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FOREWORD

One of the activities of the Adaptation and Optimization Project of the System
and Decision Sciences Program is to develop mathematical methods and approaches
for treating models of systems characterized by limited information about parame-
ter distribution.

This paper presents three approaches which reflect different assumptions
about the incomplete knowledge of the distribution and which can be applied to
model building as well as to sensitivity analysis, approximation and robustness stu-
dies in stochastic programming problems. The suggested methods build a bridge
between the purely deterministic approaches of nonlinear programming stability
and the tools of mathematical statistics.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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STOCHASTIC PROGRAMMING WITH INCOMPLETE

INFORMATION

Jitka Dupatova

Abstract

The possibility of successful applications of stochastic programming decision
models has been limited by the assumed complete knowledge of the distribution F of
the random parameters as well as by the limited scope of the existing numerical

procedures.

We shall introduce selected methods which can be used to deal with the incom-
plete knowledge of the distribution F°, to study robustness of the optimal solution
and the optimal value of the objective function relative to small changes of the

underlying distribution and to get error bounds in approximation schemes.

The research was mostly carried out at the Department of Statistics, Charles
University, Prague and it was stimulated by a close collaboration of the author
with the ADO project of SDS. The present version of the paper was written at

ITASA Laxenburg.

1. Introduction

Quite a large class of stochastic programming decision problems can be

transformed to the following mathematical programming problem



maximize g, (x ; F) 1.1)
subjecttog;(z ; F)=20,1<i<m,

g;(x ;F)=0,m+1=<i=s<m+p ,

z €X

where X C R™ is a given nonempty set. The functions g; . 0<i=m+p, donot

depend on random parameters directly but by means of their distribution F only.

An example of (1.1) is when a nonlinear program

maximize h, (z ; ) 1.2)
subjecttoh, (z;w)20,1<k <! A, (z:w)=0,l+15k <5,
z €X,

contains random parameters @ in b, (z ; @), 0<%k <5, and the decision z € X,

has to be chosen before the values of these parameters are observed.

Among others, two well known decision models of stochastic programming can

be evidently written in form (1.1):

Stochastic program with recourse

maximize Ep th, (z ; @) — ¢(z ; )} 1.3)
subjecttoz € X C X,

where the penalty function ¢(x ; @) evaluates the loss corresponding to the case
that the chosen z X does not fulfill the constraints
hy(z,w)20,1sk=<l,h(z;w) =0l +1=<k <s, for the observed values of
the random parameters. The set X C X, is defined by induced constraints which

guarantee that ¢ is well def ined.

Stochastic program with probabilistic constrainis

maximize Ep th, (z , @)} (1.4)
subject to Pr (hy (z; @) 20, k €Lj2a; ,1si=m,
z €eXCcX
where/; c{1,...,l},a; €<0,1>,1<i <m , are given in advance.

For both mentioned basic types of decision models, numerous remarkable theoreti-
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cal results were achieved and numerical approaches suggested. However, the
numerical solution is rather complicated in general, mainly due to the fact that
repeated evaluation of function values and gradients is needed which is rather
time consuming and demands special simulation and/or approximation techniques.
The question of error bounds is evidently both of practical and theoretical

interest.

The optimal solution z () and the optimal value of the objective function in
(1.1) depend on the chosen type of model and on the distribution 7 which is usually
assumed to be completely known and independent of the chosen decision . How-
ever, the distribution F is hardly known completely in real situvations. The numeri-
cal results obtained should thus be at least complemented by an additional informa-
tion about sensitivity of the optimal solution with respect to eventual changes of
the distribution 7. In the robust case, a small change in the distribution F should

cause only a small change in the optimal solution.

A first idea could be to study stability of the optimal solution of program (1.1)
with respect to the underlying distribution F directly. However, the space of pro-
bability measures provided with a metric corresponding to the weak topology is not
a linear one, so that the general results of parametric programming are not appli-

cable directly.

