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FOREWORD 

For many years  Soviet scientists have provided leadership in the  
design of integrated environmental monitoring system. The attached paper  
by M. Ja. Antonovsky and M.D. Korzukhin is a good example of the  approach 
taken, in which a working ecological model is developed and then applied t o  
the  practical problem of designing an appropriate  environmental monitoring 
system. 

The paper  w a s  presented at a Symposium held in Moscow 13-16 March, 
1985, cosponsored by IIASA and the  USSR National Committee fo r  IIASA. 
During the  same week a Memorandum of Agreement was drafted and subse- 
quently signed by Academician Yu.A. Izrael and Dr. T. Lee, assuring Soviet 
collaboration in t he  IIASA Project ,  '~cologica l ly  Sustainable Development 
of the  Biosphere". 

One outcome of the  Memorandum is the a r r iva l  of Professor Antonovsky 
at IIASA in May 1986. In his capacity as Chief Scientist in the  Environment 
Program, Dr. Antonovsky will continue his research  in the  fields of ecologi- 
cal modeling and the  design of integrated monitoring systems. 

R.E. Munn 
Head, ENV Program 



SUMMARY 

This work i s  devoted t o  a method of modeling fores t  ecosystem dynamics 
tha t  can be used in integrated global monitoring of the  biosphere. A s  i s  w e l l  
known, attempts t o  calculate global (or  regional, zonal, etc.) variation of, 
.for example, forest  productivity under varying global temperature but with 
an  average warming t rend with corresponding variations in productivity of 
a single tree and a number of trees in a given te r r i to ry  will never be  suc- 
cessful: the  resul t  will be  quantitatively incorrect  even with respec t  t o  
sign, because the  multilevel fores t  s t ruc ture  and a g rea t  number of possible 
impacts of temperature on forest  ecosystem are not taken into account. 
Indeed, C02 growth stimulation in a fixed density stand f i r s t  leads t o  a n  
increase in the  accumulated biomass and then t o  a reduction, because of 
competitive mortality (at  the  individual and group levels). The associated 
drying up and reduction of t he  area of swamps, at the  same time, stimulates 
f i res ,  thus shortening the  average age  of forests.  On the  whole, forest  
biomass, despite a n  increase in a r ea ,  may ei ther  increase o r  decrease (at  
t he  landscape and regional levels). For te r r i to r ies  with low temperature,  
warming will stimulate individual growth, fu r the r  reducing the  biomass at 
the  fitocenous level as well as at the  landscape level due t o  the stimulation 
by f i r e  and phytophagas; t he  net effect of these variations may be  e i ther  
positive o r  negative. 

Generally speaking, we use a well-known approach, viz., from a con- 
c r e t e  natural problem t o  a hierarchy of mathematical models, followed by a 
computing experiment and interpretation of the  result. The complexity of a 
model has  t o  correspond t o  t he  study goal, the  preciseness of experimental 
data,  t he  level of detail of existing methods and algorithms. 



Pas t  experience has  shown tha t  many complex nonlinear phenomena 
could be  prescr ibed with the aid of relatively simple models. See,  fo r  exam- 
ple, the  work of A. Turing on modeling of morphogenesis and analogous 
modeling of chemical reactions by I. Prigogin. 

We wish to  express  ou r  appreciation and grati tude t o  Professor  R.E. 
Munn, Leader, Environment Program at IIASA, f o r  his suggestions. 



PREDICTIVE FOREST ECOSYSTEX MODELS AND 
IMPLICATIONS FOR INTEGRATED MONITORING 

M.Ya. Antonovsky* and M.D. Konukhin** 

I t  is  convenient t o  divide the  factors  influencing the  s ta te  of an ecosys- 

tem into those directly affecting i t  ("local", o r  explicit ones), and indirect 

ones, whose effects depend on the  s ta te  of adjacent ecosystems ("terriro- 

tial" factors ,  with implicit effects). 

In the  following analysis, we shall discuss forest  ecology of the  taiga 

zone. The local fac tors  of importance are as follows: microclimate, bog- 

ging, forest  pests, o the r  biotic factors  and windfalls. Regional fac tors  

include: forest  f i res ,  bogging, regional-scale pest outbreaks and o the r  

biotic factors  (birds, fungus diseases) [24]. 

In accordance with this  view, t he re  are two aspects  t o  predictions of 

changes in t he  state of t he  taiga forests  under hypothesized climate varia- 

tions o r  physicmhemical  changes in the  atmosphere: 

*currently Chief Sc ient i s t  in the  Environment Program a t  IIASA. .. 
Natural Environment and Climate Monitoring Laboratory COSKOMCIDROW, Moscow. 



