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FOREWORD

Statistical approaches to stochastic optimization seem to be suitable from a
practical point of view since observed data are frequently the only information we
have on a stochastic optimization problem. In this paper, the possibility of con-
structing prediction regions in time serijes is utilized for probabilistic conclusions
on the behavior of the solution of Lhe problem.
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ABSTRACT

If random values in a linear program with random coefficients can be predict-
ed using previous observations on them one can utilize the appropriate prediction
region and construct a confidence interval in which the optimal value of the ocbjec-
tive function lies with a given probability (or even construct a confidence region
for the optimal decision). It is a new statistical approach based on projection of
the observed data into the time period of interest. The results are demonstrated
by a numerical example.
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CONFIDENCE REGIONS FOR LINEAR PROGRAMS
WITH RANDOM COEFFICIENTS

Toma¥ Cipra

1. INTRODUCTION

Let us have a linear program
iminc’'z:Ax =b,z =01 , (1.1)

where 4, b, ¢, £ have dimensions (m, n), (m, 1), (n, 1}, (n, 1), respectively. Let
us consider the usual situation when A and ¢ have known deterministic values and &
is a random vector such that observations y,,..., yr of b in previous discrete
time periods t =1,..., T are at our disposal. If one succeeds in constructing a
stochastic model generating the process i'yt] one can also usually construct the
prediction §T+h of Yy, for atime period T + A in which the program (1.1) is to
be solved (the most usual case is A = 1). Besides the point preglict.ion ﬁT+h one
can also construct a prediction region in which yr,, lies with a prescribed pro-
bability (these prediction regions which are quite analogical to the confidence re-
gions or intervals in theory of statistical estimation are even preferred for prac-

tical purposes in comparison with the point predictions).

There are various methods of predicting. If we confine ocurselves to quantita-
tive prediction methods only (so that the terms "projection” or "extrapolation"
should be more suitable than "prediction” or "forecast') then the most important
and usual representatives are the prediction method based on econometric model-
ing by means of systems of simultaneous eguations (including the classical regres-
sion approach) and the prediction method in the framework of Box-Jenkins ap-

proach. Both methods are described briefly in section 2 of this paper.

If we have constructed the appropriate prediction region for & concerning
the time period in which (1.1) is to be solved one can make use of it to obtain a con-
fidence interval with a prescribed confidence probability for the optimal value of
{1.1) or even (if performing more detailed analysis) to obtain a confidence region

for the optimal decision in (1.1). It is obvious that linear parametric programming
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can be obtained in some way outside the model, see discussion in [3, p. 196] (e.g. in
a simple regression situation it can be z;; =t so that £, r,, = T +hA). Then
under general assumptions on the stochastic behavior of the model in time T + A
(there must not be a change in the specification of the model in this time) the op-
timal point prediction for the endogenous variables in time T + A can be con-

structed as
Yran = ﬁ£T+h (2.4)

with the (1 — a)100 per cent prediction region of the form

(Yrsn "'gT+h)'STrih,T+h(yT+h. —Ur.n) (2.5)
T —k)m
= T —(k -731 +1Fm,T—t—m+1(G) .
Here
1 lnllt} r -1z ] s
Spantrn = g Il ¥ Efen K0T Er, WYY —TIX'D) (2.6)

is the estimated covariance matrix of the error y;,, — %r,, of the prediction
and Fm,T _k —m +1(®) is the tabuiated critical value of Fisher's distribution with
the appropriate degrees of freedom and the level of significance a (e.g. (2.5) is
the 957 prediction region for a =0.09). So called Hotelling's statistic has been
used to derive (2.5).

REMARK 2 Various multivariate trends can be modeled by means of (2.1). E.g.

the multivariate polynomial trend is modeled as
Yy =fi@)+v,y,i=1,... .. m, t=1,..., T, (2.7)

where f, (t) is a polynomial of an order p; (it means that the predetermined vari-

ables are chosen as powers of time £).