In this paper three approaches will be presented. They reflect different
assumptions on the (incomplete) knowledge of the distribution F. As we shall see,
they may be used to perform sensitivity analysis and postoptimality studies, to get
error bounds and to solve problems of stochastic programming under an explicitly

given assumption of incomplete knowledge of the distribution F.
(i) Assuming that the considered distribution is known to belong to a parametric
family of distributions, say F € SFy , ¥ €Y}, we can rewrite program (1.1) making

the dependence on the parameter vector ¥ explicit:



maximize g, (x ; ¥) (1.5)
subjectto g;(z ; ¥)=20,1=si=m,
gz ;y)=0,m+lsi<m +p ,

z eX

where g;(z ;v),0<i <m+p, are used instead of g;(x ;Fy) , 051 <m+p,
respectively. The stability of the optimal solution of program (1.5) with respect to
the parameter vector ¥ €Y can be studied to a certain extent through the
methods of parametric programming and through the methods developed for non-
linear programming stability studies (see e.g. Armacost and Fiacco (1974), Garstka

(1974)).

Having in mind the statistical background of the parameter values which are
typically statistical estimates of the true parameter values, the results of
parametric programming have been complemented by statistical approaches (see
Dupac‘:’ové (1983), (1984) for problem (1.3), Dupaéové (1986a) for problem (1.4)).

The results are summarized in Section 3.

(ii) The local behaviour of the optimal solution z(F) with respect to small
changes of the underlying distribution F can be studied via t-contamination F by a

sujtably chosen distribution @, i.e., instead of F’, distributions of the form

Fr=Q-0)F+tG,0=st =1

are considered (see Dupaéové (1983), (1985a) for problem (1.3), Dupaéové (1986a)
for problem (1.4)). The original stability problem thus reduces to that linearly
perturbed by a scalar parameter t. This approach gives a basis for performing
sensitivity analysis of the optimal solution z () and for post-optimality studies.

(See Section 4.)

(iii) In typical cases of incomplete knowledge of the distribution, F is known to
belong to a specified set F of distributions. One approach is via minimax. We shall

discuss in Section 5 the case when the constraints in (1.1) do not depend on F and

k. 3
are incorporated into X For convex compact set F, the minimaz solution z (F )
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is the optimal solution of the problem (1.1) corresponding to the least favourable
distribution 1’-""l € F and, similarly, the mazimaz solution z (F'") corresponds to

the most favourable distribution :c(F") € F. Even without compactness of F we

may get minimax and maximax bounds

max inf g,(z; F)
reX FePF

and

max su z  F
TexX FEF 9o ( )

which provide an interval estimate for the optimal value maxxgo (z ; F) for any
X E

F € F. This fact can be used to draw conclusions about the dependence of the

optimal solution on changes of ¥ within the given set F and to get error bounds in

numerical methods.

In specific cases (reliability, worst case analysis) the minimax solution itself
is of great interest. In addition, it is possible to combine complete and incomplete
knowledge of the distribution of specific random parameters of the given problem
(Dupaéové (1985b)). Even in the minimax approach, however, the solution depends
on the choice of the set of distributions F and it is necessary to choose such a set
which fits to the presented problem as well as possible, using all the available
information. For getting error bounds (as a part of an iterative algorithm) one

cannot probably increase the level of information too much.

As the set F is often defined by prescribing values of certain moments of the
distributions F € F, the results of the moment problem can be used to get comput-
able minimax/maximax solutions and bounds (see Dupac':ové (1977) ,(1978)). When
the prescribed values 7 of moments are not known precisely enough, namely, when
they are estimated on the basis of observed data, the problem of stability of the
minimax solution comes to the fore and to solve it, methods mentioned sub (i) can

be applied.



2. Examples
To get some motivation, let us consider first a few examples.

Ezxample 2.1. The cattle-feed problem (vap de Panne and Popp (1963)). The prob-
lem is to find the amounts zy of input 7 which lead to the minimum cost of the final
mixture in which restraints on the nutrition contents are satisfied. In the formula-
tion, the protein content weight percentages per ton, a;, for each of four con-
sidered inputs are assumed to be normally distributed random variables with means
K and variances af ,1 =7 =4 Besides of deterministic linear constraints, one
probabilistic constraint

4
PEY a.jz:jzpizl-a (2.1)
j=1

is constructed.

Under normality assumption, (2.1) can be written in the following way

4 4
Y Ky T +0 () (Y afz:f)“ze;)
j=1 Jj=1

where &1 (a) denotes the a — quantil of the N(0,1) distribution. The parameters
My ajz, 1=j =<4, are estimated by sampling and in applications, the estimates
are used instead of the true parameter values. In Armacost and Fiacco (1974) the
problem of stability of t.hé optimal solution with respect to parameter values was

solved, namely, derivatives of the optimal solution with respect to the parameter

values were obtained.

Having in mind the statistical background of the considered parameters we

shall aim to complement the deterministic stability results by statistical ones.

