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FOREWORD 

One of the activities of the Population Program at IIASA focuses on 
the analysis of social-economic and medical-demographic consequences of 
aging. The methodology of this research is based on the concept of 
heterogeneity that emphasizes the importance of differences among the 
individuals' susceptibilities to various forms of demographic transitions. 

This paper discusses an approach to the data analysis in the presence 
of hidden heterogeneity. The author suggests the use of a modification 
of a quite general statistical model in order to take hidden heterogeneity 
into account. The results of the paper can be useful in many fields 
related to data analysis in the presence of latent variables. 

The paper was produced during the Young Scientists Summer Program at 
IIASA in 1986. 

Anatoli Yashin 
Deputy Leader 
Population Program 
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HETEROGENEITY IN COMPOSITE LINK MODELS 

Camille ~anderhoe f t * 

1 . l NTRODUCT ION 

The purpose of this paper i s  to show how a quite general stat ist ical  
model can be modified in order to take hidden heterogeneity into account. 
The author's know ledge about hidden heterogeneity finds i t s  origins in  
the study of quasi-likelihood estimation techniques (Wedderburn,l974; 
McCul lagh, 1 983). The methods discussed in this paper are extensions of 
models proposed by Wi 11 iams ( 1 982) and Breslow ( 1 9841, who introduce 
respectively extra-binomial variation in the binomial-logistic-linear and 
extra-poisson variation in  the Poisson-log-linear model. 

The methods of this paper ref lect the author's experience w i th  the 
statist ical package GLlM (Baker and Nelder, 1978) : see the formulation of 
the basic model as a composite link model in  Section 3 and the 
numerical example in  Section 9. I t  i s  hoped that the models discussed 
can be used in  the analysis of demographic processes, though we don't 
have numerical results so far. This i s  our maln topic for  further 
research. 

This paper i s  rather an introduction to new estimation techniques in 
demographic analysis. The mathematical details are therefore not given; 
they may be published elsewhere. 

* Camille Vanderhoeft, Interuniversity Programme in Demography, Vrije Universiteit, 
Pleinlaen 2, 1 050 Brussel , Belgium. 



2. THE DATA 

Consider a sample of individuals, drawn from a population in which we 
want to study the occurence of some event(s), and assume that we know 
for each individual i t s  age x, measured in completed units (e.g. months, 
years,...). The subsample of individuals aged x w i l l  be called cohort x . 
Suppose that the minimum age of individuals in the sample is  xo and that 

the maximum age i s  x,. We assume further that the data on the occurence 

of the event(s) of interest are i n  one of the following three forms. 

a. Binomial data : 

where nxis the total number of individuals in  cohort x and yxis the number 

of individuals in  cohort x who have ever (i.e. by age x) experienced the 
event of interest. Binomial data are data on a non-renewable event. 

b. Poisson data : 

where nx is  as before and y, i s  the number of events of interest ever 

experienced by the individuals in  cohort x. Poisson data are data on a 
renewable event. 

c. Multinomial data : 

where to i s  the minimum age ( in completed units) at which an individual 

might experience the event of interest, n, i s  as before and yt, i s  the 

number of individuals i n  cohort x who have experienced the event of 
interest at age t. Multinomial data are data on a non-renewable event. 

Clearly, i f  we also know for each individual a set of characteristics 
X=(X, .... X,). then we may consider cohort -sudgroups (x,X) and 

correspo-riding counts nxxJ yxx, and yhx. Whenever possible, covariates X 

are dropped from the notations for the seek of simplicity. 



There may be several reasons for collection of the data i n  one of the 
above described ways. First, exact ages of individuals and exact ages at 
which events are experienced are rarely known. Ages are often given 
merely i n  completed units (e.g. months, years,...). I t  i s  therefore not 
unreal is t ic  to  consider grouped (aggregated) data. In other words, 
multinomial data often reflect al l  the informatron available. (Note that 
multinomial data are here only defined for non-renewable events, but we 
could consider some similar form for renewable events.) Second, the lack 
of accuracy i n  the data may be such that multinomial data are unreliable, 
while the corresponding binomial data - note that yx=ItCx y, - are much 

better, although they are less detailed. For instance, the retrospective 
WFS data on breastfeeding duration are often inaccurate since women 
cannot remember the exact age at which they weaned their children. 
Breastfeeeding durations are therefore often given as multiples of 6 
months. This i s  the well-known phenomenon of heaping Binomial data 
on breastfeeding are thus more reliable than multinomial data i f  there i s  
a strong effect of heaping. 



3. MAXIMLIM L I KEL I HOOD ESTIMATION AND MODELLING 

The usual procedure for analysing data as described i n  Section 2 i s  to 
construct a (log-) likelihood function and to maximize th is  w i th  respect 
to the parameters involved. Thus, for the binomial data, for instance, one 
would assume that the counts y, are, given n, and n,, independent 

binomially distributed, and the likelihood would be (proportional to) 

Note that n, i s  the probability that an individual i n  cohort x has 

experienced the event of interest. Unrestricted estimates of the 
probabilities n, are the observed proportions y,/n,. But only rarely i s  

the sequence y x n X x  increasing as it should be since f i x )  i s  the 

discrete counterpart of the cumulative distribution function, F(.) say, 
which describes the occurence of the event by age. Moreover, 
unrestricted estimation does not provide estimates below the minimum 
age xo and the maximum age x,. For those reasons, one may prefer to  

model the basic parameters n, through some analytic formula. 

