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FOREWORD 

Statistical apprcaches to stochastic optimization seem to be suitable f r o m  a 
practical point of view since observed data a r e  frequently the  only information w e  
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structing prediction regions in time ser ies  is utilized fo r  probabilistic conclusions 
on the behavior of the  solution of the  problem. 
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ABSTRACT 

If random values in a l inear  program with random coefficients can b e  predic t -  
ed using previous observat ions  on them one can utilize t h e  a p p r o p r i a t e  prediction 
region and cons t ruc t  a confidence in terval  in which t h e  optimal value of t h e  objec- 
tive function l ies with a given probabil i ty (or even const ruct  a confidence region 
for t h e  optimal decision). I t  i s  a new s ta t is t ica l  approach  based on projection of 
t h e  observed da ta  into t h e  time period of interes t .  The resu l t s  are demonstrated 
by a numerical example. 



CONFIDENCE REGIONS FOR LINEAR PROGRAMS 
WITH RANDOM COEFFICIENTS 

1. INTRODUCTION 

Let us  have a l inear  program 

where A ,  b ,  c ,  z have dimensions (m,  n ) ,  (m,  I ) ,  ( n ,  1). ( n ,  I ) ,  respectively.  Let 

us  consider t h e  usual situation when A and c have known determinist ic values and b 

is  a random vec to r  such t h a t  observations y . . . , y T  of b in previous d i sc re te  

time periods t = 1, . . . , T are at o u r  disposal. If one succeeds  in constructing a 

s tochast ic  model generating t h e  p rocess  [y, one can  a lso  usually const ruct  t h e  

prediction GT + of y T + f o r  a time period T + h in which the  program (1.1) is  t o  

b e  solved ( the  most usual case is h = 1). Besides t h e  point prediction GT one 

can a lso  const ruct  a prediction region in which y T  + l les with a presc r ibed  pro-  

bability ( these  prediction regions which are quite analogical t o  t h e  confidence re- 

gions o r  intervals in theory  of s ta t is t ica l  estimation are even p r e f e r r e d  f o r  prac-  

t ical  purposes  in comparison with t h e  point predictions).  

There  are various methods of predicting.  If w e  confine ourselves  t o  quantita- 

t ive prediction methods only (so t h a t  t h e  terms "projection" o r  "extrapolation" 

should b e  more sui table  than  "prediction" o r  "forecast")  then  the  most important 

and usual r epresen ta t ives  are t h e  prediction method based on econometric model- 

ing by means of systems of simultaneous equations (including t h e  classical  r egres -  

sion approach)  and t h e  prediction method in t h e  framework of Box-Jenkins ap- 

proach.  Both methods are descr ibed briefly in section 2 of th is  paper .  

If w e  have const ructed t h e  appropr ia te  prediction region f o r  b concerning 

t h e  time period in which (1.1) i s  t o  b e  solved one can make use  of i t  t o  obtain a con- 

f idence in terval  with a presc r ibed  confidence probabil i ty f o r  t h e  optimal value of 

(1.1) o r  even (if performing more detailed analysis) t o  obtain a confidence region 

f o r  t h e  optimal decision in (1.1). I t  i s  obvious t h a t  l inea r  parametr ic  programming 



can be  obtained in some way outside the  model, see discussion in [3, p. 1961 (e.g. in 

a simple regress ion situation i t  can be  zit = t s o  t ha t  z ^ ( , ~ + ~  = T + h ) .  Then 

under general  assumptions on t he  stochastic behavior of t h e  model in time T + h 

( there  must not be a change in t he  specification of t h e  model in th i s  time) t he  op- 

timal point prediction f o r  t he  endogenous variables in time T + h can be con- 

s t ruc ted  as 

with t he  (1 - a )  100 p e r  cen t  prediction region of t he  form 

Here  

i s  t he  estimated covar iance matrix of the  error - cT + h  of t he  prediction 

and FmVT -k -m + l ( a )  i s  t he  tabuiated cr i t ical  value of Fisher ' s  distribution with 

t he  appropr ia te  degrees  of freedom and the  level of sienificance a (e.g. (2.5) is 

t h e  95% prediction region f o r  a = 0.05). So  called Hotelling's s ta t is t ic  has  been 

used t o  der ive  (2.5). 

