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Foreword

One of the important problems of designing and implementing Decision
Support System relates to the user friendliness and simplicity of problem
definition. This is especially important in the case when a model of the
system, constraints and objectives are described in terms of nonlinear
equations. In all existing implementations of decision support systems
this definition must be performed on the level of FORTRAN or other high-
level language, which requires a rather deep knowledge of computer prog-
ramming. Preparation of the problem, especially analytical computation of
derivatives can also be the source of errors.

In the paper the principles of implementation of user-friendly in-
terface to DIDAS system is presented. This interface utilizes the small
subset of the PASCAL language for defining the problem; the compiler of
the language performs all the algebraic manipulations necessary to analy-
tical calculation and computation of the derivatives. This concept simpli-
fies essentially the utilization of the DIDAS system and it can be exten-
ded for many other applications.

Alexander Kurzhanski
Chairman
System and Decision Sciences Program
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PROBLEM INTERFACE FOR NONLINEAR DIDAS
Part 1: Static systems

Andrze] Lewandowski

1. INTRODUCTION

The existing experience with various implementations of interac-
tive decision support system - for example, of DIDAS type (Dynamic In-
teractive Decision Analysis and Support, see Grauer at all., 1984) in-
dicates, that one of the important features, deciding about real ap-
plicability of the software is simplicity and user friendliness of the
man machine interface (Lewandowski, 1986). This problem is especially
important when constructing decision support systems for problems des-
cribed by nonlinear mathematical models.

Problems described by mathematical models of linear structure
were investigated by many authors and several approaches for defining
such problems interactively were proposed. Such problems are somehow
easier to define because the entire model can be specified as a col-
lection of vectors and matrices. Therefore, the task of defining the
problem - i.e. converting initial data and knowledge about the struc-
ture of the problem into a linear programming model can be performed
without essential conceptual problems. Several software tools support-
ing this task were proposed recently (Orchard-Hays, 1978, Fourer,
1983). Another approach, recently gaining on popularity, is the use of
concept of a spreadsheet program.

When dealing with nonlinear models, the situation is much more
complicated. One of the reasons is the negative character of the defi-
nition of nonlinear problems: "a nonlinear problem is such a problem,
which is not linear". Another source of difficulties is connected with
the requirement of calculating the derivatives of the objective and
constraints functions. These derivatives are necessary when applying
nonlinear programming methods, since practically only differentiable
optimization methods are sufficiently efficient and robust to be ap-
plied in interactive decision support systems. Usually the derivatives
mast be calculated analytically by the user of the system and properly
interfaced to the rest of software. This task is time consuming and
can be a source of errors that are typically difficult to detect. Ano-
ther problem relates to the nature of problem interface - the user usu-
ally is forced to define his problems in FORTRAN or other high level
language according to the specification of the interface provided by
the implementator of the system. This can be a rather complicated
task, requiring certain skills in computing.

All these difficulties must be overcome when we want to design a
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user-friendly man machine interface for a decision support system. The
user friendliness of the man machine and problem interface is espe-
cially important for microcomputer implementations of the DIDAS sys-
tens. These implementations are especially dedicated for users not
being computer specialists.

The aim of this paper is to present a model implementation of a
flexible problem interface based on the PASCAL language. In order to
make the implementation sufficiently simple, a very small subset of
PASCAL was implemented. It is a straightforward task to implement the
same features in full sized PASCAL, particularly since a source code
of several PASCAL compilers is available (PASCAL-S, see Wirth, 1981,
and PASCAL-P, see Nori at all, 1981 and Pemberton, 1982). Despite the
simplicity of the implemented language, the problem interface descri-
bed in the paper is a rather powerful tool, which can be used for
defining quite complicated, practical problems.

2. AUTOMATIC COMPUTATION OF GRADIENT

The problem of gradient calculation was investigated by many
scientists working in the field of mathematical programming and sen-
sitivity analysis. The algorithmic approach for calculating deriva-
tives, was proposed for application in sensitivity analysis by Tomovic
and Vukobratovic (1972). One of the early works was done at IIASA by
Orchard-Hays (1978), but his system was oriented only to automatic
differentiation of polynomials. Deep investigation of the problem of
differentiation of mathematical models, especially of implicit type
and dynamic models described by differential and difference equations
were performed by Wierzbicki (1977, 1985). The most complete presenta-
tion of various techniques of gradient computation and possible ap-
plications of these techniques can be found in the monography by Rall
(1981) and his revue paper (Rall, 1980).

Let us analyze several existing approaches supporting the pro-
blem of automatic calculation of derivatives.

2.1 Application of general purpose languages.

The first approach was proposed by Wegnert (1964) and later
exploited by Kalaba and others (Kalaba, 1965, 1983, 1984). They util-
ize FORTRAN to write programs for automatic calculation of deriva-
tives. The principles of the method (known as "table method"”) are as
follows:

- every variable is represented by 2 (or more) dimensional
array; the first element of the array contains value of the
variable, the next - values of first and possibly higher deriva-
tives,

- all standard functions and operators are emulated by special
subroutines; these subroutines calculate values of the result as
well as values of corresponding derivatives,

- mathematical expressions are composed from the emalating sub-
routines in such a way, that the resulting program reflects the
tree structure of computed expression.

The following are the examples of subroutines which emulate addition
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and multiplication:

SUBROUTINE ADD(X,Y,R)
DIMENSION X(2),Y(2),R(2)
R(1)=X(1)+¥Y(1)
R(2)=X(2)+Y(2)

RETURN

SUBROUTINE MUL(X,Y,R)
DIMENSION X(2),Y(2),R(2)
R(1)=X(1)+Y(1)
R(2)=X{(1)*Y(2)+Y(1)*X(2)
RETURN

If the user wants to calculate the value and the derivative of the ex-
pression like

x1*x2+x3
he should prepare the following program

DIMENSION X1(2),X2(2),X3(2),R1(2),R2(2)

CALL MUL(X1,X2,R1)
CALL ADD(R1,X3,R2)

Evidently, some "initial conditions” must be set for values of deri-
vativeg; if the user wants to calculate the derivative of the above
expression with respect to x1, the following assignments mast precede
the subroutine calls:

X1(2)=1
X2(2)=0
X3(2)=0

In the similar way, higher order derivatives can be calculated.
Details of this process can be found in the paper by Kalaba and Tish-
ler (1983).

Other lanquages were utilized for writing programs for automatic
calculation of gradient. ALGOL 60 was used by Van de Riet, who in 2
volume report (Van de Riet, 1970) gives very detailed analysis of the
use of high level numerically oriented language for formila analysis,
investigates such problems like formila simplification and proposes
convenient tools for defining problems. A similar system, but written
in PASCAL, was designed by Shearer and Wolfe (1985). ALGOL 68 was used
as the implementation language by Ince and Robson (1980).

The approach presented above is evidently the simplest one. It
does not require special (usually very complicated) tools - it is
enough to have access to any high level lanquage and certain "know
how" to define a particular problem. This approach is, however, avail-
able only for experienced programmers and is too complicated for end
users. It can however be efficiently utilized for implementing dedi-
cated decision support systems, where the problem definition is spe-
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cified on the implementation stage and remains unchanged during
utilization of the decision support system.

2.2 Preprocessors to high level lanquages.

The direct utilization of high level langquages is rather not a
straightforward task. It follows from two reasons:

- the implementator must posses certain knowledge about the used
method;

- the mathematical expression must be converted to postfix form;
in other words, it is necessary to perform manual "parsing” of
the expression. This process is time consuming and can be the
source of errors.

Parsing of mathematical expressions is a well recognized task
which can be easily computerized. Therefore it is possible to create a
computer program which could convert the mathematical expression for-
malated in standard notation, into high level program according to the
concepts presented above. Such programs are known as preprocessors.

The number of such preprocessors for formila manipulation are
known. The ALGOL 60 based one was designed by Van de Riet (ABC AIGOL,
Van de Riet, 1973). This constitutes in fact a full featured language,
being the superset of ALGOL 60. All the standard features of ALGOL are
available to the user. Additionally new standard type formla makes
possible a rather extensive forrmula manipulation. The source program
written in ABC ALGOL is translated to standard ALGOL and further pro-
cessed by ALGOL compiler. The ABC-AIGOL can be easily implemented on
any computer, because the preprocessor is written in standard ALGOL.
The only requirement is availability of ALGOL compiler.

The other similar preprocessor is AUGMENT preprocessor (Kedem,
1980), a FORTRAN based system. The principle of design is exactly the
same like ABC ALGOL. The user specifies his problem in extended FOR-
TRAN and the preprocessor converts the problem description into
sequence of standard FORTRAN statements. Both systems are expandable -
the user can define his own operators and supply his own subroutines
and procedures performing necessary actions. Similar preprocessor -
QODEX and SUPER-CODEX was developed by Rall (1981).