1. I t  is necessary t o  predict  the  d i rec t  ecological impacts due t o  

changes in externalit ies,  i.e. t o  assess changes in biomass, t he  number 

of t r ee s ,  etc. Taking into account the  fact tha t  t h e r e  are strong eco- 

logical effects due t o  competition in t h e  boreal fores t s  1203, t he  

response of t he  ecosystem as a whole would not be, generally speaking, 

the  sum total  of responses observed in t he  case of non-interacting indi- 

viduals. An adequate ecological model is essential in o r d e r  t o  predict  

t he  response of t h e  total  system. 

2. I t  is also necessary t o  predict  indirect ecological impacts due t o  

large-scale changes in externalities. These predictions are obtained 

from measurements and models of ecological s t ruc tura l  changes within 

each vegetation zone. A region is  conceived as a "mosaic" of a multi- 

tude of ecosystems existing in various habitats and at different succes- 

sional stages.  In t he  case of t he  taiga forest ,  this mosaic is  largely due 

to  f i r e  [Ill. Here i t  should b e  noted tha t  methods f o r  modelling 

ecosystem dynamics are relatively developed; however, ou r  under- 

standing of ecosystem s t ruc tura l  changes ove r  la rge  regions is  still 

relatively poor,  and only l inear models are used (see below). 

A primary input into regional models is an  ecological classification of t he  

study a r e a ,  including t h e  identification of primary habitat  types. Then 

specific succession classes must be  identified, since they emerge in every  

habitat  following most common types of initial shocks (past investations, 

fo res t  f i res ,  etc.). 

A t  t he  ecosystem level, forecasting f o r  each fores t  type is  ca r r i ed  out 

using an ecological model describing t h e  integrated dynamics of the dom- 

inating species. The model should be  sufficiently universal tha t  i t  is possi- 

ble t o  descr ibe long-term ecosystem behaviour following any set of initial 

conditions c rea ted  by exogenic fac tors  under study, f o r  all  habitat  types. 

A principal fea ture  of fores t  vegetation is that  i ts  succession dynamics 
2 3 is r a t h e r  long-term (10 -10 years)  as compared t o  the  observation period 

accessible t o  an individual r e sea rche r  (10'-10' years).  The difference in 

these time scales calls f o r  t he  employment of an indirect method f o r  study 

of t he  development of fores t  vegetation: 



(1) a number of areas with approximately similar ecological conditions 

but with different s tages  of vegetation are selected; 

(2) an  assumption is  made tha t  these areas ref lec t  different develop- 

ment stages or one arrd the same area shifted in time; 

(3) based on selected sets of character is t ics ,  these  fores t s  are 

ar ranged  in o rde r ,  representing the i r  temporal sequence. 

Although this indirect method is  t h e  only method available and is easy to 

use, extrapolations forward in time are uncertain. For a vast  t e r r i t o ry  with 

contrasting ecological conditions subjected to various effects,  t h e  number 

of observed and theoretically possible genetic lines of development is  

extremely high. Long-term observation of succession dynamics at "typical" 

s i tes  is  impossible. Thus, w e  believe tha t  t he  only method of forecasting i s  

to construct  a dynamic, multi-species, age-distributed quantitative model, 

correlated with t he  ecological conditions of t he  t e r r i t o ry  insofar as f a r  as 

data  permit. The model is  considered not only as a means of making projec- 

tions, but also as an  instrument fo r  ecological research .  

One such model which has  been verified by field da ta  [2,14] is  

described below. 

AN EXAMPLE OF A ECOSYSTEM MODEL 

W e  propose a dynamic-demographic approach [7], which implies tha t  

t he  form of t he  frequency distribution of tree ages is  the  resul t  of bir th  and 

death processes.  In t h e  following, t h e  analysis is made in terms of competi- 

tion propert ies ,  seed production intensities, mortality probabilities fo r  

each age, seed germination probabilities and so on. Several demographic 

models of population dynamics have been described in a number of papers .  

Some of t h e  models are linear [3,5], i.e. t he  tree mortality probabilities are 

density-independent; evidently such models are adequate only f o r  sho r t  

periods of time. The proposed non-linear models (e.g. [4]) requi re  la rge  

volumes of ecological da ta  and they a r e  still not completely realist ic in the  

ways tha t  they descr ibe ecological mechanisms. 



W e  have attempted to  formulate a relatively simple model, which 

requires  only data  obtained during conventional-type fores t  surveys. A 

fea ture  of o u r  approach is tha t  some of the  hard-to-measure ecological 

parameters are estimated by adjusting theoretical age  distributions 

(obtained f r o m  a model) to empirical ones. Then these parameters  are used 

in model projections. 

