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FOREWORD

Stochastic programming methodology is applied in this paper to a capital in-
vestment problem in water resources. The authors introduce possible model formu-
lations and then find the solutions by using a number of specific solution tech-
niques. These are partly based on the SDS/ADO tape for stochastic programming
problems and also on standard linear and nonlinear programming packages. Such
an approach allows a thorough analysis of the solution as well as a comparison of
the algorithmic procedures used to obtain these solutions.

Alexander B. Kurzhanski

Chairman
System and Decision Sciences Program
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ABSTRACT

To analyze the influence of increasing needs upon a given water resources
system in Eastern Slovakia and to get a decision on the system development and ex-
tension, several stochastic programming models can be used. The two selected
models are based on individual probabilistic constraints for the minimum storage
and for the freeboard volume supplemented by one joint probabilistic constraint
on releases or by a nonseparable penalty term in the objective function. Suitable
numerical techniques for their solution are applied to alternative design parame-
ter values. As a result, the paper gives an answer to the case study which is based
on multi modeling within the framework of stochastic programming and, at the same
time, it gives a comparison of various solution techniques partly included in the
SDS/ADO collection of stochastic programming codes.
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STOCHASTIC PROGRAMMING IN WATER RESOURCES
SYSTEM PLANNING: A CASE STUDY AND A
COMPARISON OF SOLUTION TECHNIQUES

J. Dupatovg A. Gaivoronski,
Z. Kos and T. Sz4dntai

1. INTRODUCTION

Operation of reservoirs in water resources system is a multistage stochastic
control problem. Water resources planning has to consider multiple users and ob-
jectives, reservoir operation policies need to be analyzed to obtain an effective
use of water resources. In the planning procedure, a great variety of water
resources systems designs or operation plans need to be confronted and their
economic, environmental and social impacts evaluated. Two basic tasks are often
solved: (a) a new system is developed or an existing one is enlarged by some pro-
posed investments in reservoirs, pipes, canals, pumping stations, hydroelectric
water plants, etc., or (b) the management and control of an existing system has to
be altered to accommodate to the new conditions. Analysis in both these cases rests
on mathematical modeling, the objectives and constraint of the problem have to be
expressed mathematically. The mathematical models involve the selection of many
engineering, design and operating variables. The optimization means the determi-
nation of the best values of these variables regarding the constraints. A lot of the
variables and parameters occurring in the objective function and in the con-
straints has to be taken as stochastic as they describe a stochastic real life prob-

lem.

Out of many possible goals, the water supply for industry and irrigation, flood
control and recreation purposes are considered in this study. The most important

decision variable is the storage capacity of reservoirs.

There were drawn up a lot of stochastic programming models for inventory
control and water storage problems by Prékopa (1973). One of these models was
applied for designing serially linked reservoir systems (Prékopa et al 1978).

Another application of these models concerning the flood control reservoir design
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was described by Prékopa and Szdntai (1978). In Czechoslovakia where the
analyzed system is located, there is an old tradition to use chance constrained
models for the considered type of problems. Applications of these models were
described by Dupacova and Kos (1979), Kos (*979) in conjunction with the linear
decision rule or with the direct control. Here, we shall follow this tradition and in
addition, we shall consider the possible use of alternative stochastic programming

models.

It is the evident stochastic nature of inflows which causes the most of the sta-
tistical and modeling problems and which causes the necessity of a detailed
analysis of the data and of the variables occurring in any of model formulations.

In water resources modeling, four types of variables occur:

(1) constant coefficients and parameters that are used for design values (e.g.,
active storage of the reservoir, reliability, cost coefficients) or variables
with small variation (e.g., the withdrawal of water for the thermal power sta-
tion);

(2) uncontrolled random variables with a known or estimated distribution (month-

ly flows, meteorologic variables, e.g., precipitation, potential evaporation);

(3) partly controlable random variables with known distribution (e.g. irrigation

water requirements with controlable acreage);

(4) random variables with an incomplete knowledge of distribution, such as the fu-

ture demands, future prices and costs.

In our paper the type (3) of stochastic variables were incorporated into the
model taking into account their joint probability distribution. In this way the in-
terrelations between the succeeding months values of irrigation water require-
ments could be considered. It is the theory of logconcave measures developed by
Prékopa (1971) which gives the theoretical background for the handling of joint

probability constraints in stochastic programming problems.

We pursued in this study two objectives. One is to develop optimization sto-
chastic models to determine the required reservoir capacity under increasing
needs. The goal of the model is to show how the irrigation, flood control and re-
creation needs influence the reservoir operation and the reliability in meeting the
multiple goals of the water resources system. This was done in section 2, 3 and 6
which contain the description of the water resources system, as well as several
suitable stochastic programming models and an application of one of them to the

basin of the Bodrog River in the Eastern part of Slovakia (Czechoslovakia), see



Figures 1 and 2.

Another of our objective was to use this comparatively simple but meaningful
and real life problem to test various approaches for solution of stochastic pro-
gramming problems and cow.pare various solution techniques which are implement-
ed in IIASA and constitute SDS/ADO collection of stochastic programming codes.

The results of this comparison can be found in sections 4 and 5.

2. THE WATER RESOURCES SYSTEM

The water resources system consists of three reservoirs, V., D., K., two of
which are in operation (D., V.) and the third one is to be built or not (K.) — see Fig-
ure 3. The main purposes of the water resources system are the irrigation water
supply, industrial uses — mainly water withdrawal for the thermal power station,
flood control (better flood alleviation), environmental conservation and recrea-
tion. The subsystem of the Laborec river (see Figure 4) was originally designed for
industrial water supply and flood control. During the operation of the reservoir
V., an accelerated development of the recreation occurred and the demands for
maintenance of the minimum recreation pool during the summer period were sup-
ported by authorities. The area of irrigation grew and according to the plan will

be increased substantially. The main questions for the decision-makers are:

- Can the presented water resources system still meet all the requirements?

And if so, with which reliability?

- Is the construction of the reservoir K. necessary and when it will be neces-

sary?

The analysis of this problem was divided into two steps. The first one
comprises the screening modeling and it is discussed in this paper. Optimization
models, however, cannot reflect all the details of the water resources system
operation. Therefore the results of the stochastic optimization model are supposed
to be verified using the stochastic simulation model with the input generated by the
methods of stochastic hydrology. For the stochastic programming screening model,
which is the subject of the present paper, an aggregated model was used and the
monthly flows and the irrigation water requirements were aggregated into four

periods:
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FIGURE 1 Location of the water resources system of the Bodrog river.
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FIGURE 2 The water resource system allocation.

(1) November till April of the following year,

(2) May and June,

(3) July and August,

(4) September and October.

The first period starts at the beginning of the hydrological year and comprises the
winter and the spring periods filling the reservoirs. As the main interest of the ir-
rigation is concentrated on the vegetation period and recreation season, the
aggregation of the six months is acceptable. The second and fourth periods in-

clude irrigation and industrial demands, the third period includes in addition the

recreation demands. The requirements for the minimum pool due to environmental
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FIGURE 3 Schematic representation of the water resources system of the Bodrog

river.

control and enhancement and flood control pertain to all the periods.