The parametric model considered i n  this paper i s  as follows. Consider a 
non-repeatable event, l e t  T be the random variable representing the age 
at which the event i s  experienced by an individual, and le t  F(.) be i t s  
cumulative distribution function. Then, we assume : 

where OcCi 1, 8 )0, k)O, and where the transformation 4 (.)= 4(.;ml ,m2) 

i s  defined by i t s  inverse : 

.- YI rrllp~ 1 ~ ~ i ' m 1 + m 2 '  

1 /I+- du, (3.3) 
'' rn, 

where r (.) i s  the gamma-function, -=<w<-, m,>O and m2>0. Note that 

C=lirn F(t), so that we may call C the u / t im te  proportion (i.e. the 
t+oo 



proportion of individuals who have ever experienced or who w i l l  ever 
experience the event). Of course, i f  C* 1 ,  then F(.) i s  improper, meaning 
that there are individuals who w i l l  never experience the event of interest 
(e.g. some women never marry, or do not resume menstruation,...). 
Further, we w i  1 1  call b the shift, k the sca/e, 8 the s/ope and B the 
intercept I f  the observed individuals are classified according to 
covariates X, then we w i l l  assume C=C(X), 8 = 8 (X), B=D(X), b=b(X) and 
k-k(X), but the parameters m,, m, and 5 are assumed to be independent of 

covariates X. Obviously, i f  the model i s  used for a comparative study (i.e. 
i f  we wish to compare the schedules F(.; X) across subgroups X), then the 
parameters of interest are C,  8 ,  O ,  b, and k. The parameters m,, m,, 

5 may then be cal led nuisance parameters. 

The model (3.2-3) can also be used to analyse the occurence of repeatable 
events. For 'instance, the event may be the bi r th of a child. Then C i s  the 
total fer t i / i ty  rate, and F(t) i s  the cumulative fer t i l i t y  rate up to  age 
t .  Thus, i f  repeatable events are to  be analysed, then C i s  called the 
total rate and F(.) the cumu/ative rate function Note that C>O i s  
now the only restriction on C. 

I f  the model (3.2-3) i s  used i n  the analysis of binomial data, then we 
assume n,=F(x+ 1 /2), substitute this in  (3.1 ), and the problem i s  then to 

maximize L or log L wi th  respect to the parameters C, 8 ,D,... (some of 
which may be fixed a priori). Unfortunately, we are dealing here wi th  a 
constrained maximization problem, since some of the parameters are 
constrained. In order to  avoid this problem (partially), we use the 
reparametrization : 

C(X)= 1 /( 1 *exp(- qc(X)) for non-renewable events 

=exp( ?,(X)) for renewable events 

B(X)=exp( qe(X)) 

b(X)= ?,(XI (3.4) 

k(X)=exp(-? ,$X)) 

J3(X)=q,(X) 

where the q(X) are functions which are linear i n  both the parameters and 
the covariates, that i s  q(X)=Zj Xj. q ,. The parameters q i, which may be 

called the /?near parameters, are essentially unconstrained. 



The model (3.2-4) i s  a very flexible one. Indeed, a lot of special models 
used i n  various areas of research (e.g. demography, bio-assay, 
epidemiology, re1 iabi 1 i ty, ... ) are covered by this general model. Such 
special models are obtained for special values of the parameters; for 
instance by considering the l imi t  cases m, + 0 or -, m, + 0 or - and/or 

b40, and/or f ixing some parameters of interest (e.g. 8 (XI= 1 and 13(X)=0 to 
obtain a class of shifted-accelerated failure time modelg. The 
more interested reader i s  refered to Prentice (19761, Kalbfleisch and 
Prentice ( 1 980) and Vanderhoeft ( 1 983). Two examples w i l l  be discussed 
i n  more detail at the end of this section. 

Reparametrization to  linear predictors 9 (XI i s  not only useful to 
avoid a constrained maximization problem, but also for  the following 
reasons. First, maximum likelihood theory states 'that the asymptotic 
distribution of the maximum likelihood estimators i s  normal. But since 
the normal distribution i s  the distribution of a random variable which 
takes negative as well as positive values, it may be expected that the 
asyrr~ptot ic  theory applies better to unconstrained parameters, providing, 
for instance, better confidence intervals, from which the confidence 
intervals for the constrained parameters are easily constructed. Second, 
the Ilkellhood function may behave better as a function of the 
unconstrained parameters, improving convergence properties of the 
maximization procedure. Third, the model i s  an extension of the 
qenerali2ed linear models described by Nelder and Wedderburn 
(1972) In such models, the mean p of an observation i s  related to  a 
single 1 inear predictor 9 through a link function g(.), where q =g(p). 
The model (3.2-4) relates the mean p of an observation to several linear 
predictors , q8 ,..- . Following Thompson and Baker ( 1 98 1 we may 

speak of composite /ink functions, and the model (3.2-4) i s  therefore 
refered to as a composite link model(CLM) i n  the rest of this paper. 
(Cox (1984) notes that the composite link function i s  in  fact an 
unlinking function, since there is  no longer a Isink or one-to-one 
relation between p and the linear predictors. This has an important 
consequence i f  one looks for in i t ia l  values of the parameters i n  the 
estimation procedure.) Fourth, 1 i near predictors and parameters are also 
useful s'ince they often sirr~plify 'interpretation and discussion of the 
results, particularly i n  a comparative study. 