Ezample 2.2. A simple stochastic model of water reservoir design. The problem is
to minimize the required capacity ¢ of the reservoir subject to the following con-

straints:



Freeboard constraint

PfsiSc—‘Ut{Zal, 1=si=s=n,

Minimum storage constraint

Pfsithgzaz, 151..57’.,

Minimum release constraint

Plz,2y,lza3, 1=<isn,
where, in the particular time interval, s; is the storage, v; is the flood control
freeboard storage, m,; is the minimum storage, z; is the total release and y, is the

prescribed minimum release.

Using linear decision rule, the variables z, , s; are expressed via monthly
inflows r; , r; _; whose marginal distributions #; are supposed to be known. Usu-
ally, log-normal distribution is used and its parameters are estimated on the basis
of relatively long time series of the observed monthly inflows. However, in partic-
ular months, specific deviations from the assumed distribution may appear: in
spring, the distribution may be relatively close to the normal one. Under these
circumstances, we can accept the hypothesis that the true marginal distributions
are mixtures of given log-normal and normal ones. We are interested to describe
changes of the original optimal decision due to the influence of the alternative dis-

tribution.
Even in this simple example, three different types of variables typical for sto-
chastic models of water resources systems can be distinguished at first sight.:

- constant coefficients and parameters, such as system reliabilities, flood con-
trol freeboard storage, minimum storage or rule curve and penalty coeffi-

cients in the corresponding recourse model

- random variables with a known distribution (i.e., with a well estimated distri-

bution), e.g. the monthly inflows
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- random variables with an incomplete knowledge of distribution, such as the

future demands (Dupaéové (1985b)).

A deeper insight into the modelled real life problem, however, leads to the
conclusion that the parameters are far from being known precisely, that the dis-
tribution has been estimated from time series of data which are observed with a
relatively high measurement error or that the type of the distribution follows from
the past experience and the parameters of the distribution are estimated on the
basis of random input data. On the other hand, the final decision should not be too
sensitive to the changes of the parameters and distributions, it should be robust

enough.

Ezample 2.3. The STABIL model (Prékopa et al. (1980)) was applied to the fourth
Five-Year Plan of the electrical energy sector of Hungary. Besides numerous

deterministic linear constraints, one joint probabilistic constraint

n
PrlYy ayjz;20,, 1sis4izp
j=1
was used; the four right-hand sides w,, 1 =i <4, were regarded stochastic and

the joint distribution of these random variables was supposed to be normal. Due to
the lack of reliable data, some of the correlations could not be given precisely
enough. That is why two alternative correlation matrices were considered in

Prékopa et al. (1980) and the numerical results were compared.

Alternatively, instead of given normal distributions N(u, I;) or N(u, Z;)

their mixture

can be considered which helps to study the changes of the optimal solution in prin-

ciple for 0 =t =1; (2.2) corresponds to the gross error or contamination model.

Ezample 2.4. Project planning. The problem is to fix the completion time T of the

given project. The reduction of the completion time is profitable at the rate of
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¢ 20 and the eventual delay in the completion is penalized with ¢ = ¢ per time
unit. The project is represented by a network whose arcs correspond to the
planned activities. Assume that there is one sink and one source only and that the
activities are numbered by indices 1 €i € n. Whereas the structure of the pro-
ject (the network) is supposed to be given, the completion times, say w,;, of the
activities are random variables and so is the total completion time 7. According to
our formulation, the decision T has to be made before the realizations of w,'s are

known and one has to solve the stochastic program

m}n feT + q Ep [T(w) —T1%} (2.3)
where F' denotes the joint distribution of the n-dimensional random vector « and

the explicit form of the 7(w) can be derived.

In practice, the distribution F' is hardly known completely. Using the PERT-
method, one usually solves the problem (2.3) under assumption that the random
completion times w; are independently distributed with a Beta-distribution over a
given interval. The parameters p , ¢ of the Beta distribution are usually fixed on
the basis of the available information about some characteristics of the dist.fibu—

tion, such as the mean value, mode and variance.

Ezample 2.5. (Seppdla (1975)). In his stochastic multi-facility problem Seppala
considers the case of stochastically dependent weight coefficients. In order to
eliminate the estimation of the correlation coefficients, he introduces a parameter

to the model which weights the totally correlated case and the uncorrelated one.

