,12,13].

It should be mentioned that Theorem 2 can be deduced from the main theorem

given in [2]; however, this deduction is nontrivial and not so clear and simple as the

proof given in [2].

It is interesting to note that there is an analogy between (5)-(8) and Pontryagin's

maximum principle. Set p; = x; + ii; +1' 1 s t < T, (in which case p; E: Ft +1) and let

p~ = fT' It is not very difficult to verify that

and by definition

p~ =fj. (a.s.)

In addition,

(9)

(10)

(11)

Now it is obvious that (9) is analogous to the conjugate system of equations, (10) is the

condition of transversality, and (11) is analogous to the maximum principle. These

analogies confirm that the theory of convex multivalued mappings is useful in investi

gating stochastic convex models of the dynamics of economic systems.
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STABILITY IN STOCHASTIC PROGRAIOIING - PROBABllJSTIC CONSTRAINTS

Jitka Dupa6ov~
Charles University, Prague

1. INTRODUCTION

When solving stochastic programs, a complete knowledge of the distribution of

random coefficients is usually taken for granted. In many real-life situations, how

ever, this assumption is not justified and the results should at least be supplemented by

suitabie stability studies.

The stability of the optimal solution of stochastic programs with respect to the

distribution and its parameters can be studied to some extent using the methods of

parametric programming and techniques developed for studying the stability of non

linear programming problems (Armacost and Fiacco 1974. Garstka 1974). These

methods can be complemented by suitable statistical approaches capable of dealing

with the statistical character of the original problem.

The stability of the optimal solution of stochastic programs with recourse has

been studied, e.g., by Dupatov6 (1983, 1984, 1985).

In this paper, the methods outlined above will be applied to stochastic programs

with probabilistic constraints. We shall consider the following model:

Let z be a random vector on (Z, Hz) , Z C R L ; c :Rn -+ R L be a given function;

g j :Rn x R L -+ R
1fl

j , 1 :!SO j :!SO k, be given Borel mappings; and X c R n be a given

nonempty convex set. The problem may then be stated as follows:

maximize c (z)

(1)

subject to Pr !gj(Z; z) ~ 01 ~ o.j , 1 :!SO j :!SO k
zEX

where F denotes a given probabiLlty distribution on (Z ,Hz). The optimal solution, the

Lagrange function and the Kuhn-Tucker points of (1) will be denoted by Z (F), L (z ;F)

and w (F), respectively, to indicat.e their dependence on the chosen distribution F.
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As a starUng point., consider t.he following det.erminisUc nonlinear program, which

depends on a vect.or paramet.er y:

Let. Y cRq be an open set. and c:Rn x Y -+R1 , h:Rn x Y -+Rm+p be given, con

Unuously differenUable functions. For a fixed y E Y, t.he problem is t.o

maximize c (:z: ; y )

subject. t.o hf. (:z: ; y) ::!: 0 , 1 S l S m

hf. (:z: ; y) = 0 , m + 1 SiS m + p

The corresponding Lagrange funcUon has t.he form:

L (:z: , u , v ; y) =c (:z: ; y) + f uf. hf. (:z: ; y) + t vf. hm +f. (:z: ; y )
f.=1 f.=1

M(y)

and t.he Kuhn-Tucker point. of M(y) will be denot.ed by w(y) = [:z:(y) , u(y), v(y)]

E. R n x R': x RP. Knowledge of t.he first.- and second-order Kuhn-Tucker condiUons

and of t.he linear independence condiUon and t.he st.rict. complement.arit.y condiUons

(Fiacco 1976, Robinson 1980) will be assumed t.hroughout. t.he t.ext..

THEOREM 1. Let yO E Y and let w (y 0) be a Kuhn-Tucker point of M(y 0) for which

the Kuhn-Tucker conditions of the j'i.rst and second order, the linear independence

condition and the strict complementarity conditions hold. Let c and

hf. ' 1 sis m + p, be twice continuously differentiable with respect to :z: on a

neighborhood of [:z: (yo); yo] and continuous derivatives

82c(:z:; y)

8Yt8:Z:j

Then the following statements are true:

(a) For y E O£(yO), there e:z:ists a unique. continuously differentiable function

w(y) =[:z:(y) , u (y), v(y)] satisfYing the Kuhn-Tucker conditions of the first and

second order. the linear independence condition and the strict complementarity

conditions for M(y).

(b) Let the inde:z: set I(y) ell, .... m I contain the indices of the active inequality

constraints hf. (:z: (y); y) = 0, i E I(y), and dej'i.ne

wr(y) =[:z:(y),uf.(y),i EI(y),v(y)]

further, set
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(2)

(3)

(4)

The statements of Theorem 1 represent modifications of results obtained by Fiacco

(1976) and Robinson (1974). The assumptions can be weakened using, e.g., results

derived by Robinson (1980); for application of these more general results see

Dupacovc{ (1986).

As we shall see later, the parameter vector y may correspond to the parameters

of the underlying distribution F (see Section 2), to the contamination parameter (see

Secllon 3) <;>r, finally, to the probability levels at, 1 ~ i ~ k. The results can be

extended without difficulty to the case when the objective function in (1) also depends

on the parameter.

To provide some motivation, let us first consider a few examples.

Example 1: The cattle-feed. problem (Van de Panne and Popp 1963). The problem is to

find the amounts Xj of ingredient j which lead to the cheapest final mixture which still

satisfies certain nutritional requirements. The protein content (as a weight percen

tage per ton), a j , of each of the four constituents is assumed to be a normally distri

buted random variable with mean J.l.j and variance uJ ' 1 ~ j ~ 4. In addition to deter

ministic linear constraints, one probabilistic constraint

4
PI L: ajxj ~ p I ~ 1 - a

j=l

is constructed.

Assuming a normal distribution, (5) can be rewritten as follows:

(5)

where ~-l(a) denotes the a-quantile of the N(O,l) distribution. The parameters

J.l.j , uJ . 1 ~ j ~ 4, are estimated by sampling, and in practical applicallons the esti

mates are used instead of the true parameter values. The problem of the stability of

the optimai solution with respect to parameter values was solved, I.e., derivallves of

the opllmal solution with respect to the parameter values were obtained (Armacost and

Fiacco 1974).
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Now that we are familiar with the statistical background of the parameters we

shall try to complement the deterministic stability results with some statistical ones

(see Section 2).

Example 2. In simple stochastic models of water reservoir design based on individual

probabilistic constraints, the variables take the form of monthly Inflows ri whose mar

ginal distributions F i are assumed to be known. Usually. a log-normal distribution is

used; its parameters are estimated on the basis of observations of the monthly inflows

over a relatively long period of time. However. In particular months, specific devia

tions from the assumed distribution may appear: In spring, the distribution may be

relatively close to the normal distribution. Under these circumstances, we can accept

the hypothesis that the true marginal distributions are mixtures of the assumed log

normal and normal distributions. We are Interested In describing the changes in the

original optimal decision arising from the Influence of the second distribution.

Example 3. The STABIL model (Pr~kopa et al. 1980) was applied to the fourth Five

Year Plan for the electrical energy sector in Hungary. In addition to numerous deter

ministic linear constraints, this model also contains one joint probabilistic constraint:

n
Pr!L: aijxj :1::zi .1:1::i :1::41:1::p

j=1

The four right-hand sides z{, 1 ~ i ~ 4 were taken to be stochastic and the joint

distribution of these random variables was assumed to be normal. Due to the lack of

reliable data, some of the correlations could not be obtained with sufficient precision.

For this reason two alternative correlation matrices were considered and. the numeri

cal results compared.

Alternatively, instead of considering the separate normal distributions N(~, 2:1)

and N(~. 2:2)' we could construct a mixture

(6)

which in principle allows us to study the changes in the optimal solution for 0 ~ t ~ 1;

(6) corresponds to the gross error or contamination moael.

2. KSTDlATKD PARAJlKTKRS

Assume now that the parameter vector y in M(y) is connected with some statisti

cal assumptions about the distribution F of random coefficients in a stochastic pro

gram. In particular. let y be the parameter identifying the distribution F. which is

known to belong to a parametric family of distributions lFy . y E: YI. M (y) is the
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corresponding program:

maximize c(x)

(7)

X EX

Our aim is to solve program (7) for the true parameter vector, say T/ E Y. How

ever, our decision can only be based on an estimate, say yN, of T/. This means that we

are actually solving the substitute program M(yN) instead of M(T/). Assuming that the

distribution of the estimate yN is asymptotically normal, the deterministic stability

results of Theorem 1 can then be complemented by statistical stability results.

THEORElI. 2. Let yN be an estimate of the true parameter vector T/, based on a sam

ple of size N and with an asymptotically normal distribution

and a known variance matriz l:. Let the assumptions of Theorem 1. be satisj'f.ed for

M(T/). Then the distribution of the optimal solution x (yN) of M(yN) is asymptoti

cally normal

(8)

with a variance matriz

where ( a~~7]) ) is the (n ,q) submatrix of (4).

Proof. Under the assumptions of Theorem 1, x (y) is continuously differentiable on a

neighborhood of x (T/). Using the normality assumption and the 6-method (Rao 1973, p.

388), we immediately get the desired result.

The application of Theorem 2 to Example lis straightforward.

axRemark 1. All elements of ( By) are continuous on a neighborhood of T/, so that the

asymptotic distribution (8) can be replaced by

see Rao (1973).

A similar theorem for stochastic programs with recourse was proved in detail and

applied to a stochastic program with simple recourse under special assumptions on the
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parametric family of distributions by Dupa<'lov~ (1984).

3. CONTAliINATED DISTRIBUTIONS

The local behaviour of the optimal solution :z: (F) of program (1) with respect to

small changes in the distribution F can be studied by t-contamination of F by a suitably

chosen distribution G, l.e., instead of F, consider distributions of the form

F t =(1 - t)F + to , 0 ~ t ~ 1 (9)

The original stabUlty problem is thus transformed to a simple problem linearly per

turbed by a scalar parameter t. In principle, it is possible to calculate the trajectory

of the optimal solution :z: (Ft ), 0 ~ t ~ 1; for a suitable method see Gfrerer et al. (1983).

We shall aim to obtain the Gateaux differential d:z: (F ; G -F) of the optimal solution of

(2) in the direction G - F; for parallel results concerning stochastic programs with

recourse, see DupaJov~ (1985). To get explicit results, it is necessary to check the

differentiability and regularity assumptions of Theorem 1 and to compute matrices

B(O), D(O) corresponding to the contamination parameter t =O.

For the sake of simplicity we shall put X = R" in (1), thus considering only the

probabilistic constraints, and we shall concentrate on the special case

"gt (:z: ; z) = ~ I1tj:Z:j - Zt ' 1 ~ i ~ m
j=l

or

g (:z: ; z) =A:z: - z

which corresponds to Examples 2 and 3. The rows of matrix A =(atj) will be denoted

by at. Similar results can be proved for gt (:z: ; z) =gt (:z:) - Zt, 1 ~ i ~ m, and

g(:z:;z) =g(:z:) -z. In the constrained case. e.g., for X polyhedral, explicit results

can be obtained using the same approach. However, these formulas are rather

cumbersome.

THEOREM 3. Consider the program

maximize c (:z: )

(10)

n
subject to Prl ~ atj:Z:j ::!: Zt I ::!: at ' 1 ~ i ~ m

j=l

where it is assumed that:
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(i) at E: (0,1) . 1 :S i :S m , and the matrix A (m , n) are given.

(ii) c :Rn -+ R 1 is twice continuously diJ'j'erentiable.

(Hi) z is a random vector on (Z. B z ) • Z C R'IR. whose distribution F is abso

lutely continuous.

(iv) (10) has a Kuhn-'fucker point w(F) = [X (F) , u(F)] such that the strict

complementarity conditions are fu/J'illed.

(v) Marginal densities ft. 1 :S i :S m, are continuously diJ'j'erentiable in a.

neighborhood ofX(F): = Ax (F) and

n
ft (L: atjxj(F» > 0 , i E: I(F)

j=1

The rank ofAI = (atj)t d(F) equals the cardinality of I (F).
1~j~

(vi) For all l E: Rn , l ¢ 0, for which All = 0, the inequality IT Vir. c (x (F»l < 0

holds and the matrix

L = V:r. L(w(F);F) = V:r. c(x(F» + L: u t (F)f;(atx (F»atTa t (11)
t d(F)

is nonsingular.

(vii) The marginal distribution }'unctions Gt of the distribution G on (Z .Boz )

are twice continuously differentiable on a neighborhood ofX(F).

Then

(a) There is a neighborhood O(w (F» eRn X R~, a real number to > 0 and a.

continuous }'unction w: < 0 • to) -+ O(w (F», w(O) = w(F) such that for any

t E: <0, to), we have that w(t) = [X(t) , u(t)] is the Kuhn-Tucker point of

the problem

maximize c (x)

n
subject to PFe I L: atjxj O!: Zt I O!: at ' 1:s i :S m

j =1

for which the second-order suJjicient condition, the linear independence

condition and the strict complementarity conditions are all satisfied.

(b) The oateaux differential dx(F; G -F) of the isolated local ma.:z:imizer x(F)

of (10) in the direction G - F is given by

(13)

Ii
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where L is given by (13) and

n
fr = diag If( (E a(JxJ (F» . i E: I (F)j

J=1

n
Gr = [G( E a(JxJ(F». i E: I(F)]

J =1

ar = [at • i E: I(F)]

(14)

(15)

Proof. From assumptions (v). (vi), t.he condlt.lon of linear independence and t.he

second-order sufficient. conditions are satisfied for (10) so t.hat. t.he general result.s of

Theorem 1 can be applied. For t sufficiently small, we have

IV:rL(W(t) ;Ft) [Vrhr(x(t);Ft )

D(t) = [Vrhr(x(t);Ft)]T 0

where

and

For t. = 0, formula (13) follows from (4) by Inversion of t.he block mat.rlx D(O). •.

We have an alt.ernative result. for a linear objective funct.lon:

THEOREIl 4. Consider the program

maximize c Tx

(17)

n
subject. t.o PFI E a(JxJ ~ z( I ~ a( , 1 :so i :so m

J=1

and let assumptions (I), (III) of Theorem 8 be satisfied. Assume in addition that the

optimal solution x (F) of (17) is unique and nondegenerate with

n
f( E a(JxJ(F» > O. i E: I(F). and that the marginal distribution functions G( of

J=1

the distribution G on (Z ,B%) are continuously d1J'j'erentiable on a neighborhood of

X(F): = Ax (F).

Then the Gateaux d1J'j'erential dz (F ; G -F) of x (F) in the direction G - F is given
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by

where Jr ' G[ , 0.[ are given by (14), (15), (16), respectively.

Proof. Let bt = Ft -1(at) denote the lXt -quantile of the marginal distribution function

Ft. Using the properties of the linear program

max Ic T% :A% ~ b I

and the assumptions of. the theorem, we have that A[ Is a nonsingular (n , n) matrix and

% (F) Is the unique solution of the system

Ft(a t %) - at =0, i E I(F)

Define +t(%;t)=(l-t)Ft (a t %)+tGt (a t %)-o.t' i EI(F), and apply the Implicit

function theorem to the system

+t (% ; t) = 0 , i E I (F)

It is clear that

D(t) = [V:z: +t, i EI(F)]T = [«l-t)ft (a t %) + tG;(at%»a t , i E I(F)]

B (t) = [ :t +t ,i E I (F)] = [Gt (a t %) - Ft (a t %) , i E I (F)]

so that

The case of one Joint probabilistic constraint is treated in the following theorem:

THEOREM 5. Consider the program

maximize c (% )

(lB)

subject to PF IA% ~ z I ~ 0.

and let assumptions (i), (Ii), (iii) of Theorem 3 be satisfied. Assume in addition

that

(Iv') There is a Kuhn-TUcker point w(F) = [%(F) , u(F)] for (lB) such that

u (F) >0 and the second-order suj'ficient condition is fulfilled.



323

(v') The distribution }'unctions F and G are twice continuously diJ.ferentiable

in a neighborhood ofX(F): = A%(F) and

Then

(a) There is a neighborhood O(w (F» eRn x R ~, a real number to> 0 and a

continuous }'unction w: <0, to) -+ O(w(F» , w(O) = w(F) such that for any

t E: <0, to) we have that w(t) = [%(t) , u(t)] , u(t) > 0, is the Kuhn-Tucker

point of the problem

maximize c (%)

subject to PFj IA: ~ z I ~ a

for which the second-order su.trtcient condition is satisfied.

(b) The GateaU:l: differential dw (F; G -F) is given by

dw(F;G -F) =

d%(O)

dt =
du(O)

dt

= -L -1AT lu (F)[Vx G(X(F» - ~~~? VxF(X(F))] + l(~) VXF (X(F))[G (X(F» - a]l

.llQ2. 1
u(F)[l- l(F)] + l(F) [G(X(F» - a]

where

L = V;xL(w(F);F) = V;xc(%(F» +u(F)ATV1X'F(X(F»A

l(G) = Vx F(X(F»TAL -1A TVXG (X(F»

l (F) = Vx F(X(F»TAL -1A TVX F(X(F»

Proof. The result can again be obtained by application of the Implicit function

theorem, this time to the system of equations

h(:I:;t) = 0

with

h(%; t) = (l-t)F(A%) + tG(A:) - a

Having solved the original problem (lB), we know % (F) and now have to compute

u (F) , L -1 and to evaluate G (A: (F» - a, VxG (A% (F», VxF(A: (F» to obtain the
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Gateaux differential.

For a given z (F) , u (F), F and G, the Gateaux differential depends on the differ

ence between the values of the distribution functions F(Az (F», G(Az (F» and on the

relative differences between their gradients, as measured by ~ ~~~ and

'VxG (Az (F» - ~ ~~~ 'VxF(Az (F». The assumptions of Example 3 make it realistic to

consider numerical evaluation of the Gateaux differential.
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DUALITY IN DlPROPER MATHEMATICAL PROGRAJDllNG
PROBLEMS UNDER UNCERTAINTY

LL Eremln and A.A. Vatolin
Inslltute of Mathematics and Mechanics
Sverdlovsk, USSR

This paper deals with linear programming problems with random or interval data.

The problems under consideration are not assumed to be solvable. To deal with such

problems we use the approach described In [1]. In the case of uncertain (interval)

data, we shall concentrate on the development of various approaches for the "elimina

tion" of uncertainty.

Consider the linear programming problem

max He ,x): b -Ax E K. X E Gl

and its dual

min l(b,u):ATu -c EG', u EK'I

(1)

(2)

Here c, x ERn, b, u E. R m ; the notalion b - Ax E K, x E G means that each com

ponent of the vector b - Ax satisfies one of the relations: :s; 0 • C!: 0, = 0, and that

each component of x is either arbitrary or satisfies one of the inequalities: C!: 0 , :s; O.

Thus, K and G are closed convex cones, and K' , G' are their duals, I.e.. K' =

lu: (u ,u ') C!: 0, Vu' E K I. Note that the arguments put forward below are also valid

if K and G are arbitrary closed convex cones.

If all elements of vectors c, x and matrix A = [ajtJm.n are random variables

defined on the probability space (0 , E , P), we may consider the following stochastic

program:

n
max IE( 1: CtXt ): b - E(Ax) E K, X Eel

t =1

where EO denotes mathematical expectation; E(Ax) is a vector with components

(3)

n
E( I:

t =1
a jt x t ) • j = 1 . . . . • 111 c is a cone consisting of all

x = x (cu) = [x 1(cu) , ...• x n (cu)] such that x (cu) E G for almost all cu E 0. All the
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random variabLes considered are assumed to be square-integrabLe.

It is well-known (see [2]) that in this case problem (3) can be formulated as a

Linear programming problem:

max He, x): b - Ax E K • X E C I (4)

with a Hilbert space Fr' of vectors x = x(c.l) = [x1(c.l) • ...• x n (c.l)]T. Here Ax denotes

a vector with components (aj.'x) ; ( .•. ) denotes an inner product in the Hilbert space

H n . We do not distinguish between random variables which coincide almost every

where. The probLem dual to (4) can be written

(5)

where b.u E. R m .

Problems (4) and (5) are treated using the approach described in [1]. More

specifically. problems D and D' are associated with the dual linear programming prob

lems (4) and (5) according to the same transformation scheme 71", making no assumptions

about solvability (I.e., whether they are solvabLe and have coincident optimal values).

Problems D and D' are connected by duality relations; they play the role of approxi

mating problems for (4) and (5).

To formulate problems D and D' we arbitrarily partition matrix A into subma

trices Ai • j = 0,1 .... , mo. and B t ' i = 0.1 •... , no, as follows:

A= =[Bo.B1 •... ,Bn al

This determines a partitioning of vectors b , u . e , x:

and also of cones (into direct products):

K =Ko x

C=CX'''XCo no

K' = K~ x

C· = C· x ... XC'o no

If necessary, we can assign the value 1{) to some of the submatrices.
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Let /I. lit be the norm In Hilbert space of the vector ~t. Let II· Ilj be arbitrary

norms in spaces of the same dimension as the vectors u j ,j = 0,1, .... mo. and 11.llj
be norms dual to them. By Iluj -Kjllj and Ilxt -ct'llt we shall denote the distances

between u j and Kj and also between ~t and Ct' in the metrics induced by the norms II· Ilj

and II· lit. respectively.

We introduce parameters R j > 0 , j =1 ....• mo' and rt > 0 . i =1, .... no,

and formulate the problems

mo
sup He .x) - L: Rj Ii(b j - Aj~) - Kjllj :

j =1

(D)

no
Inf l(b,u) + L: rt Ii(Blu -e t ) -Ct'I~:

t =1

In what follows it will be assumed that the feasible sets M and M' of the problems

D and D/I are non-empty (this condition Is fulfilled. e.g., for A o = !/J, B o = !/J). Let /

and g be optimal values and ii and ii' be optimal sets of the problems D and D'.

respectively. We can now formulate a statement concerning the duality relating prob

lems D and DR :

THEOREM 1. The following statements hold:

1. The inequalities - 00 </ S g < + 00 hold.

2. Let at least one a/the/allowing assumptions be satisfied:

(a) A o = !/J , B o = !/J;

(b) B o = !/J and :3 x , b O - Aox E: int K o·

Then M ". !/J , M' ". !/J ,/ = g .

3. I/Bo =!/J. then/ = g and ii "'!/J.

4. 1/ A o = !/J or the second assumption/rom (b) holds. then / = g and ii' ~ !/J.

Now consider the following system of linear equations and Inequalities over R n :

~=b,QxSp.x~O

and the linear programming problem

max I(e . x): ~ = b • Qx S p . x ~ 0 I

(6)

(7)
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c = [C 1 •...• Cn ]T) takes the form not of specific values. but of intervals:

C S C S c . A' SA SA. b S b S b • Q' S Q S Q" ,p S P S P

Here c' = [c~ •...• c~]T, c" = [c~' •...• c~']T. etc. are given (and fixed) matrices

and vectors satisfying the conditions

and matrix inequalities are regarded as component-wise inequalities.

Let JJ. = m(n +1) + l(n +1) + n. The vector

is formed by the elements of matrices [A, b] • [Q ,p] and vector c. Denote by

vector T, i.e.,

v=JJ.-n ,T=T1

the components ofT 1 • . . . • TI.> the range of variation of

T1 = It 1: a~l S t 1 S a~~ I, T I.> = Itl.>: c~

x .. · X TI.> cRI.>. To=T1 x XTycR Y •

Now we shall outline the methods which we will use to "remove" uncertainty [3].

Let 0 = 1"'1' .... "'1.>1. 0 0 = IA::1 , A::yl be arbitrary ordered sets consisting of

the quantors 3 and 'I;;f. Let K = lrl' , r 1.>1 and K o = It 1 •...• tyl be arbitrary

permutations of the sets 11 , .... JJ.I and 11, ... , vI. respectively. Then the solution

set of system (6) with interval data is defined as follows:

A.;r; = b , Qx S p , x ~ oj

For problem (7) we shaLL consider two ways of "removing" uncertainty. Set

(c ,x) ~ " • Ax = b • Qx S p • x ~ 0 I

(c.x) =" .Ax =b, Qx Sp ,x ~Oj

We can now define the optimal value and the optimal and feasible sets of problem (7) as

either (a) the value

and the sets M 1(T, 0, K , v 1) and u M 1(T, 0, K, "), respectively. or (b) the value
~ER
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and the sets M2(T, 0, K, v2) and u M 2(T, 0, K. "), respectively.
~€R

The problems with optimal values and optimal and feasible sets thus defined we

denote by L 1(T, 0, K) and L 2(T, 0, K), respectively.

The parameters tic • t
T

with let =:3 , GJ t =3 can be Interpreted as controllable
i i

parameters; the parameters t lcj , tTj with lej =V, GJj =Vcan be Interpreted as uncer-

tain parameters. For example, If we put

m =n = l =1, 00 =13, :3 , v, vI, K o = 11,4,3,21

then

T = [a ,b, q ,p ,c] E: R 5

M ( TO' 00 , K 0) = Ix: 3 a E: T 1 ' 3 p E: T 4 ' V q E: T3 ' Vb E: T 2 '

ax =b , qx ~ p , x ~ 0 I

so that x EO M (T0' 0 0 , K 0) Iff we can find values of controllable parameters

a E: T1 ,p E: T4 such that x satisfies (6) for any q E: T3' b E: T2'

In general, the model described above represents a multistep decision process

under uncertainty. Note that insolvability of problem (7) for some or even for all

T E: T does not necessarily imply that the problems L 1(T , 0, K) or L 2( T , 0, K) are Inso

luble.

If GJt =:3 . i = 1 .... , J..L, then L 1(T, 0, K) represents a generalized linear pro

gramming problem as defined by Dantzlg and Wolfe [4]. On the other hand, if GJt =v:
i =1, ...• J..L, then L 1(T, 0, K) represents an "inexact linear programming" problem

as defined by Soyster [5]. For these problems see, e.g., [6-9].

To formulate Theorem 2 we must introduce some new notation. Put

y = [y l' ...• Yn +1]T. For j E: Nm = 11, .... m I. k E: NL = II ..... II we set

aj,n +1 = -bj'

Fix arbitrary j E. Nm . The indices of the parameters

form the set

N(j) =Ii: (j -l)(n +1) + 1 ~ i :!!:; j(n+1)!
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Put.

Z(j,'1) = Ii: i =k" - (j -l)(n +1) k" EN(j), ~ >l.)'I. '1 =1 •...• nj

Thus, for each j Eo: N = 11: N'(j) ~ ¢I we have a collecUon of set.s

Z(j ,'1), '1 = 1 •... , nj' The element.s of t.he mat.rices A = [~jdm.n+1'

A = [ii"jtlm,n +1 ' Q = [qjdL.n +1 are defined as follows:

iijt = qjt. if m(n +1) + (j -l)(n +1) + i = k s • "s =:3

- "qjt =qjt, if m(n +1) + (j -l)(n +1) +i =ks ' "s = V

THEOREM 2. The equality M(TO' 00 , K o) = M' hold.s. where

, T - - -
M = Ix = [y 1 •...• Yn] : Ay ,s; 0 , Ay ~ 0 , Qy ,s; 0

(8)

L: (iijt -~jt )Yt ,s; 0 , '1 = 1 •...• n j , j EN, Y ~ 0 , Yn +1 = 11
tEZ{j,7)

From Theorem 2 we can also obt.ain, for each x EM (TO' 0 0 , K o) and for each com

binat.ion of uncert.ain (and cont.rollable) paramet.ers at. every st.ep of t.he above

mentioned mult.ist.ep process (numbered from 1 t.o k), a represent.ation, analogous t.o

(8), of t.he set. of (feasible) values of t.he cont.rollable paramet.ers which should be

chosen at. t.he (k + l)-t.h st.ep.

Result.s concerning problems L 1(T, 0, K) and LZ(T, 0, K) can also be obt.ained

from Theorem 2. Set. C = [c1 •... ' cn]T, C = [c1 •...• cn]T, where ct = C;, ct =c;', if

11 + i = r", c.)" = j, and Ct = c;' ,ct = c;. if 11 + i = r". c.)" = '1;;0( It. will be convenient.

t.o use t.he following concordance law for t.he set.s 0 0 , Ko • 0 • K:

(9)

COROLLARY 1. Let (9) be satisfied.. Then problem L 1(T • 0 •K) is equivalent to (i.e .•

has the same optimal value and. optimal and. feasible sets as) the problem
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max l(c,x): x EM'l

We put

lis: s < n • U), = 3 . U)t = V l = Ill' . . . . In' l10. .+1

Z("'/) = !i: i <i: 1. 1/ + i = z),. ,X > l7 l . "'/ = 1 •...• n'

COROLLARY 2. Let (9) be satisfied. Then problem L 2(T, 0, K) is equivalent to the

problem

max!(c.x):(C-C,x)<i:O, L: (Ct-Ct)xt:SO."'/=l, .... n'.x EM'l
t EZ(7)
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EQUILIBRIUlf STATES OF MONOTONIC OPERATORS AND
EQUILIBRIUM: TRAJECTORIES IN STOCHASTIC ECONOMIC MODELS

LV. Evstigneev
Central Mathematical-Economical Institute
Moscow, USSR

In the present note we consider a stochastic model of a developing economy which

generalizes deterministic models proposed by Gale (see, e.g., [1]) and Polterovich [2].

The central result Is an existence theorem for equilibrium trajectories. The proof of

the theorem is based on the monotonic operators method [3].

We start with a description of the model. Let sO,sl' ... , sN be a random process

with values In a measurable space (8, I) (St may be Interpreted as the state of the

environment at time t). Let a sequence of natural numbers no" .. , nN be given,

where nt represents the number of different goods available in the economy at time t.

Denote by L t , t = 0 , ... , N, the set of non-negative measurable functions x (s t) of

S t = (s 0' ... , St) which take values In nCspace R nt and satisfy the condition IIx lll =

Elx(st)1 < "", where Ix I = I (xl, ... , x nt ) 1= Ix l l + ... + Ixntl and E(')

represents mathematical expectation. A function x E: L t Is said to belong to the set Xt

if Ilxll_ = ess sup Ix (s t) I < "". We identify functions which coincide almost surely

(a.s.).

Suppose that sets

and multivalued mappings

are given. The set Ct (P) (consumption set) contains the most preferred consumption

vectors c E: K t given the vector prices of p at time t. Pairs of vectors (x , y) E Qt are

interpreted as technological processes: x is the input at time t - 1 and y is the out

put at time t. The set Zt (P , q) (production set) consists of the most preferred techno

logical proceses (x ,y) E: Qt given the vector of prices p at time t - 1 and the vector

of prices q at time t.
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A sequence l.xt ,Vt ,Ct. Pt I~ Is said lo be an equilibrium trajectory if lhe follow

Ing condillons are salisfled:

(Ei) Pt E L t ' (0 ~ t ~ N);

The equilibrium lrajeclory is lhus a sequence of inpuls .xt, oUlpuls Vt, consump

lion veclors c t and prices Pt. From (Ei)-(E4), lhis sequence possesses lhe following

properlies:

(a) The slale of lhe economy et = (.xt •Vt ' Ct •Pt) depends only on lhe pasl and

presenl slales of lhe environmenl 50' ...• 5 t and does nol depend on lhe fulure

5t+l' 5t+2 •.....

(b) Given lhe syslem of prices Ipt L lhe lechnologlcal processes (.xt -1 • Vt) lhe

consumpllon veclors Ct are lhe mosl highly preferred allernalives (see (E2) and (E3».

(c) Demand and supply are balanced. and lhe cosl of over-supplied goods equals

zero (see (E4».

Lel us now fix a veclor ii 0 E Xo (an inilial veclor). We shall assume lhal lhe fol

lowing requiremenls are fulfilled:

(Ai) For all t , P and l, lhe sels Qt' Kt • Zt (l) and Ct (P) are convex. closed rela

live lo a.s. convergence and bounded In lhe norm 11·11_ (uniformly In t ,P and l).

(A2) The mappings l ~ Zt (l) and P ~ Ct (P) are closed in lhe following sense. If

zt E Zt(lt). c t E Ct(Pt), z E Qt. C E Kt and lilt -llll ~ O. Ilpt -pill ~ O.

E(zt -z)~ -> 0, E(c t -C)1} -> 0 for all inlegrable ~ and 1}, lhen z E Zt(l) and

C ECt(P).

(A3) There exisls a conslanl H such lhal

pc ~ H (a.s.)

and

forallp EL t , C ECt(P), z E "t+l' l ELt xLt +1 and z EZt +1(l), where

z 0 l = qV - p.x • z = (.x , V) , l = (P , q)

(i)

(2)
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(A4) There exist (~t -1' Yt) E Qt (t = 1 •... , N), Yo E Xo, xN E XN and a real

number 0 > 0 such that Y ~ Yt for (x ,Y) E Qt and

Yt ~~t + oe (t =0,1 •...• N), Yo ~Yo [e =(1.1, ... ,1)] (3)

(A5) If Z E Zt(l), z' E Zt(l'), then E(z -z')o (l -l') ~ O. (The multivalued opera

tor l f-+ Zt (l) is monotonic with respect to the bilinear form E(z 0 l).)

(A6) For each pELt, it is possible to find a function

which possesses the following properties:

(i) -r(sN, r) is measurable in (sN • r) and non-decreasing in r;

(ii) -r(sN, r) > 0 for r > 0;

(iii) for all c E Ct(P), p' and c' E Ct(P'). we have

E(c -c')(P -p'):S: -E-r( Ip -p'l )

(The multivalued operator p f-+ -Ct (P) is strictly monotonic with respect to the bil

inear form Ecp.)

(A7) The u-algebra I is countably generated.

THEOREM 1. Under assumptions (A1)-(A7), there exists an equilibrium trajectory

!Xt ,Yt • Ct .Pt Itwith Yo = Yo'

Remarks. It is assumed in (1) that the cost of the most preferred consumption vectors

is bounded. According to inequality (2), the expected profit E[(qy' -px'> 1s t ] for

every technological process (x' , y '> E. Qt +1 is not much greater than the expected pro

fit for (x ,y) E Zt +1(P •q). It is assumed in (A4) that the outputs of all technological

processes (x ,y) E Qt are not less than some minimal output 1It. Moreover, the pro-

gram of minimal outputs Yo. 111' ... , fiN can be realized in such a way that at each

time t, a positive amount 0 of every good is consumed (see (3». A deterministic vari

ant of (A6) is discussed in [2].

We shall now outline the proof of Theorem 1. Let L _(t) denote the space of

measurable functions x (s t) with values in R nl such that IIx (s t )11_ < 00. Consider the

spaces L _ = L _(0) x ... xL _(N), L = LoX' .. X L N and the multivalued operator p f-+

D(P)=F(P)-C(p) c::L_. where p=(po.···.PN)EL, C(P)==Co(Po)

x··· x CN(PN) and
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t = 1.2 ,...•Nl

A pair of random vectors (P ,d.) (p E L, d. E L~) is called an equilibrium state of

the operator p f-+ D(P) if d. E D(P). d. ~ 0 and pd. = 0 (a.s.). The existence of equili

brium trajectories with Yo = ii 0 is equivalent to the existence of equilibrium states for

the operator p f-+ D(P). In order to establish the latter assertion, we note that D(p)

possesses the following properties:

(Dl) The set D(p) is convex and bounded in L ~ uniformly with respect to pEL.

(D2) If d. t E D(pt), Ilpt -pill -+ 0 and Ed.tb -+ Ed.b for all bEL, then

d. E D(p).

(D3) We have E(d. -d.')(P -p') ~ E7"( Ip -p'l) (d. ED(p), d.' E D(P')). where

7" ~ 0 satisfies (i) and (ii) in (A6).

(D4) If (d. o '·'" d.N ) E D(po, ...• PN)' then

N
Ipt I ,s;A' L: E(Ptd.t 1s t ) +B

t -t

where A > 0 and B > 0 are constants.

Conditions (Dl) and (D2) follow from (Al) and (A2); (D3) follows from (A5) and (A6);

(D4) is a consequence of (A3) and (A4).

In order to prove Theorem 1. we use the following result (cf. [4, Theorem 4]).

THEOREM: 2. If an operator p f-+ D (p) (p E L • D(p) C L~) possesses the properties

(Dl)-(D4) and. I is countably generated.. then D(P) has an equilibrium state.

We shall sketch the proof of Theorem 2. Let It C I (k = 1.2 •... ) be an increasing

sequence of finite algebras such that

I = v It
t=l

(see (A7)). Let ut : (S ,It) -+ (S . I) be measurable mappings which generate

It(k =1.2, ... ). We define s1 =(Ut(so).· ..• Ut(St)),

forh =(h o •...• hN)E.L~andDt(P)=EtD(p),L~t)=EtL_.

LEMMA 1. There exist ptE L it) and. d. tEL it) such that

(4)
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In order to prove this statement, we use (D1). (D2). (D4) and the following lemma

(a consequence of Kakutani's fixed point theorem). which Is applied to the finite

dimensional space L ~Ir.) .

LEJIllA 2. Let V(q) be a compact convex subset of R m depending on q E: R m , q ~ O.

Suppose that !(v. q): v E: V(q)j is closed, u lV(q). q E: WI is bounded for each

bounded W c R m and there exist constants b > 0, ai > 0 •...• ~ > 0 such that

Iq I ~ a i v i q i +... + amvmqm + b for (vi •. ··• vm ) E: V(q) and q =(qi.···. qm) ~ O.

Then there exist q ~ 0 and 0 ~ v E: V(q) such that vq =O.

Thus, by virtue of Lemma 1. there exist plr., dlr. E: L~Ir.) (Ie =1.2 .... ) with proper

ties (4). Using (4) and (D4). we deduce that sup iiplr.t < 00. It is proved in [5. Lemma 4]
Ir.

that this Is sufficient for the existence of an equilibrium state with the operator p f--+

D(P). provided that D(P) possesses the properties (D1)-(D3).
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FINITE HORIZON APPROXIMATES OF INFINITE HORIZON STOCHASTIC

PROGRAMS
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Roger J.-B. Wets. IIASA. 2361 Laxenburg. Austria

ABSTRACT

This paper deals with approximation schemes for infinite horizon, discrete time.

stochastic optimization problems. We construct finite horizon approximates that

yield upper and lower estimates and whose optimal solutions converge to long-term

optimal trajectories. The results extend those of [3] from the deterministic case to

the stochastic.

1. INTRODUCTION

We are concerned with open ended stochastic problems of the following type: At

each stage t c { 1,2•...} a decision xt c R: must be chosen under ·uncertainty.

Decisions are required to be adapted to increasing information. Formally. xt : 0 -+ R:

must be Bt-measurable where Bt h Bt +l are sigma-fields included in Band (O.B.)1) is

a given probability space. We shall find it convenient to assume that B is generated

by countably many atoms. Then without further loss we take 0 to be countable and B

to equal the power set. Let!t: 0 -+ Rm be a stochastic vector corresponding to the

random factors that affect cost and constraints in period t. The cost incured in that

period. denoted by

is finite unless some implicit constraint is violated in which case it equals +00. Future

costs are discounted at rate a.c(D.l) and the performance criterion is the expected

accumulated present value of all future costs. Thus we are led to consider the

following infinite horizon problem:
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P : minimize

over all sequences x = (xt);:l such that xt : Q -+ R: has finite expectation and is

Bt-measurable. The initial point Xo c R: is known.

The open-endedness of P is (among other things) a major deterrent for efficient

computation. In order to mitigate this situation the original problem must be

replaced with more tractable finite horizon versions intended to provide good

approximations. Here we shall design two approximation schemes that yields lower

and upper estimates of the optimal value function. In this way we are able to bracket

the optimal value. Moreover, these two approximation schemes allow us to approach

the limit. Specifically, as we extend the planning horizon towards infinity, the

optimal values and the optimal solutions of the finite time problems cluster to those

of P. We shall resolve these problems of stability by making an appeal to the theory

of epi-convergence.

The organization of the paper is now outlined. Section 2 introduces the basic

assumptions needed to obtain existence and convergence results. In Section 3 we

formulate the finite horizon approximates that furnish lower and upper bounds for the

optimal value of problem P. Section 4 provides statements and proofs about the

existence of optimal solutions, and finally in Section 5 convergence of finite horizon

approximates is established.

2. ASSUMPTIONS

The essential objective function F of P is defined by

F(x) = if x t : Q -+ R: is B Cmeasurable with a finite expectation,

+ ClO otherwise.

Three basic assumptions are imposed in order to derive our results:

ASSUMPTION 2.1 (Problem P is proper convex). We assume that

(i) for all tLl and ! c Rm, ft (!, • ) is lower semicontinuous convex;
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- - Q() -(ii) for some sequence x = (x t) t=o we have F (x) < t 00.

We take x= 0 which we can do without loss of generality.

ASSUMPTION 2.2 (The dampening effect of discounting is sufficiently strong). We

assume that

(i) with 11 t (0, a], the discounted expectation (11): = (1-11) E [E ;:1 11 t-l ~ t]

is well defined (it suffices to assume that ~ (a) exists);

(ii) no tra jectories except those with lim sup (EIxt Dlit < too are of interest;
t..-,

(iii) there exists h : R mt2n ... R u {too} lower semicontinuous convex such that for all

t L I, we have h ~ f t ' h (., 0, 0) is continuous at ~(n) for every 11 t (0, a], and to

every non-zero z t R~ ' r' L r with a = llr there corresponds}. ) 0 such that

h (~(11), 0, 0) < h a(11), }.z, }.(l tr') z). (2.1 )

Essentially assumption 2.2 limits growth: (i) makes the procedure of exponential

smoothing of the noise process well defined, (ii) excludes super-linear growth, and

finally, (iii) shows that at very high stock levels it does not pay, even under certainty,

to pile up resources at a rate r' L r. Thus it is not worthwhile to counteract the

effect of discounting when the resource endowment is sufficiently rich. This means

that the own interest rate of the resources eventually becomes inferior to the rate r

of impatience.

In mathematical terms assumption 2.2 (iii) makes questions about compactness

easier to handle, the reason being that unboundedness is related to directions at

infinity. Indeed, the last condition of 2.2 (iii) tells that it is not profitable to embark

on a trajectory the asymptotic direction of which has a certain form.

Denote by rchQ(11), • ) the recession function of h(~(11), • ), cf [6]. Then (2.1)

requires that

rc h (~(11), T]Z, z) ) 0 (2.2)

for all nonzero z t R: and all 11 t (0, a]. (2.2) is a stochastic form of a condition

introduced by Grinold [5].
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ASSUMPTION 2.3 (Sustainability of tail-stationary trajectories)

3. FINITE HORIZON APPROXIMATES

This section introduces two approximation schemes for P. We begin with

Approximates from below motivated as follows:

Define hT : Rm
+2n

-+ R u {+oo} to be the largest lower semicontinuous convex

function majorized by the f t for all t L T, i.e. hT == cl co (inf f t) .
tH

Denote by ET the conditional expectation E( 18T). Suppose for the time being

that for any feasible trajectory x == (xt );: I' the average

of the tail xr xT+I' ... is well defined. Indeed, in Section 4 we state that this

results from the growth conditions 2.2 already imposed on P. Since

00
t-T

(I-a.) E TEa. (xt _r x t) == «I-a.) x T-I+ a.z T' z T ) ,
t==T

the convexity and the lower semicontinuity of hT implies that

00 t-T
where ~ : == (1-a.) ETEa. ~ t .

T t==T

Thus we are led to consider the following finite horizon problem

PT : find a trajectory (xt ):== I with xt : Q -+ R: integrable and 8 t -measurable, which

minimizes



343

Denote by V(xo): =infx F(x) =inf (P) and VT(xO) : =inf (PT) the optimal values of P

and PT' respectively. Then the observations that motivated the formulation of

problem PT' T = 1•... yields in a straightforward manner:

00 t-T
PROPOSITION 3.1. (i) Suppose F(x) <+00 and zT = (I-a) ET E a xt <+00 a.s.

t=T
Then xl' .....• xT-1' zT is feasible for Pr Moreover.

(ii) Suppose xl' ...... xT' xT+1 is a feasible solution for PT+l' Then. with

.
xT = (I-a) xT + a ET xT+1 • the sequence xl' ...... xT_I' xT is a feasible solution of

PT' since

from which it also follows that VT (xO) i VT+1 (xO)'

Thus the process of averaging the tail generates a sequence of optimal values

{VT (xO) • T = 1. ... } which is monotone increasing and bounded from above by V(xO)'

That we actually have convergence is proved in section 4 where we also demonstrate

that optimal solutions of PT' T L 1 cluster to those of P. We now turn to

Approximates from above.

Suppose x =(xt );: 1 verify xt =xT_I for all t LT. Then
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and we are led to consider the following finite time problem:

T-l T'
PT

0 0 0 E '<" t-l f (l' ) 10 E '<" t-lf (l' ): minImIZe .. a. t "t' xt _l ' x t + 1m sup .. a. t "t'XT_l,x T-l
t= 1 T'-+oo t=T

over all x = (xt ) ~:ll such that x t : Q ... R~ is BCmeasurable with finite expectation.

4. EXISTENCE OF OPTIMAL SOLUTIONS

This section shows that problems P, PT and PT all admit optimal solutions when

restricted to appropriate decision spaces. In order to state this some notations are

needed. For each integer T 2. I, denote by L1(T) the space of all x = (Xt)~= 1 such that

n T t-l
xt : Q ... R is integrable and II x II : = E Et=l a. I x tl ( +00

where I • I is the II-norm in Rn. When T = +00, we write simply L1 in place of

L1 (00). These are all Banach spaces when equipped with the norm II • II and elements

which are equal a.e. are regarded as identical. The justification for confining the

decision space of P to L1 is provided by the following lemma proven in [4].

00 t-l
LEMMA 4.1. Assumption 2.1, 2.2 and II x II = E E a. I x t I = +00 imply F(x) = +00.

t=l

We may also prove

THEOREM 4.2 Under assumption 2.1 and 2.2 F : L1 ... R u {± 00 } is a proper convex

lower semicontinuous function and

for any real a, the level set

leva F = { x eLl IF(x) i /3 }

is compact. Hence optimal solutions of P exist.

Entirely parallell results obtain for problems PT and PT, the functions
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and the spaces L I(T). L1(T-1). respectively.

In any case the proof can be outlined as follows. The lower semicontinuity

essentially follows by appealing to Fatou's lemma. (Recall that the functions ft. t l. 1

are uniformly bounded below by the proper convex function h). Suppose without loss

of generality that 0 c K : = levr;lF. then the halfspace

00 t-l
{xiE 1: a. (1 •....•• 1).xtip}

t=l

intersects K in a weakly closed neighbourhood of 0 for any p } O. Let {x" • " = 1.2•...}

be any sequence contained in this relative neighbourhood of O. Since n is countable

we may. by a standard diagonal argument. extract a subsequence x",,, c N 1 such

that {Xt" «,))} N converges for each t and (,). This subsequence converges weakly
"c 1

and by Schur's theorem it also converges in the norm [2]. Now apply the growth

condition to establish that K is norm-bounded. hence compact [3].

5. CONVERGENCE OF FINITE HORIZON APPROXIMATES

Recall that the problems p. PT and PT are defined on different spaces. In order

to establish convergence it is necessary somehow to conceive of all these problems as

being defined on the same space. namely Ll' We begin with the approximates from

below. Motivated by the construction that led us to the problem PT we assign to

+ 00 otherwise

the role of being the essential objective function. Indeed. to minimize FT over L I
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corresponds to problem PT in the following way: If FT(x) < +00. then (x l' .....• xT-1'

zT) is a feasible for PT and provides the same value. Conversely. if (x)~=l is feasible

for PT and xt : = xT for all t ) T. then FT(x) < +00. in fact FT(x) coincides with the

value of the criterion of Pr Thus VT (xO) = inf FT

We now turn to approximates from above. Here the function

iF(X) if xt = xT_l

h00 otherwise

for all t l T •

acts as the essential objective of problem pT. There is of course a one-one

correspondence between feasible solutions of PT and long-term trajectories x eLl

such that FT(x) < + 00. Therefore. the optimal value function VT (x
O

) : = inf (P T)

satisfies VT (x
O

) =inf FT
TWe now address the major issue whether the sequences FT' F • T = 1. .....

converge to F in an apporiate sense.

TDEFINITION 5.1. A sequence G : Ll -+ R u { ± 00 1. T = 1.2, ..... epi-converges

to G: Ll -+ R u { ± 00 1, and we write G = epi-lim GT !f.
T-+oo

(a) for every sequence xT-+ x we have lim inf GT (xT ) l G(x) : and
T-+oo

(b) for every x there exists a sequence xT -+ x such that lim sup GT(xT ) i G(x).
T-+oo

Epi-convergence does not in general imply pointwise convergence nor does it follow

from the latter. The two types of convergence coincide, however. if the sequence

(GT)~= 1 is monotone increasing. This fact is utilized in the first statement of the

following

PROPOSITION 5.2. (i) Under assumptions 2.1,2.2. FT(x) t F(x) for all x which

implies that F = epi-lim FTT-+oo

(ii) Under assumptions 2.1 - 2.3, F epi-lim F T
T-+oo

PROOF (i). Since F1 .s. F2 .s. ..... .s. F, it suffices for the monotone convergence to

prove that
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T-I
lim inf ~-a. Eh T(~T' (I-a.)><r_I + a.~. zT nO

T-M>o

00 t-T
when Xl: (L 1)+ and zT = (I-a.) ETt~T a. x t · This would follow from

T-1 - .
lim inf a. h(E(! T' zT-1 • ~ »~ 0 since zT-1 = (l-a.)xT-1 + a.~ -1 zT' But

T-M>o
T-I ....

observe that a. E( to T • Z T_I • zT ) -+ (0.0.0). Hence

1· . f T-I h( -T+I( T-I ( ....
1m In a. a. a. E to T' zT-1 • ~ ))) =
T-M>o

This completes the proof of (i).

(rch) (0.0.0) = o.

(ii) First observe that F T(x) ~ F(x) for any x l: L r Hence x T -+ x implies by the

lower semicontinuity of F that

lim inf F T(x T) > lim inf F(x T) ~ F(x)
T-M>o T-M>o

This takes care of (a) in definition 5.1. To prove (b) define for given x l: L1 such that

F(x) <+ 00 the sequence (xT)~= 1 in L 1 by

T T T
xt = x t fort=I •..••. T-I.and x t = x T_

I
fort~T. Then x -+x and

lim sup F T(x T) =
T-M>o

l' t-I
i F(x) + lim sup lim sup E E a. ft(~. xT_I • xT_I )

T-M>o 1'-M>o t=T

i F(x) by assumption 2.3. This completes the proof. 0
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The epi-convergence is essentially a one-sided version of uniform convergence on

compacta, one having the same implications regarding the convergence of minima,

see [7]. This is recorded in the following theorem that states the major result of this

paper.

THEOREM 5.3. (i) Under assumptions 2.1, 2.2

Moreover, problems P and PT admit optimal solutions, and qiven any sequence

(X~)~= I' T = 1, 2, ..... of optimal solutions of P l' we may find a subsequence N' such

that

10 T
1m x t =

TcN'
x t a. s. for all t L 1, (5.1)

where x = (Xt)~l solves the lonq term problem P. Finally, if x = (Xt);:l solves P,

then there exists a sequence of real numbers cT J. a and cT-optimal solutions
TT

(xt )t=l of P T such that

x t = lim x~ a.s. for all t L 1 •
T->oo

(ii) Under assumption 2.1 - 2.3

Moreover, problems P and PT admit optimal solutions, and qiven any sequence
T T-l

(xt )t= l' T = 1, 2, .....

of optimal solutions of PT, we may extract a subsequence N' such that

lim x ~ = x t a.s. for all t L 1
TcN'

00

where x = (xt)t=l solves the lonq term problem

then there exists a sequence of real numbers
T T-1 T

(xt )t= 1 of P such that

00

P. Finally, if x = (xt)t= 1 solves p.

cT J. a and cT-optimal solutions
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xt = lim xI a.s. for all tL 1.
T--.

Proof (i). From F TiFT+1 i ..... iF it follows that VT(x O) = inf F T is monotone

increasing and bounded above by V(x O) = inf F. By the corresponding analog of

Theorem 4.2 we may find an optimal (x ~ )I= 1 for PT'

Th T (T T T T T ) . . . f F S·en x : = xl' x 2' ...... x t • x T' xT .... IS a mmlmum 0 T' mce

we may by theorem 4.2 extract a convergent subsequence with limit x. From this

subsequence. we may extract a further subsequence xT. T t N' converging almost

surely. This takes care of (S.l). Moreover. the inequalities

V(x o) L lim VT(x 0) L lim inf F T (x T ) L F(x) L V(x 0)
T--. TtN'

implies that VT(xO) t V(xO) and x is optimal. Since epi-convergence implies

lim sup (arg min FT) h arg min F
T--.

and whenever inf FT ~ inf F

arg min F = n lim inf (t - arg min FT )
dO T--.

see [ll. the last statement of (i) now follows from the fact that a mean convergent

sequence contains a subsequence which converges almost surely.

The proof of (ii) is entirely similar. We are allowed to identify P and PT with

minimizing F and FT. respectively. Since F = epi-lim F T it follows. see [1 l. that
T--.

lim sup (inf FT = VT(X O»i inf F = V(x 0)
T--.

which together with Vl(xo) L V2(Xo)L ..... L V(xO) gives us VT(xO) J. V(xO).

The remainder of the proof is identical and is therefore omitted. 0
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STOCHASTIC OPTIlUZATION TECHNIQUES FOR
FINDING OPTIMAL SUBIIEASURES

A. Gaivoronskl
Int.ernational Instit.ut.e for Applied Syst.ems Analysis and
V. Glushkov Instit.ut.e of Cybernet.ics. Kiev, USSR.

1. INTRODUCTION

Opt.imallt.y condit.ions based on dualit.y relat.ions were st.udied In [1,2] for t.he fol

lowing opt.lmlzat.ion problem.

Find t.he posit.ive Borel measure H such t.hat.

wlt.h respect. t.o const.raint.s

it°(H) = max (1)

itt (H) :S 0 i = l:m (2)

for all Borel A cYcRn

W(A) ~ H (A) ~ 1fU (A )

H(Y) = 1

(3)

(4)

where Y - some subset. of Euclidean space R n • itt (H) - funct.ion which depends on t.he

measure H, usually some kind of direct.lonal dlfferentiabilit.y and convexit.y is assumed.

1fU and H L are some positive Borel measures. St.ochast.ic optimizat.lon met.hods for solv

ing (1)-(4) in case when functions itt(H) are linear wit.h respect. t.o H were developed

in [1]. In t.his paper such met.hods are developed for nonlinear functions +t (H) and for

arbit.rary flnit.e measures. Int.erest. for such a problem Is originat.ed from st.at.lstics

where it. appears in finit.e population sampling [3,4].

Anot.her applicat.lon of t.he problem (1)-(4) are approximat.ion schemes for st.o

chast.lc opt.lmizat.lon [5,6]. In section 2 t.he charact.erizat.ion of solutions for qult.e
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general classes of measures is obtained. The conseptual algorithm for solving non

linear problems is proposed in the Section 3. Missing proofs and results of some

numerical experiments can be found in [2].

2. CHARACTERIZATION OF THE OPTIlIAL SOLUTIONS

We shall consider subset Y of Euclidean space R n and some u-field 2 on it. We

shall assume that all measures specified below are defined on this u-field.

In this section, the representation of measures H, which are the solution of the

following problem, will be developed:

subject to constraint

max +(H)

H(Y) = b

(5)

(6)

(7)

The constraint (6) means that HI (E) :S H(E) :S j(U (E) for any E c 2. Define

H 4 = j(U -Ft. In what follows the spaces L 1(Y,2,H4 ) and L_(y,2,H4) play an impor

tant role, where L 1(Y,2,H4 ) is the space of all H4-measurable functions g(y) defined

on Y and such that f Ig(y) Id.HIJ < 00, L_(y,2,H4 ) is the space of all H4-measurable
y

and HIJ-essentially bounded functions g(y), defined on Y. In what follows we shall

denote by II· i i_ the norm in the space L_(Y,2,H4), 1.e.

II g(y) II = H 4 -ess sup Ig(y) I
yEl'

Let us denote by G the set of all measures, satisfying (6):

G = IH:

and by Gb the set of all measures, satisfying in addition (7):

Gb = IH: HE-G, H(Y) = b I

Suppose that f (y) is some function defined on Y, c-some number and define the follow

ing sets
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Z-(c,n = ly: yEY,J(y) < cj

ZO(c,J) = ly: yEY,J(y) = C\

In notat.ions below we shall subst.itute in this deflnlt.ion instead of J various part.icular

funct.ions. Take

c' = Inflc: Ht.(Z+(c ,g» ,s; b -HL(Y)\

and define, as usual, by H-,H+ and i H I poslt.ive, negat.ive and tolal varlat.ion of the

measure H.

We shall first consider the problem In which funct.ion +(H) Is linear:

max Jg(Y)dH
HEG.

(8)

and describe the set of all solut.ions of (10). The following result Is generallzat.ion of

Lemma 1 from [1].

THEORElI1. Suppose that the following condlt.ions are sat.isfled:

1. HL(Y),s; b, I nL I (Y) < co, JIU(Y) Ol!: b

2. For any E E 'Z,Ht.(E) > 0 exists E 1 E'Z, E 1 cE. such that either E 1 is Ht.-atom or

o < Ht.(E1) < co

3. g(y)EL 1(Y,::,Ht.),Ji g (y)ldlnLl <co
y

4. If c' = 0 then Ht.(y\ Z -(O,g » Ol!: b -nL (Y)

Then the solut.ion of problem (8) exists and any such solut.ion has the following

represenlat.ion:

(I) H' (A) = JIU (A) for any A E'Z, A CZ+(c' ,g)

(Ii) H' (A) = nL (A) for any A E!, A CZ-(c' ,g)

(iii) JIU (A) Ol!: H' (A) Ol!: H L(A) for any

H'(ZO(c',g» = b -nL(Y)-Ht.(Z+(c',g»

A EE, A CZO(c' ,g) and

Conversely, any measure defined by (1)-(IIi) Is the solut.ion of the problem (8).

Note that If measure Ht. has bounded varlat.ion condlt.ions 2 and 4 are satisfied

automatically. For such measures the structure of solut.ions can be studied using
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general duality theory [7].

Let us now consider in more detail the set Gb . If the measure W has finite varia

tion we have the following representation for arbitrary H E Gb :

H = W + (H-W)

where measure H - H L is finite, positive and continuous with respect to measure H fo . If

H fo is u-finite we can use Radon-Nycodym theorem [6] and for arbitrary H E Gb obtain

the following representation:

H(E) = W(E) + f hH(y)d.Hfo

E
VE E::: (9)

where h H EL 1(Y,:=:,Hfo ) and this representation is unique. For arbitrary E E::: we

have:

O:!i f hH(y )d.Hfo :!i Hfo(E)
E

and therefore 0 :!i hH(y) :!i 1 Hfo-everywhere. Consider now the set Kb eLl(Y, 'E., H fo ):

Kb = lh: O:!ih (y ):!il. f h (y )d.Hfo=b _HL(Y) I
y

Each function from this set defines measure Hh from Gb :

Hh(E) = W(E) + fh(y)d.Hfo. EE'E.
E

(10)

(11)

Therefore (9), (11) defines isomorphism between sets Gb and Kb such that the problem

(5)-(7) is equivalent to the following one:

subject to constraints

max ~(h)

o :!ih(y):!il

f h(y)d.Hfo = b -HL(y)
y

(12)

(13)

(14)
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where the function ;(h) = 'ff(Hh ). Optimal values of problems (12)-(14) and (5)-(7) are

the same and each solution of (12)-(14) defines solution of (5)-(7) through (11) and vice

versa. This equivalence together with cerlaln convexity assumptions lead to solution

representation for problems (5)-(7) similar to theorem 1:

THEOREM 2. Suppose that the following assumptions are saUsfled:

1. Measures HI and FfU have bounded variation,

~(Y) :s: b, FfU(Y) ~ b

2. 'ff(H) Is concave and finite for HEGb,e = Gb +G e

where G e = IHe: IHe I (Y):s: e, He Is H/),-contlnuous I for some e > O. Then

'ff(H2 ) -'ff(H1) :s: Jg (y ,H1)d (H2 -H1)
y

(15)

for all H 2 E Gb

2) The solution H' of problem (5)-(7) exists.

3) For any EE'Z and any optimal solution H' of the problem (7)-(9) we have the fol

lowing representation:

where

H' (E) =
[If" (E) for

l
~(E) for

~(E)SH(E)SHu(E)for

E cZ+(c',g(y,H'»

E c Z -(c ' ,g (y ,H'»

E c ZO(c' ,g (y ,H'»

(16)

and

g(y,H') EL~(y,'E.,HIJ,), 'ff(H)-'ff(H') sf g(y,H')d(H-H')
y

for all H E Gil' Conversely, If for some H1EGh exists g (y ,H1) E L~(Y, 'Z,H/),) such

that (15) is fulfilled and H 1 can be represented according to (16) then H1 Is the



356

optimal soluUon of the problem (5)-(7).

Proof. The previous argument shows that under assumpUons of the theorem problem

(5)-(7) is equivalent to the problem (12)-(14) and there is isomorphism between set GtJ,e

as defined in condiUon 2, and the following set KtJ,e ELl (Y, 'E..HI:.):

K e = Ih: hEL1(Y,'E..HI:.).j Ih(y)laHI:. ~ l:l
Y

Function ~(h) from (12) is concave on the set KtJ,e' which is l:-vicinity of !4J in

L 1(Y,'E.,HI:.). Therefore for each L E KtJ exists subdifferenUal of concave function

~(h) [9, 10], which in this case is linear conUnuous funcUonal gEL ~ (Y. 'E.,HI:.) such

that

Taking into account representation of L ~ (Y. 'E.,HI:.) [8] we get:

~(hl) - ~(h) :SO J g (y ,h)(h 1(y )-h (y »aHI:.
y

where

which together with (9) implies

+(H1) - +(H) :SO J g (y ,H)a (Hi -H)
y

(17)

for all H,H1 E. GtJ where g(y,H) = g(y,hH ). Thus, (15) is proved. Note that we may

consider function g (y ,Hi) from (15) (possibly non-unique) as subdifferenUal of the

funcUon +(H) at point Hi.

Now observe that the set KtJ is weakly sequenUally compact in L 1(Y, 'E.,HI:.) because

HI:.(Y) < 00 and



357

uniformly for h E: KIl (see [8, p.294]). Let us prove that it is also weakly closed. Con

sider the sequence h S (y), h S EKIl and

fg(Y)hS(Y)dH IJo -+ f g(y)h(y)dH IJo

Y Y

for some h E: L 1(Y,'Z,Hllt.) and aLL g E: L_(Y,'Z,HIJo ). In particular, we have

f hS(y)dHIJo -+ f h(y)dHllt.
E E

for aLL E E: 'Z because the indicator function of the set E E: 'Z clearly belongs to

L _(Y, 'Z,HIJo ). This gives 0 ~ h (y) ~ 1 HIJo-everywhere. Taking g (y) == 1 we have also

f hS(y)dHIJo -+ f h(y)dH IJo

Y Y

which gives'

rh(y)dHIJo = b -Ht(y)
.y

Thus, h E: KIl and KIl is weakly closed.

It foLLows from (17) that for any sequence h S E: KIl , h S -+ h weakly, h E: KIl we

have

Lim ~(hs) ~ ~(h)
S ..-

This together with sequential compactness and closeness of KIl implies existence of h'

such that

~(h ') = sup' ~(h)
hE~

Thus, solution of the problem (5)-(7) exists.

The general results of convex analysis [9] now imply that under assumption 2 of

the theorem for any solution H' of the problem (5)-(7) exists subdifferential g(y,H')

of the function >1t(H) at point H' such that

J g (y ,H')d (H-H') ~ 0, >1t(H) ->1t(H') ~ Jg (y ,H')d (H -H')
y

for aLL H E: Gil or. in other words H' is one of the solutions of the following problem:

max f g (y ,H' )dH
HEG6 Y

(18)
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This problem is exactly of the type (6) and Its solutions are characterized by the

Theorem 1. Conversely, If for some H' E: Gb exists subdlfferentlal g(y,H') such that

H' is the solution of the problem (16) then H' is the optimal solution of the original

problem. Proof Is now completed by using theorem 1. Similar results were obtained

for a special kind of function 'Ir(H) , atomless probability measure !fU' and H'- == 0 In [4].

Theorem 2 shows that solutions of the problem (5)-(7) can be viewed as Indicator

functions of some sets. Therefore many problems Involving selection of optimal set

[13] can be reformulated as problems of finding optimal measures.

3. STOCHASTIC OPTIIlIZATION METHOD

Using the results of the previous section we can construct numerical methods for

solving problem (5)-(7). From now on we shall assume that function 'Ir(H) is concave and

finite on some vicinity of the set G and possess certain differentiability properties:

'Ir(H1+a(H2-H1»= 'Ir(H1)+a!g (y ,H1)a (H2-H1) +0 (a)
y

(19)

where 0 (a)1 a -+ 0 as a -+ 0 for all H 1,H2 E: G. This means that subdlfferentlal

g (y ,H1) from (15) Is unique for all Interior points of G and we can assume that g(y .H')

from (16) satisfies also (19).

Consider now the mapping f(c,f) from R xL ~(Y, 'E.,H~) to G: If H = f(c ,f) then

for any E E: 'E..

{
H U (E) for E c Z+(c ,f)

H(E) = HL(E) for E c Y\Z+(c,f) (20)

First of all we shall give an Informal description of the algorithm. Suppose that

some H S E: G is the current approximation to the solution of the problem (5)-(7).

According to (19) local behavior of 'Ir(H) around H S Is approximated by linear form:

and if H~ Is the solution of the problem

(21)

then direction H~ -Hs will be the ascent direction at point H S
• Therefore we can take

as the next approximation to the optimal solution

(22)

for some a > O. Consider now the problem of finding H~ or suitable approximation to

it.
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Suppose that we know the function g (y ,HS
) exactly, Then, according to theorem

1, all the possible H~ are fully described by pair (c' ,g (y ,HS », where c' is the solution

of the problem

inf c
c

Observe now that function

is nonincreasing and therefore solving (22)-(23) is equivalent to solving

c

max WS (c), WS (c) = rW;(t)cU
C ·T

(23)

(24)

(25)

for some T and W:(c) can be considered as subgradient of the function WS (c). There

fore we can use subgradient method for finding c' :

(26)

However, computation of W;(c t ) according to (25) involves multidimensional integra

tion over complex regions and this may be too complicated from the computational

point of view. In this situation stochastic quasigradient methods [12] can be used. In

such methods the statistical estimate tt of W: is implemented in (26) instead of W:.
Once c' is determined the measure r(c' ,g(y,HS » defined in (20), may be a rea

sonable approximation to the solution H~ of the problem (21) and can be used in algo

rithm (22). However, precise estimation of c' from (26) requires infinite number of

iterations and to make algorithm implementable, it is necessary to avoid this. It

appears that under certain assumptions about stepsizes in (22) and (26), we may take in

(26) Ie = 5 and perform only one iteration in (26) per iteration in (22) using as approx

imation to H~ the measure iis = f(c S ,g (11 ,Hs ». Thus, along with sequence HS we obtain

also the sequence of numbers c s. Note now that although iis is quite simple, measure

H S would be excessively complex even for small 5. However, HS is only needed for

getting gradient g (y ,Hs ) and in particular cases some approximation f (5,y) to

g(y,HS
) can be obtained using only iis in the sort of updating formula similar to (22).

Once sequence f (s ,y) with property If (5 ,y) - g (y ,HS ) I -. 0 is obtained

together with sequence c S
: VS (c S

) - max ys (c) -+ 0, the optimal solution of problem
C

(5)-(7) is defined by Theorem 2 through accumulation points of these sequences. The
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st.ruct.ure of optimal solut.lon Is close t.o (ZO).

Now we shall define t.he algorit.hm for solving (5)-(7) formally.

1. At. t.he beginning select. Init.lal approxlmat.lon to solution HO, funct.lon f (O,y) and

number cO.

Z. Suppose t.hat. at. t.he st.ep number s we get. measure H S
• function f (s. y) and

number c S
• Then on t.he next. st.ep we do t.he following:

Za. Pair (c s ./ (s ,y» defines measure i{s according t.o (20):

New approximation t.o solution Is obtained In t.he following way:

(Z7)

2b. Now number c S H is obtained:

(28)

where

vs (c) = f ~(t)dt
rc

I.e., t.he function ys (c) Is defined similarly t.o WS (c) wlt.h t.he difference t.hat.

f(s.y) is used inst.ead of g(y,HS
).

Zc. New function f (s +l.y) is obt.ained In such a way as t.o approximat.e

g (y ,Hs H). The precise way of achieving t.hls can be specified only after

considering particular ways of dependence g (y.H) on H. One qult.e general

case is considered in t.he next. section. Here we shall only assume t.hat.

(Z9)

as s -+ 00. The met.hod of achieving t.hls In particular slt.uat.lon will be

described in t.he next. section.

Let. us now Investlgat.e convergence of algorlt.hm (Z7)-(Z8). In all st.at.ement.s con

cerning convergence of measures from t.he set. G we shall use t.he weak-L 1 conver

gence, used already in t.he proof of Theorem Z:

~ -+H iff J g(y)dHIr. -+ J g(y)dH
y y
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for all g e: L ~(Y.'E..HIJ.). and topology. induced by this convergence will be used without

further reference.

We shall assume that random variables ~\ .... t S
•••• are defined on some proba

bility space, therefore C
S .Hs .lis from (27)-(28) depend on event", of this space. For

simplicity of notations this dependence will be omitted in formulas. Convergence,

boundedness. etc. will be considered almost everywhere with respect to this probabil

ity space. It should be stressed that we are primarily interested in convergence pro

perties of the sequences C S and f (s.'II). The following theorem gives results in this

direction.

THEOREM: 3. Suppose that the following assumptions are satisfied:

1. Measures H L and lfU have bounded variation. W(Y) S b. lfU (Y) O!: b

2. 't(H) is finite concave function for H e: G + G £ where

for some l: > O. and satisfies (19) for H1.Hz e: G.

3. II g ('II.~) - g ('II.H) II~ -+ 0 if ~ -. H;

Ilg('II.HS) -g('II.HS+1)II~S6s -.0 as s -+00.

4. f (s.'II) e: L ~(Y,'E.,HIJ.). II g ('II.Hs )-f (s .'11) II~ S lis -.0 as s -+ 00

sup II f (s .'11 ) II~ =j < 00
S

~ ~

5. Ps -+ O. ~ as = 00. ~ P: < 00, as I Ps -. O. 6s IPs -+ 0
s =0 s =0

E«tS _~(cS»Z/cO•...• c s ) S M1

6. One of the following conditions is satisfied:

a s +1 S as

Ps +1 Ps

(ii) as > 0 and ..1..... [ as -1 -~] -+ 0
as Ps -1 Ps

(ili) t I ~ _ as +1 I < 00

s=o Ps Ps +1

Then

1) 't(HS ) -+ max 't(H), HS(Y) -. b and all accumulation points of the sequence W
REG

belong to the set cI> =IH: He:G, 't(H) =max 't(H)j
REG
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2) For any convergent subsequence c s" _ c' exists measure H' € 4' such that

H'(A) =
for A c Z+(c' ,g (y ,H'»

for A c Z -(c ' ,g (y ,H'»
for A CZo(c' ,g (y ,H'»

and II f (5, ,y) - g (y ,H') II~ - 0 where 5, is some subsequence of the sequence 51:'

Condition 4 of the theorem means that it Is possible to use approximations to gra

dient g (y ,H) and It Is necessary that precision of these approximations increase as

5 -+ 00. Condition 6 is necessary to assure HS (Y) -+ b although ;r (Y) from (27) may

not be equal to b. In case If lis (Y) = b, I.e. H 6(Zo(c s ,f (5 ,y») = 0 starting from some

5, condition 6 Is not necessary.

Theorem 3 means that if H 6(Zo(c,f(5,y») = 0 starting from some 5 then the meas

ure liS =r(c S ,f (5 ,y» defined in (20) is good approximation for the optimal solution if

5 Is large. If this is not the case then f (5,y) can still be used for constructing optimal

solution, but more careful choice of c Is needed.
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STRONG CONSISTENCY THEOREMS RELATED TO STOCHASTIC QUASI-NEWTON ~ETHODS
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1. INTRODUCTION

An important task in the theory of recursive identification is the

design of stochastic quasi-Newton methods. In the simplest setting the

problem is to solve the nonlinear algebraic equation f(e)=O under the

assumrtion that we can observe f(e) + W
t

where W
t

is a continuous time

white noise. We want to find a stochastic approximation process of the form

t > 1.

where Ht is an estimation of the inverse Jacobian f~l(et) converging to

H* = (G*)-l = f~l(e*) in some probabilistic sense. Having in mind real-time

control applications it is not allowed to make extra measurement in order to

estimate H
t

• the estimation process must be based on the observation process

f(8t ) + w
t

' The first results which conform to this aspect are due to Lai

and Robbins (1981). Their paper considers the scalar case only. A stochastic

quasi-Newton method for the vector-case is ~iven in Gerencser (1984a). Both

paper assume some knowledge of the position of the derivative matrix G*, so

that the resulting adaptive stochastic approximation process is apriori

stable. The behaviour of the proposed processes is unknown if the initial

guess H G-l is such that the stochastic approximation process

is unstable.

In this paper we solve a less ambitious problem; we consider the case
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when f is linear and we show that a stochastic approximation process (1.1)

is generally rich enough to estimate G*. The observation process is assumed

to have the form

dYt (G*8 + b*)dt + dw
t t

with :V
l

= O.

Let us introduce the notations ~~ = (~t,l), K* = (G*,b*), then the ob

servation process can be written in the form

The least square estimation of K* is given by

t T tTl
(!dy ~ )(!~ ~ ds)- •
1 s sIs s

This is obtained by splitting the matrix estimation problem into n inde

pendent vector-estimation problem.

To prove strong consistency of K
t

we shall apply a linear transforma

tion so that the original estimation problem falls apart into three separate

estimation problems, in each of which the location of the eigenvalues of the

matrix HG* is conveniently specified. In one case we can apply Ljung's

theorem (Ljung 1911) to prove strong consistency. In two cases we shall use

the condition for strong consistency given by Lai and Wei (1982) for dis

crete time processes. This condition has been extended by Novikov to more

general processes. (Novikov (1984)). A continuous time version which we

shall use later will be stated in the third section.

2. SOME USEFUL TRANSFORMATIONS

A simple linear transformation in the parameter space (G,b) will move

8'" into O. Therefore we shall assume in the future that 8'" =O.

We apply a standard transformation to 8
t

: first we normalize it by

multiTJ1:vinf'; it by t
l/2

and then introduce a new time-scale t = e S
• Thus we

get

x
s

8 / 2
8e - s.

e
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The urocess x satisfies the stochastic differential equations

dx
s

As ds
s

Hdw
s

(2.1)

'1s

where Os is a new Wiener process defined by

s

~ t-l / 2 dW
1 t

and the transition matrix A is defined by

A -Hr/' + 1/2.

The behaviour of the regressor process is determined by the matrix A

in (2.1). l,e will appl;r a linear transformation to this equation so as to

obtain a sir~pler problem. Let T be an nxn real nonsingular matrix and define

a new vector x = Tx. Then xwill satisfy

x
o

Tx •
o

The observation process will be transformed into

process in the

x = e s / 2e s/2
s e

subproblems.

As A = -H(}'" + I/2 we observe that if TAT-
1

is quasi-diagonal or "block-diago

nal then the unknown matrix THG"'T-
l

will be also blockdiagonal, The regressor

(-T) -observation model (2.2) is 8
t
,l with 8

t
= T8

t
• The relation

remains valid. Thus the problem is split into independent

A convenient form of A ',hich can be obtained by a real-valued simila

rity transformation is its second normal form. In this from TAT-
1

will be

blockiaponal and the characteristic polynomial (which is equal to the mini

mal polynomial) of each block is an elementary divisor of the matrix A. Ele

mentary divisors are now regarded over the field of real numbers, that is we

have powers of first and second order real polynomials (for details see e.g.

Gantmacher (1962). As a first step we shall group these blocks and form three

blocks A_,A+, and A
O

such that the characteristic values of these matrices

are in the lpft half plane, in the right half plane and on the imavinary

axis, respectively. We shall consider these three cases separately.
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The coefficient matrix of the normal equation is

t T
N 1J! dr.
I r r

Let R
s

R
s

e
In the next two section we suw~arize some auxiliary results.

30 CONTINUQUS-TI}{E STOCHASTIC REGRESSION

In this section we state the result of Lai and Wei for continuous-time

observation process in the form that we shall need later. We shall formulate

the problem in the case when the unknown parameter y is a vector in R
m

• As

sume that we have an observation process

or equivalently

t > 0

o t > 0

where 1J!t is an adapted process inE
m

such that E

nite t, and w
t

is tandard Wiener process inm
l

.

< 00 for every fi-

Then the least square estimation Y
t

of y* is obtained from the normal equation

Let A . (R
t

), A (R
t

) denote the minimal and the maximal eiVenvalues of R
t

,
mln max

respectively. Then we have the following

Theorem 3.1. A sufficient condition for the strong consistency of the least

square estimation method is that

lim Amin(R t ) w.p.l. (3.1)
t->-oo

And

lim A .-l(St)(IOgA (R
t

) 0 w.p.l. (3.2)
1,-)-00

mln - max
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Under these conditions

O(A . -l(R ) '10 A (R) )1/2
mln t g max t w.p.l.

Remark. It is easy to see that conditions (3.1), (3,2) are invariant under a

coordinate transformation in the regression model. If the transformation
T

matrix is T then R
t

is replaced by R
t

TRtT. From the variantional proper-

ty of A
max

it is easy to see that

where C depends only on T. The same argument for the inverse matrices gives

A . (R
t

) > CA. (R
t

)
mln - mln

with some other C > O. From these two inequalities follows that if (3.1),

(3.2) are satisfied for R
t

then they also hold for R
t

.

4. A CLASS OF STOCHASTIC PROCESSES

We shall need some results which were developed in connection with the

off-line identification of continuous-time systems. They were stated with a

sketch of proof in Gerencser (1984a). First we define a class of 'stochastic

processes which is very close to the class d introduced by Krylov (Krylov

(1977)). Our aim is to give an idea on some technical details.

Definition. A stochastic process ~t is in class M if for every m > 1 we have

for all t ~ 0

We say that ~t is M-continuous in t if it is in M and for h > 0 t ~ 0

where r(m)~oo for m~.

We formulate two theorems which state that the property of beeing in M

is preserved under certain linear operations.
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Lemma 4.1. Let A be a stable nxn matrix i.e. ReA.(A) < 0 for i
1

consider the linear filter

l,n and

with initial condition X
o

beeing in M, and assume that u
t

is measurable and

is in M. Then x
t

is in M, and it is M-continuous in t.

An immediate consequence of this lemma is the following

Lemma 4.2. Assume that he conditions of the previous le~~a hold and consider

where gt' t ~ 0 is a positive differentiable function such that lim gt!gt o.
t->=

Then xt!gt is in M and it is M-continuous in t.

Our third lemma is the following

Lemma 4.3 •. Let gt be a positive locally integrable function and let

t
fg ds.
o s

Furthermore let Us be a measurable process in M. Then

-1 t
G

t
fg u dso s s

is in M and is M-continuous in t.

We need a strong law of large numbers:

Theorem 4.4. Let t;t t ~ 0 be measurable and M continuous in t. Then for every

E > 0 we have

lim t-Et;
t

t->=
o w.p.L

We shall also need the following large deviation theorem.

Theorem 4.5. Let q , s ~ 0 be a locally integrable symmetric, positive semi
s

definite nxn ~atrix function such that trO
s

> 0 > 0 for all s, and let W
s

be

an n-dimensional standard Wiener process. Then

s
lim( wTp w du)!s2-E =
s->= 0 u u u

w.p.l.
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For the proofs see Gerencser (1984a) except for Theorem 4.5.

In the next section we state our strong consistency theorems.

5. STORNG CONSISTENCY THEOREMS

5.1. A is stable

By this we mean the case when ReA.(A) < 0 i = l,n, or A A
1

It is easy to see that in this case the conditions of Theorem 3.1 are

violated. However we have the following

Theorem 5.1. If the matrix -HG* + I/2 is stable, then the least square esti

mation of G*,b* based on the observation process

dy -= (G*e + b*)dt + dw
t t t t ~ 1

converge to their true values with probability 1.

The idea of the proof is that we consider the recursive form of the least

square estimation method and then this recursion is transformed by changing

the time scale into a recursion, which can be analyzed by Ljung's covergence

theorem (Ljung 1977)). The aasociated oridnary differential equation is

L (H)
xx

where L (H) is the solution of the Lyapunov-equationxx

(5.1 )

(5.2)

As the associated ordinarcr di fferential equation (4.1), (4.2) is globally

asyrntotically stable, the proposition follows from Ljung's theorem.

