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One of the important problerrrs of designing and inplementing Decision 
Sqprt Syskm relates to the user friendliness and sirrplicity of problem 
definition. This is especially important in the case when a d e l  of the 
system, constraints and objectives are described in tern of nonlinear 
equations. In a l I existing implementat ions of decision support systems 
this definition n u s t  be perfod on the level of EORIWAN or other high- 
level language, which requires a rather deep knowledge of -r prog- 
ramning. Preparation of the problem, especially analytical -tion of 
derivatives can also be the sour&! of errors. 

In the paper the principles of inplatentation of user-friendly in- 
terface to DIDAS system is presented. This interface utilizes the small 
subset of the PASCAL language for defining the problem; the compiler of 
the language perfom all the algebraic mnipllations necessary to analy- 
tical calculation and captation of the derivatives. This concept sirrpli- 
fies essentially the utilization of the DIDAS system and it can be exten- 
ded for many other amlications. 

Alexander Kurzhanski 
Chairman 
System and Decision Sciences Program 
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P R o B u M ~ m - D U l A S  
Part 1: Static systmw 

Andrzej Lewandowski 

The existing experience with various implentations of interac- 
tive decision support system - for example, of DIDAS type (Dynamic In- 
teractive Decision Analysis and Support, see Grauer at all., 1984) in- 
dicates, that one of the important features, deciding about real ap- 
plicability of the software is sinplicity and user friendliness of the 
mn machine interface ( Lewandowski , 1986 . This problem is especially 
important when constructing decision support systems for problems des- 
cribed by nonlinear mathematical dels. 

Problems described by mathematical models of linear structure 
were investigated by m y  authors and several approaches for defining 
such problems interactively were proposed. Such problems are samehaw 
easier to define because the entire &el can be specified as a col- 
lection of vectors and matrices. Therefore, the task of defining the 
problem - i.e. converting initial data and knowledge about the struc- 
ture of the problem into a linear programning nrsllel can be performed 
without essential conceptual problems. Several software tools w r t -  
ing this task were proposed recently (Orchard-Hays, 1978, Fourer, 
1983). Another approach, recently gaining on popllarity, is the use of 
concept of a spreadsheet program. 

When dealing with nonlinear models, the situation is much mre 
complicated. One of the reasons is the negative character of the defi- 
nition of nonlinear problems: "a nonlinear problem is such a problem, 
which is not linear". Another source of difficulties is connected with 
the requirement of calculating the derivatives of the objective and 
constraints functions. These derivatives are necessary when applying 
nonlinear programming methods, since practically only differentiable 
optimization methods are sufficiently efficient and robust to be ap- 
plied in interactive decision support systents. Usually the derivatives 
must be calculated analytically by the user of the system and properly 
interfaced to the rest of software. This task is time consuming and 
can be a source of errors that are typically difficult to detect. Ano- 
ther problem relates to the nature of problem interface - the user usu- 
ally is forced to define his problem in EDEtlNW or other high level 
language according to the specification of the interf ace provided by 
the implementator of the system. This can be a rather complicated 
task, requiring certain skills in c-ting. 

All these difficulties must be overcome when we want to design a 



user-friendly man machine interface for a decision support system. The 
user friendliness of the man machine and problem interface is espe- 
cial ly important for microcomputer implementations of the DIDAS sys- 
tem. These implementations are especially dedicated for users not 
being computer specialists. 

The aim of this paper is to present a model implementation of a 
flexible problem interface based on the PASCAL language. In order to 
make the implementation sufficiently simple, a very small subset of 
PASCAL was implemented. It is a straightforward task to implement the 
sarrre features in full sized PASCAL, particularly since a source code 
of several PASCAL cmpilers is available (PASCAL-S, see Wirth, 1981, 
and PASCAL-P, see Nori at all, 1981 and Pemberton, 1982 . Despite the 
simplicity of the implemented language, the problem interface descri- 
bed in the paper is a rather powerful tool, which can be used for 
defining quite complicated, practical problem. 

The problem of gradient calculation was investigated by many 
scientists working in the field of mathematical progrdng and sen- 
sitivity analysis. The algorithmic approach for calculating deriva- 
tives, was proposed for application in sensitivity analysis by Tosrrovic 
and Vukobratovic (1972). One of the early works was done at IIASA by 
Orchard-Hays (1978 , but his system was oriented only to automatic 
differentiation of polynomials. Deep investigation of the problem of 
differentiation of mathematical models, especially of implicit type 
and dynamic models described by differential and difference equations 
were performed by Wierzbicki (1977, 1985 . The most complete presenta- 
tion of various techniques of gradient computation and possible ap- 
plications of these techniques can be found in the monography by Rall 
(1981) and his revue paper (Rall, 1980). 

Let us analyze several existing approaches supporting the pro- 
blem of autcanatic calculation of derivatives. 

2.1 Application of general plrpose languaqes. 

The first approach was proposed by Wegnert (1964) and later 
exploited by Kalaba and others (Kalaba, 1965, 1983, 1984). They util- 
ize FORTRAN to write programs for automatic calculation of deriva- 
tives. The principles of the method (known as "table method") are as 
follows: 

- every variable is represented by 2 (or more) dimensional 
array; the first element of the array contains value of the 
variable, the next - values of first and possibly higher deriva- 
t ives , 

- all standard functions and operators are emulated by special 
subroutines; these subroutines calculate values of the result as 
well as values of corresponding derivatives, 

- mathematical expressions are camposed from the emulating sub- 
routines in such a way, that the resulting program reflects the 
tree structure of corrq?uted expression. 

The following are the examples of subroutines which emulate addition 



and multiplication: 

SUBROUTINE ADD(XIYIR) 
DIMENSION X(2),Y(2IIR(2) 
R(l)=X(l)+Y(l) 
R(2)=X(2)+Y(2) 
RETURN 

SUBROUTINE MUL(XIYIR) 
DIMENSION X(2),Y(2),R(2) 
R(l)=X(l)+Y(l) 
R(2)=X(l)*Y(2)+Y(l)*X(2) 
RFmTRN 

If the user wants to calculate the value and the derivative of the ex- 
pression like 

he should prepare the following program 

DIMENSION Xl(2),X2(2) ,X3(2) ,Rl(2) ,R2(2) . . . ... 
. . . 
CaLL MUL(XlIX2,Rl) 
CALL ADD(HIX3,R2) 

Evidently, some "initial conditions" must be set for values of deri- 
vatives; if the user wants to calculate the derivative of the above 
expression with respect to xl, the following assignments must precede 
the subroutine calls: 

In the similar way, higher order derivatives can be calculated. 
Details of this process can be found in the paper by Kalaba and Tish- 
ler (1983). 

Other languages were utilized for writing programs for autowatic 
calculation of gradient. AU;OL 60 was used by Van de Riet, who in 2 
volume report (Van de Riet, 1970) gives very detailed analysis of the 
use of high level numerically oriented language for fomla analysis, 
investigates such problems like fomla simplification and proposes 
convenient tools for defining problems. A similar system, but written 
in PASCAL, was designed by Shearer and Wlfe (1985). AU;OL 68 was used 
as the implementation language by Ince and Robson (1980). 

The approach presented above is evidently the simplest one. It 
does not require special (usually very complicated) tools - it is 
enough to have access to any high level language and certain "know 
how" to define a particular problem. This approach is, however, avail- 
able only for experienced programtrers and is too complicated for end 
users. It can however be efficiently utilized for implementing dedi- 
cated decision support systems, where the problem definition is spe- 



cified on the implementation stage and remains unchanged during 
utilization of the decision support system. 

2.2 Preprocessors to high level 1-ges. 

The direct utilization of high level languages is rather not a 
straightforward task. It follows from two reasons: 

- the implementator rrrust posses certain knowledge about the used 
method; 

- the mathematical expression m t  be converted to postfix form; 
in other words, it is necessary to perform manual "parsing" of 
the expression. This process is time consuming and can be the 
source of errors. 

Parsing of mathematical expressions is a well recognized task 
which can be easily caputerized. Therefore it is possible to create a 
computer program which could convert the mathematical expression for- 
mlated in standard notation, into high level program according to the 
concepts presented above. Such programs are known as preprocessors. 

The number of such preprocessors for fomla manipulation are 
known. The AUXlL 60 based one was designed by Van de Riet (AEC ALGDL, 
Van de Riet, 1973). This constitutes in fact a full featured language, 
being the superset of ALGDL 60. All the standard features of ALGDL are 
available to the user. Additionally new standard type f o d a  makes 
possible a rather extensive fomla manipulation. The source program 
written in AEC ALGOL is translated to standard ALGOL and further pro- 
cessed by ALGDL compiler. The AEC-AIX30L can be easily Wlemented on 
any computer, because the preprocessor is written in standard ALGDL. 
The only requirement is availability of U L  compiler. 

The other similar preprocessor is A m  preprocessor (Kedem, 
1980 , a FORTRAN based system. The principle of design is exactly the 
same like AEC AUXIL. The user specifies his problem in extended FOR- 
TRAN and the preprocessor converts the problem description into 
sequence of standard EOE?IWW statements. Both systems are expandable - 
the user can define his awn operators and supply his awn subroutines 
and procedures performing necessary actions. Similar preprocessor - 
CODEX and SUPER-CDDEX was developed by Rall (1981). 