REMARK 3 Hymans {4] derlved (1 — a)100 per cent joint prediction intervals

for particular components of ¥¢, , in the form

(ﬁt,T+h —\esy, ‘_[]LTJrh_ +esy )i =100, m (2.8)
where s,; is the ith diagonal element of the matrix (Y'Y - ﬁX’Y')/ (T —k)and

__(T—-k)m ., o1
€= T —k —m +1 (1 +IT+h. (X'X) 1:‘:T+1h.]1:'m,5!‘—Jt: _m+1(a) . (2.9)
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positive—definite matrix and £ {a) is 2 known constant. Let us denote this region as

Play=tb eR™: (b — b)Y V(b —b) s k(a)] . (2.186)

3. PROBLEM OF SOLVABILITY

Let us denote the region of solvability of the program (1.1) as
S =1ib € R™:(1.1) has an optimal solution | {3.1)

{i.e. the program (1.1) is feasible and bounded for all & €.5) and assume that 5 is
nonempty. Then in our context the problem of solvability consists in the investiga-

tion of the inclusion P{a) C S.

Wets [11] deals with a general problem of this type when he investigates feasi-
bility of stochastic programs with fixed recourse. Using theory of polar matrices
and cone ordering he can treakl cases with very general regions P{a). In our case
we make use of the special elipsoid shape of the prediction region P{a) and

proceesd in the following way.
The solvability region S is a convex polyhedral cone with the vertex in the
origin (see e.g. [9]. [10]). i.e.

S=tb eR™:h{b=0,1=1,...,N] . (3.2)

The explicit numerical form of this cone (i.e. the vectors A,, ..., Ay) can be found
by means of various algorithmic procedures (e.g. [2], [7, p. 276]).
In order to simplify the solution of our problem let us transform the coordi-

nate system in R™ so that the elipsoid (2.16) transfers to a sphere in R™. The

positive—definite matrix ¥V from (2.16) can be decomposed as
Vv=CC , (3.3)

where C is an upper triangular malrix with positive elements on the main diagonal
{so called Cholesky decomposition). If we define Lhe transformation of the space

R™ as
r —z*=Czx,x €R™ (3.4)

{the asterisk will always denote the transformed value) then the elipsoid P{a) will

be obviously transformed to the form
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4 CONSTRUCTION OF CONFIDENCE REGIONS

Let us denole
¢(b) =minlc’'z :Ax =6, z 20| (4.1)

for & € 5. The function ¢ is convex, continuous and piecewise linear on S. More

explicitly, there exist vectors g4, ...,g, € R™ such that
qp(b):maxigj’b:j =1,...,r} . (4.2)

According to the basis decomposition theorem (see [9]) the definition region S of
the function ¢ can be decomposed to a finite number of convex polyhedral cones S;
with the vertices in the origin 0 such that the interiors of S; are mutually disjunct
and ¢ is linear on each of S; (these regions correspond to particular bases B, in 4
such that E:'{ Bi_l A sc’, where E'i is the subvector of ¢ corresponding to B,). The
explicit form of the cones S; and the function ¢ can be also found by means of the
mentioned aigorithms [2] or [7].

Now let us try to determine the maximal and minimal values of ¢ over P(a). In

other words, we shall construct the (1 — a) 100 per cent confidence interval for

the optimal value of the objective function in (1.1).

THEOREM 2 Let P(a) € S. Then it holds

max{g(d):b € P(a)f = max (g (b* + g,y (4.3)
J=1,. ... lig s
and
minfe(d):b € P(@){ = max i (6 —ﬂk_zzﬁj)! , (4.4)
j=1,...,r llg 4 I
where
g;=(CYegi=1....r (4.5)

and for g; = Ej =0 we put

- - vE _

PROOF We can write

maxfeb):b € Pla){ = max | max ig;b”
beP(a)y J=1,...,r
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REMARK 7 This work is not the first one dealing with confidence regions in
linear programs with random coefficienls. E.g., results have been obtained by
means of projection of rectangulars in which the values (4, B, c¢) lie with a given
probability (see [B, section 13.1] or [8]). These rectangulars are defined by means
of the mean values and standard deviations of the random components of (4, &, ¢)
and do not make use of Lthe correlation structure (relations among particular ran-

dom components) how it is the case when projecting elipsoids.

If we carry out a more detailed analysis of (1.1) as the problem of parametric
programming with the (vector) parameter & (i.e. if one finds explicitly the decom-
position of the solvability region S to the cones S;) then it is even possible to con-
struct a confidence region for the optimal decision in (1.1). We shall show such
construction including the application of Theorem 1 and Corollary of Theorem 2 in
the following example which is simple enough to demonstrate clearly the previous
theory. The application for real examples assumes the exploitation of software

from statistics and linear parametric programming.