Below w e  shall descr ibe s o m e  par t icular  features  of age  distributions, 

a question tha t  promoted the  construction of this model. A typical age  dis- 

tribution form f o r  fo re s t  vegetation with a relatively high density of mature 

individuals is  presented qualitatively in Figure 1. This form is typical of 

fores t  stands of dark  coniferous [10,16,20], beech [8], and oak [8]. Similar 

distributions have been observed in various s tages  of a deciduous - da rk  

coniferous succession in the  Central Ob region. The non-linearity and non- 

monotonicity curve shows tha t  t he  situation i s  non-stationary, i.e. t he  sys- 

t e m  is  f a r  from reaching a climax. The type of curve  presented in Figure 1 

is  associated with a situation in which a major p a r t  of the  forest w a s  des- 

troyed (e.g. by c l ea r  cutting, fores t  f i r e )  T years  ago. The "package" of 

senior ages on the  right-hand side of Figure 1 represen ts  individuals tha t  

occupied t h e  forest during the  f i r s t  decades a f t e r  t h e  shock. These species 

suppresed fu r the r  regeneration, which explains qualitatively t he  e m e r -  

gence of t he  "valley" in t h e  medium-age group. A quantitative description 

of this "valley" requires  t h e  employment of an  essentially non-linear model. 

Of g rea t  interest  is  t h e  task of estimating the  conditions under which the  

"package" of mature individuals occurs  and of tracing the  dynamics, subject 

t o  t he  ecologically interpreted model parameters.  

Another task is estimation of t he  success of regeneration. Since 

juvenile dynamics depends primarily on the  state of t he  paren t  stand, a 

forecast  of regeneration can be  accomplished only within t h e  framework of 

a general forecast  of the  dynamics fo r  individuals of all  age  groups. 

Finally, t he re  is  a range  of problems concerning a change of species in 

t h e  course of succession dynamics. The description of such changes also 

requires  age-distributed models - in this case,  though, fo r  each species. 

A s  a f i r s t  attempt of this kind, w e  shall use ou r  model t o  descr ibe a two- 

species succession. 
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Figare 1: A qualitative picture of the frequency distribution of tree 
ages observed in a species following destruction of the  
fores t  stand T years  ago. n (T, T) - the  number of T-aged in- 
dividuals at the  Tth moment, n (T,o ) - the  intensity of inva- 
sion. 

When formulating the  model, w e  adhered t o  the  principle of "the least 

number of descriptive variables", i.e. w e  made use of a very limited set of 

variables, sufficient f o r  adequate description of the  empirical data.  Addi- 

tional input variables would be appropriate  only in cases where the  effects 

cannot be explained by the  "standard" set of variables. The hasty use of a n  

"excessive" set of variables inevitably leads to r a t h e r  speculative model 

projections, owing t o  the  usual lack of field data. 

The simplest possible set of variables f o r  an age-distribution model 

includes values ni (t ,T), where i is  the  species number, and n is the  quan- 

tity of individuals at age  T at time t .  W e  consider the  age  dependencies of 

tree heights and diameters t o  be  fixed, i.e. they do not depend on the i r  

cur ren t  numbers ni ( t  , T). the  introduction of more complex growth 

processes would at least double the  number of variables and make the model 



more complicated. Introduction of distrlbution by dimensions d in every 

given age, i.e. operating with ni (t ,r,d) values would make i t  even more 

complicated. 

Assume tha t  lifetimes of two coexisting species are P and Q. Then w e  

divide the  life cycle of individuals into yearly intervals. The numbers of 

individuals f o r  each such interval is $( i  = 1  , . . . , P) f o r  t he  f i r s t  species 

and Yk (k = 1 , . . . , Q) f o r  t he  second one; a unit area of one hec tare  is con- 

sidered. For simplicity t he  variable t is omitted. Since w e  a r e  t o  descr ibe 

the  whole span of the  age  curve, the  f i r s t  classes i = k = 1 give the  

respective quantities of seeds X1 and Y1. Let us introduce the  following 

notations: 

ai and Pk represent  fertilities, i.e. the  average number of seeds pro- 

duced annually by the f i r s t  species at age  i and the  second one at age 

k ;  

ai and bk stand f o r  survivability coefficients from age  i t o  age i + 1 
(and, respectively, from k t o  k + 1); 

Obviously a * ,  bk S 1 and 1 - a i ,  1 - bk are annual death r a t e  coeffi- 

cients; 

j' and f 2  a r e  equivalent t o  the  annual seed immigration r a t e s  of the  

f i r s t  and the  second species respectively, p e r  unit hec ta re  of the  study 

area. 

Let us divide the  ecological factors  influencing the  life cycle into two 

groups - density-independent and density-dependent ones and le t  us present  

ferti l i t ies and survivabilities in the  form of a multiplication of density- 

independent ahd density-dependent factors:  

In keeping with the  view tha t  a restr ic ted se t  of model variables should 

be used, all fac tors  of the  f i r s t  type are supposed t o  be represented by the  

parameters of t he  model. 