We shall now close this section by considering briefly two special 
models, which w i l l  be refered to  repeatedly i n  the next sections. First, 
we have the Coale-Mcneil model This model i s  obtained from the 



general model (3.2-4) by assuming m, + -, m,=.604, b = 1, 8(X)= 1 and 

13(X)=0. Detai 1s about 'this model can be found i n  Coale and McNeil ( 1972), 
Rodriguez and Trussell ( 1980) and Vanderhoeft ( 1983). The Coale-McNeil 
model has successfully been used i n  the analysis of nuptial i ty, f i r s t  b i r t h  
and f i r s t  union. This does not mean that the Coale-McNeil model i s  the 
only possible model fo r  such analyses. Indeed, Trussell and Bloom ( 198 1 ) 
have shown that a proportional hazards model can be a good alternative. 
Similarly, Vanderhoeft ( 1 985) used a s h i f t e d - p r o p o r t i o n a l  hazards 
m o d e l  f o r  the analysis of  f i r s t  union. Those findings support the idea 
that other special models, obtained from (3.2-41, are useful alternatives 
t o  the Coale-McNeil model. Therefore, we w i l l  consider a class of 
shi f  ted-proportional hazards models obtained from (3.2-4) by assuming 
that m,=l, m, + -, 8 (X)=l and k(X)=l. Note that +(.I i s  then the 

complementary log-log (cloglog) transformation + (fl)=log(-log( 1 -n)). 
Note also that we obtain a parametric model, whi le  Trussell and Bloom 
( 198 1 ) and Vanderhoeft ( 1985) considered semi-parametric proportional 
hazards models. 



4. SOURCES OF HETEROGENEITY 

Consider the binomial data of Section 2. I f  we want to  f i t  the CLM (3.2-4) 
to  such data, then, if the model involves s unknown parameters, one 
should have a t  least s t 1  (consecutive) cohorts xo,..,xl say. (We ignore 

covariates for  a while.) For instance, in  order t o  estimate the 
parameters C, b and k i n  the Coale-McNei 1 model, one should have at  least 
4 cohorts. This imp1 ies that trends across the cohorts xoJ...xl cannot be 

estimated. But cohort trends may be an important source of 
heterogeneity i n  the data on the cohorts xo,...xl, which may yield bad or 

misleading results. Simi lar remarks can be made on Poisson and 
multinomial data. Thus, each kind of data has some limitations, which 
may lead t o  some kind of heterogeneity which i s  not incorporated i n  the 
basic model (3.2-4). 

Of ten, covariates, i f  included i n  the types of data discussed i n  Section 2, 
are measured a t  the cohort age x, whi le it might be more real ist ic t o  
measure them a t  the t ime the event i s  experienced; or  even better: t o  
construct covariates from measures a t  both age x and the t ime the event 
i s  experienced. If, however, not enough details are available on the 
covariates, then one cannot avoid th is  problem of misclassificatiun . 
This i s  another source of heterogeneity which can lead t o  bad f i t s  of the 
model. 

Another problem might be considered i n  connection w i t h  categorical 
covariates. Indeed, it can for  instance be d i f f i cu l t  t o  classify individuals 
i n  one or another category of a particular covariate. One usually groups 
such categories which are hard to  distinguish i n  order t o  avoid 
misclassification, but th is  i s  surely another source of hidden 
heterogeneity i n  the data. 

Consider data on f i r s t  union. There can be really an irr~portant difference 
i n  attitudes between individuals who enter f i r s t  union through 
cohabitation and individuals who enter f i r s t  union through marriage. 
Thus, i n  general, unrecorded causes of failure can be another source of 
heterogeneity. 

I t  i s  thus 1 ikely that application of the CLM (3.2-4) for  analysis of data as 
described i n  Section 2 yields bad f i t s  - and misleading results - i f  there 
i s  an important degree of hidden heterogeneity present. Therefore, we 
w i l l  now develop a model which takes th is  heterogeneity into account. 



5. QUASI-LIKELIHOOD ESTIMATION 

This section w i l l  briefly deal w i th  the concept of quasi-likelihood (QL). 
We shall only mention the main ideas of this very new statistical 
estimation method. The reader i s  refered to  Wedderburn (1 974) and 
McCullagh (1 983) for more details. 

In traditional maximum likelihood (ML) estimation one starts wi th  the 
construction of the (log31 ikel i hood function. 'Therefore, it i s  necessary 
to know the complete distribution of the observations y. Often, one may 
have good reasons to assume one or another particular distribution. For 
the binomial data, for 'instance, it i s  often reasonable t o  assume that the 
y, are (conditional 1 y on the nx ) independent binomially distributed. But 

often does not mean always and so investigators have found examples 
of it. In most - i f  not a1 1 - of these cases it was found that the variance 
of yx i s  not the variance which i s  implied by the binomial distribution. 