5.2. A is unstable

By this we mean that ReA,(A) > 0 for i = l,n. We shall apply the results
1

of section 3 to prove strong consistency. Before formulating our theorem we

I

I,

1.

1

.''/

'I
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remark that we can transform A by a real transformation into a blockiagonal

matrix, all the blocks of which are simple matrices (i.e. the minimal poly

nomial of any block coincides with the characteristic polynomial). Therefore

we can restrict ourselves to the consideration of simple matrices.

Theorem 5.2. Let Abe a simple matrix the eigenvalues of which have positive

real parts. Then the matrix R
s

satisfies the conditions obtained in Theorem

3.1. Moreover if G
t

denotes the least square estimate of G* up to time t in

the original time scale then with some c > 0 we have

w.p.l.

This theorem was first stated in Gerencser (1984b).

We say that a matrix Ahas simple structure if it is similar to a dia

gonal matrix. If A is real and simple then A is similar over the real field

to a blockdiagonal matrix all the blocks of which are real numbers or 2x2

real matrices of the form

a b

(-b a)

If all the eigenvalues of A are purely imaginary then all diagonal elements

are e~ual to O. (See Gantmacher (1966)). We have

Theorem 5.3. ASSUMe that A has simple structure. The the matrix R satisfies
s

the conditions obtained in Theorem 3.1. Moreover have for all E > 0

w.p.l.

6. DISCUSSION

The extension of our results to adaptive procedure is of interest. This

has been done for the case when A is restricted to be stabJ.e. However if the

initiaJ. value for A is unstable the complete analysis is yet to be done.
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We have to determIne the best capacities for an electrical

transmission network in order to minimize the sum of the investment

cost and the expectation of the optimal generation cost for a given power

demand and a set or generation rac1l1t1es.

The physical laws governing the system are the two Kirchoff

laws in the d.c. appcroximation ,

The system is perturbed by the stochastic nature of the demand

and the possible breakdowns or the generat Ion units.

The main difficulty is the large size of the problem,

We consider here a simplified case.ln the first part we present

a stochastic subgradient algorithm for the french aggregated network

mOdelled by the first KIrchoff law only .We compare the results with the

previous method used at EDF.ln the following part we derive some

heurist ic algorithms for the integer value case .The last part of the·

paper is devoted to the two Kirchoff laws case.

l.1NTRODUCTION
Let be given a set of generation facilities and the power demand

in an electrical network With a given geometry.Our purpose is to

determine the transmission line capacities Which minimize the sum of

the investment cost and the generation cost.

Some characteristic points of the problem are the following:

1) The system is subjected to some uncertainties namely the

breakdowns of the generation units and of the transmission lines. the

stochastic nature of the demand,

1DThe optimization problem is dynamic since one must

determine every year which new transmission capacit1es should be added

to the existing ones.
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iii)We have two kinds of control variables:

-the capacities which do not depend of the uncertainties,

-the generation outputs which are functions of the

perturbat ions.

iv)The system is governed by the two Kirchoff laws in d.c.

approximation.

v)The line capacities must be multiple of a given value.

Here we are Interested by the methodology and we w1l1 consider

a simplified approach of the problem .The main simplifications made are:

i) In the first two parts we only take into account the first

Kirchoff law.

11) The demand 1s determinist1c.The only stochastic variables

are the possible breakdowns of the generation capacities.We neglect the

breakdowns of the lines and the reliability problem of the transmission.

iii") In the first part the capacities may take continuous values.

Iv) We consider the one time period case.

The previous method used by EDF (Electricite de France) was

based on linear programming algorithms for a simplified formulation of a

very large deterministic problem based on a bundle (e.g. 500) of

perturbation realizations .This method was too much computer time

consuming and could not be extended to the general model.

The paper is organized as follows.

In the first part we present the simplified mathematical model

using only the first Kirchoff law and we descibe the optimization

problem.

In the second one we present the stochastic gradient method and

give some numerical results in the continuous value case for comparison

with the linear programmIng type method used previously at EDF.

In the third part we study the integer value case. We give three

heuristic algorithms based on the stochastic gradient and the

corresponding numerical results.

In the last part the best method is applied to the more reallstic

case of the two Kirchoff laws .We give some numerical results for a

simplified network.
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2 . MATHEMATICAL MODEL AND OPTIMIZATION
PROBLEM

2.1. The directed groph ossocioted with the generotion

tronsmission system

The nodes flre i €IN ,they represent the regi ons .A fi ct it i ous node

representi ng the source of generflti on end the si nk of consumption is

denoted o.

The flrcs flre belonging to TuDuG where:

T is the set of the trflnsmission lines,

Dis the set of ercs represent i ng e demend ,

G is the set of ercs representing the generfltion.

The node-flrc incidence mfltrix Is A(N,TGD) defined by :

Aif''' I if i is the terminfll node of the flrc j,

Aij=-I if i is the initiel node of the erc j,

Aij =0 otherwi se.

2.2. System situation
The stochflsti c vflri flbles , i.e. the flvailflbil ity of the generati on

units of the lines ond the level of the demond, ore supposed to be known

functions of W€Q which is celled the system situetion. The veriebles end

the dfltfl flre flssociflted with ercs of the three sorts previously

described. In fl situ6tion Wwe h6ve :

-for e generfltion flrc j€G :

q/w) is the chosen power output,

OJ is the invested power gener6t1on capflc1ty ,

Cj (Q j) the investment cost,

tj(Qj'W) the mflximfll power output,

c/qj ) the generflt10n cost.

o~q/w)~tj(Qj,WHOjVW,Vj€G end t(Oj or 0 (breflkdown).

-for fl trensmission 6re JET:

qj(W) is the power flow in the line,

OJ is the instelled line cepecity ,
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Cj(Oj) the investment cost,

~j(Oj'W) the eveileble line cepecity .

OSlqj(w)lstj(Oj,W)SOj 'iw,'ijET where qj is positive or negative

according to its direction in the arc.

In our case ~j=Oj end cj(qj)=O because we neglect the

breakdowns of the lines and the transportation cost.

-for 0 demond orc JED:

qj(W) is the supplied part of the demend ~j(Oj'W) ,

OJ being the maximal demand,

tj(Oj,lA.1) is a random variable on [O,Oj] with a known

di st ri but ion,

cj(t(qj) for qjstj a penalty cost associated to the shortage

of production or tronsportoti on copobil it i es.

The demand is Obviously time varying denoted by t/s) where s

denotes here the time.ln order to get a stationery model we define the

loed curve that is:

t j (X)=Jo
5 l[x,oo](t j (s» ds is the part of the period [0,5] with a

demond greater thon x ond Fj (x)=t j (x)/5 is decreasing and OSF j(X)S 1..

Thus 1-F(x) can be interpreted as the di stri but i on of a rondom voriable

tj(0j'W) on [O,Oj] .

2.3 Formulation of the optimization problem
With the previous notatIons we have:

(i) A q=O (first Kirchoff low)

(ii) /qjlSQj JET

(iii) OSqjstj 'ijEGUD

-for jEG :

t j = 0 with probability 1-1:\ j'

tj=Oj with probability IS f
IS j is the foilure rote of the unit j.

-for JED t
j

is a random variable generated with the
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di stri but ion gi ven by the load graph.

Problem: minimize the sum of the investment cost and the

optimal generation cost:

Min [Cj(Qj)+[~¢-(Q,W) I Oj~Qj~IIJ I.

OJ is the existing network,I!I
J

is 0 technological bound for every

route and ¢-(Q,w) is the optimal generotion cost i.e. the solution of the

following optimization problem:

¢-(Q,w)=Min [IjCjqj(w) I q/w) ,jE:GUTUD (i) (ii) (iiOI.

3.THE CONTINUOUS VALUES CASE
3.1 The stochostic gr8dient method

Consider a function

f :AnxQ --------->A+

x,w f(x,w)

on the probabi ty space(Q,I§l,p) .

We want to minimize the function:

f(x)=!Ef(x)=Jf(x,w)p(dw)

For this purpose we use the well-known stochastic gradient

algori thm (B.T Polyok[2] ,H.Aobbins- 5.Monro[ 1]'B.T polyak -Y.Z.Tsypki n[3] ,

H.J.Kushner- D.5.Clark[4]) that is:

xn+ I =xn-anDxf(xn,wn)

with an such that:

anE:A+ ,an-->o, }; a =+00 }; a 2(+00.
n n 'n n

More precisely, consider the following set of assumptions:

AI: w------>f(x,w) is L 1(n,iI,p) \1'xE:Rn;

A2: x------>f(x,w) is convex ,continuous \1'w;

A3: ]lhO : 'I1'gE:Df(x,w) Igl<~, 'I1'x ,'I1'w;

A4 :CCRn convex compact set;
+

AS :anE:R , a >0 I a =+00 .n 'n n '
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A6: f continuous 3k>O f(X)-f*2kd2(X) where:

f*=min [ t(x) I XE:cl ;

p-{XE:C, f(x)-t*} ;

d(x)=dist(x'p) ;

'c=projection onto C ;

g(x,w)E:Df(x,w) measurable select i on of the subgradi ent

We define a sequence of random variables (x
n

) by:

Xn+1=lPc(Xn-en.g(xn,wn)) ;

Xo given, Wn independent realization of the random variable

of distribution p .

Denoting Zn=~d2(Xn) we heve the following result:

Theorem 1

Under the essumptions A 1 to A6 we heve:

limn zn=O.

Moreover ,if we take 8
n

=(r.A)/(n.A+B) with:

A=k
2
/02 , B= 1Izo ' r= 11k,

we hove the following speed of convergence

(nA+B)zn5. 1 , 'In.

Theorem 2

Under the previous essumptions end with en such that:

Lne
n

2<+00 ,

we heye the estimation:

P(sup mm d2(xnne)5.(zm+Lnlm On2( 2)1£.

In the cese of Theorem 1 this estimation becomes

P(sup mm d2(X
n

)Le)5.K(m)/f(m.k2/02+B).

3.2 50lvlng the conl1nuous v8lue c8p8c1lies

optimiz8tion problem

Our problem is:

Min LjC/Qj)+l~4J(Q,W),
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with 4' solution of:

Pw: 4'(O,w)-Min };jCjqj(w).

O---->4'CO,w) is convex, non differentieble ;

Pw is 0 flow problem. We use the flow elgorithm of [5] to solve

it. The mult i pliers essoci eted with the constreined veri ebl es qj ~O j give

us en elementof D
0

4'. By edding Ci we get imrnedietly e subgredient for

our problem.We epply the previous stochestic subgredient elgorithm.

3.3 Numericol results

Our cese is the 400 kV french eggregeted network with 46

nOdes, B2lines end 165 power plents.

In order to compere with the results of (6] (lineer progromming

method on e bundle of tre j ectori es) we meke the two f ollowi ng

simplificetions:

-the production cost is zero but we teke the eveileble plents

eccording to the increesing cost up to the setisfection of the demond if

possi ble , if not we edd e new plent wi th e shortege cost of generot ion;

-we teke e constent demond corresponding to the peok hours.

Relotive error with the solution obteined in [6)

I ~

NOr of iteretIons

10000

-I ~...
figure I.Convergence of the stochestic gradient method

On Fi gure 1 we heve represented the evolut i on of the criteri on

with the number of iteretions of the stochestic gredient elgorithm : let

50L(n) be the solution oOtoined with n iteretions for the olgorithm. The

criterion corresponding to eny solution is the globel meon cost obtained

on 8 fixed bundle of 15000 different reelizetions. We represent here the

veri eti on of thi s cost with regerd to the cost of the solut ion gi yen by ll.
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The same precision is obtained after less than 3000 iterations.

The computer time on IBM 370/168 needed by [6] to compute his solution

is 15mn . The cost of the stochasti c gradi ent on the same computer is

1mn for 3000 iterations.

4. THE INTEGER VALUE CASE
4.1 Some remorks

We are here in a more realistic case. The formulation of the

problem is the same excepted for Qj whi ch is replaced by Q.u j where the

optimization variable is u
j

a positive integer, Q being a given value

whi ch represents the capacity of a standard line unit.

The corresponding deterministic problem (i.e. card(Q)= 1 ) is NP

complete. We have to solve now a large scale system with mixed

variables "~o solve it -the first possibility is to use the classical

methods of branch and bound, but with this approach the computer time

will be absolutely prohibitive in the stochastic case -we have to

content ourselves with good heuristic methods.

The last remark concerns the use of the continuous solution.

The values for this solution belongs to [0,3000] and the unit line is

Q=700.The rounded continuous solution has a cost approximatively equal

to two tI mes the opt i mal conti nuous one.

4.2 Some heuristic methods bosed on the stochostic

grodient

til) 5toehttst ie grttdiant ettiellitttad ttt thB nBttrBst

integer point

We suppose we have to solve the problem:

Min [~f(x) I xElNm] ,

and we consider the following algorithm:

xn+ 1=xn-a.Dxf([xnl.wn) aEA ,a>O fixed,

[xn]=nearest integer of xn.

[x
n

] cannot converges but moves on some recurrent points. We

suppose that these points belong to the hypercube [O,I]m (for simplicity

we take u=O or I).

We denote:
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Pi I =the vIsit frequency of [xnl
j

in I

Pi
0

=the vi sit frequency of [xnl i in O.

*We take the solution [xnl given by the maximum frequencies:

* I 0
[xnl 1= I if Pj >P j

* I 0
[xnl 1'" 0 if Pj SP1

The algorithm can be slighty improved by the following way:

after n iterations the components of [xnlare classified in the order of

the decreasing frequenci es qi=suP(Pi I ,Pi 0). The r first components being

fixed to argmaxk(Pi k) .We reiterate the algorithm. We have obtained the

best of our heuri st i c methods with 3 steps and n=2000.

(0) Using the st(lchtistic grtidient f(lr chtinging the

pr(lbtibiJity (If the (lptimiztiti(ln "'tiritibJe

Consider the problem:

Min [~f(x) I X€{o, 1}ml ,f convex.

x is generated with the distribution p=n i Pi with Pi such that:

P.(O)=I-p.
1 1 ,

P
i
( I)=P

i
.

We will adapt P
j

by a stochastic gradient method in order to get

*the convergence to Pi optimal in the sense of the minimal gradient:

*Pj = I if -gi(Oh91( I)

Where g denotes the gradient:

g(X,W)=D
x

f(x,w) .

The algorithm is:

n+ I {n n n n [ n n n n I}Pi =Ii!'m Pi -a ·gi(x ,W )X{1}(X i)/Pi +X{o}(X i)/(I-Pi )

2
6 n>0 '};nan=+oo '};nan <+00;

where !jim is the projection onto [0, 11m and XA(x) the

characteristic function of A.
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In the cese of dimension 1 it is eesy to see thet the elgorithm

converges to the minimum gredient point; but this result is felse for

lerger dimension ceses.

The mein problem with such en elgorithm is thet we heve e

denominetor equel to zero et the convergence point. We cen remove this

problem by e slight modificetion: we suppose thet gi l(p)=C i (investment

cost); this choice is reelistic if the continuous minimum point is smeller

then 1 ; if not we will heve e lerge shortege cost In 0 end the gredlent et

o will be greoter thon the one ot I ond it is not 0 trouble to toke Ci for

this point.

The modifl ed elgorl thm Is:

n+ I {n n[ n n 1 n }Pj =Iii' PI -a 91(K ,w )+c I X{O}(K i ).

(c)The f1entfjiztftion method

We penalize the integer constreints in e non differentioble way.

Starting with the continuous solution ,the penelizetion term is increesed

graduelly end the solution of the penalized problem is computed bye

stochasti c gradi ent elgori thm

We have to solve:

Mi n[ I§f(x,w) I x€1N I.
Consider the piecewise lineer function, continuous ,20 and

+ -
I¥b,c(x)- 0, DI¥(x )~b, DI¥(x )=c if x€1N .

The penalized problem is :

Min H
b

(x),x ,c

with:

H
b

(x)=I§f(X,W)+l¥b (x).,c ,c

We went to eDply the stochastic gredient to this problem but we

have lost the convexityThe procedure is the following:

we stort with H (x). To sol ve Hbn n, where bn ond cn
0,0 ,c

increese with the iterotions , we use the stochastic grodient algorithm.

In our investment problem b
n
---) b very lorge and cn---)C ,

where c is the investment cost for the line.
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The figure 2 gives the limit penalization term and the limit

glob81 cost.
P.n.al1~.at'on

Q1

1"-- Q 1

figure 2 :Pen8liz8tion function

4.3 Numericol results

Algorithm comparison

12

10

optimal cost
relative error

8

6

4

2

o
tT1E'thod

• SG continuous:

• method (6)

• SO integer (a)

D S6 integer (b)

o SG penalization

figure 3:Comporison of the precision of the

result obt8ined by the different 8lgorithms b8sed on 8 bundle of 12000

realizations of the perturbations.

The datas are the same as in 3.3. The best results are given by

the olgorithms(a) and (b) : the criteri on is about B percent above the cost

given by the best continuous solution. The difference of J 1 percent for

the penalization algorithm (c) is due to the fact that this solution was

otltained with only 3000 iterations and can be improved but the main

default of this method is probobly that the results depend on the

adjustment of the evolution of the pen8lization term. From the point of

view of the robustness the algorithm (a) is the best. . The best solution

with (a) t5 obtaI ned wlth 6000 tteratt ons I.e. 2mn of computer time of

IBM 3701 t 6B.



384

• DISPERSION
10oo ...r------1

• SPEED OF
800 Ht- --L--.-:C~O~N~VE~R~G~EN~C~E~O~F~(b~)J--

600 HH.._------------

OPTIMAL
COST 

AVERAGE
OPT IMAL COST

400 +-11-1 -----------

200

o

-200 ..---------11....
-400 .1...- --==--- _

NUMBER or THE BUNDLE OF 1000
RE ALiZ AT IONS

fi gure4: Dispersi on of 1OOO-average-opti mal-cost and speed of

convergence of algorithm (b).

5.THE CONCRETE CASE: THE TWO KIRCHOFF LAWS
5.1 The m6them6tic6l model

The electrical approximation considered here is the d.c.

opproximotion with the two Kirchoff lows.

Consider the eXisting lioison 1 of the network we denote:

ytw the admit tance,

Xlo=l/Ylo the reactonce (ohm),

°1
0

the capacity (MW) .

The additive (reinforcing) line is denoted 21,X l, 01 .

Thus the global new line becomes Yl=ylO+2 1 .

We have the technical constraint to avoid the destruction of the

line:

xIOl-al (aI-constant).

More precisely, in the integer case we have:

01=0, ql' 2ql .... (ql=coPOCity of 0 stondord new unit line)

Xl=+OO, r l , r1/2, r l /3

CIl=q{I'
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The problem is now:

Hi n [C.y+~41(y,w) I y~yo I ,
with 4l solution of :

4l(y,w)=Hinp IiciPi sUbject to the constrllints (i) to (iv)

(i) AVv=p-d is the 1st Kirchoff lew,where p denotes the

generlltion Ilnd d the consumption ,A is the incident matrix nodes ercs

Ilssocillted only to the trensportetion ercs,

(In 5',1=0 Is 2nd Klrchoff lew where 5 denotes the IncIdent

mlltrix bllsis of cycles Ilrcs,

(iii) Ivl~Y is the constrllint on trllnsportlltion,

'- (iv) O~p~p«(J) is the generlltion constrllints.

!iciPi represents the sum of the generlltion cost Ilnd the

shortllge cost.

V=dillg(Yi)

At y=o eppellrs Il di scont i nuity of the cost indeed:

- C8SB I there is no existing line for the lieison 1 : ylo=o

Yl-al if Yl>O (e line is instlllled)

vl=O if not

- C8SB 2 there exists Il line Yl °>0 :

we compllre a l and Xl °01°

(i) al>xloOlo implies Vl=XloOlo

(ii)al<xloOlo vl=al if 2 1>0

Vl=XloOlo if 21=0

in filet, thllnks to technologiclll improvements we are in the

case (i) and so we heve Il discontinuity only in the case of the setting up

of a new line.

The gredient is:

gl=Cl+Dy4l with

*Dy4l=[u r (I) -us(I)l.vl
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*where vI is the velue of the transit for the optimum end ui ere

the Logronge multipliers ossocioted with the components i of AVv=p-d .

r(I) ond sO) ere the two nodes linked by the arc I.

The u
i

are obtoined in the computation of ~.

5.2 Numeric8l experiments

We use the some methods than the ones employed in the port 2.

In the integer case we only use the algorithm (a) (gradient computed at

the neerest integer point) .To avoid the difficulty od the discontinuity at

the point 0 we take the gradient at 0+.

In order to save a part of computer time we consider here a

smaller network which is on aggregoted version of the previous 400kV

french network: 15 nodes, 26 lines and 140 power plants.

-- eXisting --- possible --- reinforc.."". new

figure 5:The network

(j) The cont inuous case:

we use the gradient with a constant step starting from two

different points :-0 network highor over-equiped - e network Jtn·", or

underequiped . The evolution of the network during the iterations shows

that we hElve the same convergence point ond that it is possible to hove

departures from 0 and returns to 0 for a given liaison (there is no

problem with the discontinuity). The Figures 5 gives the existing

networks and the lines reinforced.

(i j) The integer case:

we compute the integer solUtlon with (El) .We get the new orcs

of the figure 5 with two lines reinforced end one new lieison. The
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difference between the integer cost emd the continuous one is of order of

the inYestment cost of e line unit. Systemetic exploration hes shown

elso thet the solution obteined is good.The exemple solved is too smell to

formulete definitiye conclusion.

CONCLUSION

It eppeers thet the stochestic gredient method is

-very eesy to implement

-very effi ci ent

-eesy to extend In the Integer cese

The mein interest of this study is to show thet this method mey

be applied in a domain which is not clessicel for it thet is: lerge NP

complete problems .In these ceses it seems to give good heuristics.
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ON THE FUNCTIONAL DEPENDENCE BETWEEN THE AVAILABLE
INFORMATION AND THE CHOSEN OPTIIIALITY PRINCIPLE

V.l. Ivanenko and V.A. Labkovsky
V. GIushkov Institute of Cybernetics, Kiev, USSR

We shall use the term aecision problem to describe any ordered triple

Z :: (8z , Dz.Lz ) consisting of arbitrary non-empty sets 8z . Dz and a real bounded

function L z : 9z x Dz -+1R. The class of all decision problems is denoted by Z. When

we interpret a decision problem as the problem of finding a decision a E Dz which

"minimizes" the loss Lz(",a} depending on a parameter" E 8Z ' we need an exact

definition of the term "minimization" as used here. In other words, we need an optimal

ity principle which associates a ranking on Dz with any Z E Z. Intuitively it is clear

that the choice of the optimality principle is somehow connected with our information

about the behavior of". There has been considerable research on the classification

of "information situations" and the corresponding optimality principles [1-3]. The fin

ite set of natural restrictions on the optimization principle for certain information

situations then allows us to identify a unique optimality principle which satisfies these

restrictions.

This paper describes a different approach to the problem. The general form of

information about ". or as we shall express it, uncertainty on 8, may be specified for a

sufficiently wide class of optimality principles in such a way that any uncertainty will

generate one and only one optimality principle in this class and each such principle

will be generated by some particular uncertainty.

More formally. we fix one arbitrary non-empty set 8 and assume that all the deci

sion problems under consideration belong to the class Z E (8) :: !Z E albZ: 8 z :: 8j.

Definition. The term optima.lity principle is used to describe any mapping -y defined

on Z(8} which associates a certain real bounded function Lz:: -y(Z}. Lz:DZ -+ R, with

each decision problem Z. An optimality principle is said to belong to a class r if it

satisfies the following conditions:
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(Cl) If Zt =(8,Dt ,Lt ), at EDt (i =1,2), and L 1(",al)s L 2(",a2) ("E 9), then

L Z1 (al) s L;e(a2);

(C2) If Zt = (9,D.Lt ) (i =1,2), a. bE R. a ~O. and L 1(",a) = aL 2(",a) +

b ("108,a ED), then Lz1(a) = aLze(a) + b (a ED);

(C3) If Z = (8,D,L), a 1, a 2, a 3 E 0, and

(1)

then

(2)

Here LZ(a) should be interpreted as an a priori estimate of the loss associated

with decision a.

The purpose of the first two conditions should be clear. so we shall consider only

(C3) in detail.

Let us compare the two decision problems Z =(9.D,L) and Z = (s.Ii,L), where

S =a x 9, Ii =0 x 0

Interpreting Z as a two-stage decision problem under the conditions described

above, it is natural to assume that

Inequality (2) thus implles that it is better to choose a3 twice than to choose al first

and then a2' What is the reason for this? We have from (1) that

This may be interpreted as follows. For any pair 1"1' "21. the loss l associated with

the choice (a 3' a 3) does not depend on the order of "1 '''2' However. if (a l' a 2) are

chosen then the associated loss does depend on the order of "1 ' "2' being l + Ii in one

case and l - Ii in the other. Thus C3 leads us to a guaranteed result.

Now we need to introduce some additional notation. Let PF(9) be the set of all

finite-additive probabilities on 9, i.e.,

PF(9) = It E (2 8 - [0,1]); t(9) = 1 , t(A u B) =
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='¥i(A) + '¥i(B,\A) VA . Be aj

In addition let M be the set of all bounded real functions defined on a, Q be the set of

all finite partitions of 8 into non-intersection subsets, and ~ be a natural ordering

relation in Q such that

It is clear that for any I:: > 0 there exists a Q. E Q such that

I ~ f ("~ )'¥i(q) - ~ f ("~')'¥i(q) I < I::

q EQ q EQ

where Q _ Q., ,,~, ,,~, E: q, f E: M, '¥i E PF(8). and therefore the limit of integral sums

on the ordered set (Q. _) exists for all f E: M. '¥i E: PF(a). Let this be denoted by

J f (")'¥i(d~).

Definition 2. A non-empty subset 'Ir c PF(9) represents some uncertainty on a.
THEOREM 1. It is possible to associate some uncertainty 'Ir E: PF(a) with each 7 E: r
such thatjor Z Eo. Z (9), LZ=7(Z) we have

(3)

The converse is also true: if 'Ir represents some uncertainty on a and the mapping

7: Z ~ LZ(Z E: Z( 9» is given by formula (3), then 7 E: r.

Definition 3. The ordered pair S = (Zs, 'Irs). where Zs is a decision problem and 'Irs is

some uncertainty on azs' is called a decision system. The class of all decision systems

will be denoted by S and we shall write as. Ds . Ls instead of 9zS' DzS' LzS' respec

tively.

Interpreting a decision system as a mathematical model of a situation in which a

decision is to be made, we will associate with any decision system S a function

and a value

p(S) = inf Ls(d)
dEDS

which will be called the "risk" by analogy with the Bayesian case ('Irs consists of a sin

gle element).

Now let the decision system be given and let it be possible to observe the value of

some function '1"/: as -+ Y before taking the decision. Clearly we need only '1"/ -l(y) C as
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and nollhe value y E. Y In order lo make a decision. We can lherefore assume lhal lhe

resull of any observalion is a corresponding subsel of lhe sel 9s and inlroduce lhe fol

lowing definilion:

Definition 4. Any function C: 9s -> 2 95 such lhal (I) " E C(") for all " E 9s and (Ii)

sels C(")(" E. as) eilher do nol inlersecl al all or coincide complelely, Is said lo be an

observalion scheme on 9s - The sel of all such observation schemes will be denoled by

C(8s ), and Cl is said lo be sufficienl for Cz if C l (") C Cz(") (" E 9s )'

Lel S E. S, C E. C(9s ), SC E S, 9s c = 9s , l:.sc = (C(9s ) -> ~s), and Lsc(", 6) =
Ls (", 6(C("») (" E 8s , 6 E l:.sC>. i.e., SC is anolher decision syslem. where ~sc is lhe

sel of all funclions 6 which assoclale a cerlain decision wilh each observation.

The difference peS) - p(SC) will be wrillen INF (C IS) and will be called lhe

informativity of lhe observalion scheme C wilh respecllo lhe decision syslem S. The

reason for lhis lerm is lhal lhe lnformalivily of a slochaslic experimenl in a Bayesian

decision syslem (see [4.5]) is given by such a difference, which in lhis case is unique.

(Nole: il may be multiplied by a posilive real number.)

THEOREM 2. Let S E S; C , C.. C· E. C (9s ); c. (") = 9. and C· (") = !"l (" E 9s )'
Then

0= INF (C.IS),s; INF (CIS),s; INF (C' IS) =

= peS) - sup f ( inf Ls (", d)1/!(d-")
"'E'I'S d. EDS

Therefore lhe rlghl-hand side of lhis chain of inequalilies is lhe maxiRlum possible

informativily of lhe observation scheme wllh regard lo S. or, in olher words, lhal parl

of lhe a priori risk which Is inlroduced by observalion.

THEOREM 3. Let S(9) = Is E S: 8s = 91 and Cl Cz E. C(9). Then to obtain INF

(C1/S) ~ INF (CzIS) VS E. S(9) it is necessary and sufficient that C l is sufficient

for C z.

An observation syslem is said lo be optimal for decision .syslem S If C E. C(9s )

and for any olher observalion syslem C1 E C(8s ) lhe following relalions hold:

INF (CIS) ~ INF (C1/S)

where Card (A) is lhe cardinalily of sel A.

THEOREM 4. There is an optimal observation system for any decision system and

each observation system is optimal for some decision system.
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,UNCERTAINTY IN STOCHASTIC PROGRAMMING

Vlasta Kankova, Institute of Information Theory and Automa
tion Czechoslovak Academy of Sciences, Pod vodarenskou vez; 4

182 08 Praha 8-Liben Czechoslovakia

1. INTRODUCTION

As it is well known many optimization problems with ran
dom parameters arising in practice can be treated as optimiza
tion problems with respect to the expectation of some random
function. In this case both the optimum solution and the opti
mum value will depend on the distribution function of the
random parameters occurring in the considered problem. Conse
quently, the distribution function can be viewed as a parame
ter (important for the stability) of the original problem.

It is well known from the literature, e.g. Kall (1976),
Dupacova (1976), Tsybakov (1981), and Kankova (1974, 1978),
that in many cases a small variations of the distribution
function evokes only a small changes of the optimum value.
This property was employed e.g. for finding estimates on the

optimum solution of problems with unknown distribution function
or for the construction of approximation methods for solving
two-stage stochastic programming problems.

In the present paper we shall investigate stability of
the above problems. First we present a simple example showing
that a small pertubation of the distribution function may
cause a large deviation of the optimum value even if the ori
ginal optimalized function is bounded and Lipschitz. Then we
present some general conditions guaranteeing stability of the
considered problems in the class of all distribution functions.
Finally, some specific cases are discussed.
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Let (n,$,p) be a probability space,
Jr cE be a non-empty compact set,

n
be an s-dimensional random vector defi-

5=S(W) ned on (Q, S ,p),

F(Z) be the distribution function of 5 '
g(x,z) be a continuous bounded function defi

ned on Xx Es .
(E k denotes a k-dimensional Euclidean space.)

Under this conditions glx,S) for every XE.X is a
random variable defined on (n , S,p). 50 we can consider
Eg (x, ~) for every x E: J{ , where E is the operator of mathe
matical expectation. We can formulate the stochastic optimi
zation problem in which the optimum is sought with respect to
the mathematical expectation as to find

max Eg(X,~).
Xf~X

(1 )

Further, we shall denote by T the space of s-dimensionals
distribution functions - this is the space of all functions
satisfying the necessary and sufficient conditions to be distri
bution functions.

In this paper we shall study the stability of (1) with
respect to some topologies in rs • Especially, we shall consi
der the topology given by the Kolmogorov metric

for all G1 (z), G2 lz) e tfis •

Remark. Kall and 5toyan (1982) deal with a similar problem
with respect to the L2 metric.

At the end of this part we shall introduce a simple exam
ple showing that the stability does not hold generally in the

space (Ts' ~r). More precisely we shall find GN(z), G(z)€ IJ's'

N = 1,2, •••• a and bounded continuous and Lipschitz functions
gN (x,z) , N = 1,2, •••• defined on Xx Es such that for some

K € E
1

, K > 0
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X€YCEs

sup
Z e; E

s
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IGN(z) - G(z)l ... 0
(N-+oo)

(2 )

simultanously.
To obtain (2) it is enough to set s = 1,

G (z) = Z for Z £ (0,1) ,
= 0 for Z < 0 ,
= 1 fo r Z ;> 1 ,

GN(z) = Nz/N+1 for Z E. (O,(N + 1)/N) ,
= 0 fo r Z <: 0

= 1 fo r Z :> (N+1)/N

gN(X,z) = 1 fo r z < 1 , X E. X ,
(2N 2+2N)Z 2

€ (1,2) x ~ X= +1-2N- 2N for z , ,

= 2N 2+2N+1 fo r z> 2 , x €X ,
where X€ E is an arbitrary non-empty compact set.n
surely, in this case it is easy to see

J gN (x,z) dG(z) = 1,
Es

for all N = 1,2, ••• ,XE. X
and simultanously

sup IGN(z) - G(z)
Z € Es

1=
N+1

for all N = 1,2 •••

2. SOME AUXILIARY ASSERTIONS

Let 1. f(z) be a real valued uniformly continuous boun-

ded function defined on Es '

then for an arbitrary E, > 0 the re ex i s ts Of, s uch t hat

where o denotes the Euclidean norm in Es~ s

( 3 )
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Further, according to there exists a,b "- Es

5 M d'F(z) < e/4

Es-I <a-8c ,b+oe>
(4 )

i=1,2,,, •• n)

and ME: E1 fulfi lling the condition IHz)1 ~ M, z € Es •

If now we define the points Zi,j' zk, i=1,2,.u •• ,N i

= 1,2, •••• ,5, k = 1,2, •••• ,N by

a. = z. 1 b. > Z. o. 1 ' b. < z . N z . . < z. . +1
1 1,' 1 1,"- 1 1, i' 1 J 1, J

Iz. '+1 -::.. ·I<.d/s, j=1,2, •••• ,N.-1, j=1,2, •••• ,s,
1,J 1,J e 1

k_ ( k k k_ (}z - z1' •••• ,zs) where Zi-Zi,j for some j=t1,2, ••• ,Ni

= 1,2, ••• ,5 then we can, for every Z € Es ' define the

discrete function FN(Z) such that

2. the discontinuity points of FN(z) can be only

th . t ke p01n 5 Z ,

3.

We shall present the following lemma.

Lemma 1. If conditions 1,2,3 are fulfilled then

fN(z) by
k kz.€ (z .. 1'z .. )

1 1,J- 1,J

k k k
z =(z1 ·1' •••• ,z .),J s,Js

,

fez) dFN(Z)\ <8

= 2, •••• ,N

IrHz) dF(z) 
Es

If we define the functionProof.

it is easy to see that

I f N(z) - f (z) I< [, /2 (5)

and also
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J fN(z) dF(z)= Jfez) dFN(z) •

I(a,b) I(a,b)

But from this we get

11 fez) dFN(Z) -J fez) dF(Z)I~I I Hz,) - fN,z)ldF(Z) < e/2 (6)

I (a,b') I(a,b) I(a,b)

But as from (4) it follows that

IS fez) dF(Z')I<e/4 andl J fez) dFN\Z')!< £/4

Es-I (a,b) Es-I(a,b)

Using the triangular inequality the assertion of the Lemma
follows from (4), (6) and(7).
Remark. Under rather stronger conditions a similar assertion
was proved in Kankova (1980), where it was used for the appro
ximative method of the two-stage stochastic nonlinear program
ming problems.

If further the functions F(z), F(Z) are defined by

F(z) = F(z)- P[~i fZ <zi-dtl s,zi) , i = 1,2, •••• ,s}
(8 )

F (z) = F (z) + pt~. E <z.,z. + cSt, Is), = 1,2, •••• ,s}
1 1 1

for .sf- given by (3 ),

then we can formulate the fo llowi ng assertion.

Lemma 2. Let condition 1 be fulfilled and let (>0 be arbi
trary. If the functions F(z), F (z) are defined by (8) then

I ~ f (z) d G(z) -
s

for every distribution

5 fez) dF(z') I <4e
Es
function G(Z)E (F(z),F(Z»,

Proof. We can take without loss of generality the case s = 2.
If we define the points i . ., i k, j = 1,2, ••• ,N., i = 1,2

l,J , I "" 1 > I
k = 1,2, ••• ,N such that a. = z. l' z = b., b.=z. N '

1 1, i,N i -1 1 1 1, i

!z'i,j+1 - Z'i,jl= 6[,/s, Zi,j - Z'i,j = tSe / 2s, Z'i,j- Z i,j=J/2

'k _ k k ,k I

z - (z1' •••• ,zs) where z. = z ..
1 1, J

for some j € {1,2, ••• ,N i },

i = 1,2 .
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We can easily see that
< I , <

F(Z1,i' ZZ,j)= G(Z1,i+1,ZZ,j+1')= F(z1,i+1;ZZ,j+1')

for an arbitrary distribution function GlZ)E:(F(z), F(Z», Z EO Es '

i = 1,Z, ••• ,N 1, j = 1,Z, ••• ,N Z•

=p .. ,',J

(
I I

z1,i,ZZ,j)' (Z1,i,ZZ,j ')

j = 1,Z, ••• ,N Z such that

P {y1=z1,i' YZ=ZZ,j} = P {~,t(Z1,i-1,Zi)'Sf(ZZ,j_1,ZZ,j)}

According to Kolmogorov's theorem there exist two-dimensi

onal discrete random vectors Y =lY 1,Y Z)' V = (V 1,V Z)' U=(U 1,U Z )

defined on (n, $,p) and having jump points only (z1 ,.,zZ .),
, ,J

, (Z1,i' Z~j) respectively i=1,Z, ••• ,N 1,

P {v 1=z'1,i' Vz=z'z, j 1=
,

p .. ,
, , J

P {U 1=z'1 , i' Uz=z'z .} = P~'(Z'1 i -1' z'1 ~' j € (ZIZ j -1' z'z j) },J f' , z·' ,
I +

,
= Pi-1,j-1 - Pi-1,j-1 p .., , J

where S =(~1')Z ') is a random vector having the distribution

function G(z'). Further in (9) we set z1,0 = zZ,O = z'1,0 = z'z,o =

= - 0<:> and, of course, in this case the intervals of the type

( . I . ) instead of <. I . ') .

Using the assertion of Lemma 1 we get by the triangular

i nequa l ity

1 J fCZ) dG (z)-

Es

S f(z) dF(Z) I <. 4f,

Es

Remark. Taking s = 1 we get

( 101

Of course the relation (10) can be utilized in case of the

stochastically independent components of the random vector or

in case of a separable function fez).

3. MAIN RESULTS

Theorem 1. Let £. > 0 be arbitrary. If
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1. gex,z) is a real valued bounded continuous function defined

on En x Es '

S g(x,z) dG(z)- max f g(x,z) dF(z)r <
E . X€J( E

s s

lmax
xe.X

the functions F(z), F(z) are defined
then for every distribution function
z ~ Es

g(x,z) is for every x € X a Lipschitz function of z € Es
with the Lipschitz constant L not depending on x,

by (8) fo r J(, = C/ 2L

G( z ) C<~~ F(z)>,

Proof. As it is easy to see that under the assumptions 3 rela
tion (3) is fulfilled, hence the assertion of Theorem 1 follows

immediately from Lemma 2.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Let,
further,. there exists the probabi lity density <p(z)corresponding to
the distribution function F(zj. If G(z) is an arbitrary distri

bution function for which

\'1 (F, G) < ~ , ~ ~ [in f 'f' ( z)] ( 6£, I 2) s
z €. I<a,b)

wher e I <a, b) i s 9 i ven by 4 , then

max
x e .7{

S 9 (x,z) dG(z)- max J g(x,z) dF(z) 1-< 4£.
Es XEX Es

Theorem 2 presents the sufficient stability conditions

for the problem (n with respect to the metric space (J's,fg-)·
Because the Levy metric is stronger then the Kolmogorov one
we get also sufficient conditions of stability in the modified
Hampell's sense.

4. APPLICATIONS

It is well known from the literature that the results si
milar to those presented in this paper can be utilized in a
few directions. We can, for example, construct a solution
approximative method of two-stage stochastic problems Kall
(1976), Kall and stoyan (1982). Further we can find the esti
mation of the optimal solution and the optimal value in the
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case of the unknown probability laws. However till now, this
was practically possible only on the independent random sample
basis. Using this paper results under some conditions we can
get the estimates on the basis of dependent sequence too.aut
as this problem is rather extensive we shall omit it.

In this paper we shall consider the case of unknown loca
tion parameter. We shall assume without loss of generality
s=1. If Y c E1 is a non-empty set and if

F( z) = F0 (z-y 1 ( 11)

where Fo E. 9'.;' , Y E:. Y then y presents the location parameter
in the class of the distribution function ~y given by (11).
We shall consider the pi"oblem (1) under the assumption Fejf •
We shall assume that y is inknown and that we can find an
estimation of the optimal value, setting some statistic esti
mation y instead of the theoretical value y.

If we note

the aim of this part is to construct upper bounds on

p [I max E"g(X,Zl - max Ey 9(X,Zl I>c }.
X€'J[ y XE:.J[

The next theorem follows from Theorem 1.

Theorem 3. Let Y be a compact set. Let the assumptions of
Theorem 1 be fulfilled. Let the distribution function F E.

"...
F = Fy for an Yo. If YN is a statistical estimation
for wh~ch

then

p{\ max E 9(X,Zl - max E g" (x,zll<4d L};:::' 1-e.
X€J{ Y XEX YN
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STOCHASTIC PROGRAMMING MODELS FOR SAFETY STOCK ALLOCATION

Kelle Peter
Computer and Automation Institute
Hungarian Academy of Sciences

Budapest, P.O.Box 63
H-1502

1. THE PRODUCTION-INVENTORY SYSTEM

In the production line considered the subsequent phases
of processing form a multi-stage production-inventory system
with internal stocking. The raw material is processed successively
at the N facilities before reaching the costumer having a
stationary final product demand. There is a final product store
I N+l and an internal store Ii before each stage of processing
(i=1,2, ••• ,N) including raw material store II. For each store
a safety stock Mi (i=l, ••• ,N+~ is planned as initial stock
for a production cycle to ensure the continuous supply for the
whole production line. It is necessary because of the uncertain
ties in demand and in production which may often be d~sturbed

by random factors such as machine failures, faulty products,
breakdowns, etc. In this case it is a great difficulty to
provide for continuous production with reasonable in-process
inventories. stochastic programming models are formulated for
the allocation of the safety stocks on an optimal way defined
later.

The uncertainty in material requirements planning systems
was considered and different buffering policies were given by
Berry and Whybark (1977), Whybark and Williams (1976), Miller
(1979) and New (1975). The effect of random demand in internal
stocking was analysed recently in the papers of Schmidt and
Nahmias (1981) , Lambrecht et. a1. (1982) and De Bodt and Graves
(1982) • The optimal safety stock policy for a continuous
deterministic production process and Poisson demand was derived
in a recursive form by Axsater and Lundell (1983). We consider
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a simple multi-stage batch production system but both demand
and production process may have random factors.

2. THE STOCHASTIC PROGRAMMING MODELS

The models of inventory allocation are particularly
important in case of considerable random influence in produc
tion and demand. The papers referred to in the first chapter
consider only the effect of random demand.

For production managers it is a great problem to provide
the continuous supply of customers and production stages with
a reasonable law level of raw material, in-process and final
product stocks. We intend to allocate the safety stocks for the
system of these stores in such a way that they should jointly
provide a high service level of the whole production line. The
service level is measured by the probability of non-interruption
in supply of processing and in demand satisfaction.

In the first stochastic programming model a constrained
investment capacity K has to be allocated in safety stock
among the different stores in such a way that it should provide
for the maximal service level of production and supply. On
production level i there is no interruption during the
production cycle if the following inequality holds for all
O.!Gt~T :

iwhere gt
[0, t] on
and ;~+l

of safety
model can

denotes the cumulative amount processed in the period
level i. Here g~ means the delivery of raw material

means the external demand until time t. If a unit
stock on level i has the investment cost di , this
be formulated in the following way:

maximize

subject to

( i i-l
P gt~Mi + gt

N+l
L diMi~K •
i=l

, 0 ~ t ,,;;; T , 1=1,2,. __, N+1)
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In the second stochastic programming model a prescribed
high service level 1-e of the production-supply system should
be ensured with minimal investment in safety stocks:

minimize

subject to (
i ~1 ~P gt~Mi + gt ' O~t~T, i=1,2, ••• ,N+.Ij?ll-f.

The first model is a typical allocation model, which can
be used for safety stock planning in a static case when the
total investment is prescribed. In case of considerable changes
in demand, production or raw material supply system the second
model should be preferred to safety stock planning. The service
level should be fixed using the results of the static model
applied .to the previous planning periods. On the joint applica
tion and analysis of the above two models a decision support
system of safety stock planning can be built.

3. SOLUTION OF THE MODELS

Exact and approximate solutions of the above stochastic
programming models have their own importance in practice. The
approximations are often satisfactory and the exact solution
method is used only for the estimation of the failure. The first,
step in the solution of the stochastic programming problem is
to derive the probability of the continuous supply in connection
with two consecutive levels and given initial stock. Here we
can describe it only for the most important models of delivery,
batch processing and demand.

3.1. The raw material stock depends on the lead-time of delivery
and on the processing at the first level realized usually in
fixed batch sizes with certain periodicity. Let n1 denote the
number of these batches in the production cycle (O,T] considered.
The setup times ti1J

<. t~l) ~ ••• c:: t~~ are uniformly distributed,

but owing to random disturbances in production, such as machine
failures, break downs, faulty material etc., they are random.
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For the raw material store we have a random lead-time 1,
characterized by the known distribution function H(1). The
random setup times of the first processing level t~)<.t~l)<••• ..(~
are assumed to correspond to a random sample of the uniform
distribution on [O,T] arranged in increasing order. The batch
sizes are fixed and uniform in Model I. of batch processing.
The total amount processed in (O,T] is Q. By choosing appropri
ate units of time and amount we may assume further in this paper
that T=l and Q=l for the sake of simple notations. The
initial stock k/nl ~ Ml .:::.. (k+l) /nl ensures the continuous raw
material supply with probability

0"1

(
n -1) (( n -k

P(t~\~1)= nl kl_l d6tk-l(l_t) 1 dt dH(1).

3.2. The in-process stocks are characterized by the processing
of two consecutive levels. The input (delivery) of the internal
store Ii is the amount processed on level i-I and the demand
is represented by the scheduled processing of level i. There
are usually fixed batch sizes on both levels. The number of
batches processed in [O,T] on level i is denoted by ni •
For the optimal batch sizes usually the equation ni = kni _l
holds with an integer k. The consequence of the random
influences in processing is that the processing time of the
different batches with the same size may be different, the
setup times t~i)<. tki ) .::::. ••• <. t~~) of level i are random.

For the internal stores both input and demand can be
approximated by Model I. of batch processing. Often not the
whole amount of a batch can be immediately processed on the
next stage because of quality problems which have to be corrected.
Afterwards the repaired quantity is added to the next batch.
In this case the random batch size model of Prekopa (1965) can
be applied to approximate the input process. Here the batch
size has a deterministic fraction v (0 ~ v ~ 1) and the fraction
(I-v) is randomly subdivided among the batches. The subdivision
happens by n-l random points which are uniformly distributed
random points arranged in increasing order: ql < q2 ..( ••• <. ~-l.
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The cumulative amount processed during time [0, t] (0 ~ t,;;; 1)
can be expressed by

if t k ..(. t ~ t k+l , k=l, ••• ,n-l

This Model II. of batch processing is the generalized version
of Model I. which represents the special case v=l.

If levels i-I and i are both processing according to
Model I. the probability of continuous supply for given initial
stock Mi can be expressed using the result of Gnedenko (195U
in the case when the number of batches is equal to n at both
levels

p (g~ - g~-l<Mi , 0£t<1) = P (F~ (. ,1) - F~-l (. ,l),;;Mi , 0';'<1') = 1 - f~)'

Here the constant c is the smallest integer for which c ).Mn.

In the case of ni = k ni _l we get the following probability
using the result of Koroliuk (1955):

( i) i-I ( ) )P F (t ,1 - F t ,1 ~ Mi , 0 ~ t ,;;;; 1 =
ni ni-l

where the constant c is the smallest integer for which
c~Mini/ni_l • For the general case of arbitrary integers

n i , ni _l exact probability is not known. Here an approximation
can be derived based on the asymptotic distribution of Smirnov
(1944) in the form
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which must be close to the exact value if n i , n i _l are great
enough (greater than 10) •

For the generalized Model II. a similar approximation has
been published by Prekopa (1965)

3.3. The final product store has a stationary external demand,
but at the time of stock planning the intensity of demand cannot
be exactly forecasted. We consider a continuous demand with
random intensity 0(. The final processing level is the input.
It can be described also by the model of batch production with
fixed batch sizes and random setup times. However, a part of
each batch may be faulty product, which is realized only at the
final quality control. In this case random batch sizes have to
be considered from the point of view of demand satisfaction.
Random batch sizes may occur also on other processing levels.

For the final product store we assume a continuous demand
with random intensity 0{ which has a known distribution function
G (01..). The setup times of the final processing level are uniformly
distributed as in Model I. and II. but the random batch sizes
are not necessarily uniform distributed. Using the statistical
data of the final quality control we fit appropriate distribu
tions. Let ~(x) denote the distribution function characterizing
the cumulative amount of perfect final products of the first k
batches, k=1,2, ••• ,~. This Model III. of batch processing is
a generalized version of Model II:
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if O~t~tl

if t:0t,,;;tk+l (k=l, ••• ,n, tn+l=~

We have derived the following exact distribution for fixed
()( (>0), when the random vector ~ =(131' ••• ,(3n) is interchange
able (see Kelle (1984 a))

n-k_M~~) d~(x)

k
where R ex) denotes the distribution function of 2:(3

It i=l i
(k=l, ••• ,n).

This result can be applied also for Model II. of batch
processing to derive the exact distribution of the service level
for a continuous demand (see Kelle (1980». By the total probabi
Iity of continuous supply for random demand intensity d... can
be expressed in the form

Cd

p(o<.t - F@(t)~MIHl' o...t~)= 5p(~+lP(loC.= x)dG(x).
~ 0

If eX.. has normal distribution with parameters m and s
(s .c: 1/ l'ii) the following approximation has been derived based
also on an asymptotic distribution (Kelle (198~):

p(o<.t - F (t),.;;M, O~t:::l)0="l - exp[-2nM(M+l-m-nMs2)] •n

3.4. The solution of the stochastic programming models formulated
in chapter 2 can be reduced to deterministic nonlinear programm~

problems for independent joint constraint or objective function.
This formulation is simple using the exact distributions
described above. The consideration of stochastic dependence
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among the subsequent processing levels leads to a lot of
difficulties in solution and in data requirement. Most of these
problems can be solved only by using simulation technique and
the statistical data of previous periods (see e.g. Pr~kopa and
Kelle (1978).

The apprOXimate distributions described above enable us to
construct a very simple, effective solution method based on
Lagrange multiplier method. The algorithm is detailed in the
paper Kelle (1984 b) • The error of the approximate solution has
been analysed compared with the exact solution in the cases
when the letter was available, too. For the most part, especially
when the number of batches is above 20 during the production
cycle, the apprOXimation is satisfactory. The relative error is
less than 5 %. In other cases the apprOXimation can serve as
starting point for the solution of the nonlinear programming
problem Aefined by the exact distributions.

4. APPLICATION

The stochastic programming models formulated for the optimal
allocation of the investment in raw material, in-process and
final product safety stocks could be reduced to simple determi
nistic problems in some important cases. These results have
made it possible for us to solve these problems effectively and
have given an efficient tool for decision makers in planning
the safety stock allocation. The above models and methods have
been tested on real production processes and have partly been
introduced in practice in a rolling mill in Hungary.
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DIRECT AVERAGING AND PERTURBED TEST FUNCTION HETHODS FOR WEAK CONVERGENCE
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Division of Applied Mathematics
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ABSTRACT

Perturbed test function methods have been very useful for proving weak

convergence of a sequence {x
E

(.)} of processes to a diffusion x('), under

quite weak conditions. The basic ideas are reviewed here. Typically one

constructs two small perturbations, the first being a sum (or integral) and

the second a double sum (or double integral). If the noise is 'state-

dependent' and in other tricky cases, it can sometimes be difficult to ver

ify the conditions on the second perturbation. We also discuss a method

which 'averages' only the first perturbation, and which is often quite easy

to use - it does not require construction of the second perturbation. The

conditions are often quite easy to verify - even in the complicated 'state

dependent' noise case.

1. INTRODUCTION

Typically, in control and communication theory models, one is given a

nonlinear system, with possibly discontinuous dynamical terms and a noise

process which (loosely speaking) is 'wide bandwidth' and might or might not

depend on the state of the system. A main problem is to find a diffusion or

jump-diffusion process whose statistics are close to those of the physical

system. For this, weak convergence methods are very useful. The particular

methods which seem to be most useful and versatile are various versions of

the perturbed test function method - pioneered by Kurtz (1969,1975), Papan

icolaou, Stroock and Varadhan (1976), Blankenship and Papanicolaou (1978)

and in Kushner (1979,1980a,b,1984). The book (Kushner 1984) presents a

comprehensive development of several such methods and illustrates their

use in numerous concrete applications. The emphasis in this paper is on
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methods which we have found to be most useful in the areas of application

of greatest interest to us, but these same techniques are of general use

whenever weak convergence methods are called for.

Applications of typical forms involve models of the type

(1.1)

where EFE(X,~) = 0, G
E

or FE might be discontinuous and {~~} might be

'state denendent'. For example, digital phase locked loops (Kushner and

Huang Hai (1982)) or adaptive quantizers. A continuous parameter system of

interest is the phase locked loop of Figure 1, where the box marked "limiter"

is a normalized 'sign' function and nE(o) is a 'band-pass wide bandwidth'

noise process. A(o) is the phase to be tracked (Kushner (1984), Kushner

and Ju (1982), Lindsey and Simon (1973)).
o E
V

E
Y

E E
Dv + Hu
evE

Filter

E
Y

We discuss the general approach for two particular methods. The aim

is mainly expository and, to this end, the regularity conditions and the

conditions on the noise processes are much stronger than needed, and much

of the discussion will be heuristic, and we concentrate on the problem where

the limit process is a diffusion. Also, for notational convenience, we

deal only with the discrete parameter problem. The continuous parameter

case is treated in an almost identical manner. Fuller developments and

extensions can be found in Kushner (1984).

Let Dr[O,oo) denote the Skorohod space of Rr-valued functions which

being

[nE ,nE+E)

xE(t) = XE on
n

[nE,nE+E), with f(nE)

iEf(t) = iEf(nE) onbyDefine the operator

the right and have left hand limits and endowed with the

Billingsley (1978). Let ~E denote the minimal o-
n

{X~, i < nL define xE(o) by
l -

constant on each interval

algebra measuring

are continuous on

Skorohod topology,

and let f(o) be

~E measurable.
n
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and

'E
A f (nE) rECf(nE+E) - f(nE)]/E,

n
(1. 2)

'where denotes expectation, conditioned on Then

[It) - flO) - d'[t/E1-1 ALf(iE) _
n

is a {~~t/E]} martingale.

M~(t) (1. 3)

Let A denote an elliptic operator such that the associated martin

gale problem in DrrO,oo) has a unique solution for each initial condition.

Equivalently, let the Ito equation x(') whose differential generator is

A have a unique solution (in the sense of the multivariate distributions)

for each initial condition.

The first method to be discussed (Section 2) is the second order per

turbed test function method, which was used in one way or another in [3-101.

In this method, one chooses a nice real valued test function (on R
r
), adds

small perturbations f~(') + f~(') to it, and tries to show that

in an appropriate sense. Then, under a tightness condition (which can also

be conveniently proved by a perturbed test function method) we have x
L(.)

~ x(') (the arrow '~' denotes weak convergence) in DrrO,oo).

There is a simple procedure for obtaining the perturbations
E

and f
2
(')' and the form of the operator

course of the construction of the f~(')'
1.

A

fE (.)
1

appears automatically in the

The numerous applications in the

references attest to the usefulness of the technique. The first perturba

tion f~(')' usually represented as a simple integral or sum, is straight

forward to get, and verification of the required conditions is often quite
E

easy. The second perturbation f
2
(')' usually represented as a double in-

tegral or double sum, is also often straightforward to get, but verification

of the required conditions is harder.

The second method to be discussed (Sections 3,4) called the 'perturbed

test function-direct averaging method' uses only a first order perturbed

test function -
c cfIx (.)) + f

1
(.)

(uses fE(.) only), and then performs an 'averaging' on
1

in order to get the' result. The form of the operator A

also comes directly out of the constructions. Por this method, we require
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weaker regularity conditions, and the conditions are oftcn much easier to

verify than those on f~(.). The method is actually a development of the

averaging method used in a stochastic approximation problem in Kushner and

Shwartz (]c)84).

2. THE SECOND ORDER PERTURBED TEST FUNCTION.

Let denote the set of real valued continuous functions on R
r

with compact support, and the sup norm topology. The basic perturbc,c1 test

function result is the following.

Theorem 1. For each f(·) in a dense set in Co(R
r

) and T < ~, let

there be f~(.) satisfying

fE(.) is constant on each interval

fC (nc) isffE-measurable
n

(2.1 )

(2.2)

(2.3)

E,n
En<T

t: ,n
En<T

l EE IEf(nc)-f(x(t)) -+0

t < T. \ 2.5)

Let {x
E

(.)} be tight in Dr[O,oo) and x~ ~ x
O

. Then x
C

(.) ~ x(·), the

unique solution to the martingale problem (or unique solution to, the Ito

equation) with operator A and initial condition x o.

The typical construction of the fE(.) and A will be given below.

It is usually easier to prove the tightness if the {x
E

(.)} are bounded.

Then, in applications, Theorem 1 is applied to the truncated x
C

(.) pro

cesses, and then the uniqueness assumption and a simple piecinq-together

argument are used to obtain the desired result. For truncated processes,

we have the tightness theorem (a special case of Kushner (1984), Theorem

3.4), and based on a 'perturbed' form of Aldous' result; ~ee Kurtz (1981),

Theorem 2.7):

square of each function in it. Let {xE (.)}

Theorem 2. Let be a dense set in
, r
CO(R) which contains the

be truncated or, more generally,

let sup p{suPlxE(t) I > N} -+ 0
E>D t<T

E C
2

and T-< 00, let there be

as N -+ 00, for each T < 00. For each

fE(.) satisfying (2.1) to (2.3) and

f ( • )
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lim P{suplfE(t) - f(xE(t)) I > cd = 0, each a > 0,
f. t<T

{AEfE(t), E > 0, nE < T} is uniformly integrable.

(2.6)

(2.7)

Remark. Typically fE ( 0) is a ' first order' perturbed test function;

i. e. 1 fE(t) = f (x
E

(t)) + f~ (t) , where the fE ( 0) is the same as that used
1

to get the first perturbation for the fE (.) in Theorem l. See the typi-

cal construction below.

Typical construction of the perturbed test function for the discrete

parameter case. For simplicity, we use the scalar system

(2.8)

where E F(X'(n) = 0, {(n} is bounded, stationary and (sufficiently) strong

1 y mixing,' and the G (0) and F (0) are smooth and bounded. The aim is an

illustration of the formal technique. Extensions to more general cases are

in Kushner (1984).
A r

Let C
l

be the subset of CO(R) whose partial derivatives up to

third order are bounded and continuous. We get fE(o) in the form fE(nE)

f(X~) + f~(nE) + f~(nE). Note that

f (X
E

) 2
Ef (XE)G(XE)+E XX

2
n EE F (XE,i; )+£f (XE)EEF(XE,r )+o(El.

x n n n n n x n n n 'n

(2.9)

The

ate

f~ (t)

fxG term in (2.9) could be part of an operation

A, but the two middle terms cannot. Fix T <

E E
f

l
(x (nEl ,nE) on [nE,nE+E), where

Af for an appropri

Define f~(t) by

+ E
" [TiEl f xx (x) E 2
I ---2--- E [F (x,(.)

j=n n J

2
EF (x, ( .)] .

J
(2.10)

By the (sufficiently) strong mixing condition, the sums are bounded. Thus

f~(nE) O(~). The tightness Theorem 2 can be used with the test function

f(x[ (0)) + f~(')'

To see what has been accomplished, note that
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+ Eq(X
E

,nE) ,
n

(2.11)

q(x,nE) L[T/E] EE lf (x)F(x,~,)] F(x,~).
n+l n x ] x n

The use of the first perturbation f E (.) h 11 d1 as a owe us to average

the second term on the right of (2.9), and to 'partially' average the

third term.

average the

Define

We must continue the procedure - one more step - in order to

Eq(XE,nE) term.
n

E E E
f

2
(nE) = f

2
(X

n
,nE) ,where

Define A by

Af(x)

Then

I' [T/E] EE [q(X,]'E) (' ) ]L n - Eq X,]E .
n

1 2
fx(x)G(x) + 2fxx(X)EF (x,~) + lim Eq(x,nE).

E+O

(2.12)

(2.13)

'E E
E A C (nE) (2.14)

and Theorem 1 can be applied.

The method is widely and readily applicable, as attested to by the

applications in the cited references. But the second perutrbation is

sometimes troublesome to work with - particularly when the noise {~'} is
]

'state-dependent', or the dynamics are not smooth. In the next two sections

an alternative will be discussed.

3. AN AVERAGED PERTURBED TEST FUNCTION METHOD. 1.

We work only with the relatively simple first order perturbed test

function. Tightness is handled as in the previous section. Again, for

simplicity in the exposition, we stay with simple scalar cases. We first

do a simple case, where the limit process x(·) satisfies an ordinary

differential equation, and the noise is not state dependent. This case

can be treated by many other methods - but it provides a convenient vehicle
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for our discussion of the basic ideas. In order to avoid more technicalities

than needed to illustrate the idea, we always let {~n} be bounded and the

functions G(x,~), F(x,~) have compact x-support - uniformly in ~. See

Kushner (1984) for the general case. In the arguments below, whenever con

venient, we use the Skorohod imbedding method to put all the processes

{x
E

(.)] on the same probability space, and turn weak convergence into

w.p.l convergence in the metric of Dr[O,oo). We do this often without spe

cific mention and without altering the notation.

The system is

X
E
n+l

XE + E (E )n G Xn ' ~n . (3.1)

If the G(x,~) were not bounded, then we would require

{ sup IG(x, E; ,) I, j < oo} uniformly integrable for each N.

Ixl,::,N J

We assume'either (3.2) or (3.3) for each bounded random variable X, and

either (3.4) or (3.5). Below, n
E

is some sequence such that

En 6 -+ 0 as E -+ 0, and G(') is continuous.
E E

n -+ (Xl and
E

E sup IG(X,~,) - G(X+Y,r,,) i 0
lyl<8 J J

lim 1 yn+nE-l E sup IG(X,.)
E,n,6 n E 'n lyle':; J

G(X+Y,' ,)
J

o

(3.2)

(3.3)

1 ~n+n_-l
p

) ,- G(x,r,) -. G(x) , each x,
n 'n JE

1 jn+nE-l EEG(x,F" )
p
-> G(x) , each x, as E -+ 0

n 'n n J
E

and n -+ 00

(3.4)

(3.5)

Theorem 3. Let x = G(x) have a unique solution x(·) for each

initial condition, and let X~ ~ xo. Then x
C

(.) ~ x(·) in D[O,oo), where

x(O) = x
O

.

'E
G (t)

Outline of proof. Fix

[16 ,16 +6 ), where 6
E E E E

S E: [16 ,16 +6 ),
E E E

l
In +n -1

\" E E E
~ (In EIn

r~ GE~S)dS. E
. 0

T < 00, and divide [O,T]

-+ O. Define CE
(.) and

f (X~)G(X~,r,.)
x J J J

into intervals

GE (.) by: for
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The set lX C ( 0 ) ,c;c (o)} is tight in D
2

[0,00) and all limits are continuous.

Choose and fix a weakly convergent subsequence, also indexed by c, and

with limit denoted by (x(o) ,G(-)). The limit will not depend on this sub

sequence. We will show that

G(t) = ro f (x(s))G(x(s))ds,
x

and for each k, s, t, and

f (0) ,

s. < t
1

and bounded continuous h(') and smooth

Eh(x (s.) ,
J

~ ~[f(x(t+s)) - f(x(s)) - (G(t+s) G(t)) 1 o.

This will yield the desired result, since it is equivalent to showing that

x(o) solves the martingale problem for operator G(x)3/3x.

We proceed as follows. We have

Eh (x
E

(s.) ,
J

E E It+s E E< k) [f(x (t+s))-f(x (t))- . Ef (X.)G(X.,f:,)] -'r 0
- EJ =t x J J J

< k) [f(xE(t+s)) - f(xE(t)) - I~;s=t '\. GE(Q.0E)] -+- 0
E

Since xE(o) -+- x(o), we need only prove that, for each s,

p
GE(s) -> f (x(s))G(x(s)).

x

To do this it is enough to show either (3.8a) or (3.Sb) for s fixed in

[I'. 0 ,I'. 0 +0) and m Q. n
E E E E E E E E

1
n

E

m +n -1
\ E E E E
L f (X.)G(X.,C)

mE x J J J
~ f (x(s) )G(x(s)),

x
(30 Sa)

1
n

E

m +n -1
\ E E EE
r· m m

E E
(3. Sb)

But either (3.Sa or b) is guaranteed by the 'ergodic' assumptions (3.4,

3.5) and the smoothness assumptions (3.2,3.3). Q.E.D.
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4. AVERAGED PERTURBED TEST FUNCTION METHOD, II

STATE DEPENDENT NOISE

We continue with the case where the limit process x(o) satisfies an
E

ordinary differential equation. Write the noise as (j' The state depen-

dence is modelled by assuming that {XE,[E } is a homogeneous Markov pro
n 'n-l

cess. If X
E =x, then we have a Markov chain {(E(x)}. The essential
n n

assumption is that there is a 'limit' process with a unique invariant mea-

sure, and even this can be weakened (see comments below). In many applica-

via its dependence on the {x~}. Then, if
J

x, the corresponding process {~j(x)} does

E.

f E }C~j only depends on E

is replaced by a constant

tions

{x~}
J

not depend on

We assume the following. Condition (4.2) is used only to simplify the

x, define pE((,l,o!x)

pE((,n,olx) by con-

° IXE=x r E =[}.
a ' -'[(-1 '

development. See Kushner (1984), Chapter 5. For each

= p{~E E . Ix
E

= X, ~E 1 = ~}, and define the n-step
n n n-

E E E
volution. Define P (x,~,a,B,o) = P{(Xa+B'(a+B-l) E

(4.1 )

{(~} is bounded, G(o,o) is bounded (4.2)

There is a transition function P(~,~,o Ix)

bounded and continuous f(o),

such that for (4.3 )

ff([')P(~.l'dS' Ix) is (x,(l-continuous

ff(C)pE(Cl,d('lx) -+ ff(C)PU;,l,d~'lx) uniformly on compact

(x,(l sets.

(4.4)

for each x, P(~,l,o\x) has a unique invariant measure pX(o)

and {px(o), x E compact} is tight.

(4.5)

fG(X,C)pE(Cl,d(' Ix) -? fG(X,(')P(F;,l,dC Ix), continuous, uniformly

on compact (x,U-sets. (4.6)

A c-step smoothing can be used in (4.6) in lieu of the one-step smoothing.

Theorem 4. Let x =

for each x(O), and let

equation for x(O) = x
O

'

G(x) have a unique solution

~ x(o), satisfying this
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Remark. If the pX(.) is not unique, we get the limit equation

x (4.7)

Outline of proof. As in Theorem 3, and with the same notation,

where

1~E(£O )
E

'£n +n -1I E E
n 'j=£n

E E

E E E E
E£ f (x.)G(X.,~,).

nE x J J J
(4.8)

The set {x
E
(.), GE

(.)} is tight and all limits are continuous. Extract

and fix a weakly convergent subsequence, also indexed by E, and with limit

(x(·),G(·)). The result will not depend onthe subsequence. We need only

show that as £n ~ s, GE(£n ) ~ f (x(s»G(x(s).
E E X

Define the measure

Q(w,£,c,')
1
n

E

£n +n -1
\' C E
IQn

E

A consequence of the

the X~ in (4.8) by
J

s E: r 9 6 ,9 0 +8 »
I' C C E

'smoothing' assumption (4.6) is that we can replace

x E without altering the limits. Thus (£ n m
£n c E E

E

only

-E r r EG (s), 0(01,9 ,E:,dF')f (X )G(X ,n
) . c 'x m m'

c E

have the same limits.

The set JQ(lll,£,E,'), (AI,LE} is tight. We work with each uJ (not in

some null set) - in order to get the limits of ~E(s). (The w in Q

indexes the (~-l' x~.) Fix sand w. Extract a weakly convergent

E { E} 'pII. ::owsubsequence of Q«)I'£E,E,') with limit It will be shown that P

= pX(s). Define, for bounded and continuous g('),

lim f pCU:;,l,d(' Ix)g(i:')
C

g (x, () .

By the weak convergence and Skorohod imbedding

SUI;> I X~ - Xc" O.
m +n >J>m J m

E c_ - E E
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Also,

lim 1
f 1,

l

(4. fl)

for each w-irr~spec-

f P"(dUq(x(s) ,E;)

f Pw (d ~ ) P ( i; , 1 ,dE Ix ( s) ) g (EJ .

Then ~D is an invariant measure for P(F,l,dr!x(S))

tive of the chosen subsequence, and p'0J = p X (s) .

Now that lim 0 (I,), Q, ,c,·) is characterized, it is a simple matter to
c - E

show that

lim
~E

G (UI, s)

1
m +n

lim tm
l c f F (Xc ,E

_l,j-m -l,dCdx)p'
.t'm

F n +l m E
E E ( C

as desired. Q.E.D.

5. AVERAGED PERTURBED TEST FUNCTION METHOD III.

We now treat the next level, where the limit process is a diffusion

x(') for whose operator A the martingale problem has a unique solution

for each initial condition. We use

(5.1)

(5.2)

EF (x, () o.

The fE(.) below are typically first order perturbed test functions. We

use the following conditions. For each f(') in a dense set in Co(Rr
)

there are fE(.) satisfying (2.1) to (2.4) and
n+n -}

\' E EE(~EfE(jE) _ Af(X~») 1->- 0
!'j=n n J
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as n ~ 00 and E ~ O.

Theorem S. If {x
E

(.)} is ti'lht in Dr[O,,~,) and Xu ~ xu' th,'n x
E

(.)

~ x('), the solution to the martingale problem for operator A and initial

condition

Remark. Ti'lhtness can be obtained by a first order perturbed test

function and Theorem 2, exactly as for the case of Section 2. If necessary,

we truncate the x
E

(.) and use a piecin'l-together argument.

Outline of Proof. Using the notation of Sections 3 and 4, we have

(et
, In E)
C E

Eh (xC (s.) ,
l

i < k) [f (x
E

(t+s»)
c
+ 0,

,t+s "
I US =t E

C

- C

-\. 0,

Choose and fix a weakly convergent subsequence of

also, and with limit x(·). Then

C

f
t+s

Eh(x(si)' i .:: k) [f(x(t+s) )-f(x(t» - t Af(x(u) )duJ = 0 (5.3)

Owing to the arbitrariness of f('), h('), t, s, k, and si':: t,. x(·) solves

the martingale problem for operator A and initial condition Xo and we

are done.

Sufficient conditions for Theorem 5 are often quite easy to 'let. Apart

from tightness,mainly(S.2) need be verified for the appropriate fC(.). For

fE(.), we use the first order perturbed test function fC(.) = f(x c (,» +

f~ ('), where f~ (.) is defined in Section 2. In order to illustrate the

flavor, we state conditions for one simple case. We use state-independent

noise {CL Let G(',E:J, F(',E:J and F (',[,) be continuous in x, uni-
J x

in each compact set.

the continuity can be for each

Ifformly in (x, [,)

[,.

does not depend on c, then
j

(This correction should be added to

condition AS.8.2 in Kushner (1984). The continuity of G can be replaced

by conditions of the type (3.2) or (3.3), and the smoothness of F(',[,)

can also be weakened, since only conditional expectations of this function

appear in the calculations.
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We also use the following, where G(o), ~(o) are continuous, and the

operators A£ and A
O

are defined below, and T is arbitrary. The con

vergence is for each x as E ~ 0 and n ~ 00, except where otherwise

noted.

n+n -1
1

Ij=n
E

EEG(X,~~) G(x)~

n n JE

1
n+n -1

fj=n
E E E E

~ ~(x)E F(x,>;.)F' (x,f,;.)
n n J JE

(5.4)

(5.5)

(5.7)

fT/E sup I~E(f'(X)F(X,E~)) I ~ 0, each N, as M-+=, E-+O, n~= (5.6)
j=n+M I I n x J xx <N

1 ,n+nE-l- E E E £
r. E (F'(x,C n)f (x))'F(x,r;.) ~ A f(x)

n
E

J=n n J+~ x x J

f A£f(x) - AOf(x), uniform convergence.
1

The following sets are uniformly integrable

(5.8)

Define A by

Af(x) (5.10)

The AOf(x) is essentially the centering term in the construction of the

second perturbation in Section 2.

E
Theorem 6. Let Xo ~ x o. Under the above conditions and the unique-

ness to the solution to the martinqale problem for operator A under each

initial condition, {xE(o)} is tight in Dr[O,=) and the limit is the so

lution to the martingale problem for operator A a~d initial condition

Remark. There are extensions to state-dependent noise and to the

continuous parmaeter case. The above conditions are different from those

used in Theorem 5.9, Kushner (1984). We also note that (5.8.6) in Kushner

(1984) (used in Theorem 5.9) should be interpreted to read

lim p{ sup liTA ~(F(X,r.J[.)-F(XI ,r;J~) I > c5}
n 6' E Ix-x' 1< 6. n

0, each c5 > o.



Outline of proof.
E E

+ f
l

(Xn,nE), where
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(Truncate (5.1) if necessary.) Use fE (nE)

~ ,T/E E EYE L E f' (x)F(x,E;.).
n n x J

By hypothesis, fE(.) ~ 0 and {AfE(t), t < T, E > O} is uniformly inte
1

qrable. Hence {x
E

(.)} is tight. Also,

where

L(x,nE)

L(x,nE) ~T/E E E E
[,n+l [E If' (x)F(x,~ ,)] F(x,~ ).n+ x J x n

Now choose a weakly convergent subsequence, indexed also by E and

with limit denoted by x(·). Possibly excluding some countable set of

t, s, s. values, we have
l

£n +n -1
~t+s 1 ~ E E E ,E E E " E E E E E

- L, t0F:- I," E, {fx(X,)G(X"C)H (x .• Clf (X,)F(X"C)/2
>en

E
= -n

E
'J=>en

E
>en

E
J xx J J J

+ £(X~,jE)] ~ O.
J

Now average as in Section 3, using the hypotheses and the weak convergence.
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ON THE APPROXIMATION OJt'STOCHASTIC
CONVEX PROGRAMMING PROBLEMS

R. Lepp
Institute of Applied Mathematics
Academy of Sciences of the Estonian SSR
Tall in

1. INTRODUCTION AND PROBLEM STATEMENT

In certain classes of stochastic programming problems we look for a solution in

the form of a measurable vector-valued function of a random parameter. For example.

many of the stochastic programming problems studied in [1] and static formulations of

two-stage stochastic programming problems (see [2]) are treated in this way. As

pointed out in [3J. static formulation of two-stage stochastic programming problems

allows us to construct an elegant duality theory [2J and is more computationally tract

able (in some cases it can be solved by a sequence of finite-dimensional "discretiza

tions").

In this paper the convex two-stage stochastic programming problem in the space

R T x L ~ is replaced by its finite-dimensional analogue. Conditions under which this

substitution is justified are given. I.e., conditions which guarantee the convergence of

the solutions of the approximate problems to the solution of the original problem.

Consider the following stochastic programming problem:

(1)

and almost everywhere (a.e.) y (0 E Cz ' g2j (~ • X • Y (0) SO. j E: J z I = f'.

Here x EO R T
, y (0 E L ~(=:, L: . J..L ;Rm ). =: c R S

• J..L is the probability measure

induced by the random vector t J..L(=:) = 1 . L: is a Borel a-algebra, and J 1 ' J 2 are fin

ite sets of indices. It is well-known (see [2]) that if the set Cz is bounded, then problem

(1) is equivalent to the dynamic formulation of a stochastic programming problem with

recourse (a two-stage stochastic programming problem).

Assume that the sequence of discrete probability measures

n

J..Ln = !JA-tn. i =1, .... n I. JA-tn > o. L: J.Ltn =1. n E: N = 11,2 •... I
t =1
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converges weakly to the probability measure JJ.. Le.,

(2)

for every bounded continuous function h (0. where ~tn . i = 1 , ... , n. are points in

Using the approximation (2) in problem (1), we obtain the following extremum

problem in Euclidean space R T x l; with norm IWn lin = max IYtn I :
tstsn

h
min lJt(x) + L: J2(~tn ,x 'Ytn)Ji.tn I x E C t , g1j(x) 5; 0, j E J t
r'Yn t=t

(in)

Y n == (Ytn .... , Y nn ) E Cz ' g2j(ttn ,x, Ytn) 5; 0, j E J 2 . i =1 , ... , n I =J ~

Using the general theory for the approximate minimization of functionals [4]. we

define a system of linear connection operators between the spaces L - and In- as fol

lows:

Pn: L- -l;;

(3)

PnYW = (JJ.(Atn )-1 J yWJJ.(dD. i = 1, ... , n)
A..

n
where u Atn = ::::, Atn n Ajn = ¢ if i #- j, and diam Atn - O. We say that a sequence

t =1

of spaces l;;(n EN) is a d.iscrete approximation of the space L - if

(4)

Sequences of connection operators Pn ' P~ (n EN) are said to be equivalent if

A sequence Y n (n f=.N), Y n f=. l;. is said to converge d.iscretely to Y E L - (writing

Y n - y) if

llYn - P n yl!n - 0 a.s. n - 00

A sequence Y n (n EN), Y n E l;. is said to display weak discrete convergence to

Y E L - (writing Y n - y) if Y n (n EN) and Y, considered as elements of dual spaces of

l,}(n EN) and L t , respectively, satisfy the condition <zn ' Y n > - <Z ,Y > for every



429

discretely converging sequence of elements zn (n EN), zn E l~, Z E L 1. Here l~ is the

Euclidean space with norm

n

= L: Izin I J-Lin
i =1

We shall let the pair U , (fn) I denote a functional f with a region of definition

D(f) c L ~ and a sequence of functionals f n (n EN) with a region of definition D(fn) C

ln~(n eN).

The pair If , (fn) l is discretely lower (upper)-semicontinuous if for Yn -+ y we

havef(y) ~ lim inf fn(Yn) (f(y) ~ lim supfn(Yn»'
n -loCllD n .... -

If the elements display weak discrete convergence rather than discrete conver

gence, then the pair If, (fn)j is said to be weakly discretely lower (upper)-

semicontinuous.

2. CONDITIONS FOR CONVERGENCE OF DISCRETE APPROXIMATIONS

In order to guarantee that the solutions of problems (In) converge to the solution

of problem (1), we must impose comparatively strict restrictions on the measure J-L.

Suppose that

(R1)the support::: of the measure J-L is bounded in R S
;

(R2)the probability measure J-L has a Riemann-integrable density tp«(), i.e., for every

A ~ L: we have

J-L(A) = r '1'( ()d (
'A

where tp(~) is a Rieman-integrable non-negative function with f tp«()d( = 1.

We should perhaps explain the point of restriction (R2). If the function '1'(0 is

only Lebesgue-integrable, then on changing the values of '1'(0 on a set of measure zero

it can happen that the sum on the left-hand side of formula (2) is equal to zero at every

point (1n ' (2n •...• (nn (here /-Lin = tp«(in )hin ), but that the value of the integral

on the right-hand side of formula (2) does not change. Hence, if we want to replace the

integral by a sum of the form (2), the class of Lebesgue-integrable functions is too wide

to guarantee convergence of the solutions of problems (1n) to the original problem (1).

Before continUing fur'ther we must introduce the notion of compatibility of

approximations.