3. Nonlinear programming stability results and estimated parameters

As our starting point, consider the following deterministic nonlinear program

depending on a vector parameter y:

Let Y c RY be an open set, h:R™ XY » R™*P*+1l e given continuously dif-

ferentiable functions. For a fixed ¥ € Y, the problem is to
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maximize h, (z ; ¥)
subjecttoh;(z ; ¥)20,1<i =m, M)

hi(z ;y)=0,m+1<i<m+p.

The corresponding Lagrange function has the form

m
L@ u.viv)=hy@:v)+ 3 why @)+ v hyyy &%)
i=1 i=1

and by w)=[z@), uy), vwy)] eR™ xRT xRP, the Kuhn-Tucker point of
M(y) will be denoted. The knowledge of the Kuhn-Tucker conditions of the first
and second order as well as the knowledge of the linear independence condition
and the strict complementarity conditions (Fiacco (1976), Robinson (1880)) will be

assumed throughout the text.

Theorem 3.1. Let y° € Y and let w(y®) be the Kuhn-Tucker point of M(y°) for
which the Kuhn-Tucker conditions of the first and second order, the linear
independence condition and the sirici complementarity conditions hold true.
Let on a mneighbourhood of [z(¥°); ¥°], h; .0=<i <m+p, be twice continu-
ously differentiable with respect to x and continuous derivatives

8 hy (z:y)

exists for all l1<k=<gqg, 1sj=<=n, 0<i<m+p.
a'ykaxj

Then the following statements hold true:

(@) For y €0, (y%), there exists a unigue once continuously differentiable
Sfunction w(y)=[z{@)., uly), v{y)] satisfying the Kuhn-Tucker condi-
tions of the first and second order, the linear independence condition and

the strict complementariiy conditions for M)
(b) Let I(y)Cil,...,m] contain the indices of the active inequality con-

strainis

hi(x(y):iv)=0.,% €I(y),

and denote by

wi(y)=[z@),u;y).i €l(y).,vw)],
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Vo hi @ iv)=[Vo iy (s y), i €I(), Vo hy(z y) , m+lsi sm+p],
vy hy(z;y) =10V, hp(x i v), i €(y), Yy hy (z:y) m+l<sism+p].

Lel further
VI L w;y) VYphr(z:v)
vy = , 3.1
@) [V Ay (=i 9)17 0 [w); y] oy
Bw)= (V2 L w:v). Yk @0 foqniue @3-2)
Then for y €0(¥°),
a'LUI(y) - -1
—a—y— =-D"y) B) (3.3)

and the remaining components of u"gyu equal to O.

The statements of Theorem 3.1 are a modification of results by Fiacco (1976),
and Robinson (1974). Due to the assumptions, the implicit function theorem can be
applied to the system of equations which correspond to the active constraints in
the Kuhn-Tucker conditions of the first order. Namely, the strict complementarity
conditions play an important role reducing locally the program M (¥°) to a classi-

cal maximization problem with equality constraints.

The assumptions can be weakened using results by Robinson (1980): Without
assuming the strict complementarity conditions in M(y ), let us denote
I'(y) =i €I(y): uy(y) >0}

I(y) =4 €I(y): uy(y) =0}

and formulate the strong second order sufficient condition:

For each « # 0 with

€ V. hy (zy) =0, iel'(y)
kT 9, hy (x;y) =0, m+lsism+p,
the inequality «T V2. L(w(¥);y)x <0 holds true.

Except for the differentiability of the Kuhn-Tucker points w(y), the first asser-

tion of Theorem 3.1 can be parallelly reformulated. The differentiability property
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was studied, e.g., by Jittorntrum (1984). It is possible to get directional derijva-
tives of w(y) in any direction under the strong second order sufficient condition
without assuming strict complementarity conditions. We shall use this result later
in connection with the contamination method (see Section 4). The most general
result on differentiability is due to Robinson (1984); for its application see the

forthcoming paper Dupacv:ové (1986b).

As we shall see later, the parameter vector ¥ may correspond to the parame-
ters of the underlying distribution F (see Theorem 3.2), to the parameter of con-
tamination (see Section 4) and, eventually, to the probability levels a; ,1<i<m,
in (1.4) or to other parameters used to build a specific decision model of stochas-
tic programming.

Assume now that the parameter vector ¥ in M(y) is connected with statistical
assumptions about the distribution F' of random coefficients in a stochastic pro-
gramming decision model. It comes typically when F is known to belong to a
parametric family of distributions ny , ¥ €Y, so that ¥ is the parameter vector
identifying the distribution.