More specif ical ly, investigation of the observed mean-variance 
relationship may indicate that the observations y, are not binomially 

distributed. Examples are found i n  the papers mentionned i n  the beginning 
of this section. One may then try to  find a distribution which has the 
observed mean-variance relationship, but this would be a very tedious 
problem. I t  i s  at this point that the QL method becomes a very powerful 
tool, since one does not need the complete distribution of y,, but merely 

the mean-vari ance relationship. Indeed, suppose that p, i s  the mean of y, 

and that V(p,) i s  the variance of y,, where V(.) i s  a known function. Then, 

the QL function l(y,,p,) i s  simply defined by the differential equation 

In order to  obtain the QL estimates of the parameters lr, J... y ,,,# where 

, = p x  y , , it i s  not needed to  know the likelihood l(y,,p,) or to 
solve (5.1 ). The estimates are simply found by solving the equations 



or, applying the chaine rule and substitution of (5.11, by solving the 
equivalent equations 

Yx-Px ax 
1 - - =  

X 
0 (j= 1 ,... m), 

V(vx )  d v j  

where it i s  assumed that the observations y, are independent. 

In the next sect ions we shall introduce heterogeneity in  our CLM (3.2-4) 
and we shall show that, for  instance for the binomial data, the usual 
binomial mean-variance relationship does not hold. In order to get the 
appropriate mean-variance relationships it w il l be unnecessary to derive 
the fu l l  distribution of the observations y,. Estimation of the parameters 

of the extended CLM w i l l  then use ideas of QL estimation , as we shall 
briefly discuss i n  Sections 6 and 7. 



6. POISSON-NORMAL COMPOUND MODELS 

In this section we w i l l  show that the Poisson-normal compound (PNC) 
model discussed by Hinde (1982) can be used to introduce heterogeneity 
in our CLM. I t  w i l l  also be shown how QL methods can be used to obtain 
estimates of the parameters of the model. In this section we also 
introduce the notations used in Sect ion 7. 

Hinde ( 1982) considered the following model for Poisson data: 

YlX,Z - P ( p )  
log p = X.D+Z 
Z - N O ,  u 2 )  

Thus, Y is  conditionally on X and Z Poisson distributed wi th  conditional 
mean D. The condltlonal mean D 1s related t o  the covarlates X and the 
random variable Z through (6.1 b). The random variable Z i s  normally 
distributed wi th  mean zero and variance u2. X i s  a row vector of 
covariates (X, ,... X,) and D i s  a column vector of parameters: DT=(J3, .... o,). 
In order to relate this model to the Poisson data of Section 2, it should be 
noted that X includes the age variable x, and that Y has realizations yx. 
Note also that the mean and variance of the random variable Z do not 
depend on X. The conditional expectation D can be wri t ten E(Y(X,Z) - or 
E(YIZ) for brievity, since the X are fixed - and Is Itself thus a random 
variable which takes values E(YIZ=z). This value E(YIZ=z) can be 
interpreted as the mean of Y in  a homogeneous population wi th  frai/ty 
Z=z (and wi th  characterlst ics X, whtch are dropped from the notations). 
The random variable Z represents hidden heterogeneity, since the 
realizations z are not observed. 

In order t o  estlrnate the parameters B and u2 of the PNC model (6.1). 
Hinde used the EM algorithm. He showed that the iterative procedure Is 
rather simple, but, nevertheless the method heavl ly relies on the assumed 
normal distribution of 2. In some circumstances we can avoid this 
disadvantage as follows. I t  i s  easy to show that the model (6.1) implies 
the uncondltlonal mean and variance of Y : 

Now, i f  o2 i s  small, we have approximately : 



Note that po may be interpreted as the mean of Y i n  the homogeneous 

population wi th  f ra i l ty  Z=0. We see thus that the variance of Y is  a 
function of the mean of Y (at least approximately), and that the mean only 
involves the parameters 8 .  Hence, i f  u2 would be known, (approximate) 
QL methods could be used for estimation of 8. I f  u2 i s  not known, one 
can construct an iterative procedure as follows : 

( 1 ) Choose an ini t ial  estimate a: (e.g. $=o). 

(2) (Relestlmate the parameters D, using QL methods (which 
reduces toML estimation i f  ai=O). 

(3) Reestimate a2, replace 0; by this new estimate and return to 

step (2) (until1 some convergence criterion is  satisfied). 

Thus, i f  aZ i s  small, we have the above alternative t o  the EM algorithm. 

Extensions of the PNC model (6.1 ) are easily constructed. Indeed, (6.1 b) 
can be rewritten as p=exp(X.D).exp(Z). I f  we now replace the factor 
exp(X.8) by ~-'(x.D), where g(.) corresponds to the link function in 
generalized linear models, then we can s t i l l  show that 

or, i f  a2 is  small : 

The parameters D and a2 can s t i l l  be estimated wi th  the EM algorithm as 
discussed by Hinde ( 1  9821, or, i f  aZ i s  small, w i th  the alternative method 
based on QL. 