The dependence of the  introduced values a,*, oak, a ,*,  bok on the den- 

sit ies X , Y is t o  be found with the help of par t icular  models describing com- 

petition and regeneration of the  species under consideration. We have 

taken up the  method proposed in [I51 as a competition model, which consists 

of t he  following. It  is  assumed tha t  sunlight i s  the  principal density- 

dependent fac tor  inhibiting species growth in ecosystems; the crown shape 

of a n  individual tree is modelled in the  form of a horizontal o r  vertical 

screen,  partially absorbing light; the average amount of light falling on an  

individual tree of a given size is computed. Let us denote t he  amount of 

light f o r  a n  individual t r e e  a t  ages i and k as: 

Values (2) depend in general on al l  the  variables of the  system, i.e. on 

q ,  Yk.  In ou r  model, w e  have chosen the  simplest way of representing indi- 

vidual trees - by horizontal screens having area Sm at height hm f o r  age 

m .  In this case according t o  [7], t he  values (2) are computed by the  formu- 

las: 

Here R, is the  intensity of the  initial light flux; 

S i ,  Vk a r e  surface a r e a s  of individuals (in our  par t icular  model - the  a r e a  

of horizontal screens);  

pl ,  pz - light absorption coefficients f o r  screens of the  f i r s t  and the  second 

type; 

qi - the  minimal age  j when screen j of the  second type becomes higher 

than screen i of the  f i r s t  type; 



rk - the  minimal age j, when screen  j of the  f i r s t  type becomes higher than 

screen k of the second type. 

Through indices qi and r k ,  our  model captures  the  simple fac t  tha t  

each screen  is in the  shadow of higher ones. I t  should be  noted tha t  a simi- 

l a r  idealization is used in a group of closely related models of fores t  dynam- 

ics tha t  originate from [3,22]. (A model in which individuals are vertical 

sc reens  would be more realistic but would require  much more complex for- 

mulas f o r  R l i ,  Rzk .) 

For practical application, ou r  model must be modified from an  exact  

one fo r  the screen  populations into a semi-empirical model f o r  r ea l  popula- 

tions. Let us assume tha t  S ,  V a r e  effective a r e a s  of individuals, and tha t  

they a r e  proportional t o  the  squares of heights S  - h ' ,  V - g from dimen- 

sional considerations. Further,  instead of absorption coefficients P1,  P2 ,  

we introduce empirical coefficients 

which are equal t o  the  "effective" absorption coefficients, i.e. ones taking 

into account the volume and shape of t r e e  crowns, the  density and orienta- 

tion of the i r  phytoelements, i.e. all the i r  deviations from ideally homogene- 

ous f la t  screens,  and also including proportionality coefficients between S  

and h and between V and g ' .  
The model of regeneration (ontogenesis) should be constructed s o  as t o  

describe the dependence of ferti l i t ies and survivabilities on the  resource 

quantities (2) available f o r  the  individuals, i.e. t he  functions should be  of 

the  form 

The interpretation of this case is a difficult biological-mathematical task, 

which does not yet  have a n  acceptable solution. Therefore,  w e  used the  sim- 

plest and biologically adequate assumptions t o  estimate functions (5). I t  w a s  

assumed tha t  in every age group these functions are equal t o  the  value of 

the  resources available p e r  unit area of an  individual's surface 



A power-law dependency on parameters 61, 62 is used because of ou r  desire  

t o  obtain from these parameters the simplest form of density-dependent sur- 

vivabilities and ferti l i t ies 

where 

a r e  coefficients of intraspecies (yll , yZ2) and interspecies (ylz , yZ1) com- 

petition, that  take into account both the different absorption capacities 

(coefficients d j ) ,  and different shade tolerance capacities (coefficients 6l ). 

The required model, whioh is a system of dynamic equations, is con- 

structed by the  usual balance method. Let the  numbers of individuals at 

time t be equal t o  ( t  ), Yk (t ); then at time t + 1 we have 

where a, and b, are coefficients of seed adaptability and dispersion taken 

as density-independent; the  dependency of ferti l i t ies and survivabilities on 

X , Y is defined by formulas (6) and (7); L , M a r e  the  ages when species 

become ferti le.  



Competition coefficients yy as well as seed immigration intensities of 

dark  coniferous and deciduous species f 1  , f 2  were estimated by adjusting 

the  theoretical by the empirical age-distribution curves.  

A s  a measure u f o r  finding f i  and Ytk, w e  took the  total  (by species and 

ages) RMS relative deviation of model distributions from the  empirical ones 

p e r  annum 

.- . - 

where T is t he  age  of succession, and z (T , T), Y ( T ,  T) and n l ( T ,  T), 

n 2 ( T ,  T) a r e  theoretical and empirical age distributions of dark  conferous 

and deciduous species, respectively. Optimal values of f i  and Yik, fFt and 

7zt that  yield the minimum f o r  u were obtained by a variant of the  gradient 

method [18]. 