For the stochastic program with recourse (1.3) it means that for a fixed dis-
tribution F'y, M(y) is the program

maximize g, (z ; ¥ ): =EFv thy (21 @) —@(z ; W)}
on a set Xwhich does not depend on F,,, e.g.,
X=fr €eR™":g,(x)20,1<i<m,g;x)=0,m+1l<i<m+p |,
for the stochastic program with probabilistic constraints (1.4), M(y) is the pro-
gram
maximize g, (z ; ¥): =Epvfho (z ; W)

subject to g;(z ;y):=va§h.‘(z;w)20, kell—a, 20,1<i<m,

z €X,
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In general our aim is to solve program (1.5) for the true parameter vector, say
71 € Y. However, our decision can only be based on the knowledge of an estimate,
say 'yN , of 1. As a result, the substitute program M (yN ) is solved instead of M(7).
Under the asymptotic normality assumption on the distribution of the estimate 'yN
in M (yN ), the deterministic stability results of Theorem 3.1 can be complemented

by statistical ones.

Theorem 3.2. Let 'yN be an asymptlotically normally distributed estimate of the

true parameter vector 7 that is based on the sample of size N:

VN (y¥ -7n) ~N(@, )

with a known variance matrix L. Let the assumptions of Theorem 3.1 be ful-
filled for M(m). Then the optimal solution z(y”) of M(yN) is asymptotically

normal

VN (z@yY) —z(m) ~N@© .V (3.4)

with the variance matrix

V= 8z (n) oz (n) T
= >

by 8y
where |22 | ic the (n,q) submatriz of (3.3).

8y

Proof. Under assumptions of Theorem 3.1, z(y) is a continuously differentiable
(vector) function on a neighbourhood of z (7). Using the normality assumption and

the 6-method [ Rao, 1973, p.388], we get the result immediately.

Remark 3.3. All elements of a_zl are continuous on a neighbourhood of 7, so that

by

the asymptotic distribution (3.4) can be substituted by

T
v o [ez@™ azwM | |,
1 ay ay ’

see Rao (1973, p. 388).
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Example 3.4. The application of Theorem 3.2 to Example 2.1 is straightforward.
Let ¥y be the vector consisting of asymptotically normal estimates ;. 1<j<4,

of the true variances a; . 1<j <4. According to Theorem 3.1, the derivatives

g—; exist and their values were obtained by Armacost and Fiacco (1974). We have

thus asymptotic normality of the optimal solution. To get the variance matrix of

the resulting distribution, the variance matrix ¥ (diagonal in our case) should be

known besides of E—.
8y

Special cases 3.5. In some special cases, it is possible to get explicit formulas for

the derivatives g—; and thus for the variance matrix V of the asymptotic distribu-

tion (3.4). We shall introduce the results applied to the simple recourse problem
(see Dupacgové (1984)):

+

n
maximize g,(z ; ¥): =¢ T _EF’ [Z Q; LE a;; Ty — Wy
=]

|

on the set

X={z €eR": Pz =p,z =20},
where P is a given (r ,n) matrix of rank r, ¢ and p are fixed vectors,

9; >0,1<1 <m,aregivenand 4 = (a.ij) is of the full column rank.

To get regularity we assume that X is nonempty, bounded with nondegenerated
vertices. Further we assume asymptotic normality of the estimates yN of the true
parameter vector 7. The differentiability properties of g,(x ; 7) in a neighbour-
hood of [z (7)) , n] are implied by assuming that the marginal densities f, are con-

tinuous and positive in neighbourhoods of the points
n |

LZ a;; z; (M) m J .1 =i <m , respectively.
=1

Two types of parametric families will be considered:

351 vy;,1=i=<m are location parameters. Then we have for the nonzero
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components z, (1), 7 € J of the optimal solution z(7)
J

8z ;(n)
—5y =-U-CT R e PP B cB
where
_ T _ 4T
Pr=Wyh <127 C=-4" Q4 , B=4"0Q
el
with

1]
Q=diagfqif1L2 a-{jzj("))i"h 1sism . (3.5)
=1
3.5.2. Y;,1=1i sm are scale parameters, y; >0 v;. Then

33,}("7)

sy = U -ctpPf(p,c P RICE

where

[ n
=T = 4T 0 die| L ;
C=-A"@Q4,B=4 deagl; j\‘; @ z; (M), 1sism

and @ is given by (3.5).