3. THE MATHEMATICAL MODELS
The models were designed for screening alternatives on the cost basis.

Using probabilistic constraints, the result identifies the capacity z, of
reservoir V. that should meet the needs with a prescribed reliability. The task is

formulated as the cost of reservoir V. minimization. As the cost is an increasing
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FIGURE 4 Schematic representation of the subsystem of the Laborec river.

function of reservoir capacity z,, we can evidently minimize the capacity z, in-
stead of minimizing the cost.

The constraints involve exceeding of water supply need £, + d; by the
released volume z; in periods 2, 3 and 4 (vegetation periods). The needs consist of
the fixed demand d; (minimum flow and industrial water needs) and random demand

B8, (irrigation water requirements). As to the first period, the fixed demand d
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(caused mainly by the needs of the thermal power station) should be met with such
a high probability that the deterministic constraint z; = d, was used. Taking into
account the intercorrelations of random demands 8;, ¢ = 2, 3, 4, the constraint for

the vegetation period, was formulated as follows

where a is the required joint probability level.

The second type of constraints reflects the environmental control and
enhancement, fishing and recreation needs. These requirements are expressed in
the form of maintaining a minimum pool or minimum reservoir storage m;. In
periods 1, 2 and 4, the environmental and fishing needs are reflected, in period 3

the recreation needs are added. This constraintl is then as follows
P{stamiiaa,,i=1,...,4, )

where s, is the reservoir storage, a; the required individual probability thres-
holds in period ©.

The third type of constraint expresses the flood control target assuming that
some flood control storage v; will be free in the reservoir operation during the

whole period i with probability 7,, i.e.,
P{si+v¢s:co{27,,i=1,...,4. 3)
The resulting optimization problem has the form
minimize z,

subject.P{z, =g, +d;, 1 =2,3,4{2a ,

4)
Plsyzmyj2ay,i=1,...,4 ,
Plsy +v;szogl2zy;,i=1,...,4
and subject to additional constraints
dy;sz;<su,
lpSzysu, (5)

.‘l:i Sut.i =213|4 '
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which stem mostly from natural hydrological and morphological situation. The

upper bounds u,, ¢ =1, ..., 4, are given by the volume of flood with respective
duration and probability of exceedance.

Using the direct (zero-order) decision rule and neglecting losses due to eva-
poration, the reservoir storages s; can be expressed via the water inflows and
releases in the relevant periods. Let r 5 denote the water inflow in the 7-th period

and let {; denote the cumulated water inflow,

1

=3 rai=1... .4
j=1

Denote further by s, the initial reservoir storage at the beginning of the hydro-
logical year. As a rule, we can put sg = m,, i.e., the reservoir storage is supposed
to be at its minimum after the vegetation period. Repeated use of the continuity

equation gives
s1=ma+ ) — %y

So=ma+{—2%y—Z,
(6)

s3=mg+{3— % ~%; ~ %3
Sg=myt{y =T T~ T3~ T,
Substituting into (2) and (3) yields
Pilyamy—my+zl2ay
Pilgzmy—my+z;+ 23] 20
Pitgzmg—my+z1+x,+2z3 2 ay ¢4
Pilgzzi+zo+z3+z4]l 20y

Piyszog+zy—my—v,

=7
7,
P{{ss::o+x1+z2+x3—m4—vsf 273

Plt,szo+z.+T5—my— v,

(8)
Pilgszo+tzy+xTo+z+T4—my - vl =74
Using the corresponding 100p% quantiles z,(p) of the distribution of the random

variables ¢, &£ =1, 2, 3, 4, we can rewrite the individual probabilistic constraints

(7) and (8) in the form
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k
Yz, sz,Q1-a)+my—m, k=1,...,4 9)
i=1
k
Yz, 2z, () +myg+v, k=1,...,4. (10)
k=0

Unfortunately, this simple device does not apply to the joint probabilistic con-

straint (1).

The resulting optimization problem

minimize z

subject Plz, =2 B, +d,;,i =2,3,4{2a

k
Yz, 85z, -)+my—m, k=1,...,4,
i=1
k
2z () vtmatv, k=1,...,4, (11)
i=0

loszysu,

dy<z,<u,

z,Su, i =234

can be solved e.g. by special techniques developed by Prékopa et al. (1978), see

Section 4.

Alternatively, stochastic programming decision models can be built solely on
the evaluation and minimization of the overall expected costs, which contain not
only the cost of the reservoir of the capacity z, but also the losses connected with
the fact that the needs were not fulfilled and/or the requirements on the minimum
reservoir storage and on the flood control storage were not met. This type of

models is called mostly stochastic programs with recourse or wilth penallies.

Suppose first that the constraints on water supply, minimum water storage and
flood control storage do not contain random variables, i.e., we have (besides of the

upper and lower bounds (5))

zi Zﬂi +di,i =2, 3,4
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k

Y zy sl +myg—m, k=1,...,4 (12)

i1=1

£

Yz, z2b+ma+ty, k=1,...,4.

1=0
In case of random B;, i =2, 3, 4 and {,, £ =1,..., 4, the chosen decision z,
Zy, ..., Z4need not fulfill constraints (12) for the actual (observed) values of §;,

(b. If this is the case, costs evaluating losses on crops (not being irrigated on a

sufficiently high level), on the decrease of recreation (due to the lower reservoir

pool) and the economic losses due to flood can be attached to the discrepancies.
Let c(z,) denote the cost of reservoir of the capacity z,, let the penalty

functions be of the type

p(y)=0 if y =0
13)

=0 and nondecreasingif ¥y >0 .

Denote by ¢p}, ¢f. ¢2 the penalty functions corresponding to the considered three
types of constraints in (12), ¢ =2, 3, 4, £ =1,..., 4. We try to find such a deci-
sion for which the total expected cost will be minimal subject to inequality con-

straints (5):

4
minimize ¢(z,) +E{ p) (p}(ﬂ, +d; —z,;) (14)
{1{=2
4 (& 4 k
+ Y PR Tyl —ma |+ Y Q[ r gty - Yz
k=1 i1=1 k=1 i=0

subjecttolg=zxzg=s uy
diSszysu,
zysuy,i=2,3, 4.

The choice of the penalty functions should be based on a deep economic and
environmental analysis of the underlying problem. On the other hand, for a
screening study, it seems satisfactory to restrict the choice to piece-wise linear

or piece-wise quadratic penalty functions.
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a) piece-wise linear penalty (simple recourse model) All penalty functions ¢

are of the form
e(y) =qy*, where ¢ 20 and y* =max (0, v) .

The coefficient ¢ has to be given by the decision maker; it corresponds to the
unique costs for the different considered discrepancies. As a result, we have to
4

4
minimize ¢ (z ) +E‘{ Y a8y +dy —z)V+ Y b,
1=2 k=

]

The solution method is mostly based on approximation of the marginal distri-

k
1=1

4 k
+
-mq—fk] + 0 b tmgt e — Y oz
1i=0

k=1

subject to the constraints (5).

butions of B;, {; by discrete ones and, in case of c¢(z) linear, the resulting pro-
gram can be solved by simplex method with upper bounded variables (see e.g. the
SPORT program (by Nazareth) contained in the ADO/SDS tape). For other types of

piece-wise linear penalties see e.g. Dupadova (1980).

b) If the cost function c¢(z ) is strictly quadratic on the considered interval
<ly ug>, a special type of piece-wise quadratlic penally function was suggested

by Rockafellar and Wets (1985), namely,

¢(y)=0 for ys0

=—;-y2/p for 0 sy < pg

1
= qy —quz for y = pg

(see Figure 5).