EXAMPLE The authors of [7] investigated the following problem

minfz, + x4 + 3:“

s.1. Ty —2Z,+zx53—z2, +zy =b,
2z, +3z, —xz3+ 2z, + z; =b, (4.11)
-z, +2zx, +3z35 — 3z, +37=b3
Zy,...,xqgx0

In this case it is

S={(b eR%:3b, +2b,20,3b, +b,20,b, +b, 20, (4.12)
136, + Bb, + b5 2 0, 3b, + 2b4 = 0}

and

1 3 3
@(b) = max {0, = ob1 —bp — by~ by (4.13)
9 5 3 3
— 501~ gbs — b2 03

for b € 5. Table 1 contains the description of all cones 5; from the decomposition

of 5 including the corresponding forms of ¢ and the optimal bases 5.

Let the (1 — a) 100 per cent prediction region (2.16) have the following form

by + 155 5.25 -3 0.75 bl + 15.5

b, — 1427 —3 19.83 -9.39| b, —142.7(=<6.76 , {4.14)
by ~B7.3 0.75 —-9.38 17.46 by —87.3
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According to (4.12) the vectors A; from (3.2) are

3 0 1 13 0
hi=|R|, hp=|3], hg=|[1]|, Ay=|8]|, hg=3 (4.16)
0 0 1
and according to (4.13) the vectors gy from (4.2) are
0 -1/2 0 -3/4
gy =10|, gz = 0 s ¥ = =1, g4 = 0 .
) 0 0 Y7 -3/4
417
[-9/8} 0 ( )
- 5/8) —3/2

The left-hand-sides of the inequalities (3.8) (or equivalently of (3.9) or (3.10)) are
235.03, 512.88, 125.76, 1010.72, 599.61 . (4.18)

Since each of these values is non-negative the elipsoid (4.14) is the subset of the
solvability region (4.12). The corresponding confidence region for the optimal

value of the objective function is according to (4.9) or (4.10)

[7.21, B.28] . (4.19)
If the vector & is replaced by the vector

b = (43.5, 112.8, 90.3)’ (4.20)
then the problem stays solvable and the confidence interval is

[0, 0] (4.21)

so that the objective function has the optimal value 0 with the probability at least
1-a.

The cones S; can be written formally as
S; =16 erRYVHb 2081 =1,...,9, (4.22)

where A; are (3,3) matrices, e.g. it is

00 -1
01 2

Then it is not difficult to verify that the (1 — a)100 per cent confidence region for

the optimal decision in (4.11) can be taken as
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5. APPLICATION OF BUNCHING METHOD

The method of bunching [12] and especially its trickling down modification in
combination with Schur-complement bases updates [13] is the efficient tool for
solving linear programs with variable right-hand-sides (a bunch is such subset of a
given set of right-hand-side vectors which corresponds to the same optimal basis
of the program).

In our case the bunching method will enable to solve in an efficient way a lot

of problems of the type
fminc'z:4x =2z%, z 20}, k =1,... K (5.1)

{the points z*® are chosen from the elipsoid P(a)) without performing explicitly the
decomposition of the solvability region S to the cones S;.

As the choice of the points z* is concerned one can use various strategies.

k randomly from the surface of the elip-

E.g., it is possible to choose the points z
soid P(a). If we transform the coordinates according to (3.4) then we can generate

these points uniformly from the surface of the sphere (3.5) taking

z, =&; + VE(a) cos ¥, cos ¥, cos 95 -+ cos Uy, 4
z£=l;é + vk (a) sin ¥, cos ¥, cos ¥3 - cos ¥, _,
z; =b, + VE(Q) sin ¥, cos ¥y cos B, - cos Uy _y
z; = 5; + vk (a) sin Y5 cos ¥y cos ¥5 ' cos ¥ (5.2)