4. Contaminated distributions

Throughout this section, the functions g, ,0si <sm +p in (1.1) will be
assumed to depend linearly on the distribution F. This assumption is evidently
satisfied for the stochastic programs with recourse as well as for those with pro-
babilistic constraints, and in all cases when g, are expectations of suitable func-
tions derived from h;. Furthermore, we shall assume that X = R™, it means only
that the original deterministic constraints and the induced ones have been incor-
porated into the explicit constraints in (1.1) ( with g, (z ; ) independent of F, of

course).

The local behaviour of the optimal solution z(F) of the program (1.1) with
respect to small changes of the distribution F can be studied via t-contamination
of the distribution 7 by a suitably chosen distribution G, i.e., instead of F, distri-

bution of the form
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Fp=Q-t)F+t¢, 0=<t=<1 (4.1)
will be considered. In (4.1), F; is called distribution F t-contaminated by distri-
bution G. Due to our assumption, the original stability problem thus reduces to
that linearly perturbed by a scalar parameter t € <0, 1 >:

maximize (1 —t) g, (z 1 F) + tg,(z ; &) (4.2)

subjectto (1 —t) g, (x | F) +tg;(z ;G)=20, 1=<i=<=m,
Q1-)g; (@ ;F)+tg;(x:G)=0, m+l=<i<=m+p.

In principle, it is possible to get the trajectory of the optimal solutions

z(F;), 0=t <1, for an appropriate method see e.g. Gfrerer et al. (1983).

We shall aim to obtain the Gateaux differential dz (F ; G —F) of the optimal
solution of (1.1) in the direction of G —=F. To get the explicit results, one has to
check the differentiability and regularity assumptions of Theorem 3.1 and to com-

pute matrices B(0), D(0) corresponding to the contamination parameter ¢t = 0.

The knowledge of the Gateaux differential of = (F) at F in the direction of
G —F is useful not only for the first order approximation of the optimal solutions
corresponding to distributions belonging to a neighbourhood of F but also for
deeper statistical conclusions on robustness, namely, in connection with statistical
properties of the estimate z (F ) of z(F), which is based on the empirical distribu-
tion F°|,. For fixed constraints in (4.2) and for the special choices G = §,, (degen-
erated distribution concentrated at one point w), the Gateaux differential
dz (F ; &,, —F) corresponds to the influence curve Qp(w) widely used in asymptotic
statistics. Different characteristics of Qp(w) suggested by Hampel (1974) measure
the effect of contamination of the data by gross errors, the local effect of round-

ing or grouping of the observations, etc. For an example see Dupaéova (1985a).

Theorem 4.1. For the program

maximize g, (z ; F) (4.3)
subjecttog; (z : F) 20, 1=<si=m,
g (2 F)=0, m+l=is=m+p
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assume:

(i) g;¢;F):R"™ > R! are twice continuously differentiable, 0 si = m +p,

(i) the Kuhn-Tucker conditions of the first and second order, the linear
independence condition and the strict complementarity conditions are
Julfilled for w(F) =[z(F) , u(F),v(F)] € R®™ xRT x RP ,

(iii) there is a neighbourhood Y (z (F)) CR™ on which g;(¢:G),0<si <=m+p
are twice continuously differentiable.

Then:

(@) There is a neighbourhood W(w(F)) € R™ xR} x RP , a real number t, >0
and a continuous function w : <0, t,) » $(wF)), w(0) =w(F) such that
Jorany t € <0,t,), w(t) =[x (t), u(t), v(t)] is the Kuhn-Tucker point of
“.2) for which the second order sufficient condition, the linear indepen~

dence condition and the strict complementarity conditions are fulfilled.

(b) The Gateaux differential dw (F ;G—F) of the Kuhn-Tucker point w(F) of

“.3) in the direction of G —F is given by

| VEL(w (F);F) Vogr(z (F);F)
|tV 91 FY )T 0

11

VL (w (F); G)
. (4.4)

gr(z (F); @)

dwr(F ;G =F) =

The remaining components of dw(F ; G ~F), which correspond to the non-

active constraints in (4.3), equal to O.