The PNC model can also be extended for corrrposi te 1 ink models. Let there 
be k 1 inear predictors '(,=X,.Bj, j= 1 ,... k, and suppose that the mean of Y is  

F ql,... q,) i f  there would be no hidden heterogeneity. Let i b e  the 



supermatrix (i.e. a block diagonal matrix) 

and B be the supervector 

so that 

and 97 'I,,... ?$=n q ). The PNC model for composite link models (and for 

Poisson data) i s  thus: 

The parameters B and 0' can s t i l l  be estimated wi th  the EM algorithm 
as discussed by Hinde (1982). I f  aZ is  small, we can also apply the 
alternative method based on QL and on the approximate relations 

As ment ionned already, a disadvantage of Hinde's estimation procedure i s  
that it i s  based on the assumption that Z i s  normally distr'ibuted. The 
alternative method (for small a'), however, does not use the distribution 
of Z, since relations l ike (6.7) can be shown to hold for any distribution of 
Z (wi th zero mean and (small) variance a'). Thus, it i s  sufficient to 



assume that 

where ( 6 . 8 ~ )  means that Z has some distribution wi th  mean zero and 
variance 02. The model (6.8) leads t o  the approximate relations (6.7). for 
small 02, and the method based on QL can be applied in order t o  est Imate 
the parameters B and a'. The advantage of a model l ike (6.8) i s  that no 
assumption i s  made about the shape of the distribution of 2. (Note that 
we can, therefore, not derive the unconditional distrlbution of Y.) In the 
next section, we w'i 11 consider other extensions which use the same idea. 



7. CLM'S WITH MULT l DIMENSIONAL HETEROGENEITY 

In the PNC model (6.1 ) of Hinde (1 9821, the heterogeneity variable Z may 
be considered as act/ng //near/y an the //jlear ,~redjcfar X.13. 
A1 ternatively, we may say that Z acts mu/t/p/icative/y an the mean 
of Y .  In the more general model (6.8) we can s t i l l  say that Z acts 
multiplicatively on the mean of Y, but we cannot say that Z acts linearly 
on the linear predictor(s1. The lat ter  i s  only true i f  there i s  only one 
linear predictor ( k= l )  and i f  f i  q)=exp( q 1, i.e. under the condition (6.1 b). 
In this section we present some models wherein heterogeneity acts 
linearly on each of the linear predictors. We therefore consider a 
vector-valued random variable z=(z, ,... z,)~, so that each Zj w i l l  act 

1 inearly on the corresponding 1 inear predictor qj=Xj.Dj. 

The models for b'inomial, Poisson and multinornial data discussed i n  
Section 2 are as follows. 

a. Binomial data 

where (7.1 c) means that Z has some (multidimensional) distribution w i th  
mean vector 0 and dispersion matrix Z: The following approximations 
can then be found: 

where J is  the vector of partial derivatives dF /dq j  evaluated i n  q : 

Note that F( q+Z)=nX,.O ,+Z,,..Xk.Ok+Zk). 



b. Poisson data 

Then we can find the approximations 

where J is  as for the binomial data. 

c. Multinomial data 

First, we introduce some notations. We consider a vector Y=(Y,l...Yt,...Y,)Tl 

where Y, has realization y, (covariates, including cohort x, are again 

dropped from the notations). Further, le t  p=(p,,...ptl...p,)T and UY)  be the 

dispersion matrix of Y. The model is: 

where F (.I i s  now the vector-valued function 

and where (7.5a) means that Y is, conditionally on I a n d  Z (and on 
n=Y,+ ...+ Y,), multinomially distributed wi th  mean-vector p. We can then 

find the approximations 

where J is  the jacoblan matrlx evaluated In q 



where F i s  the j- th partial derivative of ,F (t= 1 .... 1; j= 1 .... k), and where 
t j 

V ( q )  i s  the matrix : 

From the general models (7.11, (7.3) and (7.5) one can obtain special 
models by assuming special forms of the dispersion matrix 2. For 
instance, one might assume that 2 i s  a diagonal matrix, which means 
that the heterogeneity variables are not correlated. The most simple 
case i s  obtsined when I= 02.4 where f i s  the identity matrix of order k. 
I t  i s  worth noting that the approximate expressions for the variance of Y 
(or the dispersion of Y )  are then much simpler. For instance, i n  the 
binomial case we get : 

Note also that under the condition I= a 2 . f t h e  models are equivalent to 
the model in which there i s  only one heterogeneity variable Z which acts, 
however, 1 inearly on each 1 inear predictor qj. 

The models which we have discussed here are generalizations of very 
special models discussed by Williams (1982) and Breslow (1984). In the 
same spir i t  as those authors constructed algorithms for estimation of 
the parameters D and I, we can consider the following procedures. The 
f i r s t  algorithm assumes that the approximate variance of Y (or dispersion 
of Y )  can be wr i t ten as a function of the approximate mean. Then, i f  2 
would be known, we could estimate D by QL methods. I f  2 i s  unknown, 
we propose the following iterative procedure : 



( I ) Choose an in i t ia l  estimate I, (e.g. I,= 0. 
(2) (Relestimate the parameters B ,  using QL methods (which 

reduces to ML estimation i f  I, = 0 ). 