Values of t he  o ther  parameters were taken from the  l i terature (fertil- 

ity curves) o r  estimated during preliminary computations (density- 

independent mortality curves). 

The resulting optimal values of the  parameters (in t he  sense of minimal 

u [18]) are presented in Table 1. These results are discussed below. 

1. The constants of inter- and intraspecies competition yil: reveal a 

grouping fo r  each type of interaction (according t o  the  rows of the  

table). The clustering is shown in another  way on a numerical axis 

using a logarithmic scale. 

 h he Y12 constant turned out t o  be so small that  the  gradient method yielded Y12 = 0. 
Thus, the  accuracy of  fi Id  data proved t o  be insuf f ic ient  t o  determine t h i s  constant; be- 8 ginning with Y12 = 10-  , t he  value U (10) ceases t o  respond t o  changes of Y12; hence an 
y p e r  limit i s  presented in the  table. 

Constant here i s  higher than i t s  real value, since there are no Juveniles in t h e  deci- 
duous stands on the  t e s t  s i t e s ,  owing t o  competitive suppression by the  dark conifers,  as 
well as by the  development of  a moss cover. Since the  model oes not contain a variable 
that  describes these  dynamics, the  constant turned out t o  be too high. 



The groups are distributed as might be expected from a con- 

sideration of species distributions and shade-tolerances. This' 

grouping seems to confirm tha t  all  four test sites,  which have been 

used to adjust t he  model, belong to the  same succession line, i.e. 

ecological conditions at these s i tes  are similar. 

The grouping of uniform yik implies t ha t  mean values of parame- 

ters yu should give suitable projections of behaviour at each test 

site. Actually, w e  have one of t he  possible verification variants: 

assuming tha t  t h e  s i tes  belong to the  s a m e  succession line, w e  find 

that  t he  yik grouping testifies to the  adequacy of t h e  succession 

model used; if t h e  model is  adequate, then the  s i tes  should belong 

to the  s a m e  succesion line. 

2. The smallness of t h e  values of parameter yI2 - t h e  competitive 

influence of t h e  deciduous species on the  dark  coniferous one - 
proves t ha t  t h e  latter is  actually "autonomous", and that  the  

f o r m e r  has  no effect  on it. On the  contrary,  the deciduous species 

is  "the follower" he re ,  i.e. t h e  influence of t h e  da rk  coniferous 

species on the s h o r t e r  deciduous trees is  much s t ronger  than the  

self -induced effects  of t he  latter. The "package" of deciduous 

individuals, having "escaped" from the  influence of t he  dark coni- 

ferous species i s  affected only by intraspecies competition. 

3. W e  have examined variations of values yu fo r  each area in o r d e r  

to clarify t he  model's sensitivity to changes of these cen t ra l  

parameters.  For this purpose, cr isolines w e r e  found correspond- 

ing to a 20% deviation from #""; taking into account the,  relatively 

low accuracy of t he  quantitative description w e  believe tha t  a 20% 
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Table 1: Results of model adjustment t o  empirical age-distributions 

I 

- 

180 
- 

0 

10 -5 

0.07 

0.00021 

2000 

1000000 

0.025 

46 

0.53 

Succession 

Constants of 

competitive 

interactions 

Intensity 

of seed  

immigration 

number p e r  

h e c t a r e  

Juvenile 

survivability 

of d a r k  

coniferous 

species  

The a g e  s ince  

C* = 1 

RMS deviation 

values 

age  T y e a r s  

y ll (dark coniferous- 

d a r k  coniferous) 

yi2 (deciduous-dark 

coniferous)* 

yzl (dark coniferous- 

deciduous)** 

yZ2 (deciduous- 

deciduous) 

f 1 (dark 

coniferous) 

f 2 

(deciduous) 

N 

lJ ck k =1 

K = l  

(see  Eq. 1) 

N y e a r s  

Pi" 

100 

0 

<lo5 

0.1 

0.00036 

1645 

100000 

0.069 

20 

0.53 

120 

0 

U O - ~  

0.13 

0.00069 

1550 

75000 

0.059 

17 

0.56 

160 

0 

<lo -5 

0.08 

0.00041 

1550 

100000 

0.047 

50 

0.51 



value (but not lower) is reasonable. W e  assume tha t  within the  

domain 

any value of ytk gives a reasonable system dynamics projection. 