-~

Zg _q =6, 4 + VE(@) sin ¥, _pcos ¥, _;
z,:,_ =(;m + Vk(a)sin ¥, -4

where 0 <, <2m —n/2<V,sn/2,...,-n/2=49,, _, <n/2are independent

random variables with uniform distributions on their ranges.
The trickling down procedure can be started in the point b= (the center of the

sphere P*(a)). Let 3:1) be the optimal basis for this point b= (it holds obviously

Ba) = CB(D, where B(l) is the optimal basis for the point b before the transfor-
mation (3.4) since the problem (1.1) can be written equivalently as
iminc’'z :CAx =Cb, £ =01). Let 1% = (zll*. s z,}:)’ be the first point gen-

erated according to (5.2). By using trickling down procedure (i.e. the proper se-
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may be convenient tool for this purpose. In the initial stage of such analysis based
on prediction regions one should investipate whether the prediction region for &
with a prescribed confidence probability (e.g. 952) is the subset of such region for
b in which the problem (1.1) is solvable (so called solvability region). This problem
is discussed in section 3 while the construction of the confidence regions is
described in section 4 including a simple example which demonstrates it. A possible
application of so called bunching method [12], [13] for the considered situation is

supggested in section 5.

REMARK 1 Although the simplest case with random & only is considered in
this work the method could be extended in principal to more general situations.

The case with random ¢ only is equivalent to the case discussed here due to duall-

Ly.

2. CONSTRUCTION OF PREDICTION REGIONS IN PRACTICE

In this section the both mentioned methods of quantitative prediction are re-

minded:

a) Prediction based on econometric modeling (see e.g. [5]) is a general method
which includes as a special case e.g. the prediction based on the classical regres-
sion analysis. If using this method we must e.g. have at our disposal the estimated

model of simultaneous equations in the reduced form

Yy =Tz +v,, 6 =1,..., T . (2.1}
Here y; = {(¥44.-- -, ¥m) is a vector of endogenous variables in time ¢ which is
explained by a vector of predetermined variables z; = (z;, ..., Tg) in time ¢

(the object of the prediction are the endogenous variables), I1is a (m, &) matrix
of parameters and v; = (vy;, ..., Uy; ) i a vector of disturbances in Ltime . One
assumes that Fv, =0, Fy, v; = Z.W (a positive-definite matrix) and Evs vy = 0 for

s # {. The model can be summarized for all { as

Y=XII'+V , (.2)

s

where Y = (yq ..., ¥yp). X =(xy ..., 2zp) and V =(vy, ..., vy). The classical

OLS (Ordinary Least Squares) estimator of Il has the form
I=vxxx) . (2.3)

Let £y, , be a vector of predicted predetermined variables for time T + A which
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b) Prediction in the framework of Box-Jenkins approach (see [1], [3]) is ex-
ploited by many statisticians and econometiricians as a very flexible and fruitful
prediction method. Similarly as in the econometric modeling one must construct an
appropriate model at first. Box-Jenkins methodology utilizes so called ARMA (p, q)

models (or their various modifications) of the form
Yp YA Y 1t T Ay S By v BB+ B, (2.10)

where y, is the modeled m-dimensional process, 4,,..., 4, and By, ..., B, are
(m, m) matrices of parameters and &, is the m-dimensional white noise, i.e.
Eg, =0, Eg, £/ =3 (a positive-definite matrix), Ee_&; =0 for s #¢. Then
under general conditions the optimal point prediction for time T + A can be writ-

ten as
Yr+n ?12001 +h €T -5 (2.11)

where the (m, m) matrices C; fulfill the following power series equation

(T +A32 + -+ +A2P)T +Cz + Cpz? 4+ -+ +) (2.12)

=7 +Byz + - +Bz9
The corresponding (1 — a) 100 per cent prediction region has the form
Wrsp ~Urep) VR Mupep ~Uren) s xi(a) | (2.13)

where
h -1
ViR)= ¥ C; X ¢y (2.14)
1=0

is the covariance matrix of the error yp,, — ¥y, of the prediction and x,fl(a) is
the tabulated critical value of chi-squared distribution with m degrees of freedom

and the level of significance a.