The preprocessors mentioned above constitute a very powerful 
tool - h t  also for experienced user. Good familiarity with the host 
language is necessary to use these systems efficiently. breover, the 
fomla-oriented features are rather sophisticated and long training 
as well as some understanding of the internal organization of the sys- 
tem is necessary to use them efficiently. The power of such systems 
follows from the accessibility to all features of host level language 
as well as the availability of the compilation product which itself is 
a high level language program. This makes adaptation of the resulting 
program relatively easy and ensures very high flexibility of this 
approach. 

2.3 Z-&plication of very high 1-1 symbolic mmipilation languages. 

The number of special languages were developed which are either 
especially designed for f o d a  dpulation, or are more general px- 



pose oriented, but are especially convenient for formula manipulation. 

The most known language of this type is LISP (Winston, 1981). 
Fomla differentiation and manipulation can be programmed in LISP 
rather easily (Nicol , 1981 , hcwever for a programner having long ex- 
perience with FORTRAN or PASCAL like languages mving to LISP is con- 
nected with serious conceptual difficulties. A number of packages for 
fomla manipulation were implemented in LISP, rmst of them for ap- 
plications in theoretical physics. 

A similar tool is MU-SIMP language developed by SoftWarehouse 
for a broad range of microcomputers (Apple, IBM-PC and others) and 
distributed by MICEIOSOFT (1983). This language is in fact an extension 
of LISP, but unlike LISP which is a list processing language, MU-SIMP 
is a tree processing language. This fact and much mre convenient syn- 
tax of MU-SIMP makes this language an ideal tool for implementing for- 
mula manipulation problems (Douglass, 1982). Together with MU-SIMP, 
the MU-MATH system for symbolic fomla manipulation, implemented in 
MU-SIMP is distributed. The power and the flexibility of the language 
as well as the availability of m e  codes of rather sophisticated 
fomla maniplation algorithms, make this language the most promising 
tool for progranming the user and problem interface for decision sup- 
port system. This option however, has not been sufficiently inves- 
tigated as yet. 

Another general pxlrpose high level language which can be used 
for implementing the formula differentiation and maniplation algo- 
rithms is PROKG (Wlmham and Hall, 1985 . Programming the formula 
manipulation in PROLOG constitutes a rather simple task - but simi- 
larly like in the case of LISP, switching to this language can be 
rather difficult. 

All the languages listed above are oriented to processing of 
symbolic information and lack such features like highly efficient 
numerical computation, file processing and flexible access to screen 
and keyboard. Interface to other general purpose languages like C or 
PASCAL is limited or not available at all. Therefore certain effort is 
necessary to analyze the practical applicability of these languages 
for implementing the interfaces for decision sqprt systems. 

From the very early history of caqmter science a lot of works 
have been done on developrent the special Exlrpose languages for sym- 
bolic fomla manidation. Currently, the MACSYMA and REDUCE are mst 
known and are mst widely used (see Fateman, 1982 for detailed dis- 
cussion). Symbolic mathematical conputation languages are also dis- 
cussed by Wolfram (1985) who presents various approaches and discusses 
the features of SMP - one of the mst powerful symbolic manipllation 
languages currently available. The other language possessing certain 
poplarity is PASCAL-SC (PASCAL for Scientific Cbqntation, see Kulish 
and Miranker, 1983). PASCAL-SC was applied for gradient campltation by 
Rall (1983, 1984). 

The situation with formula manidation languages is similar to 
the described above - these languages are usually very complicated, 
require long training, interfacing to numerical and file processing 
modules can be difficult. The c-ter resources necessary to ef f ec- 



tively run symbolic manipulation programs are rather high (for exam- 
ple, according to Wolfram, 1985, the kernel of SMP language contains 
over 120000 lines of C code). Therefore, they can be rather considered 
as tools for high qualified specialists in mathematics and computer 
science, and it seems to be rather unlikely to use them as user front 
end for decision support systems, or tools for implementing such front 
end. 

Currently, there exist 3 versions of nonlinear DIDAS: DIDAS-N 
developed by Grauer and Kaden (19851, a specialized system developed 
by Kaden and Kreglewski (1985) for solving decision problems relating 
to groundwater management and general purpose D I M  system implemented 
by Kreglewski and others (Kreglewski, et. all., 1985). Let us analyze 
the problem interfaces available in all these versions of system. 

The interface used in Grauer's and Kaden's version of the system 
is rather conceptually simple, but not very user-friendly. The equa- 
tions describing objective and constraints functions must be program- 
med in FORTRAN. The authors m l y  the "skeleton" FORTRAN subroutine 
with enpty "holes", where the user rmst locate his EDRTRAN code. This 
is a rather complicated task - separate parts of the problem defini- 
tion must be located in various places of the d e ,  and the code it- 
self must be written taking into account the variable names and struc- 
ture used in this skeleton subroutine. What makes defining the problem 
especially difficult is the fact that, writing his code, the user must 
properly aufanent all his fomlas with the penalty function tern and 
their derivatives. This is conceptually rather difficult for a user 
which is not familiar with mathematical programing algorithms and can 
lead to numerous errors. Variable ~ m e s  conflict is also probable. 

The general purpose version of nonlinear D I M  developed by Kreg- 
lewski and others (1985) also needs a FORTRAN subroutine containing 
the problem description. Unlike to the previous system, however, the 
user rmst preserve only the general structure of the subroutine header 
(formal parameters declaration) and COPlMON block. No variable conflict 
can occur, and the standards according to which the body of the sub- 
routine rmst be composed are quite clear and straightforward. The main 
disadvantage of this interface relates to the definition of deriva- 
tives - the user must calculate these derivatives analytically. This 
is usually a t h  consuming process and the source of various errors 
that are difficult to detect. 

To minimize the probability of occurrence of errors in analyti- 
cal gradient cmptation, several authors proposed numerical proce- 
dures for gradient checking. Detailed analysis of the problem, and 
sample procedures were discussed by Wolfe ( 1982 . This approach was 
utilized by Kreglewski (1985) in his version of the D I M  system; a 
similar procedure was implemented in MINOS-AUGMENTED nonlinear 
programning system. 

The simplest interface has the DIDAS-like system for solving 
water management problems developed by Kaden and Kreglewski. This sys- 
tem was designed to solve only one class of problems, therefore a 
model of the system was programned only once, in a very efficient way. 
The user interacts with the system only on the level of input data and 



reference point selection. 

Concluding, the following are the basic disadvantage of the ex- 
isting impllementation of problem interface in nonlinear DIDAS: 

- the user must complte analytically all derivatives of objec- 
tive and constraint functions, 

- the objective and constraint functions as well as all deriva- 
tives must be programned in FURTRAN according to the specifica- 
tion supplied by the implementator of the system; this specifi- 
cation can be difficult to understand for non-experienced user, 

- the user must be familiar with details of the compting en- 
vironment of the corguter which he is working with - such like 
program editor, compiler, linker, operating system c d  lan- 
guage etc. This is the most severe limitation, which restricts 
essentially the usability of the system; a long training is nece- 
ssary to work with the c-ter efficiently and without troubles 
on this level of interaction. 

- any changes of the model - the process being in fact one of 
the important stages of interactive work with the system, cannot 
be performed within the system. 

k t  us point out that problem definition and modification is one 
of the most important stages of working with any decision support sys- 
tem. The sequence: program editor - FORTRAN corrpiler - linker - opera- 
ting system, being in the fact one of the stages of interaction with 
the system, slows down essentially the interaction process, makes it 
difficult and inefficient . Theref ore, the user friendliness of the 
problem interface requires special attention - especially in the case 
of nonlinear problems. 

4. POSSIBLE APPRaACBES IN DESIml OF Pmmm llwmwzE Emt ImauwAR 
DIn4s 

Currently, there does not exist ready to use tools which could 
be applied directly and without essential modifications for building 
problem interface for nonlinear DIDAS.  It is possible, however, to 
adapt some existing methodologies of defining nonlinear problems for 
applications in decision support system. Let us analyze the existing 
options. 

This method of interaction is very poplar and used in almost 
all business oriented software. It can easily be adapted for defining 
linear programning problems - it is very easy to enter the standard or 
multiple criteria linear programning problem as set of matrices. There 
exist commercial codes for defining and solving linear programing 
problem which base on well known IMWS spreadsheet program (General 
Optimization Inc., 1986). The interfacing between spreadsheet program 
and linear programning solver is relatively easy - each spreadsheet 
program can generate outpt files containing all data entered to the 
spreadsheet cells. This file can be read easily by linear programning 
solver; this solver can generate the solution file which can be im- 
ported to the spreadsheet. 



In the case of nonlinear problems the situation is not so easy. 
In the principle, all spreadsheet programs make it possible to enter 
and to use formulas as cell contents. Unfortunately, it is usually not 
possible to transfer formulas to external file. It is possible to save 
the whole worksheet on disk, but the file format is proprietary and 
not described in the mual. Some options are available (like .PRN fi- 
le in IDCUS) which make it possible to saving formulas in ASCII file, 
but usefulness of such information is questionable. The mst severe 
limitation is caused by lack of accessibility to the f o d a  evaluator 
module. Therefore, comnercial spreadsheet programs like LrM21S, MULTI- 
PLAN and others cannot be used directly for defining nonlinear deci- 
sion analysis problems. 