For brevity,  w e  consider domains ol ,  w2, w3, w4 corresponding to 

areas with T = 100, 120, 160, 180 years .  Out of all  possible two- 

dimensional projections, w e  shall c i te  a par t icular  one, namely 

(yll , yZ2); see Figure 2. (Note tha t  parameter  yll has  a s t ronger  

effect than the  o thers  on the  f o r m  of the  theoretical curve  

x ( T ,  T) and the  degree of adjustment, i.e. t he  value). Grea te r  

extension of all  domains wl along coordinates yZ2 compared to yll 

obviously corresponds t o  g r e a t e r  control of the  dark coniferous 

as compared t o  t he  deciduous species, since t he  system responds 

by strong changes of age distributions t o  t he  variation of yll and 

by weak ones - to the  variation of yZ2. for T = 100, t he  domain is  

extended along yz2 much less than along t h e  o thers  - this is  obvi- 

ously due to a relatively underdeveloped dark coniferous popula- 

tion. So, changes of the  f o r m  from wl to w2 re f lec t  t he  rapidity 

with which t h e  dark coniferous species t ake  control of the  succes- 

sion dynamics. 

APPLICATION OF THE MODEL 

The model can be  used f o r  quantitative projections of deciduous - dark 

coniferous succession under various scenarios: 

1. having determined cer ta in  initial distributions of x (o , T ) ,  y (o , r ) ,  one 

can descr ibe the  effect  of a par t ia l  burning of the  fores t  with subse- 

quent regeneration; 

2. by reducing the  population numbers in s o m e  age  groups at a given time, 

one can simulate selective cutting; 



Figure 2; Isolines of a which correspond to a 20% deviation from pin; 
oi, 02, u3, uq correspond to the  s i tes  with succession ages 
T = 100, 120, 160, 180, respectively. 

3. by slightly modifying t h e  system parameters,  one can estimate t he  

forest ' s  response t o  weak "background" impacts and thus use t h e  pred- 

ictions f o r  t he  purpose of vegetation monitoring [12]. 

Simulation of effects caused by climate change w a s  ca r r ied  out by introduc- 

ing an external  fac tor ,  which inhibited o r  stimulated t h e  increase of tree 

height and diameter, according t o  a time-exponential law.  W e  have con- 

sidered in g r e a t e r  detail  t he  course of succession with t he  parameters 

given in Table 2 and with 



where r a t e s  of increment changes A, p may be of e i ther  sign. Of all possible 

character is t ics  of succession, w e  have studied two features  of primary 

interest,  viz., t he  number of mature individuals, and the i r  biomasses 

The impact intensities (the values of A, p )  are supposed t o  be  weak, so  

alterations of N and M may be found in t he  form 

where ai are respective logarithmic derivatives taken in t he  unperturbed 

state X = p = 0. Note tha t  all values in (13), except  f o r  X and p depend on 

the  age  of succession T. 

The biomass of each species w a s  found by the  formula 

where i, is  an  initial time, viz., t he  time when the  individual t r e e s  became 

mature. (During the  adjustment of t he  model, it w a s  established tha t  t he  

best coincidence of ~i~~~ and NzXP is  achieved when i, = tmin - 15 (Figure 

1 )  f o r  t he  deciduous species.) 

i, was set equal t o  t on the  curve y, (t ); s e e  Figure 1 ;  

Yi are t h e  correct ive coefficients f o r  calculation of s t e m  volume; 

Hi = hi , g i  are tree top heights f o r  t he  two species, determined from 

(12); 

Di = d li  , d 2i are the  s t e m  diameters of t he  two species defined by for- 

mulas, similar t o  (12) 

where dial, diO2 are unperturbed curves of diameter growth, obtained from 

test s i te  data. So i t  is  assumed tha t  t he  growth process  of each species con- 

serves  t r e e  shape. The part ia l  derivatives ai in (13) were estimated at the  

point X , p = 10  -3. 



Table 2: Paramete r  values of a deciduous - d a r k  coniferous succession 
model f o r  one  of t h e  test s i t e s  

Age of succession T 120 

Constants of 
competitive 
in teract ion 

Intensity of 
seed  
immigration 
number p e r  
h e c t a r e  p e r  
annum 

Paramete rs  of 
t h e  c u r v e  
represen t ing  
density- 
independent 
juvenile 
survivability 
of da rk-  
coniferous 
spec ies  

Initial 
f e r t i l e  a g e  

Seeds '  
survivability 
coefficient  

Maximal 
fer t i l i ty  
coefficient  

yll (dark coniferous-dark coniferous) 
(deciduous-dark coniferous) 
(dark coniferous-deciduous) 
(deciduous-deciduous) 

j' (dark coniferous) 
j' (deciduous) 

N t h e  a g e  since Cf = 1 (see  Eq. 1 )  

L (dark coniferous) 
M (deciduous) 

a, (dark coniferous) 

, (deciduous) 

tP (dark coniferous 
Nq (deciduous) 

The resu l t s  are presen ted  f o r  t h e  test s i t e  with constants from Table 2.  