The preprocessors mentioned above constitute a very powerful
tool - but also for experienced user. Good familiarity with the host
langquage is necessary to use these systems efficiently. Moreover, the
forrmula-oriented features are rather sophisticated and long training
as well as some understanding of the internal organization of the sys-
tem is necessary to use them efficiently. The power of such systems
follows from the accessibility to all features of host level language
as well as the availability of the compilation product which itself is
a high level language program. This makes adaptation of the resulting
program relatively easy and ensures very high flexibility of this
approach.

2.3 Application of very high level symbolic manipulation languages.

The number of special languages were developed which are either
especially designed for formula manipulation, or are more general pur-
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pose oriented, but are especially convenient for formula manipulation.

The most known language of this type is LISP (Winston, 1981).
Formula differentiation and manipulation can be programmed in LISP
rather easily (Nicol, 1981}, however for a programmer having long ex-
perience with FORTRAN or PASCAL like languages moving to LISP is con-
nected with serious conceptual difficulties. A number of packages for
formala manipulation were implemented in LISP, most of them for ap-
plications in theoretical physics.

A similar tool is MU-SIMP language developed by SoftWarehouse
for a broad range of microcomputers (Apple, IBM-PC and others) and
distributed by MICROSOFT (1983). This language is in fact an extension
of LISP, but unlike LISP which is a list processing language, MU-SIMP
is a tree processing language. This fact and much more convenient syn-
tax of MU-SIMP makes this language an ideal tool for implementing for-
mula manipulation problems {(Douglass, 1982). Together with MU-SIMP,
the MU-MATH system for symbolic formula manipulation, implemented in
MU-SIMP is distributed. The power and the flexibility of the language
as well as the availability of source codes of rather sophisticated
formula manipulation algorithms, make this language the most promising
tool for programming the user and problem interface for decision sup-
port system. This option however, has not been sufficiently inves-
tigated as vet.

Another general purpose high level language which can be used
for implementing the formula differentiation and manipulation algo-
rithms is PROLOG (Burnham and Hall, 1985). Programming the formula
manipulation in PROLOG constitutes a rather simple task - but simi-
larly like in the case of LISP, switching to this language can be
rather difficult.

All the languages listed above are oriented to processing of
symbolic information and lack such features like highly efficient
numerical computation, file processing and flexible access to screen
and keyboard. Interface to other general purpose languages like C or
PASCAL is limited or not available at all. Therefore certain effort is
necessary to analyze the practical applicability of these languages
for implementing the interfaces for decision support systems.

2.4 Fornrmla manipulation languages.

From the very early history of computer science a lot of works
have been done on development the special purpose languages for sym—
bolic formala manipulation. Currently, the MACSYMA and REDUCE are most
known and are most widely used (see Fateman, 1982 for detailed dis-
cussion)., Symbolic mathematical computation languages are also dis-
cussed by Wolfram (1985) who presents various approaches and discusses
the features of SMP - one of the most powerful symbolic manipulation
lanqguages currently available. The other language possessing certain
popularity is PASCAL-SC (PASCAL for Scientific Computation, see Kulish
and Miranker, 1983). PASCAL-SC was applied for gradient computation by
Rall (1983, 1984).

The situation with formula manipulation languages is similar to
the described above - these languages are usually very complicated,
require long training, interfacing to numerical and file processing
modules can be difficult. The computer resources necessary to effec-
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tively run symbolic manipulation programs are rather high (for exam—
ple, according to Wolfram, 1985, the kernel of SMP language contains
over 120000 lines of C code). Therefore, they can be rather considered
as tools for high qualified specialists in mathematics and computer
science, and it seems to be rather unlikely to use them as user front
end for decision support systems, or tools for implementing such front
end.

3. PROBLEM INTERFACES IN EXISTING IMPLEMENTATIONS OF NONLINEAR DIDAS
SYSTEM

Currently, there exist 3 versions of nonlinear DIDAS: DIDAS-N
developed by Grauer and Kaden (1985), a specialized system developed
by Kaden and Kreglewski (1985) for solving decision problems relating
to groundwater management and general purpose DIDAS system implemented
by Kreglewski and others (Kreglewski, et. all., 1985). Let us analyze
the problem interfaces available in all these versions of system.

The interface used in Grauer”s and Kaden”s version of the system
is rather conceptually simple, but not very user-friendly. The equa-
tions describing objective and constraints functions must be program-
med in FORTRAN. The authors supply the "skeleton"” FORTRAN subroutine
with empty "holes", where the user must locate his FORTRAN code. This
is a rather complicated task - separate parts of the problem defini-
tion must be located in various places of the code, and the code it-
self must be written taking into account the variable names and struc-
ture used in this skeleton subroutine. What makes defining the problem
especially difficult is the fact that, writing his code, the user must
properly augment all his formulas with the penalty function terms and
their derivatives. This is conceptually rather difficult for a user
which is not familiar with mathematical programming algorithms and can
lead to numerous errors. Variable names conflict is also probable.

The general purpose version of nonlinear DIDAS developed by Kreg-
lewski and others (1985) also needs a FORTRAN subroutine containing
the problem description. Unlike to the previous system, however, the
user must preserve only the general structure of the subroutine header
{(formal parameters declaration) and COMMON block. No variable conflict
can occur, and the standards according to which the body of the sub-
routine must be composed are quite clear and straightforward. The main
disadvantage of this interface relates to the definition of deriva-
tives -~ the user must calculate these derivatives analytically. This
is usually a time consuming process and the source of various errors
that are difficult to detect.

To minimize the probability of occurrence of errors in analyti-
cal gradient computation, several authors proposed numerical proce-
dures for gradient checking. Detailed analysis of the problem, and
sample procedures were discussed by Wolfe (1982). This approach was
utilized by Kreglewski (1985) in his version of the DIDAS system; a
similar procedure was implemented in MINOS-AUGMENTED nonlinear
programming system,

The simplest interface has the DIDAS-like system for solving
water management problems developed by Kaden and Kreglewski. This sys-
tem was designed to solve only one class of problems, therefore a
model of the system was programmed only once, in a very efficient way.
The user interacts with the system only on the level of input data and
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reference point selection.

Concluding, the following are the basic disadvantage of the ex-
isting implementation of problem interface in nonlinear DIDAS:

- the user must compute analytically all derivatives of objec-
tive and constraint functions,

- the objective and constraint functions as well as all deriva-
tives must be programmed in FORTRAN according to the specifica-
tion supplied by the implementator of the system; this specifi-
cation can be difficult to understand for non-experienced user,

- the user must be familiar with details of the computing en-
vironment of the computer which he is working with - such like
program editor, compiler, linker, operating system command lan-
guage etc. This is the most severe limitation, which restricts
essentially the usability of the system; a long training is nece-
ssary to work with the computer efficiently and without troubles
on this level of interaction.

- any changes of the model - the process being in fact one of
the important stages of interactive work with the system, cannot
be performed within the system.

Let us point out that problem definition and modification is one
of the most important stages of working with any decision support sys-
tem. The sequence: program editor — FORTRAN compiler - linker - opera-
ting system, being in the fact one of the stages of interaction with
the system, slows down essentially the interaction process, makes it
difficult and inefficient. Therefore, the user friendliness of the
problem interface requires special attention - especially in the case
of nonlinear problems.

4. POSSIBLE APPROACHES IN DESIGN OF PROBLEM INTERFACE FOR NONLINEAR
DIDAS

Currently, there does not exist ready to use tools which could
be applied directly and without essential modifications for building
problem interface for nonlinear DIDAS. It is possible, however, to
adapt some existing methodologies of defining nonlinear problems for
applications in decision support systems. Let us analyze the existing

options.
4.1 Spreadsheet programs.

This method of interaction is very popular and used in almost
all business oriented software. It can easily be adapted for defining
linear programming problems - it is very easy to enter the standard or
multiple criteria linear programming problem as set of matrices. There
exist commercial codes for defining and solving linear programming
problems which base on well known LOTUS spreadsheet program (General
Optimization Inc., 1986). The interfacing between spreadsheet program
and linear programming solver is relatively easy -~ each spreadsheet
program can generate output files containing all data entered to the
spreadsheet cells. This file can be read easily by linear programming
solver; this solver can generate the solution file which can be im-
ported to the spreadsheet.



In the case of nonlinear problems the situation is not so easy.
In the principle, all spreadsheet programs make it possible to enter
and to use forrmlas as cell contents. Unfortunately, it is usually not
possible to transfer formulas to external file. It is possible to save
the whole worksheet on disk, but the file format is proprietary and
not described in the manual. Some options are available (like .PRN fi-
le in LOTUS) which make it possible to saving formulas in ASCII file,
but usefulness of such information is questionable. The most severe
limitation is caused by lack of accessibility to the formala evaluator
module. Therefore, commercial spreadsheet programs like LOTUS, MULTI-
PIAN and others cannot be used directly for defining nonlinear deci-
sion analysis problems.,

The spreadsheet interaction methodology has however several
advantages, which could motivate further research in this direction.
The properties of a spreadsheet which make this approach convenient
for the user are as follows:

- a spreadsheet belongs to the class of non procedural lan-
guages, i.e. the sequence in which the separate formulas are
evaluated depends only on the logical relationships between for-
malas and data, not on the sequence in which they are appear in
the program text,

- rather extensive testing of program and data correctness can
be performed in a spreadsheet program; this is possible due to
existence of NULL and N/AVAIL data types,

~ program entering and editing are very easy in a spreadsheet,

- a large set of "business oriented"” standard functions is build
into a typical spreadsheet,

- a spreadsheet is typically integrated with graphic and data
base subsystems.