We say that the compatibility condition is fulfilled if zn -+ Z , Yn -+ Y, where

zn E: l~, Z ELl, Y n E ln~' Y E: L~, implies that <zn ' Y n > -+ <Z ,Y >.
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If (Rl) and (R2) are salisfied, lhen we can guaranlee lhallhe compalibilily condi-

Lion holds for our approximalions. Lel zn -+ Z, Y n -+ y, i.e.,

n

L: I Ztn - qn Z (t) I tJ.tn -. 0 a.s. n -+ ""
i =i

max 1Yin -Pny(~)1 -+0 a.s. n -fo 00

1sct"'n

where lhe conneclion operalor qn is also of lhe form (:1). Reslrictions (Rl) and (R2)

on lhe measure tJ. j,lSlify lhe use of an equivalenl conneclion syslem p~ (n EN) of lhe

following form (cf. l~ J):

p~yW =(Y«(in) , i =1,2, ... , n) (3')

Take also an equivalenl conneclion syslem q~ (n EN) in lhe same form (3'). Then

we see immedialely lhat

n

I L (Ztn ,Ytn )tJ.tn
i =1

n
L: (z (~in) , Y (tin ))tJ.in I -+ 0 a.s. n -+ 00

i =1

i.e., lhe compalibilily condilion is fulfilled for our approximalions.

Define

F(x ,Y) = J f 2(t,x ,y(t))tJ.(dt)

and

n

Fn (x , Y n ) L: f 2«(in ' x , Yin ),.I.;.n
t =1

We shall impose lhe following reslriclions on lhe funclion f 2(~ ,x , y):

(R3)lhe funclion f z(t , x ,y) is continuous in «(, x , y) and convex and differenliable in

y for all «(,x); lhefunclionf 2y «('x ,y) is conlinuous in «(,x ,y).

LEMMA 1. Let a sequence of discrete probability measures tJ.n converge weakly to

the probability measure tJ., and the restrictions (Rl)-(R3) be satisfied. Then the

pair IF(x ,y) , (Fn (x, Yn nj is discretely upper-semicontinuous.

Proof. Consider lhe inequalily

n
L: f Z«(in ' x ,Ytn )tJ-tn -.r f 2«( ,x ,y «()),u(dO ::s;

i =1

n
::s; L: (f ~Y«(in ' x, Ytn) , Yin - p~ y (t))tJ-tn +

i =1
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n
+ 2.:: fZUin ,x ,P~Y(~))J.ktn - J fz(~'x ,y(mtJ.(dO

i =1

In view of resirictions (Rl) and (R2) we are able io use a connection operaior P~

of form (3') for ihe function Y (~), since in essence ihe resiriction (R2) coniracis ihe

measure tJ. io ihe algebra 2.:: 0 generaied by seis A which satisfy

where A 0 and A denoie ihe inierlor and ihe closure of ihe sei A. respectively. From

ihis resiriction we ihen infer ihai ihe function Y (0 will be Riemann-iniegrable (for

deiails see [6]). Then from ihe resirictions on f ~y U ,x ,Y) and ihe discreie conver

gence Y n -> Y (~) we have

n

L: (f~Y(~in ,x 'Yin)' Yin -P~Y(O)tJ.tn $
i =]

n

L: If~Y(~in ,x 'Yin)1 I4.n ~ l:/2
i =1

The weak convergence of ihe discreie probabiliiy measures tJ.n iogeiher wiih ihe

resirictions (Rl)-(R3) guaraniee ihaiihe inequality

n
L: fZ(~in'x .P~YW)tJ.in - J fz(t. x ,yW)tJ.(dOI ~ l:/2

i =1

will be satisfied for n ~ nZ' This compleies ihe proof.

We shall say ihaiihe sequence Y n (n E-N), Y n E- ln~' is weakly discrete compact if

ihere exisi N' eN and y (0 E- I. ~ such ihai Y n -+ Y (n EN).

LE.M:M:A 2. Every bounded sequence Y n (n EN), Y n E- ln~' is weakly discretely com

pact.

Proof. Consider ihe sequence (q~Y n ) E L~, where q~ EU..ln~'L~) is adJoini io ihe

operaior qn E L(L1,l~). Lei Ilyn11n ~ consi (n EN). Since condiiion (4) is fulfilled

(diam A in -+ 0) for operaiors qn of form (3), we have

Ilq~11 = Ilqnli ~ consi(n EN)

Thus. ihe sequence q~ Y n (n EN) is bounded in L~. Ii is well-known ihai in I. ~ every

bounded sequence is compact in ihe sense of weak "siar" iopology (Le., in ihe iopology

imposed on L~ by I.;). Een"e we can exiract a subsequence q~y(n €N') from ihe

sequence q~y(n (N) such ihai <z , q~Yn > -~ <z . y> (n EN') for every z EL l . By
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the same token

The criterion concerning the weak discrete convergence of functionals [5] then

guarantees that Yn --+ Y (n EN'), Le., the sequence Yn (n EN) is weakly discretely

compact. This completes the proof.

We are now able to formulate and prove the main result of this paper, which con

cerns the discrete stability of convex stochastic programming problems with recourse.

We shall impose the following restrictions on the functions g 2j (~ ,x , y) , j E J 2:

(R4)The functions g 2j «( ,x ,Y), j Eo. J 2, are continuous in (~, x ,Y), and convex and dif

ferentiable in y for all (C x); the functions g ~jy (to x •y) , j E J 2 • are continuous

in (~ . x ,y ) and for a fixed x

(R5)The functions f 1 (x), g 1j (x), j Eo. J l' are convex and differentiable.

Note that if the sets of constraints In problems (1) and (1n) (n EN) are not empty

then the conditions (R1)-(R5) guarantee the existence of (x' ,y' , (~)) E R T X L ~ and

(x~ ,y~) Ec R T x l;; (n Eo N) corresponding to the minimum In problems (1) and (1n)

(n Eo N), respectively L7J.

THEOREM 1. Let the restrictions (R1)-(R5) be satisfied, the sets C 1 and C 2 be

bounded, and the sequence of discrete probability measures J.Ln (n EN) converge

weakly to the probability measure J.L. If the constraint sets of problems' (L) and (1n)

(n eN) are not empty, then

and we can extract a subsequence from the sequence of solutions (x~ ,y~) to prob

lems (In) (n EN) which displays weak discrete convergence to the solution of prob

lem (1).

Proof. The contraction of the measure J.L Implied by (R2) allows us to use the

equivalent connection system of operators P~ (n EO N) of form (3'). Thus P~ y' (0 is an

admissible point for the problems (1n) (n EO N). From Lemma 1 the pair !F(x, y),

IFn (x, Yn ))lls discretely upper-semicontinuous and hence for n ~ n 1 we have

where Pn is the connection operator from (3).
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We shall now prove the converse. By Lemma 2. the sequence (x~ •Y~) (n EN) is

weakly discretely compact. Le ..

We shall show that the point (x • ii (n) L R T xL - is admissible. Assuming the con

verse. let there exist a sphere S E l:: with positive measure J.L{S) >a such that for

every ~ Eo. S and some k C'. J 2 we have

Then we also have f Xs(OY2k (~. X . ii (0) J.L(d0 ~ OJ.L(S). where

{
1 •

Xs(~) = a
if ~ ES

if ~ ~ S

Since the points (x~ •Y~) (n EN') are admissible for problems (in) (n EN'). we have

n
l:: Xs(~tn)Y2k(~tn .x~ ,Yt'n)J.Ltn ~O

t =1

Then

n
~ f Xs Wy 2k (~. X , ii (~))J.L(dO - l:: Xs (~tn )Y2k (~tn •x, ii (~tn))J.Ltn +

t =1

n

+ l:: (Xs(~tn)g~:r:y(~tn'x .ii(~tn))' ii(~tn) -Y;n)J.Ltn
t =1

Restrictions (Rl), (R2) and (R4) guarantee that for n ~ n 2 both terms in the last sum

are less than OJ.L(s )/4. Thus the weak discrete limit point (x. ii (n) of the sequence

(x~ ,y~)(n EN') is also an admissible point for problem (1).

We can also show that if the constraints (Rl)-(R3) are satisfied then the pair

!F(x ,Y) , (Fn (x. Y n ))l is weakly discretely lower-semicontinuous. Assuming the con

trary, we can easily show that

lim sup (F(x ,y) - F n (x~ •Y~)) ~ a
n ~-

This completes the proof.

Remark. The discrete approximation scheme for linear mUltistage programming prob

lems in reflexive spaces LP proposed in [8] may diverge in the absence of restriction

(R2) for the reasons described in Sectin 2 of this paper.
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EXTREMAL PROBLEMS WITH PROBABIl.ITY MEASURES, FUNCTIONAI.LY
CLOSED PREORDERS AND STRONG STOCHASTIC DOMINANCE

V.L. Levin
Central Institute of Economics and Mathematics
Moscow, USSR

This work is devoted to extremal problems with probability measures on topologi

cal spaces· and their applications in some aspects of decision making.

Let X be a completely regular topological space and B(X) the a-algebra of its

Borel subsets. We shall use C (X) to denote the vector space of continuous real-valued

functions on X and C b (X) to denote the vector subspace of C(X) ~onsisting of bounded

functions.

Let V+(X) denote the set of finite non-negative interiorly regular Borel measures

on X, I.e., the set of countably additive functions a: B(X) -+ R ~ satisfying the condi

tion

aB = sup laK: K c B ,K is compact! VB E B(X)

Let

Vo(X) = !p E V(X): pX = 01

M(X) = Ia E V +(X): aX =11

The elements of M (X) are called probability measures on X.

If a E. V(X) and a function <p: x -+ R I is bounded and a-measurable, the finite

integral

a(<p) A J <p(x)a(dx)
- X

is said to be defined. If a E V+(X), then the integral a( <p), (which is finite or equal to

+ 00) is well-defined for any a-measurable function <p: X -+ R i U 1+ ooj which is bounded

*All topological spaces considered here are assumed to be Hausdorff.
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below. Recall that a function qJ is said to be u-mea.sura.ble if its Lebesgue sets

!x EX: qJ(x) ~al, a ERt

belong to the completion of B(X) by the measure u.

Any measure J..L E V(X x X) may be associated with the pair of marginal measures

PtJ..L, PzJ..L E V(X),

(PtJ..L)B =J..L(B x X) , (PzJ..L)B =J..L(X x B) VB E B(X)

Clearly, Pt' P z are linear operators V(X x X) -+ V(X) and

Let u t , Uz E.M(X) and let a function e: X xX -+Rt u !+ool be bounded below,

universally measurable (i.e., J..L-measurable for any J..L E V+(X x X» and satisfy the tri

angle inequality

e(x,y)Se(x,z)+e(z,y) Vx ,y ,z EX

Take p = u t - u z' so that p Eo Vo(X), and consider a pair of extremal problems (the mass

translocation problem and the dual problem) which require us to find the values

A(e, p) = inf !J..L(e): J..L E V+(X x X), (P t -Pz)J..L = pj

B(e, p) = sup!p(u): u E eb(x) , u(x) - u (y) ~ e(x ,y) Vx, Y EXj

respectively.

The duality problem is to describe the class of functions e (x ,y) for which the

duality relation

A(e . p) = B(e ,p) Vp E Vo(X) (1)

holds. For compact X the duality problem was completely solved in [1]. In this case (1)

holds if and only if the function

_ Ie (x ,y) for x ¢ y

e (x, y) =t 0 for x =y

is lower-semicontinuous (l.s.c.) on X x X. It was also shown in [1] that if e is l.s.c. and

e (x, x) = 0 Vx E. X, then the representation

holds with Q c e b (X).

e(x,y) = sup [u(x) -u(y)] Vx, Y EX
UEQ

(2)
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This paper is concerned with the duality problem for non-compact spaces.*

Definition 1. We shall say that X belongs to the class L if it is homeomorphic to a

universally measurable subset of some compact space.

It is known that Polish spaces (separable metrizable spaces that may be metrized

in such a way that they become compiete) are homeomorphic to Borel (G,,) subsets of a

metrizable compact space. Therefore, Polish spaces beiong to the class L. Locally

compact spaces and a-compact spaces clearly belong to L as well. It is not difficult to

show that X • Y E L~ X x Y E L. Thus, the class L is sufficiently wide.

Let fjX denote the Stone-eech compactification of X. The next lemma proves to be

useful when dealing with spaces from L:

LEIOlA 1 ([2]). The following assertions are equivalent:

(1) X E L

(2) X is universally measurable in fjX.

THEORElI 1. Let X E L, a 1, a2 E M(X). Suppose that a function c may be

represented. in the form (2). where Q c Cb(X). Then A(c , al - a2) = B(c ,al - a2) and.

a measure J.L E M(X xX) e:z:ists such that P IJ.L =al' P 2J.L =a2' J.L(c) =A(c ,al - a2).

How wide is the class of functions that may be represented in the form (2)? If

function c (:z: , y) is continuous in :z: for every y. satisfies the triangle inequality and

the equality c (:z: ,:z:) = a '<;7:z: E X, and is either bounded or non-negative. then it can be

represented in the required form. In the first case one can take Q = luz : Z E XL

u z (-) =c(·.z) and in the second Q = lUz,n: z EX. n =1.2 .... j, where uz,n(-) =
min [c (- ,z), n ].

COROLLARY 1. If:z: ELand. d. is a continuous metric on X. then the assertion of the

theorem is true for c = d..

This result was first proved in [3] for metric compact spaces. In this case C(X) is

a Banach space with respect to the sup-norm. VeX) = C (X)· is the dual Banach space,

and the function d. 1(al' a2) = A(d. , al - a2) is a metric on M (X) topologizing the weak*

convergence of probability measures (the Kantorovich-Rubinstein metric).

Theorem 1 was completely proved for compact X in [1]; the case of continuous c

was investigated in [4].

THEORElI 2. Let X E L. a function c: X x X - R 1 U 1+ <»1 be universally measur

able and. satis.fy the triangle inequality. Suppose that a bound.ed. universally

measurable function v (:z:) e:z:ists such that v (:z:) - v (y) :S c (:z: ,y) '<;7:z:, y EX.

*In [1] the dual1ty problem was also solved for functions c faUlng to satisfy the triangle Inequal1ty;
however. this goes beyond the scope of this work.
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Then for the duality relation (1) to be true it is necessary and sufficient that c

can be represented in the form

c(x,y) =sup [u(x)-u(y)] 'VX,yEX,X'F-Y
ur:Q

where Q c ell (X).

For the proofs of Theorems 1 and 2 see [2].

Let us now look at appLications. In decision problems one often has to compare

two different alternatives or states (vectors of consumer goods, different modes of

economic development, lechnological projects, etc.). The fact that pairs of states can

be compared implies that the slate space is endowed wilh a preference binary relation

salisfying some inluitively acceplable condilions (axioms). This type of situalion is

generaLLy formalized using the notion of preorder, Le., with the help of a reflexive and

transilive binary relation.

A preordering relation -6 on a set X is said to be linear (lhe terms "complete"

and "connec.ted" are also sometimes used), if every pair of elements of X is compar

able, Le., at leasl one of the relalions x ~ y or y:S x is satisfied for any x , y EX.

A preordering relation ~ on a topological space X is said to be closed if its graph

gr( ~) ~ !(x ,V): x:SYI

is closed in X xX.

Any function u : X -> R 1 satisfying the conditions

x ~ y ~ u (x) ~ u (y)

x-<.y ~u(x)<u(y)

(3)

(4)

li
where xoo< y <~ x:$ y, y :t5 x, is called a utility function of the preordering rela-

tion

A function u (x) which satisfies (3) is said to be isotonic with respect lo -:$ .

If ~ is a Linear preordering relation, then lhe pair of conditions (3), (4) is evi

dently equivalent lo lhe single condition:

x~y ~u(x)su(y)

One of the fundamental results in mathematical economics and general decision

theory is lhe Debreu theorem [5], which asserls the existence of a continuous uliLity

function for any closed Linear preordering relation on a separable melrizable space.

It is not difficull lo show that the assumptions thal lhe space is metrizable and separ

able, and that the preordering relation is closed, cannol be omitted. The assumplion
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that the preorderlng relation is linear is used In all existing proofs of the Debreu

theorem, but it Is unknown whether it is necessary for the theorem to be true. It

should be noted that this assumption Is sufficientlY restrictive for both mathematical

and economics purposes.

In [6] (see also [7]) I prove the existence of a continuous utility function for an

arbitrary closed preordering relation on a separab.le locally compact metrlzable

space. The main step in the proof is to establish the representation

gr(:5) = Hz, y): u(z) ,s; u(y) Vu E QI

where Q is a non-empty set in C b(X). Here we basically use the duality theorem for a

mass translocation problem on a compact space.

Definition 2. A preordering relation ~ on a completely regular space X is said to be

functionally cLosed if its graph can be represented in form (5) with Q c Cb(X).*

Thus, every closed preordering relation on a separable metrizable locally com

pact space is functionally closed.

THEOREM 3. Let ::S be a preordering relation on a completely regular space z.

Then the following assertions are equivalent:

(1) '""" is functionally closed;

(2) ~ is a restriction of some closed preordering relation on PX;

(3) (the eztension theorem). For any compact set F c X and function v E Cb (F)

which is isotonic with respect to the restriction of::$ to F, there ezists an iso

tonic function u E C b (X) which coincides with von F and satisfies the equali

ties

max u (X) =max v (F) , min u (X) =min v (F)

(4) (the separation theorem) Fbr any compact sets F l , F o' in X such that

(F1 x F o) 11 gr (~) = cp, there erists a continuous isotonic function

u: X -> [0,1] which equals 1 onFl and 0 onFo.

Proof. (1) ~ (2). Every function u E Cb(X) may be uniquely extended to X with

preservation of continuity. Then::$ is a restriction to X of a preordering relation :::S 1

defined on pX by

t.
z~ l Y <:==:> u(z) ,s; u(y) Vu E Q

"'IF gr (~ ) can be represent.ed In form (5) wlt.h Q C C (X), t.hen ~ Is funct.lonally closed because Q
can be replaced In (5) by
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(2) ==> (3). Passing from X to {lX, we reduce the extension theorem to a similar

assertion for a compact space. The extension theorem Is proved for a compa<:t space

In [8] (see also [6]).

(3) ==> (4). Let F = Flu F 0 and lake a function v E C il (F) which equals 1 on F I

and 0 on F o. It Is isotonic and by assumption may be extended to an isotonic function

u E C il (X), u (X) c [0.1]'

(4) ==> (1). Let Q denote the set of all isotonic funcllons in C il (X). Suppose that

(x ,y) 'I- gr (~). Take the singleton sets F I = Ix l. F o = ly I and find an Isotonic func

tion u E C il (X), O:s u :s 1, u (x) =1, u (y) =O. By virtue of the arbitrariness of the

pair (x ,y) 'I- gr (=-). this Implies representation (5).

THEOREM: 4. Let ~ be a preorelering relation on a separable metrizable space X

Then the/ollowing assertions are equivalent:

(1) representation (5) holels with a countable set Q c Cil (X);

(2) :S is a restriction to x of a closed preordering relation

some metrizable compactiJ'ication X.

If these equivalent assertions are true. the preorelering relation

continuous utility function.

Proof. (1) :::::> (2). Let Q = !uI.u Z Ie Cil(X). We may suppose without loss of gen-

erality that Ut(X) c C[O,l], Ie = 1,2, Due to the metrlzabillty and separability of X

there exists a countable family of conllnuous funcllons Ipt: X -> [0.1], Ie = 1,2 ....

separallng points In X. Denote by Y the topological product of the countable family of

segments [0,1] and consider a mapping /: X -+ Y x Y, where

The mapping / is a continuous embedding of X into Y x Y. Let Xl denote the closure of

X in metrizable compact space Y x Yand consider the preordering relallon ~ Ion Xl:

6
«at) . (bt »~ I «a~) • (b~» <=;> at :S a~ , Ie = 1,2 ....

Clearly, ~ I has the desired property.

(2) ==> (1). Since ~ I Is a closed preordering relallon on a compact space Xl' it

Is funcllonally closed. i.e.,

X:SIY <=;>u(x):su(y) Vu EQI

where Q c C(XI). Further. by virtue of the fact that Xl is metrlzable. the Banach

space C(XI) is separable; hence
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where the sequence IU1,u2 •... I is dense in Q1. Then representation (5) holds for

gr (:S) with Q = IUt I Xl t"=1·

FinaLLy, if the equivalent conditions (1). (2) are satisfied and Q = IUt 1;'=1' then

is a continuous utility function.

THEOREM: 5. Let 6 be a preordering relation on a metric space (X. d). Consider

the function

{
0,

c(x.y)= w(d(x,y»
ifx~y

otherwise

where w: R ~ -+ R ~ is an increasing continuous function, w(O) = o. Then the fol

lowing assertions are equivalent:

(1) representation (5) holds with Q C C(X) and

Iu (x) - u (y) I s w(d (x ,y» Vu E Q • x • Y EX

(2) c.(x ,y) > 0 V(x .y) ,. gr (~). where

c.(x ,y) = Urn inf Ic(x ,z1) +c(z1,z2) + .... + c(zn ,y): z1.···. zn Exl
n~"

If X is separable, and either of the equivalent assertions (1). (2) holds (in which

case both assertions hold), then 6 has a continuous utility function Uo satisfying the

inequality

Note that in certain cases assertion (2) may be verified directly.

Proof. It is easy to see that c. satisfies the triangle inequalit.y and c. (x, y) s

w(d (x , y»; therefore c. is continuous as a function of two variables.

(1) ~ (2). From representation (5) and the definition of c we have

u(x) -u(y)sc(x,y) Vu EQ.X ,y EX

and hence

u(x) -u(y) Sc.(x.y) Vu EQ, x. y EX
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If (x, y) rt gr (~), then, by virtue of (5). a function u E Q exists such that

u(x) - u(y) >0. We thus obtain

c.(x,y)~u(x) -u(y) >0

(2) =;> (1). Take Q = luz : Z EX L where U z (.) = c. (. , z). We then have

U z (x) - U z (y) = c. (x. z) - c. (y • z) ~ c. (x, y) ~ CoJ(d (x. y» VUz E Q , x , Y EX

Further, if (x, y) E gr (~), then

U z (x) - U z (y) =c. (x ,z) - c. (y ,z) ~ c. (x, y) =0

and therefore U z (x) ~ U z (y) VUz E Q.

If (x ,y) rt gr (~). then

and hence representation (5) holds.

The equivalence of assertions (1) and (2) is thus established.

Now let a sequence (x/c) be dense in X and the assertions (1). (2) be satisfied.

Using the density of (x/c) in X and the continuity of c., we obtain

gr(~)= !(x,y):c.(x,z)~c.(y,z) Vz EXl

= I(x ,y): c.(x ,x/c) ~ c.(y ,x/c) , k = 1.2 .... j

c.(x.x/c) c.(y.x/c)
= I(x ,y): ~ • k = 1,2 •... j

l+c.(x,x/c) l+c.(y,x/c)

Le.. representation (5) holds with the countable set

r c.(- .x/c) b
Q =t ( ): k =1,2 ,... lee (X)

l+c. "X/c

Then

is the required utility function.

Let (X. d) be a separable metric space with a bounded metric, and F(X) be the

space of closed sets in X with the Hausdorff metric

dH(A ,B) ~ max !inf la > 0: A 0 ::> B I , inf la > 0: B O ::> A II
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where

All ~ Ix EX: dlst (x .A) < al VA E I"(X) , a >0

dlst (x .A) ~ inf !d(x ,y): y EAI

THEOREM 6. There exists a function rp on F(X) with the following properties:

(a) I rp(A) - rp(B) I ,s. dH(A •B);

(b) if A c B and A 7' B. then rp(A) < rp(B);

(c) rp(A u B) ,s. rp(A) + rp(B).

Proof. Since X is a separable metric space. there exists a countable family of sets

An E F(X). n = 1,2 , ...• such that every A E F(X) may be represented in the form

where

N(A) ~ In: An :JAl

Let

- 1
tp(A) = L: - inf fa > 0: Ai: :JA I VA E I F(X)

n=l 2 n

and check that the function rp has the required properties.

Let A • B E F(X). if Ai: :J B. then A:+dH(A.B) :J A and hence

inf!a >0: A: :JAI,s. inf la >0: A: :JBI + dH(A .B)

Replacing A and B. we obtain

inf!a >0: Ai: :JBI,s. inf la >0: Ai: :JA! + dH(A ,B)

Thus,

I inf la > 0: A: :J Bl - inf la >0: A: :J A! I ,s. dH(A ,B)

Then

This proves property (a).

if A c B and A 7' B, then

inf la > 0: A: :J A! ,s. Inf la >0: A: :J Bl , n = 1,2....
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and lhere exisls an no E N(A )\N(B). We oblain

inf la > 0: A:o ::> A I = 0

where Xo E B\Ano' This implies (b).

Finally, if A:: ::> A , Af ::> B, we have

A: t fJ ::> A:8K (a,fJ) ::> A u B

Then

inf la > 0: A: ::> A! + inf l~ >0: Af ::> BI ~ inf l7 > 0: Ari::> A uBI

which implies (c), lhus compleling lhe proof.

COROLLARY 2. Let ~ be a preordering relation on X Suppose that a mapping

a: X ~ J'(X).

a(x)~ly EX:y~X!

is continuous with respect to the Hausdorff metric dH on F(X). Then representa

tion (5) holds with countable Q = IUn I c ell (X), where

un(X) =infla > 0: A:::> a(x)/ , n =1,2 ....

and uo(x) = q;>(a(x)) is a continuous utility/unction/or 6.

Any closed preordering relalion ~ on a complelely regular space X may be asso

cialed wilh a preordering relation ~. on M(X):

t:.
O'l::$.O'Z~ O'l(u) ~ O'z(u) 'Vu EH(~)

where H( 6) is lhe cone of isolonic funclions in ell (X). We call lhe preordering rela

tion ~. strong stochastic dominance.

If (X. :=:.) is a real line segmenl wilh nalural order, ~. coincides wilh lhe usual

slochastic dominance of probabilily measures ~ SO:

t:.
0'1-6SJO'Z<~0'1Iy:y6x!~O'z!y:y~xl 'Vx EX

This has been sludied in conneclion wilh problems of ral10nal behavior under risk (see,

for example, [9-12] and lhe works ciled lherein). Nole lhal for sels Xc R Z wilh

nalural order. slrong slochastic dominance ~. does nol coincide wilh bul is slrictly

slronger lhan~ SJ (an example is given in [8]).

I

i
I

Ii
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THEOREM 7. Let X E: L ana ~ be a functionally closea preoraering relation on X,

at. a z E: M (X). Then the following assertions are equivalent:

(2) there ezists a measure 1.1. E: M (X x X) such that P tl.l. = at, Pzl.I. = a z, ana 1.1. gr

(~» = 1.

For compact X Theorem 7 is proved in [8,13].

Proof. Consider the mass translocation problem on X with

{
a, if (%. y) E: gr (~ )

C (% , y) = + 00 , otherwise

This function satifies the triangle inequality and the equality c (% ,%) = a V'% E: X

because the preordering relation is transitive and reflexive. In addltion. it can be

represented in form (2), since -6 is functionally closed. Then by Theorem 1 the duality

relation A(c •at - a z) = B(c ,at - az) holds and a measure 1.1. E: M(X x X) exists such that

Ptl.l. = at. Pzl.I. = a z, j..L(c) = A(c. at -az). Further. the condition at~ • a z is evidently

equivalent to the equality B(c • at - az) =a It remains only to note that the equality

j..L(c) =a may be rewritten as j..L(gr(6» =a.

A number of other characterizations of strong stochastic dominance may be

derived from Theorem 7; the case of compact X is treated in [8].

Finally, I shall list some open problems.

Let X be a completely regular space.

(1) Does there exist an l.s.c. function c: X x X -+ H t u !+ oo\. bounded below, that

satisfies the triangle inequality and the equality c (% , %) = a V'% E: X but cannot

be represented in form (2)?

(2) Does there exist a closed preordering relation on X that is not functionally

closed?

An affirmative answer to the second question would imply an affirmative answer to

the first.

(3) Let X be a separable metrizable space. Does there exist a functionally closed

preordering relation ~ on X such that gr (~) does not admit representation (5)

with countable Q c CO (X)?
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EXPECTED VALUE VERSUS PROBABILITY OF RUIN STRATEGIES

l.C. Maclean
Dalhousie University

Halifax, Canada

1. INTRODUCTION

and W.T. Ziemba
University of British Columbia
Vancouver, Canada

In this paper we consider a discrete time control problem involving the

accumulation of risky capital. Capital accumulation problems have occupied

a prominent role in the literature of economics, finance and gambling. The

general formulation involves investment decisions at each point in time with

the return on investment being uncertain. The resulting stream of capital

is a discrete time stochastic process depending upon the investment strategy.

The problem is to choose a strategy which is best according to specified

criteria.

The choice of criteria for evaluating strategies varies depending upon

the discipline. The usual objective in models of capital growth in economics/

finance is the maximization of the expected value of a function of capital

(Hankasson 1979, Mirman 1979). The gambling/probability models emphasize

the probability of ruin (Ferguson 1965, Gottlieb 1984) in specifying their

objectives. Our purpose is to simultaneously evaluate a variety of proper

ties of the capital accumulation process as the decision rule changes. It

may be that optimizing according to one criterion at the expense of another

is not satisfactory. In section 2 the process and properties of interest

are defined. Then those properties are analytically evaluated in section 3

for the class of proportional decision rules. As well, an index trading off

expectation and risk is defined, somewhat analogous to the mean-variance

ratio in static portfolio theory. Finally, in section 4 some numerical

examples are considered.

2. CAPITAL ACCUMULATION

The fundamental process we will study is generated by a stochastic return

on investment. To develop the process, consider the following definitions:

1) (n,B,p) a probability space with (nt,Bt,pt ) the corresponding

product space
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2)

3)

- the initial amount of capital available

capital available at the beginning of period t • given the

history wt
E: nt •

4) capital investment in opportunity i. 1••••• n. in

period t given the history wt
E: nt •

- the return on a unit of capital invested in opportunity

i. i = 1••••• n. given the event w E: n It is assumed

the return function is favourable. that is. E K.(w) > 0w 1

for at least one i. i = 1•••••n •

of investment fractions
t t t

Xit(w ) = Pit(w )Yt(w ).
t • given the investment

terms

time
that

So the return function we have defined here is linear and stationary

(independent of t). The investment decision at time t can be written in
(wt ) (wt ) (wt ) t

Pt = (Pit .···.Pnt ). LiPit(w) ~ 1. so
t = 0.1.... • Then the accumul ated capital at

policy p(wt ) = (P1(w1) ••••• Pt(wt )) • is

(2.1 )

For the stochastic process {Yt (p)}t=7 we are interested in the fol

lowing properties:

1) lit (p) mean accumulation to time t

2) ~t(p) = E 109(yt (p)1/t) - mean growth rate to time t

3) n(p) = E T{y(p)~U} - mean first passage time to the set [U.oo)

4) Yt(p) = Prob[Yt(p) ~ btl - probability of specified accumulation at

time t

5) a(p) probability accumulation is above a

spec ifi ed path

6) B(p) probability of reaching U

before L •

Of these properties 1) - 3) are expected values whereas 4) - 6) consi

der the risk of achieving desired goals. The objective is to study the

behaviour of these properties as functions of the policy p • a task which
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is made easier by restricting our attention to the class of fixed fraction

strategies

(2.2)

A partial justification for this restriction is given in the next

theorem.

Theorem 1.

Given the stochastic process Y(p) defined by (2.1) we have:

(i) l!. 4l(P*) = supp{limt +co 4lt (p)la(p) ~ a} • then there is a p' e: S
with lJ(p') = lJ(p*) •

(ii) l!. n(p*) infp{n(p)ls(p) > s} • then there is a pOI e: S with
with lI(pOl) = lJ(p) •

(i i i ) If 4l(P*) = 1i m 4lt (p) and * 1 • then for
-

sU Pp p=r·p .O<r~

any e: > 0 there exist T(e:) and a > 1 such that a( p) > 1 - e:

for bt = 0 (t < T(e:)). t T( e:) )bt = yoa (t > .

Since the results in this theorem are variations on results in the

literature no proof will be given. For reference (i) is from Maclean and

Ziemba (1985). (ii) from Gottlieb (1984) and (iii) from Harkansson (1979).

The point to be made is that whether we are considering mean growth rate.

first passage times or probability of ruin the class of fixed fraction

strategies is acceptable for a stationary linear return function.

3. Computation of Measures

Suppose then we have a fixed fraction strategy p e: Sand Zt(P.wt ) =
t t t

log Yt(P.w ) • From (2.1) Zt (P.w ) = Zo + LS =l 10g{1 + Li Ki (ws)Pi) =
Zt_1(P.wt - 1) + J(P.wt ) where J(P.w) = log (1 + Li Ki(w)Pi) is a station
ary jump process. That is. Zt' t = 1••••• is a random wa"lk and we will
evaluate the various measures of interest with this process.

First consider the mean growth rate n(p) = limt+coE 109(Yt (p)1/2) =

limt +co lIt E Zt(p) = E 10g(1 + Li Ki(w)Pi) •
For the remainder of this section we assume that n is a finite set.

and therefore the jump process J(p) has a discrete distribution with
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Prob[J(p,w) = Ji ] = Tl i (p) , i

since in practice we would in

continuous distribution.

So consider the measure azo(p) = prob[T{Y(p)~U} < T{Y(p)~L}, starting

from YO] = Prob[T{Z(p)~log U} < T{Z(p)~log L}, starting from zO] Letting

az(p) = prob[T{Z(P)~lO~ U} < T{Z(P)~lO~ L}, starting from z] we have the
fundamenta 1 recu rs ion

az (p) N
Tli(P) (3.1)= Li=l aZO +Ji (p)

0

We need to solve (3.1) for az(p) subject to the boundary conditions

az (p) = 0 (z ~ log L) a(p)=l(z > log U) (3.2)

It is easy to see that given the roots 61, ••• ,6s to the equation

(3.3)

then az(p) = L Ak6~ is a solution to (3.1), where the Ak are chosen to

satisfy the boundary conditions. If we take the minimum and maximum jumps,

Jm(p) < 0 and JM(p) > 0 respectively, then with the positive roots to

(3.2) as 61 = 1 and 62 = 6 we can solve a simple system so that only the

extreme boundary conditions are satisfied as equalities (al og L _ Jm(p)= 0,

alog u= 1 for upper bound; alog L = 0, alog U + J (Pm)= 1 for lower bound).
We have then

log U + JM(p) log L
6 - 6

< az (P) <

o

6Z0 _ 610g L + Jm(p)

log U log L + Jm(p)
6 - 6

(3.4 )

Next consider the measure nzo(p) E T{Y(p)~U}U{Y(p)~L}, starting from
Zo • As before we have a recursion equation

subject to the boundary conditions

nz(p) = (z ~ log L or z ~ log U)

(3.5)

(3.6 )
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Now one solution to (3.5) is given by

*) - Z" (p =-z
E J(p)

Any other solution can be written as

From (3.5) we have that 6z satisfies the system

(3.7)

Proceeding as before we have solutions of (3.R) of the form

and then solutions of (3.5) are given by

(p) \ A BZ Z"z L k k - EJTj})

where the Ak are chosen to satisfy the boundary conditions (3.6). Again

solving the boundary conditions as inequalities

("log L + J 0, "log u + JM
0; "log L O. "log u 0)

m

we have

Zo 109 L
Zo - log L

[log U - log L] (B - B ) - < "z (p) <
E J(p) Blog U _ Blog L E J(p) 0

(log U + JM(p) - (log L + Jm(p)
[ ](

E J(p) log
e

Zo log L + Jm(p)
e - e
U + JM(p) log L + Jm(p)) -

- e

Zo - (log L + Jm(p)

E J(p)
(3.10)

t tIf we consider the process Zt(p,w) = Zo + I
S

=l J(P.ws) • we can

rewrite this as Zt(p) = Zo + Ii niJi(p) • where ni = number of Ji(p)
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jumps in t trials. has a multinomial distribution with E(n.) = t w.
2 11

(] (n i ) = Var(q ) = t V (l-V ) • Then t (p) has an approximate normal

distribution Zt(p) - N(zO + t Li wiJi(i-p). t Li wi(l-wi)J~(P)). With
approximation we have

and

this

(3.11)

where F is the cumulative for the standard normal.

Finally consider the quantity a(p) • We have (with b't

Then

a(p)

~ b'P [Zt ZtlZs > bs'. s=1 •••••t-1)Lz > r
t= t

~ ,[~ I Pr[Z
LZ >b Lz -J.>b t-1

t= t t 1= t-1

which we will write as

gt_1(Zt - Ji(p))

<It_1 (p)
• wi] • (3.12)

In this latter expression gt-1 is the conditional distribution for

Zt_1 which is known from the previous stage. So we have a sequential com
putational procedure requiring only the distribution from the previous stage

and the jump probabilities.

Bringing together the various measures we have the following:
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Since the objective is to consider various measures simultaneously in

evaluating a decision rule, this task would be simplified by an index com

bining measures. For example, consider the trade-off index for ~(p) and

rl(p) given by

I ( p) V~(p) • rl(P*)
VB ( p) • ~ (p** )

(3.13)

In this definition V is the differential and p*,p** the optimal decision

rules for rl and ~ respectively.

4. EXAMPLES

In this final section we will look at simple examples of some of the

measures being discussed. For this purpose we will take n = {O,l} and

consider a single investment opportunity with return KO = 1 with probabi

lity nand K1 = - 1 with probability 1 - n •

Figure 1a gives the effect on a(p) of reducing the investment

proportion p. The strategy which maximizes growth rate ~(p) is called

the KELLY fraction. We see that halving this fraction increases

the probability of reaching $2,500 before falling to $0, $500 and

respectively, for various wealth levels zO' when n = .625 •

...OJ 04

~ ...IIlLTM.T

I.
...- --

.'" 07•
/'

,/
/

/

.i"·
/

"" /
/

/
I - •.S ICII.U .TTN

I - - • '.LL.Y .Y1IG,
I •... I I

I I

• - - .... ••--_no
FIGURE 1 Bz (p) for n = .625

o
FIGURE 1b ~(P),B(P) for n = .625
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In Figure Ib we have a comparison of cjl (p) --
proba bi 1ity of A before B For p ~ p* = .25

while the security decreases with p . A simil ar

Figure 2a for cjl(p) and e(p) in this case with

the advantage decreases (EK from .25 to .02) the

and the range of acceptable investment fractions

growth rate, and Il(P)

the growth rate increases

pattern is displayed in

n = .52. Note that as

growth and security are less

is smaller.

..0

0.1

0.'

0.'

0.'

0.0

0.01 0.01 0.03

,I~l.. L --'-----'-~r--.-- III

'.11 1.11

FIGURE 2a cjl(p) and e(p) for n = .52 FIGURE 2b I(p) for n = .52

To facilitate the comparison of cjl and II we have presented the trade

off index in Figure 2b. The equilibrium values where the rates of change of

cjl and II are equal are highlighted. These values are at p = .016 and

p .013 for double before half and quadruple before half respectively (80%

and 65% of the optimal growth value p = .02).
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CONTROLLED RANDOM SEARCH PROCEDURES FOR
GLOBAL OPTIMIZATION
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W-Germany

1. Introduction
Solving optimization problems arising from engineering and

economics, as e.g. parameter- or process - optimization problems,
minimize F(x) s.t. xED, (1)
where D is a measurable subset of ~d and F is a measurable real

function defined (at least) on D, one meets often the following
situation:

I) One should find the global minimum F* and/or a global mi
nimum point x* of (1). Hence, most of the deterministic program
ming procedures, which are based on local improvements of the
objective function F(x), will fail.

II) Concerning the objective function F(x) one has a black
box-situation, i.e. there is only few a priori information about
F, especially there is no (complete) knowledge about the direct
functional relationship between the control or input vector xe D
and its function value y = F(x). Hence - besides the limited a
priori information about F - only by evaluating F numerically

or by experiments at certain points zl,z2"" of IR d one gets
further information about F.

Consequently, engineers use in these situations usually a cer
tain search procedure for finding the global minimum F* and an
optimal solution x* of (1), see e.g. Box'EVOP- method (1957) and
the random search methods as first proposed by Anderson (1953),
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Brooks (1959) and Karnopp (1963). More recent descriptions of
random search procedures were given by Schwefel (1977), Rappl

(1978), Marti (1980 a-c), Muller et.al. (1983), Zielinski and
Neumann (1983).

( 2 )

Xo(w)=xoED is a given starting-point in D and
are realizations of a sequence of random d-vec-

In the random search method considered in this paper the sequence
Xo (w),X 1(w), ... ,Xn(w), ... of random iterates is constructed accor
ding to the following recurrence scheme:

{

zn+1' if zn+1 ED and F(zn+1) < F(Xn(w))
Xn +1 (w)

Xn(w), else,

n=O,l, ... , where

zl,z2, .. ·,zn'·"
tors

Zl (w) ,Z2(w)"" ,Zn(w)""

having conditional distributions

P(Zn+1(w)EBIXo=xo,X1=x1"",Xn=xn' Zl=zl"",Zn=zn)

P(Zn+1(w)EBIX n=x n) (3)

TTn(xn,B)

for each Borel subset B of IR d . Here

TTn(X n,·), n=0,1,2, ...

is a sequence of transition probability measures which may be
selected by the engineer. In many concrete cases Zn+1 has a d
dimensional normal distribution with mean ~n and covariance

matrix An' i.e.

TTn(X n,·) = N(~n,An)' n=O,l, ... ,

where ~n=~n(xn) and An=An(X n) are certain functions of the last
state (n,x n).

Let the area of Success GF(x) at a point XElRd be defined by

GF(X) = {ye D: F(y) < F(x)). ( 4 )

At an iteration point xn by the random search procedure (2) a
d-vector zn+1 is generated randomly according to the transition
probability distribution TTn(X n ,·) and from xn we move to xn+1
zn+1 provided that zn+1EGF(xn), Otherwise we stay at xn+1=x n

I
I

Ii
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and generate a new random point zn+2 according to the distribu

tion Tf n+1(x n+l'·) = nn+l(x n, .).

We observe that Xn+1 EG F(x n ) implies XtEGF(X n) for all t>n. Let
the set D of E-optimal solutions of our global minimization

E

problem (1) be defined by

D
E

{y ED: F(y) < F* + E}, ( 5 )

where E>O and F* is given by

F* = i nf {F( x) : xED} ;

1e t F* >- co. We 0 bs er vet hat xeD imp 1i es XtED for a 11 t> n ,nEE
hence

P(XnED E), n=l,l, ...

is a nonincreasing sequence for each fixed E>O.

2. Conve:gence of the random search procedure (2)
Let an(D E) denote the minimal probability that at the nth

iteration step X ~ X +1 we reach the set D from any pointnnE
Xn=X n outside this set, i.e.

an(D E) = inf{Tfn(xn,D E): XnED'D E}·

According to Marti (1980) we have this

Theorem 2.1
a) If for an pO

( 6 )

( 7 )

(8 )

1 for every starting-point XoED.

1 for every E>O.

L an(D) = + co,
n=O E

then lim P(XnED E)
n~co

b) Suppose that

lim P(XnED E)
n~co

Then lim F(X n) = F* w.p.1 (with probability one) for every star-
n~co

ting-point Xo ED.
c) Assume that F is continuous and that the level sets Dare

E

nonempty and compact for each pO. Then 1 im F(X n) = F* impl ies
n+ co

that also lim dist(X ,D*) = 0, where dist(X ,D*) denotes the
n~co n n

distance between Xn and the set D*=D o of global points x* of D.
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Example

If nn(x n,') = n(·) is a fixed probability measure, then
lim F(X n ) = F* w.p.1 holds provided that
n+oo

n( {y ED: F(Y)~F*+E: }) > 0 for eac h E> 0 .
This is true e.g. if D has a nonzero Lebesgue measure for all

E

E>O and n has a probability density ¢ with ¢(x»O almost every-
where.

Note
Further convergence results of this type were given by Oppel

(1976), Rappl (1978), Solis and Wets (1981).
Knowing several (weak) conditions which guarantee the con

vergence w.p.1 of (X n ) to the global mlnlmum F* (to the set of
global minimum points D*, resp.), one should also have some in
formation concerning the rate of convergence of (X n ) to F*, D*,
respectively.

By Rappl's doctoral thesis (1984) we have now the following
result. Of course, as in the deterministic optimization, in or
der to prove theorems about the speed of convergence, the op
timization problem (1) must fulfill some additional regularity
conditions.

Theorem 2.2
Suppose that D*+~ and the transition probability measure

n(x n,·) is a d-dimensional normal distribution N(~(xn)'~) with
a fixed covariance matrix ~.

a) Let DE be bounded for some E=EO>O and assume that F is
convex in a certain neighbourhood of D*. Then

1 i m nY( F( Xn) - F* ) = 0 w. p . 1 (9 )
n+oo

1for each constant Y such that O<Y<a and every starting-point xo '
o

b) Let D be compact, D* = {x*}, where X*ED(= interior of D),
and suppose that F is continuous and twice continuously diffe
rentiable in a certain neigbourhood of x*. Moreover, assume
that F has a positive definite Hessian matrix at x*. Then for
each starting-point x ED it is

* 0 2lim nY(F(Xn)-F ) = 0 w.p.1 for each O<Y<a'
n+oo

lim nYllxn-x*11 = 0
n+oo

1w.p.1 for each O<Y<a' ( 10)
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2

lim sup n a E(F(Xn)-F*) < T(XO)<+oo,
n-+oo

where T(X O) is a nonnegative finite constant depending on the
starting-point x ED and "E" denotes the expectation operator.o

c) Under the same assumptions as in (b) we also have for each

starting-point Xo E D,Xo+X*'
2

lim inf n a E(F(Xn)-F*) ~ h(x o)'
n-+ oo

where h(x o ) is a nonnegative constant depending on the starting

point xo ' Furthermore for each XoED, XofX*, it is

1 i min f nY I IXn- x* I I = +00 for ea c h y >f. (12 )
n-+ oo

I~o te
a) Th~orem 2.2 holds also for many non-normal classes of

transition probability measures TIn(x n ,·), see Rappl (1984).
b) It turns out that under the assumptions of Theorem 2.2b

the speed of convergence of (2) to the global minimum of (1) is
exactly given by

( 13 )

c) The above convergence rates reflect the fact that in
practice one observes that the speed of convergence may be very

poor - especially near to the optimum of (1).
Hence, using random search procedures, a main problem is the

control of the basic random search algorithm (2) such that the
speed of convergence of (X n ) to F*,D*, respectively, is in
creased.

3. Controlled Random Search methods
A general procedure how to speed up the search routine (2)

is described in Marti (1980 a-c).
By the following items (1)-(111) a sequential stochastic

decision process is associated with the random search routine

~
I. We observe that the conditional probability distribution

TIn(x n ,·) of Zn+1 given Xn=x n depends in general on a certain
(vector valued) parameter a, i.e.



462

( 15 )

where A is the set of admissible parameters a. The idea, deve

loped first in Marti (1980 a-c), is now to run the algorithm (2)

not with a fixed parameter a, but to use an "optimal" control

a = a*(x ) (16)n n
of a such that a certain criterion - to be explained in (II) 
is maximized,

In the present paper TI (x ,.) is assumed to be ad-dimensionaln n
normal distribution with mean ~n and covariance matrix An' Hence,
in our case we have

a = (~,A) E A = M x I), (17)

where Me IR d and ~ = {O}V{A:A is a symmetric, positive definite
dxd matrix},

II. To each search step Xn + Xn+1 there is associated a mean

search gain

( 18 )

(19.1)

(19.2)

(19.3)

Hence, in the first case Un(x n ) is the probability of a search

success, in the second case Un(x n ) is the mean improvement of

the value of the objective function and in case (19.3) Un(x n ) is

the mean step length of a successful iteration step Xn + Xn+1,

III. Obviously, the convergence behaviour of the random search

process (X n ) can be improved now by maximizing the mea~ total

search gain

E E
n=O
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subject to the controls an = an(x n ) E A, n=O,I, ... , where p>O is
a certain discount factor. This maximization can be done in

principle by the methods of stochastic dynamic programming, see

e.g. MUller and Nollau (1984).

4. Computation of optimal controls
In order to weaken the computational complexity, the infinite

stage stochastic decision process defined in section 3 is re
placed by the sequence of I-stage decision problems

control a*
n

n=0,1,2, ... , hence the "optimal"

as a solution of

maximize ~U(x'Y)TI(a'X,dY).
aeA yEGF(x)

In the following we consider the gain function (19.2), i.e.

(20)

u(x,Y) = F(x) - F(Y).

Since an exact analytical solution of (20) is not possible in
general, we have to apply some approximations. Firstly, the area

of success GF(x) is approximated according to

GF(x)~{yelRd: vF(x)'(y-x) + i(y-X)'V 2F(X)(y-X)<0}, (21)

where vF(x) denotes the gradient of F and v2F is the Hessian

matrix of F at x. We assume that V2F(x) is regular and vF(x)tO.
dDefining then the vector wEIR by

y - x = w - V2F(x)-I VF (x), (22)

the quadratic inequality contained in (21) has the form

Wi V
2F(x)r w < 1,

where r>O is defined by

r = VF(X)'V 2F(x)-I VF (x).

(23).. rr I •

v2F(x)By the Cholesky-decomposition of - - we can compute a matrixr
r such that

V
2F(x)

r

Defining
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(24)

( 25)

( 27 )

the approximation (21) of GF(x) can be represented according to

(22) and (23) by
-1GF(x) ~ {xN+r' v: Ilvll < I},

where I I· I I is the Euclidean norm and xN is given by

xN = x - v2F(x)-I vF (x).

It is then easy to verify that by the same transformations the

search gain u(x,y) = F(x)-F(y) can be approximated by

u(x,Y)~;(I-llvI12). (26)

B9 means of (25) and (26) the objective function U(a,x), a=(v,~),

of (20) can be approximated by

U(q,Q) =; f (I-llvI1
2
f(q,Q,v)dv,

II v I I<l

where f(q,Q,v) is given by

1
f(q,Q,v) = d/2 1/2 exp(-

(2rr) (detQ)
Here the d-vector q and the positive
given by

q q(v) r'(xN-v),

Q Q(~) r' ~r.

1 -12(v-q)Q (v-q)).

definite dxd matrix Q are

(28 )

(29)

By the I-I-transformations (28) and (29), the maximization
problem (20) can be approximated by

-
maximize U(q,Q),
qEK (30)
Q E I)

where K and I) are defined by

K = {r' (xN-v): veM},
~ = {O} U{Q:Q positive definite dxd matrix}

and M is a certain subset of ~d.

By the preceding considerations we obtain now this result.

Theorem 4.1
Let q*, Q* be an optimal solution of (30) and define v*,~*

by
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N

+ r,-l q*.
( r 0*-1 r ' ) -1 .
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( 31 )

Then the I-stage optimal control a*(x)
ximatively by (31).

( ,,*. A*)' .,.. 1S glven appro-

In order to determine q* and 0*. we suppose now that the

feasible set M for the mean value 11 is defined by

( 32 )

where 0<Y12Y2 are arbitrary. but fixed constants. In this case
K=K(M) is given by

d
K = {qE!R: Yl < Ilqll 2Y2}'

where I I· I I denotes the Euclidean norm. Note that the important
case M = {x}. i.e. 11 = x(= last iteration point). corresponds to

the case·Yl=Y2=1.

Assume now that M is given by (32). Since each OE~ has the
form O=TllT'. where T is an orthogonal matrix and II is a diagonal
matrix. the minimization problem (30) is equivalent to

-
ma xi mi ze U( q .ll) s. t. Y1 2 I Iq I I 2 Y2•

II eG). II diagonal.

(33 )

By a further approximation. we find then that an optimal solution
q*. 0* of (33) is given approximatively by this equations

q*

0* c*I.

(1 ..... 1)'.

ide nt i ty ma t r i x •
(34)

where the parameters k*elR and c*>O are defined by a certain

remaining maximization problem.
Now. (31). (34) and (23) yield
11* x

N
+ k*r,-II.

(r _1 Ir' )-1 = c*(rr' )-1
c*

* 2 -1c r V F(x) .

Hence. we have this result.

Theorem 4.2

2 -1
c* (v F(x))

r
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The I-stage optimal control a*(x) = (~*,A*)Of the random

search procedure (2) is given approximatively by

~* x
N

+ k*r,-I,

A* c*(VF(x)'V 2F(x)-I vF (x))v 2F(x)-I,

where k*EIR, c*>O are certain fixed parameters.

( 35)

5. Convergence rates of controlled random search procedures

Assume that the random search procedure (2) has normal distri

buted search variates ZI(w),Z2(w), .. "Zn(w)"" controlled by
means of the following control law

x
(36)

( 37 )

where c>O is a fixed parameter. Applying Rappl's results (1984)

to control (36), we obtain this

Theorem 5.1
Suppose that 0 is a compact, convex subset of IR d and let x*

be the unique optimal solution of (1). Let x*e8(= interior of

D) and assume that F is twice continuously differentiable in a

certain neighbourhood of x*. Moreover, suppose that v2F is po

sitive definite at x*. Then there is a constant q>I duch that

qnE(F(X )-F*) + 0 as n + 00

n
and

n *q (F(Xn)-F ) + 0 as n + 00, w.p.I

for all starting points contained in a certain neighbourhood of
x*.

Note

a) Comparing Theorem 2.2 and Theorem 5.1, we find that -at

least locally- the convergence rate of (2) is increased very

much by applying a suitable control, as e.g. the control (36).

b) However, the high convergence rate (37) holds only if the

starting point Xo is sufficiently close to x*, while the low

convergence rate found in Theorem 2.2 holds for arbitrary star

ting points X o eO.

Hence, the question arises whether by a certain combination
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of a controlled and uncontrolled random search procedure we al
so can guarantee a linear convergence rate for all starting points

XoED.
Given an increasing sequence N of integers

n1<n 2<··· <n k<n k+1<

let the controls an (~n,An) of the normal distributed search
variates Zn+l(w), n=O,I,2, ... , be defined by

and ( 38)

(39)

h
k for s 0 me pe IN, the n S n
p

An { A

R

O
(x n ), if n EN

, if nEN,

where AO(X) is defined by (36) and R is a fixed positive defi
nite dxd matrix.

Hence, according to (38), the search procedure is controlled
only at the times n1 ,n 2, ....

Now, by Rappl (1984) we have this result.

Theorem 5.2
Suppose that D is a compact, convex subset of ~d and let

o
x*eD be the unique optimal solution of (1). Assume that F is
twice continuously differentiable in a certain neighbourhood of
x* and let v2F{x*) be positive definite. Define then'

hn = max{k: nk2n}.

Then for every starting point Xo ED there is a constant S>1

such that
h

S nE(F(Xn)-F*) + 0 as n + 00

and h
S n(F(X )-F*) + 0 as n + 00, w.p. 1,

n h
provided that 1 im sup If < 1.

n+ oo

Note
a) Hence, the linear convergence rate (39) can be obtained

by a suitable control of the type (38) for each starting points
Xo ED.
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6. Numerical realizations of optimal control laws
In order to realize the control laws obtained in (35),

(36), (38), one has to compute the gradient IJF(x) and the inverse
Hessian matrix 1J 2F(x)-1 of F at x. However, since the derivatives
IJF and 1J2 F of F are not given in analytical form in practice,

the gradient and the Hessian matrix of F must be approximated
by means of the information obtained about F during the search
process. Hence, for an approximative computation of IJF and 1J2 F
we may use the sequence of sample points, iteration points and
function values

xO,F(x O),Zl,F(Zl),x 1,Z2,F(Z2)'x 2 ,···

In order to define a recursive approximation procedure, for
n=0,1,2, ... 1e t denote

gn the approximation of IJF(x n),

Bn th.e approximation of 1J 2F(X n),

H the approximation of 1J 2F(x
n

)-1.
n

Proceeding recursively, we suppose at the n-th stage of the

search process we know the approximations g ,B and H of IJF(x ),
2 2 -1 n n n n

IJ F(x n) and IJ F(x n ) ,respectively. Hence, we may compute -
approximatively - the control a = (~ ,A ) according to one of

n n n 2-1
the formulas (35),(36) or (38) by replacing IJF(x n) and IJ F(x n )
by gn' Hn, respectively. The search process (2) yields then the

sample point zn+1' its function value F(zn+1) and the next ite
ration point xn+1 ' Now we have to perform the update

gn -+- gn+1' Bn -+- Bn+1 and Hn -+- Hn+1 (40)

by using the information xn ' F(x n), zn+1' F(zn+1)' xn+1 about F.

a) Search failure at xn

If zn+1 ED or F(zn+1) .:. F(x n), then xn+1 = xn ' Since in

this case we stay at xn ' we may define the update (40) by

gn+1 gn'

Bn+1 Bn ,

Hn+1 Hn ·

b) Search success at xn

In this case it is zn+1ED and F(zn+1) < F(x n ), hence
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xn+1 = zn+1 ~ xn ' By a quadratic approximation of F at xn+1 we

find then

F(xn)~F(xn+1)+vF(xn+1)'(xn-xn+1)+

and therefore
1

VF(x n+1 )'sn -"2

where

S I

n ( 41 )

Now we have to define the new approximations 9n+1 and Bn+1 Of

VF(x n+1 ) and V2F(X n+1), respectively,

Because of (41), in order to define the update (40), we

demand next to the followin9
Modified Quasi - Newton Condition

(42)
or

1
9n+1'sn -"2 sn'B n+1 sn < 0, (43)

Note
i) In contrary to (42), the modified Quasi-Newton Gondition

(43) uses only the information that the function value of F at

xn+1 is less than that at xn '

ii) If 6F n = F(x n+1 ) - F(x n) < 0, then - sn = xn - xn+1 is
an ascent direction of F at xn+1 ' Hence, since VF(x n+1) is the
best ascent direction of F at xn+1 ' - sn may be used to define

the approximation 9n+1 of VF(x n+1),

Since 9n+1' Bn+1 is not completely determined by the modified
Quasi-Newton condition (42) or (43), respectively, there are
still many possibilities to define the update formulas (40),

Clearly, since Bn is an approximation to a symmetric matrix,
we suppose that Bn is a symmetric matrix,

A) Additive rank-one-updates

In order to select a particular tuple (9 n+1' Bn+1 ) we may
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require that (gn+l' Bn+1) is an optimal solution (g,8) of the
distance-minimization problem

minimize d1(8,B) + d2(g,g) (44)

- 1 ,-s.t. g's - 2 s Bs = AF,

where B=B n, g=gn' AF=AF n and d1 ,d 2 are certain distance measu
res. We suppose here that d1 , d2 are defined by

1 d 2
2 l: ( b.. - bi j) ,

i,j=1 lJ

d (45)
1

(gj
2

2 l: - 9 j) ,
j=1

where bij , bij are the elements of 8 and B, resp., and gj' gj
denote the components of g, g, respectively.

Note
The minimization (44) is a generalization of the minimality

principles characterizing some of the well known Quasi-Newton
update formulas, see e.g. J.E. Dennis and R.B. Schnabel (1983).

Solving (45), we find that g, 8 are given by

( 48)

( 46 )

( 47 )

A is given by

g - AS

B + ~ss'
2

the real parameter

9 I S - .!.s I Bs - AF
2A =

-
g

B

s's(1 + { s's)

If the distance functions d1 , d2 are changed, then other
update formulas may be generated. If. e.g. d2 is replaced by

- 1 - -1 - -d2(g,g) = 2(g-g)B (g-g), then g = 9 - A Bs.

where

Supposing now that B is positive definite, it is known that
the matrix 8 defined by (47) is positive definite if and only
if

is our approximation to the inverse Hessian matrix
- --1at x=x n ' Hence, if H = B denotes the approxi-

inverse Hessian matrix of F at xn+1 ' then by (47)

1 + ~ s'Hs
-1where H = B

V2F(x)-1 of F

mation of the

> 0, ( 49)



471

and (49) the following update formula H + H for the
Hessian matrix of F may be established:

inverse

( 50)
{

H - i ~ Hss'H, if (49) holds
1+2s I Hs

H
H, else.

Updates in the case of a search failure.

If zn+1 ~ D or F(zn+1)~F(xn)' then we stay at xn+1 = xn and
we may define therefore 9=9, B=B and H=H. However, also in the

case of a search failure the tuple (zn+1,F(zn+1)) yields new
information about F, provided only that zn+1 +x n ' Hence, re
placing the modified Quasi-Newton condition (42) by

9'S + i s'Bs = 6F,

where no~ s = zn+1-xn' 6F = F(zn+1)-F(x n), we may derive by the
above procedure also update formulas g + g, B + S, H + H for
defining improved approximations g,S,H of VF,V 2F and V2F- 1,

respectively, at xn+1=x n '

B) Multiplicative rank-one-updates

By (46) - (50) we have given a first concrete procedure for
the realization of the optimal control laws (35), (36) and (38),
respectively. Indeed, having e.g. the mean ~n=xn and the co
variance matrix

( 51 )

may be defined by

An = c*(gn'Hngn)H n ,

the random variable Zn+1
o

+ f n Zn+1 ,Z - 11n+1 - "n

where Z~+l is a normal distributed with mean zero and covariance
matrix equal to the identity matrix and f n is a dxd matrix such
that

f f I = A .n n n ( 52)

Hence, at each iteration point xn the (Cholesky-) decomposition
(52) of An must be computed.

In order to omit this time consuming step, we still ask
whether update formulas f n + f n+1 for the Cholesky-factors f n
may be obtained.
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Since Hn = B~1 we suppose that Bn may be represented by

T T' Bn n n'

Then An is given by

An c*((T- l g )'T- 1g )T- 1 'T- 1
n n n n n n

and the factor f n may be defined by

f = PIIT- 1g liT-I,.n n n n (53 )

In order to define the update T + T, where T=T n and T=T n+1
with Tn+1 T~+I=Bn+l' we require that T is changed only in the
direction of s=x n+1-x n, hence we assume that

T = (I + y-l ss')T-----ss' '

where y is real parameter. Furthermore, the distance minimiza
tion problem (44) is then replaced by

minimize d1(T,T) +

t - , 1.s '-B ss .. 9 s - 2

where now

t>F,
(54 )

B = ( I y-l s s ' )B( I + y-l ss').+ S'S S'S
If the distance functions dl' d2 are again defined by (45) ,

= i(~~~)21ITII
d 2d1(T,T) , II Til l: T.· ,

i , j =1 1 J

(55 )

the n

(56 )

where T = (Tij)' Hence, by (54) a particular tuple (g,y) is se
lected. Because of (55) and (56), the minimization problem (54)
has the form

( 57)min i mi ze uyL(F ~ )2 + ~ I Ig_9 I 1

2

2- , ys.t. 9 s - 2 s'Bs = t>F,

hence, the tuple (g,l) is projected onto the parabola in ~d+l

defined by the constraint of (57).
It is easy to verify that the optimal solution of (57) is

given by
(58 )

(59 )II T II
IITII-;\(s's)2 s 'Bs '

9 - ;\ s,

y

-
9

where the parameter ;\ is a solution of the equation
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2

g 's - AS'S - -21 s'Bs ( I ITI I 2 ) = 6F. (60)
IITII-A(s's) s'Bs

Supposing that T = T is regular, we know that the matrix
n

T = Tn+ l defined by (53) is regular if and only if y + O. In
this case we finally obtain

r l
= T-

l (1 + l~y ~~~). (61)

By (53), (58)-(61) we have now an update procedure omitting

the Cholesky-decomposition (52) of An.

Note
a) Other update formulas may be gained by changing the ob

jective function of (57).
b) Also in the case of a search failure, by a similar method

update formulas may be derived.
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ON BAYESIAN METHODS IN NONDIFFERENTIAL AND
STOCHASTIC PROGRAJOIING

J.B. Mockus
Institute of Mathematics and Cybernetics
Academy of Sciences. Lithuanian SSR,
K. Pozelos 54, Vilnius, USSR

1. INTRODUCTION

The idea of the Bayesian approach is to consider the function to be minimized as a

sample observation of a stochastic function. We can therefore define a search pro

cedures which minimize the average deviation of the observation from the minimum.

This differs from classical numerical analysis, where the maximum deviation is usually

considered (Mockus 1972). The average deviation can be defined mathematically if the

probability distribution is fixed. Since the main objections to the Bayesian approach

are doubts about the existence and nature of a priori distributions, a system of simple

and natural assumptions are introduced which provide for the existence of a unique

family of finite-dimensional probabUlty density functions (Katkauskaite and Zilinskas

1977; ZUlnskas 1978) and define the a priori distributions on the space of functions to

be minimized (Mockus 1984a,b).

2. BAYESIAN APPROACH TO GLOBAL OPTIMIZATION

Let

f = f (~) = f (~ ,(.J) (1)

denote the objective function to be minimized, where f is a continuous function of ~

and a measurable function of (.J, and

(2)

Here A is a compact set and n is a set of indices corresponding to all continuous func

tions of ~ in A .

Assume that we can observe (calculate or define by a physical experiment) the

values of f (~t) at the point ~t. The results of observations will be denoted by
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Vt =f(zt) , i = 1 •... , N

where N Is t.htl t.ot.al number of observallons.

We shall denot.e t.he vect.or of observallons by

Zn = (Zt .Yt ,i =1, ... , N)

and define t.he decision funcllon as

where an is a mapping of (A xR)n Int.o A.

Let.

(3)

(4)

(5)

(6)

denot.e t.he ~equence of decision funcllons, and assume t.hat. an E: D n ' n = 0 •...• N,

where D n is t.he set. of all measurable mappings of (A xR)n int.o A and

N
a E: D = X Dn

n=O

Assume t.hat. t.he observallon point.s are defined by t.he decision funcllon d:

(7)

Let. 0 denot.e t.he deviat.ion from t.he minimum of f (z) when a sequence of decision

funcllons a is used:

0= o(a) = o(a .cu) =f(zN+l'cu) - minf(z ,cu)
x€A

(6)

Here zN+1 is t.he point. at. which the final decision should be made (after all N observa

lions have been completed).

The average deviation Ii. can be expressed as a Lebesque int.egral

Ii. = Elo(a)l = Jo(a, cu)P(dcu)
n

where P is a probability measure defined on B c O.

From (6),

Ii. = Jf(zN+1(a). cu)P(dcu) - J min f(z, cu)P(dcu)
n n x €A

The decision function a' is called t.he Bayesian met.hod by Mockus (1972) if

(9)

(10)
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Condition (11) minimizes the expected deviation (1) if

I J minf(x ,c.J)P(dc.J)1 < 00

nr~

since the second integral in (10) does not depend on cl .

(11)

(12)

Note that definition (11) is more general than one based on minimization of the

expected deviation (10).

It is convenient to reduce condition (11) to recursive equations in a dynamic pro

gramming framework (Mockus 1969,1972).

It is not easy to solve recursive equations (Mockus 1972), and so some approxima

tion is needed. The one-stage approximation (Mockus 1972), in which the next observa

tion is considered to be the final observation. is both simple and natural. In this case

(13)

(14)

where

(15)

Denote the conditional density of f (v) with respect to Zn -1 by P" (y I Zn -1) and the

conditional density of f (v) with respect to vector (Zn -1' X ,y ') by p;;(x , y').

Set

Cn -1 = min J YPv (y I zn -1)dy
r~ __

and

Cn (x. y') = min ryp::(x •y ')dy
r~ ~_

and let

Cn (x ,y ') = min(cn -1 ,y ')

Then
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and

~ -1 =J min (cn .1I)p" (111 zn -1)d1l

or

Cn-l

R; -1 =Cn -1 - J (Cn -1 -11 )p" (11 I Zn -1)d1l

Mockus (1984a) gives conditions which define a family of (l priori distributions P

on Borel subsets of n such that Bayesian methods converge to the global minimum of

any continuous function

/(:r:) =/(:r:.c.J).:r: e:A CRM
• c.J e: n

where A is a compact set. It was shown that homogeneity of the (l priori distribution,

continuity of the sample functions / (:r:) and independence of the partial differences of

m-th order are sufficient for the (l priori distribution P to be Gaussian with mean IJ.

and variance at. The covariance is defined as

In the Gaussian case the optimal point taking into account the next observation

should minimize the (l posteriori risk function

(16)

where

(17)

Here IJ.n • an are the conditional expectation and conditional variance with respect to

the observed (calculated) values of function / (:r:t) • i = 1 •... , n. and

(18)

where
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en is introduced to take into account the influence of subsequent observations; the

above expression for en was derived under the assumption that f (zn) , n = 1 .... , N,

are independent. (Here N is the total number of observations and n is the number of

the current observation.) Formula (17) corresponds to the Gaussian case with a linear

loss function, assuming that

(19)

If N - n is large, (1),(2) can be written in the form

(20)

Expression (16) Is still too complicated, because it is necessary to compute the inverse

of the covariance matrix which defines the conditional expectation J.I.n and the condi

tional variance un' This is the Inevitable cost of requiring the system to obey

Kolmogorov's consistency conditions:

k , l = 1,2 •...

Relaxation of these conditions means that we will consider not one probabil1stic model

of function f (z), but some sequence of probabilistic models Pn' updating them after

each observation. This Is apparently the only way to avoid the Inversion of matrices of

order n. Obviously in such a case J.I.n and u~ will not represent the conditional expec

tation and conditional variance as usually defined and can be regarded only as approx

imations of these functions. In order to define J.I.n and un more precisely when

Kolmogorov's consistency conditions are relaxed, some additional conditions must be

satisfied. The most natural conditions in the one-step Bayesian case seem to be the fol

lowing:

1. The probability measures Pn ' n = 1 , .... N. are absolutely continuous and

Gaussian.

2. The probability measures Pn ' n = 1 •... , N, are consistent In the sense that
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(a) the risk function R: ' n = 1 , .... N. defined by (17) is continuous;

(b) the observation points x n t-1 ' n = 0 •...• N, defined by (16) converge to

the global minimum of any continuous function on a compact set A.

3. The parameters J.l.n and un are functions of x which are as simple as possible.

It follows from these conditions that

(21)

where

(22)

It was shown by Mockus (1984a) that under some general assumptions the convergence

condition 2(b) will be satisfied if

and

J.l.n --+ f(x) (23)

for n --+ 00,

Here

1
0 ,

-> a>O,

if T:--+ O

if T: --+ {J >0
(24)

We can see that even in the simplest case (21). a considerable amount of auxiliary cal

culation is necessary to find the optimal point for the next observation. Thus it is rea

sonable to use the global Bayesian method in the case of "expensive" observations, I.e.,

when the calculation of the function is sufficiently complicated. Otherwise it may be

better to use less efficient but much simpler methods, such as Monte Carlo simulation.

It will be shown later that local Bayesian methods can also be very simple.

The use of Bayesian methods is certainly justified when the observations are

"noisy" because these methods filter out the noise during the optimization process. In

this case JJ.t = h (xi)' where

In the presence of noise Bayesian methods converge with probability Po = 1, where Po

is defined on the space of noise.
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Global Bayesian methods have been used in real problems arising in optimal design

and experimental planning (Mock us 1983, 1984a). They also proved to be superior in

some respects to other global optimization algorithms in an "international competition"

(Dixon and Szego 1978).

One good example of a set of test functions is the following family of two

dimensional functions with parameters a(j , b(j , c(j , a(j E. (0,1):

I
f(x) =« ~ (a(j sin (71'jx 1) sin (7TjX Z) + b(j cos (7Tix 1) cos (7Tix 2»)2 +

(,j=l

(25)

where the number of components [ =7.

This family of functions satisfies our conditions. It represents the stress function

in an elastic square plate under a cross-sectional load. These functions were con

sidered by Grishagin (1978) when testing different versions of the method of maximum

likelihood; see Strongin (1978). A full account of the experimental conditions was pub

lished, so it was relatively easy to compare maximum-likelihood-type methods with

other methods of global optimization, such as the LP-based uniform search method

(Sobol 1969), two versions of the one-step Bayesian method (Mockus 1972) and the uni

form random search (Monte Carlo) method.

In all cases a local optimization was performed after the termination of the global

search, using an algorithm of Neider and Mead type. Only one local search, was carried

out, from the best point found in global search. In view of (25), it was thought that to

do the local optimization more than once would be too expensive if the derivatives can

not be calculated directly and must be estimated using function differences.

In addition to the various completely automatic searches a purely interactive

optimization performed by an expert was included in the trial.

50 sample paths corresponding to the randomly distributed parameters a(j , b(j ,

c(j , a(j E: (0.1) were considered.

The relation between the percentage of successes (in which the global minimum

was found) and the total number of observations Nt =N + NL (where NL is the number

of observations in the local Neider-Mead search) is shown in Table 1 for six methods.

The family of functions (25) has some limitations as a set of test functions. It can

not be generalized to the multidimensional case without losing its physical meaning.

A different family of functions was used for comparison of global optimization

algorithms by Dixon and Szego (1978).
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Table 1: The relation bet.ween t.he percent.age of successful cases and t.he t.otal

number of observat.lons

Met.hod

Iteration

number l a 2b 3c 4d 5e 6f

60 48

80 46 46 30 26

90 60

100 56 38

105 62 56

110 81

125 80 72

135 92

140 88 86 68 44 68

200 82 52

240 96 84

340 92

370 94

400 100 78 94

"Bayesian algorithm (21); bstandard one-step BayesIan algorithm (1) with Gaussian a priori
dIstributions; ·Strongin's algorithm (1978); duniform random search; 'uniform determInIstic
search; ftnteracti"e optimIzation performed by an expert.

The best. performance In t.his competit.lon was produced by t.he met.hod of De Blase

and Frontlni (1978). Unfort.unat.ely t.here is some ambiguit.y regarding t.he choice of

st.art.ing point.s for t.he local search; t.he reasons for t.he success of t.he met.hod also

remain unclear.

The second best. result. was provided by t.he one-st.ep Bayesian algorit.hm. How

ever, t.his met.hod is good only In t.he sense of t.he minimal number of observations

regarded as reasonable if one observat.ion is very expensive. Ot.herwise simpler

approaches, such as Torn's met.hod (1978) or even t.he Mont.e Carlo met.hod are prefer

able. The adaptive Bayesian met.hod (21) had not. been developed at. t.he time of t.he

comparison.

I

ii
Ii
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3. BAYESIAN APPROACH TO LOCAL OPTIMIZATION

St.ochastic approximat.ion met.hods are often used t.o find a local minimum in t.he

presence of noise. These met.hods are simple and convenient., and converge t.o t.he local

minimum. However, t.he st.ep lengt.h is not. defined uniquely. It. is well known t.hat. t.he

efficiency of solution depends on t.he lengt.h of t.he st.ep (Ermoliev 1976).

The most. convenient. way t.o solve t.he st.ep lengt.h problem is t.o use t.he Bayesian

approach. Nat.urally a different. a priori dist.ribution should be used in t.he local case.

The st.ep direction in t.he local Bayesian met.hod is defined by a gradient. est.imat.e and

t.he st.ep lengt.h calculat.ed using t.he condition for a minimum of t.he Bayesian risk func

t.ion (Mockus 19B4b). Once t.he st.ep direction is fixed we only need t.o consider t.he

average behaviour of function I (:r:) and of some of it.s derivatives along t.he line of

search. It. is t.hen sufficient. to define t.he optimal st.ep size for t.he case of a non

negative one-dimensional variable, as t.he generalization is st.raight.forward.

When applying t.he Bayesian framework it. is nat.ural t.o begin by considering some

family of functions which are convex on t.he average. A simple and convenient. way t.o

const.ruct. such a family is to suppose t.hat. t.here exist. positive a , k n such t.hat.

(26)

where

" a2/(:r: Col) , l1/(:r: Col)
I r. = ; . I r. = l1 • • I r. = I (:r: • Col) • :r: ::!:: 0 • Col E: 0

l1:r: :r:

To derive t.he average propert.ies of I ~ and I r. from (26) we shall assume t.hat.

Elfl;'d:r:l =JEII;'d:r:
A A

and

E!fl;d:r:l =J EII;ld:r:
A A

Suppose also t.hat. only t.he sum

can be observed, and t.hat. t.he current. point. of observation is t.he point.

We shall assume t.hat. t.he loss function is linear

6(:r: , :r:') = I (:r:) - I (:r: •)

(27)

(26)

(29)

(30)
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where

fez') ::: irif fez)
xEA

From (26)-(30) and some additional assumplions, It follows that

{

Zn - f3 n ' if h (zn - f3 n ) :S; h (zn) + i: n

zn H::: zn ' if h (zn - f3n ) > h (zn) + i:n
(31)

in the second case the gradient estimate ls updated using the results of additional

observations. In expression (31) we have

(32)

where

Here

n
an ::: (nq~) -1 E a(i )ql

t ~1

(33)

(34)

(35)

If the value of the above expression Is less that i:o then a(i) ::: i:o. Parameter len in

(26), (32) is defined as

if n < n'

where

{
1 ,

len ::: (n _n')l-a-v. if n .... m" (' )0= In n ,n max

1
a ~ 0, 1/ > 0 . a + 1/ < "2 . 1/ - a > 0

(36)

(37)

and n' is the first value of n for which

Parameter £n in (31) can be expressed as

(38)

(39)

Inequalities (37) follow from the usual convergence conditions. Formula (38) defines

the point at which the average error of the iteration procedure (31) becomes less than

Its eslimate calculated using the fixed point theorem. assuming that the funclion f (z )
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Is quadratic.

Formula (39) follows from the condilion E lh (zn - fl n ) I = E lh (zn) I + l:n assuming

that h (zn - fl n ) and h (zn) are Independent and normal (Senklene 1983). The generali

zation of algorithm (31)-(39) to the multidimensional case is straightforward and is

given by Mockus (1984b).

Table 2 shows the results of computer simulation using a test function which Is uni

modal but not convex. The average deviation from the minimum over 20 random runs

was calculated. The first row of Table 2 gives the results oblained using the local

Bayesian method, the second the results produced by the classical stochastic approxi

mation method, with parameters optimal as defined by Wasan (1969), for continuously

differentiable funcllons.

Table 2: The average deviation in percent from the minimum obtained in a computer

simulallon.

Method m=2 m=5 m=10 m=20

Local Bayesian 2.5 1.25 5.1 1.85

Stochastic 4.1

Approximation

The computational algorithms and portable FORTRAN programs for the global and

local Bayesian methods described here were developed by V. Tieshis, J. Valevichene

and L. Zukauskalte, whose suggestions also helped to improve the efficiency of the

methods described In this paper.
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ON STOCHASTIC PROGRAlUUNG IN HILBERT SPACE

N.M. Novikova
Computing Center, USSR Academy of Sciences
Moscow. USSR

1. INTRODUCTION

Let us consider the problem of finding /0 and z E: ZO which satisfy the following

expression:

(1)

where Z 4: lz E: ZO C Lz(Y) I G(z(y» S 0 Vy E: YI; U ~ lu E: uO C Lz(X) I
H(u (z» sO Vz E: xl is ~z " )-measurable for any z E: ZO; UO, ZO are weakly com

pact sets; Hand G are continuous functlonals on UO and ZO, respectively; X C R lXI,

Y C R IYI are finite-dimensional sets; and w (z , .) is ~z , . )-integrable for any z E: ZOo

Assume that the functional w may be represented in the form

w(z .u) ~ <p(J g(z(y»dy. f h(u(z»dz, r f(z(y), u(z»d(y ,z»
Y X t~

where <p(.,.,.) is a function of three variables and g ('), h (. ) and f (', .) are opera

tors on ZO, UO and ZO x UO, respectively. For simplicity, we shall require <p to be non

negative. The probability measure p,(z ,.) on UO is continuously dependent on z. If

w (z , .) is integrable over a finitely additive measure then ~z , .) may be a quasi

measure (weak distribution).

In stochastic programming it is usually assumed that p,(z ,.) is unknown but that

various observations of the random variable u may be made. Such observations seem

to be meaningless in an infinite-dimensional space, so we shall suppose that only finite

projections of u (.) may be used in a numerical search algorithm for (1). We fix the

orthonormal basis ~ = I~j 1in LzOO and introduce a sequence of compatible measures

J.Ln (z .. ) on R n , n E: N = 11.2 .... I. It is required that J.Ln (z • Q) = ~z . la ~ I [a]n E:

QI> for any IJ.n (z " )-measurable set Q eRn. Here and elsewhere [.] denotes the first

n components of a vector and for any set V C Lz(X) we write [V]n =
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Ian E: R n I at E: V: an = [a]n l. where at = l: ajtj denotes the scalar product of
j =1

vectors (without brackets). We assume that for any integer n we may make indepen-

dent observations of the random variable a n distributed in accordance with IJ.n (z , . ).

The following representation holds for weak distributions by definition and for meas

ures because of their continuity [1-3]:

I(z) ~ I w(z .u)J,£(z .du) = lim I I w(z ,an~)IJ.n(Z .da n ) ~ In(z>l
-un.... [U]" -

for any z E: zoo Suppose that the functional w ( .•u) is weakly lower-semicontinuous on

ZO for any u E: UO and the set Z is weakly compact. Then the minimum in (1) is attain

able. zO E: Z, and if w (z , .) is uniformly continuous on UO Vz then

1° = min I (z) = lim min In (z)
z EZ n .... z EZ

Indeed, since Iw (z . a t) - w (z , [a]n 0 I ::s; ~n .j. 0 and w (z ,. ) ~ O. then

r w(z,u)J,£(z,du)= inf .r l~n + w(z,an~>Ilion(z,dan), ~nlJ.n(z,[U]n) .j.O
~ . n ~~

because Iio(z,·) is bounded. i.e., I(z) = infn In(z) Vz E. Zoo Hence the minimum with

respect to z and the limit as n ~oo are interchangeable.