For solving problem (15) with penalty functions of the mentioned type, pro-
gram LFGM (by King) implementing Rockafellar and Wets’ Lagrangian Finite Gen-
eration Method is at disposal on the ADO/SDS tape. The parameters p, g of the in-

dividual penalty functions have to be given by the decision maker.

The use of the stochastic program (15) with penalties does not require the
knowledge of the joint distribution of the random needs for irrigation water. It
means, that due to the assumed separability of the penalty functions (i.e., due to
the fact that shortage in irrigation water is penalized in each of the three vegeta-

tion periods separately and the total penalty is taken as the sum over the three
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oly)

FIGURE 5

periods), no intercorrelations are considered. Alternatively, we can attach a
penalty cost to the situation, when the total needs for water irrigation in the vege-

tation period as a whole were not met. In that case, we can take e.g.
P(y) = ¢(m?x Yy)

with ¢ of the form (12) and minimize

k
1=1

4
c(zy) +E{(p[i lnga:gq(ﬁi +d; —zi)*] + Y of
=23 k=1

4
+ 2 @il +my+ vy, - Zzi]]
k= k=

subject to constraints (5).

Finally, it is possible to combine the probalistic constraints and the penaliza-
tion: one can define the set of admissible decisions by means of probabilistic con-
straints (4) and inequalities (5) and, at the same time penalize the occurrence of

the discrepancies in (12) by corresponding penalty terms in the objective function.

In this case study, the set of admissible solutions was defined by the individual
probabilistic constraints on a minimum pool and on the flood control storage, i.e.,
by the system of inequalities (8), (10), and by inequalities (5). Instead of the joint

probabilistic constraint on the water supply needs, one penalty term of the form
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¢(B, +d; —z,5, 1 =2,3,4) =c[ max (B; + d; —xi)*]
1=2,34
= ¢ max |0, max +d, -z
{ 1:2,3,4“‘ t i)]

was used. The resulting problem
minimize z, + CEL max By +d; - zi)"]

k
subject to 2 z, <z, (1 ~ap)+mg—me, &k =1,...,4 ,
it =1

k
Voxg =z () vmytu k=1,...,4
1=0

loSZosuo ,

disziSui,i=1,...,4

can be solved by the stochastic quasigradient method Ermoliev (1976) or by tech-
niques designed to solution of the complete recourse problem; see Section 4. For

the optimal solution of (17), the values of the joint probability
p(z)=Plz, 28, +d;, 1 =2, 3, 4}

were computed.

Observe that in (17), the cost c(x,) of the reservoir of capacity z, is sup-
posed to be linear in the interval I, < z, < u, and that the coefficient ¢ of the
penalty term evaluates unit losses due to water shortage relative to the cost per

unit capacity of the reservoir.

4. SOLUTION TECHNIQUES USED TO SOLVE THE PROBLEM

In this section we shall describe briefly the solution techniques used for nu-
merical experiments with models (11) and (17) described in the previous section.
We could choose among several stochastic optimization programs from the SDS/ADO

stochastic optimization library available at IIASA.
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For solving problem (11) with the joint probability constraint, nonlinear pro-
gramming techniques can be used. The choice among them depends on the proper-
ties of the set of feasible solutions. For log-concave probability measures, which is
the case of multidimensional normal, gamma, un‘form, Dirichlet distributions of 8,

the set described by
p(x)=Pi31 Eﬁi +d1, i =2, 3,4‘2&

is convex and among others, the method of feasible directions, supporting hyper-
plane method and penalty methods supplemented by an efficient routine for comput-
ing the values of the function p(z) and its derivatives can be applied. (For a sur-
vey see Prékopa (1978), (1986).) For multinormal distribution, the supporting hy-
perplane method was implemented at ITIASA by Szdntai as PCSP code.

For solving problem (17), one possibility is to approximate the original distri-
bution of 8 by a sequence of discrete distributions. The penalty ¢ can be given im-
plicitly via so called second stage program: for fixed values of z,, By, dy, i =2,
3,4, ¢(B; + dy — z;, i = 2, 3, 4) equals to the optimal value of the objective func-

tion in the following linear program
minimize cy
subjecttoz, +y 26, +d;, i =2, 3, 4
vea0

so that the problem (17) can be considered as the complete recourse problem and
solved accordingly. For discrete distribution the approach leads to linear pro-
gramming problems of special structure which should be exploited by adequate
solution techniques. One such technique is L-shaped algorithm by Van Slyke and
Wets (1969) implemented at IIASA by Birge in NDSP code. For further exposition
see e.g. Kall (1979), Wets (1983).

Finally, to stochastic programming models of expectation type such as (17),
stochastic quasigradient (SQG) method can be applied, see Ermoliev (1976), Ermo-
liev and Gaivoronski (1984). The stochastic optimization solver STO based on this

method solves the following problem

minimize £, f (z, w) =F(x) (18)
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subject to constraints
z eX 19)

where f(z, w) is a functicn which depends on decision variables £ and random
parameters . The user has to provide an algorithmic description of this function.
The set X is the set of constraints and in the current implementation, it would be

the set defined by linear constraints, say,
X=lz:Az 2b] .

The optimal solution of (18)—(19) is reached iteratively starting from an initial

point z9 by applying the following iterative procedure:
zs +1=7TX(zs - P sS) (ZO)

where p. is the stepsize, ¢S — step direction, iy — projection operator on the set

X:

|ny(z) —z || = minjjz —z ||, ny(z) €X .
zeX

The projection in the STO is performed using QPSOL quadratic programming pack-
age, see Gill et al. (1983).

The step direction £ should, roughly speaking, be in average close to the
gradient of the objective function F(z) = E, f(z, w) at point x5, although indivi-
dual £° may be far from actual values of the gradient. This is expressed with the

help of conditional expectations:
E@ 2% ..., 25 =F () + ag

where a. is some vanishing term. Each particular strategy of choosing sequence of
stepsizes p; and step directions £ lead to particular algorithm and many such
strategies are implemented in the program STO some of them are fairly sophisticat-
ed. It is also possible to change strategies interactively during optimization pro-
cess. Detailed description of this program is given in Ermoliev and Gaivoronski
(1984), for theoretical background and further references see Ermoliev (1976).
Here we shall describe only features relevant to the numerical experiments con-

ducted with water resource models.
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First of all it was necessary to put the problem in the form (18)-(19). Observe

that the model with the joint probabilistic constraint cannot be easily put in the

frame-work (18)—(19) while the expectation models (14), (15), (16) and (17) are al-

ready fc-mulated in the required fashion. But expectation models do not give the

value of probability

szizﬂi +di|i =2, 304;

which is important for decision making. Therefore we conducted numerical experi-

ment in two stages.