REMARK 2 Various multivariate t rends  can be  modeled by means of (2.1). E.g. 

t he  multivariate polynomial t r end  is modeled as 

where pi ( t )  is a polynomial of a n  o r d e r  pi (it means t ha t  t he  predetermined vari- 

ables  a r e  chosen as powers of time t ) .  

REMARK 3 Hymans [4] derlved (1  - a)100  p e r  cen t  joint prediction intervals 

f o r  par t i cu la r  components of y T  + in the  iorm 

where sit is t he  i t h  diagonal element of t he  matrix (Y'Y - ~ U ( ' Y ) /  (T - k )  and 



positive-definite matrix and k ( a )  i s  a known constant.  Let us denote  th is  region a s  

P ( a )  = [b  t R m  : ( b  - b ^ ) ' ~ ( b  - 5 )  5 k ( a ) {  . (2.16) 

3. PROBLEM OF SOLVABILITY 

Let us denote  the  region of solvability of the  program (1.1) as 

S = [b  E Rm : (1.1) has  an optimal solution I (3.1) 

(i.e. t h e  program (1.1) i s  feas ible  and bounded f o r  a l l  b E S )  and assume t h a t  S is 

nonempty. Then in o u r  context  t h e  problem of solvability consists  in the  investiga- 

tion of t h e  inclusion P ( a )  c S. 

Wets [I l l  deals with a genera l  problem of th is  type  when h e  investigates feasi- 

bility of s tochast ic  programs with f ixed recourse .  Using theory of polar  matrices 

and cone o rae r ing  he  can t r e a t  cases with very genera l  regions P ( a ) .  In o u r  case 

w e  make use of t h e  specia l  elipsoid shape  of t h e  prediction region P ( a )  and 

proceed in t h e  following way. 

The solvability region S is a convex polyhedral  cone with t h e  ve r tex  in t h e  

origin (see e.g.  [9]. [lo]), i.e. 

The explici t  numerical form of th i s  cone (i.e. t h e  vec to rs  h l ,  . . . , h N )  can be  found 

by means of var ious  algorithmic p rocedures  (e.g. 121, [7, p. 2761). 

In o r d e r  t o  simplify t h e  solution of o u r  problem le t  us transform t h e  coordi- 

nate  system in Rm so t h a t  t h e  elipsoid (2.16) t r a n s f e r s  t o  a s p h e r e  in R m .  The 

positive-definite matrix V from (2.16) can be decomposed as 

v = C'C , (3.3) 

where C is  a n  upper  t r iangular  matrix with positive elements on t h e  main diagonal 

(so called Cholesky decomposition). If w e  define t h e  transformation of t h e  s p a c e  

Rm as 

z -+z* = CZ. z E Rm (3.4) 

( the  as te r i sk  will always denote t h e  transformed value) then t h e  elipsoid P ( a )  will 

b e  obviously t ransformed t o  the  form 



4. CONSTRUCTION OF CONFUIENCE REGIONS 

Let us denote 

f o r  b E S .  The function q i s  convex, continuous and piecewise l inear  on S .  More 

explicitly, t h e r e  ex i s t  v e c t o r s  g l. . . . , g, c Rm such t h a t  

According t o  the  bas is  decomposition theorem (see [9]) the  definition region S of 

the  function q can b e  decomposed to a finite number of convex polyhedral  cones  St 

with t h e  ve r t i ces  in t h e  origin 0 such tha t  t h e  in te r io r s  of Si are mutually disjunct 

and q i s  l inear  on each of St ( these  regions correspond t o  pa r t i cu la r  bases  Bi in A 

such tha t  c;' Bi-l A S c ' ,  where  is  t h e  subvector  of c corresponding t o  B 1 )  The 

explici t  form of t h e  cones  Si and the  function q can  b e  a lso  found by means of the  

mentioned algorithms [2] or [7]. 