Now the numerical search for 1° using formula (2) uses finite-dimensional vectors

only. This requires us to combine stochastic gradient methods [1,4] with increases in

n (limiting optimization). But in addition to the probiem of coordinating n and the

precision of minimization, other difficulties may arise in the numerical search for gra

dients in Hilbert space. It may be that lion (z , . ) is given only for z with a finite number

of non-zero basis coefficients. In this case it is necessary to use finite-dimensional

approximations of the set Z in the algorithm or to approximate the set ZO and to take

the constraints on Z into account with the aid of penalty functions. In addition we pro

pose the computation of approximate integrals in Euclidean space. The above con

siderations lead to the following algorithm. which links the Ritcs method and the com

bined penalty functlions/stochastic quasi-gradient method according to the scheme

offered in [5].

Algorithm 1. Fix an orthonormal basis ("(.) = f~j I in L 2(}') and specify control

sequences of numbers It, nt, Ct , R t , St t 00 and ~t. (Jt .j. O. Choose an initial approxi

mation b 1 E. [ZO]£ I for b° such that z °= b°(". Subsequent approximations b t E: [ZO]tt'

E: N, are determined by the iterative procedure

Rt
lb t +1]£t ~ rrt fb t -(Jt gradt> lljl(d~y) E g(bt("(y:»

r=l
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Here 7T t is the projection operator onto the set LZo]t ; gradb denotes the generalized
I

gradient of the expression in braces with respect to b; for a t we choose the next

independent value of the random variable distributed in accordance with J.Ln (b t { , . )
I

and satisfying the condition H(a t {(:r:~» S"t V:r:~, s = 1.2 , ... , St. Vt E: N; the

t R t S .
sequences IYT IT ~1 and l:r:s Is '=1 for tEN are sequences of Independent values of ran-

dom variables equidistributed on Y and X. respectively. If the set Y (and/or X) is

defined by its restrictions on yO (and/or Xo). we use a random number generator on yo
(and/or XO) and test whether the restrictions are satisfied. With regard to R t • St. we

shall assume that there exist at. '"It ,j, a such that for fixed Po < 1 we have

We shall also assume a rather slow increase in the penalty constants Ct too:

Ct E IblI 2 -->O,I: clfJf<oo,I:fJ t =+00.fJt,j,O
j >t,

Here and elsewhere we omit the bounds on sums, etc.. over t E: N.

Let us analyze the convergence of Algorithm 1. Set

'¥i(b ,a) ~ w (b { •a~)

d(Y) ~ J dy . d(X) 4. J d:r: , d(Y)d(X) < 00

- y - X

(4)

We require these functions to be bounded uniformly on finite-dimensional projections

of sets ZO and Uo:
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If([bJL{(y) 0 [a]nHz»1 SKf(L .n)

Ih ([a]n Hz» I S K h (n) , Ili([b]L ' [a]n) I S K 3(L ,n) , Vn EN, V[a]n E [UO]n ' Vz EX

IIgrado lit([b]L • [a]n I IYr W=1 • Izs l~ =1)11 S K.(L 0 n) , VYr E Y , VZs EX

We choose a rather slow Increase In the dimensions Lt and nt. coordinated with the

indicated bounds. If the bounds do not depend on the approximation dimension then the

following conditions are Included in (3)-(4):

(5)

(5')

(6)

We take a control sequence l"t I such that

(7)

where L is t.he Lipschitz constant of the functional H. If we do not know whether

H Eo: Lip (UO) then choosing a t we check the condition: Va ~ E UO la t =[a ]n,l implies

IH(a~(z~» S a Vs = 1,2 .... , St I. Both this check and (7) are easy for simple sets

UO. However, it Is more convenient to combine the correction of "t with the updating

of other parameters of t.he algorithm.

THEOREM: 1. Let 1(') be a strongLy convez continuous functionaL on ZOo G (. ) be a

convez continuous functionaL on ZO, H(·) E Lip (UO) with constant L, w (. " ) ~ a be

convez with respect to z E ZO ana continuous with respect to Z E ZO unijbrmLy

over u E UO, sets ZO ana UO be weakLy compact in L 2' rp( .•.•. ) E Lip (R3). ana d(Y),

a(X) < co, Then. unaer the assumptions maae above, the sequence zt 4. b t { gen

eratea by ALgorithm 1 with controL sequences satis.fying (3-7) converges to zO with

2 II t IR, I t 15, t I .probability Po on the set of ranaom sequence Yr r=1' Zs s=1' a tri.N 'tn the

strong metric of Hilbert space.

In practice it is necessary to select the control parameters in Algorithm 1

according to the problem being solved since conditions (3-7) give the asymptotes only.

Therefore we carry out some test computations with different initial ratios between fJ t

and ct (the other parameters, apart from "t. are sufficiently large) until the coeffi

cients b t are relalvely stable. After that we slowly increase n t and Lt. watching the
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stability. Note that the assumption that z belongs to the Sobolev space simplifies the

computations [5].

2. A PRIORI ESTIM:ATION OF /0

The case considered above requires a great number of observations atE: [Uo]ne'

However. these observations may be very complicated and an a priori estimate of /0

may be necessary. In this case suppose that a finite number of the following integral

inequalities are known for JJ.(z •. )-integrable Wt :

D,,(z) s,!w,,(z.u)JJ.{z.du) S,F,,(z) Vie =1,2 ..... m
V

(6)

Inequalities (6) are insufficient for single-valued determination of JJ.(z " ) on U. The

set of JJ.{z .. ) which are integrable under conditions (6) with respect to the functionals

w. w" will be denoted by M(z). z E: Zoo Let JJ.{z. U) = 1 in (6) for Ie = 1. If the func

tionaIs are integrable with respect to finite-additive measures the latter are also

included in M (z).

An a priori estimate (upper bound) jO of /0 under (6) Is given by

fO = inf sup ! w(z .u)JJ.(z ,du) ~ inf f(z)
z EZ ~(z .. ) EM (z) V - z

(9)

With the aim of finding the value /'TJ and the corresponding value z E: ZO. we shall

transform the interior problem of maximization on the set of measures M to the simpler

problem of maximization on U as described in [6. pp. 106-114] and [4. pp. 72-74] for

Euclidian space.

THEOREM: 2. Suppose that U is wealely compact. the w" are wealely continuous

with respect to u and w is wealely upper semicontinuous with respect to u and

non-negative. Then for any z E: Z there is a measure JJ.(z •. ) in M (z ) which mazim

izes the integral in (9) and which is concentrated at no more than m points

Under the hypotheses of Theorem 2. the problem of finding jO and i in (9) Is

equivalent to solving

Inf max 4>(u 1 •...• U m ,z)
z EZ lu I•...• U "'EV IA (u 1,....u,:">,.91l

where

m
4>(u 1 •...• um.z) ~ max L: w(z .ut)pt ,p ~ (pl •... , pm)

- pEA(u l, ...• u"'.z) t=l

(10)
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m
A(u 1 , .. , um,z) ~ Ip ~ 0 IDt(z) ~ ~ Wt(z ,u')p' ~Ft(z) Vk = 1,2, ... , m 1

, =1

If z does not determine whether the set A is non-empty, then a similar algorithm to that

given above may be used to compute the soLution of (10). This is based on a method

given in [51 for finding a minimax in Hilbert space. For the associated minimax func

tion the results of [7] may be used. We shall compute generalized gradients of the max

imum function 4> with respect to finite-dimensional vectors b with the help of a formula

from [8, Remark 1]. After some transformations we obtain

Arg max max
A (u l, ... ,um.b (') Ew (b (,u ')11'

'al

(11)

m
where M = 171 = (711 , ... , 7Im)1 If ~ Wt(b(.u')p' =Ft(b() (and/or Dt(b{» then

, =1

'" IWt(b;,u')"" + aW(b(,u') 'I 0 (d/ 0) k 12 1 Th' . I'-' \ " abJ' p ~ an or ~ , =, ,... ,m. IS simp e
, =1

form for the partial derivalive of the associated maximum is due to linearity with

respect to p. It is now sufficient to use the simplex method twice to find the partial

derivalive from (11). The dimensionality m of the simplex is usually small but we must

regularize the problem as described in [9]. Formula (11) holds when the' restrictions

are regular and the selling mapping is continuous. If these conditions are not satisfied

then difference formulae may be used for the gradients as well. Thus we use the follow

ing algorithm to find fO and i in (9):

Algorithm 2. Choose an orthonormal basis (in Lz(Y). Assume that for any lEN a suf

ficiently simple set at [6\ is known, where b( = Z in (9). Let '" ~ (J, b) =

("'0' "'1"")' where the first component, J approximates the value jO in (9). We know

that J E [Jo,J°] for any J o ~ infz .M /(z), J O ~ maxz,m /(z). Set C3 ~ (fO,b), [(,)It =

(J, [b]t) = ("'0''''1' ...• "'t). Choose an orthonormal basis ~ in Lz(X). Assume that for

any n EN a sufficiently simple set An is known, where [U]n CAn C [UO]n' An cAn +1.

Choose a continuous measure v on UO. Let v n denote the cylindrical projection of v

onto [UO]n' In particular. if An +1 n R n = Anand d (A n) < 00 "'In EN, then we may

take v n (·) = d n (')[dn (A n )r1, where d n (') is the Lebesgue measure on R n . Take an

initial approximation (,)1 = (J1, b 1) for (/"0, b) and control sequences of numbers It, nt,

R t , St, Ct l' 00; let. fJ t .. 0; tEN. Subsequent approximations ",t = (Jt • b t ). tEN. are
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determined with the help of the following iterative procedure:

Here". t is the projection operator onto the set [Jo'.r>] X Bit; for a it we take values of

the random variable distributed on Ant in accordance with lint (in particular, equidis

tributed) such that H(a Hz:» :S 0 "'Is =1, St for any a satisfying the conditions [a]n

E: A n "In > nt, [a ]nt = a it; i = 1,m. The functions '¥tf correspond to w t for k = 1,m

in the same way that '¥tt corresponds to w. All the other notation remains the same.

For simplicity we took equal parameters {, An, lin for different u. t , Ie =1.m in

Algorithm 2.but this is not obligatory. With regard to the penalty constants Ct , the

possibility of choosing different values for different restrictions (first of all for Z E: Z

and then for J) may prove useful in practice.

Algorithm 2 is based on an idea put forward in [6, p. 256]. In the case when

A (u. 1 , ...• U. m, z) ¢ ¢ this idea may be represented schematically in the following

way:

inf max 4> =
z EZ u I, . . . • u m EV

infz ,y
J= max ~

".l.....u '"

J = infz,y
J~~ ';;'ul, ... ,U m EU

J = infz,y
J ... flfJ-~n2V(dUI) . " v(dum)=O
~ ~

The version for infinite-dimensional sets Z and U is given in [7] under the conditions

1I0U E:: UO I liu. -u. °ii :S £ I ~ 6(£) V£ > 0, u. ° E: UO. The possiblllty of non-computing

integrals in penalty functions was investigated in [10] but for the flnite-dimensional

case only. There we suggested combining the penalty function method [6] with the sto

chastic quasi-gradient method [4]. The combined method constructed in this way is not

included in [4] because of the necessity to increase the penalty constant to infinity.

New techniques developed for this case extend the set of problems that can be solved

by stochastic programming methods. Using this technique together with the Ritcs

method for the case of Hilbert space we obtain the required results.
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We shall now make the same assumptions concerning functions ~, "Itf and their

generalized gradients as were made with regard to "It, "Itt and gradb "Itt. The

correspnding parameters will l1e denoted by the superscript Ie, Ie = f,;j. In order to

coordinate the control sequences of Algorithm 2 we shall repLace conditions (5-7) by

the following:

(12)

(13)

(14)

We shall now investigate the convergence properties of Algorithm 2.

THEOREM 3. Let the assumptions made above and the hypotheses of Theorems 1

and Z (except for H E: Lip) be satisfied. In addition, let the }'unctional i (.) be

strongly convex; the functional cP(u 1 , ...• U m ,z) be non-empty for any z E: Zoo

U 1 •...• U m E: U; vecotrs (Wt (z , u 1) •... , W t (z , U m» be linearly independent for

any

m
Ie E: lie = 10m 2: Wt (z ,u t )Pt = Dt (z) Vp ~ 0:

t =1

m
2: w(z ,ut)Pt =cP(u 1 •... , um,z)l U

t =1

m m
U lie =10m L wt(z ,ut)Pt =Ft(z) Vii ~ 0: L w(z ,ut)Pt =cP(u 1

, ....• um,z)!
t~ t~

and }'unctions W ([b {lb ,u). w t ([b {lL •u). Ie =1.m be continuously differentiable

with respect to b for any l E: N, u E: UO. Then with probability P6m the sequence

z t = b t { generated by Algorithm 1 with control sequences satisfying (3-5) and

(12-14) strongly converges to z in L 2(y) and the sequence of numbers Jt converges

to jO (see (9».

Remark 1. It is sufficient for the convergence of Algorithm 1 and 2 if the functionals

I, I display strict uniform convexity, i.e., the assumption of strong convexity can be

weakened. If the functionals to be minimized display other forms of convexity the algo

rithms may be used after special regularization.

Remark 2. Algorithms 1 and 2 may be simplified if for any t we use all previous pairs

x T, y T and only take a few new elements in lx~ l. ly: l. for example 5 t = Rt = t.

x~ = x s , y: = y r, S • r = l.t. With regard to vectors at, it is sensible to use more

than one value for every t (at least for large t) and to take the corresponding

averaged values for the approximation of integrals in the algorithms.
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REDUCTION OF RISK USING A DIFFERENTIATED APPROACH

I. Petersen,
Institute of Cybernetics
Tallin, USSR

1. INTRODUCTION

In this paper we consider the problem of subdividing the range of the random vec

tor In a risk minimization problem such that the best piecewise-constant decision rule

Is obtained. This is a generalization of the optimal partition problems which arise in

optimal location, standardization, piecewise approximation, and cluster analysis.

Necessary and sufficient conditions for local optimality of the partition are obtained in

the case of continuous density, and an Iterative method for calculating such partitions

is presented.

2. THE PROBLEM

Consider the decision problem

minx 11(x, t) I x E: Xl (1)

where X eRn, t Is a random vector with range 8 c R m and distribution I4dt), and let

E be the a-algebra of the ~-measurableBorel subsets of 9. We shall assume that for

almost all t E: 9 problem (1) has unique solution x'(t) which Is a measurable function.

Let us interpret 8 as a set of Individuals, X as the set of admissible decisions, and

1 (x , t) as the loss incurred by the individual t when the decision x is taken. Then for

every Individual t the function x' (t) gives the decision associated with minimal loss.

The decision x' (t) can therefore be called the individua.l optima.l (iO) solution and

the mean value of the corresponding losses I = f 1 (x' (t), t)~(dt) the iO-risk of
e

problem (1). If, however, only one decision is allowed for all the individuals, which is

the same for aU of them, then the risk is minimized if the decision is taken to be the

solution x' of the problem

minx lj1(x ,t)~(dt) I x E:Xl =Ii
e

(2)
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Let us call z' the mean optimal (MO) solution of problem (1) and 11 its MD-risk.

Let TIt' where k is an integer. be the set of all partitions 71"t =191 • . . .• 9 t I of 9

such that 9 t EL;. u9t =9. JL(9t n ( 1)=0 when i #j, and JL(9t )=pt >0.

i =1 •... ,k. The partition 71"t is associated with k conditional measures induced by the

measure JL on the subsets 9 t : JLt(A) =JL(A)/pt ,A c 9 t • A E L;. The decision z".(t)

which is MO on 9 t with respect to JI.t for i =1 •...• k we call the 71"t-differentiated

optimal (TIt-DO) solution of problem (1). Thus z".(t) =z; for tEat and

zi = arg min r f (z ,t)JL(dt). The 71"t-DO risk for the whole range 9 is given by the sum
.2: EX8i

t

L; J f (zi ' t)JL(dt) = I".
t =1 8i

Finally. taking

we call 71"~ and It the k-DO solution and risk. respectively. of problem (1).

The risk values defined above satisfy the inequalities

(3)

(4)

(5)

Particular k-DO optimization problems (in which it is required to determine

optimal partitions) have been considered in various (mostly discrete) formulations. In

optimal location problems [1] X = 9 and f (z •t) = liz - ~ I. In cluser analysis [2.3] we

also have X = 9, but f (z ,t) = liz _~12. In standardization problems [4.5] X = 9. but

f (z • t) (the loss incurred by an individual with needs t which must be satisfied with

standard z) may turn out to be a more complicated function of z and t. In problems of

optimal piecewise approximation [6] of a function V (t) by combinations of the coordi

nates of a vector function f (t) which are linear on 9 t • we use the function

f (z , t) = Ilv (t) - z Tf (t)112. where z is the vector coefficient. The problem of finding

k-DO solution also occurs in other fields. Some authors [7.8] have considered using

piecewise-constant approximation of the decision function to obtain an approximate

solution to the distribution problem in stochastic programming. In this case we use a

differentiated optimal approach to find the regions whdre the decision function is

most constant.

The aim of this paper is to investigate the k-DO problem in the continuous situa

tion, I.e .. in the case when the measure JL has continuous density J.L<dt) =g(t)dt. We

shall give the necessary and sufficient conditions for local optimality and present an

iterative process to calculate locally optimal solutions.
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3. NECESSARY CONDITION FOR OPTDlAUTY

THEOREM 1. If Trt. = 19; .... , 9t.1 is a solution of the problem

(6)

and also f (:z: • t) and y (:z: , ,0 are continuous in t on 9 for all:z: E: X, to lies on the

boundary 5 t'j between 9 t' and 9j. and y (to) > O. then

where

:z:; =arg min Jf (z • t)y Wdt, s = i ,j
x a e;

(7)

(6)

Conditions (7-6) determine the structure of the dividing surfaces of the optimal

partition. In particular, when X = 9 and f(:z: ,t) = rp(lb: -til), where rp(t) is strictly

monotonic on t > 0, it follows from (7) that the regions 9; of an optimal partition are

convex polyhedrons with their faces lying on the hyperplanes through the midpoints

and perpendicular to the Line segments connecting :Z:t' and zj.

The necessary conditions (7-8) lead to the following result:

THEOREM 2. The optimal partition problem (6) is equivalent to

where

t
I(z1' ... , Zt) = ~ J f (Zt • t)J./.(dt)

t =1 et(xl.... ,:c"')

(9)

(10)

(11)

By means of this theorem the optimal partition problem is reduced to a finite

dimensional nonlinear programming problem.

4. AN ITERATIVE METHOD

Locally optimal partitions can be found using the following generalization of the

"k-means" method: let z~O) , ...• Zt(O) be some starting values for :z:~ , ...• zt.; hav

ing already found :z:?) •...• Zt(S). construct 9[ = 9 t (z?) ....• Zt(S »,
i =1 ....• lc:. and take

(12)
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The iteration process (12) is a quasi-gradient with respect to the functional (10)

and a simple iteration process with respect to the operator fi =Tfi. fi =(z 1 . . . . • zj:).

defined by (12). From the Banach fixed-point theorem we obtain the following result:

THEOREM 3. Let the operator T dfifined by (12) map a subset i of the set X x ... x X

into itself. f ~'B(Z • V be positive dfifinite for almost all ~ E: 9. and the inequality

hold for some P. 0 < P < 1. inX, andfor i =1 •.... k.

Then problem (9) has a unique local solution in i and the iteration process (12)

converges to this solution at rate pS for arbitrary starting point %(0) E: i.

5. SUFFICIENT CONDITIONS FOR LOCAL OPTIlIALITY

Let us consider the unconstrained minimum case X =R n . Then problem (9), and

therefore also the k··DO problem (6). becomes the problem of constrained minimization

of the functional [(z 1 • . . . • zj:) in k . n -dimensional space. The Hessian of the func

tional [ is a block matrix with n x n blocks:

(14)

(15)

THEOREM 4. If Z;. ..... Z~ satisfy the necessary conditions for optimality (7-8)

and at this point the block matriz with blocks (14-15) is positive definite. then the

partition 9 i' =9 i (Z;. •...• Z~). i =1 •...• k. is locally k-DO optimal.

For the matrix (lJ lJ
2
: ) to be positive definite it is. in particular. necessary for

zi Zj

the diagonal blocks (15) to be positive definite. This leads to the conclusion that the

optimal boundaries Sij cannot go through points with positive ~ measure.

In general, the functional [(zl' ...• Zj:) is multi-extremal. However. if the Hes

sian is positive definite over the whole space R n x· .. x R n • then the k-DO problem is

unimodal. In the one-dimensional case with quadric losses this fact leads to the follow

ing result:

THEOREM 5. If X =9 =R 1 and f (z ,~) = (z _~)2. then for the k-DO problem to be

unimodal it is su,fficient that the density g (~) satisfies the condition
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liB

g(Yl)(t1Z-Yl) +g(Yz)(Yz-t1Z) <1 gWdt
III

(16)

for all Yl' Yz ER 1, Yl <Yz where t 1z is the centre of mass ofg(t) bet.ween Yl and

Yz·

It. can be shown from (16) t.hat. g (t) is logarit.hmically concave [9].
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A STOCHASTIC LAKE EUTROPHICATION MANAGEMENT MODEL

J. Pinter and L. Somly6dy

Research Centre for Water Resources Development (VITUKI)

H-1453 Budapest, P.O. Box 27, Hungary

1. INTRODUCTION

Due to the world-wide danger of environmental degradation,

water quality management has attracted increasing attention in

the last decades. As a consequence of this tendency, a large

number of descriptive (simulation) and management (optimization)

models have been developed and applied, cf. e.g. Dorfman et al.

(1972), Marks (1974), Deininger (1977), Loucks et al. (1981),

Somly6dy (1983), Somly6dy and Wets (1985), Somly6dy and van

Straten (1985). These interrelated (sub)models frequently have

much different temporal and/or spatial scaling (information

structure): this renders difficult their proper combination.

Moreover, even recognizing the inherent stochasticity of the

studied problems (analyzed in details by descriptive submodels) ,

most optimization (sub)models are formulated as deterministic:

this fact again implies complicated methodological issues.

In this paper a stochastic programming model is presented

for solVing a lake eutrophication management problem. The main

features of the investigated problem are outlined in Section 2.

Principles of the solution methodology are summarized in Sec

tion 3, while Sections 4-5 describe the mathematical framework

of the optimization model and the solution method (more details

can be found in Somly6dy and Pinter (1984)). The conclusions

summed up in Section 6 are of direct relevance tomany similarly

complicated stochastic optimization problems, such as e.g. re

servoir system design, monitoring network operation planning,

inventory control, mass-service systems etc.
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2. LAKE EUTROPHICATION; MANAGEMENT ALTERNATIVES

Man-made eutrophication in lakes - caused primarily by in

creasing municipal and industrial waste water discharges and

the intensive use of chemicals in agriculture - has been re

cently considered as one of the major water quality problems.

The typical symptoms of eutrophication (algal blooms, water co

louration, floating water plants, organic debris, unpleasant

taste and odor) frequently lead to serious limitations of water

use.

Both the main causes of artificial eutrophication (increas

inq amounts of nutrient load, reaching the lake) and the pos

sible water quality control alternatives are physically origi

nated from and connected to the region surrounding the lake.

Their impact on lake water quality is the result of interdepen

dent (ph~sical, chemical and biological) in-lake processes.Thus,

eutrophication management requires a complex analysis of the

.~.,.", ..,.,.
/.............".

,. '-..-. '-
N

~
.-.".""'" .-'

~ pre-reservoirs
_.- boundary of the catchment • sewage discharges/treatment

plants

FIGURE 1. Lake eutrophication management; water quality

control alternatives
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whole region, including all relevant natural phenomena/processes

and human activities. As an example, consider the region of a

lake (Figure 1), where the most important streamflows and possible

water quality management options are also shown: for modelling

reasons, the lake is subdivided into 4 basins, the water quali

ty of which shows marked differences, with a well-defined longi

tudinal profile

Because of the obvious stochasticity of the studied problem

(caused primarily by hydrological and meteorological factors),

even for a deterministic management option (e.g. a fixed config-

Bosln IV

10

Basin IV

70 80 90 100
(Chllmax [mgj m3 ]

10 60 70 80 90 100

(Chi lmax [mg/ m3]

FIGURE 2. Water quality realizations vs. given treatment

configurations
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uration of treatment plants), the lake response will be stochas

tic. This fact can be illustrated e.g. by Figure 2,in which wa

ter quality density functions (based on 1000 Monte Carlo simula

tions) are displayed for a "cheap" and an "expensive" treatment

configuration. (For each subbasin, the resulted water quality is

characterized by (Chl-a)max' the annual peak chlorophyll con

centration. )

The relevance of random factors, influencing the impact of

decision alternatives, implies that eutrophication management

problems should be naturally formulated as stochastic program

ming models. Before doing this, in the next Section a short

overview of the considered submodels and the applied methodolo

gy is presented.

3. DECOMPOSITION AND AGGREGATION

As already mentioned in the Introduction, most descriptive

and optimization models have a different information structure:

while the first model-type is applicable to analyze in details

any single decision alternative, the second model-type is able

to sequentially evaluate a set of alternatives, based on their

aggregated characteristics. The coordinated, simultaneous use

of these submodels is possible only by considering a number of

related theoretical and technical issues, cf. e.g. So~ly6dy

(1982a, 1982b, 1983 ), Somly6dy and van Straten (1985) or Pin

t er (19 80 , 1983, 1984).

The present systems modelling approach is based on the

principle of decomposition and aggregation (Somly6dy (1982b)).

As a first step of this methodology, the studied complex system

is decomposed into "homogeneous" parts which can be investigated

in details: these parts form a hierarchical system. In the seoond

step, the obtained information is aggregated for further analy

sis, while neglecting details, unnecessary on the present level

of hierarchy. This procedure is obviously of iterative charac

ter, with adaptive feedback possibilities. As a result of this

method, instead of having a huge, hardly tractable model, a

coherent system of detailed and aggregated submodels is obtained.

The application of the outlined methodology for lake eutro-
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phi cation management in shallow lakes is illustrated by Figure

3, in which the relevant submodels and their connections are

displayed. On the top of this hierarchical structure a regional

development model is situated, which summarizes the most im

portant features of the considered man-made activities and nat

ural processes (for more details see Somly6dy (1983) or Somly6dy

and Pinter (1984)).

stratum WATERSHED ~
........ _--'--'

~fr~ ~-t--\.,,----LAKE
\:::.;.::1 /
...··~L __ ... ",'

.......... _-,
t hierarchy levels

1 submodels for "homogeneous" segments (dotted areas)

2 integration of submodels

FIGURE 3. Decomposition and aggregation: submodels and their

interrelations

4. LAKE EUTROPHICATION MANAGEMENT MODELS: A GENERAL FRN1EWORK

The following notations are introduced:

a particular feasible decision alternative (a water qual

ity management configuration), represented as a vector

of the n-dimensional real Euclidean space;
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the elementary random events and their set which are

considered in the stochastic model of the lake eu

trophication management problem;

the underlying probability space;

resulted water quality for a given decision and a

random outcome, in lake segment (subbasin) i, i=l, ..

. . . , I ) ;

~(~,w) The vector with components c(i) (~,w) i=l, ... , I;

c(i) ,c(i) (w) target water quality, respectively given by a de-
g g

terministic target level or a probability distribu-

tion function (p.d.f.);

c , c (w) the respective target water quality vector (or vec-g -g
tor variable p.d.f.);

a real-valued loss-functional, measuring the undesir

able deviations from the target levels, specified

for each subbasin;

~(~) :Rn~Rm a vector-function, expressing technological con

straints on treatment alternatives;

right-hand side constant vector of technological con

straints;

a vector-function, representing financial (resource)

implications of decision ~;

right-hand side parameter in the resource ~onstraint;

lower and upper bounds on x.

Applying the above notations, the following general model

-type can be formulated for lake eutrophication management:

min F {C (x,w), c (w)}- - -g

~(~)~.e.

c (~) ~k

(1 )

(2 )

(3 )

(4)

The technological and resource constraints (2)-(3) often

can be reasonably well approximated by piecewise linear, convex

functions (more details on this are given e.g. in Somly6dy and

Pinter (1984), Somly6dy and van Straten (1985)). Consequently,

(2) and (3) can be substituted by linear constraints of the form
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A x $ b

~ x $ k

with respective (m x n)-matrix A and n-vector c.

(5 )

(6 )

The loss-functional F can be defined in a number of ways.

First, it is often assumed that a proper weighting of the sub

basins can be expressed by some scalar factors Wi such that

i=l, ... , I and
I
L:

i=l
W.

1.
1.

This technique originates from multiobjective programming theo

ry, cf. e.g. the survey of Hwang and Masud (1980). Thus, F is

considered in the specialized form

I ( . ) (i)
F = L: w. F., where F.=F. {C 1. (x,w), C (x,w)}. (7)

i=l 1. 1. 1. 1. - g-

Again, the loss-functionals Fi can be defined in many dif

ferent forms. We emphasize that, generally speaking, these for

mulations are not equivalent and reflect more or less different

considerations on the stochastic factors. (Principles of formu

lating stochastic programming models with many examples are

given e.g. in the works of Ermoliev (1976), Yudin (1979)or Kall

and Pn§kopa, eds. (1980)). In Somly6dy (1983), the following ob

jective components were considered:

(8)

and

where E and D2 respectively denote the (eXisting) mathematical

expectation and variance of the figuring random variables ,(w > 0) .

In Somly6dy and Pinter (1984), we investigated objective

functions with the following components:

F. {C (i)
(~,w) , C (i) } = E(C(i) (x,w) _ C (i) ) 2 (10)

1. g g +

F. {C (i) (~,w) , C (i) (w)} = 7!H(i) (Z)-H(i) (z) I dz (11)
1. g -00 ~ g-
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where

H(i) (z)
x

p(C(i) (~,w) < z) (13)

and
H(i) (z) = p(C(i) (w) < z)

g g
(14)

are p.d.f.'s of the resulted and target water qualities (random

variables) per basin. Note that the objective function (11) is

based on Sherman-statistic (Sherman (1957)), while (12)is based

on omega-square statistic (cf. e.g. Ermakov (1975)). Both sta

tistics give a characterization of the "overall" deviation of

two p.d.f.'s in a more complete manner, than e.g. the frequently

applied Kolmogorov-Smirnov-type statistics; they have also less

inherent .subjectivity, than e.g. the more common chi-square sta

tistics. We also note that Somly6dy and Wets (1985) formulated

another stochastic model for lake eutrophication management

which leads to a two-stage stochastic programming problem; its

numerical solution was accomplished by King (1985).

5. SOLUTION METHOD

It is apparent from the model variants presented above that

for arbitrary decision alternative, the result of that partic

ular decision depends also on a number of random factors. This

functional relations are far too complex to be treated in an ex

plicit analytical form. Therefore the solution method is based

on a careful combination of optimization and Monte Carlo simu

lation: the sequentially generated, improving decisions are

evaluated with gradually increasing accuracy (for details on the

theoretical background see Pinter (1983, 1984)).

As all considered versions of the optimization problem (1)

-(4) are in principle deterministic nonlinear (or linear) pro

gramming problems (except the numerically very relevant fact

that the objective function values can be estimated only via ex

pensive simulation cycles and with some inherent inaccuracies),

an arbitrary efficient nonlinear programming method could be ap-
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plied to solve them. Considering the special structure (linear

constraints) of the above models, the nonlinear optimiz ation

package, developed by Murtagh and Saunders (1977) could be ap

plied advantageously.

6. SUMMARY OF RESULTS; CONCLUDING REMARKS

The numerical results for a number of runs with the dif

ferent objective function types (8) - (12) were given in details

elsewhere, cf. Somly6dy and Pinter (1984); therefore only a

qualitative summary of these results is given here. Independent

ly of the special form of the objective function, the results

basically followed the same line: if the amount of available re

sources is relatively small, then only treatment plants figure

in the optimal solution and the more costly reservoirs are ab

sent. On the other hand, as the variance of the resulted water

quality can be substantially decreased only via reservoirs, be

yond a certain threshold value of available resources reservoirs

begin to play an important role, gradually substituting treat

ment plants in the optimal solution/whenever this is possible.

The basically analogous behaviour of the various models irrlicates

their coherence. This point deserves attention as, in partic

ular, it shows that properly aggregated, simpler models (suchas

the linear programming model variant, presented in Somly6dy

(1983)) are capable to preserve the main features of the studied

nonlinear, stochastic problem. The different stochastic program

ming versions,of course, yielded a fair amount of supplementary

information and basically verified the findings of the LP model.

While following the mentioned general tendency, non-neg

ligible differences could be also observed between the "optimal"

solutions, depending on the form of the objective function. E.g.

one of the sub-basins clearly had a dominating role in the com

posed objective function value (7), when using (8), (9) or (10)

for F., while applying the statistical criteria (11), (12) this
1

feature was much less evident. This clearly shows the importance

of proper stochastic formulations of optimization problems (¢ven

a complex underlying random structure) - a fact frequentlyover

looked in practice, cf. e.g. the critical survey of Hogan et al.

(1981) .
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The case study summarized above indicates that the field

of stochastic optimization is full of challenging theoretical

and practical (numerical) problems to be solved. Among these

only some are enumerated here:

- in many cases the analyzed system can be studied only via

costly and inherently inaccurate (simulation) methods: this

fact motivates the investigation of approximation schemes

(cf. e.g. Wets (1983)) as well as other (statistical) methods

for reducing the necessary number of function evaluations

(cL e.g. Pinter (1983));

- complex systems can frequently be studied only by interactive,

rather than automatic optimization procedures;

- multiobjective analysis and sensitivity studies may help to

a large extent the identification of needed supplementary da

ta and the correction of model structure and parameters.
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A DYNAMIC MODEL OF MARKET BEHAVIOR

I.G. Pospelov
Computing Center, USSR Academy of Sciences,
Moscow. USSR

1. INTRODUCTION

Petrov and Pospelov have posed the problem of building an aggregate model of

economic mechanisms based on micro-descriptions of the relations between individual

economic agents [1]. This problem has been partially solved in [2]. Micro-descriptions

of the process by which material wealth is produced have been constructed, and aggre

gated to give a macro-description of this process in terms of a production function.

This approach allows relatively simple and well-structured models of market economies

to be developed. However, a micro-description of the commodity market, Le., of the

process by which uniform prices are fixed as a result of exchanges between economic

agents, is still lacking. This paper describes a new approach to the above problem and

gives the first results achieved using this approach.

The problem of market description is traditionally treated as one of market equili

brium [3,4]. However, non-obvious a priori assumptions can be found in equilibrium

models. Why is it that completely arbitrary interests are tolerated for some economic

agents (consumers) while others (producers) are assumed to have identical interests

(maximization of profit)? Why doesn't the price depend upon the volume of business?

In any case, the dependence of usefulness on product quantity is non-linear.

Ideally. a micro-description of the market should explain rather than merely pos

tulate such empirical phenomena as maximization of profit by producers and weak

dependence of prices upon the volume of trade. To achieve this it is necessary to con

struct a dynamic model of market trading behavior. Equilibrium in such a model would

be represented by either a partial solution or a limiting case. However, it is well

known that attempts to describe the approach to equilibrium come up against a number

of fundamental difficulties [4]. These difficulties seem to be caused to a large extent

by the interests of the parties involved being treated as fixed and unchanging. A sim

ple example illustrating these points now follows.
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Suppose that there are three traders (A,B,C) each of which holds some goods pro

duced by the others in addition to their own. Assume that the first party (A) is in need

of product A (its own) and product B; the second party (B) needs product B and product

C, while the third party (C) is in need of product C and product A. Equilibrium

exchange resulting in benefits to each party is possible. At the same time, however,

any exchange between pairs of parties causes the situation of one of the parties to

deteriorate. If a tripartite bargain cannot be struck, one of the parties is expected to

become a dealer, acquiring products for further exchange rather than for consump

tion. If this event is described as a change in the utility function of the dealer, then

the new consumption utility function cannot be defined arbitrarily - it must be in

agreement with the interests of the other parties. In any case, the interests of profes

sional dealers are fostered by market laws.

What are these interests? Because traders who ruin themselves are ousted from

the market, it is clear that a party who is unable or unwilling to minimize the probabil

ity of ruin is expelled from the system before another trader who acts in such a way

that the probability of ruin is minimized. Thus we can say that only those parties who

strive (directly or indirectly) to minimize the probability of ruin will remain in the

market.

2. THE MODEL AND ITS GENERAL PROPERTIES

One of the simplest possible models of intermediated trade is given below. It does

not take into account the dealer's interests beyond the market or changes in behavior

as a result of market competition. Our aim is to find out whether fear of ruin causes a

dealer to perform the functions of an intermediary, and what value such a dealer

places on the standard economic concepts of profit, price, etc.

Suppose a given product is exchanged for money. The producers sell the product

to the only dealer in the market, who in his turn sells the product to n consumers (Fig.

1). A simple description of the behavior of producers and consumers now follows.

At each moment of time producer i has a fixed stock of product u;; he is ready to

sell any part of that product u, 0 S; u s; Uf' for an amount of money not less than

Vi(u), where Vi is a given supply function. In a similar way, consumer j is always

ready to buy any quantity of product v ~ 0 if the amount to be paid does not exceed

Vj(v), where ~ is a demand function. U i , Vj are assumed to be smooth and monotonic,

with Vi being strictly convex and Vj strictly concave (see Fig. 1).
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We shall make three assumptions regarding the behavior of the dealer:

1. Bargains between consumers and producers are made at random times. These

times form Poisson distributions which are independent of each other. Under these

conditions a dealer cannot always sell a newly purchased product immediately. Such

products are accumulated as stock Q > O.

2. The volume of business ui' Vj within limits 0 ~ Ut ~ Ui', 0 ~ Vj ~ Q(T), at the

times T when business can be performed is also determined by the dealer.

3. The dealer purchases on credit, so that he has debt D at any moment of time;

the debt is charged with fixed interest r. D jumps in size on purchasing and decreases

on selling.

As the behavior of the consumers and producers does not change, the state of the

system is determined by Q and D, and the dealer's strategy is to choose functions

Ut (Q, D), 0 ~ u t ~ u t', and 'Vj(Q, D), 0 ~ Vj ~ Q(T), which tell him how much to buy or

sell if at the time of bargaining he has stock Q and debt D. If strategy 0 == lUi' V j l
has been chosen and the functions ui ,v j are Borelean, then !Q(t), D(t)! is a separ

able, stochastic, continuous, uniform Markov process (5):

m n
dQ == L: u i (Q ,D)d~i - L: Vj (Q ,D)d'TIj

i =1 j =1

(1)

m
dD == rDdt + L: Vi (Ui (Q ,D»d~t

i =1

n
L: Vj(Vj(Q ,D»d'TIj

j =1

Here ~i ' 'TIj are independent Poisson processes with frequencies ~i ' J.J.j' respectively.
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Financial ruin is naturally connected with debts piling up over a certain level D' .

The probability of D(t) >D' for some t ~ 0 (with initial state Q(O) =Q D(O) =D) is

denoted as i:5 o(D' ,Q ,D). If D' is sufficiently large its actual value turns out to be of

little importance.

Statement 1. If D' -+ + 00, then w(J(D, Q ,D) -+ "'o(Q ,D) monotonically and uniformly

on 0, D and Q. Here

"'(J(Q,D) =p! lim D(t) = +00 I Q(O) =Q, d(O) =Dj
t-++oo

(2)

where the right-hand side represents the probability of debts increasing beyond all

bounds in trajectory (i), escaping from (Q ,D).

From the mathematical point of view, it is the limiting value of "'0 that is most con

veniently assumed to be the ruin probability; thus, ruin is treated merely as the

unlimted growth of debts. A dealer is therefore assumed to choose strategies that

minimize "'(J' It is important to note that if a dealer refuses to do business at all

(Ut = Vj = 0 , 0 = lO, 0 D, then the equation for D is of the form dD I dt = rD. Thus,

from (2), Wo= 0 when D s; 0 and "'fj = 1 when D > O. The danger of ruin in the form of

an increase in debts therefore becomes an actual incentive to promote business

activity when D > O. If a dealer does not trade when D > 0, he will be ruined for sure;

but if he still conducts his business he will probably manage to save himself and reduce

D s; O.

The strategy 0 is the optimal strategy if "'0 S; "'(J for any 0, Q, D. According to

Bellman's principle, the optimal strategy should minimize the increment of "'0 at every

transaction.

Statement 2. There exists an optimal strategy 0 = IUt ,vj l in a class of Borelean

functions· Ut ,Vj' "'{j = wis the smallest lower semi-continuous function which satis

fies the Bellman equation:

8w _ n ._
r~ = A(", - L: aj mm w(Q -v ,D -Vj(v» -

uD j=l osvsQ
(3)

m

L: (Jt
t=l

min w(Q + U ,D + V t (u)))
O-s;.U~U'I:

n m
A= L: J.l.j + L: At aj = J.l.j I A ; {Jt = At I A

j =1 t =1

-This strategy is also optimal in the broader ciaBB where Ut. v j are random quantities
whose distribution is a Borelean function of t • Q , D.

(4)
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and lhe conditions 0 :s iJ :s 1, lim iJ = 1 uniformly on Q.
D~+-

u{ (Q, D) , Vj (Q ,D) lead lo minima on lhe righl-hand side of (3).

The values

3. STUDY OF THE BELLMAN EQUATION AND INTERPRETATION OF THE RESULTS

Two time conslanls 1/ rand 1/ ft appear in equalion (3). If lhe rale of inleresl is

assumed lo be ~ 107. per year and lhe frequency of lransactions is ft ~ 100 per year,

lhen lheir ratio p ~ 10-3 is a very small number. A small value of p means lhal in lhe

period belween lransactions lhe debl increases ralher slowly on lhe average, so lhal

individual lransaclions do nol have a decisive effecl upon lhe fale of a dealer. The

oplimal behavior described above is inlended for many lransactions and displays

features characleristic of large economlc syslems. Separalion of lhe main parl of

equation (3), al p -+ 0, makes il clear lhal lhe rUin probabilily differs essentially from

o and 1 (by more lhan O(VP» only in a narrow band G (of relative widlh O(VP» in lhe

vicinily of lhe curve D = R(Q) (Fig. 2). The monotonic, non-negalive, concave,

bounded function R is lhe only solution of lhe equalion

n
pR(Q) = L: aj max (Vj(v) +R(Q -v) -R(Q» +

j=l o,.;v,.;Q

m
L: ~{ max (-U{(u)+R(Q+u)-R(Q»
(=1 o,.;u,.;u'

(5)

The upper bound of domain G is cJ =1 - O(VP) and ils lower bound is cJ =O(VP). Thus,

R(Q) is lhe maximum credil which, wilh a high degree of probabilily, will be repaid by

a dealer if he has slock Q. In olher words R(Q) represenls lhe dealer's solvency. The

non-negalive value P = R(Q) gives lhe amounl of credil assured reliably by lhe very

posilion of lhe dealer in lhe markel. This value is called lhe "price of lhe firm".

The unique and continuous funclions u{o(Q) , vl(Q) which yield maxima on lhe

righl-hand side of (5) represenl firsl approximations of oplimal functions

u{ (Q, D) , Vj (Q, D). The summalion from involving aj on lhe righl-hand side of (5) is

apparently non-negative. From lhis we can deduce lhal a dealer wiU nol sell all his

slock Q at once (vl(Q) '" Q) if lhe price offered by lhe consumer is less lhan

M(Q) =R(Q) - R(O). By analogy, looking al lhe summalion lerm involving ~(, we con

clude lhal a dealer wilhoul slock wiU nol buy slock Q(ul(O) '" Q) if he is asked lo pay

more lhan M(Q). Thus, lhe value M(Q) acls as an exchange value, i.e., lhe monelary

value of slock-in-lrade formed by lhe markel. Thus, lhe firsl solid economic resull has

been achieved: lhe monelary value of a dealer's assels - his posilion P and slock M 

is sel by lhe markel and his solvency is equivalenl lo lhe value of his assels

R = M + P. Replacing R by M on lhe righl-hand side of equation (5), il follows lhalif
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a dealer knows lhe exchange value M(Q), his oplimal slralegy would be lo maximize lhe

profil he makes on every lransaclion, laking inlo accounl incremenls in lhe exchange

value of his slock-in-lrade. The righl-hand side of (5) expresses lhe average amounl

of profil from lrade, assuming slock Q. In lhe model under discussion, lhis profil is

posilive (a dealer sells al a price higher lhan lhe exchange value and buys al a lower

price) and D =R(Q) is exactly equallo lhe percenlage charged for credil. This is lhe

economic inlerprelation of equalion (5).

There is also another way of describing optimal behavior. Lel L: denole a sel of

slralegies, wilh ut ' Vj being dependenl only on Q. In parlicular, Clo = lut ' vii E: L:.
Il follows from (1) lhal lhe probabilily of a dealer having slock Q E: A C R i al lime

t + to depends enlirely on Q(t O) and nol on D or to. Lel F t (A IQ) denole lhls probabil

lly. Il lurns oul lhal slralegy 0 0 yields lhe maximum of lhe funclional

i.e., P[Oo] ~ prO] for all 0 al any lnilial Q. The value J.Lj Vi (Vj (Q» is lhe average pro

fil of a dealer lrading wilh consumer j when his slock is Q; by analogy, At Vt (ut (Q» is

lhe average cosl. Thus P is lhe average discounled profil and lhe dealer's oplimal

slralegy, lo a firsl aproximalion, is lo maximize lhis value.
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The variation in stock associated with strategy 00 is ergodic [5], and at time

~ 11 A approaches a stationary and final distribution F o. This means that a quasista

tionary state* Is set by the market. Let us compare this with the classical market

equilibrium. According to equilibrium theory [13], a dealer, starting from the product

price, must set permanent** volumes of business, Ut (P) , Vj (P), which maximize his

profit:

and the price should be fixed at a level p which assures a balance between average

purchases and sales:

m
= L AtUt ; v =Vj<P); U =ut(p)

t =1
(7)

It turns out that the equilibrIum values define the average stock Q =J QFo(dQ) and

characteristic domain H of stock variation (Fo(H) = 1 - p) in the final distribution,

accurate to within O(p2l3) (see Fig. 3):

(8)

H = IQ«w11\) < Q< Q In 21 3(11 p)l (9)

For Q E H one can find an explicit expression for the density f °of distribution F °and

the optimal strategy Vjo , ut
(10)

(11)

Here Ie =(2opci"2p )1/3 ,"/t(:c) =A'(Ao-:c)IA(Ao-:C)' The latter is the bounded solu-

.Unlike the distribution of Q, the distribution of D "spre8ds out" r8ther th8n being set,
81though such "spre8dlng" occurs quite slowly (Its ch8r8cterlstlc time Is 11 T » 1/1\);
In 8ddltlon, the size of the debt h8s r8ther 8 feeble Influence on the de81er's beh8vlor.
This Is why we c811 st8te F 0 "qu8sls~8tionBrY".

••Str8tegles with perm8nent Vj , L Vj > 0, Bre In8dmlss8ble In (1) since they contr8d-
j=l

Ict the condition Q ~ O. This condition, which Is very Import8nt In dyn8mlcs. C8nnot In
principle be t8ken Into 8ccount In st8t1cs; this Is why the "equilibrium" structure
described 8bove Is exclusively of 8n 8uxll18ry ch8r8cter.
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tion of the equation A + xA =0, with A o representing its first root and A' its deriva

tive.

It is important that in a typical situation the dealer does not require detailed

information on supply and demand to determine his optimal strategy. It is only neces

sary to know the two values characterizing the market (Q and K) and two characteriz

ing the trading partner (vj and Vj (Vj) or iIt and Ut (iIt ».
The most important thing is that the exchange value should be of the form

M =P + K + pQ (to within an accuracy of O(pl/3 In 1/ p». Linear* dependence of the

exchange value on the size of the stock means that there exists a price for product p.
From (6) this has the properties of an equilibrium price.

Let us now sum up the maIn points of our argument.

1. The dynamic description of the pairwise transaction mechanism (mlcro

description) given above can explain the most important features of market exchange:

the existence of a price for a product, the fact that dealers strive to maximize their

profit. and the existence of a dynamic equilibrium in the market.

2. Formal descriptions of economic concepts such as solvency. exchange value.

trading profit, price of the firm, and active assets develop naturally from the model.

·Here K represent.s t.he additional value of a small amount. of st.ock QO which t.he dealer
never act.ually sells (see (9». St.ock plays a specific role here. It. Is t.echnologlcally
necessary for regular t.radlng and Is present. even In a det.ermlnlst.lc sequence of pur
chases end sales. For t.hls reason It.s market. value K should be distinguished from t.he ex
change value of t.he st.ock-In-t.rade. We could regard t.hls st.ock as a special kind of asset.
(active asset.s). In t.hls case, t.he exchange value Is simply proportional t.o t.he amount. of
st.ock (In a t.yplcal domain H).
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3. The behavior of a dealer minimIzing his probability of ruin is rather simple,

although not trivial, and can be described sUbjectively in a number of different ways:

he could simply follow rule (11), or he could make a "correct" evaluation of stock-in

trade and maximize his current profit (10); he may also be more "far-sighted" and max

imize his expected discounted profit.
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RECURSIVE STOCHASTIC GRADIENT PROCEDURES
IN THE PRESENCE OF DEPENDENT NOISE

A.S. Poznyak
Institute of Control $eiences
Moscow, USSR

This paper is concerned with the asymptotic characteristics of recursive gradient

procedures in the presence of dependent noise, which distorts observations of the gra

dient of the function to be optimized. A general characteristic is proposed for the

correlation of elements of random sequences; this can be used to prove theorems of

strong convergence and asymptotic normality for the class of algorithms under con

sideration. The relationship between this characteristic and existing correlation

characteristics is defined and the conditions under which this procedure may be used

are studied for specific cases. The maximum feasible rate of convergence for linear

algorithms is shown to be attainable under conditions of Gaussian noise. We give a rule

for nonlinear transformation of observations which makes the given procedure optimal

in the presence of dependent noise. The optimal algorithm is shown to be one which

corresponds to a recursive version of the maximum likelihood method.

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

In recent years the problem of optimization In the presence of dependent noise

has attraeted increasing attention. Thus, Driml and Nedoma [1], Krasulina [2], Kul

tichitskii [3] and Borodin [4] have all carried out studies of convergence conditions

and analyzed the rate of convergence of recursive optimization algorithms under

dependent noise, making use of the "strong mixing" notion. Ljung [5], Kushner and

Clark [6] and Korostelev [7] adopted the large deviations method and the theorY of

weak convergence to study these problems. Farden [8], Nemirovskil [9] and Solo [10]

used the method of moments and results from martingale theory to analyze such pro

cedures. A good survey of the state-of-the-art of recursive stochastic procedure

theory is given by Tzypkin and Poznyak [11]. The properties of linear gradient optimi

zation algorithms under dependent noise have been investigated by Poznyak and Tchic

kin [12]. In the present paper an approach proposed In [12] Is described and then gen

eralized to the class of nonlinear recursive algorithms. We prove the existence of
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optimal nonlinear transformations which lead to the maximum feasible rate of conver-

gence.

We shall consider the problem of finding the point

!l
c' =arg min J(c)

cERN
(1)

assuming that at any point cERN the gradient 'i/ J (c) of the function to be optimized.

distorted by noise ~, is available for observation. I.e .. we can observe

!l
Y =Y (c. {) = 'i/ J(c) + {

Let the class of functions to be optimized satisfy the following condition:

(2)

(A1) J(c) ~ J' > -00 Vc ERN

and let there exist a unique point c' ERN at which J(c') = J'.

In order to construct the sequence ICn I (cn ERN. n = 1.2 .... ) of estimates of

the minimum. point c of the function J(c). we shall make use of the following recursive

procedure:

(3)

!l
Y n = 'i/ J(cn _1) + l:n • n =1,2, ...

where Irn l is a sequence of N x N matrices which satisfy the condition

(B) lim 7;1rn =r =rT > a . a < 7n - -+ o. I:: 7n = <Xl

n -+0» n 100 n =1

and ~ {n l is a sequence of dependent random vectors defined on the probability space

(0. F. P) with a given sequence of a-algebras Fn , Fn C Fn +1' Vectors (n are measur

able with respect to Fn' and functions tpn (x). X ERN. are measurable with respect to

the intersection of the Borelian a-algebra defined on RN and Fn -1'

2. RECURSIVE LINEAR ALGORITHMS

Let us consider algorithm (3), assuming

tpn (x) =X , n =1,2, ...

Let the following conditions be satisfied:

(4)
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(A2) There exlsL k. K E (0,00) such LhaL for all c E: R N we have

(c -c')Tr V J(c);;e k Ilc -c'112

IIv J(c)I\2 5; K Ilc -c'll2

and

where

We now inLroduce Lhe following characLerisLics of noise dependence:

(5)

to to
8 t ,m =E!(t(J;l, m. t =1,2, ...• u; =Sp 8n ,n

NoLe LhaL for independenL sequences we have

1/I~?j. = 0 (k =m +1 .... ) • 8 t ,m = 0 (t ~m)

CharacLerisLic 1/I~?J. is new while 8 t ,m is Lhe usual noise covariance maLrix.

THEOREM 1 (on almosL sure convergence). Let assumptions A1. A2, S, and C be

satisfied. If the series

(6)

converges (component-wise) almost surely as n ~ 00. then for any Co = if E: R N we

a.S.
have c n - --+ c', and in order jbr (6) to converge it is suj'ficient that

n~-

to - -r n = E 1m1/lJ..~~ - --+ o. E (1~u~ +1nunrn) < 00
m =n +1 n .... CQ n =1

(7)

THEOREM 2 (on mean-square convergence). Let assumptions A1. A2. B. and C be

satisfied. If

(8)
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Ii n
where 7rn = t ~/I - f t f-1). then j'or any C E. R N we have Ilcn -c '1~2 ~:::. 0, and to

meet condition (8) it is sufficient that

and,for some q EO [p / P -1 . p J. that

• ( -T)
II("n I~ E 7t¥'t.'h- - -> 0

q t =n +1 n--·

(9)

(10)

THEOREM 3 (on asymptotic normality). Let assumptions Al. A2. B. and C be satis

fied. and in addition assume that

(1) J(c) is twice-differentiable. "1 2 J(c') > 0 and there exists a constant L E (0. 00 )

such thatj'or any cERN

(2) l'n = n -1 f and the matrix [t I - f "1 2 J(c')] is stable;

(3) !("n l(n = .... -1,0.1 •... ) is a stationary (in a limited sense) ergodic sequence

of random vectors such that

where

'" -aoi..- n 1/In < 00

n=1

f
min !O. min Re Aj (B) , C sign [min Re Aj (B)l! , if min Re Aj (B) ¢ 0

j j j

Ii
o if min Re Aj (B) = Re Aa(B) = 0 and 1m Aa(B) = 0 ,

j

Ii Ii (~)
-C otherwise; C >1/2. B = I - V2 J(c')f. 1/In = 1/It~;;.t

(11)

Then vn (cn -c') ~ N(O,v), i.e.• the distribution vn (cn -c') converges to a

normal distribution. and the matrix V satisfies the equation

• Ii
o < a = 8 0 + E (at + 81) . at = 8t +t.t . k - .... -1.0.1 ....

t =1

Note. The matrix V = V(f) characterizes the rate of convergence of algorithm

Ii
(3)-(4); the highest convergence rate is obtained with f = f' = (V2J(c')]-1. I.e., for
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any permissible I' = rT > 0,

Now let us consider some specific examples of dependent noise.

(1Z)

a.S.
(1) I(n I is the ma.rtinga.le d.ifference (EI (n / Fn -ti = 0). Then from Theorem 1, if

~

L:
n=l

a.S.
')'~ u~ < 00, then c n -.... c'; from Theorem Z if ')'n u~ -.... 00, then HCn -c 'I~

n -+ClQ n .... ClQ 2

-.... 0; from Theorem 3, if I(n I is a stationary ergodic sequence, then

...;n (cn -c') ~N(O,V), 8 =81,1'

(Z) I(n I is a sequence with strong mixing. Let I(n I be a sequence satisfying either

the condition of uniform strong mixing, Le.,

t;

<Pn = sup sup IPCB / A) - PCB) I -.... 0
t~l A Et1«,,<.I:l,P(A »0 n ~~

Bd'", .

or the condition of strong mixing, Le.,

t;

an =sup sup jP(B/ A) - PCB) peA) j - .... 0
t~l AEt1«,,<.I:) n~~

Bd'1<

Using the inequalities

.,,(q) :s; z",l-(lIp) II, II
'f't,m ....t -m ' \t P

Theorems 1-3 make it possible to assert that

(a) if for some q Eo. [-.E..- , p] we have
p-l

or
- .... 0

~ "Y II, II a (1/ 2) -(1/ q) n ~~
~ 'm+n \m+n'Lq m

m=l

and ~ ("Yn
2 un

2 + ') < th~, ')'n un r n 00, en cn
n =1

8.S.

- ....
n~~

.c .

(b) if ')'n u~ -.... 0 and for some q E: [-.E..-
1

,p]. q E. [---L.
1

,p] either
n ~~ P - q-
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or

then lien -c 'I~ -.... 0;
2 n .....

(c) if !<'n l is a stationary ergodic sequence and either

f: n -<>°ipA-(l/ P ) < 00

n=l

or

f: n -<>Oa~-(21P) < 00

n=l

then vn (cn -c') - N(O, V).

(3) f<'n! is a stationary (in a broad sense) sequence with restricted spectral density,

Le.,

1T

en =..1.... J e Hn F(X)dX • liF(x)11 So F + < 00

271" -1T

Then by virtue of Theorem 2:

(4) l<'n! is the ARMA model, Le .. l<'n I is the sequence of inputs of the stable linear

filter:

M

L; B t <'n +l
t =0

n ---

- 8.S.

Then from Theorem 1. if L; 7~ < 00, then cn -.... c'; from Theorem 2,
n =1

lien -c 'I~ - .... 0; from Theorem 3. if l<'n l is a stationary ergodic sequence, then
2 n -HU

vn (cn -c') - N(O, V)

M L L T M
0< 8 =(L; B t )-l (L; D t ) E l~lal (L; Dt ) (L; Bl)-l

t =0 t =0 t =0 t =0

More details of the results given in this section may be found in [12].

We shall now consider how different the best rate (12) attained by the linear algo

rithm is from the maximum feasible rate. In the general case the problem of finding

the maximum feasible rate is quite difficult. However, it can easily be found in the

case of quadratic optimization problems, since for the function J(c) =
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1 • T- •"2 (C -c ) A (c -c ) we have

and the problem of finding the point c· is reduced to that of estimating a shift parame

ter

t.
zn =m + {n ' zn =Y n - ACn -1 • m = -Ac'

with respect to the Kramer-Rao Inequality

In the case of the ARMA model, the right-hand side Is easily calculated and the fol

lowing estimate Is obtained:

(13)

and it is assumed that there exists a non-singular Fisher matrix

t.
o < 14> =E!V In P fVTln P fl < 00

Note that the inequality E!HTI ~ I i 1 holds and the equality occurs only itl the case of

a normal distributlon~. This means that the rate of convergence (12) of linear algo

rithm (3)-(4) attains its maximum feasible rate (13) only for normal processes. In all

other cases this rate cannot be achieved by a linear algorithm.

3. NONLINEAR RECURSIVE ALGORITHMS

Now let us consider procedure (3). Without any loss of generality, taking
t.

rn =n -1, we can assume that

(14)

In addition to Ai, let the following conditions be satisfied:

(A2) J(c) is differentiable, and for any z , Z , a. E: R N and n =1,2 ..... we have

(z - Z ) T [ lI'n (V J (z ) + a.) - lI'n (V J (z ) + a. )] ~ k n -1 liz - z I~

illl'n(VJ(z)+a.) - lI'n(VJ(z)+a.)IISKn _1 Ilx -zl~
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8.5. 8.8.

where k n -1 > 0 and Kn -1 ~ 0 are Fn _l-measurable random variables such that

for some l: > 0 we have (almost surely)

11m Inf (k n -1 -n -ll:Kn -1) > 0
m-+oon:iltm.

(B') EI'Pn«n>!=Oandforsomep ~2wehavell'P«n)lt <ooforalln =1,2 ....
Jl

We shall introduce the following notation:

(15)

The foLLowing analogs of Theorems 1-3 then hold for nonlinear procedures (14).

THEOREM 4 (on almost sure convergence). Let assumptions Al, A2' and B' be satis

fied. If the ~eries

n
I: t-1'Pt«t) (16)
t =1

8.8.

converges (component-wise) almost surely as n ~ 00. then cn - -+ c and it is suf-
n ---

ficient that

rn~ i: m-11i~~~_-+ 0, i: (n-2a~+n-1anrn)<00
m =n +1 n -+II1II' n =1

THEOREM 5 (on mean-square convergence). Let assumptions A1. A2' and B' be satis

fied. If

2 n n
n - I: I: tk ~t,j; - -+ 0

t =1 j; =1 n ---

then lien -c 'I~ - -+ 0
2 n-+ au

q t:: [.-..E.-
1

. p], that
p-

and it is sUfficient that n -la~ - -+ 0, and. for some
n ---

THEOREM. 6 (on asymptotic normaLLty). Let assumptions Al, A2' and B' be satisfied

and in addition assume that
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(1) J(c) is twice-d.ifferentiable, 9 2 J(c') > 0 and. in the neighborhood. oj the

point c· , 9'l.J(c) satisfies the Lipschitz cond.ition;

lJ.
(2) there e:r:ist Borelian }'unctions ""n (x) = E I'Pn (x + (n)1 Jo'n -d. which are

Fn _1-measurable and. such that

8.S.

""n (0) = 0(11. =1.2 ,... ) , sup E 111'Pn (x + (n )1121S Const (1 +1b:1~)
n

sup E!II""n (x)1121S Const 1b:112
n

n -+~

""n (x) is

surely)

d.ifferentiable at the point x = 0(11. = 1.2 •... ).

n lJ.
a limit lim 11. -1 2: "";(0) = ""'(0), and.

t =1

there e:r:ists (almost

lJ.
the matrix B =

1 ' 2 •["2 I -"" (0) V J(c )] is stable;

lJ.
(3) I 'Pn I, 'Pn ='Pn «n)' is a stationary (in the restricted. sense) ergod.ic

sequence oj rand.om vectors such that

~ -ao.7. < 00
~ 11. I"n

n=1

(where ao is the same number as in Theorem 3 with B =I - 92 J(c' )",,' (0»),

Then vn (cn -c') ~ N(O. V). where matrix Vsatisfies the equation

BV+VBT = -8
(17)

Making use of the lower estimate for solving equations (17), [13], we obtain

(18)

where

If we assume that the condition
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is satisfied, then from the Lebeg theorem on majorlzed convergence [13] we have

n
1l'(0) = lim n -1 E EI1l'i(O)j

n "'00 t =1

and thus R = 11m Rn , where
n ..~

According to the generalized Cauchy-Bunyakovskl inequality [131,

(19)

where

and the equality in (lB) is obtained with

4
<'Pt(X) = <'P;(X) = DV/;IIn p(~t I~1"'" ~t-1)1 /;1=:1:

D =- rVZJ(c')]-1 lim nli1(p(~1'" .• ~n»
n"~

(20)

Thus, the optimal (with respect to its asymptotic convergence rate) algorithm (14) has

the form

(21)

Transformation (20) is rather difficult to realize if the sequence has some arbitrary

dependence. However it can be done in the case of ARMA-type models [14], when pro

cedure (21) takes the form

L M

E Dtiin -t = E BIYn-1
t =0 1=0

M L
cn =cn -1 +n-1[V ZJ(c')r1(E B I )-1(E Dt)Ii1(p~)Vlnp~(Yn)

1=0 t =0

(22)

-- A -- Nii-t =O(t =l,L), Y_I =0 (l = l,M) , Co = c ER

Algorithm (22) consists of two parts: a preliminary procedure, observation "whi

tening", and a conventional part connected with recursive estimation of the extreme

point. Thus, procedure (22) represents a realizable form of an asymptotically optimal

recursive optimization, assuming dependent noise of the ARMA-modeltype.
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RANDOll SEARCH AS A METHOD "OR OPTIMIZATION AND ADAPTATION

L.A. Rastrigin
Politechnic Institute
Riga. USSR

1. PROBLEM STATEMENT

Consider the optimization problem:

min Q(x)
xES

(1)

where a function Q(x) is specified by algorithms (or by measurements) and

X =(x 1 ..... xn ) is a vector of parameters to be optimized. Let X· =(x ~ •...• x~)

be the optimal solution of the problem and S be the set of all admissible solutions which

in the general case is specified by a system of inequalities and equalities:

S: {h{(X) ~o (i. : 1 •...• m)
Yj (X) - 0 (] - 1 , . . . . k)

In the general case the functions h{ (X) and Yj (X) are also specified by algorithms.

2. RANDOM SEARCH

(2)

We shall now consider how to construct algorithms for solving problem (1).

Random-search algorithms appear particulariy promising.

Consider the procedures 1/1 that make up the algorithm "(" =1/11/1 . •• 1/1 ... ):

where the transformation -+ is performed at each step by the algorithm 1/1. It is con

venient to define this algorithm for the increment:

(3)

where AX is the change in the parameters X to be optimized in the search process and

1/1( is the random transformation operator.
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Most conventional methods for constructing algorithms t are based on a priori

information on the structure of the functional Q(X) and constraints S. However this

information is absent (or almost so) when Q(X) and S are specified by algorithms,

which makes it necessary to use heuristic methods.

3. CONSTRUCTION OF HEURISTIC SEARCH ALGORITHJlS

Heuristic methods are based in the overwhelming majority of cases on human

experience. How can such methods be used to construct algorithms t?

Let us start from ordinary human experience. It is first necessary to have a

mechanism by which actions can be evaluated. Such a mechanism should be based on

the notions "good" and "bad" and incorporate a scale built upon these notions. Next,

one should have a set of alternative actions by which it is possible to change the state

of the object under consideration. And, finally, there should be a mechanism for the

heuristic choice of an action under various specified conditions.

We shall illustrate this using the heuristic trial-and-error method (or, more pre

cisely, the heuristic random trial and error correction method). Here estimates for

the minimization problem are of the form:

"good":

''bad'':

(liQN <0) A (XN ES)

(liQN ~ 0) v (XN 'I. S)

(4)

where liQN is the increment of the function to be minimized at the N-th step:

There are two alternative actions:

random trial: t:

error correction: T

(5)

(6)

where t: represents a random change in the parameters X to be otlmized and T implies a

return to the previous state.

Here the heuristic choice of an action is of the form: "If the present point is good

then make a random trial; if it is bad return to the previous point". For the optimiza

tion problem this takes the form:

r t: for (liQN <0) /\ (XN ES)

tdT(XN ) for (liQN~O) v (XN 'I. S)

where T(XN ) denotes a return to the point preceding XN .

The final form of the algorithm is then as follows:

_ r a a for (liQN <0) /\ (XN ES)

liXN +1 -l-6X.N for (liQN ~ 0) v (XN 'I. S)

(7)

(8)
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where 9 (the step direction) is a unit random vector uniformly distributed in the space

of parameters {XI to be optimized, and a > 0 is the step size. Algorithm (8) can be

described as an algorithm with nonlinear tactics [1], and is an efficient optimization

algorithm.

4. ADAPTATION HEURISTICS

Consider the problem of adapting algorithm (8) to the specific situation occurring

in the course of optimization. There are two possibilities: to modify the step size a or

to modify the distribution of 8.

Modification of the step size is based on the followlngheuristic: ''Failure is the

result of over-stepping the target". This rather rough heuristic is true in the one

dimensional case; for n > 1 failure can also arise through an incorrect choice of step

direction 9. The adaptation algorithm constructed on this basis Is of the form:

(9)

where the coefficients 61 and 62 (61 >-1 ; 0 <62 <1) are related as follows [2]:

(10)

Here p is the probability that the random step direction 9 will turn out to be success

ful (b.QN <0).

Although this heuristic is quite rough it nevertheless ensures a geometrical rate

of convergence [2] for algorithm (8).

The distribution p (9) of the random vector 9 may be modified using the heuristic

"increase the probability of a successful step direction. If with a uniform distribution

the probability of a successful step direction depends only on the current point (e.g.,

in the linear case this probability is equal to 1/2), then it is natural to increase this

probability on the basis of information obtained from the previous history of the

search process.

This heuristic may be implemented in different ways, e.g., by introducing a "his

tory" vector W such that E8 = W. Here the direction and value of this vector reflect

an estimate of the direction in which the target X· lies and the degree of confidence in

this estimate, respectively. For example,

(11)

where 0 < k ,s; 1 is a memory coefficient and a > 0 is a coefficient reflecting the

degree to which new information is laken into account.
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5. HEURISTICS BASED ON BIOLOGICAL SYSTEMS

One class of heurist.ics t.hat. can be used in t.he const.ruction of opt.imization algo

rit.hms is generat.ed by models describing t.he behaviour of biological syst.ems. Biologi

cal models of living syst.ems at. all levels of organisation, from t.he neuronal level t.o t.he

population level, provide ample heuristic opport.unit.ies for t.he const.ruction of effI

cient. random search algorit.hms.

5.1. Neuronal Heuristics

At. t.he neuronal level t.he use of models of t.he learning process allows us t.o con

st.ruct. a mat.rix random search algorit.hm [3] in which not. only t.he paramet.ers t.o be

optimized but. also t.heir t.ransformation mat.rix are randomly changed. This simulat.es

t.he change in t.he synaptic resistance of neurons during learning.

5.2. Behavioural Heuristics

These diverse heurist.ics are easily identified by an element.ary analysis of t.heir

behaviour and yield efficient. random search algorit.hms. A number of t.hese are

described below.

5.2.:1. A ''linear t.actics" heuristic ("if an action is successful, repeat. it.; if not., select.

anot.her act.ion at. random") yields a random search algorit.hm (or a random descent.

algorit.hm):

{
a. a for (I!iQN ~ 0) v (XN fI S)

AXN +1 = AXN for (I!iQN <0) 1\ (XN ES) (12)

This operat.es well far from t.he optimum and is a st.ochastic generalization of st.eepest.

descent. and alternat.e paramet.er change algorit.hms.

5.2.2. A heuristic describing t.he behaviour of a mouse in a T-shaped maze in t.erms of

a Markovian model [4], underlies random-search "aut.omat.a" algorit.hms [5,6]. Here

each paramet.er is optimized by it.s own "aut.omat.on", which carries out. a one

dimensional random search.

5.3. Evolutionary Heuristics

Evolut.ionary heurist.ics are associat.ed wit.h t.he dynamics of population

phenomena, which can be described by evolutionary t.heories at. different. levels of

aggregat.ion. Darwin's heurist.ic "t.he survival of t.he fittest." is of fundament.al impor

t.ance. We will give t.he basic algorit.hms.

5.3.1. A population of point.s IXt l,JIi ES, evolves in t.he following way. New point.s are

"born":
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14j = 14 + a OJ (j =1, ... , k) (13)

where 0 Is a unit random vector which simulates random mutations, while the value of

the parameter a simulates the mutagenesis Intensity. Selection reduces to the "dying

out" of points Xtj for which 14j rt. Sand Q(14n takes Its largest value. This algorithm

can be used to solve complex multiextremum problems.

5.3.2. A population of "automata" lAt l consists of stochastic automata with linear tac

tics [7], each of which is characterized by three numbers:

(14)

where 1IIt is the amount of accumulated Information, and Pt and qt are the probabilities

of translation to a better state or a worse state, respectively. These parameters simu

late the "genes" of the automaton. The automaton's efficiency is estimated from its

performance during the optimization of the j-th parameter:

(15)

the "birth" of a new automaton is simulated according to the laws of genetics: "genes"

values Pt ' qt are inherited with equal probability from the parents, and automata with

high efficiency (fitness) have a higher chance of reproducing them automata with low

efficiency (which eventually "die out"). Such evolutionary strategies allow us to con

struct automata capable of solving a given optimization problem in the most efficient

way.

5.3.3. A population of algorithms l'Ytt! evolves In an analogous way. Here, for exam

ple, the step size at In (8) and the vector Wt in (11) represent genes. The increment

6.Wt in the optimization process (see (11) determines the way in which the algorithm 'Ytt

will adapt during its lifetime. The constraint Imposed on 6.W simulates the degree of

"conservatism" of 'Ytt. It turns out that a good population of algorithms should include

algorithms with both large and small values of \ 6.W I , simulating the division of the bio

logical population Into male and female Individuals. Populations of algorithms with only

a small range of I 6.W I values are significantly less efficient In solving optimization

problems.

The parameter optimization algorithms considered above assumed that the set S Is

continuous, I.e. S E: Ric. In practice, however, it is necessary to optimize not only the

parameters, but also the structure of the object under study.
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6. STRUCTURAL RANDOll SEARCH

Let the factors X to be optimized in problem (1) also determine a structure, I.e.,

X=<V,C>

where V Is the structure of an object and C = (c 1 • ...• cn ) are Its parameters.

Problem 81) should now be written as follows:

min Q(V, C)
ves"

G"ESw

(16)

(17)

where Sv Is a set of admissible structures and Scv Is a set of values of parameters Cv

for structure V.

We shall consider, as before, the recursive algorithms + for solving this roblem

(+=-y,-y, ... -y, ... ):

(18)

where AV is the change in the structure of the object, -y,~v is the random search opera

tor for the structure, and -y, f is the random search operator for parameters discussed

in the previous paragraphs.

It is obvious that It is again necessary to use heuristic methods to construct such

algorithms.

A block diagram of the structural search process is presented In Fig. 1. Two

routes for adapting the structure V and parameters C are shown. The ~econd route

should operate significantly faster than the first since otherwise the efflcience of the

structure V could be estimated with error. Henceforth we will suppose that at each

step In the search for the structure V the total optimization cycle over parameters C

is carried out, i.e., the problem

Q(V, C) .... min
C ESC1l

Is completely solved.

We will distinguish between the case in which the cardinality of the set of struc

tures Sv is small, and the case In which It is large, since these cases require different

approaches to adaptation:

{
small (2-3), then use alternative adaptation

IS I Isv large. then use evolutionary adaptation
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7. ALTERNATIVE ADAPTATION

The "two-armed bandit" heuristic makes it possible to solve the problem of choos

ing between two alternative structures:

(19)

while changing the properties of both the medium and the object itself. It is convenient

to represent the algorithm in the form of a graph (see Fig. 2). The vertices of the

graph represent the alternative structures VI and V2 while transitions are character

ized by the success (+) or failure (-) of the previous step and by the probability of

random transformation. which can be defined in various ways.

The probability p that structure VI is better than V2 is

(20)

where 0 , qN represent information on the history of the change in structure and the

vaiues of the efficiency characteristic. This probability ca be estimated as follows:

(21)

where p (t) is a Lagrange function, Qf" is an estimate of the efficiency of i-th
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alternative at the N-th step of the process, and ul is an estimate of its variance.

These estimates are obtained by standard stastical methods. The resulting random

search algorithm maintains the structure which optimizes the characteristic Q at a

particular instant of time. When the best structure is changed, the algorithm chooses

the other alternative. This algorithm is easily generalized to the multi-alternative

case.

The pattern-recognition heuristic can also be used to solve the multi-alternative

adaptation problem. To do this it is, however, necessary to describe the object for

adaptation as follows:

(22)

where~ is an operator and Y represents information on the state of the object

This information also contains data on the efficiency characteristic:

q = q(Y)

Let the object have l alternative structures:

Wd (i =, ... , l)

(23)

(24)

(25)
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Then the decision rule for choosing a structure is of the form:

j = a(Y, Vi) E: 11 .... , l I (26)

where j is the number of the alternative recommended by rule a for an object fi'J of

structure Vt in state Y.

It is not difficult to see that this rule is a rule for solving the l-class pattern

recognition problem and, therefore, the theory and methods of pattern recognition can

be used to construct it. A set of sequences (l in number) provide the source informa

tion for constructing rule a:

(27)

The sequences are sets of observations (Nt in number) of the state of the object in dif

ferent structures. Each element of these sequences is then matched with the

corresponding best structure. The decision rule a can now be constructed in the stan

dard way.

We shall now illustrate the performance of this algorithm for the adaptation of

alternative (search) optimization algorithms. In this case V1 , ...• Vi are alternative

aigorithms while Y is the information obtained in the search process (for example, Y

couid describe a trajectory in the space of parameters Ixl to be optimized - see Fig.

3). The process then switches from one algorithm to another (see Fig. 4).

8. EVOLUTIONARY ADAPTATION

An algorithm for the evolutionary adaptation of structure should be based on the

evoiution heuristic and can be reduced to simulation of its three components - hered

ity. variability and selection. We have the following graph of the structure to be

adapted:

x = f = <A ,B> (28)

where A is a set of vertices of the graph f and B is a set of its arcs. The quality

characteristic is given by

minQ(f)
rEO

(29)

and its optimal value f' should be determined during the adaptation process. Here 0 is

a set of admissible graphs which ensure the normal functioning of the object.

The graph adaptation algorithm reduces to the following:

1. Simulation of the descendants of the graphs in the preceding generation:
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Figure 3:

v y

I
I
I
I
L_

,-----,
I

II r----. I
I I'--__~ I

I
I
I
I

(30)

where Arf/2lIs the j-th random change in the i-th graph. simulating random mutation.
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Such changes can involve the introduction of a new vertex or the eUmination of an old

vertex, arc switching, etc.

2. Selection (for the next evolutionary stage) of the graphs with the minimum

values of the characteristic Q(f) (the rest "die out").

The larger the number of "descendants" left in the population, the greater the

global character of the adaptation algorithm. As the population and the number of

evolutionary stages increase, the algorithm converges to the optimum solution f' .

It should be noted that to evaluate the efficiency Q(f) it is usually necessary to

simulate the behaviour of the object possessing the structure specified by the graph f.

The procedure described above is therefore often caLLed evolutionary simulation

[B).
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LINEAR-QUADRATIC PROGRAMMING PROBLEMS

WITH STOCHASTIC PENALTIES:

THE FINITE GENERATION ALGORITHM

R. T. Rockafellar 1 and R.I.-B. Wet;

Much of the work on computational methods for solving stochastic programming problems

has been focused on the linear case, and with considerable justification. Linear programming

techniques for large-scale deterministic problems are highly developed and offer hope for the even

larger problems one obtains in certain formulations of stochastic problems. Quadratic program

ming techniques have not seemed ripe for such a venture, although the ultimate importance of

quadratic stochastic programming has been clear enough.

There is another kind of approach, however, in which quadratic stochastic programming

problems are no harder to solve than linear ones, and in some respects easier. In this approach.

for which the theoretical groundwork has been laid in Rockafellar and Wets [1], the presence of

quadratic terms is welcomed because of their stabilizing effect, and such terms are even introduced

in iterative fashion. The underlying stochastic problem, whether linear or quadratic, is replaced

by a sequence of deterministic quadratic programming problems whose relatively small dimension

can be held in cher k. Among the novel features of the method is its ability to handle more kinds

of ranuom coefficients, for instance a random technology matrix.

In this paper we present a particular case of the problem and method in [11 which is especially

easy to work with and capable nevertheless of covering many applications. This case falls in the

category of stochastic programming wit.h simple recourse. It wa, described briefly by us in [2],

but with the theory in [1] now available, we are able to derive precise results about convergence

and the nature of the stopping criterion that can be used. This is also the one case that has been

implemented so far and for which numerical experience has gained. For a separate report on the

implementation, see King [3].

For the purpose at hand, where duality plays a major role and the constructive use of

quadratic terms must be facilitated, the format for stating the problem is crucial. The following

deterministic model in linear-quadratic programming serves as the starting point:

1 This work was supported in part by a grant from the Air Force Office of Scientific Ruearch

at the University of California, Davi8.
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n l

ma.ximize [(x) =L[CjXj - !rjx;l- L P(VkiPk,qk)
i=1 k=1

subject to 0 ~ Xj ~ 8j for j = 1•... , n.
n

L aijXj ~ bi for i = 1, ... m,
1=1

n

Vk = L tkjXj - hk for k =1•... , t,
1=1

where P is a penalty function depending on two parameters Pk and qk and having the form shown

in Figure 1, namely

for Vk ~ 0,
for 0 ~ Vk ~ Pkqk,
for v 2: Pkqk.

(0.1)

This is convex in "Uk, so the object function [ in (P det) is concave; it is assumed that Pk, qk, rj

and 8j are nonnegative. For Pk =O. one takes

slope

=0;)

(0.2)

Pkf}k

FIGURE 1

The penalty terms in (P det) represent a weakened incorp oration of constraints

n

LtkjXj ~ hk for k = 1•...• e
j=1

(0.3)

into the problem. They vanish as long as these constraints are satisfied, but charge a positive

cost when they are violated. The rost grows linea.rly in the special case of (0.2). but otherwise it

first passes smoothly through a quadratic phase.
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The stochastic programming problem (Psto) that we want to consider is obtained by allowing

tk), hk, Pk and qk all to be random variables and replacing each penalty term by its expectation.