As it was mentioned above, commercially available spreadsheet
programs cannot be used directly as the user front end for decision
support systems, It would be highly interesting however, to apply the
concept of spreadsheet for this purpose. To achieve this, either a
spreadsheet program miast be coded in one of the available high level
languages, or spreadsheet codes being in public domain could be used
for this purpose. One of the possible alternatives (due to several
restrictions, only for experimental implementations) could be MICRO-
CALC program supplied by BORLAND together with TURBO-PASCAL (Borland,
1985).

The structure of MICRO-CALC (as well as similar spreadsheet
programs is quite straightforward - it consists of the interactive
interface, data spreadsheet and formula evaluator. The formula eva-
luator calculates all formulas present in the data sheet, after every
change in the spreadsheet or on user”s request. To use MICRO-CAIC as
problem interface to DIDAS the following changes and amendments to
this system must be provided:

- selected variables must be marked as decision variables, ob-
jective variables and constraints variables,

8



- each "numerical"” cell should contain not only values of the
objective, but also values of all derivatives with respect to
all decision variables currently defined. Therefore such spread-
sheet could be treated as a "multilayer” one.

- the formmla evaluator must be properly modified in such a way,
that computing the value of formala, all the derivatives should
be calculated simultaneously,

- the formula evaluator should be implemented as procedure ac-
cessible both from the spreadsheet interface level and from the
solver (optimization routine),

- the interface between the formula evaluator and the solver
must be provided, in order to inform the solver about locations
of decision variables, constraint variables and objective varia-
bles.

All the above changes are rather easy to implement; the only
change which is more complicated relates to incorporating the formula
differentiation process into the formula evaluator routine. This is
discussed in a further section of the paper.

4.2 The TK!Solver approach.

It was recognized relatively early, that conventional spread-
sheet approach is not very useful for analysis of more complicated
problems arising in complex model applications. This takes place
especially, if model eguations are formulated in implicit form, i.e.
in the form of set of equations which must be solved in order to find
values of objective functions corresponding to given decision varia-
bles.

The standard spreadsheet programs can be applied even in this
case, but resulting programs are not natural and this task requires
some "smart" programming techniques (see, e.g. Haynes, 1985 where
LOTUS was applied to dynamic analysis of electronic circuits). There-
fore special approaches were developed to handle such problems.

One of the last and most interesting is the TK!Solver system
developed by Konopasek (1985) and commercially distributed by Software
Arts for IBM-PC computers. This system has spreadsheet like user inter-
face, which operates on two data sheets - the variable sheet and rule
sheet. In the variable sheet the user can define all the variables
needed to define his problem completely. Some of them can de defined
as input, the other are considered as output ones. The rules specify
relationships between variables in terms of equations. The rule equa-
tions can be entered to the system in any form and any order. The
second part of the system consists of the algebraic manipulator and
iterative equation solver. If the user changes definition of output or
input variables, modifies some rules or numerical values, the system
responds very quickly with new solution of the problem. On Fig.l a
sample screen generated by TK!Solver is presented.

The TK!Solver concept is rather flexible and user friendly. What
is most important is the fact, that the equations can be entered in
any order and any form - therefore this approach also can be treated
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as non procedural. The presented framework seems to be ideal for
defining nonlinear problems. There were some attempts to apply this
system for defining optimization problems (Konopasek, 1985), but these
trials must be treated as very initial ones. To convert the TK!Solver
program in a tool for an easy definition of nonlinear decision pro-
blems, some extensions would be necessary:

- an automatic derivative calculation routine should be build
into the algebraic manipulator and ecuation solver modules,

- additional tools providing access to data bases should be
available to the user,

- the set of available standard functions should be extended
essentially.

The source code of this system is not available, therefore di-
rect adaptation to decision support system is not possible. The con-
cept of TK!Solver however is one of the most interesting to be adapted
as user front end for decision support systems.

St Input Name Output Unit Corment
A 4.15
3.2 B
2.1 C
3.5 D
0.68 e
f 0.00232082
sz==================== RULE SHEET =========z===o=-======c
S Rule

A+B=C*D

Fig. 1 Sample screen generated by TK!Solver program.

4.3 Specialized programming languages.

It was recognized by many researchers, that in some cases ap-
plication of general purpose formula manipulation languages like
REDUCE or MACSYMA for solving rather simple problems requires too much
effort and investments, especially if the user has no direct access to
one of the above mentioned languages. Therefore some special software
tools oriented for solving one specific class of problems were desi-
gned. One of such tools is HESQ - the Hierarchical Equation Solver
developed by Derman and Van Wyk (1984), which, in fact, is a high
level programming language oriented to solving the implicit nonlinear
equations.

The HESQ system consists of the set of programs for interactive
solving and debugging models described by set of algebraic equations,
including their definition, examination and manipulation. Because mo-
dels usually contain data dependent elements, HESQ permits the models
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to include simple "vector" equations - i.e. equations whose left hand
sides are variables with one running index that may take on several
values. The following examples are taken from Derman”s and Van VWk™s

paper:
Income[1980:1984]1 = Revenuel1979:1983]1 + Extra
The above statement is equivalent to
Income[1908+i] = Revenue[1979+i] + Extra, 0 < i < 4.

HESQ allows other useful shorthand notation, like

Vector [1:41

[1, 2, alpha, -3]
or

Vector [1:41] [1+3]

what generates the implicit arithmetic sequence [1,4,7,101.

Similarly, geometric and other sequences can be easily genera-
ted. Moreover, macros, array variables, conditions and IF - THEN -
ELSE statements can be used, as well as rather broad set of standard
functions and operators being at the disposal of the user. Complete
example of a problem solved by HESQ system can be found in the paper
quoted above.

The system lacks the derivative calculating features, but the
nature of the algorithm used, which utilizes the graph representation
of the model and dependencies between variables, makes necessary ex-
tensions possible.

A similar, simple to use modelling language implemented on the
IBM-PC computer was described by Dunn (1983).

4.4 Extension of existing high level languages.

Another option, although not investigated until now, is an ex-
tension of existing programming languages to make them specially sui-
table for programming decision support systems. This can be achieved
by proper modification of the syntax of language. This option will be
discussed in the next section of the paper.

5. EXTENSION OF PASCAL FOR APPLICATIONS IN DECISION SUPPORT SYSTEMS.
5.1 General assumptions.

We shall follow here a general assumption that the user should
have at his disposal a simple and flexible software tool for defining
decision problems based on nonlinear models. This tool (or language)
should possess following properties:

- it should be conceptually simple, even for user not being com-
puter specialist,

- it should be sufficiently powerful to define even complicated
decision problens,
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- a friendly interface to the user should be provided, i.e., a
user friendly environment for problem definition and analysis
must be created,

- an interface to an optimization problem solver must constitute
an integral part of the language; it means that all necessary
formula manipulations must be performed without intervention of
the user as well as that all information necessary for the sol-
ver to run an optimization problem must be available.

The solution presented here can be treated as a model solution,
which is intended only to illustrate possible ways for resolving some
basic problems and proposing further extensions. The proposed and im—
plemented approach can however be applied to nontrivial practical pro-
blems without essential difficulties. Consequently, the resulting deci-
sion support system can be used as a prototype version for solving
test problems.

5.2 Definition of the language.

The language is a very small subset of PASCAL, known as PL0
(Wirth, 1976), properly modified for our purposes. The basic features
of this subset are as follows:

~ the only available variable type is real, therefore there is
no need to specify explicitly the variable type,

- there are no input and output features,
- the following standard constructs of PASCAL are available:

- const and var declarations (however without type
definition),

- if ... then (no else!),

- procedure without parameters,

- begin ... end with standard PASCAL procedure nesting and
visibility rules,

- while ... do,

- standard PASCAL statements and mathematical functions.

- the following important PASCAL features are not available in
PLO:

- records, pointers, arrays, sets, character, integers,
strings and enumerated type,

- user defined types,

- repeat ... until,

- file type, file i/o and standard i/o procedures,

- else statement,

- case selectors,

- for loops.

There is also one more difference between PLO and standard PAS-
CAL - in order to call the procedure, call keyword must precede the
procedure name.