Now l e t  us  t r y  t o  determine t h e  maximal and minimal values of q o v e r  P ( a ) .  In 

o t h e r  words, w e  shal l  const ruct  t h e  ( 1  - a )  100 p e r  cent  confidence in terval  f o r  

t h e  optimal value of t h e  object ive  function in (1.1). 

THEOREM 2 Let  P ( a )  C S. T h e n  i t  ho lds  

G-T- 
r n a x I q ( b ) : b € P ( a ) l =  max [ 5 j ( g * + & g j ) l  , 

j = 1 ,  . . . .  r llgj II 

a n d  

m i n f q ( b ) : b € P ( a ) j 2  max f ~ j ( c * - = ~ ~ ) i ,  
j = 1 ,  . . . ,  T ll9j I1 

w h e r e  

a n d  f o r  g j  = gj = 0 w e  p u t  

PROOF W e  can write 

m a x l q ( b ) : b € P ( a ) { =  max I max j g j b l j  
6 € P ( a )  j =I,  . . . , T 



REMARK 7 This work is  not the  f i r s t  one dealing with confidence regions in 

l inear  programs with random coefficients. E.g., r e su l t s  have been obtained by 

means of projection of rec tangu la r s  in which t h e  values (A. R ,  c )  lie with a given 

probability (see [6,  section 13.11 o r  [a]). These rectangulars  are defined by means 

of t h e  mean values and s tandard  deviations of t h e  random components of (A, b ,  c )  

and do not make use of t h e  corre la t ion s t r u c t u r e  (relat ions among par t i cu la r  ran-  

dom components) how i t  i s  t h e  case  when projecting elipsoids. 

If w e  c a r r y  out a more detailed analysis of (1.1) as t h e  problem of parametr ic  

programming with t h e  (vector)  pa ramete r  b (i.e. if one finds explicitly t h e  decom- 

position of the  solvability region S to the  cones S f )  then  i t  is  even possible t o  con- 

s t r u c t  a confidence region f o r  t h e  optimal decision in (1.1). W e  shall  show such 

construction including t h e  application of Theorem 1 and CorolIary of Theorem 2 in 

t h e  following example which is  simple enough t o  demonstrate d e a r l y  the  previous 

theory .  The application f o r  r e a l  examples assumes t h e  exploitation of software 

from s ta t is t ics  and l inear  pa ramet r i c  programming. 

EXAMPLE The au thors  of [7] investigated t h e  following problem 

In this case i t  is  

and 

1 
~ ( b )  = max 10, - - 3 

b1, - b,. - - 
3 

4 b l - - b 3  4 , 

f o r  b t S. Table 1 contains t h e  description of a l l  cones Sf from t h e  decomposition 

of S including t h e  corresponding forms of rp and t h e  optimal bases  Bf . 

Let the  ( 1  - a) 100 p e r  cen t  prediction region (2.16) have t h e  following form 



According to (4.12) the vectors h i  from (3.2) are 

and according to  (4.13) the vectors g, from (4.2) are 

The left-hand-sides o f  the inequalities (3.8) (or equivalently of  (3.9) or (3.10)) are 

235.03, 512.86, 125.76, 1010.72, 599.61 . (4.18) 

Since each o f  these values is non-negative the elipsoid (4.14) is the subset of  the 

solvability region (4.12). The corresponding confidence region for the optimal 

value of  the objective function is according to  (4.9) or (4.10) 

If the vector c is replaced by the vector 

then the problem stays solvable and the confidence interval is 

so that the objective function has the optimal value 0 with the probability at least 