(In anyone application, of course, only a few of these variables might actually be random.) The

interpretation is that the x) 's are decision variables whose values must be fixed here and now.

The constraints °::; X) ::; 8j and

"
Lai)X)::;bi for i=1, ... ,m
j=1

(004)

are known at the time of this decision, but about the random variables in question there is only

statistical information (their distributions). The constraints (0.3) therefore cannot be enforced in

the selection of the Xl'S without severe consequence. Instead of trying to guard against all possible

violations by being extremely conservative, we imagine there is a way of coping with violations

of the constraints (0.3), if they should occur. Some recourse adion is considered to be possible

after the values of the random variables have been realized, and this recourse has an associated

cost which depends 011 the eA'tent of violations. This cost is represented by the penalty terms

p(Vk ;Pk, qk), and its expectation is subtracted from the here-and-now expression in the xl's that

is being ma..'cimized.

Besides the direct applications of this model, we see it as potentially valuable in problems

that until now have been formulated deterministically, but in which some of the data may be

rather uncertain. By putting such problems in the form of (Psto) it should be possible, even with

every crude guesswork about penalty costs and probabilities, to gain some appreciation of how

the choice of the x j's should be modified to hedge against the uncertainties. Certainly this ought

to be better than merely assigning specific values to the fuzzy data.

\Ve mention again that although our basic problem is nominally quadratic (a formulation

that sidesteps the "piecewise" nature of the penalty terms will be recorded later, in §3), we are

also very much concerned with the linear case where Tj = °and Pk = 0. Our plan is first to

display a method whose characteristics are most attractive in the strictly quadratic case where

T) > °and Pk > 0, and then apply it to problems lacking in strict. quadraticity by means of the

proximal point technique 14], [1].

1. OPTIMALITY CONDITIONS AND DUALITY

The approach we are taking depends very much on duality. A subproblem of a certain dual

problem will explicitly be solved at every iteration. The Lagrange multipliers in this process will

generate the optimizing sequence for the primal problem.

For the deterministic problem (P det). the appropriate dual would be
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m e
minimize g(y,z) == I)iY, + l:Jhkzk + tPkZZ]

;=1 k=1

subject to 0 ~ Yi for i == 1, ... ,m,

o~ Zk ~ qk for k == 1, ... , l,

m (

wJ == Cj - Ly,a'J - L ZktkJ for j == 1, ... , n.
i=1 k=1

(1.1)
for Wj ~ 0
for 0 ~ Wj ~ TJ6j
for Wj ;:::: TjUlj.

Here P is the same function as before (d. Fig. 1), except that the symbols for the variables have

been s,,:itched:

The terms p(Wj; Tj, 6j) in (Ddet ) are to be viewed as penalty representation replacements for

constraints
m e

LYiaiJ + L zktkJ ;:::: Cj for j == 1, .. , \ n.
i=1 k=1

(1.2)

This form of duality is a special ca.se of the scheme used in monotropic programming [51. It

results from the conjugacy between the convex functions

'PdVk) == p(Vk;Pkl qk),

~'dZk) == {ootPkVZ if 0 ~ Zk ~ qkl
otherwise.

One can show that as long as the constraints (P det) are consistent, one has

(1.3)

max (P det) == min (Ddet).

In the siochastic case we are directly concerned with in this paper, the appropriately modified

primal and dual problems are

n t

maximize /(x) == L[cJXj - tTjx;] - E{L p(!!k;Ek,2k)}
J=I k=1

subject to 0 ~ xJ ~ 6J for j == 1, ... , n,
n

L aiJxJ ~ b, for i == 1, ... \ TIl,

J=I
n

Vk==~tkJXI·-hk for k==I, ... ,l,
""-' ~"" ""

J=1
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m t

minimize g(y, £,) = L biYi +E{L [~k£,k + t£ki%]}
i=1 k=]

n

+ LP(U');T),6))
j=1

subject to O~Yi for i=l, ... ,m,

o~ Zk ~:!,k for k = 1, .... f.,

m t

w) = c) - LYiai) - E {L !.,k tk) }.
i=] k=l

The ra.ndom variables in these problems have been indicated by ~: t.he symbol E denotes math

ematical expecta.tion.

In order to avoid minor technical complication<; that have no real importance in our present

task of setting up a computational framework for (Psto), we shall rely henceforth on two assump

tions.

(AI)
-r:here is at least one vector x satisf)ing

o~ Xj ~ 6) for j = 1, ... , TI, and L n
a,)x) ~ bi for i = 1, ... , m.

)=1

(A2) Th~ given random yariablcs IpJ ,Iy, £k,:!,k take on only finitely many values.

Only (A2) needs comment. We are assuming that whatever the "true" distribution of these

variables might be, we are treating them here in terms of finitely many values to which probability

weights have been assigned. Such a discrete distribution might be obtained by avvroximating a

continuous distribution. or by sampling a continuous distribution, or empirically. For now, that

need not matter; the question of the sourc~ of the discrete distribution and how it might be

"improved" is quite separate. The important thing is that we impose no further conditions on the

random variables. Aside from (A2). their distribution can be completely arbitrary. In particular

a joint distribution is allowed; the variables do not have to be independent.

THEOREM 1. Under assumptions (AI) and (A2), problems (Psto ) and (D sto ) both have opti

mal solutions, and

Moreover in the strictly quadratic case where TJ > 0 and £k > 0, the follo';l"ing conditions are

necessaT)' and su fflrien t in order that x be optimal for (Psto) and (y,:n optimal for (D;ro):

n

L a,/f) - b, ~ O. Yi 2: o. and () a,/E) - bJ lu, = 0,
)=1 )=1

( 1.4)
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m (

xJ =p'(Wj;Tj,8j) for Wj=cJ-Ly;a;J-E{LIk!h},
;=1 k=1

n

Zk = P'(Vk;Pk, qk) for Vk = '" tk,Xj - hk·
"" "V J'V ,.... ..., L..,.;,.., J _

J=I

(1.5)

(1.6)

In these relations the derivatives p' refer to the first argument indicated, not the parameter

arguments. Thus

and likewise, with just a change of notation,

if Wj SO
if 0 S wJ S TJ 8 J

ifwj~Tj8j

if t'k SO
if 0 S Vk S Pkqk
if Vk ~ Pkqk.

(1.7)

It is clear then that (1.5) entails 0 S Xj S 8j, and (1.6) entails 0 S Ij S 2j' This is why

these basic requirements do not appear explicitly in ~he theorem along with the feasibility and

complementary slackness conditions (1.4).

Formula (1.5) serves as a means of obtaining the optimal solution to (Psto) from the optimal

solution to (D sto ), or an approximately optimal solution to (P sto) from an approximately optimal

one for (D sto ). the mapping being wntinuous. Formula (1.6), on the other hand, says that the

comp onent I of an optimal solution to (Dsto ) is a random variable expressible in terms of the

known random variables {kj, ~k, !!,k, Ij,k, and the (nonrandom) optimal solution x to (Psto). More

generally, by means of this formula as applied to various nonoptimal vectors x that arise in the

solution process, it is possible economically to represent (and store in a computer) some of the

elemen ts £ that will be needed in the solution process.

PROOF OF THEOREM 1. The duality will be obtained from a minimax representation in

terms of the sets

z = {z: = (!.,···,ztll 0:::; Zk:::; 2d,

and the function L on X X Y X Z defined by

n fn tJ

L(x, y, zJ =L [ejxj - h· x;] + LYi [b. - L aij''!:J]
j=1 i=1 j=1

t n

+ LE{!d~k - LLkJXj] + ~!!k~n·
k=1 i=1

(1.9)

(1.10)

(1.11)

(1.12)
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Here because of assumption (.'\2) we could think of each of the random variables as functions on

a single finite probability space 0, or equivalently as vectors indexed by w E O. Then in (1.1) we

could write 0 :S Zwk :S qwk for all wand k, while in (1.12) we could write

n n

E{z:d~k - L tkjXj] + ~£kZ:U = L (Zwk [7rwh"'k - L 7r",twkjXJ] + ~7rwPwkZ:'k)'
j=1 wEn ;=1

where 7rw > 0 is the probability weight assigned to the element w of O. This makes it plain that

Z, like X and Y, is simply a finite-dimensional convex polyhedron, although the dimension may

be very large, and L is a quadratic function which is concave in x and convex in (Y,,t).

It is easily verified that

inf L(x,y, z) = {f(X)
(Y,~)EYXZ N -00

if x is feasible in (P sto) ,

otherwise,
(1.14)

(1.15){

y(y, z) if (y, z) is feasible in )(D sto )'
supL(x,y,z)= 'N N'

xEX N 00 otherwise,

where f(x) and g(y,~) are the objective functions specified for (P sto ) and (D sto ). Thus (P sto )

and (D sto ) are the primal and dual problems associated with the minimax problem for L on

X x (Y x Z). Because L is quadratic concave-convex, and the sets X and Y x Z are convex

polyhedra, we may conclude from generalized quadratic programming theory (see 11, Theorem 1])

that if the optimal value in either problem is finite, or if hoth problems have feasible solutions,

then both problems have optimal solutions and max(Psto ) =min (D sto )' This is indeed thl' case

here. because (D sto ) trivially has feasible solutions, and our assumption (AI) guarantees that

(Psto) has feasible solutions.

The optimality conditions (1.4), (1.5), (1.6), are just a restatement of the requirement that

(x, 'ii, D be a saddlepoint of L on X x (Y x Z). For instance, the part of the saddlepoint property

that corresponds to maximization in ! decomposes into

n

Zwk E argmin {Zwk [h wk - L twkJxJ] + tPwkZ~k}'
O$z~.$q~. j=1

In terms of the conjugate convex functions in (1.3) a.nd the notation

n

Vwk = L tWkJ Xwk - hwk,
j=1

this can be written as

Zwk E argmin {Wwk (Zwk) - v",kZwd,
z~.ER

or 0 E O¢wdZwk) - VWk' and then equivalently as Vwk E O¢wdZwk) or ZWk E olOwdvwd. The

latter reduces to Zwk = lO~kCii",d and condition (1.6) when IOwk is differentiable, as is the case

when pwk > O. The derivation of (1.5) from the saddle point property is similar. 0
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This formulation of stochastic programming duality differs somewhat from the one in our

basic paper [1]. In order to facilitate the application of the results in [1] to the present context,

an explanation of the connection is needed. In [1], problem (Psto ) is associated with a different

minimax problem. namely for

n t n

Lo(x.~) = 2:[CjXj - ~TjI;1 + 2: E{~d~k - 2: LkjXj] + t£k~n
1=1 k=1 j=1

(1.16)

on X o x Z. where Z is still the set in (1.11) but X o is the set of feasible solutions to (Psto ):

n

Xo = {x = (XI, ••. ,In ) I 0 ~ Xj ~ 8j,2: aijXj ~ bil.
j=1

This leads to the dual problem

minimize go(~) over all Z E Z,

where

go(Z) = ming(y,z).
~ yEY ~

Indeed. one has in parallel to (1.14), (1.15), that

minLo(x,z)=f(x) for all xEXo,
~EZ ~

and by quadratic programming duality (using (AI))

max Lo(x. z) = ma., inf L(x. y, z)
xE.'.:" ~ 'EX yE}' ~

=min max L(x,y, z) = min g(y, z) for all ~. E Z.
yEY xEX ~ yEY .~. .-

(1.17)

(1.18)

(1.19)

(1.20)

(Actually in [11 one has minimization in the primal problem and maximization in the dual, but

that calls for only a minor adjustment.) Obviously, then. the pairs (y, I) that solve (D sto ) are

the ones such that I solves (D~to) and y provides the corresponding minimum (1.18).

2. FIKITE GEKERATION ALGORITHM IN THE STRICTLY QUADRATIC CASE

The basic idea of our computational procedure is easy to describe. We limit attention for the

time being to the strictly quadratic case where Tj > 0 and £k > 0, because we will be able to show

in section 4 that problems that are not strictly quadratic can be made so as part of an additional

iterative process. This limitation also simplifies the exposition and helps us focus on the results

we believe to be the most significant. It is not truly necessary, however. A more general version

of what follows could likewise be deduced from the fundamental theory in [11.

i
I

Ii
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In problem (Dsto ) we minimize a certain convex function g(y, z) over Y x Z, where Y and

Z are the convex polyhedra in (1.10) and (1.11). As we have seen in the proof of Theorem 1, this

corresponds to finding a saddlepoint (x, y, I) of the function L in (1.12) relative to X x (Y x Z),

where X is the polyhedron in (1.9). Indeed, if (Y, D is optimal for (D,to), then the x obtained

from formula (1.5) gives us the saddlepoint. This x is the unique optimal solution to (Psto)'

The trouble is, however, that because of the potentially very high dimensionality of Z (whose

elements z have components Zwk for k = 1, ... , t and all W E 0, with 0 possibly very large),

we cannot hope to solve (D,to) directly, even though it is reducible in principle to a quadratic

programming problem. What we do instead is develop a method of descent which produces a

minimizing sequence {(y", I")}:;"=l in (Dsto ) a.nd at the same time. by formula (1.5), a maximizing

sequence {x"}::"= I in (Psto).

In this method we "generate Z finitely from within". Let Z be expressed as

(2.1)

At iteration 1/ we take a finite subset Zt of Zk, and instead of minimizing g(y.~) over Y x Z we

minimize it over Y x Z", where

Z" = Z~ x ... x Zf' with Zk' =colO, zn· (2.2)

By employing a parametric representation of the convex hull co {O, Zt} and keeping the number of

elements in Zt' small, whir:h turns out always to be possible, we are ilble to express this subproblem

as one of quadratic progra,mming in a relatively small number of variables. This subproblem is

deterministic in character; the coefficients are certain expectations in terms of the given random

variables tkj, /.!;k '!> and the chosen random variables in Zt.
The details of the subproblem will be explained in due course (§3). First we state the

algorithm more formally and establish its convergence properties.

FINITE GENERATION ALGORITHM (l'ersion under the strict quadraticity assumption

that Tj > 0 and !) > 0.)

Step 0 (Initialization). Choose finite subsets zt C Zk for k = 1, ... , t. Set 1/ = 1.

Step 1 «(Quadratic Programming Subproblem). Calculate an optimal solution (y", I") to the

problem of minimizing g(y,!.) nver Y X Z", where Z" is given by (2.2). Denote the minimum

value by a". Define x" from (Y", I") by formula (1.5).

Step 2 (Generation of Test Data). Define 3;" from x" by formula (1.6). Set a" = Lo(x", =") in

(1.16).
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Step 3 (Optimality Test). Define Cv =Q v - Clv ~ 0. Then XV is an ev -optimal solution to (P,to),

(yV, IV) is an c" -optimal solution to (D,to), and

Q V ? max (P,to) = min (Dsto ) ~ Ilv •

(Stop if this is good enough.)

Step 4 (Polytope Modification). For each k = 1, ... , f., choose a finite set Zr+ 1 c Zk whose

convex hull contains both IV and !-". Replace v by v + 1 and return to Step 1.

Note the very mild condition in Step 4 on the choice of Z~+I. One could simply take

Z~v+I - {ZV .V}
k - ...... k' tk ,

or at the opposite extreme,

Z~V+l - Z~v U {-"}
k - k Zk'

Another possibility would be

(2.3)

(2.4)

(2.5)

in all iterations, with 21 selected initially to provide a certain richness ofrepresentation. Although

the number of elements of Zt (which determines the dimensionality of the quadratic programming

subproblem in Step 1) would continue to grow indefinitely under (2.4), it stays fixed under (2.3)

or (2.5).

For the statement of our convergence result we introduce the vector norms

and matrix norm

[~ 2]1/2Ilxll r = ~ Tixi '
i=1

t

Ilzll p = [2:: Pk zzf/2,
k=1

IITI\p,r = ma.x{z· Tx Illzllp ~ 1, IIxll r ~ I}.

(2.6)

(2.7)

(2.8}

THEOREM 2. Under the strict quadraticity assumption that Tj >°and !?k > 0, the sequence

(xV}:;"=1 produced by the finite generation algorithm converges to the unique optimal solution x

to (P ,to). lvloreover it does so at a linear rate, in the following sense.

Let u be an upper bound to the range of the (finitely discrete) random variable 11'[ "f,r in

(2.8), where '[ is the matrix l1'ith entries Ih' Let T E [0,1) be the factor defined by

it (T2 ~ ~,

if u 2
~ t·

(2.9)
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Then in terms of the values

one has

lV+JL ~ rJLcv for all v = 1,2, ... , and p =1,2, ... ,

(2.10)

(2.11 )

(2.12)

Observe well that in (2.11) and (2.12) the estimates are claimed for all v and p. not just when

v is sufficiently large. Most convergence results are not of such type, so this is rather surprising,

especially in view of the fact that the far-tor r E [0,1) can in principle, at least, be estimated in

advance of computation, right from the given data. Moreover r does not depend on any data in

the problem other than Lkj,!!,k and rj. In the special case of nonrandom tkj and Pk (the only

random variables in the problem being ftk and 2k), one can simply take (T = IITllp,r'

PROOF OF THEOREM 2. The procedure specified here is a special case of the algorithm

presented in [·1], as can be seen in the following wa;y. In calculating a pair (If, I") that minimizes

g(y,~) over Y X Z·' in the subproblem in Step 1, we obtain a solution I" to the different subproblem

of [1], in which go(~) is minimized over Z" (with go the function in (1.18)). The number a" is

the optimal value in both subproblems, and x" furnishes the saddle point x", ir,r to L on

X X (1' x Z") in the present formulation, hut also the saddlepoint (x",I") to Lo on X x Z", as

required by Step 1 of the algorithm as formulated in [1].

The elements ~" and u" calculated in Step 2 satisfy

ZV = argmin L o(x·', z),
~ ~EZ ~

u" = min L o(x" , z).
~EZ -

(2.13)

Thus these are the same as the elements calculated in the version of Step 2 in [1] (except for a

notational switch between maximization and minimization). Of course they are given here by

closed formulas, whereas in the far more general setting of 11] they might have to be calculated

by solving a large collection of quadratic programming subproblems in the random components

Zwk'

The updated polyhedron Z,,+l does contain I" and !£" under the conditions in Step 4, as

required by the conditions in the more general version of Step 4 in [1].

Thus all the conditions in Theorem 5 of [1] are fulfilled, and the stated convergence properties

follow, provided that we reconcile the choke of (T given here with the corresp onding one in [1],

The condition specified in [1, Theorem 5] is that

(2.14)
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for all realizations of the random vector eand matrix r and all possible choices of the vector z.

Here we are using the notation r- I = (r;-I, ... , r;;-I ). The norm II . Ilr-' is the dual of the norm

II ·llr in (2.6). so

(TO = transpose of T.) Therefore one has

as defined in (2.8). This shows that (2.14) is equivalent to

(T ~ Ilrll!y

and the proof of Theorem 2 is thereby completed. 0

3. SOLVING THE QUADRATIC PROGRAMMING SUBPROBLEM.

Returning now to the elucidation of the finite generation algorithm and how it may be

implemented, we demonstrate that the subproblem in Step 2 can be represented easily as an

ordinary quadratic programming problem of relatively low dimension and thereby solved using

standard codes. Explicit notation for the elements of the finite sets if: selected from Zk is now

needed. Let us suppose that

This yields
m v m v

Zf: = co {0, if:} = {Zk =L Ak<> ~k<> I Ak<> ~ 0, L Ak<> ~ I}.
<>=1 <>=1

(3.1)

(3.2)

In Step 2 we want to minimize the objective g(y, z) in (D sto ) not over all of Y X Z (the

variables Wj standing for linear expressions in y and ~), but only over Y X Z". By virtue of (3.2)

we can substitute for the elements Z of interest in this subproblem certain linear expressions in

the parameters AkW In this way we get the function

where

m n

g"(y,A) = LbiYi + LP(wj;rj6'j)
i=1 j=1

t m.

+E{L[~dLAk",~i<» + ~edL:'';;1 Ak<>~L)2]),
k=1 a=1

m t m~

11'j = Cj - L Y,aij - E { L (L Ak<>~k<» tkj ).
;=1 k=l <>=1

(3.3)

(3.4)
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But these complicated expressions can greatly be reduced by carrying the expectation operation

through the sums to get explicit coefficients for the parameters Akw Specifically, let

Then

where

m n

gV(y,A) = I)iYi + I>(wj;rj,sj)
.=1 j=1

l m.

+ L [L ii;:a Aka - ! L;;~':t Pka~Aka AkB],
k=1 a=l

m l. m v

11Ij = Cj - LYiaiJ - L L Aka1ka).
i=] k=] G=I

(3.5 )

(3.6)

(3.7)

(3.8)

(3.9)

Finally let us observe that the penalty expression p(Wj; rj, 8j) in these formulas, as given by

(1.1). satisfies

Moreover
p'(U'j: r J • lij) = Lagrange lllultiplier (20) for the constraint

W1 J + U 2J 2 u'J in (3.10).

With these facts in lllind we pose the quadratic programllling problem

(3.10)

(3.11)

(D V
)

lllinilllize
m n

L biYi + L [SjtU]j + !w~;lrj]
.=1 j=1

l m.

+ L [L h~aAka - t L;;ft~' PkaftAkaAkftJ
k=1 a=1

subject to Yi 2 0, tl'lj ~ 0, Aka ~ 0,
m v

L Ako :S 1 for k = 1, ... ,e,
0-=1

rn I '''1/
LYia'J + L L Akatkaj + Wlj + W2j ~ cJ for j = 1, ... 1 n.
.=1 k=l a=1

\Ve then have the following implementation.

(3.12)
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SUB ALGORITHM (for Step 2). Gi'"en the sets Zt in the notation (3.1), calculate the co

efficients (3.5). (3.6), (3.7), for the quadratic programming problem (D V
). Soll'e (D") by any

method, getting from the optimal solution values Ti:', wt;, W~j and >:~" the elements

The minimum l'a1ue in (D") is the desired Qv, and tile Lagrange multiplier vector obtained for

the constraints (3.12) in (D V
) is the desired approximate solution xl' to (Psto)'

Thus it is not actually necessary in Step 2 to invoke formula (1.5) to get x". Instead, XV can

be obtained as a byproduct of the solution procedure used for the minimization.

4. APPLICATION TO PROBLEMS THAT ARE NOT STRICTLY QUADRATIC.

If in the given problem (Psto) it is not true that Tj > 0 and !!.k > 0 for all j and k, we use the

proximal point technique [4] (as adapt.ed to the Lagrangian Lo(x, z) in (1.16)) to replar.e (Psto) by

a sequence of prohlems (P~to)' 11 = 1,2, ... , that do have the desired charact.er. To each problem

(P~to) we apply the finite generation algorithm as above, but with a certain stopping criterion in

Step 3 that ensures finite termination. This is done in such a way that the overall doubly iterative

proced urI' still converges at a linear rate.

To obtain the problems (P~to), we introduce alongside the given values Tj and 1!.k some other

values 1'; > O,!!k > 0 and set

(4.1 )

where lJ > 0 is a parameter value that wil playa role in theory but can be held fixed for the

purpose of computation. We also introduce elements

which are to be thought of as estimates for the optimal solution values in (Psto) and (D sto ). In

terms of these we set

Then
(P~to), (D~~o) are the problems obtained by replacing

T;,E,ok, Cj and Qk in (Psto), (D sto ) by TOj,fob C~j and ~~k'

These modified problems are, of course, strictly quadratic: one has To j > 0 and eok > O.

MASTER ALGORITHM.

(4.2)

(4.3)
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Step 0 (Initialization). Choose x~ E X and r~ E Z. Set Jl. = 1.

Step 1 (Finite Generation Algorithm). Apply the finite generation algorithm in the manner

already described to the strictly quadratic problems (P~te) and (D~tu) in (4.3). Terminate in Step

3 when the stopping criterion given below is satisfied.

Step 2 (Update). For the elements X'" and T' with which Step 1 terminated, set X~+I =X'" and

I~+I =r". Replace Jl. by II + 1 and return to Step 1.

The stopping criterion is as follows. In terms of the norm

and a sequence of values 81" with
00

81" > 0, L 81" < 00,

1"=1

we define the function

(4.4)

(4.5)

(4.6)

We stop in Step 3 of the finite generation algorithm when the computed elements e", x" and r"

satisfy

(4.7)

This stopping criterion will eventually be satisfied, when v is high enough; the only exception

is the case where x~ happens already to be an optimal solution x to (Pste) and r~ the r-component

of an optimal solution (y. r) to (D ste ). (See [1, §6] for details.)

THEOREM 3. If the master algorithm is executed with the specilied stopping criterion (4.7),

then the sequences {xn~=1 and ttn~=1 converge to particular elements x and I, where x is

an optimal solution to (Pste) and, for some y, the pair (Y,r) is an optimal solution to (D ste ).

Moveover there is a number fJ(T/) E [0,1) such t,hat (x~, In converges to (x,'n at a linear rate

with modulus fJ(7j).

PROOF. This is an immediate spec:ialization of Theorem 6 of [11 to the case at hand, the

path of spedalization having been established already in the proof of Theorems 1 and Z. 0

The theory of proximal point technique in [4], as applied in the derivation of Theorem 3,

shows actually that linear convergence is obtained at the rate

(4.8)
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where '12:: 0 is a number depending only on the data in the original problems (Psto ) and (Dsto ),

not on Tf,Tj or £k' In particular ;3(Tf) --.0 as 'I --. O. Thus an arbitrarily good rate of convergence

can be obtained (in principle) for the outer algorithm (master algorithm) simply by choosing the

parameter value Tf 6mall enough.

At the same time, however, the choice of Tf affects the convergence rate in the inner algorithm

(finite generation algorithm). That rate corresponds by (2.12) to a number r(TfJl/2 E [0, 1) defined

by (2.9) in terms of an upper bound o-(Tf) for II T IIp •.r., where e. and r. are vectors c.onsisting of- -
the parameters in (4.1). Thus 0-(Tf)2 is an upper bound for the expression

[lIzll~ + Tfllzll~] [llxll~ + Tfllxll~]- -
over all possible choices of the vectors x ERn and z E R l and all possible values taken on by the

random variables '[, eand e· It follows that r(Tf) --. 0 as Tf - 00 but r('l) - 1 as Tf - O. Thus

an arbitrarily good rate of convergence can be obtained (in principle) for the inner algorithm by

choosing Tf large enough, but too small a choice could do damage.

This trade-off between the outer and inner algorithms in the choice of 'I could be a source

of difficulty in practice, although we have not had much trouble with the problems tried so far.

(See King [3).)
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CONVERGENCE OF STOCHASTIC INFIMA: EQUI-Sfl.1ICONTINUITY

G. Salinetti
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1. Introduction and Problem Setting.

Many stochastic optimization problems focuse the attention on the map

Inf Xf(x,w)
XE

defined on a given probability space (n,A,~) where:

(1 • 1)

(1 .2)

- for every WEn, the map x-+f (x, w) is a lowersemicontinuous function on a given to

pological space (X, T) valued in the extended reals R, i.e. the epigraph of f, epi f =

{(x,a)EXxR: f(x,w)~a}, is a closed subset of the product space XxR,

- the closed valued multifunction w-+epi f (. ,w) of n into XxR is measurable, i e. for

every closed subset F of XxR, the pre-image

{wEn: epi f(. ,w)nF f 0}

belongs to the a-algebra A.

The function (x,w)-+f(x,w) with the above properties will be always referred as

normal integmnd, the closed valued. multifunction w-+epif(. ,w) as epigmphical mul

tifunction associated to it. The map (1. 1) on the probabili ty space (n ,A,~) is the

stochastic infimum of the normal integrand f or simply stochastic infimum.

The attention devoted to stochastic infima in their different aspects and, in

particular to their probability distribution, finds its main motivations in stocha

stic optimization. In itself the probabili ty distribution of a stochastic infimum

is the objective in the so called "distribution problem" in stochastic programming.
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But, more generally, the problem of the probability distribution of a stochastic

infimum is still crucial inmore sophisticated optimization problems. Many of them,

for instance stochastic programs with recourse, certain classes of Markov decision

problems, stochastic control problems in discrete time and others can be cast in the

following abstract fonn:

Find x, E X, that minimizes jU(Q(x, ,w))I1(dw)

where u is a scaling, e.g. an utility function, and

Q(x"w) = Inf X g(x"xZ'w)
XZE Z

with g: (X, xX Z) xli'"Ris , as usual in the applications, a nonnal integrand.

If u(.) is linear, we may restrict our attention to comparing expectations of

the random variables {Q(x".), X,EX,}, but more generally is the whole distribu

tions of the stochastic infima Q(x".), X,EX, which are of interest; intimately

connected with that it is also the probability distribution of the nonnal inte

grand Q(.,.) and often of the associated stochastic infimum.

Unless we are in very particular cases, the only possible approach to solve

this type of problems is via approximations.

This and related questions lead to study the following convergence question:

Given a sequence of normalintegrands {f : Xxll'" R, n=', ... } ('.3)
n

and an associated limit integrand f, find minimal conditions

that guarantee the converggnce in distribution of the random

variables Z (.) = Inf xfn(x,.) to Z(.) = Inf Xf(x,.).
n XE XE

Answers to these convergence questions pass through the notion of convergence

in distribution of integrands. The "traditional" approach which looks at the sto

chastic infimum (' .1) as functional of the stochastic process {f(x,.), xEX}, in

some sense, is not sufficient to deal with the type of convergence questions posed

here. This is mainly due to the fact that the convergence of the infima is intrin

sically tied to the convergence of the epigraphs (and then here to the whole

trajectories of the processes) with their topological properties; actually

the same notion of epi-convergence had as one of its main motivations just

the need to substantiate the convergence of infima in approximation schemes
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for solving optimization problems.

It is thus inescapable to approach convergence in distribution of inte

grands basically relying on the topology of the epigraphs as done in [3J.

On the other hand, more recently, [2J, [7J, the same notion of epi-con

vergence, or its symmetric version of hypo-convergence,revealed to be the ap

propriate notion to study convergence of probability measures.

Convergence of infima and convergence of probability measures, as key

ingredients of convergence of stochastic infima, find then naturally in the

epi-convergence an appropriate and fruitful tool to determine the minimal set

ting for convergence of stochastic infima.

From a more general point of view, the convergence theory for normal in

tegrands can be regarded itself as an extension of the classical convergence

of stochastic processes which, together with the alternative approach to weak

convergence of probability measures, gives an extended setting to deal with

convergence of functionals of stochastic processes.

2. Epi-convergence of semicontinuous functions and hypo-convergence of pro

bability measures.

The basic idea here is to look at convergence of functions through the

convergence of sets which inherit the topological properties of the functions:

thus convergence of lowersemicontinuous functions as convergence of the cor

responding (closed) epigraphs and convergence of uppersemicontinuous func

tions as convergence of the corresponding (closed) hypographs.

For that we basically rely on [3}. Here we just sketch the key elements

of the topological construction, give the basic assumptions and introduce the

notations.

In a topological space Y let F(Y) denote the space of all closed subsets

of Y including the empty set. For the following it is sufficient to assume

that Y is locally compact, Hausdorff and second countable. Let T be the topo

logy of F(Y) generated by the subbase of open sets:
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{F
G

, G E G(Y)} (2.1)

where K(Y) and G(Y) are the hyperspaces of compact and open subsets of Y re

spectively, and for any subset Q of Y,

FQ = {F E F(Y): FnQI0} and F
Q

= {F E F(Y): FnQI0}.

The topology T of F(Y) essentially inherits the properties of the topo

logy of Y, in particular here (F(Y),T) is regular and compact; for Y separa

ble T has a countable base [3, Proposition 3.2[, [41.

Let now LSC(X) be the space of the lowersemicontinuous (l.sc.) functions

on the topological space X with values in the extended reals and let E denote

the space of the epigraphs. These are closed subsets of Y=XxR.

The topology T on F(XxR) , restricted to E,gives a topology - called

epi-topology and denoted epi - on E and correspondently on LSC(X). The topo

logical space (LSC(X),epi) or (E,epi) is regular and compact if X is separa

ted and locally compact r3,Corollary 4.31. MOreover, if X is separable the

topology epi has a countable base.

For a family {f; f , n=l, ... } in LSC(X) , epi-convergence of {f } to f,
n n

denoted f e£if , means that epi f .... epi f in the topology T of E. A local cha-
n n

racterization of epi-convergence can also be given. MOre rigorously fne~if

if and only if the following conditions are satisfied:

for any x E X, any subsequence {fnk,k=l, ...} and any sequence

{xk, k=l, ... } converging to x in X we have

(2.2)

for every x E X there exists a sequence {~' n=l, ...} conver

ging to x such that

(2.3)

This characterization immediately points out that epi-convergence is re

lated to the pointwise convergence, here denoted f n £ f, but it is neither
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implied nor does it imply pointwise convergence. However epi-convergence and

pointwise convergence are equivalent only on equi-Iowersemicontinuous subsets

of LSC(X) [3,Theorems 2.18 and 4.61.

Recall that [3, Definition 2.17] a subset QofLSC(X) isequi-loweT'semicon

tinuous(equi-l.sc.) at x E X if for any E>O sufficiently small there corre

sponds a neighbourhood V of x such that for all f E Q we have

-1
Inff(y) > min (E , f(x)-E). (2.4)

yEV- -

Q is said to be equi-l.sc. if (2.4) holds for all x E X.

The local characterization of epi-convergence (2.2) and (2.3) together

with (2.4) easily gives the following particular case of [3,Theorem 2.18l ,of

direct use in the following:

epi
2.5 TIffiOREM - Let fn ... f. Tllen foT' any x E X such that f (x) >-ex>, fn (x) ... f (x)

if and only if {f;fn,n=l, ... } is equi-l.sc. atx.

The notion of epi-convergence and the engendered epi-topology on LSC(X)

have their counterpart in the mirror setting 'of uppeT'semicontinuous (u. sc.) fun

ctions, i. e. functions with closed hypographs, where for f: X ... R, hypo f =

{(x,a)EXxR: f(x)~a}.

Hypo-conveT'genceofuppersemicontinuous functions then means convergence

of their hypographs and all the results, with the necessary adaptations, re

main true: the notion of equi-l.sc. becames equi-u.sc. and it provides the

minimal setting for equivalence between hypo-convergence and pointwise con

vergence for uppersemicontinuous functions. We do not restate these results

here and, when necessary, we refer to results on epi-convergence just speci

fying that they have to be interpreted in the "hypo-version".

An interesting case of uppersemicontinuous functions to which all the

above applies is given by probability measures on topological spaces when re

stricted to closed subsets: then hypo-convergence and the standard notion of

weak convergence of probability measures are equivalent; equi-u.sc. and ti

ghtness are equivalent notions.
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This approach to weak convergence of probability measures is presented

in [7] for locally compact, Hausdorff and second countable spaces and to that

we basically refer to obtain results for convergence of stochastic infima. A

more general treatment dealing with the case when the space is metric andse

parable is forthcoming.

In the probability space (Y,B(Y),P) where Y is a locally compact, Haus

dorff and second countable space, B(Y) the Borel field of Y and P a probabi

lity measure, we look at B(Y) as generated by F(Y) , the closed subsets of Y.

When F(Y) is equipped with the T topology, as described at the beginning of

this section, the restriction of the probability measure P to F(Y) is upper

semicontinuous on the topological space (F(Y),T) [7, Proposition 3.1J.

For a family {P; Pn , n=1, ... } of probability measures on B(Y), conver

gence can then be approached in terms of hypo-convergence of their restric-

shown to be e-

{P } to P, de
n

[7, Theorem 4.1 J. Results on epi-convergence in their "hypo-ver-

tions, say"{D; D , n=1, ... } on the topological space (F(Y),T).
n

Hypo-convergence of the restrictions, denoted D hKPoD is
n

the weak convergence of the probability measures

sequence of the restrictions {D } 'at
n

F E F(Y), since all the D 's are finite, simply means that for any E>O there
n

exists a neighbourhood V(F) in the topology T of F(Y) such that for all n

quivalent to

noted P ~ P
n

sion" all apply. The equi-u.sc. of the

D (F ' ) < D (F) + E,
n n

for all F'E V(F) (2.6)

or equivalently

P (F ' ) < P(F) + E,
n

for all F'E V(F). (2.7)

Abusing in the language, condition (2.7) will be referred as equi-u. se. of the

probability measures {P } at FE F(Y).
n

Theorem 2.5, restated in its "hypo-version", by equivalence of the hypo

convergence D hKPoD of the restrictions with the weak convergence of the pro
n

bability measures P ~ P and (2.7), becames:
n

2.8 THEOREM - If P ~ P then for any FE F(Y) we have P (F) .... P(F) if and on ly
n n
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if {P; Pn • n=l •... } is equi-u.sc. at F.

3. Convergence in distribution of normal integrands.

On the probability space (D.A,~), a nonnal integrand f:XxD ~ R. as defi

ned in section 1. can be regarded as map on S1 taking values in LCS(X). the

space of the lowersemicontinuous functions on X; its measurability (1.2) can

be expressed in terms of the measurability of the map W:D ~ LSC(X) with re

spect to a-algebras A of D and the Borel field of LSC(X) generated by the o

pen -or closed- subsets of the epi-topology of LSC(X).

Equivalently. and we follow this line here to avoid complicated notati

ons. we can look at the normal integrand f.directly. through its epigraphi

cal multifunction

w ~ epi f( . •w~ (3.1)

regarded as map of D into the space F(XxR) of all closed subsets of XxR.

To avoid complicated notations in the following we put F =F(XxR) and denote
o

T the topology T. as described in section 2. for F .o 0

It is not difficult to show that the measurability (1.2) is equivalent

to the measurability of the map epif: S1 ~ F with respect to the a-algebras
o

A of D and the Borel field B(F ) generated by the closed subsets of the topo
o

logical space (F .T) [6].
o 0

Even if many results can be extended to a more general setting. \,e assu

me that X is a finite dimensional euclidean space: the setting is the sameas

in [6J where this approach to convergence of normal integrands has beenintro

duced and to which we will refer for the following.

Thus the map epi f( .•. ) : S1 ~ F induces a probability measure P on B(F )
o 0

and we refer to it as the probability measure of the normal integrand f.

Consider now a family {f; f • n=l •... } of normal integrands with indu
n

ced probability measures {P; P • n=l •... } . Recall from section 2 that W 1 )
n 0 0
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is regular, compact and admits a countable base; then it is metrizable.

Thus the weak convergence of the probability measures {P; P , n=1, ... }
n

induced by the normal integrands can be approached in the standard context of

"weak convergence on metric spaces"; according with the known defini tion of weak

convergence (see for example [1J), the sequence of probability measures {P }
n

is said to weakZy converge to P if

P (B) ->- PCB)
n

for all B E B(F ) with P(bdyB)=O
o

(3.2)

ribution functions of random vectors [6J.

For a family of normal integrands {f;

where bdyB denotes the boundary of B in the topological space (F ,T).
o 0

3.3 REMARK - In view of the applications and aiming at a direct use of the

probability measures of normal integrands, especially for what is concerning

weak convergence, it is relevant to observe that P on B(F ) is uniquely de-
o

termined by a much simpler function called distribution function, denoted T

and defined on K(XxR) , the compact subsets of XxR, by

T(K) = ll({wEO: epi f(. ,w) nK f 0})

[61. The name "distribution function" finds its justification in the proper

ties of T which can be regarded as extensions of the properties of the dist-

f , n=1, ... } with probability mea-n .

sures {P; P , n=1, ... } and distribution functions {T; T , n=1 , ... } the weak
n n

convergence (3.2) can be shown to be equivalent to the convergence of these-

quence {T } to T "pointwise on the continuity set" of T [1 ,Sections 1 and 3] .
n

Thus the weak convergence P ~ P will be also equivalently referred as con
n

vergence in distribution of {f } to f.
n

Consider now the family of probability measures {P; P , n=1, •.. } restric
n

ted to the space F(F), the closed subsets of (F ,T ).The space F(F) equiped
o 0 0 0

with the topology T is again regular, compact and second countable. In viewof

the results of section 2 the restrictions of {P;Pn,n=1, .•. } toF(Fo ) are upper

semicontinuous on (F(Fo),T) and their hypo-convergence is equivalent to the

weak convergence P ~P: pointwise convergence on subsets of F(F ) , when needed,
n 0
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is guaranteed by equi-uppersemicontinuity (Theorem 2.8).

This is a crucial point in convergence of stochastic infima; in view of

that next theorem gives a characterization of equi-u. sc. on particular elements of

F(F ).
o

According with section 2, for G and K respectively open and compact sub-

sets of XxR, the sets F
G

and FK are open subsets of (F ,T); thus their com
o 0

plements in Fo ' respectively FG and FK are closed,i.e.

FG
E F(F ) and FKE F(F ). (3.4)

o 0

By the standard characterizazation of weak convergence [1], we have:

w
3.5 PROPOSITION - Let Pn + P. Then:

lim sup P (FG) < P(FG) for any G open in XxR
n -

(3.6)

(3.7)

w clG G3.8 THEOREM - Let P + P and ~et Gbe an open subset of XxR such that Prp )=P (F ).
n

Then {P } is equi-u.sc. at F
G

if and on~y if for any 1;;>0 there exists Cc G,
n

C open and rerative~y compact such that for a~~ n we have:

(3.9)

PROOF- a)the condition is necessary. Since G is open, for the topological pro

perties of XxR there always exists an increasing sequence {G. ,i=l, .•. }ofopen
1

relatively compact sets such that G =uG., so that, as immediate to see,weha
1

UG· G· G G· G·
ve F 1 = n F 1 = F . The sets F 1, as closed subsets of F0 decrease to n F 1

= FG, i.e. as elements of F(Fo) they converge to FG•

If{P }isequi-u.sc. atF~for any e:>Othereexists i' such that, for all n,wehave
n

Since G., is open relatively compact and G., c G, (3.9) is satisfied and the
I I

necessary part is proved.

b)the condition is sufficient. Suppose now that (3.9) holds. Bycomplementa-
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tion we have for all n

and taking lim sup in both sides

limsupPn(FG) 2.limsupPn(Fc)+E 2. limsupPn(Fc1C)+E 2.

(3.10)

where the third inequality follows from (3.7) and the last equality from the

assumption P(F
clG

) = P(F
G

).
G

The repeated use of the argument for every E>O shows that P(F ) <

lim inf P (F
G

) and by by (3.6)of Proposition 3.5 we actually have
n

P(F
G

) = lim P (F
G

).
n

n " "" G" } G11S means pOIntwIse convergence at F ; equl-u.SC. of (P at F follows then
n

from Theorem 2.8 and the theorem is proved.

4. Convergence of stochastic infima.

We consider now stochastic infima of normal integrands and their conver

gence in distribution.

For a normal integrand f:Xxn + R, the stochastic infimum

w + Z(w) = Inf xf(x,w)
XE

(4.1)

is a (possibly extended) random variable on (n,A,~). For, just observe that

for any real z, setting H(z) ={(x ,a)EXxR: C12.Z} the subset of n defined by

{wEn: Z(w)<z} = {wEn: epif(.,w)nH(z);J0J = {WI:\1: epif(.,w)EFH(z)} (4.2)

is measurable, i.e. belongs to A, becausew+epif(.,w) is a closed valuedmea

surable multifunction.

Let P be the probability measure induced by the integrand f. By (4.2)the

distribution function ¢ of Z(.) can be directly expressed in terms of P as foHm'>'s:

¢(Z) = ~({wEn: Z(w)<z}) = P(FH(z)) (4.3)
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Relation (4.3) clarifies, as natural to expect, that P completely determines

~. It clarifies also that, when aiming at convergence of infima, epi-conver

gence in distribution of the normal integrands as introduced in section 3 is,

in some sense, an inescapable condition.

For the family {f;f ,n=1, ... } of normal integrands with probability mea
n

sures {P,P ,n=1, ... }, let {Z;Z ,n=1, ... } be the corresponding family of sto-
n n

chastic infima and {~;~ ,n=1, ... } their distribution functions.
n

The basic convergence question (1.3) can now be reformulated as follows:

~ (z) .... (z)
n

Given that P ~ P, find the minimal set of conditions
n

foT' the conveT'gence 'in distribution Z 1 Z, i. e. foT'
n

fOT' every Z E cont ~

(4.4)

(4.6)

where cont~ denotes the set of points where ~ is continuous.

By definition of ~ and ~n as in (4.3), since H(z) is open in XxR, Pro

position 3.5 immediately implies:

w4.5 PROPOSITION - If P .... P then foT' every T'eal z we have
n

~(z) < liminf~ (z). (4.5)
- n

w
Still as consequence of weak convergence Pn .... P, whenever FH(Z)is a P-

continuity set, i.e. P(bdy H(z))=O we also have

lim ~n (z) = lim Pn(FH(z)) = P(FH(z)) = ~ (z) .

Unfortunately even when ZEcont ~ we do not have P(bdyFH(z)) =0; the converse is

true. In this case however, that is when ZEcont~ , we have

P(FcIH(Z)) = P(FH(z))

as it can be immediately derived from (4.3).

To solve the convergence question (4.4) in its full generality it is ne-

cessary to go back to the hypo-convergence of the probability measures andto

its relations with pointwise convergence, basically to Theorem 2.8.

4.7 TI-lEORFM - Suppose that P ~ P. Then Z i Z if and only if anyone of the
n n

following conditions is satisfied:
H(z)

(i) foT' eveT'y zEcont~,{P } is equi-u.sc. at F ;
n
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(iiJ for every ZEcont<l> and any £>0 there exists Cc H(z). C open and relative

ly compact such that for all n we have

(4.8)

PROOF - Condition (i) simply restates Theorem 2.8 with B = FH(z) . As (ii) is

concerned, for ZEcont<l> , relation (4.6) holds; then equi-u.sc. at FH{z)can

be characterized as in Theorem 3.8 and (ii) is proved.

Just using complementation arguments, necessary and sufficient conditi

ons more amenable to a direct use can be derived.

4.9 THEOREM - If P ~ P then Z ~ Z if and only ifforeveryzEcont<l>. any £>0
n n

and any 0>0 there exists Kc clH(z), K compact. such that for aU n we have:

P (F lH( )) < P (F
K

) + £ (4.10)
n c Z-o n

PROOF - Suppose Z ~ Z. Then by theorem 4.7(ii) taking the complements in
n

(4.8), observing that clH(z-o)cH(z) and dC is compact, we have for all n

PnCFclH(z-o)) 2 Pn(FH(z)) < Pn(FC)+£ < Pn(FclC)+£·

This shows (4.10)with clC=K.

Suppose now that (4.10) holds. By Proposition 4.5 it is sufficient to show

limsup <I> (z) < <I>(z).
n -

(4.11)

Let ZEcont<l> and £>0; let 0>0 be such that Z+oEcont<l> and <I>(z+0)<<I>(z)+£/2. Then

by (4.10) there exists KccIH(z+o), K compact. such that for all n we have

Pn(FclH(z)) < Pn(FK) + £/2;

taking the 1im sup in both s ides we have

lim sup Pn(FclH(z))2 lim sup Pn(FK) + ~ 2 P(FK) + ~ (4.12)

£ £
2 P(FclH(z+o))+ 2 2 P(FH(z+o))+ 2 ~ P(FH(z))+£

where the second inequality is due to Proposition 3.5 and the equality to (4.6).

Since Pn(FH(z))~Pn(FclHCz))' (4.12) implies (4.11) and that completes the proof.

Condition (4.10) rewritten in the more explicit form

\l({W: epif c.,w)nclH(z-O)f lim < \l({w:epif c.,w)nKf 0})+£
n - n

(4.13)
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immediately reveals its connection with the existence of tight sequences of

distribution optimal solutions in the sense that will be now specified.

4.14 REMARK - Observe that in Theorem 4.9 the compact set K can be replaced

by the closed set K ={(x,a): XEC, a<Z} where C is a compact subset of X andz -
the proof of the theorem remains valid. Then the condition (4.10) or equivalen-

tly (4.13) can be replaced by

\l{w: epi f (. ,w) n clH(z-Ci) " 0} < \l{w: epi f (. ,w) n K ,,0} +£
n - n z

It is known that if f:XxQ ->- Ris a nonnalintegrand then for any measurable

map x:Q ->- X, the map w ->- f(x(w),w):Q ->- R is measurable.

A map y:Q ->- X will be said distribution optima~ so~utionfor the norma~

integrand f if y(.) is measurable and the measurable map w->- £Cy(w) ,w) has the

same probability distribution as Z(w)=Inf Xf(x,w).
xE

4.15 COROLLARY - Suppose that P ~ P. Let {x (.),n=1, ... } be asequenceofdi-
n n

stribution optima~ so~utions. If {x (.)} is tight then Z 1 z.
n n

PROOF. Tightness for {x (.)} means tightness of the corresponding probabilityn .

measures l1], i. e. for any £>0 there exists a compact subset C of Xsuch that

\l{w:x (w) E C} > 1- £ for every n
n

Let z cont¢, £>0, Ci>O. Then (4.16) implies:

\l{w: epi f (. ,w)n CIH(z-Ci)" 0}<\l{w: Z (w)<z-Ci}=\l{w:f (x (w) ,w)< z-Ci}
n - n- nn-

(4.16)

<\l{w:f (x (w),w)<z-Ci, x (w)EC)+£ < \l{w:epif (.,w)nK" 0.l.J£.
- nn - n - n z

The result follows then from Theorem 4.9 with Remark 4.14.

In general we cannot expect the existence of distribution optimal solutions

even when Z(w»-co almost surely. Amore general result can be given in tenns of di

stribution Ci-optimal solutions defined as follows.

For the nonnal integrand f, given Ci>O, the map y: Q->-X is said to be distribu

tion Ci-optima ~ so ~ution for f if it is measurable and for any real z we have

It can be proved that for any Ci>O, distributionsCi-optimal solutions always
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for the family of normal integrands {f;f ,n=1, ... } if P ~ P, Z 1 ZandZ>-",
n n n

almost surely: the existence argument relies on the existence of measurable

selectors (see for example[5]) for the multifunctions

lepif (.,w)flclHLZ (w)+5) ifZ (w»-'"
) n n n

=)XXR otherwise
(4.17)

and on the fact that since Z (.) 1 Z(.) and Z>-'" almost surely, for every 5>0
n

there always exists a closed bounded interval [z- ,z +] stich that

~{w: Z (W)E[Z-,Z+]} > 1-5. In (4.17) clH(Z (w)+a)={(x,a):a< Z (w)+a}.
n n n

With the same arguments used in the proof of Corollary 4. 15 we have:

4.18 COROLLARY - If P ~ P and Z>-'" almost supely, then Z 1 Z if fop every
n n

a>O there exists a tight sequence of distPibution a-optimal solutions.

Among the classes of problems which satisfy the above condtions it is no

teworthy the case of inf-compact normal integrands, a restrictive situation which

however already covers a large number of applications. This is related to [5, Sec. ~ .

Recall that a losc. function g:X+R is inf-compact if and only if for every real

z, epi g flclH(z) is a compact subset of XxR.

A sequence of normal integrands {f;f ,n=1, ... } is said to be equi-almost
n

unifopmly inf-compact if, for every real z and any e:>0 there exists a compact sub-

set Kof XxR such that for all n we have

~{w:epif (.,w)flclH(z)eK} > 1-e:.
n

(4. 19)

It is easy to show that (4.19) implies (4.10) of Theorem 4.9. Thenwehave:

4.20 COROLLARY - Suppose that {f;f ,n=1, ... } is a family of equi-almost uni
n

fopmly inf-comact nopmal integrands. If P ~ P then Z 1 z.
n n

A special case of (4.19) is when for every real z and anye: >0 there exists a

compact subsets C of X such that

~{w: dom f (. ,w) eC} > 1-e: (4.20)
n

where domf (.,w1 = {x X: f (x,w)<+",H6,Sec.7].
n n

It is relevant to observe that condition (4.20) is satisfied by stocha-

stic processes with l.sc. realizations on a compact set. These, under rather
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broad conditions, can be regarded as normal integrands. For them then, when

converging in distribution in the sense of normal integrands, we immediately

obtain convergence of the corresponding stochastic infima.

In this connection it has to be observed that convergence in distribution

of stochastic processes regarded as normal integrands is closely connected

but not equivalent to the convergence in distribution in the classical sense

of the convergence of the finite dimensional distribution functions. These

relations are also examined in [6]. This new setting however seems to be par

ticularly appropriate to deal with convergence of functionals of stochastic

processes: a more complete treatment is foreseen.
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GROWTH RATES AND OPTIMAL PATHS IN STOCHASTIC
MODELS OF EXPANDING ECONOMIES
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1. INTRODUCTION

In t.hls paper we invesUgat.e von Neumann-Gale (NG) st.ochast.ic models of expand

Ing economies. These models are not. only int.erest.ing t.heoretically, but. also provide

t.he basis (at: least. in t.he det.erministic case) for numerous experlment.al calculat.lons.

Two of t.he most. import.ant. not.ions in det.erministic NG-models are t.hose of t.he von Neu

mann growt.h rat.e (N-growt.h rat.e) and t.he von Neumann pat.h (N-pat.h), which charac

t.erlze t.he asympt.otic behavior of a broad class of optimal pat.hs (more det.ails can be

found, e.g., In ll,2]). However, many dlfficult.les arise when it. is at.t.empt.ed t.o general

ize t.hese not.lons t.o t.he st.ochastic case. The present. paper is t.herefore devot.ed t.o a

st.udy of t.wo different. ways of defining analogues of t.he N-growt.h rat.e and t.he N-pat.h

in st.ochastic NG-models.

2. PROBLEM DESCRIPTION

We shall first. give t.he st.ochasUc version of t.he NG-model. Let. (0, F, P) be a

given probabillt.y space wlt.h a sequence of u-fields IF = l F t lt~. F t is usually int.er

pret.ed as t.he u-fleld of event.s cont.aining all t.he Informat.lon available up t.o Ume t.

The uncert.aint.y in t.he model Is represent.ed by an exogeneous IF-adapt.ed homogeneous

Markov process s = 1S t It~ wlt.h a finit.e set. of stat.es S. [A process IXt It:ao is said t.o

be IF-aaaptea if t.he Xt are Ft -measurable (t ;2: 0).] This process describes t.he Influ

ence of various random fact.ors (such as t.he environment., product.lon uncert.alnt.y, et.c.)

on t.he syst.em. Let. us assume t.hat. t.he process s cannot. be decomposed (I.e .• each st.at.e

is accessible from every ot.her st.at.e).

The stat.e of t.he syst.em Is described by a vect.or:z: E: R~; t.he t.ransit.lon t.o t.he next.

st.at.e ls given by a funct.lon f (s ,X ,u ,~) which prescrlbes t.he next. st.at.e of t.he syst.em

from t.he current. st.at.e x E: Rr.:., random event. s E: S, cont.rol U E: U (s •x) C U and t.he

next. random event. ~ E: S. Taking, for example, t.he st.ochast.lc version of t.he von

I
I

Ii
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Neumann model with Input matrices A (s) and output coefficients B(s ,~), we can put

f(s,x,u,~)= B(s,~)u, U(s.x)= IUER~: A(s)usxl. [For vectors

x t = (xl • ...• xf), i = 1,2, the inequality xl s x2 implies xt s x~ for every k.] We

shall introduce the point-to-set mapping a (s ,x ,~) = f (s ,x , U (s ,x), ~) to represent

production (technological) correspondence In stochastic NG-models.

Given some Fo-measurable xo, a pair of IF-adapted processes V = IUt lt~ and

X = IXt lt~ will be called (respectively) a program and a path generated by V, if

Ut E U(St ,Xt). Xt H = f (St ,Xt ' Ut . St +1) (t ~O). The program V = IUdt;a,o will be

called a stationary Markov process If u t = U (St ,Xt) for all t ~ 0 and some measur

able j'u.nction U (s ,x).

The requirement that the process In this definition be IF-adapted means, In partic

ular, that we must choose non-anticipative programs (I.e., programs which do not

depend on the future states of the system and process S).

3. STOCHASTIC ANALOGUES BASED ON "BALANCED GROWTH"

One way of constructing stochastic versions of the N-growth rate and the N-path

is to generalize the notion of "balanced growth" to the stochaslic case. Recall that the

path IX t It~ In a deterministic NG-model is said to be balanced if x t = at x 0 (t ~ 0),

where a > O. Further, the largest possible value of a is called the N-growth rate and

the corresponding balanced path is called the N-path. In the stochastic case, following

Radner [3], we shall call the path X = IXt lt~ balanced if Xo = Iio•

Xt =Al ..... At . %t (t Oi!:l), where A = IAt lt~ Is an IF-adapted stationary scalar pro

cess and X = lIit lt~ Is an IF-adapted stationary process on the unit simplex of R':. (we

shall aLso set X = (A, Ii». Thus a balanced path corresponds to system evolution with

stationary proportions Xand stationary growth A. The set of all balanced paths will be

denoted by B. This set B needs to be quite "broad", so we assume the possibllty of

arbitrary randomlzalion. Formally, we suppose that the a-fields F t are sufficiently

"rich ", i.e., Ft contains the a-field generated by the sequence 710' so' 711's 1 •... , 71t.

St, where 171t lt~ are independent (both mutually and on the process S) random vari

ables uniformly distributed on 10,1].

Given some Increasing continuous function F: R + --. R, we define the long-run

growth rate of the path X = (A .X) E B as follows:

1 T
vr(X) = 11m - E F(A t )

T->~ T t=l

(this definition may be shown to be true by an ergodic theorem If EF(Al) < co).

(1)
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In order t.o derive our main result.s we shall make a number of assumptions (most.

of which will be expressed in t.erms of t.he mapping a (s ,:z: ,n int.roduced earlier).

Define S.2 = I<s ,t) €oS x S: q (t Is) > 01. where t.he q (t Is) are t.he t.ransit.ion proba

bilit.ies of process S. Then we assume t.he following:

(Ai) a (s ,X:z: , t> = Xa (s ,:z: , t) for all X > 0, :z: €oR";, (s , t) €o S.2;

(A2) f (s ,:z: ,u • t) is continuous in u €o U for all:z: €o R";, (s ,t) €o S.2, and U (s ,:z:)

is a met.rlc compact. set. for all:z: €oR";, s €oS;

(A3) a (s ,:z: ,t) Is an upper-semicont.inuous mapping (in :z:) for all (s , t) €o S.2;

(A4) a (s ,0, n = 10 I for all (s , t) €o S.2;

(A5) U(s,:Z:t)::JU(s':Z:2)if:Z:1~:Z:2foralls€oS;

(A6) a(s ,:z:,t) nint.R"; =I/>forall:z: ~0.(S,t)€oS.2.

Not.e t.hat. condit.ions (Al)-(A5) are nat.ural st.ochastic analogues of t.he usual con

ditions for det.erministic NG-models (see, e.g., [1]). In what. follows we shall assume

t.hat. t.he process s is stationary.

THEOREM: 1. If assumptions (Al)-(A2) are satisfied., then there e:z:ist a number v;

and. a path X; =(X' ,X') €o B such that

and. vr(:Z:) ~ v; (a.s.) for any X €o B.

Proof of this t.heorem is based on t.he ideas put. forward in [3]. The essence of t.his

result. Is t.hat. t.here exlst.s a balanced pat.h X; wit.h a long-run growt.h rat.e vr (defined In

(1» such t.hat., firstly, v; Is non-random and, secondly, v;' exceeds (a.s.) t.he long-run

growt.h rat.es for any balanced pat.h X. The number v; and pat.h X; may be considered

as analogues of t.he N-growt.h rat.e and N-pat.h. Not.e t.hat. in t.he det.ermlnlstic case v; =

F(a·). where a' is t.he N-growt.h rat.e in t.he det.ermlnlstic NG-model. In t.he st.ochastic

case v; possesses t.he following properties:

THEOREM: 2. If assumptions (Al)-(A6) are satisfied.. then for any path l:Z: t lt~ we

have

- T [1:Z:t I 1 .lim [l: F 1 I - Tvr] < COG (a.s.)
T..- t=1 :Z:t-1

n
[For:z: =(:z:1 ..... :z:n) €oR':, I:z: I should be Int.erpret.ed as 2: :z:t.]

t =1

Let. us consider t.he following optimization problem:
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T f 1.%1 1 1 f .%T 1
E f ~ Fl 1 1 J + QlST' -1-' I I So = s • .%0 =.% I --+ max

1=1 .%1 -1 .%T J
(2)

where Q (s •y) is a given funct.1on which is continuous in y and the maximum is taken

over all paths 1.%llr=o' The opt.1mal value of the object.1ve funct.1onal in (2) will be

denoted by l'f·Q(s •.%).

THEOREM: 3. l! assumptions (Al)-(A6) are satisfied., then

sup max Il'f·Q(s •.%) - Tv; I < 00

T"'l sES,x ..O

A similar result for the determinist.1c case was obtained in [2]. In the stochast.1c

case the proofs of Theorems 2 and 3 are based on the method proposed in [4].

Thus. as in the determinist.1c case. v; defines the asymptot.1c behavior of the

opt.1mal value of the objective funct.1onal in problem (2).

Now we shall consider the "logarithmic" case in which F(y) = log y. Here it turns

out that the opt.1mal paths in (2) are close to the path xiog (this is the basis for regard

ing X;OI as a stochast.1c analogue of the N-path).

Let a m (tO•.%0;t1 ..... t m )= IYmERr:: Y1 Ea (tO'.%0. h).
y 2 E a (t1 • y l' t 2) • . . .• Ym E a (tm-1 • Ym -1 • tm>l denote the set of states of the sys

tem which can be reached in m steps from the init.1al states (to' .%0) under the succes

sive occurrence of random events t 1 •...• t m . Let q (t Is) be the transit.1on probabll

It.1es of the process s. Then

(A6') For any to E Sand .%0 ~ 0 there exist an integer m Ole 1 and a sequence

m
t 1 •...• t m E S such that n q (ti I t i -1) > 0 and

i =1

The essence of this condit.1on of stochast.1c primit.1veness is that there is a posit.1ve

probab1l1ty of reaching a strictly posit.1ve state from any init.1al state <to • .%0) in a fin

ite number of steps.

(A7) For any (s.n E S.2 • .%1'.%2 ERr:.. Y1 E a(s '.%1' t), Y2 E a(s '.%2.n. there

exists a if E a (s • .% 1 +.% 2' n such that if Ole Y 1 + Y 2'

This quasiconcavity condition is sllght.1y weaker than the corresponding concavity

condit.1on for determinist.1c NG-models.
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(A8) For any (s,nE.S.Z, x ';'0, Yt, YzE.a(s,x,O, Yt';'Yz, there exists a

il E. a(s ,x,~) such that il O!: t (Yt +Yz) and il ,;. ~ (Yt +Yz)·

(A condition for almost strict convexity of the set a (s ,x ,0.)

THEOREM 4. If assumptions (Al)-(M), (A6'), (A7) and (A8) are satisfied, then

there exists a distribution of initial states x 0 such that the path X;Og is generated

by a stationary Markov process.

Let us now consider the following optimization problem:

(3)

where a given function 4'(s ,x) is superllnear (In x) and strictly positive on the unit

simplex of R~. This problem is a particular case of the general problem (2). We shall

formulate two additional requirements: a "free disposal" condition

(A9) For any x E. R~, (s,~) E. S.z, Y E. a (s ,x ,~), the relation 0 < Y' < Y implies

Y' E.a(s ,x ,~);

and a condition for uniform strict convexity

(A10) For any l: > 0 there exists a p =p(l:) > 0 such that for all (s, ~) E. S.Z and

Ixtl = Ixll =1, IXt-xll O!:l:, the relations YlE.a(s,xt,~), YzE.a(s,xl'~)

implYYt+Yl+w E.a(s,xt+xl,nforsomewE.R~,Iwl O!:p.

THEOREM 5. If assumptions (Al)-(A4) and (A6)-(A10) are satisfied and IxllT=o is

the optimal path in problem (3), then for any l: > 0, S E. S, X E. Int R~, there exists

an L =L (l:, ~,s ,x) such that for all periods 0 :!!i> t :!!i> T - L we have

where Ix; lt~o is the balanced path X;Og'

This result can be regarded as a stochastic analogue of the "turnpike theorems"

for deterministic NG-models. A similar theorem has been established for non-Markov

type models in [5].

4. STOCHASTIC ANALOGUES - ANOTHER APPROACH

The approach described above (based on generalization of the "balanced growth"

notion to the stochastic case) is not completely satisfactory. Indeed, if one is

Interested in the following optimization problem:

(4)

where 4'(s ,x) Is a given function with a positive degree of homogeneity (X (e.g., It is
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linear or superlinear), t.hen, In cont.rast. t.o t.he det.ermlnlst.ic case, nelt.her t.he asymp

t.otlc behavior of t.he opt.lonal value of t.he objective functional nor t.hat. of t.he optimal

pat.hs is connect.ed wit.h charact.eristics of t.he t.ype vi and X; (see above).

Anot.her way of defining st.ochastic analogues of t.he N-growt.h rat.e and N-pat.h can

be considered for such problems. This approach may be summarized as follows. Since

t.he functional In (4) may be written In t.he multiplicative form

It. seems nat.ural enough t.o suppose t.hat. t.here exlst.s a number X such t.hat. t.he optimal

value of t.he object.lve functional In problem (4) displays growt.h of order XT (as

T - 00). This number will be called t.he model growth rate (st.ochastic N-growt.h rat.e).

It. t.urns out. t.hat. for t.he model described in Section 1 such a number does indeed exist.;

it. depends not. on t.he given funct.ion eI>(s ,x) but. only on It.s degree of homogenelt.y and

may be obt.alned as t.he solution of a cert.aln one-step stationary problem.

So let. us consider t.he model described above. In cont.rast. t.o Section 2 we shall

not. assume t.hat. process s Is st.at.ionary. Define a functional space

W" = leI>(s ,x): S XR":: -R+I such t.hat. eI>(s ,x) Is concave, upper-semicontinuous and

homogeneous wit.h positive degree a > 0 (in x) (0 < a ~ 1) and an operat.oar

r (jJ(s ,x) = sup L: eI>(t,f(s,x,u,mq(t Is)
u e:U(s,x) S

It is easy t.o prove that. under assumptions (A1)-(A4) and (A7), t.he operat.or r
maps W a int.o W a . One of t.he main result.s is t.he following exlst.ence t.heorem:

THEOREM: 6. if assumptions (A1)-(A4) and (A7) are satisfied, then there exist a

Xa > 0 and a Ga E. Wa such that G a ;= 0 and rG" =XaG a (0 < a ~ 1).

The proof of t.his t.heorem can be found In [5]; we shall only ouUlne its main

feat.ures here. We consider the space of funct.ions leI> = eI>1 - eI>z, eI>1' eI>z E: W"I wit.h

norm 11eI>11 = L: f I eI>(s ,x) Idx. It. is then est.ablished t.hat. t.he operat.or r is contlnu
S Ix I =1

ous and the set leI> E: W,,: iicI>li =11 is compact wit.h respect. to ii·l~convergence. Finally,

t.he fixed-point. t.heorem is applied t.o t.he operat.or LeI> = (eI> + reI»/ (1 +lIr(jJII).

In [5] It. is proved t.hat., under t.he additional assumption (A5'), t.he eigenvalue X" is

unique and t.he corresponding eigenfunctions G ,,(s ,x) are st.rictly poslt.lve (If x ~ 0).

Not.e t.hat. in t.he deterministic case X" = X:" for "nondegenerat.e" NG-models, where X.

Is t.he N-growt.h rat.e (see, e.g., [7]).

Now let. V!(s ,x) be t.he optimal value of t.he object.ive function in problem (4).



582

THEOREM 7. If assumptions (Al)-(A4), (A6') and (A7) are satisfied and

0< inf lJJ(s ,z):s; sup lJJ(s ,z) < co, then
12:1=1 12:1=1

o < inf inf X;;TV.,(s ,z) :s; sup sup X;;TV.,(s ,z) < co
T~l S ES,I2: 1=1 T~l s £.5,12: I =1

This result means that V.,(s ,z) displays growth of order X! (for sufficiently large

T). This property allows us to regard numbers XQ as slochastic analogues of the N

growlh rale. A similar property of the N-growth rate was established for the deter

ministic case in [2].

Now let 1.1. ~ (s ,z) be a measurable function (control) defined by the relation

rGQ(s ,z) =LGQ(t,f(s ,z ,u~(s ,z), mq(t I s)
s

where GQis an eigenfunction of the operator r. Let X~ =IQz;lt:.o be a path generated

by the slationary Markov process I1.1. ~ (s , z) I and lhe inilial distribution QZ~ on the

unil simplex of R':.. It lurns oullhallhe path X~ possesses certain "turnpike" proper

ties.

THEOREM 8. Let assumptions (Al)-(A4), (A6'), (A7) and (Al0) be satisfied. Then

for any numbers l:, 6, '1/ > 0 there ezists an integer L =L (l:, 6, '1/) such that for any

path IZ t It=o and all periods t =0,1 , ...• T (ezcept perhaps L) the following rela

tion holds:

.
P<lI~----41 Sl:IUBb~l-'1/

IZt I IQZt I

where

In essence, this result states that for any '1/ > 0 and almost all periods, the paths

IZ t I and X~ either have different orders of growlh or are close lo one anolher (on the

unil simplex) with probabUlty greater than 1 - '1/. Note that for a cerlain class of NG

models, for example, when a (s ,z , n = g (s ,t)a (z) (where g (s ,t) ~ 0, a (z) is a

point-to-set mapping of R':. into R':.) for the optimal path Iznt=o in (4) and 6> 0, we

have p(Bb = 1 and, therefore, IztlT=o is close lo lhe palh X~ (on lhe simplex). This

property of path X~ (which becomes the well-known "weak lurnpike lheorem" in lhe

deterministic case - see, e.g., [1], allows us to regard the palh X~ as a slochastic

anaiogue of lhe N-palh.
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Thus for stochastic NG-models we have the set of N-growth rates P'a: 0 < a :S 11.

From simple examples it is easy to see that the numbers Aa do not coincide with the

numbers v; introduced in Section 2. It would therefore be interesting to establish

some relations between the N-growth rates obtained by different approaches, and also

to study N-growth rates Aa as function of parameter a. Preliminary results In this

direction can be derived from the following statement.

THEOREM 9. Let assumptions (Al)-(A4), (A6') and (A7) be satisfied. Then

(1) the function log Aa is convex in a;

(2) A~/ a is an increasing function;

(3) ~ log Aa -. V;Og (as a -+ 0), where V;og is the "logarithmic" N-growth rate

(i.e., the N-growth rate dfifi,ned in Section 2for the "logarithmic" case).

Finally, it should be mentioned that although we make use of the finiteness of the

set of states of Markov process s in the theorems formulated above, all of the results

remain valid when process s is a sequence of Independent, Identically distributed ran

dom variables (with an arbitrary set of slates) and U (s ,%) and f (s ,% ,u ,t) do not

depend on parameter s (1.e., U(s ,%) = U(%), f (s ,% ,u ,t) = f (% ,u ,t».

5. CONCLUSION

Although deterministic NG-models have "global" indexes (the N-growth rate and

N-path) which the asymptotic behavior of numerous classes of optimal paths, there are

no such "global" Indexes in the stochastic case. Thus, when studying the different

types of extremal problems connected, for example, with objective functionals of the

additive or multiplicative type, we need to define the notions of N-growth rate and N

path In different ways.
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EXTREMUM: PROBLEMS DEPENDING ON A RANDOM PARAMETER

E.Tamm
Institute of Cybernetics
TalUn, USSR

1. INTRODUCTION

We shall consider the following nonlinear extremum problem In n-dImensional

Euclidean space R n :

(1)

where ~ is an s -dimensional random parameter, f: R n x R S -+ R 1 and r Is a multifunc

tion from R S to R n .

The question of whether this problem has a measurable solution :r; • (t) then arises.

In the literature there are a number of papers dealing with analogous questions for

random equations In Banach space (see, e.g., [1-4]). Conditions for the existence of a

measurable solution to (1) can be derived using methods similar to those adopted In

these papers: it Is sufficient to assume that f (:r; , t> Is continuous in both variables and

that r Is a measurable closed-valued multifunction.

Further, If :r; 'It! Is proved to be measurable, I.e., It Is an n-dimensional random

vector, then the next step Is to look for some information about its distribution. For

every particular value of ~. problem (1) is a deterministic extremum problem and for

some values of ~ a solution may not necessarily exist. A lower bound for the probabil

Ity that (1) has a solution Is given In Section 2, where we also derive a Tchebycheff

Inequality-type estimate for this solution. In Section 3 these results are used to solve

certain stochastic programming problems.

2. UNCONSTRAINED PROBLEM

Consider the minimization of a function depending on a random parameter ~:

(2)

We shall address two main questions in connection with this problem:
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(1) How oan we estimate the probab1l1ty that (2) has a solution z' (t)?

(2) How oan we estimate the distance 1b:'(t)-z'll, where z' Is a fixed point

chosen by a certain rule?

It turns out that the most appropriate point for z' Is a local minimum of the func

tion Ef (z • t), I.e .. Ef (z' • t) = minx IEJ(z. t) I z E: R n I. Here we assume the

existence of z'.

Suppose that J (z ,t) and the distribution of the random vector t satisfy the fol

lowing conditions:

1. The function J (z • t) Is twice-differentiable in z. J;~ (z • t) satisfies the Lipschitz

condition

and

2. The mathematical expectations EC(t). EIl!;~(z' • t) - Ef;~ (z' • t)112 and variances

~CW. ~J;~ (z' • t). i = 1.2 •...• n. are finite.

The probabiUty that (2) has a solution and the distance between a local solution

z' (t) and the point z' are estimated in the following theorem:

THEOREM 1 [5]. Let conditions 1 and 2 be satisfied. If there ezist constants 61 and

62, 0 < 61 < m. 62 > 0, such that the ezpression

n
16[ECW+62]2 ~ ~J;~ (z' .t)

t=l

is positive. then there ezists a measurable set M (61 , ( 2) c R S such that

(1) if t E: M(61 • ( 2), then problem (2) has a local solution z' (t):

(3)

n
~ ~J;~ (z' ,t)

PIllz ' (t) - z' II < l: and t E: M(61 • ( 2)1 ~ p (61 , ( 2) - t =1 2 2.tor arbi-
l: (m -(1)

trary l: > O.

Analogous results can also be obtained for the problem with equality constraints
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[5]:

minx lJ (z ,t) I g (z , t) = 0 I

and for t.he problem wit.h inequalit.y const.raint.s [6]:

3. APPLICATIONS

Theorem 1 can be used in t.he minimizat.1on of mat.hemat.1cal expect.at.1on and proba

bUlt.y funct.1ons.

Consider t.he problem

minx IEJ(z ,V I z e: R n I (3)

Formally t.his problem is a special case of an ordinary nonlinear unconst.rained prob

lem. However, exist.1ng met.hods for solving such problems are not. very suitable for

(3), because it. is generally t.oo t.roublesome t.o evaluat.e t.he values of t.he s-dimensional

int.egral EJ (z • V and it.s derivat.1ves. Furt.hermore, in many cases t.he dist.ribut.1on

funct.1on of t is not. known, and so it. is act.ually impossible t.o calculat.e t.hese values.

Hence, t.o obtain some informat.1on about. t.he solut.1ons of problem (3), it. is necessary t.o

use observat.1ons of t in some way. If t.he number of observat.1ons available is pract.1

cally infinit.e, t.hen a procedure of t.he st.ochast.1c approximation t.ype is usually recom

mended. If t.he number of observat.1ons is limit.ed, anot.her approach is more appropri

at.e: inst.ead of problem (3), solve t.he problem

where t.he tt. i = 1,Z •... , Ie, are independent. observat.1ons of t. Problem (4)

depends on t.he Ie x s-dimensional random paramet.er (t1, t2 ' ... , tt) and

1 t
E[- 1: J(z, tt)] = EJ(z ,t). Wit.h t.he aid of Theorem 1 we can est.1mat.e t.he probabil-

Ie t =1

it.y t.hat. (4) has a local solut.1on z~ (t1.t2 ' ...• tt) and t.he dist.ance bet.ween

Z~(t1' t2 ' ... , tt) and z·. Let. t.he funct.1on J (z ,V and t.he dist.rlbut.1on of t sat.1sfy

conditions 1 and Z. Then
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II 1 ~ '" '" 112E - i.J f r.r. (:r; • t 1) - E f r.r. (:r; • t> =
k 1 =1

1 II ~ '" '" liZ=-Z E i.J [fr.r.(:r; • t 1 ) - Efr.r.(:r; • t)] ~
k 1=1

and analogously

_? 1 ~ " 1 _?' ,
u-[k i.J f r.i (:r; • t1)] =k u-f r.i (:r; • n . i =1.2 , ... , n

1 =1

As a corollary of Theorem 1. we can now state the following result:

THEOREM: 2 [7]. Let conditions 1 and 2 be satisfied. Then for arbitrary constants

61 and 6z• such that 0 < 6 1 < m. 6z > O. and for sufficiently large k. there exists a

measurable set M(k. 61 , 6z) I:.: R S x· .. x R S such that
t

(1) if (t1 • t z •. ..• tt) E M(k. 61 , 6z) then problem (4) has a local solution

:r;~(t1' ~z· .... ~t);

(2) P!M(k .61 , 6z>l ~ p(k. 61 , 6z);

(3) P!Il:z:~(t1' t z • ...• tt) -:r; 'II < t: and a1 • t z • ...• tt) E M(k .61 , 6z>l ~

is positive.

In a similar way one can also find an approximate local solution for a probability

function.

Consider the problem

(5)
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For every fixed z the function v (z , t) = P l! (z • () < t I Is the distribution function of

the random variable f (z ,n. Therefore, to obtain an estimate of the function

v (z .0) = P If (z • ~) <0 I It Is natural to use some method of estimating distribution

functions. We shall use the Parzen estimate [6] Vt (z . h ' .... tt) of v (z .0):

where h = h (k), lim h (k) = O. 11m kh (k) = 00 and the differentiable function K(T)
t ... • t -+-

satisfies the conditions

(a) J K(T)dT = 1,

(b) J TK(T)dT = o. J T2 IK(T)I dT < 00.

Then the following problem Is solved instead of problem (5):

(6)

Unfortunately. in the present case we only have

1 t. 0 t-f(z.~t)
11m E[kh E J K( h )dt] =v(z,O)
t -+- t =1 -c»

and for this reason Theorem 1 Is not directly applicable to problems (5) and (6). A

relation between (5) and (6) is stated in [9] using the auxiliary problem
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ADAPTIVE CONTROL OF PARAMETERS IN GRADIENT
ALGORITHMS FOR STOCHASTIC OPTIlIIZATION

S.P. UrJas'ev
V. Glushkov Institute of Cybernetics
Kiev, USSR

1. INTRODUCTION

This paper is concerned with the development of iterative non-monotonic optimiza

tion algorithms for a broad class of stochastic programming problems. The following

algorithms are considered:

(a) the quasi-gradient optimization algorithm involving projection onto an admissible

domain;

(b) the Arrow-Hurwicz algorithm which searches for saddle points of convex-concave

functions in the presence of noise;

(c) the generalized gradient algorithm which searches for Nash equilibria in non

cooperative many-person games.

Most of the problems under discussion are characterized by lack of complele

information about objective and constraint functions (which are usually nonsmooth) and

their derivatives. The central idea of the numerical methods considered here (which

are called stochastic quasi-gradient methods) is to use random directions instead of

precise values of gradients or their analogs. These random directions are slatistical

estimates of gradients (stochastic quasi-gradients). The resulting algorithms are

derived from stochastic approximation algorithms. The firsl sleps in this direction

were taken by Robbins and Monro [1]. and developed further by many other authors.

This approach was generalized by Ermoliev [2], who exlended it to a broader class

of optimization problems and introduced the notion of the stochaslic quasi-gradient.

Adaptive procedures for controlling lhe parameters of lhe algorithms discussed in

this paper and improving their practical characteristics are proposed. The term

"adaptivity" as used here refers to the dependence of these paramelers upon the pro

cess lrajectory, as opposed to procedures in which lhe parameter values depend only

on the number of iterations. The selection of step size controls and slopping criteria
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represent the main difficulties In the computer Implementation of these methods, and

are studied in [2-5]' This paper concentrates on the approach described in [6-9],

which is further developed in [10J.

The main features of the proposed approach are summarized briefly below.

Almost every Iterative algorithm involves parameters that have to be controlled.

Although criteria determining the controls that should be chosen are usually available,

it is often very difficult to satisfy these criteria (to find the optimal control) In prac

tice for computational reasons. However, It is possible to vary these criteria with

respect to the parameters and, as a result, to compute their gradients or stochastic

quasi-gradients. The resulting gradients (quasi-gradients) may be used to construct

recursive procedures for parameter modification. Several gradient procedures are

included in the algorithm, both in the basic space and with respect to the algorithm

parameters, Le., some adaptation of algorithm parameters occurs.