The spreadsheet interaction methodology has however several 
advantages, which could mtivate further research in this direction. 
The properties of a spreadsheet which make this approach convenient 
for the user are as follows: 

- a spreadsheet belongs to the class of non procedural lan- 
guages, i .e. the sequence in which the separate formulas are 
evaluated depends only on the logical relationships between for- 
mulas and data, not on the sequence in which they are appear in 
the program text, 

- rather extensive testing of program and data correctness can 
be performed in a spreadsheet program; this is possible due to 
existence of NULl; and N/AVAIL data types, 

- program entering and editing are very easy in a spreadsheet, 
- a large set of "business oriented" standard functions is build 
into a typical spreadsheet, 

- a spreadsheet is typically integrated with graphic and data 
base subsystems. 

As it was mentioned above, cowmercially available spreadsheet 
programs cannot be used directly as the user front end for decision 
support systems. It would be highly interesting however, to apply the 
concept of spreadsheet for this purpose. To achieve this, either a 
spreadsheet program mast be coded in one of the available high level 
languages, or spreadsheet codes being in pblic d m i n  could be used 
for this m s e .  One of the possible alternatives (due to several 
restrictions, only for experimental implementations could be MICRO- 
CALC program supplied by BORtAND together with TURBO-PASCAL (Borland, 
1985). 

The structure of MICRO-CALC (as well as similar spreadsheet 
programs is quite straightforward - it consists of the interactive 
interface, data spreadsheet and f o d a  evaluator. The formula eva- 
luator calculates all f o d a s  present in the data sheet, after every 
change in the spreadsheet or on user's request. To use MICRO-CATXI as 
problem interface to DIDAS the following changes and amendments to 
this system rmst be provided: 

- selected variables rrnxst be marked as decision variables, ob- 
jective variables and constraints variables, 



- each "numerical" cell should contain not only values of the 
objective, but also values of all derivatives with respect to 
all decision variables currently defined. Therefore such spread- 
sheet could be treated as a "dtilayer" one. 

- the fonnula evaluator rmst be properly modified in such a way, 
that conputing the value of fomla, all the derivatives should 
be calculated sirrrultaneously, 

- the formula evaluator should be implemented as procedure ac- 
cessible both from the spreadsheet interface level and from the 
solver (optimization routine), 

- the interface between the formula evaluator and the solver 
must be provided, in order to inform the solver about locations 
of decision variables, constraint variables and objective varia- 
bles. 

All the above changes are rather easy to implement; the only 
change which is mre complicated relates to incorporating the fomula 
differentiation process into the formula evaluator routine. This is 
discussed in a further section of the paper. 

It was recognized relatively early, that conventional spread- 
sheet amroach is not very useful for analysis of more complicated 
problems arising in complex model applications. This takes place 
especially, if model equations are fomulated in implicit £om, i.e. 
in the form of set of equations which rrrust be solved in order to find 
values of objective functions corresponding to given decision varia- 
bles. 

The standard spreadsheet programs can be -lied even in this 
case, but resulting programs are not natural and this task requires 
some "smart" programming techniques ( see, e . g . Haynes , 1985 where 
WITIS was applied to dynamic analysis of electronic circuits). There- 
fore special approaches were developed to handle such problems. 

One of the last and most interesting is the TK!Solver system 
developed by Konopasek (1985) and comnercially distributed by Software 
Arts for IEM-PC corrpxters. This system has spreadsheet like user inter- 
face, which operates on two data sheets - the variable sheet and rule 
sheet. In the variable sheet the user can define all the variables 
needed to define his problem rorcpletely. Same of them can de defined 
as input, the other are considered as output ones. The rules specify 
relationships between variables in terms of equations. The rule equa- 
tions can be entered to the system in any form and any order. The 
second part of the system consists of the algebraic manipulator and 
iterative equation solver. If the user changes definition of outpt or 
inpt variables, modifies same rules or numerical values, the system 
responds very quickly with new solution of the problem. On Fig.1 a 
sarrp?le screen generated by TK!Solver is presented. 

The TK!Solver concept is rather flexible and user friendly. What 
is most important is the fact, that the equations can be entered in 
any order and any £om - therefore this approach also can be treated 



as non procedural. The presented framework seems to be ideal for 
defining nonlinear problems. There were some attempts to apyly this 
system for defining optimization problems ( Konopasek, 1985 , but these 
trials m t  be treated as very initial ones. To convert the TK!Solver 
program in a tool for an easy definition of nonlinear decision pro- 
blems, - extensions would be necessary: 

- an automatic derivative calculation routine should be build 
into the algebraic manipulator and equation solver modules, 

- additional tools providing access to data bases should be 
available to the user, 

- the set of available standard functions should be extended 
essentially. 

The source code of this system is not available, therefore di- 
rect adaptation to decision m r t  system is not possible. The con- 
cept of TK!Solver however is one of the most interesting to be adapted 
as user front end for decision m r t  systems. 

------------------- ------------------- VARIABLE SHEm =================== 

St Inpt Name Outpt Unit Comnent -- ----- ---- ------ ---- ------- 

..................... ..................... RULE SHEET ..................... 
S Rule 
- ---- 

A + B = C * D  
Sin(A - C) = Lag(e/f)/(C + e) 

...................................................... ...................................................... 

Fig. 1 Sample screen generated by TK!Solver program. 

4.3 Specialized p n q m u m i q  languages. 

It was recognized by many researchers, that in some cases ap- 
plication of general purpose formula manipulation languages like 
REDUCE or MACSDl4 for solving rather simple problems requires too rnach 
effort and investments, especially if the user has no direct access to 
one of the above mentioned languages. Therefore sorrre special software 
tools oriented for solving one specific class of problems were desi- 
gned. One of such tools is HESQ - the Hierarchical Equation Solver 
developed by Derman and Van Wyk (19841, which, in fact, is a high 
level programning language oriented to solving the implicit nonlinear 
equations. 

The HESQ system consists of the set of programs for interactive 
solving and debugging models described by set of algebraic equations, 
including their definition, examination and maniplation. Because mo- 
dels usually contain data dependent elements, HESQ pennits the models 



to include simple "vector" equations - i.e. equations whose left hand 
sides are variables with one running index that rnay take on several 
values. The following examples are taken from Derman's and Van Vyk's 
Paper : 

Inc~[1980:19841 = Revenue[1979:19831 + Extra 

The above statement is equivalent to 

Income[l908+il = Revenue[l979+il + Extra, 0 ( i ( 4. 

HESQ allows other useful shorthand notation, like 

Vector [1:41 = 11, 2, alpha, -31 

Vector [1:41 = [1+31 

what generates the *licit arithmetic sequence [1,4,7,101. 

Similarly, geometric and other sequences can be easily genera- 
ted. Moreover, micros, array variables, conditions and IF - THEN - 
ELSE statenm~ts can be used, as well as rather broad set of standard 
functions and operators being at the disposal of the user. Complete 
example of a problem solved by HESQ system can be found in the paper 
quotd above. 

The system lacks the derivative calculating features, but the 
nature of the algorithm used, which utilizes the graph representation 
of the model and dependencies between variables, makes necessary ex- 
tensions possible. 

A similar, simple to use modelling language irrp?lement.ed on the 
IBM-PC ccanprter was described by Dunn (1983). 

4.4 Extension of e x u 3 t m g  
- .  hi@ level 1-. 

Another option, although not investigatd until now, is an ex- 
tension of existing programning languages to make them specially sui- 
table for prograrmning decision supl?ort systems. This can be achieved 
by proper modification of the syntax of language. This option will be 
discussed in the next section of the paper. 

5. EXTENSION OF PASCAL m APPLImO%JS IN DECISION S U E K m '  sY!mPE. 

5.1 General -ORIS. 

We shall follow here a general assumption that the user should 
have at his disposal a simple and flexible software tool for defining 
decision problem based on nonlinear models. This tool (or language) 
should possess following properties: 

- it should be conceptually simple, even for user not being cm- 
puter specialist, 

- it should be sufficiently powerful to define even complicatd 
decision problems, 



- a friendly interface to the user should be provided, i .e. , a 
user friendly environment for problem definition and analysis 
must be created, 

- an interface to an optimization problem solver must constitute 
an integral part of the language; it means that all necessary 
formula maniplations must be performed without intervention of 
the user as well as that all infomtion necessary for the sol- 
ver to run an optimization problem must  be available. 

The solution presented here can be treated as a model solution, 
which is intended only to illustrate possible ways for resolving some 
basic problems and proposing further extensions. The proposed and im- 
plemented approach can however be applied to nontrivial practical pro- 
blems without essential difficulties. Consequently, the resulting deci- 
sion support system can be used as a prototype version for solving 
test problems. 

5.2 Definition of the language. 

The language is a very small subset of PASCAL, known as PLO 
(Wirth, 1976 , properly mdified for our purpses . The basic features 
of this subset are as follows: 

- the only available variable type is real, therefore there is 
no need to specify explicitly the variable type, 

- there are no input and outpt features, 

- the following standard constructs of PASCAL are available: 
- const and var declarations (however without type 
definition), 
- if ... then (no else!), 
- proadme without parameters, 
- begin ... end with standard PASCAL procedure nesting and 
visibility rules, 
- while ... do, 
- standard PASCAL statements and mathematical functions. 

- the following important PASCAL features are not available in 
PLO : 

- records, pointers, arrays, sets, character, integers, 
strings and enmrated type, 
- user defined types, 
- repeat ... until, 
- file type, file i/o and standard i/o procedures, 
- else statement, 
- case selectors, 
- for loops. 

There is also one more difference between PLO and standard PAS- 
CAL - in order to call the procedure, call keyword must precede the 
procedure  me. 