1

Solve the problem based on the expectation model:

minimize
E f(z, B) =z, + cEmax |0, max +d;, ~x (21)
o (= B =2, o o o+ 2 ==
subject to constraints
k
Yz, sz, Q-a)+my-m, k=1,...,4
i=1
(22)
k
Yz (ye)=my+tv, k=1,...,4
1=0

and additional constraints (5) (sée (17)). Program STO generates certain ap-

proximation x * to the optimal solution.

Evaluate the value of probability constraint, that is compute
» ” .
p(z )=szi 2p,+d,,i=2,3, 4} (23)

This was done using the generator of multivariate normal distribution from

IMSL library which was also used on the first stage. If p(z*) appeared to be
less than admissible level a then we increased the penalty coefficient ¢ from

(21) and solved the problem (21)—(22) again. This process was repeated until

desirable value of p(z*) was reached. Clearly, p (z*) —+1 when ¢ —» oo,

Now we shall discuss strategies which were used for solving (21)—(22). In this

case it is possible to compute subgradients f,(z®, ) of function f(z, B) for

given values of z = z°¥ and random parameters g = 8%, the components are
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Fr®5, B5) =1, f (=%, 85) =0,

—c if Bf +d; —zf =
fzt(z’. 85) = = max {0, m?x {8 +ad; — =z}

0 otherwise

and take ¢¥ = f.(z®, ) in method (20). We decided, however, to use a method
which is based only on values of f(z%, 85) and is applicable therefore for more
complex models. Various types of random search techniques and finite differences
are implemented in STO. For this model the following analog of random search was
used:

-  Generate I random vectors 71, ..., n%: 95t = (n§t,.., nft) where 1;]“ are

uniformly and independently distributed on [~ é., é.].

- Generate ! independent random vectors 51, ..., g5, gt = (B5t, g5t B5h)

with multivariate normal distribution.

— Compute £5:

£ = Zl: f(z* + 7%t g5t — r(z%, B)

st
n
=1 ISt

During computations we took 1 <[ < 5.

—  Select pg and perform one step in (20).

The value of search step was taken constant é¢; = 10. Stepsize p; was updated
interactively, but after several trials the following pattern emerged, which was re-

peated afterwards:

10 1<s <50
ps =11 +3 5B0=s <150
0.2 +1 afterwards

In order to get exact solution it is necessary to take ds — 0. But in this particu-
lar case it appeared that sufficiently good approximation was obtained even with
fixed &¢. Usually it took 200—300 iterations to get solution. The results obtained
by this method for solving water resource problems with different parameters are
discussed from the application point of view in the section 6. One of the sets of
problem parameters was used to compare performance of various models and solu-

tion techniques described at the beginning of this section.
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5. COMPARISON OF THE SOLUTION TECHNIQUES

This is the particular problem of the type (17) which was used for comparison:

minimize F(z) = E f(z, ) =z,

+cF , /max |0, max |w,_, +d;, —z
oo s+ -2

subject to constraints

z,y + z,
< 156.448
Zy *+Zp+ 23 < 201.866
Ty +Zy, +x3+ Ty 5225297
zo + Z4 > 512.886 (24)
Zo+z, + 2, = 592.872
zotzita vz D

100.0 < z, < 500.0
38.1 < z, <102.319
00.0 < z, < 252.0
00.0 < z5 < 252.0
00.0 < z, < 252.0

where d; =12.7, ¢ =2, 3, 4. The random vector w = (‘"1' Wy, wg) is distributed nor-
mally with
expectations e = (20.2, 27.37, 10.65)

standard deviations ¢ = (8.61, 10.65, 6.00)

1. 0.360 0.125
and correlation matrix |0.360 1. 0.571 ,
0.125 0.571 1.

penalty coefficient ¢ was equal 100. This problem is the same as discussed in the
case study in Section 6, only the upper bound », = 500 mil. m3 was used instead of
U, = 334 mil. m3 and the reliabilities 7, =0.75 were taken instead of y, =0.4.
The convenient feature of this problem is that we can easily obtain very good lower

bound for solution by minimizing z, subject to constraints stated above. This gives

F'(:c‘) > 494.88 where z * is the optimal point.
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5.1. Approzxzimations of stochastic problem by large scale linear

programming problem
To use this approach it is necessary to approximate initial continuous distri-
bution by discrete distribution consisting of N points. Various ways of doing thi-
are described in Birge, Wets (1986). Here we used the following two schemes:
1 "Intelligently”
- variance matrix was computed from the given correlation matrix and
variances;
- eigenvalues r, and eigenvectors v,;, ¢ = 1, 2, 3 of the variance matrix
were computed;

- number k£ was chosen and for one-dimensional normal distribution points

bt' i =1,..., k were selected such that

1
£k +1

Plz<b}=Plz2b { =Plb; <z <b, =

fori =1,.%k -1

- approximating discrete distribution consisted of all points

g‘ljl =b¢v1\/r1/s =bj‘UZ'\/7'2/S =bl‘U3V7'3/S + e

foralli =1,...,k,7=1,...,%k,1=1,..., k and
k

s = 2 btz
1 =1

These points were taken with equal probability 1/(k3). Approximating distri-
bution chosen in this way is symmetric and has the same expectation and vari-

ance matrix as original distribution.

2 Just throwing specific number N of points distributed according to original

distribution and assign to each of them probability 1/N.

After such discretization is performed, the original problem becomes
equivalent to the following stochastic optimization problem with complete

recourse:

N
minimize z, = h vy
1=1

=l
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subject to constraints

zy+yy; = _y+dy,i=23,4,j=1...,N

and constraints (24),

where o’ € RS, J =1,...,N, are the points where the discrete distribution is

concentrated.

This is linear programming problem which could be of very high dimension be-
cause large N is needed for accurate approximation. We did not, however, make
very accurate approximations and therefore were able to use a general purpose
linear programming tool, namely linear programming part of MINOS 4.0, see Mur-
tagh and Saunders (1983).

The results are summarized in the Table 1. To each entry in the left column of
this table correspond two rows of numbers in the columns 2—-4. The upper number
corresponds to "intelligent'" approximation and the lower to "just throwing'. The
column marked STO presents results obtained by the variant of SQG described in
section 4 after 100 iterations, each iteration required 40 observations of random
function. It is amazing that for much bigger problem of 1331 points in case of "in-
telligent” approximation MINOS found solution much faster than for 343 points. It is
also worth noting what a big difference makes "intelligent’ approximation as com-
pared with "just throwing'': approximation which uses only 125 points is better than
one with 1331 points. The estimate of the value of the objective function in Table 1
was made using a sample of 10000 points generated by subroutine for multivariate

normal distribution from the IMSL library.

We complete the discussion by comparison of the empirical expectation and
correlation matrix computed using the same 10000 random numbers with the
corresponding preasigned parameter values. It gives an idea how accurate the es-

timates are:
expectations of random vector @ e = (20.2000, 27.3700, 10.6500)
empirical expectations from 10000 points (20.2855, 27.3912, 10.6841)

1. 0.360 0.125
correlation matrix of @ | 0.360 1. 0.571
0.125 0.571 1.