Proof is a straightforward application of Theorem 3.1. We took the liberty of

adopting the notation to our case; namely

m
Vo L(wF):;G)=V,g,(x(F);G)+ Y uy(F gy (z(F);G) + f‘, v (Flg;(x (F): @),
i1=1 t=m+1
wi(F) =[xF), w,(F), 1 € I(F), v(F)]
with 7(F) c {1,...,m{ containing the indices of the active inequality constraints
9;x(F); F) =0, g(z(F); G) and gy(x(F); F) are vectors consisting of com-

ponents g;(x(F); G) and g;(x(F);F) for 1 €lI(F), m+lsi =sm+p,
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respectively,

V, 97 (x (F); F) is a matrix consisting of columns V, g, (z (F); F) for i € I(F)

andm+1l<i <m+p.

Due to the fact that (4.2) is linearly perturbed, we have

VLR L(w;t)=V . L(w;:G) -V, L (w;F),
Vigr(;t)=sgr(z:G)—gr(z:F),
so that

VEL(w (F);t)=V, L (w (F);G)

Vigr(z (F);t)y=g1 (= (F): ).
Remark 4.2. For fixed constrains in (4.2), i.e., for g;(z ; F) independent of F, we
have evidently g, (z (F):G)=g; (x (F);F)=0fori €eI(F)orm+l<i sm+p

in (4.4). In the case of stochastic program with recourse

maximize g, (z ; F)
on a set X described by fixed constraints g;(z)20,1=<i<m,

g;(z) =0, m+1 <i{ < m+p, we have thus

[o2 : 1=t ]
V2, L (w (F);F) V. gy (z (F)) V. L (w (F); G)

e =, g @ T 0 17 o @5

Theorem 4.3. Let assumptions of Theorem 4.1 hold true.

(@) Let the matriz
L=V L(w(F);F)
be nonsingular. Then the Gateaux differential of the isolated local mazim-
izer x (F) of (4.3) in the direction of G —=F is given by
dz (Fi;G=F) = —CIV_L (w (F);G)

where

Cl=[-LtpPTL 1Py 1pTL 2
P =V _gi(z(F),F)

and I is the n-dimensional unit matriz.
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(b) Let the matriz P =V, g/ (z(F):F) be of rank n. Then the Gateauz differen-
tial of the isolated local maximizer z(F) of (4.3) in the direction of G —F is.
given by

dz(F; G-F) = —(PT) gy (z(F): G).

Proof follows from (4.4) by well known formulas for inversion of the matrix

L

which is nonsingular and which contains the nonsingular square submatrix Z in the

case of (a) or the nonsingular square submatrix P in case (b).

The assumptions of strict complementarity play an essential role in the proof
of Theorem 4.1. They guarantee that the interval <0, {,) on which w(t) is the
Kuhn-Tucker point of (4.2) is nonempty. Aiternatively, the strict complementarity
conditions can be replaced by the strong second order sufficient condition which
was stated in Section 3. Thanks to the fact, that we have a scalar parameter only
and that we are in fact interested in the right-hand derivatives of the optimal solu-
tion with respect to the parameter at the given point ¢ =0, the result of Jit-
torntrum (1984) applied to our problem gives the desired assertion on the Gateaux

differential.
Denote I*(F) =i €I(F): u, (F) >0}, I°(F)={i eI(F): u;(F) =0{. Under
strict complementarity conditions, I?(F) = ¢.

Theorem 4.4. Let in assumptions of Theorem 4.1, sirict complementarity condi-

tions be replaced by the strong second order sufficient condition. Then:

(a) There is a neighbourhood ¥(w(F)) C R™ xR x RP , a real number t, >0
and a continuous function w : <0,2,) » ¥(wF)) , w(0) =w () such that
Jorany t € <0,¢,), w(®) =[z(), u(t),v()] is the Kuhn-Tucker point
of (4.2) for which the strong second order sufficient condition and the

linear independence condition are fulfilled.
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(b) Thereis a set R of indices such that

IY(FYcR cI*™F) Y I°(F) =I(F),
for which the nonzero components of the Giteauz differential dw(F ; ¢ —F)

are given by

[vsz(w (FY;F) V_gg(z (F);F)]—l [V, L (w (F); G) ]

| dQwgp(F ; G-F) =~ [V, op & ) F)17 0 gr (z (F); &)

Special cases 4.5. For specific decision models of stochastic programming, we can
get correspondingly the specific form of the assumptions as well as the explicit
formulas for the Gateaux differentials. The assumptions can be subdivided into

three categories:

(A) The basic model assumptions, including the absolute continuity of the distribu-

tion F.

(B) The general assumptions such as the existence of the Kuhn-Tucker point for
which strict complementarity conditions are fulfilled.