1 - a. 
The cones Si can be written formally as 

where Hi are (3.3) matrices, e.g. it is 

Then it is not difficult to  ver i fy  that the (1 - a)100 per cent confidence region for  

the optimal decision in (4.11) can be taken as 



5. APPLICATION OF BUNCHING METHOD 

The method of bunching [I21 and especially i t s  tr ickling down modification in 

combination with Schur-complement bases  updates 1131 is t h e  eff ic ient  tool f o r  

solving l inea r  programs with variable right-hand-sides (a bunch is  such subse t  of a 

given set of rieht-hand-side vec to rs  which corresponds t o  the  same optimal bas is  

of t h e  program).  

In o u r  case  t h e  bunching method will enable t o  solve in a n  efficient  way a lot  

of problems of t h e  type  

( the  points z k  are chosen f rom t h e  elipsoid P ( a ) )  without performing explicitly t h e  

decomposition of t h e  solvability region S to t h e  cones St. 

A s  the  choice of t h e  points zk i s  concerned one can use var ious  s t ra tegies .  

E.g., i t  is possible t o  choose t h e  points zk  randomly from t h e  su r face  of t h e  elip- 

soid P ( a ) .  If w e  transform t h e  coordinates according t o  (3.4) then  w e  can genera te  

these  points uniformly from t h e  su r face  of the  s p h e r e  (3.5) taking 

z; = 6; + cos cos  192 cos  193 . . . COS I9, -1 

z; = g; + +sin cos  1 9 ~  cos 1 9 ~  . . . cos  19, _ I  

z;  = gi + +sin 1 9 ~  cos  f14 cos  *5 . . . COS *, -, 
- -. 

2;-1 -bm -1 + m s i n  19, -2  cos  1 9 ~  

z, =&A + , 

where 0 S 19~ 5. 2 n ,  - n / 2  5. 192 5. n / 2 ,  . . . , - n / 2  S 19, S n / 2  are independent 

random var iables  with uniform distr ibutions on t h e i r  ranges .  

The tr ickling down procedure  can b e  s t a r t e d  in  t h e  point 6* ( the  c e n t e r  of t h e  

s p h e r e  P ( a ) ) .  Let B;~, be  the  optimal basis f o r  th is  point b; (it holds obviously 

BT1) = CB(l). where B(l) is  the  optimal basis f o r  t h e  point b̂  b e f o r e  the  t ransfor-  

mation (3.4) s ince  t h e  problem (1.1) can b e  written equivalently as 

[min c'z : CAz = Cb, z 2 01). Let zl* = (z:*, . . . , zh*)' be t h e  f i r s t  point gen- 

e ra ted  according t o  (5.2). By using trickling down procedure  (i.e. t h e  p r o p e r  se- 
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may be convenient tool f o r  th is  purpose.  In t h e  initial s t age  of such analysis based 

on prediction regions  one should investigate whether t h e  prediction region f o r  b 

with a presc r ibed  confidence probability (e.g. 95%) i s  the  subset  of such region f o r  

6 in which the  problem (1.1) is  solvable (so called solvability region). This problem 

i s  discussed in section 3 while t h e  construction of the  confidence regions i s  

descr ibed in section 4 including a simple example which demonstrates it. A possible 

application of s o  called bunching method [12], [13] f o r  the  considered situation is  

suggested in section 5. 

REMARK 1 Although t h e  simplest case with random 6 only is  considered in 

this work t h e  method could b e  extended in principal  t o  more general  situations. 

The case with random c only is  equivalent to t h e  case discussed h e r e  due t o  duall- 

ty.  