Values af were found f o r  100  S T 5 160. 



Values a l, a2, as, a6, a7 have proved t o  be  almost independent of succesion 

age T; values as, ag show a weak dependence on T and are given in (16) f o r  

T = 120. Due to the  weak influence of t h e  deciduous species on t h e  dark- 

coniferous one, a2 and a 6 are very  small. 

Note t h e  influence of growth rate changes of each species on the  

numbers and the  biomasses: 

1 )  when growth is suppressed (A, p <0), t he  population numbers increase 

while t he i r  biomasses decrease;  

2) when growth is  stimulated, t he  effect is  reversed;  h e r e  w e  have a 

purely ecological (o r  competitional) compensation effect,  since in t h e  

absence of competition, t he  biomass change would have been much 

g rea t e r .  

Let us give a n  example, a change in temperature T'. A s  is known [17], a 1' 

increase in T' (all o t h e r  parameters  remaining in t h e  optimum zone) leads t o  

a 10% biomass increase,  which corresponds to a 3% change in tree heights 

and diameters. Let us  assume tha t  t he  change of 1' in T' takes  place during 

30 years .  Then the  annual increase in l inear dimensions is  equal to 

(such values give a 10% change in tree heights and diameters over  100 

years).  

For these A ,  values and f o r  t he  study test site,  some resul ts  are 

presented in Figure 3 and 4. In par t icular ,  f o r  a succession which began in 

1980, t he  change in population numbers in t he  dark-coniferous species 

would be  -17%, while by the  yea r  2100 the  increase in biomass would be  

+20%. 



Figure 3: Dependence of the  population numbers of mature individuals 
on succession age  2'. Nol, NO2 are the  unperturbed 
(X = p = 0) numbers of the dark-coniferous and the  decidu- 
ous species, while N1, N2 are those perturbed,  with 
x = = 

For factors  having non-equal influences on the  two species, the impacts can 

be examined in a similar way. (For example, a reduction of light flux due t o  

an increased atmospheric aerosol loading would exe r t  a heavier impact on 

the  light-requiring deciduous species than on the  coniferous one.) 



AN EXAMPLE OF A REGIONAL-SCALE FORECAST 

The mathematical technique fo r  prognosis is as follows. First the 

region being studied is subdivided into habitats of types j = 1 , . . . , R, 
each having i ts  own intrinsic successional dynamics following exogenous dis- 

turbances. In i ts  turn,  each succession line is subdivided into discrete 

s ta tes  (or  stages) n = 1 , . . . , Q including all the  s tates  tha t  have appeared 

due t o  exogenous disturbances and endogenous dynamics. Let us introduce 

the  quantities pjn, which represent  fractions of the te r r i to ry ,  re lated t o  

habitats with ecosystems at state n .  W e  shall limit ou r  discussion t o  the  

case of ecosystems that  do not interact,  i.e. they have the i r  own endogenous 

dynamics and do not influence the i r  neighbours across  the  boundary. Then 

the  dynamics of fractional a r eas  are described by a linear Markovian sys- 

t e m  [22] 

where ajn, V ) are the  transition probabilities from succession s tage n into 

s tage s; these values describe both endogenous fac tors  and the  replace- 

ment of s tages due t o  exogenous disturbances; j' represents  climate param- 

e t e r s  and the physico-chemical s ta te  of t h e  atmosphere; t is  time. 

To simplify ou r  task, we shall not deal with population dynamics, but will 

describe the state of the  ecosystem by only one variable f o r  each species i ,  

i.e. by i t s  biomass: 

where i is  t he  species number, j the  type of habitat ,  n t he  stage of succes- 

sions q are parameters,  and I is  as defined ear l ier .  For the  sake of simpli- 

city it is  assumed that all successional stages last the  same length of time, 

viz., the  time s tep in (17). 

The essence of t he  proposed forecast  scheme is the  simultaneous use of 

models (17) and (18); the  latter is based on the  several  exogenous effect- 

mechanisms, which could be "soft" o r  "hard". The former include factors  

tha t  weakly change the  parameters of the vegetation environment. A l l  the 

explicit background fac tors  along with some implicit ones (e.g. bogging) are 



Figure 4: Dependence of mature individuals' biomasses on the  succes- 
sion age  T. Mol, MO2 are the  unperturbed (A = p =0)  bio- 
masses of the  dark-coniferous and deciduous species,  and 
MI, M2 are those with a X = p = perturbation. 

in this group. The second type comprises fac tors  tha t  change the  affected 

ecosystem r a t h e r  rapidly into another  state - these fac tors  include fores t  

f i res ,  strong windfalls and pest infestations; such effects do  not change the  

"state" of t he  Markovian system (17). For this  reason, background fac tors  

(weak by definition) are not included in transition probabilities a describ- 

ing endogenous changes, but they are included in probabilities of intermit- 

tent  transitions tha t  occur  under the  influence of "hard" factors .  Changes 

of productivity, ferti l i ty and survivability, arising from the  influence of 

"soft" background fac tors  are taken into account in t he  model (18). The 

effect of hard  fac tors  is not described by this model. 