It is proved that algorithms with step-size rules of this type converge to the set of

optimal points. Suggestions regarding the computer implementation of the algorithms

are made.

2. A STOCHASTIC QUASI-GRADIENT ALGORITHlI

Description. Assume that the problem is to minimize a convex (possibly

nonsmooth) function

f (x) -+ min
:r;EX

where X is a convex, closed, bounded subset of a separable Hilbert space H. In some

fairly general classes of problems it is very difficult to compute exact values of the

function and its gradients, but it is possible to find vectors which represent statistical

estimates of these quantities. This occurs, for instance, In the minimization of func

tions of the form

f(x) =E",'I/I(x,Col) = J'I/I(x,Col)P(dCol)
",EO

Recalling that in the most general case the generalized differential of the convex func

tion f (x) may be calculated using the formula

Of (x) = J 0:r; 'I/I(x , Col)P(dCol)
",EO

we may take 0:r; '1/1 (x ,Col) as a set of vectors representing statistical estimates of gra

dients of the function f(x). Denote the operatiion of projection onto the bounded con

vex set X by 7Tx('), and let (0, A ,P) be some probability space. Examine a sequence of
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random points generated by the formula

(1)

where xO E: H is an arbitrary point; Ps O!: 0 . s = 0.1 •... are step sizes; and

~(s ,x, (,J) • s = 0.1 .... is a sequence of random functions defined on the probab1l1ty

space (0, A ,P) and assuming values in a measurable space (H, B) (B is a Borel (]

algebra in H). It is required that the superpositions ~(s • ("«(,J), (,J) be random variables

for any random value (": 0 -+ H. The random functions ~(s •x • (,J) are jointly indepen

dent for any s =0.1 •.... X E: X and the relations

EHs ,x , (,J) = fro (x) + b (s ,x)

are satisfied, where E denotes mathematical expectation; vector Ix (x) belongs to the

set of generalized gradients o/(x) of the convex function /(x); and

b(s • x) , s = 0.1 •... is a sequence of deterministic functions given on the space H.

Thus. the functions Hs .x , (,J) • s = 0,1 .... are statistical estimates of some generalized

gradients of the function / (x). The random functions ~(s • x , (,J) are called stochastic

quasi-gradients. For simplicity we shall write

b(s ,x) = b S

Construction of an Adaptive Step Size Control. To put algorithm (1) into

practice. it is necessary to have some formulas for the computation of parameters

Ps • S = 0,1 ..... For simplicity. we shall assume that X = H. Algorithm (1) allows a

natural choice of the step size Ps using the condition for the function 1/ts (p) to be a

minimum with respect to p, where

and E[ . I . J denotes conditional mathematical expectation. The values of the function

1/ts (p) are usually very difficult to compute. Let us differentiate the function

/ (X
S

- p~s) with respect to p at the point Ps:

where <',' > denotes a scalar product. Since o1/ts (ps) = E[ opt (X
S

- Ps ~S) I X
S J. we

have _E[<~s+1.~s>lxsJE: o1/ts(ps)'

The following gradient procedure:
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can be used to modify the step size Ps' In order t.o facillt.at.e t.he proof of convergence,

t.he above relat.ion is rewrlt.t.en In t.he form

(2)

where an addlt.ional element -tips (which reduces t.he st.ep size) is Int.roduced Int.o t.he

exponent..

Convergence of the Algorithm It. Is possible t.o show [7,8] t.hat. under cert.ain

condll1ons t.he st.ep sizes calculat.ed using formula (2) sat.isfy t.he classical condlt.ions

for convergence of st.ochast.ic opt.imlzat.ion algorlt.hms [2]:

s
Ps -+ 0 a.s.. E Ps =00 a.s.•

°
and, moreover, t.hat. t.he condlt.ion Ps / Ps +1 -+ 1 holds a.s. The proof of convergence

of met.hod (1), (2) will therefore be reduced t.o a sl1ght. modlflcat.ion of t.he t.radlt.ional

proof [2] associat.ed with t.he fact. t.hat the st.ep size Ps depends not. only upon t.he vec

t.ors (zo •...• ZS ,to . .... tS -1) but. also upon the vect.or e.
THEOREM: 1.. Let f (x) be a convex (possibly nonsmooth) function defined on a con

ve.:z:, closed. bounded subset X of a separable Hilbert space H. If the conditions

max IIz-y ll=C1 ;roma sup IIHs.x.",)II<C2 a.s.
""yr;.){ s::O.l•.•.•:z:EX

Urn supllb(s,z)ll~b;as =a.s =0.1 .... ; a >1
S ...... .zEX

are satisfied thenfor a sequence Ix s I defined by relations (1), (2) we have

Um / (is) ~ f (z') + bC 1 a.s.
s~-

where

-If. in addition. ~ I bsips < 00 holds a.s., then

°
lim f(x S

) =/(z') a.s.
s .. -

(3)
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Note that If X Is a compact set then the fact that f (x S
) -+ f (x') Implies that the

sequence Ix sI converges to the set X'. I.e .• min IIx s - yll -+ 0 almost surely as s -+ "".
yEX

The convergence of the sequence Ixs I to the extreme set will be referred to as

Cesdro convergence. This type of convergence was considered In [11.12].

Convergence Rate. The first estimates of the convergence rate of the algorithm

obtained by modifying algorithm (1). (2) are given In [10]. It can be shown that if the

function f (x) Is twice continuously differentiable. then, under the conditions specified

In Theorem 1. the step size Ps in relation (2) satisfies the asymptotic relation

1 1
P = - +0(-)

s os S

Assume that there exists a constant B > 0 such that f (x) ~ f (x ') + BII x· - x 112 . Then

It is possible to demonstrate that

Computer Implementation of the Algorithm& Theorem 1 Is proved assuming

that as = const.• s = 0.1..... This assumption can result in very rapid changes In the

step size Ps at each Iteration. In practice It Is desirable that the exponent In relation

(2) should be divided by some value Zs representing the average of the values

I «S H , X S - X S H>I and to specify some bounds for the maximum step size variation.

In numerical experIments. we used the following recursive relations to compute the

step size:

a =2 • u =O.B • D = 0.2 • z -1 = 0

The computer Implementation of this algorithm and the results of numerical experi

ments are described at greater length in [7,B].

3. A STOCHASTIC ARROW-HURWICZ ALGORITHM:

The problem of finding the saddle points of convex-concave functions often arises

In mathematical economics. Constrained stochastic programming problems can also

often be reduced to searching for the saddle point [2].

Let X • L be convex. closed. bounded sets In Hilbert spaces Hr. ' HL• respectively,

and F(x .l):X xL -+ R be a continuous convex-concave (possibly nonsmooth) function.
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To find the saddle point of function F(z ,l) we will make use of a generalization of

the Arrow-Hurwicz algorithm [2, 12-14]:

(4)

where ~s , 7/s are stochastic quasi-gradients at the point (zs ,lS) with respect to the

first and second groups of components.

To control the step sizes. we may use relations similar to (2):

7 <~8H,x8~Ul>_" P 7
Ps +1 = Ps l1:z: 8 8 8 8

P <'18H,t U 1-t 8 >-/9 P 7
"1s +1 ="1sat 8 8 8 8

(5)

where ax > 1, at > 1. c5 s > 0, fJs > 0, s =0,1 ,....

Since the sequence of points !<.i: s , [S )lis a convex combination of points (Z5 , l S),

s =0,1 , ... , it is clear that

converges In functional to a set of saddle points. Let F:r. (z S ,l S) denote a generalized

gradient of the function F with respect to z at the point (z S ,lS).

We shall now formulate a theorem [9] for CesAro convergence of algorithm (4), (5).

THEOREM 2. Let X . L be convez, closed, bounded sets in separable ffllbert spaces

Hx • Ht , respectively, and F(x ,l):X xL -+R be a continv.ous convez-concave /Unc

tion. Assume that

II~sii < Cx a.s. ,1I7/sll < Ct a.s., s =0.1, ... ; lim c5s > C:r.2 ; 11m fJs > Cl
S' ... ,. S' .....

iirnIIE[~S Izs .lS] -F:r.(zS .ls)ll~ bx a.s.;
S ---

Urn IIE[7/s/zs ,lS] -Ft(zS ,ls)ll~bt a.s.
5 ---

Define

F(X) =sup F(x • l) , E(l) = Inf F(x , l )
LEL xEX

Then

urn I/s ~ bxK:r. + bLKL a.s.
S ---



597

where K% ' Kt a.re the aia.meters of the sets X a.na L. respectively.

When implementlng algorithm (4), (5) it is desirable to vary the coefficients

0.% • a.t during the iteratlve process. Suggestlons concerning the computer implemen

tation of this algorithm are offered in [9]. together with the results of some numerical

experiments.

4. AN ALGORITHlI WHICH SEARCHES FOR NASH EQUILIBRIA

IN NONCOOPERATIVE MANY-PERSON GAllES

Many problems in mathematical economics can be reduced to the search for Nash

equilibria. Here we use a generalized gradient algorithm to search for such equili

bria. Applications of algorithms of this type for cases in which the objective functlon

is smooth are discussed in [15.16]; algorithms for the nonsmooth case were developed

In [17,18]. In what follows we shall look at a deterministic version of the algorithm;

however, algorithms of this type can easily be extended to the stochastic case, in

which only statistical estimates of objective functions and their gradients are avail

able.

The computer implementation of these algorithms, like that of stochastic quasi

gradient algorithms. involves difficulties associated with the control of parameters.

The suggested approach helps us to overcome these difficulties.

Statement of the Problem Define an n-person game as the object

7 =(X .l'tt It=1)' where

(a) X is a convex, closed. bounded set lying in the product of Hilbert spaces

H=H1 x'" XHn ;

(b) 'tt (x l' ...• x n ) = 'tt (x) , i = 1 , ... , n are the players' payoff functions defined

onX;

t:. n
(c) a function i'(x •y) = L: 'tt (x l' ...• Xt -1' Yt ,Xt +1' ... , x n ) is jointly continuous

t =1

in its variables on X x X and concave with respect to y on X for each x E: X;

(d) a function 4>(x ,y) =t(x ,x) - t(x ,y) is concave with respect to x for each

y E: X.

The point x· =(x~ •... , x~) is referred to as an equilibrium point of the n

person game if for i = 1 .... , n we have

The point x· E: X is defined as a norma.lizea equilibrium point (n.e.p.) If

x· E: Z(x'), where Z(x) = Arg max i'(x ,y). Let X· denote the set of normalized
yEX
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equilibrium points. A normalized equilibrium point Is always an equilibrium point, but

the converse Is not always true. The set X· Is not empty. convex, closed, and bounded

under the above assumptions. To find an n.e.p., we use the following algorithm:

(6)

where

With sufficiently natural conditions on the parameters of algorithm (6) It can be

shown to converge In a Cesllro sense, I.e., to the set of normalized equilibrium points

X· of the sequence lis I

THEOREM: 3. LBt 7 be a game satisfying conditions (a)-(d), and +(z ,1/) be a

Lipschitz ./'Linction with a constant L with respect to 1/. where L does not depend on

z. If the step sizes Ps in (6) satisfy the conditions

Ps ~ 0, s = 0,1 .... ; Ps -.0 for s -> 00; f: Ps = 00

o

then the value V s = -4>(i S
• z (is», where z (is) e: Z(i S

). converges to zero with

(7)

D(X) being the diameter of the set X. The sequence lis I converges weakly to the set

of normalized equilibrium points X', I.e .. any weak limit point of the sequence lis I
belongs to X· .

If, for Instance. we take Ps =0(1/ .../5), the algorithm convergence rate is

estimated to be V S ,s; 0 ((In s )/ YS).

Adaptive Step Size Control. The step size Ps in algorithm (6) may be chosen

using the condition for the function Vts (p) to be a maximum with respect to p:



599

Now calculat.e t.he generallzed gradient. of t.he function 'tits (p) wit.h respect. t.o p at.

t.he poInt. Ps :

To modify t.he st.ep size PS' we resort. t.o t.he following gradient. procedure

(8)

It. can be shown t.hat. t.he st.ep size Ps chosen according t.o t.he above procedure

satisfies conditions (7) under cert.ain assumptions.

THEOREM 4. Assume that conditions (a)-(d) hoLdfor game 7 and that the function

it(z , y) satisfies the Lipschitz condition on X x X with respect to z and y with con

stants K and L , respectiveLy. If a > 1, lim 6s > KL. then the step size Ps in reLa-
s ...-

tion (8) satisfies conditions (7); consequently V s -+ 0 as s -+ 00 and the sequence

lis l converges weakly to X'.

Let. us briefly consider some point.s regarding t.he comput.er implement.ation of

algorit.hm (6), (8). Firstly, t.he paramet.er a in relation (8) should be changed at. each

it.eration, as for t.he st.ochastic quasi-gradient. algorit.hm (1), (2).

Secondly, when values qS , g (ZS) are calculat.ed in t.he absence of noise, t.hen t.he

following simplest. recursive procedure is sufficient.:

!
fJ Z ' if < q" +1 , Z" +1 - Z" > > 0 ,

P" +1 = P" fJ
1

if <q" +1 , Z" +1 - Z" > ~ 0

o < fJ 1 < 1 < fJz ' fJ 1 fJ Z < 1 (for exampie, fJ 1 = 0.5 , fJz = 1.5).

In conclusion it. should be not.ed t.hat. t.he proposed approach t.o t.he cont.rol of

algorit.hm paramet.ers may be successfully ext.ended t.o ot.her st.ochastic and non

st.ochastic algorit.hms.
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STOCHASTIC MODELS AND METHODS OF OPTIllAL PLANNING

A.I. Yastremski
Department of Cybernetics. Kiev State University. Kiev. USSR

Stochastic models provide a valuable means of representing and studying

economic systems under conditions of incomplete information. The use of stochastic

models makes it possible (1) to abandon the requirement that input data must be com

pletely determined; (2) to establish a number of new results through the theoretical

study of economic systems; (3) to improve economic plans (using applied stochastic

models); and (4) to state and solve a number of new problems which, even in theory.

cannot be formulated in a deterministic framework. These problems include optimal

inventory control; the development of plans. and of measures ensuring the stability of

such plans; the calculation of optimal expenditures after refinement of the required

information; and theoretical and applied studies of the flexibility and adaptability of

economic plans.

It is important to define a standard model which represents the characteristics of

decision making under uncertainty in a sufficiently general form. The multistage linear

stochastic optimal planning model

E(c (") ,X ("» ~ max, A (")x (") s (") (mod P)

(1)

is Just such a model. Here A (") is a random input-output matrix of production

processes. " is an event in the probability space (9. F, p), b (") is a random resource

vector, c (") is a random vector composed of the economic efficiencies of production

processes, Xj (") is the required production rate vector at the j -th stage of the deci

sion process, Mj is a u-subalgebra of the basic u-algebra F, and describes the informa

tion available at the j-th stage of the decision process.

The two-stage model [1] is characterized by the conditions

!l •...• n!=Ut uUz • utnuz =¢, Mj =19,¢!ifjEUt , Mj=FlfjEUz

The two-stage model is convenient in practice since it leads to a two-stage stochastic
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programming problem and can be solved by existing efficient numerical methods [2].

Existing methods for the qualitative analysis of stochastic models make It possible

to study the theoretical properties of models, to generalize some theorems In

mathematical economics, to test the stability of models, to determine the levels of

resource deficiency. to examine the dependence of system efficiency upon the error

level, and so on.

The analysis of linear stochastic models. like that of linear programming prob

lems, is based on duality and optimality conditions. From the point of view of optimality

conditions, problem (1) represents rather a special case. First. It Is required that

:l:j(~) be Mrmeasurable, while the problem parameters are defined on the whole a

algebra F. Second, the choice of the functional space over which the operator

b(~) -A(~):l:(~) takes Its values Is of great significance. References [3-5] explore

problems where the constraint operator takes values from the space L _. This assump

tion makes it possible to formulate a stochastic counterpart of the Slater condition

which is used to prove the existence of stochastic Lagrange multipliers. The present

paper explores problems where the constraint operator takes values from the space

L p (1 <p <co). This makes it possible to study some classes of problems which are not

restricted to the case of random variables constrained with probability 1. At the same

time it is senseless to speak about the Slater condition in connection with such prob

lems since. due to the properties of the Lp-norm. the cone of the Lp-random variables

non-negative with probability 1 has no interior points. To formulate meaningful duality

theorems and optimality conditions, it may at first sight seem that the assumption

should be a little stronger, i.e .. that solutions to the primal and dual pr:oblems must

exist. However, using the fact that for a multistage linear stochastic program it is

possible to write the dual problem in explicit form. we can obtain meaningful optimality

conditions for such problems without strengthening the assumption. The dual problem

of (1) is

E(b (~), u (~» -+ min

(2)

u (~) ~ a (mod P)

where dual variables u (~) are chosen from the space L q (1/ q +1/ p =1) and E (~I Mj )

is the conditional expectation with respect to the a-subalgebra Mj . The formulation of

problem (1) is based on the definition of dual problems applied to extremum problems

in a Banach space [6]. taking into account the specificity of problem (1) and the pro

perties of conditional expectations.
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Certain assumptions concerning the existence of bounded generalized solutions as

discussed in [6]. Under these assumptions, a number of duality relationships and

optimality conditions which admit meaningful economic interpretation can be esta

blished. Just as in the deterministic case, the optimal values of dual variables can be

regarded as the optimaL prices of the resources. Using the properties of quasi

differentiable functionals [7], it is possible to prove the marginal property for sto

chastic prices:

Jl.(b ('l7) + 7e ('l7» = Jl.(b ('l7» + 7 min E(e ('l7) , U ('l7» + 0 (7)
U ('lJ)EV'

(3)

where Jl.(b ('l7» is the optimal value of the objective functional in (1). Equality (3) is an

extension of the result established in [6] to the multistage problem in which the

assumption that. the probability measure is absolutely continuous is abandoned. Using

(3), it is possible to prove a property similar to that of basic stab1l1ty for a linear pro

gramming problem [2,9].

Reference [2] explores the following dynamic programming model:

E(p ('l7) , x (T» -+ max

x (0) = x O , h (T, 'l7) ~ 0 (mod P)

h (T , 0) is M T -measurable

The technological and economic growth rates [a(T), tl(T)] and the rate of interest

[PT(e ('l7»] are introduced in a natural fashion. They are defined by

respectively, where x' (T) is the volume of production corresponding to the optimal

solution, u· (T , 'l7) are stochastic shadow prices, 7e ('l7) is the production increment in

direction e ('l7) with rate 7 during year T, e (T + 1) is the production growth during year

T +1 resulting from the increment 7e('l7) during year T, and Ue(T, 'l7) are stochastic

shadow prices similar to those appearing in (3) (marginal prices).

Relationships between a , tl , and P are established which illustrate the nature of

these values. Under assumptions which ensure t.hat the duality relationships hold, it is

possible to show that



and

605

sgn E(u' (T +1,") , b(T,"» = sgn (a(T) - (J(T» (4)

(5)

Equality (4) shows that the price and production Indices are related to each other

through the "load" on the economy, while (5) reveals that the rate of Interest is linked

to the price Index.

Using these general results. we can study specific cases of the general two-stage

stochastic model, In particular the stochastic counterpart of the deterministic optimal

planning model [10]

Z -. max, Bz O!: az , Ax S b , zO!:O (6)

which is constructed under the assumption that the unrecoverable resources (matrix

A) are deterministic, the recoverable resources (matrix B) are stochastic, and the

plan z cannot be corrected. In this case (6) becomes the stochastic model

F(z) = E min ....!....[B(")z]t -. max, Az S b , zO!:O
t at

(7)

Particular cases of model (7), Including a stochastic model of cultivated area distribu

tion and a stochastic Input-output model, have been used in practice [11,12].

Stochastic methods are also useful for examining the interactive procedures by

which decisions are made. One characteristic of optimal planning is that it is difficult

to represent the outcomes of a plan by an explicitly specified function describing the

priorities of the person responsible for creating the system. To compare plans, it is

convenient to use the reflexive binary relation z y, which should be Interpreted as

"plan z is no worse than plan y". Let D be a set of feasible plans. The problem of

identifying a preferred plan can be stated In the following manner: find an z· E: D

such that z· z holds for all zED. The plan z· Is said to be the most highly pre

ferred and the problem of finding this plan is conventionally written as

z --> pref , z E: D (8)

Under certain assumptions, such as the completeness, continuity, transitivity and con-

vexity of relation , and the compactness of D, a formal method for solving problem

(8) has been proposed [2], which Is based on the following assignment:

(9)
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Here "S Is an Independent observation of the random vector ~s (which is uniformly dis

tributed over the n-dimensional unit baull:z:ll::s 1) obtained at Iteration number s, and

-'s Is a value which Is calculated by a special rule. The formula

is derived in [2], where a > 0 , U (%) satisfies the condition u (%) O!: U (y) ~ % y.

Formal computational methods based on (9) can be used to simulate real-life Interactive

procedures.

Note that (10) Is proved in [2] under the assumption that u (%) Is concave and dif

ferentiable. It is not difficult to extend this proof to the case where u (%) is quasl

convex and differentiable. Such generalizations of problem (6) and modifications of

the methods evolved In [2] for these generalizations are described In [13].
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DIFFERENTIAL INCLUSIONS AND CONTROLLED SYSTEMS:
PROPERTIES Qlt' SOLUTIONS

A. V. Bog<ltyrjov
Institute of Control Sciences, Moscow, USSR

1. INTRODUCTION

Consider a differential inclusion of the form

(1)

with a multiv<llued m<lpping R: En ---> 2En on its right-hand side. Here 2En denotes the

space of non-empty subsets of p;n. These mathematical objects are attracting much

attention today since they are useful in solving certain classes of problems. For exam

ple, they can be used in the investigation of controlled systems of the form

i: =.f(x ,u), U E- U, x(t o) E.Xo

which by virtue of Filippov's Lemma (11, are reduced to the differential inclusion

(2)

(3)

We arrive at a similar inclusion if U is some unknown functional parameter or noise

rather than a control.

When investigating the properties of differential inclusions we naturally assume

that the mapping R on the right-hand side of (1) satisfies certain requirements. In

some cases, for instance [2-4], cnsideration is limited to a class of inclusions with con

vex R(x) (or R(t ,x) for non-autonomous differential inclusions). One may treat the

inclusions studied in these papers as generalizations of ordinary differential equations

of the Caratheodory type. Not only do their solutions have all the features typical of

the solutions of Caratheodory differential equations, but the inclusions themselves turn

into the above differential equations if the mappings R(t ,x) are single-valued func

tions.

However, the sets f (x, U) in differential inclusion (3) are not necessarily convex.

In this paper we consider differential inclusions (1) with non-convex sets R (x) which
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may condillonally be regarded as generalizations of ordinary differenlial equalions

whose righl-hand sides are Lipschilzian functions. The reasons for lhis, which are

lrealed in more delail below, are as follows. Firsl, when a sel H(x) is a single poinl

for all x lhe mapping R is a Lipschilzian funclion. Second, lhe family of solutions of

such differential inclusions have properlies wh ich are slronger lhan lhose lrealed in

[2-4]. A comparison of lhe properlies of lhe solutions of an ordinary differenlial

equalion which has a Lipschilzian r-ighl-hand side wilh lhose of inclusion (1) is poinl

less because lhis differenlial equation has a unique solution.

2. DESCRIPTION OF THE ClASS OF DlFFERENTlAL INCLUSIONS

The form of lhe differenllal inclusion (3) suggesls a lransilion from differenlial

equallons wilh Lipschilzian righl-hand sides lo differenlial inclusions (1).

A sel of continuous functions h ,,: gn -> En, a: I:: A, is called an exhaustive fam

ily of continuous selections of mullivalued mapping R if lhe following relalions hold:

h,,(x) E: R(x) , R(x) c u";:;:,,(x-j , x E: En

"
(4)

Definition L A mullivalued mapping R: En -> 2
En

wilh an exhauslive family of con

linuous seleclions satisfying lhe Lipschilz condition wilh a single conslanl K is said lo

be K-dense.

Syslem (2) with a function f which satisfies lhe Lipschilz condition wilh conslanl

K wilh respect lo x may be reduced lo a differenlial inclusion wilh a K-dense mul

livalued mapping on lhe righl-hand side.

Uowever, nol for any differenlial inclusion (1) wilh a K-dense righl-hand side il is

possible lo find a conlrolled syslem (2) such lhal lheir solutions coincide. For exam

ple, consider inclusion (1) wilh inilial sel Xo = [-1.1 J whose righl-hand side conlains a

mapping R:}I;l -. 2
E1 of lhe following lype:

j
al! rational poinls ill lhe segmenl

R i (x) = [-1,11 excepl zero

[-1,+] -

Assume lhal lhe solulions of lhe differenlial inclusion

, if x ¢ 0

, if x = 0

(5)

coincide wilh lhe solutions of some syslem (2). Since lhe sel of solutions for inclusion

(5) conlains zero. lhis is also a solution of (2), which means lhallhere exisls a Uo E: U

for which f (x, uo) = O. On lhe olher hand (5) does nol have any olher conslanl solu

tions x (t) == c ¢' O. Therefore f (x ,u 0) ¢' 0 if x ¢' O. Thus il is possible lo find lhe
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poinl x 0 ~ [-1,1] al which lhe funclion f (x ,uo) lakes an irrational value. Lel us

denole lhe solution of lhe equation i: = f (x ,uo) wilh initial condition x (to) = Xo by

x(t). Foranyt >tolhesel

E = It E [t 0' t']: f (x (t) , uo) is irrational number!

is of non-zero measure. Since i: (t) rt R(x (t) holds everywhere on E, x (t) is nol a

solution of inclusion (5).

Il can be observed lhallhe condition of K-denseness is satisfied wilhoul requiring

R(x) lo be convex, closed, bounded, measurable or lo have any olher properly.

We shall now proceed directly lo the resulls of lhe sludy. The following seclion is

of an auxiliary nalure.

3. CONNECl'EDNE~SOF" A ~ET OF FIXED POINT~

Lot. X be a Banach space. As in lhe finile-dimensional case, we shall denole lhe

space of nonemply subsels of X by 2X . The poinl Xo E X is called a fixed point of lhe

muilivalued mapping F: X -+ 2X if Xo E F(x o)'

Lel us recall lhe definitions of melrical and linear connecledness. A set A c X is

said lo be metrically connected if it is impossible lo find lwo open sels B 1 and B z such

lhal

A sel A c... X is said lo be linearly connected if for all poinls lhere exisls a continuous

funclionq: [O,l]-+A such lhal q(O) =xo, q(l) =x1.

Lel us now define anolher lype of connecledness.

Definition 2. A sel A c X is said lo be strongly linearly connected if for all ils

poinls x 0 ' xl lhere is a linearly connecled subsel G (x 0' Xl) C A conlaining lhese

poinls such lhal

where w(t) -+ 0 as t -+ + O.

in olher words, neighboring poinls in a slrongly linearly connecled sel may be

conneclcd by a continuous curve of small diameler.

I,et Ii denole a space of functions which are inlegrable over segment I wilh lhe

llsual norm

iiu i!=! IU(T)ldT
I
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A sel A c. Ll is said lo be convex under switching if for any functions f 1- f 2 E A

and any measurable sel 11 c I lhe inclusion f E A holds, where

Here XII is lhe characlerislic funclion of sel 11,

THEOREM L Let the multivalued mapping F: Ll --> 2L1 have an exhaustive family

of continuous selections (defined as in the finite-dimensional case), satisfying the

single Lipschitzian constant lo < 1/2. In addition. let sets F(u) be convex under

switching for any u ELl- Then the fixed point set of the multivalued mapping F

is strongly linearly connected.

The proof relies upon lhe use of Theorem 1.2* and LemmC1 1.1 from L5].

Remark L The asserlion of Theorem 1 remains lrue if lhe norm in space Ll is

replaced by

Ilu I~l = J exp (-2LKt) Iu (t) I dt
I

where K and L are posilive conslanls.

(6)

Remark 2. The assertion of Theorem 1 remains lrue in any Banach space if lhe condI

tion of convexlly under swllchlng Is replaced by a convexlly requiremenl and lhe

demand lhal conslanl lo should satisfy lo < 1.

4. CONN"~CTEDNESSOF A FAltfiLY OF SOLUTIONS TO
DIFFERENTIAl. INCLUSIONS

Lel CI denole lhe space of conlinuous functions in segmenl I wilh lhe norm

IIx (. )llc = max Ix (t) I, and Al denole lhe space of functions which are absolulely con-
I t E.1

linuous on I wilh lhe norm

11x(·)I~1 = Ix(to)1 + J Ix(t)ldt
I

Theorem 1 may now be used lo prove lhe following asserlion:

THEOREM: 2. Assume that the right-hand side of the differential inclusion (1) is a

K-dense multivalued mapping. Then for an arbitrary segment I = [to _t 1] the fam

ily of solutions of this inclusion under the initial condition x(t o) = Xo is

strongly linearly connected in the space AI'

The proof goes as follows. Consider lhe muilivalued mapping MR : CI --> 2L1 which

associales lhe sel
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MR(x) = fv ELl: v(t) E R(x(t» almost everywhere at Ij

with any continuous function x (t). The non-emptines of the set MR(x) follows from the

fact that the multivalued mapping R(x (. »: I -+ 2E'" has a continuous selection which

may be taken to be v(t). For an arbitrary function U E Llthe mapping P: Ll -+ C1

may be obtained from the formula

t
P(u)(t) = Xo + f u(T)dT

to

Set

(7)

It may easily be seen that the fixed points of the mapping F: Ll -+ 2L1 are the deriva

tives of the solutions of differential inclusion (1). Let us show that mapping F satisfies

Theorem 1 (or, to be more accurate Remark 1). Let xo(t) be an arbitrary function

which is continuous in the segment I. Consider a muilivalued mapping

R(xO(-»:I-+2b'''' and choose a function 10ELl for which the relation

lo(t) EO R(xo(t» holds almost everywhere on 1.

The fact that the multivalued mapping R possesses an exhaustive family of

Lipschitzian selections allows us to construct a mapping IN: C1 -+ Ll which has the fol

lowing properties:

(1) IN (x )(t) E: R (x (t» almost everywhere on I for any continuous function x ( .) E C1;

(2) II N(x )(t) - IN(y )(t) I ,s; K Ix (t) -y (t) I almost everywhere on I for any continu-

ous functions x ( . ), y ( .) E. G'[;

(3) IlrN(xo) -/ol~;-+OasN -+00.

Mappings I are actually constructed in the same way as in the proof of Theorem

2.1 in [5]. Let us define the mapping gN: Ll -+ Ll by the equality

(8)

Consider norm (6) in space Ll- As shown in [6], property (2) guarantees that the

mapping g N satisfies the Lipschitz condition with the constant 1/2L <1/2. Further

more, from property (1), gN is a continuous selection of mapping (7), and property (3)

yields

(9)

where Xo = P(uo)' Thus mapping (7) satisfies Remark 1, which proves the theorem.
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Lel us lake an abilrary soiution x o(t) of differenlial inclusion (1) under lhe inilial

condilion x o(t 0) =x 0' and lel ils derivative :i: o(t) be f o(t), I.e., f o(t) =.i: o(t)·

As in [5]. il is possible lo design mappings (8) whose fixed poinls uN = gN (u N) are

lhe derivatives iN of lhe solulion of some differential equation

(10)

Here lhe functions aN(t ,x) are measurable wilh respecl lo t and salisfy lhe Lipschilz

condition wilh conslanl K wilh respecl lo x. In addition, lhe limil relalion (9) and lhe

facl lhal mappings (8) are conlractive guaranlee lhal Ilu N(. ) -:i: 0(- )IIL1 -+ 0 as

N -> 00. These poinls may be summarized in a separale lemma.

LEMMA 1 (on Lhe approximaling sequence). Let the right-hand side of diJjerential

inclusion (1) be a K-dense multivalued mapping. Then for an arbitrary solution

x (t) of inclusion (1) under the initial condition x (to) = x 0 it is possible to find a

sequence offunctions

which is summable on I for any x E. En and satisfies with respect to x the

Lipschitz condition with constant K such that for a sequence xN of solutions (10)

under the initial condition xN(t 0) = x 0 the following relation holds:

(11)

Wilh lhe help of Theorem 2 and Lemma 1 a more general resull may be oblained.

THEOREM: 3. Assume that the right-hand side of the differential inclusion (1) is a

K-dense multivalued mapping. Then if set Xo is metrically (l.inearly, strongly

linearly) connected, the family of solutions 2:(t o , Xo) of this inclusion with initial

set Xo is also metrically (l.inearly, strongly linearly) connected in spaces CI and AI

on an arbitrary segment 1 = {to, tt].

Il should be noled lhal for ordinary differential equalions salisfying lhe Peano

condition only melrical connecledness of lhe family of solutions can be guaranleed.

This is shown in [7].

5. THEOREMS ON BOUNDARY SOLUTIONS

The sel

is referred lo as lhe attainable set of lhe differenlial inclusion (1) al time t > to. Any

Ii
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solution of inclusion (1) wilh K-dense righl-hand side may be exlended loward lhe

entire half-line t ~ to. Therefore sels Z(t , to, Xo) are non-emply for any t ~ to'

The sel of boundary poinls of lhe allainable sel, i.e., lhose poinls in Z(t ,to ,Xo)

which are nol inner poinls. are denoled by a Z(t , to, Xo)'

A solulion x (t) of lhe differenlial inclusion (1) is said lo be a boundary solulion

for some segmenl (inlerval) of lhe real line if lhe relalion :i: (t) Eo. a 'let • to ,X0) holds

everywhere on lhis segmenl (inlerval).

Consider an arbilrary poinl x· E a Z(t' , to. X o)' Then lhere exisls a sol ution i (t)

of lhe differenlial inclusion (1) for lhis poinl which salisfies lhe condilions :i (to) E X o
and :i (t') = x'. The question of whelher lhere exisls a boundary solulion among lhe

:i (t) has been sludied by many aulhors. The mosl general resull for a differenlial

inclusion wilh convex-valued righl-hand side is given in [4J. Making an additional

assumplion, il was proved in [fl] lhal only boundary solulions can reach lhe boundary

point.

As shown by lhe nexl lheorem. a similar asserlion holds for inclusion (1) wilh a

K-dense righl-hand side.

THEOREM 4. Let the right-hand side of the differential inclusion (1) be a K -dense

multivalued mapping. Then if the relation x (t ') E a z(t'. to ,Xo) holds for some

solution x (t 0) of this inclusion under the initial condition x (to) E Xo at a time

t' > to. the inclusion x(t) E a Z(t ,to.Xo) is truefor a.ny t E [to' (1-

The proof of lhis lheorem wilh regard lo Lemma 1 is idenlical lo lhal of Theorem

3.1 in [5].

A resull similar t.o Theorem 4 is given in 19]. where lhe Lipschilz condilion is

somewhal weakened bul il is required lhal sels R (x) be compact.

We shall say lhal a solulion x (t) produces a lransilion from lhe initial sel Xo inlo

lhe poinl x 1 during lime l' if lhe relalions x (t 0) Eo. X0' X (t 0 + 7') = X 1 hold. The sol ulion

producing lhe lransition from Xo inlo Xl wilhin lhe minimal lime To is referred lo as

lime-optimal, and To is lhe oplimal time.

THEOREM 5. Assume that the right-hand side of (1) is a K-dense multivalued map

ping and that the solution x(t) is time-optimal for the transition from the initial

set Xo into the point Xl' Then. if the optimal time is To. the relation

x(t) E a Z(t, to.Xo) holds for all to,s; t < to + 7'0'

The proof of lhis lheorem is idenlical lo lhal of Theorem 3.2 in [5].

A somewhal weaker asserlion for differenlial inclusions wilh convex-valued

righl-hand sides was presenled in [10].
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The above results hold for non-autonomous controlled systems :i: =f (t ,x , u ),

u ~ U. where the function f satisfies the Lipschitz condition with respect to x with the

summable constant k (t ).
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GUARANTEED ESTIIIATION OF REACHABLE SETS FOR
CONTROLLED SYSTEMS

F.L. Chernousko
Institute of Mechanics Problems
Moscow, USSR

1. INTRODUCTION

Uncertainty Is generally treated in one of two different ways: using a stochastic

approach or a guaranteed approach. The stochastic approach is concerned with pro

babilities: each uncertain or unknown n-dimensional vector x is associated with some

probability distribution p (x). One of the most common of these is the Gaussian distri

bution

p(x) = c exp (-D-1(x -a), (x -a» (1)

Here a is an n-dimensional vector of expected values, D is a symmetric, positlve

definite n x n matrix, c is a scalar coefficient and (".) is a scalar product of two

vectors.

The guaranteed approach is concerned with the sets to which the unknown vectors

belong. We denote this by x E: M, where M is a set in n-dimensional space. The

guaranteed approach has some important advantages over the stochastic one. It leads

to guaranteed results which hold for any individual set of circumstances, while the sto

chastic approach is to be preferred If many different possibilities have to be taken

into account. Furthermore, the deterministic approach does not require any informa

tion on probability distributions, which is often not available in practical applications.

The deterministic approach has one main drawback: even If the initial sets to

which the unknown vectors belong (the uncertainty sets) have simple shapes (e.g.,

parallelepipeds or spheres), basic operations with these sets, such as union and inter

section, often leaq to sets of complicated shape which require many parameters for

their description. For instance. the intersection of several spheres is not a con

venient set for further operations.

We therefore have to approximate these sets by means of sets which have some

simple canonical shape described by a fixed number of parameters. Ellipsoids seem to
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be the most convenient approximating sets for a number of reasons:

(1) Ellipsoids can be fully described by only a small number of parameters: the vec

tors giving the foci and a symmetric, positive-definite matrix;

(2) Ellipsoids provide reasonably satisfactory approximations of arbitrary convex

sets (we have the following result [1]: If 0 Is a convex set In n-dimensional space with

central symmetry. then there exists an ellipsoid E such that E C 0, vnE ::> 0);

(3) Ellipsoldai sets are simILar to Gaussian distributions (1);

(4) The class of ellipsoids Is Invariant with respect to LInear transformation.

A guaranteed approach to the treatment of uncertainties in dynamical systems has

been used In, e.g. [2-6]. Ellipsoidal approximation Is considered In [7-9], where some

operations with eLLipsoids are given, and a method of state estimation based on these

operations Is developed.

The present paper Is devoted to a method for the two-sided approximation of

attainable and uncertainty sets by means of ellipsoids which are optimal in terms of

their volume. This method was originally suggested in [10-12], where optimal and

suboptimal algebraic operations with ellipsoidal sets are given, and the differential

equations of the approximating ellipsoids for dynamic systems are derived. These

results are developed and summarized In [13-15]. Some properties of approximating

eLLipsoids are studied and some appLIcations of the ellipsoid method are given In

[15-23]. In this paper we present briefly the principal results obtained in [10-23].

2. REACHABLE SETS

We consider a controLLed system described by differential equations, constraints

and an Initial condition:

% =/(%. U, t) , u(t) E U(%(t), t)

(2)

%(s) EM, t o!:s

Here t represents time, % is an n-vector of state variables. u Is an m-vector of con

trols, / is a given function, U(%, t) is a given set of constraints In m-dlmenslonal

space, s Is the Initial time and M Is a given Initial set. The components of vector u in

(2) may be either controls or disturbances. The state trajectories % (t) of system (2)

satisfy the following differential Inclusion:

% E X(% , t) , X(% , t) = / (% , U(% , t) , t)

(3)

%(s) EM, t o!:s

I
IiJ
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We consider syst.em (3) inst.ead of (2). We are int.erest.ed in t.he reachable or

at.t.ainable set.s for syst.ems (2). (3). The reachable set. D(t • S ,M) for syst.em (2) (or

(3» is t.he set. of all vect.ors :r: (t) which are values of funct.lons :r: (T) sat.isfying (3) for

T e: [s. t). Reachable set.s are essent.lalin a number of problems in cont.rol and est.ima

t.ion t.heory.

Not.e t.he following important. propert.y of reachable set.s:

(4)

n-(t) defined for t ~ s will be called sub-reachable set.s for syst.em (2) (or (3» if

for all t 1 e: [s ,t) we have

(5)

The reverse inclusion,

(6)

defines super-reachable set.s n+(t). Propert.ies (5), (6) are similar t.o t.he evolution

ary propert.y (4) of reachable set.s.

Our aim is t.o obt.ain sub-reachable and super-reachable set.s which provide simple

t.wo-sided bounds for reachable set.s:

3. ELLIPSOIDAL BOUNDS

n-(t) c D(t • s ,M) c n+(t) (7)

Let. E (a ,Q) denot.e an ellipsoid in n-dimensional space defined by t.he inequalit.y

E(a,Q) = l:r:: (Q-1(:r:-a) , (:r: -a»,s;l! (8)

Here a is an n-vect.or represent.ing t.he foci of t.he ellipsoid and Q is a symmet.ric,

posit.lve-definit.e n x n mat.rix. Not.e t.hat. if Q -+ 0 t.hen t.he ellipsoid E(a. Q) col

lapses int.o a point.:r: = a .

Let. t.he following t.wo-sided ellipsoidal bounds hold for t.he set.s X. M in (3):

(9)

Here A ± , G ± are given n x n mat.rices depending on t; f ± are given n-vect.or func

t.lons of t; al are given n-vect.ors; and Ql are given n x n mat.rices. The mat.rices

G ±, Q ± are symmet.ric and posit.lve-definit.e. The est.lmat.es (9) imply t.hat. t.he reachable
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set. of syst.em (3) Is bounded by t.he reachable set.s of t.he following linear cont.rolled

syst.ems wit.h ellipsoidal const.ralnt.s:

(10)

We denot.e t.he reachable set.s of syst.ems (10) by D±(t ,s ,M). From (9) we t.hen

have

(11)

(13)

The set.s D± are not. ellipsoids In t.he general case. We t.herefore Int.roduce ellip

soidal approximations E (a ±(t ) , Q ±(t» which satisfy t.he following condit.ions:

(1) a±(s) =aJ ,Q±(s) =Ql; (12)

(2) E(a -(t), Q-(t» are sub-reachable set.s rr(t) of syst.em (10)

for t.he minus index, and E(a +(t) , Q+(t» are super-reachable set.s n+(t)

of syst.em (10) for t.he plus index:

(3) v- -+ max, v+ -+ min

Conditions (13) mean t.hat. t.he volumes v ± of ellipsoids E (a ±(t), Q ±(t » change at. a

rat.e which is the highest. (for v ") or lowest. (for v +) possible for ellipsoids satisfying

conditions 2. The main result. can now be present.ed as t.he following t.heorem

[10-14,16,17]:

THEORKM 1. The ellipsoids dfifi,ned by conditions 1-3 are unique, and their

parameters a ±, Q ± satisfIJ the following equations and initial conditions:

(14)

(15)

(16)

Here we omit. t.he dependence of A, f, G on t, and also t.he indices - and + after A, G in

(15) and (16), respectively. AT denot.es t.he t.ranspose of matrix A.

If the initial linear problems (14) can be solved for vect.ors a ±(t) and t.he init.ial

non-linear problems (15), (16) can be solved for mat.rices Q±(t), t.hen we can obtain t.he

desired estimat.es (7) in t.he form

(17)
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If we have only internal (external) estimates (9) then we can obtain only internal

(external) estimates (17). If system (2) is linear and similar to (10):

i =A (t)x + f (t) + u , U E: E (0 , C (t » , x (s) E: E (a 0 ' Q0) (16)

then both systems (10) coincide with (16). In this case it is not necessary to put indices

± after A, C, f, a o, Qo in (14)-(16), and a -(t) =a +(t).

4:. PROPERTIES OF ELLIPSOIDS

Equations (15), (16) can be simplified by means of the substitution

(19)

where V(t) is a non-degenerate n X n matrix.

THEOREM: 2. IfV(t) is thej'undamental matrix of system (16):

v =A (t)V , V(s) =I , t ~ s

where I is the n X n ident'if'y-matrix, then transformation (19) reduces systems

(15), (16) to the form

i -2Cl/2(C1/2Z-C-1/2)1/2Cl/2
- 1 1 1 1

(20)

corresponding to A == O. If V =C1/2, transformation (19) reduces systems (15), (16) to

the form

(21)

corresponding to C =I.

Theorem 2 makes it possible, without loss of generality, to take either A =0 or

C =I in (15), (16), I.e .. to consider simplified but equivalent systems (20) or (21)

instead of (15), (16).

The following theorem gives the necessary and sufficient conditions under which

the internal and external ellipsoids coincide:
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THEOREM 3 [18]. The internaL and ezternaL eLLipsoids (17) coincide (a - ;:; a +,

Q - := Q +) for aLL t :!: s, if and onLy if the systems (10) coincide so that the system

(2) is reduced to (18) and

AG + GAT -6 =IJ,(t)G ,t:!:s ,Qo =X§G(s)

Here IJ,(t) is some arbitrary scalar function and 11. 0 is a constant. Under these condi

tions the matrix Q for both ellipsoids is given by

Now we present some estimates of the volumes v ± of the approximating ellipsoids

(17).

THEOREM 4: [16]. The foLLowing inequaLities hoLd:

t

. exp [- J Tr A -(t1)dt1]I"n ,v -(t) S v+(t)
S

Here vo" are the volumes of the initial ellipsoids E(ao" •Q~) in (10). The following

lower (for v ) and upper (for v +) bounds are given for the case A ± =0 (which accord

ing to Theorem 2 implies no loss of generality):

t
v-(t):!: Hvo-)l/n + J [vG(t 1)]1/ndt 1In

s

ttl

J exp [J(Tr «G-l(t2)(dGl/2(t2)/dt2)2»1/2dt2]dtlln
s s

Here vG(t) is the volume of the ellipsoid E(O, G(t». Theorem 4 allows us to evaluate

the voiumes v ± without integrating systems (15), (16).

An important case arises if the initial point in (2), (3) is fixed: z (s) =ao' In this

case the initial eiiipsoids E(ao" ,Qo") in (10) collapse into a point, and the initial con

ditions for both matrices Q± in (15), (16) are Qo = O. From Theorem 2, we can consider

this case using equations (21). The initial conditions for equations (21) are

(22)
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Equations (15), (16), (21) have singularities If Q± -+ O. z± -+ O. Theorem 5 estab

lishes the asymptotic behavior of solutions In the vicinity of the Initial point (22):

THEOREM 5 [1B]. Let matriz Ai(t) from (21) have the following ezpansion in the

neighborhood. oj'the initial point:

Here A 10' Au are constant matrices. Then the solutions of equations (21) und.er

initial cond.itions (22) have the following ezpansions:

Z±(t) = "Z[ + ,,3Bo + ,,4Zl + 0(,,5)

Z4- = (7/12)B~ + (2/3)B l

(23)

Z4+ = (2/3)(B~ +Bl ) + (1/12)n -Z(Tr Bo)Z[ - (1/6)n -l(Tr Bo)Bo

B o =(A 10 +A{o)/2 , B l =(Au +A{1)/2

The expansions (23) are useful for starting the numerical integration of equations

(15), (16) or (21) with initial conditions (22). The more general case In which the ini

tial set M reduces to some r-dimensional set. r < n. is considered in [19,21].

The asymptotic behavior of ellipsoids as t -+ ... has been studied in the case when

the matrix Ai in equations (21) is constant and diagonal:

(24)

We assume that the initial conditions for the matrices Z ± are also diagonal so that

the equations (21) have diagonal solutions

(25)

Here V/ ~ 0 are the semi-axes of the ellipsoids, i = 1 •...• n.

THEOREM 6 [1B]. All positive d.iagonal solutions (25) of equations (21), (24) for Z

have the following limits as t -+ ...:

Vi - -+ + .... If Clt. ~ 0

(26)

Positive diagonal solutions (25) of equations (21), (24) for Z + exhibit the same

asymptotic behavior as t -+ ...
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y/-+[-h'(2at+h')]-1/2fori =1 •...• 1.1

(27)

Y/ -+ + 00 for i =1.1 + 1 .... , n

Here the integer 1.1 and the number h' are unique and defined by the conditions

v
av(n + 1.1) < 2: aj S a V +1(n + II) if II O!: 1

j=1

(28)

2 v
II =0 if a1 O!: 0 . h' =--- 2: a j O!: 0

n+1I j=1

It is interesting to compare these results with the asymptotic behavior of the

reachable sets of the system

n

X 1 =at Xt + Ut 2: ul S 1 • i = 1 . . . . • n
t =1

(29)

Systems (29) corresponds to matrix (24). see (18) with A = A 1• G = 1. For arbitrary

Initial conditions. the reachable set has a limit D_ as t -+ 00. The set D_ is convex.

independent of the initial conditions and symmetric with respect to all axes Xt. The

lengths of the semi-axes contained by D are equal to the semi-axes Yt - of the limiting

internai elUpsoid (26). The semi-axes of the limiting external ellipsoid (27) are

greater than those of the limiting internal ellipsoid (y/ > Yt-). and in some cases we

even have Y/ -+ 00 when Yt- is finite. For instance. if n = 2 and a1 <3.a2 <0, then

from (26)-(28) we have Yi = -a2-1 , yt =00.

5. APPLICATIONS

We shall now briefly describe some possible applications of ellipsoidal estimates to

various problems in dynamic systems.

1. If u (t) in (2) is a control then the internal bound (17) can be used to evaluate

control possibilities.

2. A procedure for obtaining admissible controls u (t) that transform the linear

system (18) from the initial state into some given terminal state x 1 E: E (a -(T), Q -(T»

which belongs to the internal ellipsoid is proposed in [24-26]. Both open-loop and

closed-loop controls can be obtained.

3. If u (t) in (2) is some bounded stochastic disturbance, then the external bound

(17) can be used for guaranteed evaluation of possible perturbations caused by u (t).
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4. The estimates (17) can be used to obtain two-sided bounds for the cost func

tional in optimal control problems. We shall consider two such problems for system

(lB) with the initial condition :z; (5) = ao' The boundary conditions at the termination

time T and the cost functionals for these problems are

(A) :z; (T) (free) , J = F(:z; (T» -+ min

(B) :z; (T) EN, T -+ min

Here T is fixed for the cost minimization problem A and free for the time-optimal

problem B. The scalar function F(:z;) and the set N are given.

From (17) it is easy to derive the following bounds for the minimal values JX and

TX of the functionals (30):

(A) J+ S; J'X = min F(:z;) S; J- , Jt. = min F(:z;)
X El)(T,s,ao> xEE-

(B) T+ S; orr S; T-; Et. =E(a(T) , Qt.(t»

Here Tt. are the times at which the ellipsoids Et. first touch the set N. Similar esti-

mates can be obtained for other classes of optimal control problems.

In order to calculate the bounds (31), it is necessary: (i) to obtain the approxi

mating ellipsoids for t ~ 5 and (Ii) to calculate Jt., Tt. in (31). Here (1) does not depend

on the cost functional; (11) for problem A requires the solving of some standard non

linear programming problems.

5. Estimates for differential games can be obtained with the help of Krasovky's

extremal rule [2,3]. This rule holds for regular pursuit games; it says that if at time T

the pursuer's reachable set Dp(T) contains the evader's reachable set De(T), then the

pursuit can be terminated at t = T. Using estimates (17) we can obtain two-sided

bounds for T: T 1 S; T S; T 2 . Here T 1 , T 2 are defined as the first times at which the

inclusions E e- (T1) C E: (T1)' E: (T2) C E p- (T2) hold.

6. GUARANTEED FILTERING

We assume now that the following observations of system (2) are available:

(32)

v(tt) EE(O,L(tt». i =1,2 ....

Here tt are given observation times, the 1-dimensional vectors y(tt) are the results of

the observations, v (tt) are the observation errors (bounded by elLipsoids). H(tt) are

given l x n matrices. and L (tt) are given symmetric positive-definite n x n matrices.

The vector u (t) in (2) is an unknown disturbance. Let P(t) be the set to which the

state vector :z; (t) of the system (2) belongs if the results of observations (32) with
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t( < t are taken into account. The problem of guaranteed filtering is to estimate the

set P(t).

Using ell1psoidal estimates, we obtain the following bound for P(t):

%(t) e: P(t) c E(a(t) , Q(t» (33)

Here the vector a (t) and the matrix Q(t) are piecewise-continuous functions of time

which satisfy initial conditions (14), (16), Le.,

a(s) =at ' Q(s) =Qo" (34)

and differential equations (14), (16) for a", Q" within the intervals (t( , t(1 ) between

observations.

At the observation times t(, % (t) Hes within the intersection of the ell1psoid

E(a(t( -0), Q(t( -0» and the ell1psoid E( corresponding to the observation data (32).

We define E (a (t( + 0), Q(t( +0» as an ell1psoid containing this intersection:

There are several ways of externally approximating the intersection of two ell1p

soids by means of an ell1psoid (7-11,14,19]. Using one of them. we obtain the formulas

a(t( +0) = !Pi (a(t( -0), Q(t( -0) , y(t(» , i = 1,2 •...

(35)

The explicit form of functions !p(. li( is given in (11.19].

Thus, using differential equations (14), (16). initial conditions (34) and discon

tinuity conditions (35) at t =t(. we can obtain the functions a(t) and Q(t) for all

t o!: s. This procedure is a guaranteed method of filtering in the presence of external

disturbances and observation errors for discrete-time models.

If the observations are continuous, we have

y(t) =H(t)%(t) + v(t), v(t) e:E(O,L(t». t o!: s (36)

instead of (32). The guaranteed method of filtering for this case was obtained in (22],

and involves the integration of certain systems of ordinary differential equations

ci. = !p(a , Q, t ,y ,11) , Q = "'It(a , Q, t , y ,11)

with initial conditions (34). The explicit form of functions !Po "'It is given in (22]. Note

that these functions depend on 11, and we require here that the results y (t) of obser

vations (36) be differentiable with respect to time.
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7. CONCLUDING REMARKS

1. Numerical examples of ellipsoidal estimates of reachable sets are given in [11-14,

16-20].

2. Numerical examples demonstrating applications of the method of ellipsoids are

given for optimal control problems in [141, for differential games in [231, and for

guaranteed filtering in [19].

3. The method described above can also be applied to multistep discrete-time

dynamic systems. In this case we deal with finite-difference equations instead of

differential equations [11].

4. The method presented in this paper can be used to solve various problems In con

trol and estimation theory. Proofs of all results and further details can be found

in [10-23].
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METHODS OF GROUP PURSUIT

A.A. Chlkrij
V.M. Glushkov Instlt.ut.e of Cybernetics. Kiev. USSR

1. INTRODUCTION

In t.hls paper we review met.hods by which one evading object. may be pursued by a

group of cont.rolled obJect.s. These met.hods are based on various assumptions about.

t.he Informat.ion available t.o t.he pursuers during t.he course of t.he game.

The quasilinear problem of group pursuit. in t.he general case may be stat.ed as fol

lows. Consider a confllct.-cont.rolled syst.em

(1)

where R
n

( is a flnlt.e-dlmensional Euclidean space. At Is a square mat.rlx of order nt.

set.s Ut and V are non-empt.y and compact.. and functions rpt (Ut • v): Ut x V -. Rn( are

continuous In t.he set. of variables. The t.erminal set. consist.s of set.s M; = MtO +

Mt ' i = 1,"~, where t.he MtO are linear subspaces of Rn( and t.he Mt are convex compact.

set.s of ort.hogonal complement.s L t of Ml in t.he space Rn(. The game (1) t.ermlnat.es If

Zt (t) E Mt' for some i and t > O.

It. is easy t.o see t.hat. t.his formulat.ion covers t.he pursuit. of one evasive object. (or

a group of object.s of which at. least. one must. be caught.) by a group of cont.rolled

object.s.

2. POSITIONAL GROUP PURSUIT

Let. TIt denot.e t.he operat.or of ort.hogonal projection of t.he space R
n

( ont.o t.he

subspace L t and consider t.he t.wo subset.s

II

A=la:a=(a1 •···• all)' at ER
1

• L: at =l,at O!=OI
t =1

For p E '1', a E A we int.roduce t.he function
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where ,,;(t) Is a matrix conjugate to the fundamental matrix of the homogeneous system

(i), (. ,.) represents a scalar vector product, and z = (z 1 • ' . , • z II)'

Let

"J4t,z,a,p)=c(t,z,a,p)+ 1: aicMi(-Pi)
i =1

X' (t ,z) = min max JJ.(t ,z ,p) , X, (t ,z) = max min JJ.(t ,z ,a ,p)
p Ei' ClEA ClEA P Ei'

where cMi (Pi) Is a support function of the set M.t .

Take

T'(z) = Inf It > 0: X'(t ,z) = 01, T.(z) =Inf It > 0: X,(t ,Z) = o!

In what follo,ws we shall assume that the lower bounds in relation (2) are attained.

Condition 1. Mappings <Pi (Vi' v), i = 1,v, v ~ V, are convex-valued.

We shall write

Conditon 2. Sets K(Mi ), i = l,v, are non-empty and closed and functions Cjfi(pi) are

continuous on K(Mi ).

We consider multivalued mappings

+(t ,z) = lp E +: X' (t ,z) = max JJ.(t ,Z , a ,p)!
ClEA

AI.. t , Z ,p) = Ia E A; JJ.(t ,z , a ,p) = max JJ.( t ,z ,a ,p )!
ClEA

THEOREll 1. Let Conditions 1 and 2 be satisfied. In addition. let the following

conditions hold for any point z1 such that T' (z1) < T' (zO) < +"":

(a) the set +(t ,z) consists of a unique vector p (t ,z) for all t and for Z from

some neighborhood IT'(z1) ,z1\;

(b) there erists an element ao' a o E Al..T' (z1), z1, P (T' (z1), z1)),

such that the function

"1: aOi ("i'(t )Pi (t ,zi), <Pi (Ut ,v))
i =1

achieves its marimum in u =(u l' ...• u II) on a unique vector u (t ,z ,v) for all t



634

and./Or zfrom the neighborhood. !T'(zl), zll and v e: V.

Then. starting from the point zO, the game (1) can terminate in a time not

greater than T' (z 0).

Note. Uniqueness is necessary only for those components Pi and ui which correspond

to non-zero numbers ao i , i = 1, II.

In the case when the pursuers and the evading object make discrete moves, the

time T' (z) is the time at which the attainable domain of the evading object overlaps

with the combination of the atlainable domains of the pursuers [1-7]. Here the pur

suers' controls depend only on the position. The pursuit procedure is an analog of

Krasovski's rule of extremal aiming [1]. Numbers aOi for each posItion represent the

usefulness of the i -th pursuer in game (1). If one of the aOi equals zero. then the

corresponding player cannot affect the quality of the game; even without him the game

w1U terminate not later than time T' (z).

The time T, (z) corresponds to the situation in which each of the players pursues

the evading object individually and does not lake into account the actions of other pur

suers. The sufficient conditions for the game (1) to terminate in T. (z) are actually the

conditions for regularity [1,7] of the II games between each pursuer and the evasive

object.

In positional group pursuit it is observed that, while each of the pursuers will

eventually catch the evading object. this time decreases when they act together.

The positional pursuit scheme allows us to obtain positional analogs to

Pontryagin's first direct method and method of alternating integral for. the case of

group pursuit [8]. The resulting slatements are similar to Theorem 1; they are given in

[4,6]. The above framework also encompasses the situation with a delay in information

on slates [6].

3. EFFICIENT METHODS OF GROUP PURSUIT

Methods in which information on the initial position zO and the control history of

the evading object lit (. ) = III(s): s e: [0, t] I is available to the pursuers at time t

comprise a special class of methods of group pursuit called ld'ficient method.s [9-13].

Consider the multivalued mappings

Condition 3. Wi (t) ,t q" t ~ 0, i = 1,11.

Let us choose fixed measurable selections ')Ii (t), ')Ii (t) e: Wi (t), i = 1,11, and let
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t

tt (t , Zt ' "t (.» = 7Tt "t (t)Zt + J "t (t - T) d T

°
max [a~O: (Wt(t -T,V)-"t(t -T» n a(Mt -tt(t ,Zt '''t('») '" cfl],

if tt (t ,Zt '''t (. » ¢. Mt
at (t , T, Zt ,V , "t (.»::;: 1/ t , ot.herwlse

t~T~O,tiE:V

Consider t.he function

t
T(z ,,,(- » = inf It > 0: 1 - min max f at (t , T, Zt ,V (T) , "t (. »dT = 01

v(') t °
,,( .) = ("1( . ) , . . . • "v('»

We shall assume t.hat. t = + 00 if t.he equallt.y In braces Is not. sat.lsfled for any t > O.

THEOREM 2. Let Condition 3 be satisfied for some collection of measurable selec

tions ,,0(.) and point zoo the lower bound in e:t:pression (3) be attained, and

T(z°,"o( .» < + 00. Then the game (1) starting from the specij'ied initial position Z °
may terminate at the time T(zo, ,,0(.».

Pursuer cont.rois which sat.lsfy Theorem 2 are given by t.he Filippov-Kast.en

measurable choice t.heorem.

There are a number of modlficat.lons of t.he suggest.ed scheme [6,9,10] which lake

int.o account. special propert.les of game (1) or which t.ry t.o direct. t.he confllct.

cont.rolled syst.em (1) t.o given polnt.s of set. Mt .

As a result. it. Is possible (In specific cases) t.o comput.e or est.imat.e t.he t.Ime of

group pursuit., t.o Ident.lfy t.he pursuer cont.rols, and t.o obt.ain explicit. condlt.ions or ini

t.Ial posit.lons of t.he "encirclement." t.ype which lead t.o a finlt.e pursuit. t.Ime [6,10,11].

The case In which t.he persist.ence of t.he pursuers and t.hat. of t.he evading object. are

different. can be formalized by int.roducing an addlt.lonal condit.lon [9,10]. Pursuit.

problems wlt.h phase const.raint.s on t.he slat.e of t.he evading object. which form a

polyhedral set. can be t.ransformed Int.o problems of group pursuit. wit.hout. const.raint.s

[6,9,11]. This Includes a number of int.erest.ing classical examples of game slt.uat.lons

[11].

One of t.he charact.erist.lcs of group pursuit. schemes Is t.hat. t.hey may be used t.o

solve bot.h problems in which It. is required t.o search for moving object.s wit.h a

dlscret.e dist.rlbut.lon of inlt.lal slat.es and problems involving t.he pursuit. of a group of

evading object.s by one cont.rolled object..
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4. PROGRAlI GROUP PURSUIT AND COORDINATED PURSUIT

In a number of group pursuit. problems it. is possible t.o come t.o some conclusion

about. t.he result. of game (1) and t.o formulat.e a pursuit. algorit.hm given t.he inlt.ial posi

t.ion of t.he pursuers and t.he evading object. wit.hout. using current. informat.ion [12]. We

shall writ.e

t

Ct (t ,Zt ,Ut (.), v(-), Pt) = ("i(t)pt ,Zt) + J ("t'(t - T)Pt ' ~t (Ut (T), V (T)))dT
o

T(z)=inflt >O:).,(t,z)=ol (5)

Assertion 1. Let. t.he lower bound in relat.ion (5) be at.lained for zO and T(zO) < + 00.

Then game (1) st.art.ing from t.he st.at.e zO may t.erminat.e at. or before t.ime T(zO).

Not.e t.hat. t.he program met.hod of group pursuit. makes It. possible t.o solve a

number of problems in which t.he evading object. has an advant.age wit.h respect. t.o con

t.rol resources over each pursuer and t.he met.hods proposed in Sect.ions 1 and 2 do not.

address t.he issue of solvabilit.y of t.he group pursuit. problem [10,12].

Let. k • l be nat.ural numbers such t.hat. 1 :s; k :s; l :s; II and Condit.ion 3 be sat.isfied

for i E 1, k. Let. t.he following condit.ions hold for i E l + 1 , II:

Condition 4. Set.s Mt = lmt I are singular for i E l +1.11.

Condition 5. MuIt.ivalued mappings Wt (t , v), t ~ 0, V E V, i E l +~v, assume point.

values w t (t ,v).

Let.

71t (t ,Zt) = TTt"t (t)Zt

(

max (flt ~ 0: fl t (mt -71t (t ,Zt» = Wt (t ,v» ,mt ~ 71t (t ,Zt)

fl t (t , T, Zt ' v) = 0, fl t (mt -71t (t , Zt» ~ Wt (t , v) V fl t ~ 0 • mt ~ 71t (t ,Zt)

Ilwt (t-T,v)ll+lIt, mt =71t(t,Zt)

for i E l +1, II. We shall lake

t t

V(t) = lv('): max f at(t ,T,Zt ,V(T), 7t('»dT < 1. max f flt(t ,T,Zt ,v(T»dT < 11
t H,t 0 t EI +1, v 0

and let. );(t ,z) denot.e t.he expression for A(t, z) which corresponds t.o a minimum in

v (.) in (4) on V(t) and a maximum on i E k +l,l. We t.hus obt.ain t.he t.ime T(z).

THEOREM 3. Let Condition 3 hold for i E l,k, and Conditions 4 and 5 hold for

i E l+l.v. Let the lower bound in an expression for T(zO) similar to (5) be attained
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at zO ana T(zo) < + 00. Then starting Jrom the initial position z 0 game (1) can ter

minate at or bfifore time T(zO), with the pursuers using theJollowing inJ'ormation:

o . ---ut(t) = ut(z ), 1. E/c+l,l

Here the pursuers i E. ii-l,v play the role of phase constraints.

Each of the groups of pursuers with different dynamic possibilities Is associated

with particular controls, and despite the fact that the players have different informa

tion It is possible to combine their efforts for a successful group pursuit [12].

5. COMPARISON WITH PONTRYAGIN'S FIRST METHOD

Let lJ = 1. Since efficient methods for group pursuit are based on Ideas close to

those of L.S. Pontryagln, It Is Interesting to compare the methods with respect to the

time of termination. This then allows us to clarify the role of Information available to

the pursuers about the control history of the evading object.

Consider the termination time given by the first direct method of Pontryagln [8]:

t

P(z) = Inf It ~ 0: rr"(t)z EM - J W(t -T)dT!
o

Here and elsewhere the index i is omitted since lJ = 1.

We now introduce the auxiliary scheme

r .

j
.max [a~O: (W(t -T) -7(t -T» n a(M -(t ,z ,7('» .,f I/l] ,

a(t , T, Z , 7('» = (t , z , 7('» E'M
1/ t , Ht, z ,7('» EM

t

T. (z , 7('» =Inf It > 0: 1 - J a(t ,T, Z ,7(' »dT =01
o

and take r = 17('): 7(t) E W(t), t ~ 0, 7(t) Is measurable. I

AJlaertion 2. Let Conditon 3 be satisfied. Then for

t

rr"(t)z EM - IW(t -T)dT, t ~ 0, Z ERn
-0

(6)

(7)

(8)

it Is necessary and sufficient that there exist a measurable selector 7(' ) E r such that

W . z . 7(-» EM.

This suggest.s the inequality

Inf T(Z.7(·»SP(z)
')'(. )Ef
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for all Z E Rn.

THEOREM 4. Let Condition 3 be satisfied and the latest lower bound in expres

sions (6), (8) be attained. Then

min T.(z, 7('» = P(z) Vz ERn
7(')Er

The scheme (7), (8) is called the functional form of Pontryagin's first methods.

Assertion 3. Let Condition 3 be satisfied, the mapping ~(U, v), V E V, be convex

valued and the set M = 1m 1be singular. Then

P(z) = min T(z, 7( .» Vz ERn
7(' )E:r

Let Z be a non-empty set from R n . We shall write

con z = p..z: z E Z , >.. > 01

and let

S(t ,v) = W(t ,v)~ W(t) , to!:O , V E V

K(t ,v) = conS(t ,v)

K(t) = n K(t, v)
vE:V

where~ is the operation of geometrical subtraction of sets [8], We take

r(z) = 17(') E r: min T.(z ,7('» = T.(z ,7('»1
7(' )E:r

THEOREM 5. Let Condition 3 be satisfied, M = 1m 1and the lower bounds in e:z;pres

sions (3), (6) be attained, Then iJ'in the initial state z °there e:nsts a measurable

selection 7°(-) E. r(zO), such that m -t(t,zO,70('»E K(t-T) for all

O:s; T :s; t < P(zo), we have

We shall consider the function

>..<t,T,Z ,v ,7(-» = max I>" O!:o: >..(m -t(t ,z ,7('» ES(t -T,v)1

t O!: TO!:O, V E V, m # t(t , z , 7( '», 7(') E r

and the set

Q =Iz: >..(t ,T,Z ,v .7('» + a(t ,T,Z ,7('» =a(t ,T,Z ,v ,7,('»1

for all O:s; T:S; t <P(z), v E. V, 7(') E. r.
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THEOREM 6. Let Condition 3 be satisfied and M = 1m I. If for a given point zO,

zO E: Q, we have m - t(t, zO, 7('» E K(t -T)/Or all O,s; T,s; t <P(zo), 7(') E: r, then

In t.he case of an arbit.rary set. M it. is possible to formulat.e assertions analogous t.o

Theorems 5 and 6.

Thus, under t.he conditions of Theorem 5 it. is possible t.o reduce t.he t.ermination

time of Pont.ryagin's first. met.hod by using t.he cont.rol hist.ory of t.he evading object.,

under t.he conditions of Assertion 3 and Theorem 6, such information about. t.he cont.rol

hist.ory of t.he evadIng object. does not. affect. t.he result. of game (1) (at. least. in t.he

framework of t.he schemes under considerat.ion).
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AN AVERAGING PRINCIPI.E FOR OPTIMAL CONTROL
PROBLEMS WITH SINGULAR PERTURBATIONS

V.G. Gaitsgory
l,eningrad Politechnic Institute

1. INTRODUCTION

There has been considerable interest in the possibility of extending the asymp

totic averaging method developed in the theory of differential equations [1] to optimal

control problems (see, e.g., [2-4]). This paper presents new results of this kind which

allows us to apply the aver'aging method to the analysis of optimal control problems

with singular perturbations, which have attracted the attention of many mathematicians

throughout the world (see overviews [5,6]). The results also prove to be useful in the

optimization of controlled Markov chains with weak interactions between subsets of

states.

We shall first give a statement of the problem and then describe the results.

Consider a system with singular perturbations over an extended time scale:

where r. is a small parameter, f 1( '), f z(' ) are vector functions with values in R
n

1 and

Hn~, respectively, and u is an arbitrary measurable vector function with values in R m

which satisfies the inclusion u (t) c U. The family of such functions will be called the

sot of feasible controls. Let V(z ,s , Q) denote the set of values of

s

S -1 .r f 1 (z ,Y (z ,t) , u (t»dt
o

calculated along the trajectories y (z , t) of the system

Y =f z(z ,y , u) , y (0) E: Q , z =const

for all feasible controls.

(2)

THEORKM: 1. Assume that f 1(z ,y ,u ), f z(z ,y ,u) are continuous in some neigh

borhood of the product of compact sets P1 x Pz X U and satisfy the Lipschitz
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conditions in z and y uniformly with respect to u. Let the trajectories of system

(1) sati.sfy the inclusions

where the Pi are closed, and let the following conditions be satisfied:

(1) For any z E [\' any feasible control u (t) and initial conditions

y (0) = Yo E P2' system (2) has a unique solution y (z , t ,u (. ), Yo) and this

solution is completely contained in P z.

(2) For any z E Pl' any feasible control u (t) and initial conditions y (0) =
y~ EPZ' yeO) =y~' EP2, system (2) also has a unique solution and

!iy(z ,t ,u('),Yo) -y(z ,t ,u(-),y~)i:SL i.ly~ -y~'iiHt), L =canst (3)

where Ht) is an arbitrary function such that J Ht)dt < 00.

°
(3) If Y (t) is the solution to the system

yet) =fz(z(t),y(t),ii(t» , yeO) =Yo E P2

where z(t) is continuous and z(t) I=. Pl' t E. [0, t 11. then the estimate

max !!y(t)-y(z,t,u(-)'YO)!i,..;L max :lz(t)-z!!
t qO,t tl t qO,t d

holds for any z C ['1'

Then

(i) Far any Q ( P z there exists a limit in the Hausdorff metric p(',')

Lim V(z ,s ,Q) =V(z) , p(V(z ,s ,Q) , V(z» S Ls -liZ, s ~ so> 0
s ~~

(4)

where V(z ,s . Q) is the closure of V(z • s , Q) and V(z) is a convex compact subset of

R n1 which does not depend on Q.

(ii) For any trajectory (zo(t), yO(t» of system (1) one can construct a solution

~o(t) to the differential inclusion

such that

~ E £ V(~) • ~(O) =z°

IlzO(t) - ~(t)11 S L £113, L =canst, t E [0. Tt-1]

(5)

(6)

Conversely, each solution (O(t) to (5) corresponds to some trajectory (z o(t), Y o(t))

of (1) so that the distance between (o(t) and zO(t) is estimated by (6).
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(iii) If the }'unction ~(t) in (3) is monotonic. then the following limit exists in the

Hausdorff metric:

Lim Y(z ,s ,Q) = Y(z) , p(Y(z ,s ,Q) , Y(z» ,s L ~(s)
,"i, -1000

where Y(z ,s , Q) is the closure of the reachable set of system (2).

Under the additionaL condition

(7)

Conv !J 1(z , Y(z) , U) , f 2(z , Y(z) , U) l = !f 1(z , Y(z) , U) . f 2(z , Y(z) , U) l (8)

the set V(z) may be written in the explicit form

V(z) = It:.' = f 1(z.y ,u), fz(z ,11 ,u) = O. U € U{

and the differentiaL incLusion (5) is equivaLent to the system

(=E:f l«(.1/I«(,U), u), u C U, (0) =zo

wher'e y = 1iI.«( ,u) L 1>2 ;s a r'OUe of the system

f :~(t:, y , u) =0 . u ~ U , ( E P 1

(~)

(10)

/-(ecaLI that the distance between two subsets [)1 and [)2 in the Hausdorff metric is

defined as t'ollows'

where

p«(, D) = i.nf :( - (i!
( £0

and !! ·11 represents the f:uclidean norm.

Remark 1. Note that system (10) is traditionally used in the reduction of optimal con

trol problems with singular pertur'bations [5,6]. Condition (8) is similar to that guaran

teeing the existence of solutions to optimal control problems [7], with "fast" variables

y plaYing the role of controls in addition to u (t).

2. CONDITIONS FOR .!';xISTENCE AND CONVEXITY OF THE LIMIT SET

Statcment (i) of Thear'cm 1 concerns the existence and convexity of the limit set

V(z). This statement is ergodic in nature and can be applied to different problems in

contr'ol theory. We shaLl devote the rest of this paper to proving its validity under

conditions weaker than those given in Theorem 1.
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Note first of all that the components of vector z can be regarded as constant

parameters when studying limit properties of type (4). Therefore we shall omit them,

writing system (2) in the form:

y =f z(y •u) • y (0) \:0 Q

In the same way we shall define the set V(s • Q) as the set of values of

s
s -1 r f 1(y ,u )dt

'0

(11)

(12)

THEOREM 2. Let the vector functions f 1(y , u), f z(Y , u) be continuous in some

neighborhood of the product Pz XU, where Pz ' U are sets in R n2 and R m , respec

tively. Suppose also that the following conditions are satisfied:

(1) For any feasible control u (t) and initial conditions y (0) =Yo E: Pz there exists

a unique solution y (t • u (.) , Yo) to the system (11). Moreover this solution satis

j'i.es the inequality

i~ 1(y (t • u (. ) ,Yo) , u (t »11 ~ L =const , vt E. [0, s] , Vs ~ 0 (13)

(2) Let y ~, y~' be two arbitrary vectors of initial conditions from Pz and let u' (t)

be an arbitrary feasible control, Then it is possible to choose a feasible control

u (t) which satisfies the inequality

Ii -1,s

s s

/ f 1(y(t ,u'C),y~),u'(t»dt-s-l J f1(y(t,U"(·),y~'),u"(t»dtll~
o 0

~ Ls -1 ,L =const ,s > 0

(14)

(3) There exists a subset P z of the set Pz such that, for all feasible controls, all tra

jectories of system (11) with i,nitial conditions from P z remain in the set Pz. Then

for any Q c Pz the following Hausdorff limit exists:

- -
lim V(s ,Q) =V
s ~~

(15)

where V(s ,Q) is the closure of V(s ,Q) and ji is a convex compact set in R
n

1 which

does not depend on Q. Moreover, for s ~ so> 0 we have

p(V(s • Q) , V) ~ Ls -1 , L = const (16)

Remark 2. It is easy to see that the conditions of Theorem 2 will be satisfied if the

conditions of Theorem 1 are met. The relation (14) follows from (13) with u"(t) =
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u'(t). while (13) is conditioned by the compactness of Pz' It is also easy to find an

example in which the conditions of Theorem 1 are not satisfied but the conditions of

Theorem 2 are satisfied. This is the case if. for example, nz =1, fz(Y ,u) "'" 1 and

f 1(y , u) is a periodic function of y.

3. AUXILIARY STA'l'KM:ENTS

We shall now consider a number of auxiliary statements. It follows from condition

1 of Theorem 1 that there exists a compact set PeRn! such that

V(s .Q) e P eRn!, Vs >0. VQ ePz

On the basis of the same condition 1 it is easy to establish the following statement:

Proposition 1. t'or any Q C Pz. s > 0, s' > 0 we have

f ' L Is -s' I
p(V(s . Q) , Hs . Q» ~ , ,L =const

max(s ,s )

(17)

(18)

The inclusion (7) is in facL equivalent to condition (13). given in terms of the seL

V(s ,Q). Condition 2 of Theorem 1 can also be presented in these terms.

Proposition 2. Condition (2) of Theorem 1 is saLisfied if and only if

p(V(s , Q') , V(s . Q'» ~ Ls 1 (19)

for any Q C Pz. Q e P z and s > O. Condition 3 of Theorem 1 can also be reformu

lated:

1'(s . Q) e Pz . VQ c Pz . Vs > 0

where Y(s , Q) is the reachable seL of system (11).

(20)

To describe the dynamics of V(s ,Q) we shall introduce the set W(s • Q) defined as

follows:

s

W(s,Q) = 1«,7/): (=s-l I f1(y(t,u(-).Yo),u(t»dt
o

(21)

7/ =y(s ,U(-).Yo). Yo E: Q, u(t), is feasible!

It is obvious that V(s ,Q) and 1'(s ,Q) are the projections of W(s ,Q) on R
n

! and R n2
.

respecLively.

Proposition 3. For ,my Q C ('z. s > O. s' > O. A E. (0,1) we have

Y(s +s', Q) =Y(s •1'(s', Q» (22)
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V(S ,Q) = U (A~ + (l-A)V«l-A)s ,7))
(~,1) EW(AS ,Q)

(23)

Relation (22) Is obvious. Relation (23) may be proved using the fact that for any feasi

ble control

S AS

S-".r f 1(y(t ,U(-)'YO),u(t»dt =A(AS)-l.r f 1(y(t ,U(-)'YO),u(t»dt +
o 0

S

+ (l-A)[(l-A)s j-l .r f l(y(t, u (-), YO), u(t»dt
AS

together with the fact that a control constructed of "pieces" of feasible controls is

also feasible.

To conciude this section we shall list some of the properties of the Hausdorff

metric. Consider the set of all closed subsets of the compact set P. When endowed with

the Hausdorff metric this set becomes a compact metric space (Blascheke's theorem

LS]).

Let Vt ' i =1,2, be subsets of P and Vi, Conv Vt , i =1,2 be their closures and con

vex hulls, respectively. Then

t
p(Conv V, k -1 L V) ,,; Lk -1 ,L =const , k =1,2 , ...

1

(24)

(25)

(26)

Relation (24) is obvious, (25) is easily verified [9] and the proof of (26) is based on

Caratheodory's theorem on the representations of convex hulls [9].

4. PROOF OF THEOREM 2

The Uleorem is proved in several stages.

(a) Using induction. let us verify that for any natural number k, S > a and Q c P z, the

following relation holds:

t
p(V(ks ,Q) , k -12: V(s ,Q» ,,; Ls-1

1

(27)

where L is the constant from condition (2) of the theorem. It is clear that the formula

holds for k = 1. Assume that it also holds for k - 1:

t -1
p(V(k -l)s ,Q) , (k -1)-1 2: V(s, Q» ,,; Ls-1

1

(28)
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F,'om Proposition 2 we have

k - 1 k -1 k -1 L L
P(-k- V«k --l)s ,7) , -k-- V«k -l)s ,Q» ~ -k-

(k -l)s ks

Moreover, (28) leads Lo

k-l /c-1 L fk-l\ L I
p(-- V«k -l)s ,7) , k -1 L: V(s ,Q» ~ - ~ + - = ....:..

k 1 s k ks s

Using relation (23) from Proposition 3 with "A =k -1, (1 -"A) = (k -l)k' l we have

V(ks ,Q) = U (k -1~ + (k -l)k -lV«k -l)s ,7)) =:>
({,'1)cW(s ,Q)

(29)

/c -1
p(V(ks , Q) , U (k -1 { + k -1 L: V(s ,Q» ~ Ls -1

({,'1)cW(s ,Q) 1

Since

/c -1 /C·l
U (k -1{+ k -1 L: V(s • Q» = k 'lV(s . Q) + k' l L V(s, Q) =

({,ry),W(s,Q) 1

Ie
= k -1 L V(s , Q)

relation (29) is equivalent to the statement we wanted to verify.