(3) Reestimate I, replace I, by this new estimate and return to 

step (2) (unt i l l  some convergence criterion i s  satisfied). 

This algorithm is  clearly an extension of the algorithm discussed in 
Section 6. If, however, the approximate variance of Y (or dispersion of Y) 
cannot be wr i t ten as a function of the approximate mean, then this 
algorithm is  not applicable. We then proceed as follows. For the binomial 
case, for instance, we wr i te  

where 

or, more compact, but easier to deal w i th  in  generalizations : 

where v=n.F(q ).( 1 - F (  q )) and w i s  as before. Note that i f  there i s  no 
heterogeneity, then w= 1 and v i s  the unconditional variance of Y. Thus, 
we wr i te the approximate variance of Y as the rat io of the variance of Y 
i f  there would be no heterogeneity, and weights w. Similar techniques 
can be applied for the Poisson and the multinomial cases : for the Poisson 
case we have v = n q  ) and w-'- 1 +[JT. I.Jl/flq 1, and for the multinomial 
case we have D(Y )-- B? I '' where Y and I are matrices defined as 

1 T m.V( q ) and I - '=I + n(n- 1 ) V - .J . I J .  The estimation procedure 
may then be as follows: 

( 1  ) Choose in i t ia l  estimates for both 2 and B , and calculate w 
(or I ) .  

(2) (Re)estimate D by QL methods, given the fixed weights w 
(or I ) .  

(3) Reestimate I, recalculate w (or I )  using the new estimate for 
I and Dl and return to step (2) (unti l l  some convergence criter- 
ion i s  satisfied). 



8. FURTHER RESEARCH 

We intend to use the models discussed in  the previous sections in  future 
research. First, we w i l l  use them in  simulation studies in  order to find 
answers on some general questions. Next, we also intend to apply the 
techniques to real data sets. This section deals w i th  some problems 
connected wi th  the models considered and indicate how simulation 
studies may be useful in  solving them. 

Even i f  there i s  no hidden heterogeneity or i f  hidden heterogeneity can be 
ignored, some problems arise when one uses the CLM of Section 3. As 
mentionned in  the last paragraph of Section 3, there may indeed exist a 
good alternative to the Coale-McNei1 model in  'the class of 
shifted-proportional hazards models. This supports the following study : 
simulate data under the Coale-McNeil model and try to obtain good f i t s  to 
this data wi th  a shifted-proportional hazards model. The problem w i l l  be 
to determine a suitable value for the nuisance parameter b . Such a 
simulation can be done without considering covariates. I f  covariates are 
included, some additional problems arise in  view of the structure of the 
1 inear predictors. Suppose, for instance, that data are generated under 
the Coale-McNeil model and under the assumption of additive effects of 
covariates only (i.e. no interaction effects in the linear predictors). The 
question i s  then: i s  this additivity assumption also valid under a 
shi f ted-proportional hazards model? More general ly, one may try to find 
nuisance parameters m,, m, and b such that al 1 or some specified linear 

predictors have relatively simple structures. Or, in other words, what 
may be the effect of changing the values of the nuisance parameters on 
the structure of the linear predictors. Note that simplicity ln  the linear 
predictors w i l l  simplify the interpretation of the results, particularly in  
a comparative study. A problem which i s  related to this i s  that of 
robustness of summary measures such as 'the mean, the median, the 
variance and the quartiles of age at  which an event i s  experienced. 1.e. 
how important can be the effect of changing the values of the nuisance 
parameters on the summary measures? 

I t  i s  worth to mention at  this point some studies in  related topics. For 
instance, quite a lot  of literature exists on the problem of whether one 
should use the probit, the logit or the corr~plementary log-log 
transformation (i.e. the choice of Q (.) i n  our CLM); see Genter ( 1 982) and 
the reference l i s t  in  that dissertation. Another problem i s  that of using 
the power transformation (also called the Box-Cox transformation, see 



Box and Cox ( 1964)) as a transformation to normality, symmetry and/or 
additivity (Hinkley, 1975; Breslow and Storer, 1985). Note that the power 
transformat ion is  used on the r.h.s. of equation (3.2). 

Similar problems may arise when heterogeneity i s  incorporated in the 
model. I t  i s  interesting to mention here the report by Vaupel and Yashin 
(1985), in which the authors show that even i f  hazard rates for 
individuals follow simple patterns, the estimated hazard rate for a 
heterogeneous cohort can show a much more complex pattern. This gives 
rise to some interesting problems. For instance, i s  it possible that 
simple (e.g. additive) structures for the llnear predictors in the CLM are 
found i f  the model incorporates heterogeneity, while this may not be so i f  
the model does not incorporate heterogeneity? 