2. CONSTRUCTION OF PREDICTION REGIONS IN PRACTICE 

In this section t h e  both mentioned methods of quanti tat ive prediction are re- 

minded: 

a )  Prediction based on econometric modeling (see  e.g. [5]) is  a general  method 

which includes as a special  case e.g. the  prediction based on t h e  classical  r e g r e s -  

sion analysis. If using th ls  method w e  must e.g. have at o u r  disposal t h e  estimated 

model of simultaneous equations in the  reduced form 

Here  y t  = ( y l t . .  . . , y m t ) '  is  a v e c t o r  of endogenous var iables  in time t which is 

explained by a vec to r  of predetermined var iables  zt = (zit . . . . z k t ) '  in time t 

( the  object  of t h e  prediction are t h e  endogenous var iables) ,  n is  a (m, k )  matrix 

of pa ramete rs  and v t  = ( v l t ,  . . . , vmt) '  is  a vec to r  of d is turbances  in time t .  One 

assumes t h a t  Ev t  = 0 ,  Ev t  v i  = zvv (a positive-definite matrix) and Ev, v i  = 0 f o r  

s + 1 .  The model can b e  summarized f o r  al l  t as 

where Y = (yl ,  . . . . yT) ' ,  X = ( z l ,  . . . , zT) '  and V = (vl ,  . . . . vT)'. The classical  

OLS (Ordinary Least Squares)  est imator of Il has  t h e  form 

Let  2, +, b e  a v e c t o r  of predic ted predetermined var iables  f o r  time T + h which 



b)  Prediction in t h e  framework of Box-Jenkins approach (see  [I], 131) i s  ex- 

ploited by many s ta t is t ic ians  and econometricians as a very flexible and fruitful  

prediction mothod. Similarly as in t h e  econometric modeling one must const ruct  a n  

appropr ia te  model a t  f i r s t .  Box-Jenkins methodology utilizes s o  called ARMA (p, q)  

models (o r  t h e i r  var ious  modifications) of the  form 

where y t  is  t h e  modeled m-dimensional process .  A l ,  . . . , ilp and B 1 . .  . . , Bq are 

( m ,  m )  matrices of pa ramete rs  and is  the  m-dimensional white noise, i.e. 

E z t  = 0 ,  E z t  E ;  = C (a positive-definite matrix), E E ~  E ;  = O  f o r  s # t .  Then 

under general  conditions t h e  optimal point prediction f o r  time T + h can  b e  writ- 

t e n  a s  

where t h e  ( m ,  m )  matrices Ci fulfill  t h e  following power s e r i e s  equation 

The corresponding ( 1  - a )  100 p e r  cen t  prediction region has  t h e  form 

where 

is  t h e  covar iance matrix of t h e  e r r o r  y  T + - jT + of t h e  prediction and X:(a) i s  

t h e  tabulated c r i t i ca l  value of chi-squared distr ibution with m degrees  of freedom 

and the  level of significance a. 

The following conclusion can be  drawn from t h e  previous t ex t .  In both predic- 

tion methods (and a lso  in o t h e r  less  important ones) t h e  appropr ia te  ( 1  - a)100  

p e r  c e n t  prediction region has  t h e  geometric form of a n  elipsoid. This elipsoid can 

be written generally f o r  t h e  program (1.1) as 

(b - 6 ) ' ~ ( b  - 6 )  h k ( a )  , (2.15) 

where 6 i s  a known v e c t o r  ( the  c e n t e r  of t h e  elipsoid), V i s  a known 



which is a m-dimensional sphe re  with t he  c e n t e r  bi and t he  radius  m. The 

transformed solvability region S has  t he  form 

where 

If t h e  in ter ior  of t he  elipsoid P ( a )  (denoted as int P ( a ) )  contains t he  ze ro  

vec tor  0 ( o r  equivalently if t he  ze ro  vector  0 l ies in int  P . (a ) )  then t he  problem 

discussed in th i s  section has  t he  following simple solution. 

LEMMA 1 Let 0 E i n t P ( a ) .  T h e n  t h e  i n c l u s i o n  P ( a )  c S  is  t r u e  tP a n d  o n l y  

i p s  =Rm. 