The following are extensions to PLO added here for the W s e  



of applications in decision support systems: 

- beside standard variables, functional variables are intro- 
duced. These variables are defined in var section of the prog- 
ram, just after declaration of standard variables. They are 
defined using the keywords 

vardec - for defining variables, which are the decision 
variables, i.e. their values will be set by the optimiza- 
tion routine (solver), 

varobj - for defining variables containing values of ob- 
jective functions, 

varcon - for defining variables containing values of 
constraints functions. 

There exist some additional rules for using structured varia- 
bles. The decision variables can be used only on the right hand side 
of assignment statemmt, i.e. in expression. Their a w a n c e  on the 
left side of assignment statement is reported as compilation error. 
The objective and constraints variables can appear only on the left 
hand side of assignment statement. The attempt to use them in expres- 
sion will also be reported as conpilation error. They can be used in 
any place of the program (not necessary only once), but during the run 
time a value can be assigned to them exactly o m .  This is checked 
during the run time; an error message is reported if a value is as- 
signed to an objective or constraint variable more than once or not 
assigned at all. Additionally, all functional variables must be defi- 
ned as global ones, i.e. cannot be defined as local to any procedure. 

5.3 Stsucture of the system. 

The problem interface consists of the interactive text editor 
which can be used for defining and updating programs, saving and 
retrieving from disk etc. This part of the system is rather standard. 

The compiler itself consists of the recursive top-down parser 
(Wirth 1976,) which converts the source code into sequence of camMnds 
of simple hypothetical stack rrrachine. This concept was very broadly 
and successfully applied for compiler construction; for details see 
Davie and Morrison (1981 or Pemberton and Daniels (1982 . The trans- 
formed program is interpreted by the procedure which emulates every 
camand of this stack machine. Tho interpreting routines are available 
in the system - one calculates values of all variables defined within 
the program, the second one - values of variables together with deriva- 
tives of all objective and constraint variables with respect to all 
decision variables. 

The solver can invoke one of the interpreters. It depends on the 
current stage of optimization, which one should be invoked. Therefore 
the pseudocode for the procedure defining the optimization problem and 
called by the solver (optimization routine) should be the following 
(see Kreglewski at all., 1985, for details relating to interfacing 
with nonlinear solver): 



Procedure Fun ( x : InputArray , Var Y : ValueArray ; Var Der : DerArray ; 
{-------------------------------------------------------------- I 
begin 
Ibve X to Decision Variables Array1 
Caae GlobFlag af 

ValueOnly : ValInterprete; 
ValueAndCerivatives : begin 

Dif I nterprete ; 
Ibve Values of Derivatives 
from Objecrtive and Oonstraints 
Derivatives Array to Derl 

end; 
end; 
Ibve Values of Objectives and Constraints from Objecrtive 
and Comtmhts Values Array to YI 

end; 

In the above pseudocode, GlobFlag is the global parameter, which can 
take values f ram set (ValueOnly , ValueAndDerivatives) and is main- 
tained by the solver. 

5 .4 The 801- inter£ace. 

To use the system effectively, it is necessary to transform in- 
fomtion from solver to interpreter (values of decision variables) 
and from interpreter to solver (values of objective and constraints 
rows and their derivatives. This can be achieved through the following 
data structure: 

The following array must contain values of decision variables before 
invoking the interpreter: 

DecArr :Array[l..t&cMaxl of Real; 

The following arrays will contain values of derivatives of objective 
and constraints variables after exit from interpreter: 

ObjDer :Array[l..ObjMax,l..IkcMa.xl of Real; 
OonDer :Array[l..~,l..rkcMAxl of Real; 

The following arrays will contain values of derivatives and con- 
straints variables after exit from interpreter: 

ConArr :Array[l..OxMsxl of Real; 
ObjArr :ArrayCl..ObjmXl of Real; 

The following arrays will contain narrres of constraints and objective 
variables after successful exit f m  canpiler. These names will appear 
in the same order, like in declaration section. This information can 
be utilized by m-rrrachine interface for entering the reference point, 
defining right hand sides and types of constraints, displaying 
results, etc. 

DecNgne :Array[l. .Jkdbxl of Alf; 
Ob-jNau~ :Array[l. .ObjmXl of Alf; 
aonNanoe :Array[l. .OxMsxl of Alf; 



The following arrays contain Boolean flags which are set by inter- 
preter to TRUE when value is assigned to objective or constraint 
variable. These variables can be inspected after exit from interpreter 
and error message or other action can be undertaken by the system 
deperxhng on their status. Utilization of these arrays is at the dis- 
posal of system hplemntator. 

O b j M  :Array[l. .ObjMaxl of Boolean; 
conset :Array[l..CbnMaxl of Boolean; 

All the above variables rmst be declared as global to solver, conpiler 
and interpreter, i.e., declared in the block containing all these 
modules. 

This problem will not be analyzed here in details. Only the in- 
formation necessary to understand changes in original PLO compiler and 
to enable performing necessary changes in the compiler and interpreter 
will be discussed. 

The following are extension to the compiler: 

A. Extension of Block section, which allows declaration of func- 
tional variables. The following are the portions of code responsible 
for this task: 

- Procedure SpecVarDeclaration, being the extension of VarDeclaration; 

Procedure SpecVarDeclaration(VarType:Object); 
I------------------------------------------- I 
begin 

if LastQmRead=Ident then 
begin 

Enter ( VarType ) ; 
Getsym; 

end 
else 

Error ( 4 ; 

end; {of SpecVarDeclarationl 

- Extensions in variable declaration section of Block prccedure; 

if Las-ead in [VarObjSym,VarConSym,VarDecSyml then 
if Lev< >O then 

Error ( 33 
else 
Repeat 

Case LastSydlead of 
VarObjSym : Lx:=ObjVariab; 
VarConSym : Lx:=ConVariab; 
VarDecSym : Lx: =DecVariab; 

end ; 
Getsym; 
Repeat 

SpecVarDeclaration(Lx); 
While LastsymRead=corrma do 



begin 
GetSym; 
SpecVarDeclaration(Lx); 

end; 
if LastsymRead=semicolon then 

else 
Error ( 5 ; 

Until Las-ead< >Ident ; 
Until not (LastsyrMead in [VarObjSym,VarConSym,VarDecSyml); 

B. Extension to Statement section, responsible for proper code 
generation and processing arithmetic expressions containing functional 
variables : 

- extension of Enter procedure, which enters information about new 
variables to symbol table; 

Procedure Enter (k: object); 
{-------------------------- 1 
begin 

tx : =tx+l ; 
with Synfhble[ tx I do 
besin 

Name:=LastIdRead; 
kind : =k; 
Case k of 

Constant :begin 
if abs(LastNmRead)>AMax then 

begin 
Error(30) ; 
LastNmRead:=O; 

end; 
val : =LastMmJRead; 

end; 
Variable :begin 

level:=lev; 
adr: =dx; 
dx: =dx+l; 

end; 
Ob jvariab: begin 

level:=Ob~; 
ObjPtr: =ObjPtr+l; 
O b ~ C O b j P t r l  :=Name; 
adr:=ObjPtr; 

end; 
0onVariab:begin 

level:=amMark; 
ConPtr: =awrPtr+l; 
~ C O o n P t r I  :=Name; 
adr:=awrPtr; 

end; 
DecVariab : begin 

level : =-; 
DecPtr: =DecPtr+l; 
DecNameCDecPtrl :=Name; 
adr:=DecPtr; 

end; 



Prozedure:level:=lev; 
end; {of Case kl 

end ; 
end; Ienterl 

It should be pointed out, that for functional variables meaning 
of entries in Symbol Table is different, than for standard ones. Func- 
tional variables m t  always be declared as global, therefore the in- 
formation usually contained in "level" field is not necessary in this 
case. This field was utilized for keeping information about the type 
of functional variable ( DecMark, ConMark, ObjMark) . These marks are 
negative, in order to make possible distinguishing between normal and 
functional variables during the interpretation phase. Analogically , 
standard address handling procedure is not applicable in this case. 
During the interpretation phase, values of functional variables are 
not saved in standard stack frame, but in arrays which play a role of 
solver interf ace (see previous section of the paper . Therefore sepa- 
rate address pointers for each type of variable were defined (DecPtr , 
ConPtr , Ob jPtr . Values of these pointers are saved in "address" part 
of the symbol table entry. Both fields - i.e. "level" and "adr" con- 
tain full information about location and type of the variable. 

- Modification of procedure Fador in the part responsible for code 
generation for loading a variable; 

Procedure Factor(fsys: SymSet); 
I----------------------------- l 
Var i: Integer; 

FctSym:Symbol; 
begin 

Test(FacBegSys,fsys,24); 
While Las-ead in FacBegSys do 

begin 
if Last!3ymEkad=Ident then 

begin 
i:=position(LastIdRead); 
if i=O then 

Error ( 11 
else 
with !3yMCable[il do 

Case kind of 
Constant :Genl(LITIOIval); 
Variable :GenO(LOD,lev-1,adr); 
DecVariab:GenO(IM),BxMark,adr) ; 
ObjVariab, 
ConVariab: begin 

i: =O; 
Error(34) ; 

end; 
Prozedure: Error(21); 

end ; 
GetSym; 

end 
else 
if Last!3y&ead=Number then .... 