The following conclusion can be drawn from the previous text. In both predic-
tion methods (and also in other less important ones) the appropriate (1 — a)100
per cent prediction region has the geometric form of an elipsoid. This elipscid can

be written generally for the program (1.1) as
(6 —8) V(b —b) sk(a) , (2.15)

where & is a known vector {the center of the elipsoid), V is a known
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P*(x) = {b* € R™ :(b* — 6*) (b* — b*) < k(a)} . (3.5)

which is a m-dimensional sphere with the center &* and the radius VE(x). The

transformed solvability region 5 has the form

S* ={b* e R™ R/ b* 20,1 =1,...,N{, (3.6)

=
-
[}

(¢ WYhi=1,....N . (3.7

If the interior of the elipsoid P(a) (denoted as int P(a)) contains the zero
vector O (or equivalently if the zero vector O lies in int P*(a)) then the problem

discussed in this seciion has the following simple solution.

LEMMA 1 Let 0 € intP{a). Then the inclusion P(a) C 5 is true if and only
ifs = Rk™,

PROOF Lemma is obvious since § is a cone with the vertex in O and P(a) is an
elipsoid.

General solution of the considered problem is given in the following theorem.

THEOREM 1 The inclusion P(a) € S is true if and only if it holds

E{(E*—@Ei)zo.f.:l,....]v. (3.8)
Ay
wherel| || is the usual Fucleidian norm in B™.

PROOF P(a) C S is equivaleni to P*{a) € & and this last inclusion holds iff
the sphere P*(a) with the center &* and the radius V& (a) lies in all half-spaces
fb* ¢ R™ . E{b“ =0}, 1 =1,...,N. This last condition is obviously equivalent to

(3.8).

REMARK 4 The inegualities (3.8) can be written in the equivalent form
h{ib —VE(@ |yl =0,2=1,..., N (3.9)

or

i ~VEk(@h{Vih, =20,i=1...,N . (3.10)
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= max | max fg;b*{{ = max | max fgy 6™ 11 .
6 €P(a) J=1,...,7 7=k .m0 EPY ()

Now the relation (4.3) is proved since it obviously holds

- - o~ Vi -

max {gjb*{ =gy (b* + —é—)-gj) (4.6)
br P (a) g I

(we maximize the linear function Ej’ b* over the sphere with the center b* and the

radius vk (a); the maximal value is achieved in the point where the vector direct.-

ed from b6* as the gradient g‘vj of the function Ej b* crosses the surface of the

sphere, i.e. in the point 6* + (V& (a)/li.f'l'jﬂ)g-j)-

As the relation (4.4) is concerned we have

minfe(d):b €P(a)j= min | wmax Ig;b*{l= max min @] &*{] .
te (e or €P(a) et on. 91 i j= ,...,TEO'EP'(G)QJ 4
The last inequality holds since it is
max lg;e*{= max { min {97 o* {4 (4.7)
J=i,...,1 J=1,...,r 0* e P {a)

for each 6* < F*(a) so that we can replace the left-hand-side of (4.7) by its
minimal value over &* & P*(a). The proof is finished because one can derive in the
same way as (4.6) that

- -— ~ k -
min _{g; 6% = §; (6 — KD 5y 4.8)
o ePrtay ! It~

COROLLARY lel P(a) € 8. Thern the interval of the form

- - - - ~ -—
( _max g; B - 5y max g5 @ + KL 5y (4.9)
PR 1,1 1=t 1,1

is the confidence interval for the opiimal value of the objective function in

(1.1} with the confidence probability at least 1 — a.

REMARK © The interval (4.9) can be written again in the equivalent form

[ max ig, 6 — vk(a)ll&,l!i, max
1 s j=1,..

=1,...

g b + Ve@lig; i - (4.10)

REMARK 6 Since the function ¢(&) attains the value + = putside the set S
(see e.g. [11]) one can omit the assumption P(a) < S in the previous Corollary and
formulate it in such a way that the optimal objective value lies in the interval (4.9)

or is equal to + = with the probability at least 1 — a.
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Table 1 The analysis of the linear parametric problem (4.11).