1. 0.354429 0.107631
empirical correlation matrix | 0.354429 1. 0.572717
0.107631 0.572717 1.
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TABLE 1
k=5 k=7 k=11 STO
Total number of points
in approximating distribution 125 343 1331
z, 494 .88 494.88 494.88 494 .886
494.88 494.88 494.88
z4 38.1 38.1 64.409 39.2441
38.1 38.1 38.1
z, 88.019 84.918 54.752 71.4884
118.35 114.939 92.088
zq 61.223 63.057 65.338 74.0301
43.35801 42 .421 £1.811
z, 37.958 39.225 40.801 40.5345
25.491 29.84 33.301
Optimal value of the complete 4394.88 494 .88 494 .88
recourse objective function 494 .88 494.88 494 .88
Estimate of the value of 505.204 501.401 499.854 495.604
original objective function 833.044 820.388 513.261
Number of MINOS iterations 133 349 8
T 13 9
MINOS user time 55.46 488.92 264.76
27.18 71.72 385.96

8.2. Stochastic quasigradient method

In the STO implementation the user can choose between two options: interac-
tive and automatic. In the interactive option the user chooses the stepsize p; from
(20) himself, his judgment is based on such notions as "oscillatory behavior" of
variables or ''visible trend” aided by some additional "measures of processs quali-
ty"”. These are displayed on the terminal along with current point and user can in-
terrupt iterative processs and change the value of stepsize. In order to use this
possibility effectively the user has to be quite experienced. However, as practice
shows even an inexperienced user can quickly get necessary skills. All this is
described in more detail in Gaivoronski (1986).

In experiments with interactive mode the step direction £ from (20) was com-
puted using certain analogue of random search: generate random vector h = (h,,
h,, hg) where h, are independent random variables uniformly distributed on
[— G, G]1and G is chosen interactively from the interval [1, 20], compule ||k || com-

pute vector u = (14, uy, ujz)such that

u =h( (x5 +h, 0)~f(xg, 0)/lR]
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where w; are independent observations of

repeat the first two steps [ times with different independent observations of ran-
dom variables w and k, obtain I vectors u and take as step directions ¢° average

of these vectors (in example given below I = 10).

Stepsize was chosen interactively. At first sufficiently large stepsize chosen
(10.0) which was reduced if irregular behavior of the z variables was observed.
The results are in Table 2.

TABLE 2

Step Stepsize zy x4 z, zg T, F(z)
number

The value of step ¢ in random search was set 10.0

2 10.000 497 .966 54.924 56.572 57.126 56.675 522.663
4 10.000 495.456 54.017 56.136 57.751 56.822 517.106
6 10.000 500.000 45.750 110.698 28.866 34.869 1702.02
8 10.000 494 .886 96.359 60.089 2.818 66.061 4222.28
10 10.000 500.000 89.514 63.600 1.038 71.145 4405.28
11 2.000 500.000 102.319 51.587 3.529 62.748 4156.32
12 2.000 497.288 95.581 0. 106.282 21.029 3796.11
14 2.000 500.000 91.400 37.497 18.361 42.926 754.445
16 2.000 500.000 38.100 54.772 108.994 19.945 948.331
18 2.000 494 .886 39.740 64.965 84.687 35.905 498.726
20 2.000 494 .886 38.100 67.452 78.986 40.759 492.378
22 2.000 494 .886 38.629 67.744 78.421 40.503 495.428
24 2.000 494 .886 38.431 67.806 78.528 40.532 495.420
26 0.200 497.901 39.045 66.946 75.445 43.491 498.291
28 0.200 497.767 39.001 66.934 75.449  43.477 498.133
30 0.200 497.606 39.040 66.956 75.478 43.490 497.490
At this point the step in random search was changed to 5.0
31 0.200 497.569 39.067 66.981 75.472 43.474 497.879
35 0.200 497.032 39.240 67.186 75.473 43.398 497.353
40 0.200 496.698 39.242 67.206 75.422 43.425 497.042
50 0.200 496.046 39.252 67.200 75.354 43.429 496.358
60 0.200 495.400 39.224 67.255 75.324 43.358 495.802
70 0.200 495.524 39.086 71.344 73.790 40.440 496.192
80 0.200 495.056 39.180 71.461 74.000 40.518 495.664
a0 0.200 494 .886 39.168 71.501 74.037 40.591 495.585
100 0.200 494 .886 39.244 71.488 74.030 40.535 495.604

During actual computations information was displayed more frequently and, of
course, without last column which contains the estimates of the values of the objec-

tive function f (z) at the current points using the same 10000 observations of the
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random vector « which were used for estimations of MINOS results. These estimates
were obtained afterwards (and consumed a lot of computer time!). From the table it
is evident that very good solution (better than 1331 points approximate scheme)
was obtained after 20 iterations, that is after 800 function evaluations and all sub-

sequent points oscillated in close vicinity.

The major disadvantage of the interactive option is that it requires too much
from the user. Therefore automatic option was developed in which computer simu-
lates behavior of an experienced user. For experiment with automatic option we
choose the simplest version of SQG: one which uses for step direction the values of
Jz(z, @), which are very easy to compute here:

Se(z, @) =1{1.,0., —cty, —cty, —ctg}
where t; =1 if

wy+dy, g =Ty, =max {0, t;nza')él‘{wt 1 +d; =z,

and tj = 0 otherwise, ¢ = 100 — penalty coefficient.
On each iteration only one observation of f, (z%, ) was computed, which was

used as step direction.
Stepsize p; was computed automatically according to the simple rule:

- on each iteration one observation f(z®, »°) was made and these observations
were used to compute estimate F(s) of the current value of the objective
function:

F($)=Y 7', ot)/s
i=1
current path length L (s) was computed also:
Ls)= ¥ lzt*t — 2!
1 =1

- initial stepsize p; was chosen sufficiently large (in examples below it was 5.0)
and each M iterations the condition for reducing stepsize was checked (in ex-
amples below M = 20, that is conditions were checked on iterations number 20,

40, 60,...). This condition is the following:

Ps+1 =Dps if (F(s =K) =F(s))/(L(s)-L(S —-K))sA

Ps +1 = pg otherwise .

In examples below D =0.5, X =20, 4 =0.01, starting point was (1000, 100,
100, 100, 100). Each iteration required one observation of random function

f(z, w) and one observation of its gradient. Below there are two runs with dif-



-25-

ferent sequences of random vectors w. One is 'very good" another — 'not as good
but quite reasonable”. When current point approaches optimum the event |t = 1}
becomes less and less likely. Therefore the method spends much of iterations
standing at the same point (for instance iterations 260—400 in Tables 3 and 4). The
last column again was obtained afterwards using the same 10000 observations of w
as in the previous tests. It shows that the algorithm reaches quite good vicinity of
solution after 120 iterations (except a slight jump on iteration 420). In Table 4 we
have a big jump on iteration number 220, the method, however, quickly reaches the
vicinity of solution again. This jump is due to too big stepsize. After iteration

number 240 everything is OK again.

The problem with SQG is the stopping criterion and currently the criterion
implemented is based on assumption that if stepsize becomes too small we are in the
vicinity of optimum. This of course is not necessarily true but experience shows

that nevertheless this criterion is quite reliable if coupled with repeated runs.