- Modification of the procedure Statement in the part responsible for 
code generation for storing functional variables; 



begin Istatementl 
if hmead=Ident then 

begin 
i:=position(hstIdRead); 
if i=O then 

Error ( 11 
else 
if not (SymTable[il.kind in 

[Variable, ~j~Variab,OonVariabl) then 
begin 

if ~leCil.kird=~ariab then 
Error ( 35 

else 
Error(l2); 

i: =O; 
end; 

GetSym; 
if LaslSyNtead=becomes then 

Getsym 
else 

Error(l3) ; 
expression(fsys); 
if i< >O then 

with Synfl?able [ i I do 
Case kind of 

Variable :GenO(STO,lev-leve1,adr); 
oBj~ari&:~enO(SlD,Ch$fark,adr) ; 
~on~ariab:GenO(SlD,-,adr) ; 

end; 
end 
else 
if Lastsyn&!ad=CallSym then . . . . 

It should be noted, that only for Objective and Constraint vari- 
ables STOre code can be generated. This is not possible for Decision 
Variables. Analogically, only for Decision variable L&D code can be 
generated. This ensures preservation of described above rules for usa- 
ge and access of functional variables. 

C. Extensions in definition of Stack Machine and interpreter. 

The basic data structure of the Stack Machine is the stack, 
which is used as m r y  pool for all variables used within a program, 
and for all intermediate results occurring during the interpreting 
process. In the described extension, functional variables do not use 
stack. Instead, they utilize their own memory pools playing the role 
of solver interfaces. All other variables are located on the stack 
together with values of derivatives. Therefore the structure of the 
stack used by extended interpreter is the following: 

s : Array[l..StacSizl of Record 
StacVa1:Real; 
Stad)er:ArrayCl..~I of Real; 

end; 

The set of comnands of the Stack Machine remains unchanged, ex- 
cept of extension of STO and L13D comoands: 



LIT 0,a : 
OPR 0,a : 
LDD l,a : 
KID -1,a : 
S l,a : 
S1D -2,a : 
S1D -3,a : 
CAL l,a : 
INT 0,a : 
JMP 0,a : 
JPC 0,a : 

load constant "a" 
execute operation "a" 
load variable, level "I", address "a" 
load decision variable, address "a" 
store variable, level "I", address "a" 
store objective variable, address "a" 
store constraint variable, address "a" 
call procedure at adress "a" and at level "1" 
increment t-register by "a" 
jump to adress "a" 
jump conditional to "a". 

The only point requiring special treatment relates to the storing and 
loading the functional variables. All the interpreting routines relat- 
ing to mathematical expressions m t  caqmte not only values of varia- 
bles, but also values of derivatives. This can be done applying stand- 
ard rules of differentiating mathematical expressions and elementary 
functions. 

The full specification of the Stack Machine which was used in 
this particular implementation can be found in Wirth book (Wirth, 
1976 . The following is the source code of the interpreter, together 
with all extensions necessary for calculating derivatives. All the ex- 
tensions responsible for calculating derivatives are printed in 
boldface. 

The canpiled program which is executed by the Stack Machine is 
stored in array Code declared as: 

Instr = Record 
1: Integer; 
Case f:Fct of 

LIT : (LitVa1:Real); 
om, 
m, 
m, 
CAL, 
INT, 
JMP, 
m, 
JPC : (a: Integer); 

end; 

Code : Array[O..CxMaxl of Instr; 

The basic data structure of the interpreter is the stack, used as in- 
ternal memory pool. The stack is declared as: 

s : Array[l..StacSizl of Record 
StacVa1:Real; 
StacDer:Array[l..DecMaxl of Real; 

end; 



The following is the source code of the interpreter: 

Procedure DInterpret; 
{------------------- 1 
Var b,p,t,i,j: Integer; 

Ins : Instr; 

Function Base(1: Integer): Integer; 
I--------------------------------- 1 
Var bl: Integer; 
begin 

bl : =b; 
While 1>0 do 

begin 
bl:=Trunc(s[bll.StacVal); 
1: =l-1; 

end; 
base : =bl ; 

end; IBase1 

{Change sign:] 

begin 
t: =O; 
b: =l; 
p: =O; 
s[ll.StacVal:=O; 
s.StacVal:=O; 
s[31.StacVal:=O; 
for i:=l to Ob- do 

ObjSetCil:=False; 
for i:=l to CbMax do 

CcmSetCil:=False; 
Repeat 

Ins:=Code[pl; 
p: =p+l; 

with Ins do 
Case f of 

LIT: begin 
t: =t+l; 

{bad number: 1 s[tl.StacVal:=LitVal; 
for i:=l to DecPts do 
sCtl.!5kderCil:=O; 

end ; 
OPR: Case a of 

0: begin 
t: =b-1; 
p:=Trunc(s[t+31.StacVal); 
b:=Trunc(s[t+21,StacVal); 

end; 
1: begin 

s[tl.StacVal:=-s[tl.StacVal; 
for i:=l to DecPtr do 

sCtl .StacDerCil:=- 
sCtl .StacDerCil; 

end; 
2 :  begin 

t : =t-1; 
for i:=l to DecPtr do 



IMd tip1 ication : 1 

s[tl .SkcDer[il:= 
s [ t l . S t a c D e r [ i l + s [ t + l I . ~ [ i l ;  

s[tl.StacVal:= 
s[tl.StacVal+s[t+ll.StacVal; 

end ; 
3: begin 

ISubstraction:l t: =t-1; 
for i:=l to Ilecptr do 

s[tl .StacIkr[il:= 
s [ t l . S t a c D e r [ i l - s ~ t + 1 l . ~ [ i l ;  

s[tl.StacVal:= 
s[tl.StacVal-s[t+ll.StacVal; 

end ; 
4: begin 

t: =t-1; 
for i:=l to DecPtr do 

s[tl.StacDer[il:= 
s [ t + l l . S t a c V a l * s [ t l . ~ [ i l +  
s[tl .StacVal*s[t+ll .-[il; 

s[tl.StacVal:= 
s[tl.StacVal*s[t+ll.StacVal; 

end; 
5: begin 

t: =t-1; 
for i:=l to DeePtr do 

s[tl.StacDer[il:= 
( s [ t + l l . S t a c V a l * s C t 1 . ~ [ i l -  
s[tl .~al*sCt+ll .!3acDerCil) 
/4r(sCt+ll . W a l l ;  

s[tl.StacVal:= 
s[tl.StacVal/s[t+ll.StacVal 

end; 
6: s[tl.StacVal:=O; 
8: begin 

t: =t-1; 
s[tl.StacVal:= 
ord(s[tl.StacVal=s[t+11.StacVal); 

end; 
9: begin 

t: =t-1; 
s[tl.StacVal:= 
ord(s[tl.StacVal<>s[t+ll.StacVal); 

end; 
10: begin 

t : =t-1; 
s[tl.StacVal:= 
ord(s[tl.StacVal<s[t+11.StacVal); 

end; 
11: begin 

t: =t-1; 
s[tl.StacVal:= 
ord(s[tl.StacVal>=s[t+ll.StacVal); 

end; 
12: begin 

t : =t-1; 
s[tl.StacVal:= 
ord(s[tl.StacVal>s[t+11.StacVal) 

end; 



13: begin 
t: =t-1; 
s[tl.StacVal:= 
ord(s[tl.StacVal<=s[t+ll.StacVal); 

end; 
end; 

IDD: if 1>=0 then 
begin 

{ h a d  variable:] t: =t+l; 
sEtl.~tacVal:=s[base(l)+al.StacVal; 
for i:=l to cb 

s [ t l . S t a d 3 e r [ i l : = s [ b a s e ( l ) + a l . ~ [ i l ;  
end 
else 
begin 
t: =t+l; 
s[tl.StacVal:=DecArr[al; 
for i:=l to DecStr cb 

if i=a then 
s[tl.~[il:=l 

else 
s[tl.Stac&rCil:=O; 

end; 
STO: if 1>=0 then 

begin 
{Store Variable:] s[base(l)+al.StacVal:=s[tl.StacVal; 

for i:=l to IkcPtx cb 
s[base(l)+al .Stad)er[il:=s[tl .Stadkr[il; 
t : =t-1; 

end 
else 
Case 1 of 

ObjtYark :begin 
ObjArr[al:=sCtl.wal; 
ObjSet[al: =True; 
for i:=l to DecPtr cb 

~ ~ [ a l [ i l : = s [ t l . S t a c D e r [ i l ;  
t:=t-1; 
end; 

CbMark :begin 
OonArrCal :=s[tl .ShcVal; 
CbnSet[al :=True; 
for i:=l to DecPtr cb 

ConDer[al[il:=s[tl.StacDer[il; 
t: =t-1; 

end; 
end; 

CAL: begin 
s[t+ll.StacVal:=base(l); 
sEt+21.StacVal:=b; 
sEt+31 .StacVal:=p; 
b: =t+l; 
p: =a; 

end; 
INT: t:=t+a; 
JMP: p:=a; 
JPC: begin 

if sEtl.StacVal=O then 



i Exp: 1 

p: =a; 
t: =t-1; 

end; 
FUN: begin 

(Standard funct.1 j:=a-Ord(SinProc); 
Case j of 

(Sin: I 0 : begin 
for i:=l to DecPtr do 

s[tl .StacDer[il:= 
aos(s[tl.~Val)*s[tl.Stadkr[il; 

s[tl.StacVal:=sin(s[tl.StacVal); 
end; 