The following are extensions to PLO added here for the purpose
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of applications in decision support systems:

- beside standard variables, functional variables are intro-
duced. These variables are defined in var section of the prog-
ram, just after declaration of standard variables. They are
defined using the keywords

vardec - for defining variables, which are the decision
variables, i.e. their values will be set by the optimiza-
tion routine (solver),

varobj - for defining variables containing values of ob-
jective functions,

varcon - for defining variables containing values of
constraints functions.

There exist some additional rules for using structured varia-
bles. The decision variables can be used only on the right hand side
of assignment statement, i.e. in expression. Their appearance on the
left side of assignment statement is reported as compilation error.
The objective and constraints variables can appear only on the left
hand side of assignment statement. The attempt to use them in expres-
sion will also be reported as compilation error. They can be used in
any place of the program (not necessary only once), but during the run
time a value can be assigned to them exactly once. This is checked
during the run time; an error message is reported if a value is as-
signed to an objective or constraint variable more than once or not
assigned at all. Additionally, all functional variables must be defi-
ned as global ones, i.e. cannot be defined as local to any procedure.

5.3 Structure of the system.

The problem interface consists of the interactive text editor
which can be used for defining and updating programs, saving and
retrieving from disk etc. This part of the system is rather standard.

The compiler itself consists of the recursive top~down parser
(Wirth 1976,) which converts the source code into sequence of commands
of simple hypothetical stack machine. This concept was very broadly
and successfully applied for compiler construction; for details see
Davie and Morrison (198l1) or Pemberton and Daniels (1982). The trans-
formed program is interpreted by the procedure which emulates every
command of this stack machine. Two interpreting routines are available
in the system - one calculates values of all variables defined within
the program, the second one - values of variables together with deriva-
tives of all objective and constraint variables with respect to all
decision variables.

The solver can invoke one of the interpreters. It depends on the
current stage of optimization, which one should be invoked. Therefore
the pseudocode for the procedure defining the optimization problem and
called by the solver (optimization routine) should be the following
(see Kreglewski at all., 1985, for details relating to interfacing
with nonlinear solver):
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Procedure Fun(X:InputArray, Var Y:ValueArray; Var Der:DerArray);
i }
begin

{Move X to Decision Variables Array!

Case GlobFlag of

ValueOnly ¢ ValInterprete;
ValueAndDerivatives : begin
DifInterprete;

{Move Values of Derivatives
from Objective and Constraints
Derivatives Array to Deri}
end;

end;

{Move Values of Objectives and Constraints from Objective

and Constraints Values Array to Y}

end;

In the above pseudocode, GlobFlag is the global parameter, which can
take values from set (ValueOnly, ValueAndDerivatives) and is main-
tained by the solver.

5.4 The solver interface.

To use the system effectively, it is necessary to transform in-
formation from solver to interpreter (values of decision variables)
and from interpreter to solver (values of objective and constraints
rows and their derivatives. This can be achieved through the following
data structure:

The following array must contain values of decision variables before
invoking the interpreter:

DecArr :Arrayll..DecMax] of Real;

The following arrays will contain values of derivatives of objective
and constraints variables after exit from interpreter:

ObjDer :Arrayll..ObjMax,1..DecMax] of Real;
ConDer :Arrayll..ConMax,l..DecMAx] of Real;

The following arrays will contain values of derivatives and con-
straints variables after exit from interpreter:

ConArr :Arrayll..ConMax] of Real;
ObjArr :Arrayll..ObjMax] of Real;

The following arrays will contain names of constraints and objective
variables after successful exit from compiler. These names will appear
in the same order, like in declaration section. This information can
be utilized by man-machine interface for entering the reference point,
defining right hand sides and types of constraints, displaying
results, etc.

DecName :Arrayll..DecMax] of Alf;

ObjName :Arrayll..ObjMax] of Alf;
ConName :Arrayll..ConMax] of Alf;
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The following arrays contain Boolean flags which are set by inter-
preter to TRUE when value is assigned to objective or constraint
variable. These variables can be ingpected after exit from interpreter
and error message or other action can be undertaken by the system
depending on their status. Utilization of these arrays is at the dis-
posal of system implementator.

ObjSet :Arrayll..ObjMax] of Boolean;
ConSet :Arrayll..ComMax] of Boolean;

All the above variables mast be declared as global to solver, compiler
and interpreter, i.e., declared in the block containing all these
modules.

6. IMPLEMENTATION OF THE COMPILER AND INTERPRETER

This problem will not be analyzed here in details. Only the in-
formation necessary to understand changes in original PLO compiler and
to enable performing necessary changes in the compiler and interpreter
will be discussed.

The following are extension to the compiler:
A. Extension of Block section, which allows declaration of func-

tional variables. The following are the portions of code responsible
for this task:

- Procedure SpecVarDeclaration, being the extension of VarDeclaration;

Procedure SpecVarDeclaration(VarType:Object);
{ }

begin
if LastSymRead=Ident then

begin
Enter(VarType) ;
GetSym;

end

else

Error(4);

end; {of SpecVarDeclaration}
- Extensions in variable declaration section of Block procedure;

if LastSymRead in [VarObjSym,VarConSym,VarDecSym] then
if Lev<>0 then

Error(33)
else
Repeat
Case LastSymRead of
VarObjSym : Lx:=0ObjVariab;
VarConSym : Lx:=ConVariab;
VarDecSym : Lx:=DecVariab;
end;
GetSym;
Repeat

SpecVarDeclaration(Lx) ;
While LastSymRead=comma do
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begin
GetSym;
SpecVarDeclaration(Lx);
end;
if LastSymRead=semicolon then
GetSym
else
Error(5);
Until LastSymRead<>Ident;
Until not (LastSymRead in [VarObjSym,VarConSym,VarDecSyml);

B. Extension to Statement section, responsible for proper code
generation and processing arithmetic expressions containing functional
variables:

- extension of Enter procedure, which enters information about new
variables to symbol table;

Procedure Enter (k: object);
{ }
begin
tx:=tx+1;
with SymTable[tx] do
begin
Name: =LastIdRead;
kind: =k;
Case k of
Constant :begin
if abs(LastNumRead) >AMax then
begin
Error(30);
LastNumRead:=0;
end;
val : =LastNumRead ;
end;
Variable :begin
level:=lev;
adr:=dx;
dx:=dx+1;
end;
ObjVariab:begin
level :=0ObjMark;
ObjPtr:=0bjPtr+l;
Ob)Name[ObjPtr]:=Name;
adr: =0bjPtr;
end;
ConVariab:begin
level : =ConMark;
ConPtr:=ConPtr+l;
ConName[ConPtrl:=
adr: =ConPtr;
end;
DecVariab:begin
level :=DecMark;
DecPtr:=DecPtr+l;
DecNamel[DecPtr]:=Name;
adr: =DecPtr;
end;

-e
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Prozedure:level : =lev;
end; {of Case k}
end;
end; {enter}

It should be pointed out, that for functional variables meaning
of entries in Symbol Table is different, than for standard ones. Func-
tional variables must always be declared as global, therefore the in-
formation usually contained in "level” field is not necessary in this
case. This field was utilized for keeping information about the type
of functional variable (DecMark, ConMark, ObjMark). These marks are
negative, in order to make possible distinguishing between normal and
functional variables during the interpretation phase. Analogically,
standard address handling procedure is not applicable in this case.
During the interpretation phase, values of functional variables are
not saved in standard stack frame, but in arrays which play a role of
solver interface (see previous section of the paper). Therefore sepa-
rate address pointers for each type of variable were defined (DecPtr,
ConPtr, ObjPtr). Values of these pointers are saved in "address" part
of the symbol table entry. Both fields - i.e. "level" and "adr" con-
tain full information about location and type of the variable.

- Modification of procedure Factor in the part responsible for code
generation for loading a variable;

Procedure Factor(fsys: SymSet);
{ }
Var i: Integer;
FctSym: Symbol ;
begin
Test (FacBegSys, fsys, 24);
While LastSymRead in FacBegSys do

begin
if LastSymRead=Ident then
begin
i:-position(LastIdRead);
if 1=0 then
Error(11)
else
with SymTableli] do
Case kind of
Constant :Genl(LIT,0,val);
Variable :Gen0O(LOD, lev-1,adr);
DecVariab:Gen0(LOD,DecMark,adr) ;
ObjVariab,
ConVariab: begin
i:=0;
Error(34);
end;
Prozedure: Error(2l1);
end;
GetSym;
end
else

if LastSymRead=Number then ....

- Modification of the procedure Statement in the part responsible for
code generation for storing functional variables;
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begin {statement}
if LastSymRead=Ident then
begin
1:=position(LastIdRead);
if i=0 then
Error{(11l)
else
if not (SymTablelil.kind in
[Variable,ObjVariab,ConVariab]) then
begin
if SymfTablelil.kind=DecVariab then
Error({35)
else
Error(12);
1:=0;
end;
GetSym;
if LastSymRead=becomes then
GetSym
else
Error(13);
expression{fsys) ;
if i<>0 then
with SymTableli] do
Case kind of
Variable :Gen0(STO,lev-level,adr);
ObjVariab:Gen0(STO,CbjMark,adr) ;
ConVariab:Gen0(STO, ConMark,adr) ;
end;
end
else
if LastSymRead=CallSym then ....