The same input data were used for solving the problem (11) with joint proba-
bility constraint. New variables :Eo =z,-1l,and 5'1 =z, — d, were introduced to
eliminate the individual lower bounds. For the resulting program

minimize £

z, o, +d,
subject to P Zg 2wy+djy| 2a
Ty 2wz +dy

z1+zz Szz(l—a2)+m4—m2_d1
51+Zz+13+14 524(1—a4)—d1
Zo+z, 2zy(y)) +my—vy—1lpg—dy
o+ &, +z, 2z(72) +mgtvy—1lp—dy

o+ E, +x, +2x4 2z3(73) +my+ vzl —dy

~ ~ ==z +my+v,—-1ly—d
ZO +11 + 22 + T3 + Ty 4(74) 4 4 0 1

0sZysuyg-Ilp0=<Zi<u;—-d;0Sz,Suyu0sz3suz0szs<u,,

two solution techniques were implemented:
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Step Stepsize Zzy z, z, Zza Zz, F(z)
number
20 5.000 494 .886 56.324 56.324 56.324 56.324 524.380
40 5.000 494.886 40.657 57.329 61.280 66.031 504.566
60 2.500 494.886 40.657 57.329 61.280 66.031 504.566
80 1.250 494 .886 40.657 57.329 61.280 66.031 504.566
100 0.625 498.438 38.881 55.553 94.306 36.557 502.248
120 0.625 493.189 39.662 57.021 87.596 41.018 497.002
140 0.313 494 .886 40.314 57.672 86.945 40.366 495.706
200 0.313 494.886 40.314 59.672 86.945 40.366 792.706
220 0.313 497.969 39.116 55.788 72.861 57.533 499.343
140 0.313 497.344 39.428 56.100 88.173 41.595 198.337
260 0.313 494 .886 40.657 57.329 86.912 40.366 495.782
400 0.313 494.886 40.657 57.329 86.945 40.366 495.782
420 0.313 499.844 38.178 54.850 89.423 42.845 501.282
440 0.156 498.281 38.959 55.631 88.642 42.064 499.416
460 0.156 496.719 39.741 56.413 87.861 41.283 497.641
480 0.156 495.156 40.522 57.194 87.080 40.502 496.001
500 0.156 494 .886 40.657 57.329 86.945 40.366 495.782
520 0.156 494 .886 40.657 57.329 86.945 40.366 492.782
540 0.156 494 .886 38.100 68.598 82.589 36.010 498.586
560 0.156 494 .886 38.100 63.390 77.380 46.427 495.158
1000 0.156 494.886 38.100 63.390 77.380 46.427 495.158
TABLE 4 "Not as good as previous but quite reasonable”.
Step Stepsize z, z, z, zg x4 F(z)
number
20 5.000 494 .886 56.324 56.324 56.324 56.324 524.380
40 2.500 494 .886 48.993 48.993 61.280 66.031 513.800
60 2.500 496.000 40.100 56.772 61.280 67.145 505.757
80 1.250 497.000 39.600 56.272 61.280 68.145 506.897
100 1.250 494 .886 40.657 57.329 61.280 66.031 504.566
200 1.250 494 .886 40.657 57.329 61.280 66.031 504.566
220 1.250 499.500 38.350 55.022 108.494 23.431 736.529
240 0.625 494.886 40.657 57.329 74.812 52.499 495.735
420 0.625 494.886 40.657 57.329 74.812 52.499 495.735
440 0.625 496.875 39.662 56.335 75.806 53.494 497.946
460 0.313 494 .886 40.657 57.329 74.812 52.499 495.735
940 0.156 494.886 40.657 57.329 74.812 52.499 495.735
1000 0.156 494.886 40.657 57.329 74.812 52.499 495,735
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8.3. The PCSP code by Széntai

The program solves problems of stochastic programming with joint probability
constraints under assumption of multinormal distribution of random right-hand
sides (w; -4 = B84, © = 2, 3, 4 in our case). It is based on Veinott’s supporting ny-
perplane algorithm (see Veinott (1967)). The individual upper bounds on variables
are handled separately and the parameters of the multinormal distribution are
used to get a starting feasible interior solution. For constructing the necessary
linear and stochastic data files, one can turn to the brief documentation by Ed-
wards (1985). Some computational results of the test problem with data given at the

beginning of this Section are given in Table 5.

TABLE 5 Results of the calculations by using the PCSP code.

z, z,4 z, zq z, Prob. lev. CPU time No. of
cutting
planes

494 .880 49.982 58.302 81.970 35.046 0.973 25.52 3
494 .880 42.980 55.822 63.614 62.935 0.98B3 36.38 5
494 .880 41.494 59.400 63.155 61.251 0.981 32.37 4
494 .880 41.307 69.226 74.595 40.172 0.997 41.87 5
494 .880 39.776 66.921 76.140 42 463 0.999 34.45 5

S.4. The application of the nonlinear version of the MINOS system

For this purpose one has to write a separate subroutine named CALCON which
calculates the value of the probabilistic constraints and its gradient. The subrou-
tines are contained in the PCSP code. They were coded on the base of an improved
simulation technique by Szdntai (1985). Computational results given in this section
show that the direct application of the MINOS system for the solution of the optim-
ization problem (11) is less comfortable than the use of the PCSP code. We obtained
that without giving a good initial setting on the values of the nonlinear variables

the MINOS system failed to find a feasible solution.
Finally in Table 7 there is the summary of experiments.

In the first column there is a short description of experiment including name
of the program, number of approximating points and type of approximation (for
MINOS, 7 and kX mean the same as before), number of iterations and indication of in-

teractive or automatic mode (for STO), value of probability constraint (for PCSP).
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TABLE 6 Results of the calculations by using the nonlinear MINOS system direct-
ly. (We applied the z, = 63.035, z; =77.345, z, = 30.0 initial settings. For these
initial values the probabilistic constraint is infeasible with value 0.866.)

zy x4 z, Zzq z4 Prob. lev. CPU time No. of
major
iterations

494.886 51.221 63.067 77.345 33.694 0.973 46.46 11
494.886 49.997 63.067 77.385 34.918 0.883 56.22 14
494.886 49.910 63.067 77.345 35.005 0.984 58.06 14
494.886 46.169 63.067 77.395 38.746 0.997 B4.48 23
494.886 43.414 63.037 77.345 41.501 0.999 112.58 31

In the column 7 there are values of objective function (24) computed by averaging
10000 observations generated by IMSL subroutine for multivated normal distribu-
tion. In the column B are the values of probability constraint computed using the
same random numbers and in the last column cpu time of the VAX 780. For interac-
tive mode of STO cpu time is not included because the crucial factor there was
user's response.

Experiments suggest that both considered models give comparable results and
that the methods STO and PCSP contained in the ADO/SDS library of stochastic pro-
gramming codes performed better on this particular problem than the direct use of
standard LP or NLP packages. To solve the case study, the stochastic quasigra-
dient method was chosen as its implementation is not essentially limited by the as-
sumed type of distribution and through increasing the penalty coefficient value an
approximate optimal solution which fulfills the joint probability constraint can be

achieved.