The models for heterogeneity discussed in this paper should also be 
compared wi th  models wi th  a longer tradition. Indeed, remember that the 
approximate models of Section 7 are likely to be more appropriate when 
the variances and covariances of the heterogeneity variables Z,, ... Z, are 

small. The problem i s  to  find some indication on how small these 
parameters should be. Moreover, as the approximate models do not use 
any distribution for the heterogeneity variables, one should compare 
those models wi th  models where Z i s  assumed to have a particular 
distrlbution. 'This might be studied as follows: simulate heterogeneous 
data using a particular distribution of Z and find out what i s  lost i f  an 
approximate model i s  f i t ted to  those data. 



9. NUMERICAL EXAMPLE 

In th is  section we i l lust rate the applicability of the methods by 
reanalyzing the seed data used f i r s t  by Crowder ( 1978) and later by 
Wil l iams ( 1  982). The seed data can be found in  the GLlM program in  the 
Appendix. The factors X I  and X2 stand for  type of seed ( X l = l  for  0 
aegyptiaca 75 and X1=2 for 0. aegyptiaca 7 3 )  and root extract (X2=1 
for  bean and X2=2 fo r  cucumber ); there are f ive or s ix  rep/icates fo r  
each (X 1 ,X2) combination. There are 2 1 batches of size NX. The seeds are 
brushed onto a plate covered w i t h  a part icular root extract and the 
number DX of germinated seeds i n  each batch i s  counted. The purpose of 
the analysis i s  t o  take heterogeneity between replicates into account. 

Crowder ( 1  978) and Wiliams (1982) used the logi t  scale i n  their  analyses 
of the seed data. Crowder, however, suggested the use of other scales. 
But modification of Crowder's approach for  different scales i s  l ikely to  
become computat ional l y  cumbersome, since his approach i s  based on the 
fu l l  unconditional distribution. We f i r s t  show that there are no such 
problems w i t h  the approach of Section 7. 

The r.h.s. of equation (7.2b) can be wr i t ten  as v/w, as discussed i n  
Section 7. We consider here only simple l ink functions (i.e. one Pinear 
predictor, or k= 1 ) : the log i t  l ink nq )= 1 /( 1 +exp(- q )), the cloglog l ink 
37 q I= 1 -exp(-exp(q 1) and the probit 1 ink 37 q)= j~(217) '~ '~exp( -x~ /2 )dx .  

Then the matrices J and P are scalars : J-F '( q ) = d n  q )/d q and P= a2, 
so that 

I t  i s  now convenient t o  define u=(n.F '( q )?/v, so that 

Indeed, the u's are 'the iterative weights i n  the itefative/y 
reweiqhted /east squares (IRLS) algorithm used in GLlM in order t o  
f ind t i e  estimates of the linear parameters. Computation of w i s  then 
easily done as W= 1 /( I +%P*( 1 - 1 /%BD)*%WT), where XP i s  an estimate of 
a2 (see the GLlM program i n  the Appendix). Reestimation of a2, i f 

estimates of the linear parameters are given, i s  based on the 
(approximate) formula 



which i s  an extension of Williams' formula (3.4); the summation i s  over 
al l  units (i.e. the batches in  the seed data), E(x2) i s  an estimate of the 
Pearson chi-squared statist ic, q i s  the variance of the 1 inear predictor, 
and denotes evaluation at the current estimates of the linear 
parameters. The generality of formulas (8.1 ) and (8.2) makes it easy to 
wr i te  a flexible GLlM program : i.e. i n  the program shown in  the Appendix 
one has to change merely the LINK option (G, C or P for the logit, cloglog 
or probit link, respectively; i f  one would l ike to use a non-standard link - 
through the OWN faci l i ty  - then two macros should be modified). 

The GLlM program shown can be used i n  various ways by simple 
modification of only a few program-parameters : 

i. the contents of macro MOD; 
ii. the LlNKoption; 

i i i .  the ( in i t ia l )  value of o2 (%PI 
iv. the value of XF to specify whether o2 i s  fixed (XF-0) or 

reestimated (%F= 1); and/or 
v. the number of iterations (WR). 

Notice that one can also change the contents of the macro OUTP i f  other 
results from the f i t s  are required. Table 1 shows the program- 
parameters and some results for 18 different runs of the program. 
Colurr~n 8 shows the estimated Pearson stat ist ic for the ordinary model 
that ignores heterogeneity between rep1 icates (i.e. e2=0 or w= 1 1; column 
7 gives the stat is t ic  i f  the model takes heterogeneity between replicates 
,into account. ANOVA-like tables are shown in  Table 2; panels A and B are 
obtained from columns 7 and 8 of Table 1, respectively. Notice that the 
values in  panel A for  the logit link are different from those given by 
Williams (1982; last paragraph) : Williams has set the weights w in  
f i t t i ng  restricted models (e.g. X 1 +X2) equal to the estimates from the 
maximum model Xl*X2, while we have reestimated the weights w (i.e. 
only o2 is  fixed in  restricted models). The last three lines of Table 1 
show what happens i f  aZ i s  reestimated from a restricted model (e.g. 
X 1 +X2) : then the heterogeneity variable Z incorporates both the 
heterogeneity between rep1 icates and the variance due to ommission of 
terms (e.g. the interaction). 