It should be noted, that only for Objective and Constraint vari-
ables STOre code can be generated. This is not possible for Decision
Variables. Analogically, only for Decision variable LOaD code can be
generated. This ensures preservation of described above rules for usa-
ge and access of functional variables.

C. Extensions in definition of Stack Machine and interpreter.

The basic data structure of the Stack Machine is the stack,
which is used as memory pool for all variables used within a program,
and for all intermediate results occurring during the interpreting
process. In the described extension, functional variables do not use
stack. Instead, they utilize their own memory pools playing the role
of solver interfaces. All other variables are located on the stack
together with values of derivatives. Therefore the structure of the
stack used by extended interpreter is the following:

s : Arrayll..StacSiz] of Record
StacVal:Real;
StacDer:Arrayll..DecMax] of Real;
end;

The set of commands of the Stack Machine remains unchanged, ex-
cept of extension of STO and LOD commands:
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: load constant "a"

: execute operation "a"

: load variable, level "1", address "a"
: load decision variable, address "a"

: store variable, level "1", address "a"
store objective variable, address "a"
store constraint variable, address "a"

- W ow

-

-

-

L)

: increment t-register by "a"

: Jump to adress "a
¢ Jump conditional to "a".

-
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The only point requiring special treatment relates to the storing and
loading the functional variables. All the interpreting routines relat-
ing to mathematical expressions must compute not only values of varia-
bles, but also values of derivatives. This can be done applying stand-
ard rules of differentiating mathematical expressions and elementary
functions.

The full specification of the Stack Machine which was used in
this particular implementation can be found in Wirth book (Wirth,
1976). The following is the source code of the interpreter, together
with all extensions necessary for calculating derivatives. All the ex-
tensions responsible for calculating derivatives are printed in
boldface.

The compiled program which is executed by the Stack Machine is
stored in array Code declared as:

Instr = Record
1: Integer;
Case f:Fct of
LIT : (LitVal:Real};
OPR,

JPC : (a: Integer);
end;

Code : Arrayl[0..CxMax] of Instr;

The basic data structure of the interpreter is the stack, used as in-
ternal memory pool. The stack is declared as:

g : Arrayll..StacSiz] of Record
StacvVal:Real;
StacDer:Arrayll..DecMax] of Real;
end;
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The following is the source code of the interpreter:

Procedure DInterpret;

{ }

Var b,p,t,i,j: Integer;
Ins : Instr;

Function Base(l: Integer): Integer;
{ }
Var bl: Integer;
begin
bl:=b;
While 1>0 do
begin
bl:=Trunc(s[bl].StacVal);
1:=1-1;

end;
base:=bl;

end; {Basel

s[l] StacVal =0;

s.Stacval:=0;

s[3].Stacval:=0;

for i:=1 to ObjMax do
Objsetiil:=False;

for i:=1 to ConMax do
ConSetl[il:=False;

Repeat
Ins:=Codelpl;
p:=p+l;
with Ins do
Case f of
LIT: begin
t:=t+l;
{Load number:} slt].Stacval:=Litval;
for i:=1 to DecPtr do
sltl.StacDerlil:
end;
OPR: Case a of
0: begin
t:=b-1;
p:=Trunc(s{t+3].StacVal};
b =Trunc(s[t+2].Stacval);
end;
1: begin
{Change sign:} slt]l.Stacval:=-s[t].StacvVal;
for i:=1 to DecPtr do
sit]l.StacDer[i]:=-
slt]l.stacDerli];
end;
2: begin
{Addition:} t:=t-1;

for i:=1 to DecPtr do
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{Substraction:}

iMultiplication:}

{Division:}

10:

11:

12:

slt].StacDer[i]:=
slt].StacDer[i)+slt+l].StacDerli];
sltl.Stacval:=
slt].Stacval+s[t+1].Stacval;
end;

: begin

t:=t-1;
for i:=1 to DecPtr do
slt].StacDerlil:=
slt).StacDerl[il-sit+l]).StacDerli);
sltl.StacvVal:=
s[t]l.Stacval-slt+1]1.Stacval;
end;

r
: begin

t:=t-1;
for i:=1 to DecPtr do
slt].StacDerlil:=

slt+l].Stacval*slt].StacDer[il+
s[t].Stacval*s[t+l]).StacDerl[i];

s[t].StacvVal:=

slt]l.Stacval*s[t+1].StacVal;
end;

: begin

t:=t-1;
for i:=1 to DecPtr do
slt].StacDerli):=
(slt+l]).StacVal*s[t].StacDerl[il-
s[t].StacVal*s[t+l).StacDerl[i])
/Sgr(slt+l].Stacval);
slt].Stacval:=
s[t]l.StacVal/s[t+1].StacVal
end;

: s[tl.Stacval:=0;
¢ begin

t:=t-1;
s[t]l.Stacval:=
ord(s[t].StacVal=s[t+1l].Stacval);
end;

r
: begin

t:=t-1;
slt]l.Stacval:=
ord(slt].Stacval<{>slt+1].StacVal);
end;
begin
t:=t-1;
s[t]l.StacvVal:=
ord(slt].Stacval<s[t+l].Stacval);
end;
begin
t:=t-1;
sitl.Stacval:=
ord(slt].StacvVal>=s[t+l].Stacval);
end;
begin
t:=t-1;
s[t].Stacval:=
ord(sl[t].StacvVal>s[t+1].Stacval)
end;

21



13: begin
t:=t-1;
s[t]l.Stacval:=
ord(slt].Stacval<=glt+1].StacVal);

end;
end;
I0D: if 1>=0 then
begin
{Load variable:} t:=t+1;

slt].Stacval:=s[base(l)+al.StacVal;
for i:=1 to DecPtr do
slt].StacDerlil:=slbase(1l)+al.StacDerlil;

end
else
begin

t:=t+l;

slt].StacvVal :=DecArrial;

for i:=1 to DecPtr do

if i=a then
slt]l.StacDerlil:=1
else
slt]l.StacDerlil:=0;
end;
STO: if 1>=0 then
begin
{Store Variable:!} slbase(l)+al.Stacval:=s[t].StacVal;

for i:=1 to DecPtr do
slbase(l)+al.StacDerlil:=slt].StacDerli];
t:=t-1;
end
else
Case 1 of

objMark

begin
ObjArrial:=sit].Stacval;
ObjSetlal:=True;
for i:=1 to DecPtr do
Objberlallil:=slt].StacDerlil;
t:=t-1;
end;
ConMark :begin
ConArrfal:=slt].StacVal;
ConSetlal:=True;
for i:=1 to DecPtr do
ConDerlallil:=slt].StacDerlil;
t:=t-1;
end;
end;
CAL: begin
s[t+1l].Stacval:=base(l);
slt+2].Stacval:=b;
slt+3].Stacval:=p;
b:=t+1;
p:=a;
end;
INT: t:=t+a;
JMP: p:=a;
JPC: begin
if s[t].StacvVal=0 then
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p:=a;

of
begin
for i:=1 to DecPtr do
slt].StacDerlil:=
cos(slt]l.Stacval)*sit].StacDerlil;
s[t]l.Stacval:=sin(s[t].StacVal);
end;

t:i=t-1;
end;
FUN: begin
iStandard funct.} j:=a-0rd(SinProc) ;
Case j
{Sin:} 0:
{Cos:} 1:

{Ln:} 2

begin
for i:=1 to DecPtr do
slt].StacDerlil:=
-gin(slt].Stacval })*slt].StacDer[i];
slt]l.Stacval:=cos(s[t].StacvVal);
end;
begin
for i:=1 to DecPtr do
slt].StacDerlil:=
1.0/s[t].StacVal*sit].StacDer[i];
s[t]l.Stacval:=1ln(slt].Stacval);
end; '

{Log:} 3 : begin
for i:=1 to DecPtr do
slt].StacDerlil:=
1.0/slt].StacVal*s(t].StacDerlil]
/In(10);
s[t]l.Stacval:=In(s[t].StacVal)/In{(10);
end;
{Exp:} 4 : begin

iSqrt:} 5 :
{Abs:} 6 :
end;
end;
end;
Until p=0;

end; {of Dinterprett!

for i:=1 to DecPtr do
slt).StacDerl[i]:=
exp(sl[t].Stacval)*sl[t].StacDer[i];
s[t].StacVal :=exp(slt].StacVal);
end;
begin
for i:=1 to DecPtr do
s[t].StacDerlil:=
1.0/2/sgrt(slt].Stacval)
*g[t].StacDerlil;
s{t].Stacval:=sqrt(s[t].Stacval);
end;
begin
for i:=1 to DecPtr do
if slt].Stacval<=0 then
slt].StacDerl[il:=-slt].StacDerl[il];
Stacval:=abs(s[t].Stacval);
end;
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It should be rather clear from analysis of the above code, that
in the fact the table algorithm was applied for calculating deriva-
tives. It is necessary to mention additionally, that "illegal” proce-
dure was applied for calculating the derivative of abs function. This
is however the user”s responsibility to ensure, that an expression
containing abs function is differentiable.