6. THE CASE STUDY

In the case study of the water resources system in the Bodrog River basin the

model (17) was used with added constraints (see discussion):
d;<z,1=2,3,4. (25)

The input values of the 3-dimensional multinormal distribution of g8, were as follows

(with exception of correlation matrix in mil. m3)



TABLE 7

Experiment z, z4 z, z3 z, Function  Prob. CPU
value value time
MINOS 1251 494.88 38.1 88.019  61.223 39.958 505.204 0.9728 55.46
MINOS  125_R 494.88 38.1 118.35 43.359 25.491 833.044 0.4878 27.18
MINOS  343_1I 494.88 38.1 84.918 63.057 39.225 501.401 0.9832 488.92
MINOS  343_R 494.88 38.1 114.939 42.421 29.84 820.388  0.5578 71.72
MINOS 1331_1 494.88 64.409 54.752 65.338 40.801 499.854 0.9844 264.76
MINOS 1331_R 454.88 38.1 92.088 61.811 33.301 513.261 0.9391 385.96
STO 1 100 494.886 39.2441 71.4884 74.0301 40.5345 495.604 0.9978
STO I 24 494.886 38.431 67.806 78.528 40.532 495.420 0.9981
STO A1 1000 494.886 38.100 63.390 77.380 46.427 495.158 0.9994 51.52
STO A2 1000 494.886 40.657 57.329  74.812 52.499 495.735 0.9972 49.38
PCSP 0.75 494.882 38.234 106.391 51.945 28.729 605.040 0.751
PCSP 0.973 494.880 49.982 58.302 81.970 35.046 500.890 0.9713 25.52
PCSP 0.983 494.880 42.930 55.822 63.614 62.935 501.199  0.9827 36.38
PCSP 0.984 494.880 41.494 59.400 63.155 61.251 501.530 0.9849 32.37
PCSP 0.989 495.375 43.281 58.230 86.255 37.534 497.382 0.9894
PCSP 0.997 494.880 41.307 69.226 74.595 40.172 495.668 0.9972 41.87
PCSP 0.999 494.880 39.776 66.921 76.140 42.463 495.172 0.9989 34.45

_62_
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Period | E(8,;) | a(8;) | Correlation matrix

2 20.2 B.61 | 1
3 27.37 | 1060 | 0.360 1
4 10.65 0.00 | 0.125 0.571 1

The parameters of the marginal normal distributions of cumulated monthly inflows

¢, were

Period | E(¢;) | a(¢;)

303.47 | 122.28
375.94 | 133.43
432.61 | 140.27
486.26 | 158.64

B WoN R

As the values a, =0.¢, &k =1, 2, 3, 4 and 7k =04,k =1, 2, 3, 4 were used (see

discussion) the following values of quantiles 2z, were obtained (in mil. m3

Period k& 1 2 3 4

2, (1 —0.9) | 1468 205.0 2529 283.0
z,(0.4) 272.5 3421 397.1 446.1

The values d; were as follows (mil. m3)

Period i 1 2 3 4

d, 38.1 12.7 127 12.7

The minimum and maximum reservoir capacity z, was: [, = 100 mil. m? and u,
= 334 mil. m°. (In the alternative discussed in the previous section a less realistic
value u, = 500 mil. m3 was used.) The upper bounds for variables were 252 mil. m?3
(uy =252, ¢ =1, 2,3, 4 in mil. m3) that is the volume of a long-term flood. This

constraint was not effective and therefore it was not analysed.
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Due to recreation purposes, the acceptable minimum storage in the 3-rd
period is m5 = 194 mil. m3. However, the comparison of the third inequality of (9),
the third inequality of (10) together with z, = 334 gives an upperbound of 189,4
fc.- the sum m g5 + v3, so that the parameter value m5 = 194 would lead to contrad-
ictory constraints. Thats why the minimum storage value m 3 has been put up to 137
mil. m3 (see alternative C) and the storage values m., k=1, 2, 3, 4 have been kept
fixed over all periods (see alternatives A and B). The reliability of maintaining the

summer reservoir pool has been evaluated ex post.

6.1. Choice of reliability values

The very important parameters of the model are the required probabilities a,
7; and a;. The value a is the required joint probability of the water supply. The
tests with the model have shown that it is necessary to add the deterministic con-
straint (25) in order to secure the required values of constant industrial water
demands. The penalty term is often so weak that the constraint (25) may be violat-
ed. Using the deterministic constraint (25) a relatively low value a, e.g. a = 0.85
may be acceptable. However, the value of joint probability (1) is the output of the
model; therefore the condition (1) is tested and if it cannot be fulfilled, the alter-

native is rejected.

The values a,; refer to the relatively strong environmental and technical re-
quirements for maintaining the minimum reservoir pool. Therefore a; = 0.9, i = 1,

2, 3, 4 was chosen.

The choice of the values 7, was rather difficult. They refer to the important
constraints imposed on the reservoir V operation that arise from flood control re-
quirements that stipulate that a certain space — flood control storage, be held
empty. This requirement cannot be easily expressed in the model due to its aggre-
gated character. The probability that the freeboard storage is empty means also
that there is no spill during this period. If the period is short, e.g. one day, the
probability ¥ may correspond to the required reliability. For longer periods e.g.
one month, two months, half a year, extremely large storage capacities will be
necessary if no spill shall take place during this period with probability equal
0.75. (This value has been used in the previous section and the total reservoir
capacity z, as high as approx. 500 mil. m3 was necessary.) Therefore the flood

control problems are often treated in a separate model and the required probabili-
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ties 7 are adapted to the resulting values of this separate model. It is necessary to
interpret properly the meaning of these probabilities. For instance the probability
7 = 0.4 of maintaining the freeboard storage does not say that the flood controt is
on a low level but that the freeboard space will be filled (and possibly some spill
may occur) with this probability during the period chosen. With this fact in mind
and according to the results of the separate flood control model the value 7, = 0.4

1 =1, 2, 3, 4 was chosen in this section.

6.2. Results

In the first resulting alternative 4 of the reservoir V design and operation

the input parameters were:
m, = 57 mil. m3, k =1, 2,3, 4 — minimum reservoir storage,
Uy = 70 mil. m3, k =1, 2, 3, 4 — flood control storage (freeboard
storage),
which gave
z, = 291.6 mil. m? - the total reservoir capacity
z, = 107.9 mil. m3 — the total release in the 1-st period

z,= 69.6 mil. m? — the total release in the 2-nd period

zg 69.8 mil. m? — the total release in the 3-rd period

35.7 mil. m3 — the total release in the 4-th period.

T4

Started at s, = My = 57 mil. m3, using the computed optimal releases and the
cumulated monthly inflows equal to the quantiles z, (1 — 0.9) and 2z, (0.4) we can

compute the corresponding storages s; (in mil. m3):

Period ¢ 0 1 2 3 4

min storage s, 57 95.9 84.5 62.6 57.0
max storage s; | 57 221.6 221.6 206.8 219.9

The underlined values are critical, i.e., the corresponding inequalities in (9) and

(10) are fulfilled as equations. As the existing total reservoir capacity is 304 mil.