The most important results from our analysis are : ( l o )  that different 



links give similar results ( ?2values, significance testing), but (2') that 
the estimates of a2 depend on the 1 ink. The f i r s t  result corresponds to 
the well-known fact that it i s  generally di f f icult  to discriminate 
between 1 inks i f  the sample sizes are not large. The second result shows 
that one has to be careful in  interpreting a2 quantitatively; a similar 
remark holds for the linear parameters! Table 3 shows the estimated 
conditional proportions fl q+Z) for different values of Z : the values of q 
+Z are quite different for different links, the values of fl q + Z )  are not! 

Table 1 .  -am o ~ t i o n s  and result% 

2 .  
Contents LINK Ini t ial  Fix/est. Nbr. of Heter. No heter. 
of MOD option (XP) a2 (XF) iter.(%R) 6' g2 g2 

(1) (2) (3) ( 4) (5) (6) (7) (8) 



Table 2. A N O V A .  

Panel A : Heterogeneity between rep1 icates. 

Link : 
Source d.f. Logit Cloglog Probit 

Interaction 1 3.69 3.26 3.7 1 
X 1 1 2.35 2.40 2.38 
X2 1 20.0 1 1 9.70 20.58 
Main effects 2 21.98 22.30 22.60 

Panel B : No heterogeneity between replicates. 

Link : 
Source d.f. Logit Cloglog Probit 

Interaction 1 6.66 5.67 6.66 
X 1 1 2.9 1 3.9 1 2.9 1 
X2 1 53.24 54.24 53.24 
Main effects 2 55.5 1 56.50 55.5 1 

Table 3. 

Logi t Cloglog Probit 
z= z= z= 

X1 X2 -6 0 6 - 8  0 6 -6 0 6 
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APPENDIX : GLIM-PROGRAM 

$PI E:STP B E X T  % V L  $Ck WOfi=%FbJa r l.-.'/.Bl+!u;;WTzri:v~ ) f 

. %F" ( %X2-XCU ( WVO > ) / :/.C(I ( WVC++C., ) j 
Sl-'F? : : " 1\IEW SIGMA2 = " '/;P : SBENfiM 

SPl H E T  ! 
B C A  %R=%R-1 : A= ( 1.-1. /%.RD )*%iJT ! 
%SW :CF E S T P  ' 
B C A  w=I/(I+xP*.A) 5 W  W ! 
SF' #MOD BPR : : " FJEW C H I 2  = " X X 2  . $BENDM 

$MACRO OUTP B D  MAR ! 
B C A  RES=(  %YV-%FV) *%SQRT ( % P W / '  I %SCa,%Fi)9 ( 1 - % F V / % B D )  ) ) ! 

X = X l * X 2 + % G T ( X 1 ,  X 2 )  ! 
$P R E S  X 88ENDMAC 

%PI PROP ! 
I E X T  % P E  BVAR 4 L1 L O  L2 ! 
B C A  L O ( l ) = % P E ( l )  : L 0 ( 2 ) = % P E ( l ) + % P E ( E ! I  . L 0 ( 3 ) = % p E ( l ) + % p E ( 3 )  ! 
: L . O ( 4 ) = % P E (  1 )+%PE(E!)+'/;PE(3j+%PE(4.) : L ~ = L o - % s Q R T ( % ~ )  ! 
: L2=LO+%SQRT(%P)  ! 

L O = l / ( l + % E X P ( - L O ) )  L 1 = 1 / ( I + . % E X P ( - L I ) )  : L ~ = ~ / ( ~ + % E x P ( - L ~ ) )  ! 
%LO L1 L O  L2 %%ENDM 

8 C  ' M A I N '  PROGRAM 

$GIN I T S  21 
%DATA DX NX X 1  X 2  B R E A D  

10 39 1 1 
23 62 1 1 
2 3 e l  1 1  
26 51 1 1  
17 39 1 1 
5 6 1 2  

53 74 1 2 
55 72 1 2 
32 51 1 2  
46 79 1 2 
10 13 1 2 
8 1 6 2 1  

10 30 2 1 
8 2 8 2 1  

23 45 2 1 
0 4 2 1  
3 1 2 2 2  

22 41 2 2 
15 30 2 2 
32 51 2 2 

3 7 2 2  
%FACTOR X 1  2 X 2  2 
$\(VAR DX %ERR B NX B L I N K  G 

$C CHOOSE ( INITIAL)  V A L U E  FOR S I G M A 2  : %P 
CHOOSE PROGRAM CONSTANTS : %F=O I F  S I G M A 2  I S  F I X E D  

1 I F  S I G M A 2  I S  R E E S T I M A T E D  
%R=MAX NBR.  O F  I T E R A T I O N S  

0 I F  NO H E T E R O G E N E I T Y  I S  T A K E N  I N T O  
ACCOUNT ( I .  E. %P=%F=O) 

B C A L C  %P=. 0000 : % F = l  : %R=5 

%PR : :  " ( I N I T I A L )  S I G M A 2  = " %P 
B C A L C  W = l  %WEIGHT W 
S F I T  #MOD B U S E  PROP 
BPR : : " C H I 2  (NO H E T E R .  ! = " X X 2  
% W H I L E  %R H E T  B U S E  PROP 
B S T O P  