PROOF Lemma is obvious since S i s  a cone with t h e  ver tex  in 0 and P ( a )  is a n  

elipsoid. 

General solution of t h e  considered problem i s  given in t h e  following theorem. 

THEOREM 1 The i n c l u s i o n  P ( a )  c S is t r u e  u a n d  o n l y  q i t  ho lds  

w h e r e  11 (1  i s  t h e  u ~ u a l  E u c l e i d i a n  norm in Rm 

PROOF P ( a )  C S is equivalent t o  P. ( a )  c S and th i s  las t  inclusion holds iff 

t he  sphe re  P ( a )  with t h e  cen t e r  b; and the  radius l ies in all half-spaces 

fb*  6 Rm : &b* a 01, i = 1. . . . , N.  This las t  condition i s  obviously equivalent t o  

(3.8). 

REMARK 4 The inequalities (3.8) can be written in the  equivalent form 

hi b̂  - dk ( a )  hi v-lh, a 0 ,  i = 1. . . . , N . 



- - max l max 1 9 ; ' b * i { =  max I max IGjb*II  
6 -  E P ' ( ~ )  j = I , .  . . , r  j= i ,  . . . , +  b a € P . ( a )  

Now t h e  re la t ion (4.3) i s  proved since i t  obviously holds 

G- max j 3 b * 1  = i j ( b ;  + - - U g j )  
b' EP' ( a )  Ilij I I  

(we maximize t h e  l inea r  function $ b *  o v e r  t h e  s p h e r e  with t h e  c e n t e r  b; and t h e  

radius  w, t h e  maximal value is  achieved in t h e  point  where  t h e  vec to r  d i rec t -  

ed from b; as t h e  gradient  ej of t h e  function Fj b* c r o s s e s  t h e  su r face  of t h e  

s p h e r e ,  i.e. in t h e  point b; + ( m / l l G j l l ) i j ) .  

A s  t h e  re la t ion (4.4) i s  concerned w e  have 

m i n l r p ( b ) : b ~ P ( a ) l =  min I max j b *  max I min c j b * { l ,  
b ' € P ( a )  j = l ,  . . . .  r j = l , .  . . , r  b ' € P m ( a )  

The l a s t  inequality holds s ince  i t  i s  

max j b > max f min f i j  b* ( i  
j = l , .  . . , r  j = I , .  . . , r  6 .  C P s ( m )  

f o r  each 6- r P ( a )  s o  t h a t  w e  c a n  r e p l a c e  t h e  left-hand-side of (4.7) by i t s  

minimal value over  b* G F"@ ( a ) .  The proof i s  finished because  one  c a n  de r ive  in t h e  

same way as (4.6) t h a t  

G- 
min f6j b* I = 5; (6* - - - U g j )  . 

6' E P m ( a )  lli, II 

COROLLARY Let P ( a )  C S .  Then t h e  i n t e r v a l  of t h e f o r m  

[ max 1;; (c* - 4Z-T- 4Z-T- 
j = I , .  . . , 7  g j  IIC, 11 j =I,. max . . a r  i ~ j  (c* + A g j ) 1 ]  IIQ; I I  (4.9) 

is the confidence i n t e r v a l  for  t h e  opt imal  v a l u e  of the  object ive function in  

(1.1) w i t h  the c o m d e n c e  p r o b a b i l i t y  a t  l e a s t  1 - a. 

REMARK 5 The in terval  (4.9) can  be  writ ten again in t h e  equivalent form 

REMARK 6 Since  t h e  function rp(b) a t t a ins  t h e  value + - outside t h e  set S 

(see e.g.  [ I l l )  one c a n  omit t h e  assumption P ( a )  c S in t h e  previous  Corollary and 

formulate i t  in such a way t h a t  t h e  optimal objective value l ies  in t h e  in terval  (4.9) 

o r  i s  equal  t o  + -with t h e  probabil i ty at l eas t  1 - a. 