1 : begin 
for i:=l to DecPtr do 

s[tl.!3tacrDer[il:= 
-sin(s[tl.~al)*s[tl .SbcDer[il; 

s[tl.StacVal:=cos(s[tl.StacVal); 
end; 

2 : begin 
for i:=l to DecPtr do 

s[tl.!3tacRdil:= 
l . 0 / s [ t l . ~ V a l * s [ t 1 . ~ [ i l ;  

s[tI.StacVal:=ln(s[t1.StacVal); 
end; 

3 : begin 
for i:=l to IkcPtr do 

s[tl .StacDer[il:= 
l.O/s[tl .ShMal*s[tl .ShcDer[il 
/ln(lO) ; 

s[tl.StacVal:=ln(s[tl.StacVal)/ln(lO); 
end; 

4 : begin 
for i:=l to JkcPtx do 

s[tl .StacDer[il:= 
exp(s[tl .SbcVal)*s[tl .Stadkr[il; 

s[tl.StacVal:=exp(s[tl.StacVal); 
end; 

5 : begin 
for i:=l to DecPtr do 

s[tl .StacDer[il:= 
1.0/2/aqrt(s[tl.~al) 
*s[tl .StacDer[il; 

sttl.StacVal:=sqrt(s[tl.StacVal); 
end; 

6 : begin 
for i:=l to DecPtr do 
if s[tl.stacVal<=O then 
s[tl .~[il:=-8[tl .StacDer[il; 

StacVal:=abs(s[tl.StacVal); 
end; 

end; 
end; 

end; 
Until p=O; 

end; Iof Dinterpretl 



It should be rather clear from analysis of the above code, that 
in the fact the table algorithm was applied for calculating deriva- 
tives. It is necessary to mention additionally, that "illegal" proce- 
dure was applied for calculating the derivative of abs function. This 
is however the user's responsibility to ensure, that an expression 
containing abs function is differentiable. 

The software tool described above is rather a simple and a stra- 
ightforward approach to the problem of building interface for defining 
decision and optimization problems described by nonlinear models. Seve- 
ral improvements and extensions are necessary, both to inprove the ef- 
ficiency of the proposed interface, and for extending class of pro- 
blems which could be solved utilizing this approach. The following are 
the problem which could be investigated: 

- Improvement of the efficiency. In the existing implementation 
all formulas entered to the system are differentiated, independently, 
whether this is necessary, or not. Evidently, in some cases this is 
redundant - e.q. derivatives should not be calculated when computing 
logical conditions in while or if statements. This can be achieved 
rather easily, by extending definition of stack machine instruction: 

Instr = Record 
IlerCalc : Boolean; 
1 : Integer; 
Case f:Fct of 

LIT : (LitVa1:Real); 
OPR , 
m, 
m, 
CALI 
INTI 
JMP, 
FUN, 
JPC : (a: Integer); 

end ; 

where DerCalc is boolean flag set by cmpiler to False, when calcula- 
tion of derivatives is not necessary. This flag rmst be tested during 
interpreting phase; according to its value calculation of derivatives 
can be skipped: 

4 : begin 
if DerCalc then 

for i:=l to DecPtr do 
s[tl .Stad)er[il:= 
exp(s[tl.StacVal)*s[tl.StacDer[il; 

s[tl.StacVal:=exp(s~tl.StacVal); 
end; 

Evidently, some rather trivial changes in code generation procedures 
(GenO and G e n l )  m t  be performed. 

It can be, however, rather difficult to perform more deep op- 
timization of the calculation of derivatives. This is caused by the 
fact, that it is not possible to analyze the dependencies between 



variables defined within a program without making analysis of all pos- 
sible passes of control. This is especially difficult (or even impo- 
ssible) using the recursive descent, one pass canpiler. The following 
is an illustration of this difficulty: 

var n,... 
vardec x,... ... 
procedure pl; 
bqin 
n: =n+l; 

end; 
procedure p2; 
besin 
if a>b then 

n: =x 
else 

n: =l; 
end; 
call p2; 
call pl; 

In the above example it is not possible to decide, whether statement 
n: =n+l should be differentiated or not, without knowing the possible 
values of a and b. mreover, when conpiling the procedure pl it is not 
possible to know in advance about the dependence of variable n on deci- 
sion variable x.  Therefore, global analysis of the program structure 
is necessary. 

The easiest possible way to overcome this difficulty, is to 
incorporate same tools into language, which muld mke possible direct 
control by the user, which statements should be differentiated. This 
could be achieved by introducing a new class of functional variables - 
namely, the intemediate variables. They could be declared by varint 
declaration. Using this variables, the following rules could be 
established: 

- all statements, which their left hand side of assignnrent in- 
struction are functional variables, are differentiated, 

- all statements, which their left hand side are ordinary vari- 
ables (declared by var) and contain functional variables in 
right hand side part of assignment instruction are treated as 
illegal. Such situation is deteded and reported during ampila- 
tion phase, 

- all statements, which do not contain functional variables are 
not differentiated. 

The above rules can be used easily for deciding about necessary value 
of the above mentioned DerCalc flag. 

The other possible improvement of efficiency can be achieved by 
applying more sophisticated algorithm for fonnula differentiation. The 
~ t a t i o n a l  effort, necessary for gradient calculation was recently 
analyzed by Kim and others (1984). Similar remarks relating to this 
problem were given by Wolfe (1982). 



The algorithm applied in current implementation requires for gra- 
dient cqtation the effort, which can be approximately estimated as 
k*n, where k is the cost of calculation of function, and n - number of 
decision variables. It was suggested by Wolfe and proven by Kim, that 
under proper arrangement of the calculation process, this effort can 
be reduced to l*k, where 1 is a small constant, not dependent on n 
(Wolfe suggests, that in most cases value of 1 is between 1.5 and 
2.5 . Rather essential reduction of cat-ptational effort can be ex- 
pected when applying Kim's approach, especially for problem with m y  
decision variables. This is however rather difficult to implement this 
algorithm - the ccmplete expression tree m t  be known for generating 
the code for gradient evaluation. Therefore, a one pass compiler will 
probably be not a proper tool for irrplementing this algorithm or es- 
sential changes in parser structure and design should be necessary. 

- Extension of PASCAL subset. The PLO subset used for model 
implementation is rather extremely -11 subset of PASCAL, and many 
language features are missing. It seeins, that arrays, structures, for 
loops and other constructs available in full sized PASCAL could be 
useful for advanced user. 

The subset, which could be considered as an ideal compromise be- 
tween simplicity and usability, is PASCAL-S. This subset, proposed by 
Wirth for educational applications (Wirth, 1981) can be easily imple- 
mented due to availability of the source code of compiler and interpre- 
ter. The general design of the roarrpiler is the sarrre, like for PLO - 
the compiler generates code for stack machine, which is ermlated by 
interpreting program. Theref ore, the praposed approach for computing 
derivatives can be applied without essential difficulties. 

- Extension of the class of problems. The PLO subset was effi- 
ciently used for creating a language for simdation dynamic poplation 
models (Lewandcmska, 1986). Further extension of this approach in this 
direction could be achieved by introducing new class of variables - 
the state variables. Combination of these two extensions - i.e. exten- 
sion for dynamic sirmlation and one for automatic differentiation, 
could result in the system with automatic generation of conjugate 
equations for gradient calculation. This could simplify essentially 
solving decision problems described by dynamic models of differential 
equations or difference equations type. 
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Several changes has been made in PLO compiler plblished in Wirth 
book - real arithmetic was added, standard PASCAL functions were 
defined, as well as other changes relating to the application of the 
PLO language as problem interface in decision support systems were 
performed. Moreover, the program was mcdified to be ccsrpiled by Turbo- 
Pascal. Therefore, for readers's convenience, the modified code of the 
ccmpiler is attached to the paper. 

Before invoking the c-iler, the program text m t  be located 
in the array declared as: 

and number of lines of the program must be assigned to the integer 
variable NoOfLinesInl3uff. Prior to calling the corrp?iler, the Corrq?Init 
procedure m t  be invoked. The user rmst supply the Error procedure 
which is responsible for error handling. 