7. EXTENSIONS

The software tool described above is rather a simple and a stra-
ightforward approach to the problem of building interface for defining
decision and optimization problems described by nonlinear models. Seve-
ral improvements and extensions are necessary, both to improve the ef-
ficiency of the proposed interface, and for extending class of pro-
blems which could be sclved utilizing this approach. The following are
the problems which could be investigated:

-~ Improvement of the efficiency. In the existing implementation
all formulas entered to the system are differentiated, independently,
whether this is necessary, or not. Evidently, in some cases this is
redundant - e.q. derivatives should not be calculated when computing
logical conditions in while or if statements., This can be achieved
rather easily, by extending definition of stack machine instruction:

Instr = Record

DerCalc:Boolean;

1: Integer;

Case f:Fct of
LIT : (LitVal:Real);
OPR,
10D,
STO,
CAlL,
INT,
JMP,
FUN,
JPC : (a: Integer);

end;

where DerCalc is boolean flag set by compiler to False, when calcula-
tion of derivatives is not necessary. This flag must be tested during
interpreting phase; according to its value calculation of derivatives
can be skipped:

4 : begin
if DerCalc then
for i:=1 to DecPtr do
slt].StacDerl[il:=
exp(s[t].Stacval)*s[t].StacDerlil;
s[t].StacVal:=exp(sltl].Stacval);
end;

Evidently, some rather trivial changes in code generation procedures
{Gen0 and Genl) must be performed.

It can be, however, rather difficult to perform more deep op-
timization of the calculation of derivatives. This is caused by the

fact, that it is not possible to analyze the dependencies between

24



variables defined within a program without making analysis of all pos-
sible passes of control. This is especially difficult (or even impo-
ssible) using the recursive descent, one pass compiler. The following
is an illustration of this difficulty:

var Nyese
vardec X, ...
procedure pl;
begin
n:=n+l1;
end;
procedure p2;
begin
if a>b then
n:=x
else
n:=1;
end;
call p2;
call pl;

In the above example it is not possible to decide, whether statement
n:=n+1l should be differentiated or not, without knowing the possible
values of a and b. Moreover, when compiling the procedure pl it is not
possible to know in advance about the dependence of variable n on deci-
sion variable x. Therefore, global analysis of the program structure
1s necessary.

The easiest possible way to overcome this difficulty, is to
incorporate some tools into language, which would make possible direct
control by the user, which statements should be differentiated. This
could be achieved by introducing a new class of functional variables -
nanely, the intermediate variables. They could be declared by wvarint
declaration. Using this variables, the following rules could be
established:

- all statements, which their left hand side of assignment in-
struction are functional variables, are differentiated,

- all statements, which their left hand side are ordinary vari-
ables (declared by var) and contain functional variables in
right hand side part of assignment instruction are treated as
illegal. Such situation is detected and reported during compila-
tion phase,

- all statements, which do not contain functional variables are
not differentiated.

The above rules can be used easily for deciding about necessary value
of the above mentioned DerCalc flag.

The other possible improvement of efficiency can be achieved by
applying more sophisticated algorithm for formila differentiation. The
computational effort, necessary for gradient calculation was recently
analyzed by Kim and others (1984). Similar remarks relating to this
problem were given by Wolfe (1982).
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The algorithm applied in current implementation recuires for gra-
dient computation the effort, which can be approximately estimated as
k*n, where k is the cost of calculation of function, and n - number of
decision variables. It was suggested by Wolfe and proven by Kim, that
under proper arrangement of the calculation process, this effort can
be reduced to 1*k, where 1 is a small constant, not dependent on n
{(Wolfe suggests, that in most cases value of 1 is between 1.5 and
2.5). Rather essential reduction of computational effort can be ex-
pected when applying Kim“s approach, especially for problems with many
decision variables. This is however rather difficult to implement this
algorithm - the complete expression tree must be known for generating
the code for gradient evaluation. Therefore, a one pass compiler will
probably be not a proper tool for implementing this algorithm or es-
sential changes in parser structure and design should be necessary.

~ Extension of PASCAL subset. The PLO subset used for model
implementation is rather extremely small subset of PASCAL, and many
language features are missing. It seems, that arrays, structures, for
loops and other constructs available in full sized PASCAL could be
useful for advanced user.

The subset, which could be considered as an ideal compromise be-
tween simplicity and usability, is PASCAL-S. This subset, proposed by
Wirth for educational applications (Wirth, 1981) can be easily imple-
mented due to availability of the source code of compiler and interpre-
ter. The general design of the compiler is the same, like for PLO -
the compiler generates code for stack machine, which is emuilated by
interpreting program. Therefore, the proposed approach for computing
derivatives can be applied without essential difficulties.

- Extension of the class of problems. The PLO subset was effi-
ciently used for creating a lanquage for simuilation dynamic population
models (Lewandowska, 1986). Further extension of this approach in this
direction could be achieved by introducing new class of variables -
the state variables. Combination of these two extensions - i.e. exten—
sion for dynamic simulation and one for automatic differentiation,
could result in the system with automatic generation of conjugate
equations for gradient calculation. This could simplify essentially
solving decision problems described by dynamic models of differential
equations or difference equations type.
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APPENDIX

Several changes has been made in PLO compiler published in Wirth
book - real arithmetic was added, standard PASCAL functions were
defined, as well as other changes relating to the application of the
PLO language as problem interface in decision support systems were
performed. Moreover, the program was modified to be compiled by Turbo-
Pascal. Therefore, for readers”s convenience, the modified code of the
compiler is attached to the paper.

Before invoking the compiler, the program text must be located
in the array declared as:

TextArray: Arrayll..MaxNoOfLines] of Stringl80]

and number of lines of the program must be assigned to the integer
variable NoOfLinesInBuff. Prior to calling the compiler, the CompInit
procedure must be invoked. The user must supply the Error procedure
which is responsible for error handling.

Const
NoRw = 21; {no. of reserved Words!
NoKw = 14; {no. of keywordsi
FctRw = 15; {first std. proc in keyword table}
TxMax = 100; {length of identifier table}
NMax = 24; {fmax. no. of digits in numbers!
AMax = 1.0e35; {maximum number}
LevMax = 8; {maxirmm depth of block nesting}
CxMax = 500; {size of Code Array!
StacSiz= 50;
DecMark= -1;
ObjMark= -2;
ConMark= -3;
DecMax = 20;
CbjMax = 10;
ConMax = 10;
Type
Symbol=

(Null, Ident , Number, PlusOp,MinusOp, TimesOp, slash,oddsym,

eql ,neq,lss, leq,gtr,geq, lparen, rparen, comma, semicolon,
period, becomes, BeginSym, EndSym, I£Sym, ThenSym,
WhileSym,DoSym, Cal 1Sym, ConstSym, VarSym, VarObjSym, VarDecSym,
VarConSym, ProcSym, SinProc, CosProc, LnProc, LogProc, ExpProc,

SgrtProc,AbsProc) ;
Alf = String[321];
Object = (Constant,Variable,DecVariab,0ObjVariab,

ConVariab, Prozedure, StdFunct ) ;
SymSet = set of Symbol;
Fct = (LIT,OPR,LOD,STO,CAL,INT,JMP,JPC,FUN) ; {functions!}
Instr = Record

1: Integer;

Case f:Fct of



Var

LIT : (LitVal:Real);

OPR,

10D,

STO,

CAL,

INT,

JMP,

FUN,

JPC : (a: Integer); {displacement address!

end;
LastCharRead : char; {last character read}
LastSymRead : Symbol; {last Symbol read!
LastIdRead : Alf; {last identifier read}
LastNumRead : Real; {last number read!}
CharCount : Integer; {character count!}
IntErrNo : Integer; {interpreter Error!
CodeAlocIdx : Integer; {Code allocation index!}
s : Arrayll..StacSiz] of Record
StacVal:Real;
StacDer:Arrayll. .DecMax] of Real;
end;

Code : Arrayl0..CxMax] of Instr;
Word : Arrayll..NoRwl of Alf;
WSym : Arrayll..NoRw]l of Symbol;
SSym : Arraylchar] of Symbol;
MnCode : ArraylFctl of Alf;
DeclBegSys,
StatBegSys,
StdFctSym,

FacBegSys : SymSet;
DecPtr,ObjPtr,ConPtr : Integer;
LineNo: Integer;

SymTable: Arrayl[0..TxMax] of Record
Name: Alf;
Case kind:object of
Constant: (val: Real);
Variable,
Prozedure: (level ,adr: Integer)
end;

Solver Interface 1}

DecArr :Arrayll..DecMax] of Real;