i
iS5 ; @(b) By
(numbers of columns of 4)
1| 6,20,0,200b320 0 (5, 6,7)
i 1
2! b, 20 20, +b,20, 0 | (1,8, 7)
by + 4320
by +2by20
|
E
4 | by 20,264 -b,20, 0 (1,5, 1)
b, +2b3 20
|
1 1
5| —b,=0,83b; +2b, 20, —E-bl (2,6,
l
bbby +b320
6| —b,20,b; +b, 20, -b, (3.5, 7)
36, +b5320
7 3 3p. | 6
—b; —b320,3b; ~b320, _Ibl_?b:‘ (1, 4, 6)
9 5
136, + 88, + bg =0
3 3
i.e.
- - 159 625 -3 0.75 29 —1.2 0.3
b=11427 |, V=|—-3 1993 —-939|, C=|0 43 —-2.1 (4.15)
B87.3 0.795 —8.39 17.46 0 0 3.6
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9 - ~
Uiz e RT:(Z, — B 6)YB; VB, (£, — B, %) <k(a), H,B,Z, =0} , (4.23)
1=1

where 51 denotes such subvector of the vector z € ®7 which corresponds to the
basis B;. E.g. if we use the prediction region (4.14) then the set with the index

1 =1 in the union (4.23) has the form

[:cf, +155] 625 -3 o075 ) (%5 +155
iz €R": |z, —142.7] | -3 1993 ~9.39| |z, ~142.7|<6.76 ,  (4.24)
lx_’ _av3 ] 075 ~9.39 17.46) |z, _g7.3 |

T{1=2;=23=2,=0, 2520, 2520, z,20]

and the set with the index i =2 has the form

[11 +15.5| (127.49 46.25 -35.49) [z1+155
fz e R7: lzg —173.7 46.25 19.93 =—9.39 | |zg —173.7|<6.76 , (4.25)
[x_’ _718| =359 9839 1726 ) |z _718

T, =23=2,=25=0,2,20,2g20,2,20] .

It is obvious that the described method of the construction of the confidence
regions exploits substantially the procedures of linear parametric programming so
that its practical applicability is limited if the dimensions of the problem are large
(one must also keep in mind the fact that for increasing m the construction of the
prediction elipsoid becomes more and more difficult). The method seems to be suit-
able in such cases when one solves a lot of problems (1.1) with the same values 4
and ¢ for various trajectories iyt | so that the tedious and expensive procedures
of parametric programming will bring an effect (such situations may be usual in
routine practical problems). On the other hand, the method cannot be recommend-
ed for a single use in large scale problems for which more effective procedures
should be sugpgested. One of such potential procedures based on the bunching

method is sketched in the following section.
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quence of dual simplex steps exploiting Schur-complement updates) one will find
the corresponding sequence Ba) W, B:s) of the bases which is ended by the

basis B:s) optimal for the point z 1* Let us calculate the values

-, [~ Vk:a—] - [~ Vka-1
ll =g(;) b __—(—lg(s) , u1=g('s) o= +_-(_)_g(s) , (5.3)
HQ(S)H "9’(5)"
where
- _ -_1 , o~
I sy = Bysy ) sy (5.4)

(E(S) is the subvector of ¢ corresponding to the basis BZS)). The same procedure
will be performed with the second generated point z2" producing the values 12 and

2, etc. If proceeding in this way we obtain a tree rooted at the basis le} (see

u
[13]) the paths of which are ended by the couples (ll, ul), (Lz, u? .. , (lK, u.K).
The {1 — a)100 per cent prediction interval for the optimal objective value can be

then approximated by the interval

max (%) max u®)| . (5.5)
k=1,...,K k=1 ..., K

The stopping rule by means of which the number K is found can be prescribed in

such a way that the last L couples (LK_L A uk L +1) A (IK, uK) will satisfy
max [k - max t* <e (5.6)
k=1,....,K k=1,...,L-K
max uk - max uf <&,
k=1, K k=1, L K

where an integer L and a sufficiently small ¢ > D are chosen apriori.

More complicated strategies can be suggested but the previous one seems to
be suitable in spite of its simplicity. The inaccuracies which can originate when us-
ing the generating formulas (5.2) do not reduce the efficiency of the method since
the points z1", z%",... are used only to determine the corresponding optimal bases
and these bases do not usually vary in the neighborhoods of particular right-
hand-side vectors. Moreover, when the components of the vector & are large (as it
is frequent in practice) then usually only small number of the cones S; from the
decomposition of $ have nonempty intersections with the elipsoid P{a) so that the

mentioned tree from the trickling down procedure has small number of paths which

reduces the computing effort.