(b) Let. liS now show that the following limit exists:

lim Conv V(s ,Q) = V
S .~

E;xtend inequality (27) by taking (2~j) into account:

/c
P (Conv V(ks ,Q) , Conv k -1 L: V(s ,Q» ~ Ls- 1

1

(30)

(31)

It follows from well-known results in convex analysis [10 J that Conv

Ie
k -1 L: V(s • Q) = Conv V(s ,Q), C~n~ V(s ,Q) = Conv V(s ,Q), where Conv V(s . Q) is the

1

closure of the convex hull of V(s ,Q). Thus (31) can be rewril.t.en in the form

p (Conv V(ks ,Q) Conv V(s ,Q» ~ Ls -1, Vk = 1,2, ...

Let k z <!: k 1 be arbitrary natural numbers. Then using (32) we obtain

- - k z - -
p(Conv V(s , Q) , Conv V(- s , Q» ,s; p(Conv V(s • Q) • Conv V(kzs ,Q» +

k 1

(32)
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(33)

- - k 2 L L 2L+ p(Conv V(k 2s ,Q) , Conv V(- s ,Q» :s; - + --- :s;-
k 1 S k 2 S

(-)s
k 1

As noled above, lhe space of closed subsels of P endowed wilh lhe Hausdorff melric is

compact. Therefore lo prove lhe exislence of lhe limil (30) il is sufficienllo eslablish

lhal for any J./ > 0 we can find an s v > 0 such lhal for s ~ s' ~ s v lhe following ine-

quality is satisfied:

_. -
p(Conv V(s , Q) , Conv V(s ,Q»:S; J./

This is easily verified llsing (33) and Proposilion 1.

(c) Lel us now eval;mte the rate of eonvergence in (30). We have

p(Conv V(s , Q), V) :s; p(Conv V(s , Q), Conv V(ks , Q» +

+ p(Conv V(ks , Q) , V) :s; Ls -1 + p(Conv V(ks , Q) , V)

Taking lhe limil on lhe righl-hand side as k -> 00 we oblan

p(COllV V(s , Q) , V) :s; Ls -1

(d) Using lhe lriangle inequality and (26), (27) we can wrile

Lel us take lhe inleger part of s 1/2 as k. From Proposilion 1 we have

(34)

(35)

(36)

(37)

Using (35), (36) and the lriangle inequalily we oblain (16). The convexily and compact

ness of (' follow from (30).
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ON A CERTAIN CI.ASS OF INVERSE PROBLEMS IN
CONTROl. SYSTEM DYNAMICS

rt.:. GUSf~\,

Institute of Mathematics and Mechanics
Ural Center of U:S:SR Academy of Sciences, Sverdlovsk

':'his report is concerned with the inverse problem of control theory: to identify

an initial state and a disturbance in the input of a dynamic system using measurements

of the output. Such problems arise, for example, m the solution of one of the two basic

problems of 'dynamics: assuming the motion of a mechanical system to be given, find the

forces that generate this motion [1]. On the other hand, this problem is also closely

related to problems of control and observation under conditions of uncertainty [2,3].

Let t.he motion of a cont.rolled plant on the interval Lt o' tl be described by the dif-

ferentiul \:;q uaLion

(1)

where the initial stat.e XU ana the function u (' ) representing the disturbance (control)

are assumed t.o be unknown. The available a priori information on w = (XV,u('» is

restricted to the inclusion W t W, where W is a given set in the corresponding func-

tiOHGh SfJdce,

~el ~he output of lhe piiHlt be given by the equation

y(t) = h(t ,x(t),u(t», t c fto, t 1l

where h: ~t 0' t 1; x R n x R' --+ R m is continuous.

(2)

Let us assume that f (t . x, u) is continuous and the following standard conditions

are satisfied: there exist c 1 > 0, Cz > a such that

(a) ,if (t ,x ,u )]':s; C 1(1 + !lx!1 + Iluil)

(b) i'f(t ,x .u) -f(t ,x',u)!I,s;cZ!lx -x",k1 + liuli)

for all t E: [t 0' t d. x. x· t R n • where ii· ii is the Euclidean norm.

We will call a function from the space L z([t o. t d ' R) (sometimes also written L~)

an ad.missible control (disturbance). Let u (.) E: L~. Then the absolutely continuous
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function x (t) is said to be a solution of system (1) if

t
X (t) = x 0 + J f (T , X ( T) , U (T))d T , t°~ t ~ t 1

to

For every xO L R n , U (.) E: L z, t.here exists a unique solution x (t ,xo , U (. ».
Let XO be a bounded set in R n and U be a bounded set in L 2' Then the set of solu

tions Ix (. ,xo ,u (.)): X O E: xC, U (.) E: U l is uniformly bounded and equicontinuous.

The problem is to identify xO and U (-) (or U (-), or some of the coordinates of

U (.) on a given basis) from the output y ('). We may rewrite the problem in the follow

ing way. Let X, Y, Z be Banach spaces and operators A: X -+ Y, F; X -+ Z, a point

y E: Y and a set W c X be f:;iven. It is necessary to find z = Fw under the conditions

Aw =y, W E: W. Here the operator A transforms the pair w =(x 0, U ( .» into

y = y ('), see (1), (2). Ihe operator F may be given, for example, by Fw = w,

Fw =U (. ), or Fw =PL U (. ) (where PL is a projection operator 0n the subspace L).

We wiLl.take the Hilbert space R n XL z as X, the space Lr as Y, and the space

Rn x L z, or L z, or a finite-dimensionai subspace as Z.

Examples of a. priori restrictions on (x o . U (.» could be the following:

where XO c N n , U C R T are given sets, or

t I

W = )(x o , U (. »: xc' Mx o + I u (t) R(t)u (t)dt s J..L2(
to

where M, R(t) are positive definite matrices.

Note that if Fw = x (t 1) we obtain a state estimation problem and if

W = I(x 0, u (. »; u (t) = u = const, u ~ Uland Fw = u (. ) we have a parameter iden

tification problem.

Due to the non-invertibility of A the solution of the problem may not be unique.

Following [3]. we shall call the set

Z(y) = !z: z =F'w ,Aw = y , W E Wl

the information domain associated with y.

A charact.eristic feature of the problem is the instability of Z(y) with respect to

y. In other words, if y is given with an error not exceeding 6 > 0 (ily - y ~i ~ 6), then

Z(y 6) may have an arbitrarily large deviation from Z(y) regardless of how small 6 is

t.aken to be. Therefore, in order to solve the problem, it is necessary to combine
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methods from the theory of ill-posed problems [4,5] and the theory of observation

under certainty [2,3].

Let X, Y, Z be Hilbert spaces «',' >x represents the corresponding scalar pro

duct) and W c X. be weakly compact. Let w E: X, ~ E: R be given such that W c

!w: <w -w' ,w -w' >x ~ ~2l (for example, ~ = sup !I~ -w 'Ii: w E: W l). Let us con

sider the following extension Z t,a(Y) of Z(y), which is called the regularization of

Z(y):

Zt,a(Y)=~z =Fw:Aw +{=Y <w -w
• 1

,w - w >X + ~ <{, {>y ~ (3)

~2 + a. , w Eo. W l

where £ > 0, a. > 0 are regularization parameters.

Proposition 1.

(a) Z(Y)CZt,a(Y6)if62/£~o.,

(b) if A, F are weakly closed and F is completely continuous, then h (Z t,a(Y 6)'

Z(y» -+ 0 for £ -+ 0, a. -+ 0, 6 2/£ ~ a., where h is the Hausdorff metric.

LEMMA 1.. Let equations (1), (2) be given as follows:

x =A (t , x) + B (t , x) u (t) , x (t 0) =x ° (4)

(5)

where riA (t ,x)li ~ c 1(1 +16:11), liB(t ,x )i! ~ c2' A (t ,x), B(t ,x) are continuous in (t ,x)

and Lipschitz in x, and h 1 , h 2 are continuous. Then A: R n x L z -+Lr is weakly

closed.

F is weakly closed and completely continuous, for example, if F'w =xO, if

F'w = PL u (- ) and L is finite-dimensional, or if F'w = x (t l' x °,u (.» and system (1) is

linear in u.

Proposition 2. Let A be a weakly closed operator and F be a linear continuous opera

tor. Then for every z Eo. Z and for 62 / £ ~ a. we have

as £ -+ 0, a. -+ 0, where p(' I Z) is the support function of Z.

Let A ,F be linear continuous operators and W = !w: <w, w >x ~ ~21. Then we

may consider the following regularization of Z (y ) instead of Z t,a (y ):

Zt a(y) = lz = Fw: Aw + { = y , <w -w' ,w -w' >X + 1 <{, {>y ~ ~2 + a.!
, £

i
I

I,iII
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Propositions 1,2 also hold for Z t,a(Y)'

The domain Zt,a(Y) may be described as follows:

THEOREM 1. The domain Zt,a(Y 6) is an ellipsoidal set with the support function

(6)

where

and operator' ,1 is adjoint to A .

Proposition 3. The point W (c , 6. w') and the operators appearing in (6) may be found

as the solutions of the following variational problems:

Tu =arg min tiiAwl!2 + c Ilw -ul121

(7)

(8)

(9)

where w = arg mil'. lllAw -xi!' + c ilw!12j. Thus W is the solution of problem (7) from

Tikhonov's regularization method [4,5]. The center of symmetry i = FW(c, 6.w·) of

Z t,a(Y 6) may be considered to be the best regularized minimax estimate [3] of z.

In particular, if Fw =w. we have that Zt,a(Y) is an ellipsoid

(w =O.w =w(c,6,O»:

F'or systems (1), (2) which are linear in x, u, problems (7), (8) may be solved

using standard methods from the theory of linear-quadratic optimal control.

If Z is infinite-dimensional. then Z t,a(Y 6) does not converge to Z(y) in the Haus

dorff metric, but W(c, 6 ,w·) -+ lw: Aw =Y! as c -+ 0, 62
/ C -+ O. The analogous

convergence also holds for a priori restrictions.

In partiCUlar. let us consider the variational problem

!!Aw -Y dl2 + clb -w'112 -+ min. w E: W
w

(10)

THEOREM 2. Let system (i), (2) be of the form (3), (4) and the assumptions of

Lemma 1 be satisfied. Let W be weakly closed in R n x L~. Then problem (10) has a
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solution Wet:, 6,w ') for t: > 0, W E.X, and W ~ !w: Aw = y ,W E: Wj as t: ~ 0,

62 / E ~ 0 in the metric of space R n x L ~ ,

IF F is uniformly continuous on every bounded set, then i = FW ~ z (y) in the

metric of Z,

Let system (1) be of the form (4) and all the coordinates of x(t) be measurable,

Le" y (t) =x (t). Let the measurement error be no greater than 6 in the metric of L ~:

Let us define A .s(t) = A (t ,x.s(t », B .s(t) = B (t ,x .s(t», and consider the optimal control

problem

t i

J = r [(x.s-x)'Q(x.s-x) + t:u'Ru]dt + Exo'Mxo ~ min
te xO,u(')

for the linear system

where Q, R, M are positive definite matrices.

(11)

(12)

THEOREM 3. Let tV (t:, 6) be the solution of problem (11), (12) under the constraint

(x °,u ( , » E. W, where W is weakly closed. Then tV (E , 6) ~ fw: Aw =x (. ) W E: W l in

the metric of R n x L ~, and AtV (E,6) - x.s(- ) -+ 0 in the metric of L ~ as t: -+ 0, 6 ~ 0,

62 / t: -+ 0.

Taking W =R n x L ~, the solution of (11), (12) may be obtained in explicit form as

follows (where Q, R, M are assumed to be unit matrices):

Remark 1. The case in which the right-hand side of (1), (2) depends on an a priori

unknown constant vector of parameters c (f =f (t ,x ,u ,c), h =h (t ,x ,u ,c» may

be reduced to the case under consideration by adding the equations c =0, c(t o) =cO
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to system (1) and by choosing the triplet (z 0, co, u ( . » as w. All of the propositions

given In this paper also hold (with some modification) in this case. It should be noted

that even If system (1), (2) Is linear in x, u, the corresponding operator A is non

linear.

Remark 2. If Z is infinite-dimensional it is necessary to impose a stronger require

ment concerning W in order for Z £,a(Y 6) to converge to Z(y) in the Hausdorff metric.

We have convergence if, for example, U (t) is a solution of the differential equation

with unknowns U 0 and tI (.) restricted a. priori by the inclusion (u 0, tI (.» E: V, where V

is weakly compact in R T x L ~ .

Remark 3. If we have a. priori restrictions on w we are faced with a variational prob

lem (10) with constraints. Instead of solving this we can consider iterative process of

the form w" +1 = PwSw" (see [6]) representing a combination of the proximal point

algorithm [7] and projection on W. In this case every step of the process reduces to

the solution of problem (7) without constraints and calculation of the projection on W.

which is easier than solving (10). For systems (1), (2) which are linear In x, u. the

results given In [6] Imply that the process w" converges to the set lw:

Aw = y , W E: W l (under certain standard assumptions).

Remark 4. The problem of deducing the Input of a dynamic system from measurements

of the output has been considered in various papers. Most of these are concerned with

the single-valued reconstruction of the input from precise measurements of the output

(see, for example, [8-11]) i.e., with the question of the invertibility of A. The results

of these investigations show that even If A -1 exists it is generally discontinuous.

We should note that there is a close relationship between the problem considered

here and the problem of parameter identification (see [12,13]).

The problem of the a. priori estimation [2,3] of input for linear systems is con

sidered in [14J. where questions of numerical solution are also discussed.

The stable reconstruction of input for systems with a completely observable state

space vector is considered in [151,

Recursive procedures for estimating input for linear discrete-time systems are

given In [16].
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SIMULTANEOUS ESTIMATION OF STATES AND PARAJIETERS
IN CONTROL SYSTEMS WITH INCOMPLETE DATA

N.F. Kirichenko and A.S. Slabospitsky
Kiev State University, Kiev, USSR

1. INTRODUCTION

This paper is concerned with the following closely related optimization problems

in dynamical systems; optimal stability, minimax slate estimation, minimax parameters

identification and pattern recognition. Some investigations of these questions are

reported in [1-4].

2. OPTIllAL STABILITY [:J.6]

Using Liapunov's definition of the stability of a trajectory and Chetaev's defini

tion of the practical stability of a trajectory, we introduce the concept of optimal

practical stability and present conditions under which systems are optimal in this

sense.

Let some process be described by the set of equations

d:l: (t)dt = F(:I: (t) ,u(t) ,12(t) ,t) , :I: (to) =1 1 (1)

where :I: is the state vector. u is the control vector, 1 2 is the vector of disturbances,

and 1 1 is the vector of disturbances to the initial data. Assume that

1 =(f1,1 2( T) , T E rto, t]) takes values in the set Gt (X), which has an a priori known

structure, and X is the size characteristic of this set. We shall consider some closed

set r in state space. Let Xt (u) be the maximum value of A, which for a given control u

satisfies the condition

Then the optimal stability problem is formulated in the follOWing way: find the optimal

control u (T), T EO [t 0' t l, with respect to the criterion

J(u) = At(U) -+ max
u

(2)
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THEOREM 1. If system (1) and the corresponding sets 0t (A) and l' are of the form

dx (t)------;u- == A(t, u)x(t) , x(to) == f (3)

(4)

then the maximum value of criterion (2) is given by the solution of the following

optimal control problem:

~~t) == A (t ,u )P(t) + P(t)A ' (t ,u ) , P(t 0) == S-l

J(u) = m~l;P(t)ls -+min
s=l,N u

(5)

Here ls are given vectors, S is a positive-definite matrix, and (. )' denotes transpo

sition.

COROlLARY 1. /fwe consider the functional

instead of (2), then Theorem 1- holds with (6) replaced by the criterion

(7)

THEOREM: 2. Let A (t ,u) =u (t) , N =1, in system (3). Then, using the'regulariza

tion functional

t 1

J(u) =l~P(t1)ll + J.L J tr (A (t)P(t)A '(t))dt
to

the solution of the optimal control problem for system (5) is of the form

THEOREM: 3. If in (3) we have

A (t ,u) =A 1(t) + B(t)C(t) ,C(t) =u (t), N =1

then for system (5) the functional
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11

leu) = l~P(t1)ll + J.L J tr (C(t)P(t)C' (t»dt • J.L > 0
10

attains a minimum with

C(t) = l... B·(t).y;(t)
J.L

THEOREM 4. Let system (1) be oftheform

~~t) =A(t)(x(t) +f 3(t» +f2(t) , A(t) =u(t). x(t o) =f 1

Take

I

GI (>..) = !f: f ~sof 1 + J (f; (T)Sl (T)f 2(T) + f; (T)S2(T)f 3(T»dT os; >..21 (8)
10

and let the set r be defined by formula (4). Then the functional (7) attains a max-

imum with

A(t) = -P(t)S2(t). t ~ to, Vls . s =1,N

THEOREM 5. If system (1) is of the form

dxS) =A(t)x(t) + B(t)(C(t)x(t) + f3(t» + f2(t) , B(t) =u(t)

and all of the other conditions of Theorem 4 are satisfied, then,

B(t) = -P(t)C'(t)S2(t) , t ~ to, Vls ,s = 1,N

d..l~Y) = A (t )P(t) + P(t)A • (t) - P (t)C' (t)S2(t)C (t)P (t) +

(9)

Proofs of these theorems may be obtained using the generalized Holder inequality and

Pontryagin's maximum principle. Numerical methods for the solution of the optimal

stability problem for systems with incomplete data In more complicated cases are given

in [7J.
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3. MINIlIAX STATE ESTIlIATION [5,6,8,9]

Consider the dynamic system

d~~t) = A (a. t)x (t) + f z(t). y (t) = C(t)x (t) + 13(t) (10)

where f l' fz(T), f3(T). T E. [to. n. belong to set G (see (8», a is the parameter vec

tor, and the state estimate x(t) is determined as a solution of the system

dx(t) = A(t)x(t) -K(t)(y(t) - C(t)x(t». x(t o) = 0
dt

(11)

THEORElI 6. The optimal estimate x (t) from the class of solutions of system (11)

with performance criterion

J(K) = sup Il'(x(t) -.f(t»l z -+min
OJ(),) K

is attained on K(t) = B(t). where B(t) is defined bYformula (9).

THEORElI 7. For system (10) the minimal value offunctional (12) is

J(B) = l' P(t)l X (AZ + 1.. k' (t)P(t)k (t) - h (t»
4

where

(12)

(13)

d~~t) =y'(t)Sz(t)y(t) -ik'(t)S1-1(t)k(t). h(to) =0

dkd~t) = -A'(t)k(t) -2C'(t)Sz(t)y(t) -P-1(t)S11(t)k(t). k(t o) = 0 (14)

The optimal value of criterion (13) and equations (14) may be used to state a problem

involving simultaneous estimation parameters and the states of the system, having

already formulated the minimax likelihood principle: choose the parameters of the

system a. including matrices So. S1' Sz from the available set of values such that the

funct.ional

attains a maximum in a. where il· ii, is a spectral norm.

The proof of Theorem 7 Is based on Bellman's optimality principle and the follow

ing lemma:
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LEMlIA 1. (generalized Pifagor formula). If vectors x ,Ip satisfy the relations

i , rp = arg min (Ip' 0 Ip + x •Kx )
A:I: +,,=a

then

(x -i)' (A 'OA +K)(x -i) = XZ - rp'Ofj; - i'Ki

4. OPTlMAL PARAMETER IDENTIFICATION [10-12]

We shall consider the optimal estimation of an unknown parameter vector a for a

system described by the following set of equations:

~dt =F(x ,U ,t)a + Ip(x ,U ,t) + C(x ,u ,t)/(t) , t ~ to

where / (t) represents the disturbances.

(15)

Suppose that the pair (a ; / (T), T E [to' t]) can only take values in the available

domain 0t (X). We want to find the minimax estimate a(t), Le.,

a(t)=arg inf sup iia-ali
aEG{"()..} Q EG{"()..}

Here ot(X) is the a posteriori information about the domain of available values for a

up to time t, which are compatible with the next trajectory measurement and control

actions. In what follows we shall suppose that strict identification of a .in individual

directions is not possible.

THEOREM 8. The minimax a(t) for system (15) with

t

0t (X) ~ la,f: (a - a o)'So(a -ao) f /' (T)S(T)/ (T)dT ~ XZ(t)1
- to

is obtained/rom

da (t ) , -. ~
~ = R(t)F (x, U ,t )S(t)[x (t) -F(x • U • t)a(t) -

Ip(x , U , t)], a(to) = ao

(16)

dR(t) , - 1
dt = -R(t)F (x ,U ,t)S(t)F(x ,U ,t)R(t). R(t o) =So- (17)

together with an estimate 0/ the identification error in direction l ('lili 1= 1):

sup [l' a -l' a(t)]z ~ l'R(l)l x
QEG,a()..}
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t

- f(X(T) -~(X,U,T»'S(T)(X(T)-~(x,u,T»dT]

to

where So' S(t) are positive-dflfinite matrices, the vector ao is known, >..2(t) is non

decreasing and such that >..2(t o) >0, and we define

Here (. ) + represents pseudo-inversion.

In the case when only the domains of available values 0 for matrices So' S are

given, the values of these matrices are selected by maximizing the following functional:

t

-J(X(T)-~(X,U,T»'S(T)(X(T) -~(x,u,T»dT] -. max
to S~e:O

on (16), (17).

Let C(x, u . t) = E (where E is the identity matrix) and S(t) = S for all t :<!: to.

Then we have the following result:

THEOREM: 9. In order that lim diam G/,,(>") = 0, it is sufficient that
t-+~

t
>..-2(t) JIIF(x,u ,T)l112dT - .... 00

tot -+..

COROLLAARY 2. Let >..2(t) be bounded and

t
ii~ (>..2(t) -(a-ao)'So(a-ao) + f f'(T)S(T)f(T)dT) >0
t-+~ to

Then the condition

t

IiiF(x,u,T)lifdT - .... ooVl(i~ii=l)
tot .. DQ

is necessary and sUfficient to obtain

lim diam Gt·(>..) = 0
t-+~
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In practice F(x ,U ,t) and C (x ,U ,t) often have the following structure:

F(x , U , t) = dlag (g ~ (x , U , t) , ... , g~ (x , U , t»

C(x , U , t) = dlag (c ~ (x ,U , t) •.... c~ (x , U , t»

The identification problem for system (15) Is then split up Into n estimation tasks for

one-dimensional systems

t

(at-aOt)'SOt(at-aot)+Jft'(T)St(T)ft(T)dT~Xf(t), i =l,n (19)
to

where

1/1' (x ,U ,t) = (1/11(x ,U • t) , ... , I/In (x , U , t»

IICt (x, U ,011 > 0 Vi, matrices SOt, St (T), t E: [to, t J, are positive definite, and aOt is

known.

The following algorithm solves the identification problem for (18), (19):

where

The above result may be transferred to discrete systems

x(k +1) =F(x,u,k)a + I/I(x,u ,k) + C(x,u ,k)f(k) , k =1,2, ...

with the following available domain of values for (a ,f):

N
GN(X) ~ la,f: (a -ao)'So(a -aD) + E f' (k )S(k)f (k) ~ x2 (N)1

- t~

The estimation algorithm and the estimate of the Identification error in this case have

the form
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li(k +1) =D(k)ci(k) + R(k +l)F' (x, U ,k +l)S(k +1) x

x [x(k +2) - Ip(x, U ,k +1)], li(O) =00

R(k +1) =D(k)R(k) , R(O) =SO-l

N
l: [x(k +1) - Ip(x ,u ,k)]'S(k)[x(k +1) - Ip(x ,U ,k)]l

A: =1

Here

D(k) ~ E -R(k)W(k +l)[S(k +1) + W' (k +l)R(k)W(k +l)]-lW'(k +1)

W'(k +1) ~ C· (x, U ,k +l)S(k +l)F(x, u, k +1)

S(k) 4. (C (x , U , k)S -l(k) C' (x , U ,k)) +

For the linear dynamic system

x (k + 1) =Ax (k) + Bu (k) + f (k) , k =1,2 ,...

with

(20)

N
GN(A) 4. IA,f: tr l<A -Ao)'(A -Ao)l + l: f'(k)f(k) S A2 (N)l (21)

- A:~

the Identification procedure for matrix A is simplified:

A(N + 1) = IA (N) + (x (N +2) -Bu (N + l))x' (N + l)R(N)lP(N) . ...f(0)·=: Ao (22)

R(N + 1) = R(N)P(N) , R(O) = E (23)

where

peN) 4. E - Q(N)/ (1 + tr (Q(N)))

Q(N) 4. x (N + l)X' (N + l)R(N)

Consider system (20) with matrix B == 0 and positive model errors and trajectory

measurement. In this case the following results are obtained concerning the asymp

totic behavior of the algorithm:

THEOREM 10. If system (20) is asymptotically identifiable (i.e., lim iiA -A(N)ii =0),
N..~

then

i
I

Ii
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f Ilf(k)liZ

lim t =1 = 0

N ..- f Ilx(k)112
t =1

THEOREM 11. For asymptotic identifiability of linear system (20) it is sufficient

that

~ i[r(k)ii2

lim _---=.t.==7~:-----_=0
N ... oo 2

\
m,1.-n L: (l' x (k »
~11-1t=1

Theorems 10 and 11 demonstrate a direct relation between the convergence of the

estimation procedure and the model errors and observations of the phase state vector.

THEOREM 12. Let linear system (20) be asymptotically stable and the disturbances

f (k) satisfY the conditions

N
lim N-1 L: f(k +j)f'(k) = Q6(j) Vj

N .. - t=l

N
lim N-1 ~ f (k) =.0
N ..- t=l

Then system (20) is asymptotically identifiable. Here Q >0 and 6(j) is the

Kronecker delta.

The convergence conditions of the procedure for the estimation of matrix Bare

given In the following theorem:

THEOREM 13. If the control actions u (k) and model errors f (k) satisfy the condi-

tions

N
lim N-1 L: u(k)u'(k) =U(U>O)

N ..- t=l

N 11 11

lim N-1 ~ Ilf(k)112 = 0
N ..- t =1

then the input matrix B is asymptotically identifiable.
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5. PATTERN RECOGNITION

Solution of pattern recognition problems allows us to make effective use of

optimal estimation methods.

Consider m classes of patterns with known sets of prototypes :z; ii E: IRn , j = 1, r t '

for category i. it is necessary to determine from the observations

y(k) = H(k):z; + c(k)f(k) , k = 1,2 ...

the class to which pattern :z; belongs. Here H(k), c (k) are given matrices, and f (k)

satisfies the condition

N
L: f' (k )S(k)f (k) ~ J..I.2(N)

t =1

where S(k) > 0 and J..I.2(N) is known.

reduction of feature space may be carried out and the prototypes transformed to

a ti E: Rf. The original prototypes may be presented in the form

where rank (X) =p and X =(:z; t 'i', :z; tale • ...• :z;tp ip ).

Finally, the following recursive procedure solves our problem:

. .
/(k + 1) = li: At (k + 1) #- ep, iE:/ (k >l, /(0) = !1,2 , ...• m l

a(k +1) =D(k)a(k) +R(k +l)X'M'(k +l)S(k +l)y(k +1), a(O) =0

R(k +1) =D(k)R(k) , R(O) =So-l

where / (k) is an index set of available classes after observation y (i), i = 1, k, and

D(k) ~E -R(k)W(k +l)[G(k +1) + W'(k +l)R(k)W(k +l)]-lW'(k +1)

W'(k +1) ~ c'(k +l)S(k +l)H(k +l)X, S(k) ~ (c(k)S-l(k)c'(k»+

t+1
+ a'(k +1)R-1(k +l)a(k +1) - L: y'(q)S(q)y(q)l

q =1

The problem is solved if at some time N the set /(N) contains a unique index of unknown

class.
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The structure of the algorithm will remain unchanged if for the measurement

errors f (k ) we have

Ift(k)l::l:; IVt , i =l,n; H(k) =c(k) =E

where the IV t are given, and f' (k) = (f 1(k) •...• f n (k». Only the form of domain

at-His changed:

Now consider the case of scalar observations

y(k) = (p' (k)a + f(k) , k =1,2, ...

with a bounded measurement error If (k ) I ::l:; 1 V'k .

Suppose that the i -th class contains only one prototype at. i = 1. m.

THEOREM: 14. If there e:z:ists an N such that the relation

hold.s for all pairs i , j (i ."j). then there e:z:ists a unique ind.e:r; i o such that

N
(ato -a (N»' R -l(N)(atL o. (N» ::l:; A2(N) + a' (N)R -l(N)o.(N) - L: y2(k)

1::=1

i.e .• pattern a is recognized. precisely. Here

Using Theorem 14, a condition for the ordering of the a priori observations is

formulated in the following way:

where

4> ~ lrp: rp(l) • rp(2) ,... I
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APPROXIMATE SOLUTIONS OF DIFFERENTIAL
GAMES USING MIXED STRATEGIES

A.F. Kleimenov, V.S. Patsko and V.N. Ushakov
Institute of Mathematics and Mechanics
Sverdlovsk, USSR

This paper Is concerned with the numerical solution of differential games using

mixed strategies. Mixed strategies are defined [lJ as functions which associate a pro

bability measure with each position of the game. In a discrete control scheme these

strategies could be realized by means of stochastic approximation procedures.

Let a conflict-controlled system be described on the Interval [t • • "] by the equa-

tlon

~~ = f (t • :I: , U , v) , :I: e: R n • u e: P • v e: Q (1)

Here :I: Is the phase vector. u Is the control parameter of the first player. v is the

control parameter of the second one, and P and Q are compact sets In RP and Rq.

respectively. The function f Is continuous with respect to all its variables and

Lipschltzian In :1:. We also assume that the function f satisfies a condition concerning

the extension of solutions.

Let M be a compact set In R n . The aim of the first player is to direct the system

(1) Into set M at time". The aim of the second player Is to prevent this from happen

Ing. The mixed strategies of the first and second players are the functions which aso

ciate probability measures jJ.(t .:1:) on P and lI(t .:1:) on Q with each position (t ,:1:).

It is known [1] that for any Initial position (t 0.:1: 0) there exists either a mixed

strategy for the first player which solves the approach problem, or a mixed strategy

for the second player which solves the evasion problem. Therefore it is Important to

construct the set WO of all initial positions from which the approach problem can be

solved.

According to [1,2]. the set WO Is the maximal stable bridge and can be determined

as the maximal closed set In the space of positions (t ,:I:) which satisfies the conditions:
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1. W~ eM;

2. W~. C 7l'(T. ; T' , W~.) for all T •• T' such that t. ~ T. < T' ~ ".

Here

~ (T' ; T. ,x.) denotes the set of all points y E: R n for which there exists a solu

tion x (t) (t E: [T. , T·]. X (T.) = x.) of the differential inclusion

(2)

Gt(t,x) = 19 EoR n : t'g ~ max min J J t'f(t ,x ,U ,v)J./.(du)v(dv)j
J'.e:IJ'.1 ve:lvl P Q

such that x (T') = y. Here IJ./.I and Iv I are sets of probability measures on P and Q

and 0 is a closed ball of sufficiently large radius.

Using the results of [2] we can establish that WO is the limit of the systems of sets

IWt,: tt E: I'm I. where I'm' m = 1,2,.... is a subdivision of the interval [t,,"] and its

diameter 6(I'm) approaches zero as m -+ 00.

For every subdivision I'm = It l = t. , t z •...• tN(m) = "1. the system IWI(:

tt Eo I'm I is defined by the recursive relations

where

(3)

£N(m) denotes some non~negativenumber and M a is a closed ex-neighborhood of the set

M.

I

I
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These relations can be used as a basis for algorithms designed to compute the set

wOo We shall discuss a numerical procedure for system (1) with f (t ,x , U , tI)

=A(t)x +1p(t,U,tI).

Let the dynamics of the system be described by the quasi-linear differential equa-

tion

:i: = A (t)x + I{I( t , U , tI) , X E: R n , U E: P , tI E: Q (4)

Assume that the terminal set ]I depends on only k coordinates, i.e., M = Ix E: R n :

(x)1;; Eo: M L where (x)1;; is the vector of chosen coordinates. Let M be a closed, convex

and bounded set.

Let Z(~, t) denote the fundamental Cauchy matrix of solutions to (4), and Zl;;(~' t)

be a submatrix consisting of k lines corresponding to the chosen coordintes of the vec

tor x. Making the substitution

y(t) =ZI;;(~.t)x(t)

we obtain the equivalent game of order k [lJ:

(5)

with terminal set M. The sections W? and Wt
O of the maximal stable bridges for games

(4) and (5) are connected by the relation

The convexity of the set M implies the convexity of the sections W? and wt
Consider a subdivision rm of the segment rt. ,~]. Define

and approximate the convex set M by a polytope M·. Replace the compact sets P and

Q by collections of finite points p' and Q'. Let 1-£' and v' be probability measures on

p' and Q', respectively, and Il s ! be the net of unit vectors in RI;;.

It is known that In the case of a quasi-linear system (5) with a convex terminal set

we can take an infinite ball instead of 0 In relations (2), (3). Applying relations (2), (3)

to system (5), we have that the section Wt, which approximates the section Wt~ is the

Intersection of the half-spaces

Here



672

and p(ls ' Wt(1) denotes the value of the support function of the set WtH10n the vector

ls'

The procedure outlined above has been formulated as a computer program for the

k = 2. The graphs of the sections Wt~ calculated for a concrete differential game are

given below.

Let us consider the following system:

(6)

[
Zl] [Cosv-slnv] [U1]

Z = Zz . L(v) = sin v cos v . u = Uz

Equation (6) describes the motion of a point of unit mass on the plane (z l' zz)

under the action of a force h (t). The force h (t) has the same absolute value as the

control vector u (t) but forms an angle v(t) with this vector. We assume that the con

trol vector u (t) at each time t may be selected from a given set P consisting of four

vectors:

u (1) = (1.0) , u (z) = (0,1) , u (3) = (-1,0) , u (4) = (0, -1)

The angle between the force and the control at time t may take any value from the

segment Q = [-(1, (1], where 0 < (1 < TIl 2.

Let the performance index be given by

(7)

The aim of the first piayer (who governs the control u) Is to move the point as

close as possible to the origin at time ".

Set %1 = zl' %z = Zz' %3 = Zl' %4 = zz· Making the subdivisions Vl = %1 +

(" - 0% 3' V Z = %z + (" - 0% 4 leads to the system

(8)

with performance Index

(9)
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In our example the order of the equivalent game (5) is equal to 2 and the dynamics

of the game are described by equation (8). Take a level set of function (9) as the ter

minal set for this game. Note that It is a circle.

This differenllal game has been simulated on a computer, taking (J =71"/6, ,j =4.8.

Figure 1 shows secllons WtOof the set WO at limes t = 0, 1.8, 3.3. Here the radius of the

terminal set is 2.45.

Figure L Sections of the set WO at limes t = 0, t =1.8, t =3.3.

The optimal mixed strategies and corresponding molions were also calculated. We

note again that in our game the first player tries to minimize the performance index

(9), while the second tries to stop him. It is shown that our game satisfies the generai

ized regularity condition [3], which allows us to use the method of program construc

tion [1].

Mixed strategies which lead to solutions have been constructed according to a

scheme using a unified guide. The motion of the unified gUide is such that it !les on the

appropriate stable bridge. The corresponding control may be found from an extremum

condition leading to the position of the guide.

The trajectory generated by optimal mixed strategies on the part of both players

from the initial point z 1(0) = 3.07, z2 = 5.57, Z1(0) = 0.8. z2(0) = 0.2 on the piane

(z l' z 2) is lllustrated in Figure 2. The calculated value of the performance index (7) is
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2.47, I.e., approximately equal to the value of the game at the initial point.

3

.3
~1-__--+- l--__-+-__---1__-4""" ~~

~

Figure 2. A trajectory generated by optimal mixed strategies for both players.

REFERENCES

1. N.N. Krasovski and A.!. Subbotin. Pbsitional Differential Games. Nauka, Mos

cow, 1974 (in Russian).

2. N.N. Krasovski. On the problem of unification of differential games (in Russian).

Dolclady Alcademii Nauk SSSR, 226(1976)1260-1263.

3. N. N. Krasovski. Extremal constructions for a differential game (in Russian).

Doklady Alcademii Naulc SSSR, 235(1977)1260-1262.



ON THE SOLUTION SETS FOR UNCERTAIN
SYSTElIS WITH PHASE CONSTRAINTS

A.B. Kurzhanskll
lnslltute of Mathematics and Mechanics
Sverdlovsk. USSR

This report deals with muillstage inclusions that describe a system with uncer

tainty in the model or in the inputs [1,2]. In parllcular this may be a difference scheme

for a differential inclusion [3]. The solullon to these inclusions is a muillvalued func

tion whose cross-section at a specific instant of time is the "admissible domain" for the

inclusion.

The problem considered here is to specify a subset of solutions that consists of

those "trajectories" which sallsfy an additional phase constraint. These solutions are

said to be "viable" with respect to the phase constraint [3]. The cross section of the

set of all viable solullons is the attainability domain under the state constraint. The

derivation of evolullon equallons for the latter domain is the objective of this paper.

Ihe problem posed here is purely determinisllc. However, the techniques applied

to its solution involve some stochastic schemes. These schemes follow an analogy

between some formulae of convex analysis [4,51 and those for calculating conditional

mean values for specific types of stochastic syst.ems [6,7] which was point.ed out. In

[B,9].

A special applicat.ion of t.he results of t.his paper could be t.he derivallon of solv

Ing relallons for nonlinear fllt.ering under set.-membership const.raint.s on t.he "noise"

and t.he descripllon of t.he analogies bet.ween t.he t.heories of "guarant.eed" and st.ochas

t.ic filtering.

1. DISCRETE-TIME UNCERTAIN ~IYSTEM:S

Consider a multistage process described by an n -dimensional recurrent. inclusion

Z(k+1)EF(k.z(k». k~ko~O (1.1)

where k EIN, Z(k)EIR n • F(k,z(k» is a given muillvalued map from NXIR n int.o

comp IR n (IN is t.he set. of nat.ural numbers, comp IR n is t.he set. of all compact. subset.s

of IR n).
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Suppose the initial state :r; (k 0) = :r; ° of the system is confined to a preassigned set:

(1.2)

Where XO is given in advance. A trajectory solution of system (1.1) that starts from

point:r;o at instant k o will be denoted as :z;(k Iko.xo). The set of all solutions for (1.1)

that start from :r; ° at instant k ° will be denoted as X(k Ik o,x 0) (k E IN , k ~ k 0) with

further notation

Let Q (k) be a multivalued map from IN Into comp IR m and G (k) be a single-valued

map from IN to the set of m Xn-matrices. The pair G(k), Q(k). introduces a state con

straint

G(k)x(k)EQ(k), k~ko+1 (1.3)

on the solutions of system (1.1).

The subset of IR n that consists of all the points of IR n through which at stage

s E[ko,T] = Ik:kosk ,sT!there passes at least one of the trajectories :r;(klko.:Z;o),

that satisfy constraint (1.3) for k E [k 0' T] will be denoted as X(s IT ,ko,:r;o).

The aim of this report is to study the setsX(TiT,ko'xO) = X(T,ko,x°) and their evo

lut.lon in "time" T.

In other words, if a trajectory :z; (k Ik o,:r;o) of equation (1.1) that satisfies the con

straint (1.3) for all k E [k o,s] is named "viable until instant T" ("relative to constraint

(1.3)"), then our objective will be to describe the evolution of the set of all viable tra

jectories of (1.1). Here at each Instant k >k ° the constraint (1.3) may "cut off" a part

of X(k Ik,ko,:z;o) reducing it thus to the set X(k,ko,:r;o).

The sets X(k ,ko,xo) may also be Interpreted as "attainability domains" for system

(1.1) under the slate space constraint (1.3). The objective Is to describe evolution of

these domains.

2. THE ATTAINABIUTY DOllAINS

From the definition of sets X(s IT,ko,:r;o) it follows that the following properties

are true.

LEMMA 2.1. Whatever are the instants t ,s ,k , (t ~ s ~ k ~ 0) and the set

IF E comp IR n, the foLlowing relation is true

X(t ,k ,IF) = X(t ,s ,X(s ,k ,IF». (2.1)
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HereX(t,k,lF) = UIX(t,k,x)lx ElF I.

LEMIIA. 2.2. Whatever are the instants s ,t ,T ,k ,l (t O!: s O!: l; TO!: l O!: k; t O!: T) and the

set IF E comp IR n the following relations are true

X(s It ,k ,IF) =X(s it ,l.x(ll T,k ,IF) . (2.2)

Relation (2.2) shows that sets X(k. T,X) satisfy a semigroup property which allows

to define a generalized dynamic system In the space 21R " of all subsets of IR n.

In general the sets X(s It,k,IF) need not be either convex or connected. However,

It 15 obvious that the following Is true

I.EIf],{A 2.3. Assume that the map F is linear in x:

where P E conv IR n. Then for any set IF E conv IR n each of the sets

X(s It ,k ,IF) EconvIR n (t o!:s O!:k O!:O).

Here conv IR n stands for the set of all convex compact subsets of IR n .

3. THE ONE-STAGE PROBLEM

Consider the system

Z EF(x), Gz EQ, x EX,

where Z ElR n , X EcompIR n , QEconvlR m • F(IC) 15 a multlvalued map from IR n Into

conv IR n, G Is a single-valued map from IR n Into IR m.

It is obvious that the sets F(X) =IuF(x) Ix EX 1need not be convex.

Let Z, Z· respectively denote the sets of al solutions for the following systems:

(a) z EF(X), Gz EQ,

(b) z· E coF(X) , Gz' E Q,

where coF stands for the closed convex hull of F(X).

The following statement is true

LEJIMA 3.1. The sets Z. coZ. Z· satisfy the following inclusions

Z CcoZ cz' (8.1)

Let p(lIZ) =sup ll'z iz EZ l denote the support function [4] of set Z. Also denote

~(l,p,q) =(l-G'p,q)+p(-piQ)+(p,y)

Then the function <IJ(l.p ,q) may be used to describe the sets coZ.Z·.
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The following relations are true

p(llz) = p(llcoZ) = sup Inf 4>(l.p, q) q EF(X), P E IR m
q 11

p(llzO) = Inf sup 4>(l ,p ,q) q EF(X). p E IR m
11 q

(3.2)

(3.3)

It is not difficult to give an example of a nonlinear map F(x) for which Z Is non

convex and the functions p(llcoZ), p(llzj do not coincide, so that the Inclusions

Z ccoZ, coZ CZo are strict. For a linear-convex map F(x) = Ax +P (P EconvlR 11)

their Is no distinction between Z, coZ, and Z 0:

LEMlIA 3.3 Suppose F(x) = Ax + P where P Econv IR 11. A is a linear map from

IR 11 in to IR 11. Then Z = co Z = Zo.

4. THE ONE-STAGE PROBLEJI- AN ALTERNATIVE APPROACH

The description of Z, coZ, ZO may be given In an alternative form which, however,

allows to present these sets as the intersections of some varieties of multlvalued maps.

Indeed, whatever are the vectors l ,p (l ;Il!() It is possible to present p = Ml where

M belongs to the space 1M m)(11 of real matrices of dimension m x n. Then, obviously,

p(llz) = sup inf 4>(l ,Ml,q) = p(llcoZ) q EF(X), M EIM m )(11,
q M

(4.1)

or

p(LizO) = Inf sup 4>(l,Ml,q)
II Q

q EF(X), ME IM m )(11

whece

p(lizO) = inC! <P(l,Ml)iM ElM m )(1ll,

4>(l,Ml) = 14>(l.ML,q)i q EcoF(x)I =

= p«E -G'M)l, coF(X» + p( -ML iQ) + (Ml,Y).

(42)

From (4.1) it follows that

Zc u nR(M,q)c(\ u R(M,q),
q EF(X) II M q EF(X)

where

R(M ,q) = (E
11

-MG)q + -MQ.

(4.3)
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SimILarly (4.2) yields

Z·cn u I (En -MG)q -MQ l.
M q EcoF(X)

Moreover a stronger assertIon holds.

(4.4)

THEOREM 4.1.

where M ElM m )( n .

The following relations are tru.e

Z = u nR(M,q)
q Ef'(X) M

Z· = n R(M ,coF(X»
M

(4.5)

(4.6)

ObvIously for F(x) =AX +P,(X,P EcolR n) we have F(X) =coF(X) and

Z = Z· = coZ.

This first scheme of relatIons may serve to be a basIs for conslructing recurrenl

fILterIng procedures. Another recurrent procedure could be devised from the foLLow

Ing second scheme. Consider the system

Z EF(x)

Gx EQ.

(4.7)

(4.8)

for which we are to determine the sel Z of all vectors z consistent wilh inclusions

(4.7), (4.8). Namely, we are to determine lhe restriction FQ(x) of F(x) lo sel Q. Here

we have

where Y = 1x:Gx fo.-Q l.

LElDIA4.1 Assu.me F(x) E comp IR n for any x and Q E comp IR m. Then

FQ(x) = n (F(x) -LGx +LQ)
L

over all n x m matrices L. (L ElM n )(m ).

Suppose x EY = IX:Gx EQ l. 101m EIR m. Then lo 1m E Q -Gx and for any (m Xn)

matrix L we have IO!nEL(Q-GX). However, If x"EY. then IOml"E(Q-Gx). sInce

nL(Q-Gx)cLm(-Gx +Q). Here
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Is an (n x m )-malrlx and f0 Im,n Is a malrlx of dimension (n -m) x m. Then Il follows

lhal for z E Y

F(z) =F(z) + (\L(Q -Gz) I: (\(F(z) +L(Q -Gz» I:F(z)
L L

On lhe olher hand, suppose z '€Y. Lel us demonslrale lhal In lhls case

n IF(z) +L(Q -Gz) I = ¢.
L

Denole A =F(z), B = Q -Gz. For any X >0 we lhen have

n (A +LB) I: (A + XLmB) n (A -XLmB)
L

Since f0 1mEB we have f0 In ELmB. Therefore lhere exlsls a veclor l EIR n, l ~O

and a number., >0 such lhal

Denole

L = Iz: (l,z) O!: ., I.

Sel A being bounded lhere exlsls a X >0 such lhal

(A +XL)n(A -XL) = ¢.

Hence

n (A +LB) = ¢
L

and lhe Lemma Is proved.

5. STATISTICAL UNCERTAINTY. THE ELEMENTARY PROBLEM

Consider lhe syslem

where

z =q + t, Gz =v + 7) •

q EF(:z;), v EQ,:z; EX

(5.1)
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and t,7) are Independent gaussian random vectors with zero means (E t =0 ,E7) =0) and

with variances E (t' =R, E7)7)' =N, where R > 0, N >0 (R ElM n' N ElM m)'

Assuming at flrst that the pair h = I q, v I Is fixed, let us find the conditional mean

E(z Iy =0, h =h 0) under the condilion that after one realization of the values (,7) the

relallons

Z = q + t, y = -Gz + v + 7) = 0

are satlsfled. After a standard calculallon we have

Zy,h = E(z Iy =0, h =h 0) = q +PG'N-1(-Gq -Gv) +v ,

After applying a well-known matrix transformallon [6]

P = R -RG'Q-1GR, Q = N +GRG',

we have

E(z 111 =0, h =h 0) = (E -RG'Q-1G)q -RG'Q-lv .

The matrix of condilional variances Is

(5.1)

It does not depend upon h and Is determined only by q, v and the element A =RG'K-1G.

Therefore It makes sense to consider the sets

W(A,q) =u I Zy,h Iv E Q I

W(A) =u I Zy,h Iq EF(X), v E Q I

and

Wo(A) =ulZy,h 1q EcoF(X), v EQ I

of condillonal mean values. Each of the elements of these sets has one and the same

variance P y • The sets Wo(A) and W(A,q) are obviously convex while W(A) may not be

convex.

LElOL\5.1 The following inclusions are true (Z CZo)

Z cW(A), ZOcWo(A), W(A) cWo(A). (5.2)

It can be sen that W(A,q) has exactly the same structure as R(M,q) of (4.3) (with

only A substituted by M). Hence for the same reason as before we have
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Zc u n W(A,q) = n W(A)
q E'(X) D ED D ED

zoe. u n W(i\,q) = n Wo(A)
q Eco'(X) D ED D ED

(5.3)

(5.4)

where the intersections are taken over the class D of all possible pairs D =I R,N I of

nonnegative matrices R ,N of respective dimensions. However, a property similar to

that of Lemma 4.1 happens to be true. Namely if by D(a.(J) we denote the class of pairs

IR ,N ! where R = aEn , N = (JEm , a >0, (J > 0, then the element X will depend only upon

two parameters a,(J.

THEOREM 5.1 Suppose matrix G is Of fuLL rank m. Then the foLLowing equalities

are true

z =n! W(A) ID E D(l, (J), (J >0 ! c coZ

c nIWo(A)IDED(l,(J),(J>O! =Zo.

(5.5)

Here it. suffices to take the lntersections only over a one-parametric variety

D E. D(l, (J).

There are some specific differences between this scheme and the one of §4. These

could be traced more explicitly when we pass to the calculation of support functions

pel iZ), p(lIZO) for 7.,Zo.

LEMMA ~.2 The ./bLLowing inequality is true

p(llzj =foo(l)sf(l) =inflfll(l,Fl)ID ED(l.(J),(J>O!

where f "(l) is the seconei conjugate to f (l) in the sense of Fenchel [4].

(5.6)

Moreover If we substitute D(l,(J) in (5.6) for a broader class D then an exact

equality will be attained, I.e.

p(llzj =foo(l) =inflfll(l,Fl)IDED!

More preciselY, we come to

(5.7)

THEOREM 5.2 Suppose matri:r: G is of full rank m. Then equality (5.7) will be

true together with the ./bLLowing relation

p(L!Z) = pel icoZ) =sup inf I fIl(l .Fl,q) lei ED Iq EF(X) !

Problems (5.7), (5.8) are "stochastically dual" to (3.3, (3.2).

(5.8)

The results of the above may now be applied to our basic problem for multlstage

systems.
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6. SOLUTION TO THE BASIC PROBLEJI

Returning to system (1.1)-(1.3) we will seek for the sequence of sets

X[s] = X(s ,ko,XO) together with two other sequences of sets. These are

the solution set of the system

XU1 EcoF(k'x'[k j), X'[koJ == xO

G(k+1)XU1 EQ(k+l), k ~ko

and X .[s] == X .(s ,ko,x°) which is obtained due to the following relations:

X.Ls] == coZLs]

where ZLT J is the solution set for the system

Z(k +1) EF(k ,coZ[k n, Z[ko] == XO,

G (k +l)Z(k +1) E Q(k +1), k;J:: k o .

The sets X.[ T], X'LT J are obviously convex. They satisfy the inclusions

X[T] eX.[ T] eX'[Tl

where each of the sets XL TJ, X.[ TJ. x'[ T] lies within

Y( T) == 1% : G (T)% E Q (T) L T ;J:: k 0 + 1 ,

(6.1)

(6.2)

The set X'lT] may therefore be obtained for example by either solving a sequence

of problems (6.1), (6.2) (for every k E [ko,s -lJ with X'LkoJ == XO) (the first scheme of

§4) or by finding all the solutions xLk] ==x(k,ko'%o) of the equation

(6.3)

that could be prolongated until the instant T + 1 and finding the relation of this set to

X[T], X.[T], andX·[T].

Following the first scheme of §4 we may therefore consider the recurrent system

z(k+l) == (In -M(k+l)G(k+l»FO(k,S(k»+M(k+l)Q(k+l) (6.4)

S(k)==lnZ(k)iM(k)1. k>ko,S(ko)==XO, (6.5)

where M (k +1) E IR m lCn •



684

From Theorem 4.1 we may now deduce the result

THEOREM: 6.1 The solving relations for Xes ], X .[s], X·[s] are as follows

Xes] ==S(s) for ~(k,S(k)) ==F(k,S(k))

X·[s] == S(s) for ~(k ,S(k)) == coF(k ,S(k))

X .[s] == coS(s) for FO(k .S(k) == F(k ,coS(k)) .

(6.6)

(6.7)

(6.8)

It Is obvious that X[T] Is the exact solution while X.[T], X·[T] are convex

maJorants for X[T]. Clearly by Interchanging and combining relations (6.7). (6.8) from

stage to stage It Is possible to construct a variety of other convex maJorants for X[ T].

However for the linear case they all coincide with X[ T].

LElDlA 6.1. Assume ~(k.S(k)) ==A(k)S(k) +P(k) with P(k). xO being closed. and.

compact. Then X[k] =X·[k] == X .[k] for any k ~ ko.

Consider the system

Z(k +1) == (In -M(k +1)G(k +l))Fo(k ,Z(k)) -M (k +1)Q(k +1),Z(k o) =XO, (6.9)

denoting Its solution as

Z(k;Mt (')) for FO(k,Z) =F(k,Z)

Z.(k,Mt (.)) for ~(k,Z) ==F(k.coZ)

Z·(k.Mt (·)) for FO(k,Z) == coF(k,Z)

Then the previous suggestions yield the following conclusion

THEOREM: 6.2 Whatever is the sequence Ms ('), the following solving inclusions

are true

Xes] CZ(s,Ms('))

X .[s] C Z .(s ,Ms (.))

Hence we also have

Xes] == n IZ(s ,Ms (.))IMs (.))!

X.[s] =n IZ.(s.Ms(·))IMs (·)) I

x·[s]= n!z·(s,Ms(.))IMs (·))!

(6.W)

(6.11)

(6.12)

(6.13)
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over all Ms (s ).

However a question arises which Is whether (6.11)-(6.13) could turn Into exact

equalities.

LElDlA 6.2 Assume the system (1.1), to be linea.r: F(k ,%) ::: A (k)% +P(k) with sets

P(k), Q(k) convex a.nd compa.ct. Then the inclusions (6.11)-(6.13) turn into the

equa.lity

X[s] ::: X·[s] ::: n IZs (. ,Ms (0» I ::: n I Zs·(o,Ms (.» I (6.14)

Hence In this case the Intersections over M (k) could be taken either In each stage

as In Theorem 6.1 (see (6.6), (6.7» or at the final stage as In (6.14).

Let us now follow the second scheme of §4, considering the equation

(6.15)

and denoting the set of Its solutions that starts at %0% (k 0) EXO as XO(k ,ko,%O) with

According to Lemma 4.1 we substitute (6.15) by the equation

%(k +1) E n(F"(k ,% (k» -LG(k)% (k) +LY(k» % (k o) ExO ,
L

and the calculation of XO[k] should thence follow the procedure

X[k+1]::: u n (F(k,%)-LG(k)% +LQ(k», X(ko):::xO.
:r: dl(k.) L

(6.16)

Denote the whole solution "tube" for k °S k S s as xt0 [0]. Then the following asser

tion will be true.

THEOREM 6.3 Assume Xto[k] to be the cross-section of the tube x:0 [.] a.t insta.nt k.

Then

X[s] =xtot-1[s] If F(k,%) :::F(k,%)

X·::: xt
o
t-1 [s] If F(k,%) =coF(k ,x)

-s -s +1 -s
HereXk.o[s] :1Xk.o [s] and the setXk.o[s] may not lie totally within Yes).

The solution of equation (6.16) Is equivalent to finding all the solutions for the

Inclusion

%(k+1) En(F(k,%)-LG(k)% +LQ(k» %(kO)EXO
L

(6.17)
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Equation (6.17) may be substituted by a system of "simpler" Inclusions

x(k +1) EF(k ,x) -L (k)G(k)x +L (k )Q(k) x(k o) EXO

for each of which the solution set for k 0:10 k :S; s wiLL be denoted as

THEOREM 6.4, The set Xto[o,L (0)] of viable solutions to the inclusion

is the restriction of set

(6.18)

defined for stages [k 0' •..• s +1] to the stages [k 0"" ,s]. The intersection is taken

here over all constant matrices L.

However a question arises, whether this scheme aLLows also to calculate x:ols ].

Obviously

(6.19)

over aLL sequences L [0] = fL (k 0)' L (k o+1), ... ,L (s +1) I.

THEOREM 6.5 Assume F(k,x) to be linear-convex: F(k,x) =A(k)z +P(k). with

P(k), Q(k) convex and compact. Then (6.1.9) turns to be an equality.

7. SOLUTION TO THE BASIC PROBLEM. "STOCHASTIC" APPROXlM:ATIONS

The calculation of X[s]. X .[s]. XO[s] may be also performed on the basis of the

results of §5. Namely system (6.6), (6.7) should now be substituted by the foLLowing

Z(k +1) =(In -F(k +1)G(k +l»Fo(k ,H(k» -F(k +l)Q(k +1)

H(k +1) = I nZ(k +1) iD(k +1) E D(l, 1/) I

F(k +1) =R(k)G'(k +1)K-\k +1), F(k o) =xO

K(k +1) =N(k +1) +G(k +1)R(k)G'(k +1)

D(k +1) =!R(k ).N(k +1) I

(7.1)

(7.2)

(7.3)
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THEOREM 7.1 Assume that in theorem 6.1 S(k) is substitutea by H(k) ana M(k)

by F(k). Then the result oj this theorem remains true.

If set Q (k) of (1.3) is of specific type

Q(k) = y(k) -Q(k)

where y (k) and Q(k) are given, then (1.3) is transformed into

y(k) EG(k)x(k) +Q(k) (7.4)

which could be treated as an equation of observations for the uncertain system (7.1).

Sets X[s], X .[s], X·[s] therefore give us the guaranteed estimates of the unknown state

of system (1.1) on the basis of an observation of vector y(k), k E[ko,s] due to equa

tion (7.4). The result of Theorem 7.1 then means that the solution of this problem may

be obtained via equations (7.1)-(7.3), according to formulae (6.8)-(6.10) with M(k),

S(k) substituted respectively by F(k), H(k). The deterministic problem of nonlinear

"guaranteed" filtering is hence approximated by relations obtained through a "sto

chastic filtedng" approximation scheme.
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EXISTENCE OF A VALUE FOR A GENERAL ZERO-SUM MIXT GAME

J.P. LEPELTIER - UNIVERSITE DU MAINE - FACULTE DES
SCIENCES - LE MANS - FRANCE

We suppose the evolution of the system described by a stochastic

differential equation

(*) dXt = f (t, x, u) dt + a (t, x) dB t ,x(o) = X
o

where B is a m-dimensional brownian motion defined on a probability space

(n, a,~).

A first player J
l

chooses a stopping time S, while a second player

chooses a continuous strategy u. There is an associated cost which acts

until S, constituated of a continuous cost, and a terminal cost. J
l

(resp.

J
2

) looks for maximize (resp. minimize) this cost J (S, u). Under smooth

assumptions we prove that this game is closed (or has a value) i. e. :

inf
u

sup
S

J (S, u) sup inf J (S, u).
S u

We take a model "in law", more precisely

If x denotes a member of ~ ,x
t

~t for the a-field generated

Ix : R ~ Rm continuous}.
+

x at t. Finally writedenotes the value of

by (x, x G ~, s ~ t).
s
The brownian motion (B

t
) is separable and defined on a probability

1.THE GAME MODEL

Let 'e =

space (n,Jt, I:' )
Under Lipschitz and regularity conditions on a the equation

dX t = a (t, x) dB t , x (0) = Xo
has a unique solution xt and it induces a probability Po on ( ~ , ~ro) by

the formula :

P (A) = ~ Iw : x (w) G A)
0

Now if f R x'exV ~ Rm is measurable, such that for all
+

u, f( . , . , u) is ~t - adapted and such that If (t, x, u) I .:: K (1 + Ilx II t)'

if we define

~ = lu : R x lf~ll compact metric space, predictable}, by the
+

Cameron-Martin (or Girsanov) formula we can define fo~ all u in tt,
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P on ( t: ,F) by
U =a)

\oJ i Lh :

dP
u

dPlFo =t
exp (~t (u)) lJt

a-I dx
s s

t

~ Lf (S, u ).a- l
f (s, u ) ds

s s s

the process coordinate on e.g is solution of the(a = a a*), and under P
u

differential stochastic equation (*).

Finally let~= {T, ~t - stopping times}. The payoff corresponding

to the strategy T (for J
l

) and u (for J
2

) is :

with c positive bounded and Y ~t - adapted, right continuous bounded.

Define for any ~t s topping time T, u in 'll

x (u, T)

,5

P-ess inf P-ess sup E (('oe-
as

c (s, vs)ds + Y5/~T)
v G;;o(u, T) 5 ~ TV)

( ;V (u , T) u on [0, T [ )

we notice that

)' -Q'
S

X(u, T) c(s, u ) ds + P-ess inf P-ess E (Le-
as

c(s, )ds += e sup v
s

v G U 5 ~ T
v s

0 YS/~T)

T

) -as (8, ) -(T)~. ~ c u ds + W
S

0

The family (W (T), T Gr:) is called upper-value of the game

We wish first aggregate W(T), i. e. prove that there exists an

optional process W such thatW (T) =W
T

a. e. lJ T.

2. AGGREGATION OF W

For this we need the fundamental result of Dellacheric-Lenglart.

From their terminology we call r -system any family (X (T), T G ~) of

random functions such that

i) X (T) X (T') a. e. or (T = T') for any T, T'

ii) X (T) is ~T-measurable for any T
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Theorem 1 [1]. Any ~-system X upper right semi-continuous i.e.

X (T) ?;-lim sgP X (Tn) a. e. if Tn':>! T

can be aggregated by an upper right semi-continuous process.

We prove easily that W(T) is upper right semi-continuous, using the

facts that an infimum of upper-right semi-continuous functions is upper

right semi-continuous, and that the P-ess inf is always attained by a coun

table infimum.

Then with the help of

Lemma 2. For all u G Zt for all stopping times T
l

, T
2

, Tl~ T
2

we have

E
u

-u
(XT /~T ) = P-~s inf P-ess sup Ev

2 1 v GOU(u, T
2

) S ~ T
2

c (s, vs ) ds + YS/~T)
1

where

XU =~~e-as c (s, us) ds + W
result based on the properties of increasing or decreasing filtration

which allow to inverse ess inf or ess sup with conditional expectation, we

can prove by a technical proof the :

Theorem 3. XU is lower right semi-continuous in expectation i. e. if T ~T
n

E
u

(X~) < lAm inf E
u

(X~ l, then lower right semi-continuous.
n

Proof of the lemma.

We notice easily that for all v in~(u, T
2

), the family

(E
v

((Se-
as

c (s, v
s

) ds + YS/~T ), S ~ T
2

) is a supremum lattice. There-
)0 2

fore we have for all v in ~ (u, T
2

)

(1) E
u

(P-ess sup E
v

S ~ T
2

P-ess sup E (E ()Se-as
u v

S ~ T
2

0

S

P-ess sup E (( oe-as c (s,
S )- T

2
V)

c (s, v ) ds + YS/~T )/~T )s
2 1

c (s, v ) ds + YS/~T )/~T )s
2 1

v ) ds + YS/~T ) ,
s

1

since p
U

and p
V

are the same on ~T .

On the other hand, the rami ly2

(P-ess sup E
v

S '" T2

,S -as
( ) e c (s •v s ) ds +

o

is also and infimum lattice. From this fact we can write



(2) E
u
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S

P-ess inf E (P-ess sup E (~oe-US c (s, v
s

) ds
91('" VV G~ u,T

2
) S ? T2

Now using (1) and (2) the proof of the lemma is established.

Proof of the theorem

From the lemma when T
l

0, T
2

= T we get

E (Xu) = inf sup E
u T V G '0 (u, T) S;>T v

E
v

S

(11 (S<T ) de-as c (s. vs) ds + y S)
n )0

S

+ ~ (S~T )(( e-
as

c (s, Vs ) ds + Ys))
n 10

(3) ~ inf sup E
v G~(u, T ) S3T v

n
(when (Tn) is decreasing to

Let v be in g(j (u, T ), then

(~:e-as c (s, v
s

) ds +nys ) E
v

T) , since ~ (u, T ) C~(u, T).
n

and since v and u are the same until T
n

+ E
v

c (s, v
s

) ds + Y
SvT

)
n

Then

sup
S)T

E
v

\

s -as
( e c

o

(s, v
s

) ds + Ys ) ~ sup E
S)T u

)

Tn
-as

- e
o

(3)

(e
v

Y)+ sup Ev S + S
S~T

n
Taking the infimum on v of;Q(u, T ), and using at left the inequality

n

and at right the lemma 2, we finally obtain :
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Y )) E (Xu)- T + U T
n n

For any ( > 0, we can choose Sn ? T such that

u ) ds
s

u )
s ~

Tn -as
ds + YS T - e c

n" n
o

+ ( +

Since Tn~ T, SnA Tn + T, with Lebes~e's theorem we get

E (X
T
u ) ~ lim inf E (Xu) + (

'--I nuT
n

V £ > 0 and the result.

Finally with the theorem 1, and with the fact that any optional

process lower right semi-continuous in exp~ctation is lower right semi

continuous ([2] for example) we get the main result of this part, i.e.

there exists a right continuous process ~ such that

~T W(T) a. e. for all stopping time T

This process is now used to construct stopping times which realize

the (-value.

<), EXISTENCE OF THE VALUE

Fcr all ( > 0, all stopping time T. let

We have the

Proposition 4

We have for all u of zt, for all stopping time T

-u £
(i. e. X

T
is like a supermartingale (w. r. to P

u
) between T and D

T
)

Proof

For all stopping timeU-$ D~. v G.2(u. U ), if ZV is the p
V
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Snell's envelope of Ce-
as

c (s, v
s

) ds + Y, we have

~ . v v
Xu = P-ess lnf Zu ~ P-es5. ..inf Z

vG~(u, u) vG~(Il,n;) U

since ~(u, u) C~(u, D;). Then:

Let T ~ t < £
by the definition of D£ we haveD

T
,

T

-u C-as (s, ) ds + Y
t

+ ~t -as (s. ) ds + Y
t

+ £ V v G~(U.D;)X
t

> e c u £ = 0 e c v
s s

0

Finally we get

Now if we define

we get finally

Then using results on optimal stopping, for example N. El Karoui [2]

we obtain for all v G£:1(u, D;) (since Z~ D£,if has the Pv-martingale
£ v " Tproperty between T and D
T

' )

and then using Lemma 2 :

P-ess inf Z~

vG~(u, D;)

P-ess inf

vG ~(u, D£)
T

P-ess :uP Ev(~:e-asc (s, v s ) ds + YS/~T)
S~DT

(4) E
u
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From this inequality we have easily the main result in

Theorem 8 The mixt game has a value
r-

Proof S"nce Wand Y arc right continuous we have

With (~ and (5) we have easily

..::: E ((D;e -as
u )0

Then for T 0,
0 DOD =T -

T
X inf sup E (Ce -as c (s, u ) ds + Y

T
)

0
T

u s
u

Then

lJuG'lL

X
o
~ inf E

uG 1L u ~
DO -as

( e c
o

(s, u ) ds + Y 0) + £
S D

and finally

Since the converse inequality is always true we have the final result.

REMARKS

1. This kind of technic has been already used by M.A. MAINGUENEAU

and myself [3] to study the Dynkin game without the "Mokobodski's as

sumption (aggregation and supermartingale behaviour of the upper value

of the game).

2. We can conjecture that in the markovian case, the conditional

value Wis markovian, and finally the O€markovian.
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POSITIONAL MODELING OF STOCHASTIC CONTROL
IN DYNAMICAL SYSTEMS

Yu.S. Osipov and A.V. KrJazhimskii
Institute of Mathematic and Mechanics
Sverdlovsk, USSR

1. INTRODUCTION

This paper deals with the construction of physically realizable regularizing

operators for one class of inverse dynamIcal problems. These are problems of the fol

lowIng type: given a measurement of the trajectory of a control system, find the unk

nown control function acting in the system. The conditions under which such problems

can be solved, and some solution algorithms, have been found for various classes of

control systems (see, for instance, [1-4]). These problems are connected with non

paramelric estimation problems [5], and also arise in control theory [4,6].

In many cases the solution operators for inverse problems prove to be physically

realizable. This means that the value (at an arbitrary time instant) of the control

function calculated by the operator does not depend on future measurements. This

property is important from the practical point of view, because it is then possible to

organize the calculation of the control function in real time. In this paper we shall

consider only physically realizable operators.

Inverse dynamical problems turn out to be ill-posed (a small distance between the

trajectories does not imply a small distance between the corresponding controls).

Hence if the measurements are not precise a regularizing operator is needed [7,8].

Thus we have the problem of constructing a physically realizable regularizing

operator for an inverse dynamical problem. Such operators have been constructed

for several classes of finite-dimensional control systems with deterministic controls

(using the approach of [9,10]) in [11]. In the present paper we shall discuss the case

of stochastic controls. The suggested method is based on some principles of control

from the theory of positional differential games [12,13].
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2. STATEMENT OF THE PROBLEM

Let us consider the controL system governed by the differentiaL equation

x=f(t,x,u)

Here x is an n-dLmensLonaL state vector. the time varies within a given IntervaL

T =[to, 17], and the k-dlmensionaL controL vector U takes vaLues within a given com

pact set Q. The functLon f is continuous and satisfies the LocaL Lipschitz condition with

respect to the second variabLe, I.e.,

Function f aLso satisfies the growth condition

If (t ,x ,u) \ ~ K 0 . (1 + Ix I) , K 0 =const

Here and eL~ewhere the norm of a finite-dimensionaL vector is taken to be Euclidean.

Let a probability space (0, A, P) be fixed; hereafter aLL random variabLes are

defined on this probability space, and aLL random processes are defined on the time

intervaL T. An n -dimensionaL random variabLe x 0 such that E I x 012 < 00 is assumed to

be fixed; x 0 corresponds to the distribution of the state of the system at the initiaL

time instant to. Let aLso a famILy (At). t e: T, of u-subalgebras of the u-algebra A such

that At I C Ac 2 for t 1 ~ t 2 be fixed; x 0 is assumed to be At o-measurable.

We shall define a control as an arbitrary measurable random process U = U (t)

with values In Q compatLble with the family (~) (u(t) Is At-measurable for each

t e: T). A motion generated by the control u Ls defined as an n-dimensional measur

able random process x =x (t) such that with probability 1 for all t e: T

x(t) =xo + J f(T,x(T),u(T»A(dT)
(t () t]

The Integral should be interpreted in the usual sense (see [14, pp. 241,242]), i.e .• all

realizations of the process are Integrated. Here and elswhere A is the Lebesque meas

ure on T. The above assumptions concerning function f allow us to show easily that for

each control u a motion x exists and is unique (in the sense that the realizations of two

motions coincide with probability 1).

Let x. be a fixed motion. Denote by U. the set of all controls generating x •. The

problem considered below Is to find a physically realizable operator which gives a

good approximation of one of the controls from U. using perturbed (not precise) meas

urements of the motion x •. However, U. may be very large. Using an approach from
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lhe lheory of ill-posed problems, we will inlroduce a selecllon principle by which only

lhose conlrols from U. which minimize a cerlain funclional will be approximaled.

Lel us be more formal. Inlroduce lhe space L Z = L z(T x n. A x P ,RI:) which is

assumed lo be separable, and a funclional J on L Z of lhe form

J(u) = E r -y(t, u(t))),(dt)
'r

where -y(t , u): T x HI: -. R i is conlinuous, convex in lhe second variable and salisfies

lhe condilion

-y(t, u) ~ K i (l + Ilul~), K i = consl

Let

J. = inf !J(u): u E: u.l

U.. = lu E U.: J(u) = J.!

Inlroduce a class a of n-dimensional random processes t =Ht) compalible wilh lhe

family (At); we shall call1he elemenls of a measurements. We say lhal a measuremenl

~ is h -precise (h > 0) if for each t E: T we have

An operalor D mapping lhe sel of all measuremenls Inlo lhe sel of all conlrols Is said

lo be physically realizable If for each t i ' t z E: a, t E: T, such lhal t i (T) = tZ(T) for

all T E. [t 0' t], we have Dt i (T) = D tZ(T) for A-almosl all T E: [t 0' t]. In lerms of lhe

general lheory of slochasllc syslems (see [15D, D delermlnes a conlrol syslem (In

which lhe measuremenls play lhe role of conlrols).

A family (Dh ), h > 0, of physically realizable operalors is said lo be regulariz

ing if for each family (th)' h > 0, of measuremenls, where th is h-precise, we have

If in addllion U.. ¢ ¢ and

lhen (Dh ) is said lo be strongly regularizing. The problem is lo find a regularizing

(or slrongly regularizing) family of physically realizable operalors.
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3. SOLUTION APPROACH

Under certain conditions a solution of the problem can be obtained by modeling a

parallel motion as In the theory of positional differential games.

Introduce an auxiliary control system

z = g (t ,z , ~ , v )

which we shall call the model; here z E: R n , g is continuous, ~ ERn, V E Q. A stra

tegy (for the model) is defined as an arbitrary continuous function S = S(t ,z , ~):

T x R n x R n -> Q. An approximating strategy is defined as a pair D = (S, G), where

S is a strategy, and G = ITo •... , T m L to = TO' ... ,

is a uniform partition of the interval T. For each measurement ~ we define the motion

z =z (t) of the model generated by the approximating strategy D =(S, G) using Euler

splines:

The control v (t) = vi' T 1 < t :5:; T 1 +1' is called the realization of the approximating

strategy D by the measurement~. We will consider each approximating strategy D as

the operator which associates with every measurement ~ the corresponding realization

of D. It is clear that D is physically realizable.

In this section we shall assume the following conditions:

(Ai)f(t,X,u.) =f 1(t,x) +fz(t,x)u.

and Q is convex.

It follows from the theory of optimization in Hilbert spaces that condition (Ai)

implies that U .. is non-empty and, If J is strictly uniformly convex, contains a single

element (class of A-equivalent elements).

Introduce the model

it: =f(t,~,v)

The solution of the problem (under condlton (Ai)) may be constructed using the follow

ing theorem:
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THEOREM 1. Let the approximating strategy D h = (Sh • G h ) be given by the condi

tions:

(a) Sh (t , Z , t) is a minimum of the function

(b) G = ITo,h •... , Tm,h l , l!,.h =Tt +l,h - Tt,h S ch

(c) a(h) , hla(h) -+0 +(h -0)

Then

(1) family (Dh ) is regularizing;

(2) if J is strictly uniformly convex, then (Dh ) is strongly regularizing.

The proof of lhe lheorem has lwo main sleps. Flrsl il Is shown lhal. for lhe

motions zh of lhe model generaled by D h and thO lhe funclional

+a(h) J (7(T.Dh t h (T» -7(T,U,(T)))A(dT)
[t () t]

where u, ls an arbllrary elemenl of U .. , salisfies lhe condllion

!l.h (t) s e(h) • e(h)1 a(h) - 0 as h -+ 0

Here we have Krasovskll's Idea of exlemal conslruction from lhe lheory of posillonal

differential games. The second slep is lo prove lhe lheorem using lhe above condllion.

This may be done wilh lhe aid of some modifications of Tikhonov's melhod from lhe

lheory of Ill-posed problems [7].

4. NONLINEAR CONTROL SYSTEMS

Now consider a syslem which Is nonlinear In conlroL. I.e .• for which condition (Ai)

is nol salisfied. Lel J = O. Assume lhal Ix 0 I s B (B = consl) wilh probabiLily 1. We

shall firsl give a brlef descrlpllon of lhe problem. Consider lhe auxLLiary conlrol sys

lem

y = c.l • I c.l I s W • Y E R n

where W ls a conslanl such lhal If(t, x • u) I s W for all t E T, u E Q. x EN; N is a

compacl sel conlaining lhe values of all delerminislic molions (on T) of lhe syslem wllh

inilial slales (al lime to) In the B-nelghborhood of zero. Then x, is lhe molion of lhe

auxiliary syslem generaled by lhe conlrol c.l, (t) = f (t ,x. (t) , u, (t », where u. E U, .

This conlrol can be found approximalely by means of lhe slrongly regularizing famLLy

(Dh ) using Theorem 1 wilh 7(t, c.l) = i c.l!2. Then for small hand h-precise t lhe
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cont.rol Dhl; Is close t.o c.J. In L 2. We shall define t.he value vh,€ of t.he operat.or Fh for

t.he measurement. l; by t.he following condlt.ion. For each t E T, c.J E 0, Vh,€(t, CJ) is a

minimum of t.he funct.ion

where zh.€ Is t.he mot.lon of t.he model for t.he auxiliary syst.em generat.ed by t.he

approximat.lng st.rat.egy Dh and t.he measurement. 1;.

THEOREM 2. Let

(a) 0 be a compact metric space;

(b) A be the expansion of the Borel a-algebra of 0;

(c) the measure P be non-atomic.

Then the family (Fh ) is strongly regularizing.

The proof of t.he t.heorem is based on t.he propert.ies of a generalized cont.rol [20].

5. ADDITIONAL CONDITIONS {o'OR APPROXIMATING CONTROLS

Let. us consider some special addit.ional condit.lons for approximat.lng cont.rols.

Suppose t.hat. x. Is a Markov process (we consider Markov processes in t.he narrow

sense. Not.e t.hat. each feedback (Markov cont.rol) u (t ,x): T x R n -+ Q which is con

t.inuous In t.he second variable generat.es t.he Markov mot.lon

x(t) =xo + J f(T,x(T),u(T,x(T»)X(dT)
[t () t]

(t E T)(mod P)

Suppose t.hat. each measurement. I; has t.he form I; =x. + (, where (, «to) =0,

belongs t.o a given class r of n -dimensional Markov processes which are independent.

on x •. Then t.he combined mot.lon measurement. process rp. = (x. ,1;), I; E e, is a Markov

process. For a given measurement. l; we consider t.he class of all cont.rols v such t.hat.

t.he combined motion measurement. proces rp = (x ,1;). where x is t.he mot.ion generat.ed

by v, is a Markov process. Each cont.rol v wlt.h t.hls propert.y is said t.o be compatible

wit.h t.he measurement. 1;. Let. M denot.e t.he class of all physically realizable operat.ors

D such t.hat. for each measurement. I; t.he cont.rol DI; Is compat.ible wit.h 1;. Condlser t.he

problem of const.ruct.lng a regularizing (st.rongly regularizing) family wlt.hin t.he class

M.

Under various assumpt.ions cert.aln operat.ors from M may be represent.ed by st.ra

t.egies. We shalllnt.roduce t.he model Z = f (t ,z ,v), which Is a precise copy of t.he sys

t.em. The mot.ion generat.ed by t.he st.rat.egy Sand t.he measurement. I; we define as an
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n-dimensional measurable random process x such lhal wilh probabiliy 1 for all t E T

x (t) = Xo + J f (T, X (T) , S(T, X (T), HT»)X(dT)
[I (lot]

The conlrol v (t) = S (t ,x (t) , Ht» is said lo be a realization of lhe slralegy S by lhe

measuremenl t. If lhe molion x is unique for each t, lhen we consider S lo be lhe phy

sically reallzable operalor which associales wilh each mesuremenl t lhe corresponding

realizalion of lhe slralegy S. We shall inlroduce lhe following condilions:

(B1) Each measuremenl t has conlinuous reallzalions wilh probabllily 1.

(B2) 0 is a separable melric space, A conlains lhe u-algebra of 0, and lhe measure P

is regular.

(B3) For each y ERn and measurable funclion t: T -. R n , lhe Cauchy problem

:i: =f(t ,x .S(t ,x ,W))), x(t o) = y

has a unique solulion on lhe inlerval T.

THEOREM 3. Let

(a) the strategy S satisj'y condition (B3);

(b) one of the conditions (B1), (B2) be satisfied. Then S is an operator from M.

The solulion of lhe problem is given by lhe following lheorem:

THEOREM 4. Let

(a) condition (A1) and one of the conditions (B1), (B2) be satisfied;

(b) the strategies Sh' h > 0, be given by the following condition: Sh (t ,z ,t) is

a minimum of the function

(c) the strategies Sh' h > O. satisj'y condition (B3).

Then

(1) the family (Sh) of operators from M is regularizing;

(2) ifJis strictly uniformly convex, then (Sh) is strongly regularizing.

The proof follows lhe same general lines as lhe proof of Theorem 1.

I
Ii
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USE OF TilE II-CONVEX SET METHOD IN DIFFERENTIAL GAMES

V. V. Ost.apenko
V.M. Glushkov lnst.it.ut.e of Cybernet.ics. Kiev, USSR

The foundat.ions of t.he t.heory of dlfferent.ial games and met.hods for solving t.he

associat.ed problems are quit.e well-est.ablished. However, in t.he general case, t.he

solut.lon of such problems Is difficult. or requires a large invest.ment. of comput.er

memory and t.ime. while t.he charact.erist.lcs of different.ial games oft.en call for players

t.o act. rapidly, wit.h only small comput.ers t.o suppor·t. t.hem. The development. of fairly

efficient. met.hods for solving cert.ain classes of such problems is t.herefore of great.