ObjDer :Arrayll..ObjMax,l..DecMax]} of Real
ConDer :Arrayll..ConMax,l..DecMAx] of Real
ConArr :Arrayll..ConMax] of Real
ObjArr :Arrayll..ObjMax] of Real

3
r
3
r

3
r
3
r

DecName :Arrayll..DecMax] of Alf;
CbjName :Arrayll..ObjMax] of Alf;
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ConNare

objset

:Arrayll..ConMax] of Alf;

:Arrayll..0bjMax] of Boolean;

ConSet :Arrayll..ConMax] of Boolean;

Procedure CompInit;
{ }
Var i:Integer;
begin

for LastCharRead:="A" to ;" do
SSyml[LastCharRead]:=Null;

Word[ 1]:="BEGIN~;
Word[ 3):="CONST~;
Wordl 5]1:="END”;
Wordl 71:="0DD";
Wordl 91:="THEN";
Word[11]:="WHILE";
Word[13]:="VARDEC";
Word[15]:=" ';
Word[17]1:="LN";
Word[19]:=" ’;
Word[21]:="ABS";

Wsyml 1]:=BeginSym;
WSyml 3]:=ConstSym;
WSyml 5]:=EndSym;

WSyml 71:
WSym[ 91:
WSyml11]1:=WhileSym;
WSyml 131 : =VarDecSym;

WSym[15]
WSyml[171]:
WSyml[19]:
WSym[ 21.1:

SSyml “+7 1: =PlusOp;
SSym[~*~ 1 : =TimesOp;
SSyml[~“(” 1:=1paren;
SSyml“="1:=eql;
SSyml~.” 1: =period;
SSyml[ <" 1:=1ss;
SSym[“;”1:=semicolon;

MnCodel[LIT]:="LIT";
MnCodel[LOD]:="LOD";
MnCodelCAL] :="CAL";
MnCode[JMP] : ="JMP” ;
MnCodel[ FUN]:="FCT" ;

:=SinProc;
=ILnProc;

=ExpProc;
=AbsProc;

1

: Word[ll)]

578

Wordl 8

Word[12]:
Word[14]:

II || " |l 1]
\
-

\

58

\

Word[161]:
Word[181:
Word(20]:

\ we we

;

WSym[ 21:
WSyml[ 41]:
WSym[ 61:
WSyml[ 8]:=ProcSym;

WSym[101:=VarSym;

WSyml[ 12] : =VarObjSym
WSyml 14 ] : =VarConSym

WSym[161]:
WSym[181:
WSym[201:

=CallSym;
=DoSym;
=I1fSym;

we wWe

=CosProc;

=LogProc;
=SqrtProc;

SSym[ “-"1:=MinusOp;
SSym[~ /7 1:=slash;
SSyml “)~ 1:=rparen;
SSyml[~,” 1:=comma;

SSyml[~>" 1:=gtr;

“OPR”;

DeclBegSys: =[ ConstSym, VarSym, VarObjSym, VarConSym, VarDecSym, ProcSym] ;
StatBegSys: =[BeginSym, CallSym, IfSym,WhileSym];

StdFctSym
FacBegSys

ErrNo:=0;

:+ =[ CosProc, SinProc, ExpProc,LogProc ,LnProc, SgrtProc,AbsProc] ;
:=[Ident ,Number, lparen]+StdFctSym;



ErrLine:=0;
IntErrNo:=0;
LineNo:=1;
CharCount:=0;
CodeAlocIdx:=0;
LastCharRead:=" ~;

DecPtr:=0;
ObjPtr:=0;
ConPtr:=0;

end; {of CompInit}

Procedure Compile;
{ }

Procedure Error(n:Integer);
{ }
begin
if ErrLine=0 then
begin
ErrLine:=LineNo;
ErrNo:=n;
end;

end; {of Error!}

Procedure GetSym;
{ }
Var i,j,k :Integer;
a:Alf;
v:iReal;
Procedure GetCh;
{ 1
Var LineLength:Integer;
begin
Linelength:=Length(TextArr[LineNol);
if CharCount=LineLength then

begin
if LineNo<=NoOfLinesInBuff then
begin
LineNo: =LineNo+1;
CharCount :=0;
LastCharRead:=" ~;
end
else
begin
Writeln(“Program Incomplete”);
Error(29);
Exit;
end;
end
else
begin

CharCount : =CharCount+1;
LastCharRead: =TextArr[LineNo][CharCount];
If LastCharRead in [“a”..”2”] then
LastCharRead: =Chr (Ord{(LastCharRead)-32);
end;
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end {getch};

begin {GetSym}
While LastCharRead = = ~ do
GetCh;
if LastCharRead in [“A"..”Z”] then
begin
a:="";
Repeat
a:=a+LastCharRead;
GetCh;
Until not (LastCharRead ini“a"..”27,707..7971);
j:=0;
For i:=1 to NoRw do
if a=Wordiil then
Je=i;
if 3<>0 then
LastSymRead : =WSyml[ j ]
else
LastSymRead:=Ident;
LastIdRead:=a;
end
else
if LastCharRead in [707..”9”] then
begin
a:="";
k:=0;
LastSymRead : =Number ;
Repeat
a:=a+LastCharRead;
k:=k+1;
GetCh;
Until not (LastCharRead in [707..797,7.71);
if LastCharRead="E~ then
begin

a:=a+LastCharRead;

k:=k+1;

GetCh;

Repeat
a:=a+LastCharRead;
k:=k+1;

GetCh;
Until not (LastCharRead in [“07..797,"=-","+71);
end;
Val{a,LastNumRead,1);
if (k>MMax) or (i<>0) then
Error{(30);
end
else
if LastCharRead=":" then
begin
GetCh;
if LastCharRead="=" then
begin
LastSymRead : =becomes;
GetCh;
end
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end

else
if LastCharRead="<~ then
begin
GetCh;
if LastCharRead=">" then
begin
LastSymRead: =neq;
GetCh;
end
else
if LastCharRead="=" then
begin
LastSymRead: =leq;
GetCh;
end
else
LastSymRead:=1ss;
end
else
if LastCharRead=">" then
begin
GetCh;
if LastCharRead="=" then
begin
LastSymRead: =geq;
GetCh;
end
else
LastSymRead: =gtr;
end
else
begin
LastSymRead: =SSym[LastCharRead];
GetCh;
end;

end {GetSym};

Procedure GenO(x:Fct;y,z:Integer);
{ }
begin
1f CodeAlocIdx>CxMax then
Error(1000)
else
begin
With CodelCodeAlocIdx]l do
begin
f:=x;
1:=y;
a:=z;
end;
CodeAlocIdx: =CodeAlocIdx+1;
end;

end; {of GenO}

Procedure Genl(x:Fct;y:Integer;z:Real);
{ }

35



begin
if CodeAlocIdx>CxMax then
Error(1000)
else
begin
With CodelCodeAlocidx] do
begin
f:=x;
l:=y;
Litval:=z;
end;
CodeAlocIdx:=CodeAlocIdx+1;
end;

end; {of Genl!

Procedure Test(sl,s2:SymSet;n:Integer);
{ }
begin
if not (LastSymRead in sl) then
begin
Error(n);
sl:=sl+s2;
While not (LastSymRead in sl) do
GetSym;

end;
end; {of Testl}

Procedure Block(lev,tx:Integer;fsys:SymSet);
{ }
Var dx:Integer;

i,tx0:Integer;

cx0,xx0:Integer;

Lx:0bject;

Procedure Enter(k:object);
{ }
begin
tx:=tx+1;
with SymTableitx] do
begin
Name: =Last IdRead;
kind:=k;
Case k of
Constant :begin
if abs(LastNumRead)>AMax then
begin
Error(30);
LastNumRead:=0;
end;
val: =LastNumRead;
end;
Variable :begin
level:=1lev;
adr:=dx;
dx:=dx+1;
end;
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ObjVariab:begin
level:=ObjMark;
ObjPtr:=0bjPtr+l;
ObjNamelObjPtrl:= :
adr:=0bjPtr;
end;
ConVariab:begin
level : =ConMark;
ConPtr:=ConPtr+l;
ConName [ ConPtr 1:=Name;
adr:=ConPtr;
end;
DecVariab:begin
level : =DecMark;
DecPtr:=DecPtr+l;
DecName [DecPtr]:=Name;
adr:=DecPtr;
end;
Prozedure: level : =lev;
erd; {of Case k}
end;

end; {enter!