Let us have a habitat of a given type, occupied by a single dominant 

species; therefore  w e  can drop  the  index k for p, a values in (17) as well as 

i and k indices for m in (18). Let t he  t e r r i t o ry  be  in a state of equilibrium 

as a whole, i.e. t he  fractions of areas Pn covered by each of the  succes- 

sional s tages  are constant. Suppose t he re  is  a weak change in t he  value of 

one exogenous parameter ,  4P/f S 1. This effect,  which is  soft  at t h e  

ecosystem level, would change the  mean values of t h e  biomasses a t  each suc- 

cessional s tage 

A t  the  regional scale,  fo res t  f i r e  burn-out probabilities would change 

slightly f o r  each succession s tage 

along with equilibrium fractions of a r e a s  

The parameters  p ,  a, n are coefficients of susceptibility to fac tor  f . 

The total  biomass of the  species under consideration p e r  unit regional 

area is  

Let us t r y  to assess the  values p ( n  , f )  , nn U ) .  Suppose t he  fac tor  f is  

temperature,  and 4P = lo. For boreal  forests,  values of p(n , f ) ,  are in t h e  

o r d e r  of 0.05-0.1 l /deg [Ill. Assessment of n, (j') i s  more difficult. For  

taiga forests ,  t he  burn-out probability (k + I )  transition is approximately 

equal to l o 9  l / p e r  annum [Ill. When the  climate warms, this value changes 

(mainly due to the  variation of frequency of drought years).  For  t he  Euro- 

pean p a r t  of t he  USSR during the  next several  decades, t he  projected 

change of this value due to greenhouse warming will be  within t he  range of 

from 0.3 t o  0.4 l / p e r  annum. Assuming tha t  t he  burnout probability 



increases in the same proportion, i t  follows tha t  anl 0.3, and 

a, l(f + 41 ) = 0.01(1+ 0.341 ). By taking reasonable steady state values 

P, (f), i t  is easy t o  show that  the change of P, V )  has the  s a m e  o rde r  of 

magnitude as a, (f), the  calculation being car r ied  out in accordance with 

(17), i.e. tha t  n ,V)  2 -0.3. So values of the  summands within every pa i r  

of brackets  in (19) differ slightly but have opposite signs, i.e. the  biomass 

increase effect at the  ecosystem level would be compensated by i ts  

decrease at the regional level. The authors believe tha t  this preliminary 

assessment indicates tha t  a more detailed study should b e  undertaken. 

IMPLICATIONS OR ECOSYSTEM MONJTORING 

There is growing recognition of the  need t o  establish monitoring sys- 

t e m s  t o  provide ear ly indications of ecosystem change; see,  fo r  example, 

[ Z l l .  

I t  is  ou r  belief tha t  specialized information services should be esta- 

blished f o r  this purpose at the regional level. 

The technological basis fo r  the  information services  should be pro- 

vided by remote sensing and thematic interpretation of imagery, one of the 

f i r s t  tasks being t o  undertake a regional ecological survey. This would 

include: 

data  on the  fractions of land surfaces occupied by each of the  pri- 

mary vegetation types (forests, meadows, bogs) at c i rca  1:106 scale 

imagery; 

descriptions of the  ecosystems within each vegetation type (a listing 

of dominants, the  number of individuals) by means of c i rca  l:lo5 scale 

imagery and supporting information f r o m  ground-truth sites; 

information on cur ren t  exogenous stresses (climate anomalies, recent  

forest f i res ,  pst  outbreaks, etc.). 

Prediction of future regional ecosystems states would be  based on the 

models described in [9], [I81 and [17], values of the  input parameters being 

obtained f r o m  the  ecological survey data  described above. At regular  

intervals, the  survey should be repeated t o  update the  predictions, and t o  



obtain a growing file of time-series data. 

Summarizing, it is  the  opinion of the authors  that  highly aggregated 

forestry information will not be particularly useful in predicting the  eco- 

logical impact of an exogenous stress such as a forest  f i re ,  climate anomaly 

o r  pest outbreak. Instead, it will be necessary to  collect detailed informa- 

tion on ecosystem s t ruc ture  (dominant species, age distributions, suscepti- 

bility t o  damage by pests,  etc.). This information should be obtained in an  

integrated way over  an  en t i re  region. 
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