Const 
Now =21; 
NoKw =14; 
F c W  = 15; 
TxMax = 100; 
NMax = 24; 
AMax = 1.0e35; 
LevMax = 8; 
CxMax = 500; 
StacSiz= 50; 
De&ark= -1; 
CIbjMark -2; 
chwark -3; 
DxMaX = 20; 
ClbjMax = 10; 
CbnMaX = 10; 

{no. of reserved Words 1 
{no. of keywords1 
{first std. proc in keyword table1 
{length of identifier table1 
trrrax. no. of digits in numbers1 
trcraximnn number1 
t m x h  depth of block nesting1 
{size of Code Array1 

TVpe 
Symbol= 
( N u l l , I d e n t , M H n b e r , P l u s O p , M i n ~ , T ~ ,  
eql ,neq, lss, leq,gtr,geq, lparen,rparen,comma, semicolon, 
perid,becomes,BeginSym,EndSym,IfSym,The, 
~ i l e S v m , D o S y m , C a l 1 S y m , ~ t S y m , V a r S y m , V ~ j S y m , V a r D e c S y m ,  
VarOonSym,ProcSym,SinProc,CosProc,LnProc,LogProc,ExpProc, 
SqrtProc,AbsProc); 

Alf =String[321; 
Object = (Constant,Variable,Mariab,CIbjVariab, 

OonVariab,Prozedure,StdFunct); 
w e t  = set of Symbol; 
Fct = (LIT,OPR,LOD,STO,CAI;,INT,JMP,JPC,FUN); {functions1 
Instr = Record 

1: Integer; 
Case f:Fct of 



LIT : (LitVa1:R-1); 
om. 
m. 
sm. 
a. 
INTI 
J M P .  
m. 
JPC : (a: Integer); I displacent address 1 

end; 

Var 
LastCharRead : char; 
LastsymRead : Symbol; 
LastIdRead : Alf; 
LaslmRnRead : Real; 
CharCount : Integer; 
IntErrNo : Integer; 
CodeAlocIdx : Integer; 

Ilast character read1 
tlast Symbol read1 
tlast identifier read1 
I last number read 1 
{character count1 
{interpreter Error1 
{Code allocation index1 

: Array[l..StacSizl of Record 
StacVa1:Real; 
Stad)er:Array[l. .Ikddaxl of m; 

end; 

Code : Array[O..CxMaxl of Instr; 
Word : Array[l..NoRwl of Alf; 
WSym :Array[l..NoRwl ofsymbol; 
SSym : Array [char I of Symbol; 
MnCode : Array[ Fct I of Alf; 

SynfJ!able: Array[O..TxMaxl of Record 
Name: Alf; 
Case kind:object of 

Constant: (val: Real); 
Variable. 
Prozedure:(level,adr: Integer) 

end; 

I - Solver Interface 1 

DecArr :Array[l..IkcMaxl of Red; 
ObjDer :Array[l..Ob~,l..~l of Real; 
QnDer : A r r a y [ l . . O o n P l l a x , l . . ~ l  of Red; 
ConArr :Array[l..Cb&hxl of Real; 
ObjArr :Array[l..ObjMaxl of RsaZ; 

DecName :Array[l..DIzY2mxl of Alf; 
ObjNamf3 :Array[l. .ObjMaxl of Alf; 



00- :Array[l..OoMaxl of Alf; 

*Set :Array[l..Ob~l of Boolean; 
Conset :Array[l..OonMaxl of Boolean; 

Procedure Conp?Init ; 
I----------------- 1 
Var i : Integer; 
begin 

for LastCharRead:='A' to ';' do 
SSym[ LastCharRead. I : =Nu1 1 ; 

: =CallSym; 
: =DoSym; 
: =If Sym; 
: =ProcSym; 
: =VarSym; 

I : =VarOb jSym; 
I : =varQnSym; 

ErrNo: =O; 



end; Iof Corrp7Init1 

Procedure Compile; 
I---------------- 1 

Procedure Error(n:Integer); 
I------------------------- 1 
begin 

if ErrLine=O then 
begin 

ErrLine:=LineNo; 
ErrNo : =n; 

end; 

end; Iof Error1 

Procedure GetSym; 
I--------------- 1 
V a r  i,j,k :Integer; 

a:Alf; 
v:Real; 
Procedure GetCh; 
I-------------- 1 
Var LineLRngth:Integer; 
begin 

Linehmgth:=Iength(TextArr[LineNol); 
if Charcount =LineLength then 

begin 
if LineNo<=NoOfLinesInWrff then 

begin 
LineNo:=LineNo+l; 
Charcount: =o; 
LastCharRead:=' '; 

end 
else 
begin 

WriteLn ( 'Program Incmplete' ; 
Error (29) ; 
Exit; 

end; 
end 
else 
begin 

Charcount:=CharCount+l; 
IastCharRead:=TextArr[LineNol[CharCountl; 
If IastCharRead in ['a'..'zH1 then 

LastCharRead:=Chr(Ord(LastCharRead)-32); 
f=lld ; 



end Igetchl; 

begin IGetSyml 
While LastCharRead = ' ' do 

GetCh; 
if LastCharRead in ['A'..'Z'l then 

begin 
a : =" . 
Repeat 

a:=a+LastCharRead; 
GetCh ; 

Until not (LastCharRead in['A'..'Z','o'..'g'I); 
j:=O; 
For i:=l to NoRw do 

if a=hlord[il then 
j: =i; 

if j<>O then 
Lastmead : =WSym[ j I 

else 
LastSynd3ead:=Ident; 

LastIdRead:=a; 
end 
else 
if LastCharRead in [ '0'. .'9' I then 

begin 
a : =" . 
k: =O; 
LastSyrMead:=Mnnber; 
Repeat 

a:=a+LastCharRead; 
k: =k+l; 
Getch; 

Until not (LastCharRead in ['0°..'9','.'1); 
if LastCharRead='E' then 

begin 
a:=a+LastCharRead; 
k: =k+l; 
Getch; 
Repeat 

a:=a+LastCharRead; 
k: =k+l; 
Getch; 

Until not (LastCharRead in ['0'..'9','-','+'I); 
end; 

Val(a,LastNumRead,i); 
if (k>P@lax) or (i<>O) then 

Error(30); 
end 
else 
if LastCharRead=':' then 

begin 
etch; 
if LastCharRead='=' then 

begin 
LastsymRead:=becoms; 
etch; 

end 



end 
else 
if IastCharRead='<' then 
begin 

GetCh ; 
if IastCharRead=' >' then 

begin 
IastSmead:=neq; 
GetCh ; 

end 
else 
if IastCharRead='=' then 

begin 
U s w e a d :  =leq; 
Getch; 

end 
else 

IastSymRead:=lss; 
end 
else 
if IastCharRead='>' then 

begin 
Getch; 
if IastCharRead='=' then 

begin 
Lastmead: =geq; 
GetCh; 

end 
else 

IastSynRead:=gtr; 
end 
else 
begin 

IastSymRead : =SSym[ IastCharRead 1 ; 
Getch; 

end; 
end IGetSyml; 

Procedure GenO(x:Fct;y,z:Integer); 
I-------------------------------- l 
begin 

if CodeAlocIdx>CxMax then 
Error(1000) 

else 
begin 

With Code[CodeAlocIdxl do 
begin 

f : =x; 
1 : 7; 
a: = z ;  

end ; 
CodeAlocIdx : =CodeAlocIdx+l ; 

end; 

end; Iof GenOl 

Procedure Genl(x:Fct;y:Integer;z:Real); 
I------------------------------------- l 



begin 
if CodeAlocIdx>CxMax then 

Error(1000) 
else 
begin 

With Code[CodeAlocIdxl do 
begin 

f:=x; 
l:=y; 
LitVal:=z; 

end ; 
CodeAlocIdx: =CodeAlocIdx+l; 

end; 

end; Iof Genll 

Procedure ~est(sl,s2:SyrrrSet;n:Integer); 

begin 
if not (LastSynRead in sl) then 

begin 
Error(n1; 
sl:=sl+s2; 
While not (LastEQrMead in sl) do 

GetSym; 
end ; 

end; Iof Test1 

Procedure Block(lev,tx:Integer;fsys:SyrrrSet); 

Var &:Integer; 
i,txO:Integer; 
cx0,xxO:Integer; 
Lx:Object; 

Procedure Enter(k:object); 
I------------------------ 1 
begin 

tx: =tx+l; 
with Sy~Wable[txl do 
besin 

Name: =LastIdRead; 
kind: =k; 
Case k of 

Constant :begin 
if abs(LastNmSead) >AMax then 

begin 
Error ( 30 ; 
LastNumRead : = 0 ; 

end; 
val:=LastNm&tead; 

end; 
Variable :begin 

level:=lev; 
adr: =dx; 
dx : =dx+l; 

end; 



Oa, jvariab : begin 
level : =Obj@hrk; 
Ob jPtr : =Ob jPtr+l ; 
abjNaeCC%jPtrl:=Name; 
adr:=cBjPtr; 

end; 
c0nVariab:begi.n 

level : =cmMark; 
ConPtr:=aonPtr+l; 
~ C O o n P t r I  :=NallE; 
adr:=OonPtr; 

d ;  
DecVariab:begin 

level : -4kdkmk; 
DecStr : =DecPtr+l; 
DecNanneCDecPtrI :=Name; 
adr : =DecPtr; 

d ;  
Prozedure:level:=lev; 

end; Iof Case kI 
end; 

end; tenter1 

Function Position(id:Alf):Integer; 
I-------------------------------- I 
Var i: Integer; 
besin 

QMCable[Ol.Name:=id; 
i: =tx; 
while QMCable[il.Name <>id do 

1 : =i-l; 
Position:=i; 

end; Iof Position1 

Procedure ConsU)eclaration; 
I------------------------- 1 
Var Sgn : Symbol ; 
begin 

if Las-ead=Ident then 
besin 

*tsym; 
if Lastwead in [ eql , becomes I then 

begin 
if LastSymRead=becames then 

Error(1) ; 
Gem; 
if LastSymRead=Number then 

begin 
Enter(Constant); 
*tsym; 

end 
else 
if IastsymRead in tPlusop,Minusopl then 

begin 
Sgn : =Lastmead; 
Getsym; 



if LastsymRead=Number then 
begin 

if Sgn=MinwOp then 
LasWumRead : =-LasMead ; 