Import.ance.

This work is an Invest.igat.ion of t.he same t.ype as [1-3] and develops met.hods pro

posed in [4]. We give a met.hod of solving approach and evasion problems for a suffi

cient.ly broad class of linear games wit.h a fixed t.erminat.ion t.ime. The met.hod owes it.s

name t.o t.he fact. t.hat. t.he not.ion of H-convexit.y Is used t.o describe t.he set.s of Init.ial

posit.ions favourable t.o one or ot.her player. Recall t.he following definit.ion [5]:

Definition 1. Let. X be a Euclidean finit.e-dimensional space and H c lx' E:

X: Ilx 'II =11. The t.erm H-convex half-space will be used t.o describe a half-space of t.he

form Ix E: X: <x, x· > ::;; c I, where x· E. H, c is a number. A set. is referred t.o as H

convex if it. can be represent.ed as t.he int.ersect.lon of a number of H-convex half-

spaces.

Assume t.hat. C(T), T E: [0, t], Is an int.egrable family of linear operat.ors acling

from X Int.o X. H represent.s t.he set. of all unit. vect.ors for which t.he following condi

t.ions are sat.isfied:

(a) C' (T)X' = A(T I x ')x' for any T E: [0, t];

(b) if x' is fixed t.he funct.ion A(' I x') has t.he same sign for all T E: [0. t].

LEMMA 1. Let M be an II-convex set and for some closed convex set W let

t

J C(T)dTW eM
o

Then
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t
J C(T)WdT eM
o

LEMllA 2. Let M be an H-convex set. Then

t t
J C(T)MdT = J C(T)dTM
o 0

The above lemmas are used to prove the basic results of this paper.

Assume that Z, L are Euclidean spaces, dim L ~ dim Z, '1': L -+ Z are linear map

pings, and rr: Z --> L. The dynamics of the game are described by the equation

z =Az + tpB(u ,v)

where z C Z. U E U, V E V, and U and Vare compact sets. The termination set and the

set of phase constraints are specified in the form

ML =Iz E Z: rrz E M l ' NL =Iz E Z: rrz E N l

where MeN are given closed sets in the space L.

The goal of player P (the pursuer) is to ensure that the Inclusions z (t) E ML •

z (T) E NL• are satisfied for all T E [0, t], where t is the fixed time of termination of

the game. The goal of player F. (the evader) is to try to prevent these inclusions being

satisfied. Set

t
P;'t(M) = n u lz ENL:rreAtz +JrreA(t-T)lpdrrB(u,v)E:M\

'vE:VUE:U 0

Let H t denote the set of all x' E: L such that

(a) (rreATIp)'x' = X(T I x')x' for all T E: [O,t];

(b) if x' is fixed the function A(. I x') has the same sign on the whole interval.

THEOREM L Let M be an H-convex set. Then, if z E: P;',t(M), there exists aj'LLnction

u.: V -+ U such that

(a) u, (v (T)) is an admissible control for player P when v (T) is an admissible

control for player E;

(b) the inclusion rrz(t) E: M holds for the trajectory Z(T) starting in z and

corresponding to controls U,(V(T)) and V(T);

(c) if N is an H-convex set and Az E: tpL. then rrz (T) E: N for all T E: [0, t].

THEOREM 2. Let B(U,v) be an H-convex set for all v E: V. If z "EP;',t(M). then

either r.z EN or there exists v, E: V such that rrz(t) E M for the trajectory Z(T)
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starting in z and corresponding to some arbitrary admissible control u (T) for

player P and to control v (0) == v. for player E.

Nole lhal lhe value of u. (v) for each v E: V is eslimaled as lhe solution of lhe

inclusions

t
rreAtz + rr J e A (t -T}qJB(u. (v), v) EM

o

U.(V)EU

and lhe value of v. EO V is estimaled from lhe condition

t
rreAtz + J rreA(t-T}ipdTB(U,v.) cL \ M

o

If M, U, V, B = u + v are polyhedra, lhen lhe values of u.(v) and v. can be estimaled

by solving a syslem of linear inequalilies.

The slr.alegies described In Theorems 1 and 2 are special cases of ~-slralegies

[3], and lherefore we have lhe following resull:

COROLLARY 1. Assume that for any v Eo. V, the sets B(U ,v). M. and N are H-convex

and either N = L or AZ C qJL. Then

where PN (ML ) is the set of all initial positions from which player P can terminate
L,t

the game in his own favor by playing ~-strategies [3].

We shall now look allhe case Z =L, laking rr and <p as identily operalors. Lel HA

denole lhe sel of eigenveclors of lhe malrix A '. Then for each t we can lake HA = Ht .

If A = diag Iat •.... an l. lhen a sel of lhe form lz = (z 1 •...• zn): at ~ Zt ~ bd Is

HA -convex, where at can assume lhe value - 00 and b t can assume lhe value + 00.

If lhe operalors A, <p, rr are selecled properly, Theorems 1 and 2 can be applied

lo games whose dynamics are described by equalions x = D:i: + B(u ,v), x =

Dx +B(u ,v), and soon.

Theorem 1 can be partly eXlended lo games in a Banach space. Consider lhe evo

lutionary equation

~ x = Ax + u + v , X EX, U E U , V E V
dt

where X is a reflexive separable Banach space, U and V are closed bounded sels In X,

U is convex, and A is a linear operalor wilh a domain of definillon which is dense in X.
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The termination set M and the set of phase constraints are convex subsets in X. The

strongly measurable functions U (T) and v (T) are admissible controls for players P and

E.

Suppose that there exists a {J > 0 such that for any m =1,2 ,... and sufficiently

large n we have IkE -n -lA)--mil,;;; (l-n -lfJ)-l, where E: x -+ x is the identity map

ping. Then from the Hille-Yosida theorem there exists a semi-group of linear opera

tors G(t) such that the solution of the corresponding evolutionary equation with initial

condition x (0) = x 0 can be represented in the form

t

x(t) =G(t)xo + J G(t -T)[U(T) + v(T)]dT
o

Assume that HA is the set of unit eigenvectors of the operator A' , and

t

Piv,t(M) = n u !x eN: G(t)x + J G(t -T)dT[u +v] E: Ml
v EVu EU 0

THEOREM: 3. Let M and N be HA-convex sets. Then, if x E: PN,t (M), there exists a

mapping u,: V -+ U such that

(a) for any control v (T) which is admissible for player E, the control u. (v (T»

is admissible for player P;

(b) the inclusions x(t) E: M and X(T) E: N hold for all T E: [0, tJ, where

s

x(s) =G(s)x + J G(s -T)[U, (V(T» + v(T)]dT
o

Consider the following example. Let 0 be an open domain in R n and f be its boun

dary. For any function x (y), y = (y l' ... , Yn) E: 0, such that

8
x E: Lz(O) , -8- x E: Lz(O)

Yi

we will define an operator A, putting

Ax

for yeO and

8
ax +{J-x =0, a, {J'<!:.O

8v

for y E: f. The operator A is self-conjugate and in the space L z( 0) generates an

orthonormal basis w j consisting of eigenvectors

I
Ii
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In lhis case

whore

<x ,Wj > =J x(y)wj(y)dy
n

Sels of lhe form

are HA -convex, where aj and b j can assume values ± 00. Lel us consider lhe conslruc

lion of lhe mapping u. (v). For each v lhe value of u. (v) can be oblained by solving

lhe following syslem of inequalilies:

1

aj ~ e -)..jlx~ + J e -)..j(I-T)dT[Uj(V) +vj ] ~ bj • j =1.2, ...
o

where x~ =<x (0) , Wj >, u j = <U ,wj >. Vj = <v •Wj >.

Consider lhe finile syslem of inequalilies j =1 ....• m. There exisls a mapping

u:"(v) which salisfies lhis syslem for any v, and if V(T) is admissible lhe conlrol

U:"(V(T» is also admissible. Furlhermore, lhe sequence u:"(v) converges weakly lo

u.(v) for any v.

Theorems 1 and 2 may be exlended in parl lo games wilh a non-fixed lerminalion

lime. Relurning lo lhe nolalion adopled in lhe earlier parl of lhis paper. pUl

1

T~I(M)= n u IZCN[,:1T~1Sz+J1TeA("'-T)<pdTB(u.v)E:M!
• uEV ucU 0

0,.;"',.;1

Here M, Nand B(U •v) are assumed lo be convex sels for all v E: V; we have rreA T <p =
"A(T)EL , where EL : L - L is an idenlily mapping; and lhe funclion "A(T) is assumed lo

have lhe same sign for all T E: [0, t].

THEOREM 'I.. Let Z E: T~.I (M) and Az E: <pL. Then there exists a mapping u.: V - U

such that

(a) u. (v (T» is an admissible control for player P if v (T) is an admissible

control of player E;
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(b) the inclusion 7TZ (t.) E M holds for the trajectory Z (T) starting from Z and

corresponding to u. (v (T» and v (T), where t. ,s; t and 7TZ (T) EN for all

TE[O,t.].

TIIEORli;M 5. Let Z E TN,! (M). Then either 7TZ ~ N, or there exists a v. E V such

that for the trajectory Z (T) starting from Z and corresponding to the arbitrary

control u (T) and to v (T) '" v., we have 7TZ (T) EM for all T E [0. t],

COROLLARY 2. Let AZ c rpL. Then

Here TN
L

(ML) is t.he set of initial positions from which player P can terminate his game
,I

at or before time t by playing an c:-strategy.

It should be noted that the result stated as Corollary 2 was obtained in [6] for

N =Z, with 7T and rp as identity operators.

The method described above provides a basis for the solution of practical prob

lems such as the development of mathematical methods for controlling water transport

in irrigation systcm channels [71. A supervisor controlling an irrigation system from

his control room acts as one player; the water consumers are regarded as his

opponent.s. Wat.er requests are usually submitted in good time, for instance, one day

ahead. For various reasons, however, these requests are constantly being modified

and the supervisor finds himself operating within the framework of the theory of dif

ferential games, with the opponent's action being unknown in advance. To make the

most use of an irrigation system it suffices to maintain certain levels of water in the

channels. Thus, we have to solve a confinement problem, which is a special case of the

above problem with phase constraints.
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A LINEAR DIFFERENTIAL PURSUIT GAME

L.S. Pontryngin
Sleklov Institute of Mathematics, USSR Academy of Sciences, ul. Vavilova 42,
117333 Moscow, USSR

The differential game described by the equation

z=Cz-u+v (1)

was studied In [2]. where complete proofs of the results given in [1] may be found.

Here z is the phase vector of the game in n-dimensional vector space R, C is a linear

mapping of the space R into itself. and u and v are controls, I.e .. vector functions of

time t which are not known in advance. Vectors u and v satisfy the inclusions

UEP. vEQ (2)

where J' and Q are convex compact subsets of the space R and have arbitrary dimen

sion. The game Is considered finished when the point z enters a given closed convex

set M from R. Control u is called the pursuer control and v the evader control.

In pursuit problems the control v is a function of time t. v = v (t), and is not

known in advance; the problem is to choose the control u as a function of t in such a

way as to finish the game as quickly as possible. This is done at time t using informa

tion on z (s) and v (s) for s ~ t.

The most natural way 1.0 solve this problem is to try to choose the control u (t) at

any time t in such a way that the distance from the point z (t) to the set M decreases as

r'apidly as possible. However, this turns out to be impossible. We have to use another

method to estimate the rate of approach of the point z (t) to the set M. We shall con

struct a convex set We,). T~O. W(O) =M, and define the minimal value T = T(z) for

which a point eTC z belongs to the set WeT). It is evident that the point w = eTC z lies

on the boundary of the set We,) and depends on z. Let "It(w) be a unit exterior normal

to the surface aWe,) at the point w. The resulting function f(z) is an estimation func

tion for the time of approach of the point z to the set M.

If the value of T(z) decreases durine the game and finally becomes equal to zero

then the game comes to an end. It cnn be proved that the rate of decrease of the

function T(z) during the game is not less than the rate of increase of the time t. Thus

II

I

II/[
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a game beginning al lhe poinl z 0 will finish al a lime nol grealer lhan lhe value T(z 0)'

Il is imporlanl lhal an incorrecl choice of evader conlrol v (t) gives an advanlage lo

lhe pursuer, Le., will accelerale lhe end of lhe game.

An imporlanl deficiency of [2] is lhal we u~e knowledge of lhe funclion v (s) for

t ~s ~t +t:, where t: > 0 is any given arbilrary small value, lo find conlrol u(t). This

is called discrimination of lhe evader conlrol.

This deficiency is overcome in [2] under some nalural assumptions on lhe smoolh

ness of cerlain sels.

Since we use slronger assumplions here, lhe presenl paper i~ nol simply a gen

eralizalion of [2] bul eliminales lhe discriminalion of lhe conlrol v (t) and allows us lo

define optimal conlrol u (t) more conslructively.

Lel us recall lhe conslruction of convex sel W(T) given in [2]. r'irsl of all we

inlroduce some nalural operalions over convex sels from lhe space R.

1. If X and Yare convex sels from lhe space R, and a and {J are real numbers, lhen

we define lhe convex sel

Z = aX + {JY (3)

of all veclors z = ax + (Jy, where x E.X, y E: Y. Hence we can define lhe Riemann

inlegral

S 1

!X(s)ds
So

(4)

Here il is assumed lhal lhe convex sel-valued mapping X(s) is conlinuous in real

parameler s, s 0 ~ s ~ S l' In (3) we consider only non-negalive a, (J.

2. Define lhe geomelrical difference

z' =X Y (5)

of lwo convex sels X and Y from lhe space R. The sel Z· consisls of all veclors

z' ER such lhal Y + z' eX. Nole lhal lhe sels (3-5) are convex and are also

compacl if X and Yare compacl.

3. Define lhe sel W(T) in lhe form of an allernating inlegral

T

W(T) = r(P(T)dT Q(T)dT)
M,O

(6)
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where P(T) = eTCp, Q(T) = eTCQ. To evaluale lhis we define an allernaling sum

of convex sels (A,X1 , ... ,x..'Yl'''''Yn)' We sel

i =1, ... ,n (7)

We sel (see (4))

(8)

Tj

>; = f P(T)dT
Tj-l

(9)

We consider lhe allernating sum An (see (7)) for sel A = M, wilh >;, it given by

formula (9), as an approximale value of allernaling inlegral (6). It can be proved

lhal allernating sum (9) has a limil if lhe maximal lenglh of inlervals from parti

tion (B). lends lo zero. This limil is lhe value of lhe allernating inlegral (6).

In [2] il is proved lhal if a function 1) (s) is known on lhe inlerval t ~s ~ t + ~ lhen

we can choose lhe conlrol u (t) on lhe same inlerval in such a way lhallhe inequalily

T(z(t +~) < T(z(t)) - ~

holds. For lhis we choose lhe conlrol u (t) in such a way lhallhe difference

P(z (t + ~)) - T(z (t))

has ils largesl absolule value. Hence we solve some nonlrivial variational problem

with discrimination of evader conlrol on every lime inlerval of lenglh ~.

In lhe simple case considered in [2] (see §o, p.325), lhe sel M is a linear veclor

subspace. Consider an orthogonal complemenl L of dimension v lo lhe SUbspace M in

lhe space R. Lel 1T be lhe orthogonal projection of lhe space R onlo lhe subspace L,

and consider lhe sels

Suppose lhal lhe sel

S(T) = P(T) Q(T)

has dimension v for 0 < T < T. We dislinguish belween lwo separale cases:

(10)

(11)
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1. P(T) = Q(T) + S(T) (the exhaustive case)

2. P(T) ~ Q(T) + S(T).

Consider the convex set

l'

W(T) = jS(t)dt
o

(12)

We define the estimating function T(z) as the minimal value of T for which the inclusion

(13)

holds.

In the present paper we give a way of constructing the pursuit control u (t)

without discrimination of the evader control v (t) under certain differentiability condi

tions. In particular, we suppose that the W(T) are convex sets with smooth boundaries

and that the boundaries of the sets P(T) and Q(T) do not contain linear segments.

Consider the support function e(W(T)-7Tl31'C z ,'ljt) of convex set W(T) -TIe1'C z ,

where 1/1 is a unit vector. This support function is greater than or equal to zero for

any 'ljt if

(14)

and has negative values for some 'ljt if inclusion (14) does not hold. We denote the

minimum of this function by

-F(Z,T) =min C(W(T) - TIe1'C z ,'ljt)
"/I

(15)

When point TIe 1'C z reaches the set W(T) the function F(z, T) changes sign from positive

to negative. The value of T(z) is the smallest positive root of the equation

The derivative

F(z ,T) =0 .

- of
C(Z,T) = a:;:-(Z,T)

(16)

(17)

is nonposilive when the point TIe 1'C z reaches the set W(T). If the inequality C(z, T) "" 0

holds at this time then T(z) is a smooth function of z in a neighborhood of this point.

If C(z, T) =0 then function T(z) may be discontinuous.

If u and v arc known functions then z is a function of parameter t and T =T(z) is

also a function of t. This means that relation (16) is an identity with respect to t.
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Differentiating the identity (16) in t we get the relation

. - . of
TG(Z,T) + za; =0

Hence for G ;e 0 we have

-G(Z,T)
(18)

Let ~(t) be the unit vector which minimizes the sllpport function (15) and S (1/!, T) be the

point on the boundary of the convex set SeT) which maximizes the scalar product

(S,1/!) , S ES(T) .

Then function G has the form

and formula (18) becomes

T = (rre TC (Cz - tL + 7), j)
-(rreTCCz -S(1/!,T),1/!)

(19)

(20)

It is clear from formula (20) that we can choose the control u In such a way that

T ~ -1. Take the value of tL which minimizes T. The corresponding value of T is less

than or equal to -1. It is evident that u (t) maximizes the scalar product (rre TC u,1/!).

This value of u = Uopt is said to be optimal and is the value of the control' chosen dur

ing the pursuit process if G ;e o.

If we choose control U (t) according to this rule and function G tends to zero then

the value of T is defined by the same relation (10). Here we have to consider two dif

ferent cases. The control Vopt is said to be optimal if it maximizes the scalar product

(rre TC v,1/!). Consider the exhaustive case. If the control v is optimal on some time

interval and G = 0 at the initial time to, then T = -1 and G = 0 for all t from this

interval. If v ;e Vopt and G =0 then the point z (t) leaves the surface G(z, T) =0 in a

small neighborhood of to. Moreover, the function T displays the following behavior:

(21)

where k is the multiplicity of the root TO of equation (16). Two cases can arise if the

point z (t) arrives at the surface C(z, T) = 0: T changes continuously or displays a

jump. In the first case the behavior of T has the following form:
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T -TO =A(t O-t)l/k+l + O«t
O
-t)l/k+l) (22)

In lhe non-exhaustive case lhe behavior of lhe lrajeclory may be considered in a simi

lar way wilh some small differences.

Hence for an oplimal choice of u (t) lhe solution z (t) of lhe differential game

always satisfies lhe following condilion:

d
-T(z (t» S -1
dt

In lhe case of lhe allernating inlegral we sel P(T) =eTCp, Q(T) =eTCQ. Lel

L(P(T» be lhe affine supporl of convex sel P(T). If lhe veclor 1{!(w) is nol orlhogonal

lo lhe space L (P(T» lhen we choose lhe conlrol u (t) which maximizes lhe funclion

(23)

This relation defines a unique conlrol u which is lhe besl pursuil slralegy. If lhe vec

lor 1{!(w) is orlhogonal lo lhe spaC3 L (P( T» al lhe lime to lhen rule (23) does nol give

us lhe opporlunily lo choose conkol u (t) and il musl be selecled in some olher way.

In lhe general case consider lhe supporl function

(24)

Il is clear lhal lhis supporl funclion is grealer lhan or equal lo zero if eTC z E W(t) and

has a negative value if lhis inclusion does nol hold. Define

-F(z, T) =min c (W(T) -e TC z ,1{!)
"it

Hence lhe value T(z) is lhe smallesl posilive rool of lhe equation

F(z ,T) =0

wilh respecl lo T. Sel G (z ,T) =aF / az .

(25)

(26)

We choose lhe oplimal conlrol u (t) in lhe following way. Since T is a rool of equa

tion (26) we differenliale il in t and oblain lhe relation

T= (27)

which is similar lo (18). We choose lhe conlrol u (t) in such a way lhal lhe value of T

given by relation (27) is minimal. This approach is similar lo lhe choice of oplimal con

lrol u(t) =uopt(t) p,iven previously.
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It can be proved that T ~ 1 if we use this ruie. Hence the estimating function

T(z (t)) decreases more quickly than t increases.

The control v (t) which maximizes T (see (27)) for any p,iven u (t) is called the

optimal evader control and is denoted by vopl(t). This optimal control vopl(t) does not

depend on the choice of control u.

Relation (27) is meaningful only if G ~ O. It can be proved that

If G ~ 0 then formula (27) has the form

T = (eTC(Cz - uopl + v),1{!)

-(eTC(Cz - uopl + v opl),1{!)

(28)

(29)

Hence .;. ~ -1 and T = -1 if v = v opl '

It can be proved that T = -1 if G = 0 and v = v opl' This fact does not follow from

(29). If v = V opl on some time interval and G = 0 at the iniUal time to then G = o.

T = -1 and "" =canst. all over this interval.

If v # V opl and G =0 then point z (t) leaves the surface G =0 in a small neigh

borhood of to' Moreover, the behavior of function T is described by formula (21).

When vect.or 1{!(w) becomes orthogonal to the subspace L(P(T)) the control u

dh,plays a jump. We would therefore have to choose it in a different way were it not

for the fact that it can be proved that this orthogonality disappears and we can take

the rule for choosing the optimal control u given earUer.

The relallon

d-T(z (t)) oS; -1
dt

holds for all of the methods of choosing the pursuit control u (t) menlioned here, i.e.,

the rate of decrease of funclion T(z (t» Is not less t.han t.he rate of Increase of t.
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METHODS OF CONSTRUCTING GUARANTEED ESTIMATES OF
PARAMETERS OF LINEAR SYSTEMS AND THEIR STATISTICAL PROPERTIES

B.N. Pshenlchnyl and V.G. PokotUo
V. Glushkov Institute of Cybernetics, Kiev, USSR

This paper Is concerned with the properties of guaranteed estimates of unknown

parameters of linear systems. In the theory of guaranteed or minimax estimation [1,2]

as opposed to mathematical statistics, the nature of the perturbations Is assumed to be

uncertain and we consider either the problem of finding estimates that minimize the

estimation error under the worst (from the viewpoint of an observer) possible pertur

bations from some a priori known set, or the problem of finding the whole set of

parameters compatible with the observed signal.

When there Is no sufficiently complete description of the random perturbations

the guaranteed approach can also be used for stochastic systems. In this case the

assumption of random noise implies that the guaranteed estimates have additional pro

perties. In this paper (see also [3-6]) we obtain sufficient conditions for the conver

gence of these estimates to the actual values of the unknown parameters. We consider

the case when we have geometrical constraints, Implying that the perturbations are

bounded at each instant of lime. In this case to develop an exacl description of lhe

Information sets mentioned above Is a very cumbersome nonlinear programming prob

lem. A method of approximating guaranteed esllmates which only requires the solulion

of a linear programming problem is suggested, and examples are given.

1. DEFINITION OF GUARANTEED ESTIMATES

Assume that the signal

is measured.

y (t) = 'I9(t)z + w (t) , t E [0, T] (1)

Here 'I9(t) is a known, deterministic, (m x n )-malrlx which is continuous In [0, T],

z E R n is an unknown veelor of parameters, and the w (. ) are indefinite perturbations

which satisfy the Inclusion

w (t) E W(t) eWe R m , Vt E. [0, T] (2)
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where W, W(t) are convex compacl sels, and lhe multivalued mapping W(·) is conlinu

ous in lhe Hausdorff melric, 0 E: W(t), t ::!: O.

Lel Cm[0. T] be a space of continuous m-funclions in [0, T] (lhe elemenls of lhis

space will be denoled by f T = If (t) , t E: [0, Tll). and Vm [0. T] be lhe space of lhe m

dimensional funclions wilh bounded variation on [0. T].

If f T E: Cm[0 , T] and "/I E: Vm [0 , T] lhen

T

<rp.fT> =J f'(t)drp(t)
o

where f' is lhe lranspose of f.

The expressions

D =IWT E: Cm[O. T]: w(t) E: W(t) • t E: [0, Tll

E(z) = IYT E: Cm[O,T]: y(t) ="(t)z + w(t): wT e:Dl

define lhe sels of admissible perlurbations and oUlpuls of syslem (1).

Assume also lhallhe sel

T

4>("/1) = Irp E Vm [0. T]: J ,,' (t )drp(t) ="/II
o

is non-emply.

(3)

(4)

(5)

Problem I (a. priori estimation). Lel "/I E: R n . Find rpo E Vm [0. T] such lhal lhe equal

ily

is satisfied.

Problem II (a. posteriori estimation). Lel lhe signal y~ E: E(z) be observed. Define

lhe sel

Z(T;y'(·» =Z(Yr) = Iz' ERn: YT EE(z')1

The sel Z (T ; Y , (. »wll be called lhe information sel compatible wilh lhe observed

signal (see [2]).
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Using duaLily lheory we can show lhallhe following relalions hold (see [2]):

T

IC(T) =p[rpo] =I p(drpo(t) I W(t» =
o

T
Inf II p(drp(t) I W(t»: /(J E: ~(",>l

o

T

p(", I Z(T;y'(·») =Inf l/ p(-drp(t) I W(t» + </(J,y;'>: rp E: ~('t>l
o

(6)

Here rpo E: Vm [0. T] Is lhe solullon of problem I; p('t IX) =sup I",'x: x E: X lis lhe

supporl funcllon of lhe sel X. and lhe Inlegral

T

I p(d/(J(t) I W(t» =p[rp]
o

coincides wllh lhe supporl funcllon of lhe sel D (see [2, p. 100]).

2. CONSISTENCY OF GUARANTEED ESTJ][ATES

In lhls secllon we address lhe following quesllon: Whal are lhe properlles of

guaranleed esllmales In siluallons where lhe perlurballons can be slmulaled by random

processes? We consider a probabllily space 10, L: .P I and make addillonal assump

lions aboul syslem (1) and perlurballons (2), (3). We assume lhal lhe perlurballons

are oulcomes of lhe random process Iw(t) , t ~ 01 and sallsfy lhe specified conslralnls

wllh probablLlly one. By U~, 0 :S a. :S b :S 00, we denole all of lhe u-algebras generaled

by lhe process lw (t) , t ~ 0 I.

Condition 1. The equalily

sup q("(t)z I W(t» = sup q("(t)z I W(t»
t~ t~T

for any z E: R n holds. Here q (x IV) = Inf la ~ 0: x 0:-1 E: vi Is a gauge funcllon (Mln

kovsky funcllonal) of lhe sel V.

Condition 2. The random process lw (t) , t ~ 01 has zero mean and a covariance

malrlx Q(t. t') = E[w (t )w'(t')] such lhal I sp Q(t • t') I +0 for It - t' I -> 00 and t.
t' ~ 0, and

- T T

1-\1 I IspQ(t,t')1 dtdt'dT<oo
1 TOO
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Condition 3. For any z ERn, Z "" 0, we have

iIrii 11~(t)zll > 0
t---

Conditon 4. The random process lw (t) • t ~ 0 lis completely regular so that

T-->OO

Condition 5. For any t: > O. T/ E R m • liT/II =1, t ~ 0, we have

THEOREM 1. Let Conditions 1 and Z be satisfied.. Then for any t: > 0 there exists a

rpc E Vm [0 . T] such that

T

J p(dIpC(t) I W(t» < IC(T) + t:

o

and. the estimate

T

zt(lJ. T) =J y'(t)dIpC(t)
o

is strongly consistent.

Proof. Let IC(T• • T) denote the value of the lower bound In (6) under the addlUonal

assumpl.1on that Ip(t) '" 0 for t E [0. T.). This means that the InformaUon correspond

Ing to t ~ T. Is used In construcUng the esUmate. From the duality theorems which

characterize the solul.1on of the problem of moments (6) (see [1]) and Condition 1. It

fonows that

11m IC(T. , T) = lCo
T---

does not depend on T•.

We fix t: and select the sequence ITt;i = 0,1,2 , ... 1In such a way that

It. Is known that the soluUon of problem (6) can be chosen In the form of n pulses

such that

n
dlp./dt = I; lp.t 6 (t -tt)

t =1
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where a(') Is a a-funcllon. Denole lhe momenls and values of lhese pulses for T =

Tt -1 + 1, T = Tt by ttj and rptj' respectively, where j = 1,2 •... , n and define

fII~ E: Vm [0 , T] as follows:

N(T) = max li: Tt ~ Tl

Il follows from lhe choice of lhe sequence ITt llhal

1 NJ:!> n 1 NJ:!>
p[rpC] = N(T) l.: l: Ilrptjll =-N() l.: IC(Tt -1' Tt ) < ICO + £ ~ IC(T) + £

t=l j=l T t=l

We show lhallhe esllmale zt("'/I,T) = <rpc,y('» Is slrongly conslslenl. Aclually

we have

C 1 NJ:!> n • 1 NJ:!>
z. ("'/I,T) = N(T) l.: l: rptjy(ttj) ="'/Iz + N(T) l.: v t

t=l j=l t=l

where

n
Vt = l: rptjW (ttj)

j~l

Under lhe conditions of lhe lheorem we have E[v t ] == 0, i = 1,2 •...• and

E[vtvj]~n (ICO+£)2SpQ(i,j)Wllh

w 1 l: l:
l: -3 l: l: ISp Q(i ,j)1 < 00

l: =1 k t =1 j =1

The assertion of lhe lheorem lhen follows from lhe lheorem of slabUily of almosl

certainly bounded second-order processes [7, p. 510].

THEOREM 2. Let Conditions 2-5 be satisfied. Then

Z(T;y'(·» -lzl as T ~oo

with probability one. (Convergence takes place in the Hausdorff metric).

This lheorem follows from Theorem 3 below.
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3. APPROXIM:ATION OF INFORllATION SETS

II. is difficult to obtain an exact solution to the problem of a posteriori

guaranteed estimation with geometrical constraints on perturbations in even the sim

plest cases. There is therefore a natural interest in the approximation of information

sets (see. e.g., [8.9]). It is shown below that we can approximate the support functions

of informatin sets by solving a linear programming problem while retaining the con

sistency of the estimates.

Consider a function 1/1. I~I = 1, time instants tt € [0. T]. i = 1.2 •...• N. and let

vectors!Pt € R m • i = 1,2 •... , N. be fixed. Then it is easy to see that the function

7(1/1, T) = inf If adp( -!Pt I W(tt» + !piY' (tt )]: f at!pt"(tt) = 1/1: at ::i!: 01
t =1 t =1

maJorlzes the support function of the Information set Z(T •y' ('».

THEOREM: 3. Let the assumptions of Theorem Z be satisfied. Then for any 1/1.

1I'1j1i1 = 1. it is possible to find a partition Itt 1 of the segment [0, T] and vectors

!Pt € R m such that

with probability one.

We shall give two auxiliary statements without proofs.

LEMMA 1. Let lw (t) • t ::i!: 01 be a completely regular random process, U~.

o :S: a :S: b :S: 00 be a system of u-algebras related to it. tt -. 00. tt H > tt. i = 1,2 •...•

and 11. € uti such that
~ t'_l

P(At ) < 1 - e . e > 0 • i = 1,2 ....

Then

N
P( n At) -.0 as N -. 00

0,,1

LEMMA 2. Let Condition 3 be satisfied. Then there exists aM> 0 such that for any

sequence St. i = 1.2 •.... it is possible to find a set of time instants

Js = It ti : j = 1.2 •.... n ; i = 1,2 .... l

such that the following conditons hold:

\
I

Ii
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(1) ttj -+ oofor T -+ 00. j = 1.2 •...• n;

(2) Ittj-tul ~St.i =1.2 •...;j ~k;

(3) the set of equations

n
E 'I'~j "(ttj) = 1//
j=l

has a solution 'l'tj bounded uniJ'ormly on i, II'I'tjll:s M.

Proof of Theorem 3. Lel St -+ 00 as i -+ 00 and Js be a sel of lime Inslanls defined by

Lemma 2.

Then

N(T) =max IN: ttj :S T • j =1 ..... n • i =1.2 •...• N 1

If

n
At (£) = IE p(-'I'tj I W(ttj» + 'l'tjw(ttj) ~ £1

j =1

lhen for sufficienUy large i

The asserllon of lhe lheorem lhen follows from Lemma 1.

4. KXAlIPLES

Example 1. Lel 7/ =1. "(t) == 1 and W (t) E: [-1.1]. The relallons

T
1 r

zo(T) = T J y(t)dt
o

p( +1 I Z(T; y' (.))) = min ly' (t) + 1 ; t E: [0, T]l

define a priori and a posteriori estlmales which are consislent under Condilions 1 and

2. respectively. Note lhallhe a priori esllmate Is defined ambiguously In lhls case.

Example 2. Lel n =2, "(t) =(1. t). 1/1' =(1.0), w(t) E: [-1, 1]; and z' = (z l' z2)'

We define sequences of limes ftt(j>; j = 1,2; i = 1.2 .... 1 such lhal tp> > tp>.
i = 1,2 t ••• ,;

Itt(2) ; i =1,2 .... I n ltp> ; i =1.2 .... 1= I/J
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The equaLIties

define an a priori estimate whose maximum error does not exceed the value 1 + 1:. The

optimal a priori estimate Is defined In this case by the relations %o(T) = y(O).

IC(T) =1.

Now consider the approximation of information sets compatible with the signal

measured at times tt(J>; j =1,2; i =1,2 ..... We obtain

lI'Z(T;y'(·» - %1 c: [-7(-1, T). 7(l. T)]

where

Under the conditions of Theorem 2 7(+1.T) +7(-1,T) -+0 as T -+00 only If

(tP> + tF>)(t?> - tp» -1 :S M < 00. i =1,2 , ....

5. CONCLUSION

In order to construct guaranteed estimates It Is only necessary to have the meas

urement of the signal and to be aware of the a priori constraints on the perturbations.

The guaranteed estimates may prove to be too rough If there Is any Information about

the distribution of the random perturbations. However, It Is this very "roughness"

that demonstrates the advantage of having such Information available. This makes It

possible to class the guaranteed estimation method with the so-called robust methods of

statistics.

The consistency of the guaranteed estimates Is connected with the conditions for

weak dependence of the random processes simulating the perturbations (randomness of

the noise) and with the stability properties at infinity of the ideal signal y o( t) =,,(t)%.

These conditions are completely natural and are satisfied for a broad class of real sys

tems.

Note also that the a posteriori estimates constructed In this way are monotonic

(the information set Is not extended by increasing the observation interval) and,

therefore, consideration of the support functions of information sets gives a

convenient rule for terminating the observation process.
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STOCHASTIC AND DETER:MINISTIC CONTROL:
DIFFERENTIAL INEQUALITIES

N.N. Subbolina. A.I. Subbolln and V.E. Trel'Jakov
Inslilule of Malhemalics and Mechanics
Sverdlosk, USSR

1. INTRODUCTION

Two lypes of conlrolled processes are considered in lhis paper. The firsl includes

delerministic processes described by ordinary differenlial equations. while lhe second

comprises diffusion-lype conlrolled processes described by Ilo's slochastic equation.

Problems of feed-back optimal conlrol are considered and lhe properties of a value

function are lnvesllgaled for bolh lypes of conlrolled process. This funcllon assigns lo

an inilial posilion lhe guaranleed resull which can be allained by choosing lhe oplimal

feedback slralegy. The following facl is well-known In conlrollheory and lhe lheory of

differenlial games: If lhe value function is sufficiently smoolh in some region. lhen il

salisfies a parlial differenlial equation which is commonly called lhe Bellman equa

tion.

For conlrolled processes of lhe diffusion lype. if lhe noise acling on a syslem is

non-degenerale. lhe corresponding Bellman equalion is a non-degenerale parabolic

equalion wilh a unique solulion for a given boundary condilion. Thus, in lhis case lhe

Bellman equation uniquely delermines lhe value funclion.

However, in lhe case of a delerministic conlrolled syslem or a diffusion-conlrolled

process wilh degenerale noise. allempls lo use lhe Bellman equalion lo delermine lhe

value funclion run inlo considerable difficullies. One problem is lhal lhe Bellman equa

tion for delerminislic conlrolled syslems is a firsl-order partial differenlial equal ion

of Hamillon-Jacobi lype. In general. lhis equalion has no classical solulion. There

fore, nolions of generalized solulion have lo be inlroduced and exislence lheorems

have been proved by various aulhors. In some cases lhe uniqueness of lhe generalized

solulions may be proved. We shall relurn lo lhis problem below.

In lhe presenl paper we suggesl replacing lhe Bellman equalion by lwo differenlial

Inequalities. These Inequalities. logelher wilh a boundary condilion. form necessary

and sufficienl condillons which lhe value funclion musl salisfy; lhese condilions
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determine the behavior of the value function both at the points where this function is

differentiable, and on singular sets. In regions where the value function has deriva

tives of the required order (of first order in the deterministic case and of second

order In the stochastic case), these Inequalities are equivalent to the Bellman equa

tion. Therefore, the proposed inequalities can be viewed as a generalization of the

Bellman equation.

2. PROBLEM FORlruLATION

Let us turn to the formulallon of the problems under consideration. First we shall

consider a deterministic controlled system whose motion Is described by the ordinary

differential equation

dx- = f (t • % ,u ,v) t E: T = [0,"]
dt

(1)

where" > 0 Is a fixed Instant of time, % E: R n Is an n -dimensional phase vector, U Is a

control parameter, and v Is a disturbance (or the control of a second player). Sup

pose that u E: P c RP, V E: Q c Rq, where P and Q are compact sets. The function f:

T x R n x P x Q -+ R n Is taken to be continuous and to sallsfy the Lipschitz condition

with respect to the variable :1:. We shall assume that for all (t ,:1: ,5) E: T x R n x R n

the following minimax condition holds:

min max <5 .J(t ,:1: ,U ,v» = max min <s ./(t ,:1: ,U .v»
u EP v EQ V EQ u EP

(2)

Here <',' > denotes the inner product. The payoff funcllonal 7. (:1: (.» Is defined by

the equality: 7. (% (.» = 7(:1: ("», where the payoff funcllon 7: R n -+ R sallsfies the

Lipschitz condilion. We shall adopt the concept of a dlfferenllal game presented In

[1,2]. As we proceed the notion of the value function of a positional differential game

will assume considerable importance. This function assigns to the starting position of

the game (t 0,:1: 0) the result pO(t 0,:1: 0) guaranteed to the first and second players If

they choose the optimal feedback strategies.

Note that other concepts of dlfferenlial games and other definitions of the value

of a game are possible (see, for example, constructions connected with maJorant and

minorant games [3] and the constructions In [4,5]). It is Important to note that the

value of a game does not depend on the formalization of the differenllal game. Thus,

the properties of the value function given below are valid In the framework of the

above-menlloned concepts. With the value function readily available, the optimal stra

tegy can be determined in a relallvely simple way. This explains the Importance of

studying the value funcllon.
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3. INVESTIGATION OF THE VALUE FUNCTION

Invest.igat.lon of t.he value funct.ion Is usually connect.ed wlt.h t.he Bellman-Isaacs

equat.ion, which In t.he problem under conslderat.lon has t.he following form [6]:

8p(t,x) + min max <8p(t ,x) ,f(t, x, u ,v» ::: 0
lJt U EP v e:Q 8x

p(" ,x) ::: ('(x)

(3)

(4)

Here 8p/8x ::: (8p/8x 1 • . . .• 8p/8xn ) Is a column vect.or of part.ial derlvat.ives of

t.he funct.ion p wlt.h respect. t.o xi .

In t.he t.heory of dlfferent.ial games equat.lon (3) holds at. every point. (t ,x) where

t.he value funct.ion Is dlfferent.iable. Not.e t.hat. In t.he case under conslderat.ion t.he

funct.ion p sat.lsfies t.he Llpschlt.z condlt.on and, t.herefore, according t.o Rademacher's

t.heorem, p Is non-dlfferent.iable on the set of zero measure. Hence, the value funct.lon

sat.lsfles equat.ion (3) almost everywhere and obeys t.he boundary condlt.ion (4) for all

x e: R n . However, these necessary condltlons are not sufficient, since the number of

funct.lons sat.lsfylng equation (3) almost. everywhere and obeying t.he boundary condi

Uon for all x e: R n may be Infinite.

Let us turn t.o t.he formulat.lon of t.he necessary and sufficient condlt.lons which

should be sat.lsfled by t.he value funct.lon. Let. Lip denot.e all t.he funct.lons p:

T x R n -> R sat.lsfylng t.he Llpschlt.z condlt.lon, and t.ake p e: Lip, t e: [0, "), x e: R,

h e: R n . We define the lower and upper derlvat.ives of t.he funct.lon pat t.he point (t ,x)

In t.he dlrect.lon (1, h ) by t.he relat.lons

8 _p(t ,x) I(h) ::: lim inf (p(t + 6, x + 6h) - p(t ,x )]6-1

6.0

8f-p(t,x)l(h) :::limsup [p(t +6,x +6h) -p(t,x)]6-1

6.0

(5)

Not.e t.hat. funct.ions h f--. 8 -p(t ,x) I(h) and h f--. 8 f- p(t ,x) I(h) sat.lsfy t.he Lipschitz

condlt.ion.

We then have t.he following result. [7,8]:

THEOREM 1. For a function p: T x R n 1-+ R to be the value function of the differen

tial game (1) (2), it is necessary and sufficient that the following conditions be

fulfilled:

p e: Lip, p(" , x) ::: ('(x) at. x e: R n (6)

max min lJ -p(t ,x) I(h) :S 0 :s max min 8 f-p(t ,x) I(h) (7)
ve:Q he:Fl(t,z,V) uEP he:Fe(t.z,u)

at. (t, x) e: [0,") x R n
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where

F 1(t,:z:,v)=co 1!(t,%,U,v):u EP!, Fz(t,:z:,u)=co!!(t,:z:,u.v):v EQI (6)

Note that the inequalities (7) express the condillons of U -stabillty and v -stabillty

of the function p in the infinitesimal form. A formal definition of the stability proper

ties is given, for example, in [1,7]; these conditions express the property of non

deteriorallon of posillon. It Is easy to show that at every point (t ,:z:) where the func

lion p is dlfferenllable (1.e., almost everywhere). the inequalilies (7) are equivalent to

the Bellman equallon (3).

Note also that the equalities (7) assume a form more convenient for verification

when the function p can be represented in the form

p(t,:Z:) =min max rpkL(t,:z:)
kEK LEL '

(9)

where K and L are finite sets, and functions rpk ,L (.): T x R n f-t. R are continuously dif

ferentiable. Funcllons of the form (9) are known to be directionally differentiable and

the formulae for the directional derlvallves are also known [9]. Subslltuting these

formulae Into (7) leads to relatively simple inequalities.

Thus, Theorem 1 states that the value function is the generalized solution of the

Bellman equallon (3) In that it sallsfies the inequalities (7). Note that different gen

eralized solutions of partial differential equation of the Hamilton-Jacobi type (equa

tion (3) is also of this type) are given. for example, in [10-13], where the existence

and uniqueness of such solutions are investigated. In particular, the notion of a

"viscosity solution" is proposed in [13,14]. Here we note only that It is easy to prove

the following assertion: any function satisfying conditions (6), (7) of Theorem 1 satis

fies the definition of a "viscosity solution" for equation (3). The converse is also true.

4. DIFFUSION CONTROLLED PROCESSES

Now let us consider a diffusion controlled process described by Ito's stochastic

differential equation [15,16]

(10)

Here a is a constant (n x m )-dimensiional matrix and WI is an m-dimensional Wiener

process defined on probabillty space (0, F. J.I.). The funcllon! satisfies the conditions

given above in connection with the deterministic controlled system. We will lake the

solution of the stochastic equation (10) in its strong sense [15,16].

We consider a stochasllc differential game for system (10) and introduce the

nolion of the value function of a game. Dlfferenllal games for diffusion systems have
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been studied by many authors; this Idea was first put forward In [3,17]. The results

presented in the present paper are obtained within the framework of the approach

suggested In [18,19].

We shall consider a stochastic differential game for the classes of feedback stra

tegies U{t ,x) and V{t ,x), Le., Borel measurable functions U: T x Rn/-+ P,

V: T x Rn 1-+ Q. Le~ (to ,xo) EO T x Rn be the starting position, 6. =

!to=TO <Tl< <Tt+1 =~l be a partition of the segment [to,~], the function

v (.): [0,"] x 01-+ Q be a non-anticipatory process, and U: T x R n 1-+ P be a feedback

strategy. We shall denote by tt (to' xo' U • v (.),6.) the random process tt' to,s; t ,s;~,

described by the stochastic equation

t t

tt =t T ( + J f{s ,ts ' tL T(. vs)ds + J udWs
T( T(

(11)

EO [Tt ,Ttl-l)' i =0,1, ... , k

Let dlam 6..= max (Tt+1 -Tt). The guaran~eed result for strategy U at position
O"'tSk

(t 0' x 0) is defined by the following relation:

(12)

where E!·l represents the mean value and -,: R n 1-+ R is a given Lipschitz function.

The optimal guaranteed result is defined by the relation

(13)

The existence theorem for the value function of a stochastic differential game for the

controlled diffusion process under consideration is given In [18]. This Is expressed by

the equality

(14)

where

(15)

(16)

Here V: T x R n 1-+ Q is the feedback strategy and tL (.): [t O'~] x 0 1-+ P Is a non

anticipatory process.

j

II
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The function Po: T x R n ~ R defined by relation (14) Is called the valuej'unction

of the stochastic differential game. Note that here, just as in the deterministic case,

the function Po (14) coincides with the value function of the game defined according to

another well-known framework for differential games [3]. Thus, the properties of the

value function discussed below do not depend on the framework in which it has been

constructed.

5. DIFFUSION PROCESES WITH NON-DEGENERATE NOISE

Diffusion processes with non-degenerate noise have been studied particularly

thoroughly In control theory and the theory of differential games. In this case a is a

square (n x n )-dlmenslonal matrix such that

(17)

is positive definite. Here aT denotes the transpose of a. In the non-degenerate case

the value function Is known to satisfy the Bellman equation

8p(t,x) + i < 8p(t ,x) /(t » + ~ aZp(t ,x) - 0
at m n max .. ' , x , u , v L. a(j .. a -

uEP vEQ uX (,j=1 Ux( Xj

and the boundary condition

(18)

(19)

In the non-degenerate case the equations (18), (19) have a unique solution, and

thus equation (18) completely determines the value function.

Thus, summing up, we can say that In two extreme cases, I.e., In the deterministic

case (when there is no noise) and In the case when the noise Is non-degenerate, we can

formulate the necessary and sufficient condltlons which the value function must satisfy.

In the deterministic case these conditions contain the inequalities (7). In the case of

non-degenerate noise, the main requirement Is to satisfy equation (18).

6. THE INTERMEDIATE CASE

Let us consider the Intermediate case In which a Is an arbitrary (n x m)

dimensional matrix. We can write the Bellman equation for an arbitrary (n x m)

dimensional matrlx a, but this may turn out to be degenerate, In which case It cannot be

used for unique determination of the value function. This situation Is similar to that

arising with a deterministic system. To avoid this difficulty we shall take the same

action as in the deterministic case and replace the Bellman equation by a palr of dif

ferential inequalities which express the stability properties of the value function In



734

inflnilesimal form.

Before proceeding lo lhe formulation of new resulls we should flrsl explain lhe

meaning of lhe conditions of u-slab1l1ly and v-slab1l1ly. The original definitions of

lhese notions for conlrolled slochaslic processes are presenled in [18]. Nole lhal

lhese definitions permil a number of differenl formulalions, of which we give one

below.

Lel

A = la: s I--. as: T I--. rpm(P) Ia Is measurable I (20)

where rpm(P) is a sel of regular probab1l1ly measures on P wllh a weak norm general

ing a lopology which Is equlvalenl lo lhe weak-* lopology of lhe space conJugale lo lhe

space C(P) of continuous scalar funclons on P [20]. The elemenls of lhe sel A are

called generalizea program controls. For any collection (t" x. , a, v) E

T xRn xA XQlhesolutlontt =tt(t •• x.,a,v)oflheequatlon

t t

'tt = x. + J ds J /(s. t s ' u •v)as(du) + J odWs ' t E [t.,"] (21)
t. P t.

exisls and is unique.

Definition 1. A function p E Lip satisfies lhe condilion of u-slab1l1ly if lhe inequallly

Et ..z;. l~~ p(t . tt (t • •x • • a, v»1 :!i p(t • •x.)

holds for all (t. ,x. ,v) E T x R n x Q. t e: [to ,"].

(22)

(Nole lhallhis achieves a minimum over a on lhe lefl-hand side of inequallly (21».

We can define lhe v-slab1l1ly properly of funclion p e: Lip in a similar way. To do

lhls il is necessary lo inlroduce an analogous sel of generalized conlrols wllh values in

rpm (Q) and lo replace lhe minimum in (22) by a maximum and lhe symbol :!i by lhe sign

~.

Then lhe following assertion is valid [18]:

THEORElI 2. For a function p(t •x) to be the value function of a stochastic aiJ'

j'erential game. it is necessary ana sufficient that this function be u-stable ana v

stable ana satisfies the bounaary conaition.

We shall now lry lo wrile lhe slab1l1ly condilions in infinilesimal form. I.e., lo

express lhe conditions in lhe form of dlfferenllal inequalilies.
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7. FORllULATION OF RESULTS

Let p e: Lip, (t ,x) e: [O,"J x Rn, the set H be compact in R n , 7/ = (7/1 ' ... , 7/m)

be an m-dimenslonal Gaussian random variable, EI7/i 1= 0, EI7/i7/j 1= 6 ij ,

i ,j = 1 , ... , n, where 6ij Is the Kronecker delta.

We Introduce the following quantities:

8--p(t, x) I(H) = lim Inf [E Imin p(t + 6 ,x +h' 6+ ..J6U7/>I - p(t, x)J6-1
6.0 hEll

(23)

a...p(t ,x) I (H) = 11m sup [E Imax p(t + 6, x +h . 6 + vOU7/>I - p(t, x)J6-1
6.0

Note that In the case when the set H contains a unique element h, the quantities

defined above can be taken as the lower and upper stochastic derivatives of the func

tion p In the direction (1, h).

If In some neighborhood of the point (t ,x) the function p has a derivative with

respect to t and first and second derivatives with respect to xi' then the following

equalities hold:

(24)

A1P(t , _) I (H) = ap(t ,x) < ap(t ,x) ~ a
2
p(t,x)

U r - at +mh,:xH a- ,h> + .... aij a a
~ - i,j=1 Xi Xj

We shall now formulate our main result.

THEOREM 3. For a junction p to be the value function of the stochastic differential

game under consideration, It Is necessary and sufficient that the conditions

p e:Llp, p(",x) = 7(X) , x e:Rn

max 'ii--p(t ,x)I(F1(t ,x ,v»::s;O::s; mlna ...p(t ,x)I(F2(t;x ,u»
v~ u~

t E: [0 , "), x e: R n

be satisfied, where

F 1(t ,x ,v) = co I/(t ,x ,u ,v): u e:pl, F 2(t ,x ,u) =co lI(t ,x ,u ,v): v e: Ql

(25)

(26)

Some comments on Theorem 3 are in order. Two Inequalities (26) appear In the

conditions of the theorem. The left-hand Inequality expresses the condition for u

stabillty In Infinitesimal form while the right-hand Inequality expresses the property of
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v-slabilily. Nole lhal inequalities (26) can be lrealed as a generalization of lhe Bell

man equation (18). Indeed, If lhe required derlvallves of lhe funclion P exlsl in some

neighborhood of lhe polnl (t ,x), lhen using equalilies (24) and (2) we oblain lhal equa

lion (18) holds allhe polnl (t ,x). Thus, In lhe case of non-degenerale noise, and If lhe

value function Po Is lwice-dlfferentlable, (26), (24), and (2) may be used lo show lhal

equalion (18) holds for Po al all polnls (t, x) E: [0,") x R n . If we lake anolher

exlreme case, i.e., lhe delerminlslic syslem (i), lhen condilions (25), (26) of Theorem 3

formally become condilions (6), (7) of Theorem 1.

Theorems 1-3 give necessary and sufflclenl conditions for lhe value funcllon and

lherefore can be ulillzed lo demonslrale lhe coincidence of funcllons p wllh value

funclion Po conslrucled In dlfferenl ways. These lheorems are formulaled for differen

tial games wllh a fixed lermlnallon lime". Analogous resulls can be oblalned for olher

lypes of differential games.
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THE SEARCH FOR SINGULAR EXTREMALS

M.L Zellkln
Moscow State University
Moscow, USSR

1. INTRODUCTION

The use of techniques developed for exterior differential systems In the calculus

of variations seems quite promising. If the Legendre condilion Is non-degenerate this

approach leiids to differential forms on the Jet manifold [1], In this paper we consider

the case when the Legendre condition is idenllcally degenerate; this enables us to

obtain much more effecllve results using differential forms defined on the original

manifold.

2. PROBLEM FORMULATION

Let 0 be a smooth n-dimensional manifold and'" be a differential k-form on 0.

The tangent space to 0 at a point x is Tr. 0, and the tangent bundle Is TO. Let Ok. (TO)

be the Grassmann bundle. Its fibres Ok. (Tr. 0) being the Grassmann manifolds of

(oriented) k-planes In the tangent space Tr. 0. Let us suppose that we have an open

subset Kr. C Ok. (Tr. 0) In each fibre of Ok. (T 0) such that the muilivalued funcllon x ~

Kr. is lower semlconllnuous [2]. Let A be a smooth (k -1)-dlmensional compact sub

manifold of 0,

We shall consider the set of piecewise-smooth k-dlmenslonal manifolds W with a

boundary which Is diffeomorphic to A. and ai-mappings f: W -+ 0 [3] such that the

restrlcllon f law Is a diffeomorphism of llW on A. The local coordinates on Ware

t =(t 1 • ...• tk ). while those on 0 are x =(Xl' .•.• x n ). The mapping f Is defined

by x =x (t) in the coordinates t • x. Let Wt • i =1 •.... N denote the cells of W of

maximum dimension defined by a piecewise-smooth structure of Wand Its mapping f; in
N

addition let V = u Wt . A pair (W ,f) is said to be an a.dmissible pa.ir If x (t) E: C2 (V)
t =1

and

1m x(t) E: Kr. (I) Vt E: V (1)
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Here 1m x(t) is an oriented tangent plane to f(W) at the point x(t) (the orientation

being induced by the choice of coordinate system).

Problem 1. Minimize F = J Co) for all admissible pairs (W .I).
f(W)

We shall say that the C 1-minimum of F is attained on the pair (W. j) if there exists

au> 0 such that for all admissible pairs (W, f) with the property

Ix(t}-£(t)1 <u;IUmx(t)-lm£(t)lIe <u '<It EVnV (2)

the inequality F(W .I) ::!: F(W.f) is satisfied. Here II· lie is a standard metric on the

Grassmann manifold. If the second inequality in (2) is omitted we shall refer to the C

minimum of F.

LEllKA 1. The Euler equation for F is equivalent to the following condition: the

value of the form dCo) on (k + i)-vectors which contain the plane 1m x(t) is equal to

zero.

Proof. Let f = Ii 1 •...• i lc 1be a subset of the set 11 , .... n I. We shall take f(O to be

the same as 'f. except that the element i E f is omitted. and fF') to be the same as f.

except that the element i E f is replaced by j. Let J =11 ..... k I; D !xIII D ItJ 1be a

Jacobian corresponding to variables xl and tJ ; and dXI = dx'll 1\ •.. dX'll:' We then

have Co) =L: PI dXI'
I

!5..
Otic

OX'll

Otic

OX'll:

Otic

The Laplace expansion of determinants in the first column gives us

(3)

The Euler equation for F is
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Here '"I corresponds to the position of index i in I. We then have

The last formula does not contain the second derivatives of x (t) due to the identity

detll

a
at 1
aX 1

at 1

ax/r. -1

at li/II

a
at z
aXl

at z
aX/r.-l

at z

a
at/r.

aXl

at/r.

ax/r. -1

at/r.

which is easily verified. Finally, we have

Evaluating the first term with j E: I, j "# i, gives zero, corresponding to the Laplace

expansion of determinants wilh lwo equal columns. The result obtained taking j =i in

the firstlerm, i.e.,

cancels with the corresponding elements of the second term. Thus we have

The firslterm in (4) is the expansion of the determinant

(4)

in lhe j -th row and hence the left-hand side of (4) coincides with the coefficient of tt
in (3). This proves Lemma 1.
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3. NECESSARY CONDITION FOR OPTIMALITY

THEOREM: 1. For (W,f) to be a C 1-minimum ofproblem 1 it is necessay that

d(,J = 0 al all poinls of f (W) (5)

Proof. Lel us lake a polnl of smoolhness of lhe manifold f (W) and choose a local coor

dlnale syslem A wilh lhis polnl as lhe origin (t = 0 • z (0) =0) and such lhal lhe Inverse

image of f (W) In lhe charl A is a k-plane. To simplify lhe nolatlon we will somellmes

ignore lhe distinction belween lhe image and lhe Inverse image of charl A. Lel X = 1m

:i: (0) and (1 •...• (t be a basis of X. Lel H be a subspace of ToO such lhal

H ffiX = ToO and h 1 •..•• h n -t is a basis of H. The following resuilis obvious:

LE:M:MA 2. Consiaer a k-plane A in ToO, a (k -i)-plane B such that (A :J B), ana a

vector tp, such that tp E A , tp E B. Let tpn E To 0, tpn -+ tp as n -+ 00, ana the k-plane

An be such that A :J B, tpn E An' (I'he orientation of A is inaucea by the orientation

of (tp ,B); the orientation of An is inaucea by that of(tpn ,B)). Then I~ -Alb -. o.

We shall prove condllion (5) by induction. From Lemma 1, condition (5) Is valid for

any polyveclor conlalnlng X. Lel us suppose lhal il also holds for any polyveclor

which has alleasl an (s + i)-dimensional inlersectlon wilh X. I.e., we assume lhal

(6)

We shall prove lhal d(,J I(1 •.••• (I;' 711' .•.• 7It -I; +11 = 0 if (t EX. Nole lhal we can

reslricl ourselves lo laking s ~ 2k + 1 - n, since lhe dimension of lhe Inlersectlon of

lhe k -plane X wllh any (k + i)-plane In n -dimensional space To° is equal lo al leasl

(2k+l-n). Hence n-k~k-s+l, and we can selecl lhe subsel

lh 1 •...• h t -I; +11 from lhe sel lh 1 •...• h n -t I. Wllh lhe help of lhls subsel we shall

build (k -s +1) simplexes In lhe Inverse Image of charl A Lel us lake lhe k

dimensional simplex Do in X wllh vertices lO, "(1 ' ...• "(t L where " is a scalar

parameler. Lel 6.0 be a (k + i)-dimensional simplex wilh base Do and verlex

The veclor 711 is chosen In such a way lhal ils projection onlo X along H falls In lhe

cenlre of Do. Hence, by Lemma 2, all lhe side faces of 6.0 belong lo Ko for all suffi

ciently small a > O. Lel D1 be a side face of 6.0 wilh verlices !O,"t 1 •... , "(t -1 ' 7I 1 l.
Now lake a simplex 6.1 wllh base D 1 and verlex

1 t-1
712 = -- [ E "(t + 711] + a"h 2

k +1 t =1
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Again, the projection of 71 2 falls in the centre of D 1. By decreasing the value of ex (if

necessary) we can secure the inclusion of all the side faces of ill in K o. Proceeding in

this way we obtain a chain Z = (ilo+il1 +... + ilot - s )' Since the number of steps is fin

ite, we can find an ex > 0 which secures the inclusion of az \ Do (the side surface of Z)

in K o' Let us fix such an ex and let" -+ O. Then the chain Z is transformed homotheti

cally and contract to O. In view of the lower-semicontinuity of the mapping x 1-+ Kz . we

conclude that the side surface of Z is admissible for all sufficiently small ". We take

I(W) with Do replaced by az \ Do as a variation of the pair (W./). For sufficiently

small ex > 0 this variation is contained in any C 1-neighborhood of the pair (W, I).

Hence

61"= J ,.,-J,.,";!:.O
~Z, Do Do

We have

ot-s ot-s
61" = J ,., = L: Jd,., = L: d"'!7Il'" .• 7It +1 • "t1 • ' , , • "tot -11+ 0 ("ot +1)

~Z t =0 A, t =0

By hypothesis (6). only one term in this sum is not equal to zero:

On dividing by "ot +1 and letting" -+ 0, we obtain

(7)

(6)

The same construction with the vectors h 1 • , . , • hot -s +1 in a different order implies

that (6) is valid for any ordering of hi' ...• hot -s +1' Hence

d,.,lh i .·, '. h ot - s +1' h.",. tsl =0

Thus we have that d,., =0 at any point of smoothness of I(W). Since such points are

dense and the coefficients of d,., are continuous, relation (5) holds at all points of

1 (W). This result is invariant with respect to the choice of coordinate system. This

proves Theorem 1.

4. SUFFICIENT CONDITIONS FOR OPTIllALITY

Definition 1. The differential k -form,., is said to be a monom if it can be represented

as an exterior product of independent, totally integrable i-forms

,., ="It1 A'" 1\ "Itot (9)
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Definition 2. The annihilator of '" (denoted by Ann "') Is the Serre subbundle of TO for

all vector fields v. Substitution In '" gives zero (k -1)-forms:

Ann '" = Iv EC-(O,TO) I vj",=ol

Here v J '" is the contraction of the vector field v by the differential form "'. The

fibre of the bundle Ann'" at the polnt:z; will be denoted by Annz "'. Using the results of

Cartan [4], It Is easy to see that the necessary and sufficient condition for'" to be a

monom is dim Annz '" == n - k and the distribution of subspaces Annz '" is integrable.

If '" Is a monom then there exists a local coordinate system on 0 such that

'" = a(y)dY l /\ ... /\ dYt (10)

The function s (y) =1/ a (y) will be called the integrating j'a.ctor of "'. In view of the

Integrability of the distribution Annz "', there exists a foliation L whose leaves Lx are

(n - k )-dlmenslonal manifolds which are tangent to Annz '" at every point :z;. These

leaves ~ will be called integral surj'a.ces of "'.

Definition 3. We shall say that the function rp(:z;, t) (where t Is a parameter) attains

Its local maximum at the polnt:z; =:z; (t) uniformly with respect to tEE if there exists

a cr > 0 such that rp(:z;, t) s rp(:z; (t) • t) for any tEE and any :z; satisfying

I:z; -:z; (t ) I < cr.

Definition 4. We shall say that", is positively-definite on K, I.e., '" IK > 0, If "'ItI > 0

for all t E K.

THEOREM 2. Let (W,f) be an admissible pair, the form '" be a monom. and'" be

positively definite on K. Then if s I IsC!) attains its local ma:z:imum at the point

i (t) uniformly with respect to t E W. we have that (W ,f) is a C-minimum for prob

lem 1.

Proof. Let us consider a system of local charts ~ covering f (W) such that In any

chart of this system", has the form (10). The compactness of f(W) enables us to

choose a finite number of such charts. Consider any admissible manifold f (W) that lies

In a sufficiently small neighborhood U a of f (W). It follows from the condition of admis

sibility (1) and the condition", IK > 0 that the projection of a k-plane which is tangent

to f(W) onto the plane defined In At by the basis a/ &Yl' ..•• &/ &y/< is non

degenerate. Thus f(W) In ~ can be parameterized using Yl" ..• y/<' I.e., its equa

tion in ~ Is Yi = Yi (y l' ...• y/<), i = k + 1 •...• n. Using the condition "'I K > 0, It

Is easy to show that U a Is flbred Into the Integral surfaces of "'. and the functional In

question can be represented In the form
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where lhe domains Gt are lhe same for all admissible pairs UV . j) wllh f UV) c U '" For

any such a pair we have

::s; a t (Y1 •.. ·• Ylc 'YIcH.···. Y n )

Hence a C-mlnlmum is allalned al UV. j). This proves lhe lheorem.

Remark. Lel'" be a monom and "'IK > O. Then from Theorem 1, d'" =0 implies lhal

lhe veclor grad a (y) is orlhogonal lo lhe plane Ann y Col; lhis is lhe firsl-order neces

sary condillon for s I I" lo allaln ils maximum al lhe poinl y. The condillon d'" =0

gives (n -k) finile relallons aa laYj =o. j =k + 1, ...• n, which for a general

posilion define lhe smoolh k-dimensional submanifold of n which is lhe only candldale

for lhe role of oplimal solulion.

5. DEGENERATE MULTIPLE INTEGRAL MINllIIZATION PROBLEMS

Lel us apply lhe above resulls lo lhe problem of minimizing a mulliple inlegral.

Problem 2. (> =f f (t • x ,:i:) dt -4 inf; x \ ~G = <Po where t E G eRic, x E IRn ,:i: E Lin
G

(!Ric ,Rn ). dt =dt 1 " ... Adtlc • and <P is a given funclion on aGo Ilis well known lhallhe

second-order necessary condillon for :£ (t) lo be a weak minimum in problem 2 is lhe

Hadamard-Legendre condilion [5]:

n n

L: I;
t,j=l «,P=l

(11)

The slluation in which lhe condilion (11) is degenerale has nol been sludied. In

lhis paper we consider lhe lolally degenerale case when lhe biquadralic form (11) is

idenlically zero. The above lheory is concerned exaclly wilh lhls case. Indeed:

Definition 5. The exlremal :i (t) of lhe funcllonal I(> is said lo be degenerate on lhe sel

BeG if for any t E B lhe biquadrallc form (11) is identically zero for all ~ E IRn ,

A ERic.

Lel 62 1(> be lhe second varialion of lhe funcllonal 1(>.

Proposition 1. The eXlremal :i (t) of lhe funcllonal I(> is degenerale on B iff 62 (> can

be wrillen as an inlegral of a differenlial k -form on lhe graph of lhe mapping Y (t) in

B XRn .
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Here y is a variation of :r:, which is an argument of 62 CP.

Proof. Let dt(a) be an exterior product of dt t , omitting the factor dt a : dt(a) =

dt 1 /\ ... /\ dt a - 1 /\ dt a +1 /\ ... /\ dtk • Let dt(a,lI) be the same product omitting dt a and

dt II' The Integrand In 62 cp has the form

(12)

where, since the second-order mixed derivatives are independent of the order of dif

ferntlatlon,

(13)

The third term in (12) is a differential form; the second also turns out to be a dif

ferential form If we recall that

Oyt
-- dt /\ ... /\ dt = (-1)a-1dYt A= dt (a)
iJt a 1 k

The first term can be written as a differential form iff atj all Is skew-symmetric

abouti ,j:

(14)

Indeed, If an Integrand of 62 cp is a differential form, then the summation of the first

term In (12) can be written in the form

To conclude the proof of Proposition 1 It remains only to note that the condition

n k

L: L: atjall~ttj")..a")..11 ~Ofor ~ ERn,").. ER
k

t,j =1 a,1I=1

Is equivalent to relation (14).

(15)

Thus, the exploration of degenerate extremal points leads to the problem of

minimizing Integrals of differential forms. A simple consequence of Theorem 1 Is:

THEOREM 3. Let x (t) be the extremal surface of the .functional cI> which is degen

erate on an open set BeG. Then for x (t) to be optimal in problem 2 it is necessary

thatdGJ =Ofor all (t ,x(t», t EB.

Here the differential k -form GJ Is the integrand of the functional 62 CP, and is

defined using Proposition 1 and the assumptions of Theorem 3.
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ON THE SMOOTHNESS OF THE BEI.J.JL\N FUNCTION IN
OPTIM:AL CONTROL PROBLEMS WITH INCOMPLETE DATA

L.F. Zelikina
Central Economic-Mathematical Institute (CEMI)
Moscow, USSR

1. INTRODUCTION

Studies of the feedback control problem in optimal control and differential games

as well as in sequential control with Incomplete data rely heavily on the smoothness of

the integral functionals defined on solutions of ordinary differential equations with

discontinuous right-hand sides:

:i: =F(x) , x(O) = x o ; X E: 0 eRn (1)

Here 0 is an open connected set and F: 0 -> Rn is a measurable locally bounded map

ping, I.e., for every compact set D e 0 there exists a constant K >0 such that

IF(x) I S K (a.e. in D).

An absolutely continuous vector function x (t) = x:s;o(t), t E: [0, t i)' is said to be a

solution of system (1) if x (0) = Xo and

(2)

where

K:s; IFI = rl n colF(U \ N)I
N,me:sN=O :s; EU

Here the intersection is taken over all N of measure zero and U is an arbitrary neigh

borhood of x. (This definition is due to Filippov [1].) It is easy to show that if F(x) is

continuous, then K:s; IFl = F(x) and x(t) is a standard solution of (1).

The smoothness of integral functionals defined on solutions of systems of type (1)

has previously been considered only in the case of optimal feedback controls. Most

results are concerned with time-optimal problems, provided the assumptions of regu

larity are satisfied for the optimal feedback control. Thus Boltjanskl [2] has proved

the smoothness of the Bellman function on cells of maximum dimension, I.e., at points
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where the optimal control is continuous.

The smoothness of the Bellman function on switching hypersurfaces has been

proved by Satlmov [3] and Trynkln [4]. In [5], Trynkin gives conditions which guaran

tee the smoothness of the Bellman function on universal and semi-universal manifolds of

co-dimension 1. For arbitrary integral functlonals, the Bellman function is known to be

smooth at points where the optimal control is continuous (see [6]). The question of the

smoothness of the Bellman function at points of discontinuity of the optimal control was

considered by Pressman and Sonln [7] in the framework of the theory of sequential

control problems with Incomplete data. It was conjectured that for problems with Pois

son jumps the Bellman function Is smooth If the payoff function is smooth.

In this paper we prove the differentiability of an integral functional at points of

generalized controls on the discontinuity manifold of the optimal control (of any co

dimension). Note that no assumptions regarding the optimality or regularity of the

feedback control are made.

2. FUNCTIONALS OF THE TI.M:E TRANSITION TYPE

Let B eRn be a manifold (terminal manifold) and S be an open connected subset of

R n such that for every X o E: S there exists at> 0 satisfying xxo(t) E: B. Denote by

"ro = "xo(x (.» the time at which the trajectory xxo(t) first encounters B. Let F(x)

be discontinuous on a smooth manifold M and let the trajectories of the differential

inclusion (2) be able to move along M, I.e., for any x E: M we have TxM n Kx "" <p, where

Tx M is the tangent plane to M at x. Let aff K.r. be the affine span of the set Kr and rx

be the subspace passing through the point x parallel to aff Kr . Let T ra<:r: (.» be the

time at which the trajectory xro(t) first encounters the manifold M; and let 8(x) =

"(x)IM' Assume that for all solutions of system (1) the values of "xo(x('» and

T xo(x (. »are the same. (This is the case if, for Instance, the solution of (1) is assumed

to have a unique right-hand side.) In this case the functlonals "xo(x (.» and T ro(x (.»

turn out to be single-valued functions of x o' which will be denoted by "(xo) and T(X 0)'

THEOREM 1. Let the following conditions be satisfied:

1. r x E9 Tx M = Rn ;

2. T(X) E: Lip (M);

3. 9(x) E: C 1(M).

Then the function "(x) is differentiable at each point x E: M and

grad "(x) = y + grad 9(x)

where vector y is such that

(3)

I
I

IIil
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<y ,T> =0 forany T E TxM

(4)

<y + grad e . 7> =0 for any 7 E rx

The following lemmas are used in the proof of Theorem 1:

LEJOIA 1.. Let rx ffi TxM =Rn . Then system (4) has a unique solution.

LEJOIA 2. Let F(x) be continuous at a point x 0 and the function "(x) be d.ifferenti

able at this point. Then

Set R (x) = Tx M n Kx ' Condition 1 clearly implies that R (x) is a single-valued

vector field.

LEJOIA3. Letrx ffiTxM =Rnforx EM. ThenR(x)iscontinuousonM.

The proofs of Lemmas 1 and 2 are trivial; Lemma 3 is a simple consequence of the

fact that an upper-semicontinuous multlvalued mapping with a single-valued image is

continuous.

as
<- (xo) + Yo ,,> =-1ax (6)

Proof. Let us apply Lemma 2 to functions R(x), 8(x) defined on the manifold M. We

have

BS<a; (xo) , R(xo» = -1

In view of the equality <Yo, R(xo» =0, the last equation can be rewritten in the

form

ae
<{ii (xo) + Yo. R(xo» = -1 (7)

Now, since any vector" E: Kxo can be represented in the form IC =R(x o) + 7, where

7 E r xo' Lemma 4, follows from (7) and (4).

Proof of Theorem 1.. Let y (x o) denote the point at which the trajectory xxo(t) first

encounters M. This implies that "(x) = T(X) + S(y(x». For Xo EM we have

T(X O) =0, y(x o) =xoand
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(6)

It follows from condition 3 that

Condition 2 Implies that 0 (t.y) =0 (t.x). Since Yo 1 Tx r!" we have <Yo, t.y> = 0 (t.y)

and the right-hand side of (6) can be rewrltt.en in the form

(9)

We shall now calculate t.y:

T(xO+Ax)

t.y=y(%o+t.x)-y(%o)=%o+t.x + I F(%xo+Ax(t»dt-%o (10)
o

On making the substitution t = T(% 0 + t.x)s In t.he last integral, we obtain

1

t.y =t.x + T(%O + t.x) I Fsds
o

(11)

where F s Is the velocity vector at. the point %xo+Ax (T(%O + t.x)s). Substituting the

expression (11) for t.y in (9) leads to

ae
t.,j = <---a; (%0) + Yo ' t.x> +

(12)

ae 11

+ T(%O +t.x)l1 + <- (%0) + Yo' Fsds >1 + o(t.x)
8% 0

Let U a be a closed, convex, u-nelghborhood of the set Kxo' The upper-semlcontlnulty

of the mapping % I--. Kx means that for any u >0 there exists a 6 > 0 such that Kx c U a

for any % satisfying 1% -% 0 I < 6. The local boundedness of F(%) and condllion 2 Imply

that there exists a 61 > 0 such that for any t.x satisfying I t.x I < 01 and any

t E[O,T(%O+t.x)], we have j%o-%xo+Ax(t)1 <0. Note that %xo+Ax Is the FllIppov

solution of system (1) and hence F(%xo+Ax (t» E KX"o+6z(t) almost everywhere in

[0, T(% 0 + t.x n. Thus F(%xo+Ax (t» E U a (a.e.). We shall now consider the vector AAx =

1

I Fsds which appears on the right-hand side of (12). We have
o

1

AAx =I F s ds =lim L: t.5t F Si
o t
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Since E Asi = 1 and Asi ~ 0, lhe inlegral sum Is lhe convex linear combinalion of lhe

veclors FS(' The poinls Si can be chosen in such a way lhal lhe inclusion

F(x"'o+llx (t» E: Va is sallsfied. The convexily of Va implies lhal lhe inlegral sum

E AsiFs( belongs lo Va and hence il follows from lhe facl lhal Va is closed lhal lhe
i

limil of lhese sums also belongs lo Va, i.e., All:r: E: Va for all liz such lhal I liz I < 151,

Thus from Lemma 4 we have

as
11 + <--a; (xo) + Yo, A llx >1 = 0 (1)

and from condllion 2

88
T(XO + 1iz)!1 + <0; (xo) + Yo, All:r: >1 = 0 (liz)

Finally, we have

886." = <- (x o) + Yo' liz> + o (liz)ax

This proves lhe lheorem.

The following resullis a dlrecl consequence of Theorem 1:

THEOREM: 2. Consider the time-optimal problem

:i: = f (x ,u)

U E: veRt , x (0) = x 0 • x (T) E: B

T -.inf

Assume that in the region n we have a synthesis of extremal paths containing a

smooth universal manifold M and such that all the conditions of Theorem 1 are

satisfied. Then the Bellman function is differentiable at all points in M, and its

gradient is of the form (3)-(4).

Lel us suppose lhal lhe disconlinuily manifold M for some lime-optimal problem Is

Isolaled, i.e" lhere exlsls a neighborhood of M which conlalns no polnls of dlscon

linully aparl from lhose contained In M. Then lhe Bellman funclion is conlinuously dif

ferenliable If some addilional assumplions are made. The exact formulation of lhis

lheorem Is given in [8].
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3. THE CASE OF ARBITRARY INTEGRAL FUNCTIONALS

Lel us consider lhe Inlegral funclional

"'"o(x (.»
G.l = J f(xxo(t»dt

o
(13)

where f: 0 -->R1 is a measurable, locally bounded mapping. As before, {}xo(x('» Is

lhe lime al which lhe lrajeclory xxo(t) firsl encounlers B. Addilional difflcullies arise

here when f (x) is disconlinuous on lhe same manifold M as F(x). Indeed, lhe reslrlc

lion of f (x) lo lhe disconlinuily manifold could lead lo a "bad" (in parllcular.

unmeasurable) funclion. In lhe case of generallzed conlrols lhis difficully is assocl

aled wllh an open sel of inilial values of x o' To define lhe funclional In such cases lel

us consider lhe solullon (x (t), y (t» of lhe exlended syslem of differenlial equalions:

:i: =F(x) , x (0) =x D

(14)

y =f (x) , y (0) =0

Here (x, y) e: K(x,y)IF,f I. Define

Assume lhal for all solullons of syslem (14) lhe value of y ({}xo(x (. ») will be lhe

same. (This is lhe case, if, for inslance, lhe solullon is assumed lo have a unique

righl-hand side.) In lhis case lhe funcllonal G.l(xxo(·» lurns oul lo be a ~ingle-valued

funcllon of xo, which will be denoled by G.l(xo)' Lel F(x) be discontinuous on lhe

smoolh manifold M and lel lhere exisl a neighborhood of M such lhal all lrajeclorles of

(2) from lhis neighborhood reach M and move along M.

Our aim is lo sludy lhe smoolhness properly of G.l on M. Since K (x, y) IF ,f I
depends only on x, we shall denole II by Kx. Lel f x be lhe subspace passing lhrough

lhe polnl x parallel lo aH Kx and Lel T(X) be lhe lime al which lhe manifold :M: = M x]Rl

is firsl encounlered, slarllng from lhe poinl x and moving along lhe lrajeclories of

syslem (14). Lel TxM be lhe tangenl plane lo Mallhe polnl x and O(x) be lhe reslric

lion of lhe funclion G.l(x) lo M: O(x) = G.l(x) IM'

THEOREM 3. Suppose that the following conditions are satisfied:

1. f x EB TxM =Rn +1;
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2. T(%) E Lip (M);

3. 0(%) E C 1(M).

Then the function CJ(%) is differentiable at each point x EM and grad CJ =II + grad

0, where the vector II satisfies the system

<t, v> =0 for any t E T:z:M

-'0 + <II + grad 0,-,> =0 forany (-"-'0) E r:z:

The above lheorem is due lo Zelikina and Zelikin.

4. ANOTHER PROBLEM

Lel us now consider lhe following problem:

(15)

u

FA; +1(t. 7}) = J z(s)[Pl(7})FA;(s. r l 7})a1 + P2(7})FA;(s, r27})a2]ds -0 min (16)
t

where f.L > i\,

r1 is a jump of lhe firsl lype and r2 is a jump of lhe second lype. In addition Pjaj is

lhe probabilily densily for jumps of lhe lype j - sunder conlrol a = (a 1 ,a2 ) and z (s)

is lhe unconditional probabilily lhallhere are no jumps before some lime s .

This problem is similar lo lhe "lwo-armed bandil" problem (see, e.g., [7]), lhe main

difference lying in lhe facl lhal in lhe classical version we have lo maximize lhe func

lIonal (16). In lhis case we find lhe slralegies which maximize lhe probabilily of lhe

evenl: "The number of jumps on lhe lime inlerval [t ,1.1.) is nol grealer lhan K". This

leads lo a new phenomenon: from lhe second slep (K >1) we oblain a non-differenliable

optimizalion problem.
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THEOREM: 4. The optimal feedback control in problem (15)-(16)for any k > 0 is

I1 , if 71 > 0
a 1(s ,71) = 0, if 71 <0II or 0 , if 71 = 0

An expllcil formula for lhe Bellman funclion is oblained for any K > O. For inslance, if

K =1 we have

Il is easy lo see lhal F 1(t ,71) is non-dlfferenliable al poinls on lhe line 71 =0 despile

lhe facllhal lhe payoff funclion (16) is smoolh, and hence lhe conjeclure suggesled In

[7] Is nol correcl. The non-dlfferentiabilily of lhe Bellman funcllon In our case Is due

lo lhe violalion of condllion 2 of Theorem 3.
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