Table 1 The analysis of the linear parametric problem (4.11) 

~ ( b )  

I (numbers of columns of A )  

0 



where Zi denotes such subvector  of t he  vector  z E R' which corresponds to t h e  

basis B i .  E.g. if w e  use  t he  prediction region (4.14) then t he  s e t  with t he  index 

i = 1 in t he  union (4.23) has  the  form 

and t h e  s e t  with t he  index i = 2 has  t he  form 

I t  is obvious t h a t  t he  described method of t he  construction of t h e  confidence 

regions exploits substantially t h e  procedures  of l inear  parametr ic  programming s o  

t ha t  i t s  p rac t ica l  applicability i s  Limited if t h e  dimensions of t h e  problem a r e  l a rge  

(one must also keep  in mind t he  f a c t  t h a t  fo r  increasing m the  construction of t h e  

prediction elipsoid becomes more and more difficult). The method seems t o  be suit- 

ab le  in such cases  when one solves a lot of problems (1.1) with t h e  same values A 

and c f o r  various t ra jec to r ies  ly, 1 so tha t  t he  tedious and expensive procedures  

of parametr ic  programming will bring an  effect  (such situations may be usual in 

routine p rac t ica l  problems). On t he  o the r  hand, t he  method cannot be  recommend- 

ed f o r  a single use in l a rge  scale  problems f o r  which more effective procedures  

should be suggested. One of such potential procedures  based on t he  bunching 

method i s  sketched in t h e  following section.  



quence of dual simplex s t e p s  exploiting Schur-complement updates) one will find 

* 
t h e  corresponding sequence B ( l )  . . . . , B of t h e  bases  which is  ended by t h e  

* 
basis B(,) optimal f o r  t h e  point z l * .  Let us calculate t h e  values 

where 

* 
(C"(,) is  t h e  subvector  of c corresponding t o  the  basis B( , ) ) .  The same procedure  

will be  performed with t h e  second generated point z2* producing t h e  values 1' and 

* 
u2,  etc. lf proceeding in th is  way w e  obtain a t r e e  rooted at t h e  basis B(l)  (see 

[13]) t h e  paths  of which are ended by t h e  couples (1'. u l ) ,  (12, u 2 ) ,  . . . , ( lK,  u K ) .  

The ( 1  - a )  100 p e r  cent  prediction in terval  f o r  t h e  optimal objective value can be  

then approximated by t h e  in terval  

[ max L ( ~ ) ,  max u ( ~ ) ]  
k = l ,  . . . .  K k = l ,  . . . .  K 

The stopping ru le  by means of which t h e  number K is  found can be  prescr ibed in 

such a way t h a t  t h e  l a s t  L couples ( lK -L ". UK-L t i  ) , . . . , ( lK ,  u K )  will sat isfy 

max I' - max l k  < E  , 
k = l , . .  . .K k=1,  . .  . . L  -K 

where a n  in teger  L and a sufficiently small c > 0 are chosen apr io r i .  

More complicated s t r a t e g i e s  can be  suggested but t h e  previous one seems t o  

b e  suitable in spi te  of i t s  simplicity. The inaccuracies  which can or iginate  when us- 

ing the  generating formulas (5.2) do not r educe  t h e  efficiency of t h e  method since 

t h e  points z l ' .  z2 '  .... are used only t o  determine t h e  corresponding optimal bases  

and these  bases  d o  not usually va ry  in the  neighborhoods of pa r t i cu la r  r ight-  

hand-side vectors .  Moreover, when t h e  components of t h e  v e c t o r  a r e  l a r g e  (as  i t  

i s  f requent  in p rac t i ce )  then usually only small number of t h e  cones  St from t h e  

decomposition of S have nonempty in tersect ions  with t h e  elipsoid P ( a )  s o  t h a t  t h e  

mentioned t r e e  from t h e  tr ickling down procedure  has  small number of p a t h s  which 

reduces  t h e  computing e f fo r t .  