Enter(Constant1; 
GetSym; 

end 
else 

Error ( 2 1 ; 
end 
else 

Error ( 2 1 ; 
end 
else 

Error ( 3 1 ; 
end 
else 

Error ( 4 1 ; 

end; Iof Constkclaration1 

Procedure VarDeclaration; 
I----------------------- 1 
begin 

if LastSyniRead=Ident then 
begin 

Enter(Variable1; 
Getsym; 

end 
else 

Error ( 4 )  ; 

end; {of VarDeclaration1 

besin 
if LastSynRsad=IQnt then 

besin 
Enter(vaflype1; 
Getsym; 

end 
else 

Ermr(4); 

end; {of SpecVarIkclaration1 

Procedure Statement(fsys:SymSet); 
I------------------------------- 1 
Var i,cxl ,cx2: Integer; 

Procedure Expression(fsys:SymSet); 
I-------------------------------- 1 
Var addop: symbol ; 

Procedure Tem(fsys:SymSet) ; 

Var mlop: symbol ; 
Procedure Fador(fsys:SymSet); 
I---------------------------- 1 



Var i: Integer; 
FctSym: Symbol ; 

begin 
Test(FacBegSys, fsys,24); 
While LastSynStead in FacBegSys do 

begin 
if LastSymRead=Ident then 

begin 
i:=position(LastIdRead); 
if i=O then 

Error( 11) 
else 
with SymtTableI i I do 

Case kind of 
Constant : Genl(LIT,O,val); 
Variable : GenO(D,lev-leve1,adr); 
Wariab: GenO(LfB,-k,adr); 
ObjVariab, 
OniVariab: begin 

i:=O; 
Error(34); 

end; 
Prozedure: Error(21); 

end; 
GetSym; 

end 
else 
if LastSyrMead=Nmker then 

begin 
if abs ( LastNuITRead) >Max then 

begin 
Error(30) ; 
~astMmRead: =O; 

end; 
Genl(LIT,O,LastNuITRead); 
GetSym; 

end 
else 
if LastSymRead=lparen then 

begin 
Getsym; 
expression([rparenl+fsys); 
if LastSyn-Eead=rparen then 

else 
Error(22) ; 

end 
else 
if Lastmead in StdFctSym then 

begin 
FctSym: =Lastmead; 
GetSym; 
if LastSyrnRead=lparen then 

begin 
Getm; 
expression([rparenl+fsys); 
if Last-ead=rparen then 

begin 



end ; 

GetSym; 
GenO(m,l,ord(FctSym) 1; 

end 
else 

Error(22); 
end 
else 

Error ( 23 ) ; 
end; 
test(fsys,[lparenl,23); 

end; {of factor1 

begin ITerm1 
factor(fsys+[TimesOp,slashl); 
While LastSymRead in [TimesOp,slashl do 

begin 
rmlop: =Las-d; 
Getsym; 
factor ( f sys+ [ Time-, slash I ; 
if mlop=Time&p then 

GenO(OPR,0,4) 
else 

~enO(oPR,0,5); 
end; 

end; {of Term1 

begin texpressionl 
if LastSy~~~Read in [ PlusOp, MinusOpl then 

begin 
addop : =LastSynRead; 
GetSym; 
tenn(fsys+[Pl~, Mine]); 
if addop=MinmQp then 

GenO(OPR,O,l); 
end 
else 

t enn( f sys+[P lusOp,Min~ l )  ; 
While LastSynSead in [PlusOp,Minusopl do 

begin 
addop : =La-ead ; 
G e m ;  
term(fsys+[Plusop,Minusopl); 
if addop=PlusOp then 

GenO(OPR,O,2) 
else 

GenO(OPR,O,3); 
end; 

end; {of Expression1 

Procedure Condition(fsys:symset); 
I------------------------------- I 
Var relop: symbol ; 
begin 

expression([eql,neqIlssIgtrI1eqIgeql+fsys~; 
if not (Las-ead in [eql,neq,lss,leq,gtr,geql) then 

Error ( 20) 



else 
begin 

relop:=LastSymRead; 
G e m ;  
expression(fsys); 
Case relop of 

eql:GenO(0PR,OI8); 
neq:GenO(OPR,0,9); 
lss:GenO(OPR,0,10); 
geq:GenO(OPR,O,ll); 
gtr:GenO(OPR,0,12); 
leq:GenO(OPR,0,13); 

end; 
end ; 

end; Iof Condition] 

begin Istatement] 
if LastSymRead=Ident then 

begin 
i:=position(LastIdRead); 
if i=O then 

Error ( 11 
else 
if not (syMl?able[il.kind in 

IVariable,Oa,jVxiab,aOnVxiabl) then 
begin 

if SydhbleC i I .kind=DedVariab then 
Error(35) 

else 
Error(l2); 

i: =O; 
end; 

G e m ;  
if LastSymRead=becames then 

G e m  
else 

Error(l3) ; 
expression(fsys); 
if i<>O then 

with SynU!able[ i l  do 
Case kind of 

Variable :~enO(Sm,lev-leve1,adr); 
UbjVari;rh:GenO(SlD,Oa,jMark,adr) ; 
a O n V ~ i a b : G e n O ( S I D l ~ l a d r )  ; 

end; 
end 
else 
if LastSyniRead=CallSym then 

begin 
G e m ;  
if LastSyx@ead< >Ident then 

Error ( 14 
else 
begin 

i:=position(LastIdRead); 
if i=O then 

Error ( 11 



else 
with SyMhble[il do 

if kind=Prozedure then 
GenO(CAL,lev-leve1,adr) 

else 
Error(l5); 

GetSym; 
end; 

end 
else 
if ~astspRead=If Sym then 

begin 
GetSym; 
condition([ThenSym,~o~yml+fsys); 
if LastSynBead=ThenSym then 

Getsym 
else 

Error(l6); 
cxl : =CodeAlocIdx; 
GenO(JPC,O,O); 
statement ( f sys ; 
Code[cxll.a:=CodeAlocIdx; 

end 
else 
if ~astsymRead=Eeginsym then 

begin 
Getsym; 
statement ( [ semicolon I EhdSyrnl +fqs ) ; 
While LastsymRead in [Semicolonl+StatBegSys do 

begin 
if Lastmd=semicolon then 

else 
Error(l0) ; 

s t a ~ t ( [ s e m i c o l o n , E n d S y m l + f s y s ) ;  
end; 

if LastsymRead=EndSym then 
*tam 

else 
Error(l7); 

end 
else 
if La&SyrMead=WhileSyrn then 

begin 
cxl : =CodeAlocIdx; 
Getam; 
condition([DoSyml+fsys); 
cx2 : =CodeAlocIdx; 
GenO(JPC,O,O); 
if LastsymRead=DoSym then 

Get* 
else 

Error ( 18 ; 
stat€inent(fsys); 
GenO(JMP,O,cxl); 
Code[cx2l.a:=CodeAlocIdx; 

end ; 
test(fsys, [ 1,191; 



end; {of Statement1 

begin I block1 
d x :  =3; 
tx0 : =tx; 
~able[txl.adr:=CodeAlocIdx; 
GenO(JMP,O,O) ; 
if lev > LevMax then Error(32); 
Repeat 

if LastSymRead=ConstSym then 
begin 

GetSym; 
Repeat 

ConstDeclaration; 
While LastSynRead=com~ do 

begin 
GetSym; 
ConstDeclaration; 

end; 
if Las~ead=semicolon then 

GetSym 
else 

Error ( 5 ; 
Until Lastmead< >Ident; 

end; 
if LaslSydiIead=VarSym then 

begin 
GetSym; 
Repeat 

VarDeclaration; 
While La&Sy~&ead=com~ do 

begin 
Getsym; 
VarDeclaration; 

end; 
if Las~ead=semicolon then 

Getsym 
else 
Error(5); 

Until LastSymKead< >Ident; 
end; 

if IastSymdGead in E V a r C l b j S y m , V a r C o S y m , V ~ l  then 
if k < > O  then 

Error ( 33 1 
else 
mt 

cast? LastSymRead of 
Var0bjSym:Lx: =ObjVariab; 
varOonSym:Lx: =Oonvariab; 
varDecSym:Lx: =DecVariab; 

end; 
GetSym; 
rCepeat 

Spe&artezlaration( Lx ; 
While -=axma do 

begin 
GetSym; 



SpecVarDeclarati~n( Lx ; 
erd; 

if LastSymRead=aemi0010(1 tben 
GetSym 

else 
Error(5) ; 

until G d s y m € d <  >Ident; 
Until mt (UdSydkd in 

Vambjsym,Varoonsym,VarDecsyml) ; 
While LastSynStead=ProcSym do 

begin 
GetSyro; 
if La-d=Ident then 

begin 
enter(Prozedure); 
Getsym; 

end 
else 

Error(4); 
if La-d=semicolon then GetSym 

else Error(5) ; 
block(lev+l,tx,[Semicolonl+£sys); 
if LasfSynSead=semicolon then 

begin 
GetSym; 
Test ( StatBegSys+ [ Ident , ProcSym I , £ sys ,6 ) 

end 
else 

Error(5); 
end ; 

Test(StatBegSys+[IdentlI~1BegSys17); 
Until not (La-ead in DeclBegSys); 
Code[~able[txOl.adrl.a:=CodeAlocIdx; 
~able[txOl.adr:=CodeAlocIdx; 
cxO : =CodeAlocIdx; 
GenO(rn,O,dX); 
statement( [semicolon,EndSyml+fsys); 
GenO(OF'R,O,O); 
Test(fsys,[ 1,8); 

end; {of block1 

begin 
Getsym; 
block(O,O,[periodI+DeclBeg~ys+Sta~~~s); 
if -cad< >period then 

Error (9); 

end; {of ~arcpile1 