Function Position(id:Alf):Integer;
{ }
Var i:Integer;
begin

SynTable[0].Name: =id;

i:=tx;

While SymTablel[il].Name <>id do

i:=i-1;
Position:=i;

end; {of Position}

Procedure ConstDeclaration;
{ }
Var Sgn:Symbol;
begin
if LastSymRead=Ident then
begin
GetSym;
if LastSymRead in [egl, becomes] then
begin
if LastSymRead=becomes then
Error(l);
GetSym;
if LastSymRead=Number then
begin
Enter(Constant) ;
GetSym;

end
else
if LastSymRead in [PlusOp,MinusOpl then
begin
Sgn: =LastSymRead;
GetSym;
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if LastSymRead=Number then
begin
if Sgn=MinusOp then
LastNumRead : =-LastNumRead ;

Enter(Constant);
GetSym;
end
else
Error(2);
end
else
Error(2);
end
else
Error(3);
end
else
Error(4);
end; {of ConstDeclaration}
Procedure VarDeclaration;
{ }
begin
if LastSymRead=Ident then
begin
Enter(Variable);
GetSym;
end
else
Error(4);

end; {of vVarDeclaration}

Procedure SpecVarDeclaration(VarType:Object);
{ i
begin
if LastSymRead=Ident then
begin
Enter(VarType) ;
GetSym;

end
else
Error(4);

end; {of SpecVarDeclarationi

Procedure Statement (fsys:SymSet);
{ }
Var i,cxl,cx2: Integer;
Procedure Expression(fsys:SymSet);
i }
Var addop: symbol;
Procedure Term{fsys:SymSet);
{ }
Var mulop: symbol;
Procedure Factor(fsys:SymSet);
i }




Var i: Integer;
FctSym: Symbol ;
begin
Test (FacBegSys, fsys,24);
While LastSymRead in FacBegSys do
begin
if LastSymRead=Ident then
begin
i:=position(LastIdRead);
if 1=0 then
Error{(1l)
else
with SymTablel[il do
Case kind of
Constant : Genl(LIT,0,val);
Variable : GenQ{(LOD,lev-level,adr);
DecVariab: Gen0(LOD,DecMark,adr);
Oijariab,
ConVariab: begin
i:=0;
Error(34);
end;
Prozedure: Error(2l);
end;
GetSym;
end
else
if LastSymRead=Number then
begin
if abs(LastNumRead)>AMax then
begin
Error(30);
LastNumRead :=0;
end;
Genl (LIT,0,LastNumRead) ;
GetSym;
end
else
if LastSymRead=1paren then
begin
GetSym;
expression([rparenl+fsys);
if LastSymRead=rparen then
GetSym
else
Error(22);
erd
else
if LastSymRead in StdFctSym then
begin
FctSym: =LastSymRead;
GetSym;
if LastSymRead=lparen then
begin
GetSym;
expression([rparenl}+fsys);
if LastSymRead=rparen then
begin

39



GetSym;
Gen0(FUN,1,ord(FctSym));
end
else
Error(22);
end
else
Error(23);
end;
test (fsys, [1paren],23);
end;

end; {of factor!}

begin {Term!
factor(fsys+[TimesOp, slashl);
While LastSymRead in [TimesOp,slash] do
begin
muilop: =LastSymRead;
GetSym;
factor (fsys+[TimesOp,slashl);
if mulop=TimesOp then
GenO(OPR, 0,4)
else
Gen0(OPR,0,5);
end;
end; {of Term!

begin {expression}
if LastSymRead in [PlusOp, MinusOp] then
begin
addop: =LastSymRead ;
GetSym;
term(fsys+[PlusOp, MinusOpl);
if addop=MinusOp then
Gen0(OPR,0,1);
end
else
term(fsys+[PlusOp,MinusOp]l) ;
While LastSymRead in [PlusOp,MinusOp] do
begin
addop: =LastSymRead ;
GetSym;
term(£fsys+[PlusOp,MinusOp] ) ;
if addop=PlusOp then
GenO0(OFPR, 0,2)
else
Gen0(OPR, 0,3);
end;
end; {of Expression!

Procedure Condition(fsys:symset);
{ }
Var relop:symbol;
begin
expression([eql,neq, lss,gtr,leq,geql+fsys) ;

if not (LastSymRead in [eql,neq,lss,leq,gtr,geql) then
Error(20)
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else

begin

end;

relop:=LastSymRead;

GetSym;

expression(fsys);

Case relop of
eql :Gen0(OFPR, 0,8);
neq:Gen0(OPR,0,9);
lss:Gen0(OPR,0,10);
geq:Gen0(OPR,0,11);
gtr:Gen0(OPR,0,12);
leqj:Gen0(OPR,0,13);

end;

end; {of Condition}

begin {statement!
if LastSymRead=Ident then

begin

end

else

i:=position{LastIdRead);
if i=0 then
Error(11)
else
if not (SymTablelil.kind in
[Variable,ObjvVariab,ConVariabl]) then
begin
if SymTableli].kind=DecVariab then
Error(35)
else
Error(12);
1:=0;
end;
GetSyn;
if LastSymRead=becomes then
GetSym
else
Error(13);
expression(fsys);
if 1<>0 then
with SymTablel[il] do
Case kind of
Variable :Gen0(STO,lev-level,adr);
ObjVariab:Gen((STO,0bjMark,adr);
ConVariab:Gen((STO,ConMark, adr) ;
end;

if LastSymRead=CallSym then
begin

GetSym;
if LastSymRead<{>Ident then
Error(14)

else

begin
i:=position(LastIdRead);
if i=0 then

Error(11)
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else
with SymTableli] do
1f kind=Prozedure then
Gen0(CAL, lev-level ,adr)
else
Error(15);
GetSym;
end;
end
else
if LastSymRead=1fSym then
begin
GetSym;
condition([ThenSym,DoSym]+fsys) ;
if LastSymRead=ThenSym then
GetSym
else
Error(16);
cx1:=CodeAlocIdx;
Gen0(JPC,0,0);
statement (fsys) ;
Codelcxl].a:=CodeAlocIdx;
end
else
if LastSymRead=BeginSym then
begin
GetSym;
statement ( [ semicolon,EndSym] +fsys) ;
while LastSymRead in [semicolonl+StatBegSys do
begin
i1f LastSymRead=semicolon then
GetSym
else
Error(10);
statement ([ semicolon,EndSym]+fsys) ;
end;
if LastSymRead-EndSym then
GetSym
else
Error(17);
end
else
if LastSymRead=WhileSym then
begin
cx1:=CodeAlocldx;
GetSym;
condition([DoSym]l+fsys);
cx2:=CodeAlocIdx;
Gen0(JPC,0,0);
if LastSymRead=DoSym then
GetSym
else
Error(18);
statement (fsys) ;
Gen0(JMP,0,cx1);
Codelcx2].a:=CodeAloclidx;
end;
test(fsys,[1,19);
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end; {of Statement}

begin {block!
dx:=3;
tx0:=tx;
SynmTableltx].adr:=CodeAlocIdx;
Gen0(JMP,0,0);
if lev > LevMax then Error(32);
Repeat
if LastSymRead=ConstSym then
begin
GetSym;
Repeat
ConstDeclaration;
While LastSymRead=comma do
begin
GetSym;
ConstDeclaration;
end;
if LastSymRead=semicolon then
GetSym
else
Error(5);
Until LastSymRead<>Ident;
end;
if LastSymRead=VarSym then
begin
GetSym;
Repeat
VarDeclaration;
While LastSymRead=comma do
begin
GetSym;
VarDeclaration;
end;
if LastSymRead=semicolon then
GetSym
else
Error(5);
Until LastSymRead<{>Ident;
end;
if LastSymRead in [VarObjSym,VarConSym,VarDecSyml then
if Lev<{>0 then
Error(33)
else
Repeat
Case LastSymRead of
VarObjSym:Lx:=ObjVariab;
VarConSym:Lx: =ConVariab;
VarDecSym: Lx : =DecVariab;
end;
GetSym;
Repeat
SpecVarDeclaration(Lx);
While LastSymRead=comma do
begin
GetSym;
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SpecVarDeclaration(Lx) ;
end;
if LastSymRead=semicolon then
GetSym
else
Error(5);
Until LastSymRead<>Ident;
Until not (LastSymRead in
VarGbjSym,VarConSym,VarDecSyml ) ;
While LastSymRead=ProcSym do
begin
GetSym;
if LastSymRead=Ident then
begin
enter (Prozedure) ;
GetSym;
end
else
Error(4);
if LastSymRead=semicolon then GetSym
else Error(5);
block(lev+l,tx,[semicolonl+£fsys);
if LastSymRead=semicolon then
begin
GetSym;
Test (StatBegSys+[Ident ,ProcSyml, fsys,6)
end
else
Error(5);
end;
Test (StatBegSys+[Ident],DeclBegSys,7);
Until not (LastSymRead in DeclBegSys);
CodelSynTableltx0].adr].a:=CodeAlocIdx;
SymTable[tx0].adr:=CodeAlocIdx;
cx0:=CodeAlocIdx;
Gen0 (INT,0,dx);
statement ( [ semicolon, EndSyml+fsy=) ;
Gen0(OPR, 0,0);
Test (fsys,{ 1,8);

end; {of block}

begin
GetSym;
block(0,0, [period 1+DeclBegSys+StatBegSys) ;
if LastSymRead<>period then
Error (9);

end; {of Compile}
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