3

m”, we observe from the active constraints
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To=5,+v, (291.6=2216 + 70)
To=5,+ v,

that the freeboard storage could be increased from 70 mil. m3 to 82.4 mil m3. The

computed joint reliability of water supply is a = 0.979.

In this alternative 4 the requirements for maintaining the reservoir pool dur-

ing the third period were not met with probability high enough. The acceptable re-

3

creation storage in the third period is s3 = 194 mil. m”. Using the relation

S3=my+{3—x1 —ZTp 23,
the corresponding value of £3 can be obtained:

For values ¢3= 384.3, the condition on recreation storage will be fulfilled. Using
the parameters of the marginal normal distribution of {; we get the corresponding
reliability ag:

) ¢3 —432.6
G3=P{¢32384.3) = P|—————20.34|= $(0.34) =0.633 ,

where ¢ denotes the distribution function of the ¥ (0, 1) distribution. The resulting
reliability of recreation pool is not acceptable.

In the second resulting alternative B of the reservoir V design and operation,
the input parameters were changed to m, = 131 mil. m? — the minimum reservoir
storage including the environmental and recreation goals (m, = 131 for £ =1, 2,
3,4) v, =10, £ =1, 2, 3, 4 the freeboard storage. The resulting solution (in mil.

m3)

z,=304.1
z,=109.4
z,= 69.6
zg5= 65.1
z,= 389

does not differ substantially from that in alternative A. The minimum and maximum
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reservoir storage volumes (in mil. m3) were

Period i 0 1 2 3 4

min storage s; 131 168.4 157.0 139.8 131.0
max storage s, | 131 294.1 294.1 282.8 294.1

where the critical values are underlined again. The computed joint reliability of

water supply is a = 0.987.
For values {3 =194 - 131 +244.1 = 307.1, the condition on acceptable re-

creation storage will be fulfilled; the corresponding reliability
&3 =P{¢(;2307.1] = ¢(0.894) =0.814

of recreation pool is high enough.
In the last alternative C which is a slight modification of the alternative 4 the

input parameters were:
m, =57 mil.m>, k =1, 2, 4, my =137 mil.m® |
v =70 milm®, k =1, 2, 4, vy =10 mil.m3 .

The resulting solution (in mil. m3)

z, =334.00
z,= 67.55
z,= 67.55
4= 37.80
z,=110.10

differs substantially from the previous ones. The minimum and maximum storage

volumes (in mil. m3) were
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F-

Period % 0] 1 2 3

min storage st 57 136.2 126.9 137.0 7.0
max storage st | 57 261 264.0 281.2 220.1

where the critical values are underlined again. Observe that the upper bound of
the reservoir capacity has been reached (so that the existing reservoir capacity
has been surpassed). At the same time, the computed joint reliability of water sup-

ply is only a = 0.412, which is not acceptable.
For values (3 2194 —-57 +172.9 = 309.9, the condition on acceptable recrea-

tion storage will be fulfilled. The corresponding reliability
&3 =Pi(3 > 309.9) = ¢(0.874) = 0.809

is sufficiently high again.

The comparison of results is given in Table 8.

7. DISCUSSION

The comparison of the goals of the water resources system with the results
obtained shows that all the target values cannot be achieved by the operation of

3

the total reservoir storage 334 mil. m” of the reservoir V. The relationships

between the goals and possibilities of the reservoir V were as follows:

1 The goal of maintaining the minimum reservoir storage for environmental con-

servation and technological purposes is met in all alternatives.

2 The flood control goal is met in the first alternative in cooperation with the
levels along the river and it is mostly met in the third alternative too. In the
second alternative the flood control storage is too small and cannot be ac-

cepted by the decision makers.

3 The minimum storage requirement in case of recreation pool cannot be met
fully as the substantially increased values of mg give an empty solution set.
This fact can be easily interpreted in water resources system analysis as too
much waler is released in the first and second period and the inflow during
the third period is not sufficient. An ex post analysis shows that the solution
of the second and third alternative gives the desired recreation pool with

probability greater than 0.8 which may be acceptable.



TABLE 8

Alternalive A B C D E
Model/Code (17)/STO (17)/STO (17)/STO (17)/STO (11)/PCSP
Parameters mE =5TVk m,=131Vk m, =57,k =1,2,4,mq=137 m, =5TVk m, =57V%k
v, =70k v =10 Vk v, =70,k =1,2,4,v3 =10 v, =70 vk v, =70k
ugy =334 uo =334 ugy =334 uy =500 uq =500
Optimal solution
Ty 291.6 304.1 334.0 494 .9 494.9
x4 107.9 109.4 67.55 40.7 39.8
z, 69.6 69.6 67.55 57.3 66.9
zq 69.8 65.1 37.8 74.8 76.1
Ty ' 35.7 38.9 110.10 52.5 425
Reliabilities
a (releases) 0.979 0.987 0.412 0.99 0.99
a4 (recreation) 0.633 0.814 0.809 0.81 0.79
7 (freeboard) 0.4 0.4 0.4 0.75 0.75
Goals (met)
min storage YES (0.9) YES (0.9) YES (0.9) YES (0.9) YES (0.9)
recreation pool NO YES (0.8) YES (0.8) YES (0.8) YES (0.79)
freeboard volume YES NO YES YES YES
YES YES NO YES YES

water supply

_gg_
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4 The joint probability constraint for water supply was fulfilled in the first two
alternatives on a surprisingly high level. To satisfy the fixed demand require-
ments, deterministic constraints (25) were added. In the alternative C, the
joint probability constraint was not fulfilled because of the low release in the

third period.

5 The comparison of the three alternatives 4, B, C shows that the requirements
for flood control, maintaining the recreation pool and the water supply are
antagonistic and cannot be met in the water resource system by the reservoir

V only with the realistic total reservoir storage 334 mil. m3.

) Alternatives D, E that have used the higher reliability of the freeboard
storage for long periods, ¥ = 0.75, required the non-realistic total reservoir
capacity approx. 500 mil. m3. As this total reservoir capacity cannot be

reached, the construction of the reservoir X will be necessary.

8. CONCLUSION

Stochastic programming models were used for identification of those manage-
ment plans of water resources system development which best meet the required
objectives. For this purpose the economic objective and physical environmental
and economic probability constraints were expressed mathematically. These
management plans involved the choice of the design and operation variables, i.e.
the total reservoir capacity and the releases in the investigated periods. The
analysis of the design alternatives shows the contradictory character of the main
goals of the water resources system — water supply for industry and irrigation
flood control, environmental conservation and recreation. As the optimum alterna-
tives do not meet all these goals, the water resources system has to be enlarged by
the reservoir K. As an screening aggregate model was used and the multidimension-
al distribution and marginal distributions were approximated by the multinormal
and normal distributions respectively, the optimum design and operation variables
derived by this model are rough approximations. However, the more precise values
that could be derived using a more sophisticated model cannot differ to such de-

gree that the main result (i.e. the necessity to plan a new reservoir) be altered.

The comparison of the different models of stochastic programming has proved
a good agreement of the technological results. The method of multi modelling (i.e.
the use of several models and programs for solution of the same problem) proved

to be of use in planning of water resources systems development.
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