(C) The assumptions of differentiability, the linear independence condition and

the 2nd order sufficient condition, which can be fitted to the considered

model.

In the following survey of results, we shall list mostly the form of the assump-
tions of the last category and we shall give explicit formulas for the reduced vec-
tors of the Gateaux differentials containing the nonzero components only. The full

statements can be found in Dupacvova (1983), (1985a), (1986a).

4.5.1. Simple recourse problem (Dupaéova (1983))

m

T
max Ep {c z—z
IEOF {=

Tl
=1 i=1

withg, >0,1sism 4= (a'tj) and ¢ given and F’ such that Epw exists.

Assumplions.
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(i) DenoteJ = [j : z;,(F) >0{; the matrix 4; = (a;;); < ; «m has full column rank.
jed

(ii) The marginal densities f; ,1<i sm, are continuous and positive at the

points X, (F') = 2 @y T4 (F),1<1i sm , respectively.
7

(iii) G is an m-dimensional distribution whose marginal distribution functions G;
have continuous derivatives on neighbourhoods of the points

X;(F),1<1i <m, respectively.

Gateauz differential

dz; (F; 6—F) = (] ko)t (c; - afk),

where
cg=(g)jeg . k=(k) 15sism,
with
ki =q Gy X;(F)), 1si=m ,
and

K =diagigy f1(X;(F)), 1sism ] .

4.5.2. Individual probabdilistic constrainis (Dupac':ové (1986a))

maximize c(x) 4.7)

subject to Pp| f: a2z iza, 1sism |
i=1
witha; €(0,1),, 1<t <mandd = (a.u) given; a! denotes the i-th row of 4.
Assumptions:
i c:R"™ > Rlis twice continuously differentiable.
(if) The rank of 4; = (ay, ) LEL equals to card I(F’) = card I.

(iil) The marginal densities f; , 1<% <m , are continuously differentiable on

neighbourhoods of X;(F)= 2 ay 4 (F) ,1<i sm, respectively, and
J

F1GGF) >0, 1 € I(F).
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(iv) G is an m-dimensional distribution whose marginal distribution functions G;
are twice continuously differentiable on neighbourhoods of the points
X;(F) ,1s1i s m, respectively.

(v) Foralll eR™ ,l %0, for which Al = O,Vinequalit.y 17 sz c(z(F))I <0 holds

true and the matrix

L=V Lw@FE) ;F) =V cz(F)N+ Y u,F)riCFE) atl at
t €I(F)

is nonsingular.
Gateauz differential
dz(F; G—F) = —-LAf @ L2 ahH 271 (G = ap)

where

fr =diag {fy GEF)) . i €I(F) (4.8)

Gr =16 CGFN) ergyand o =[]y erry - (4.9)
4.5.8. For the case of individual probabilistic constraints and a linear objective

r

function ¢ (z) = ¢’ z, substantially weaker assumptions can be used to get a result

comparable with that of Theorem 4.3; see Dupac':ové (1986a).
Assumptions:

i) c@x)=clz

(ii) The optimal solution z () is unique and nondegenerated.

(iii) The marginal densities f; , 1< i <m are continuous and positive at the

points X; () , 1 =i < m, respectively.

(iv) G is an m-dimensional distribution whose marginal distribution functions G;
have continuous derivatives on neighbourhoods of the points

X;(F),1<1i <m, respectively.

Gateauz differential

dz(F; G-F) = -4 17 (67 - ) (4.10)
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where f; , Gy , aj are given by (4.8) and (4.9).

Comment. In the last case, the assumptions on the distributions are comparable
with those for the simple recourse problem, which is quite natural. Contrary to
the case of nonlinear objective function, z (F) is the optimal solution of the linear

program

maximize ¢ Tz subject to Az =b : (4.11)

where b; = F‘[l(ai ). Similarly, z (¢) is the optimal solution of the linear program

T

maximize ¢’z subject to Az 2 b, ,

where by, =F;;1(a;). 1S i s m, are the quantities of the contaminated marginal
distribution function
Fyu(e) =@ —t) Fy (g) +1G;(x) .
Let us approximate F‘u'l(ai) linearly (see e.g. Serfling (1980)):
a; — G (F (@)

T4 (Fi—l(ai )

and approximate z(f) by the optimal solution Z(f) of the following linear

Filay) =FYay) + ¢ L, 1<i<m

parametric program:

maximize ¢ Tz
n a; -G, F N ay))
subject to ), a;; z; = Fy Hay) + ¢ L i__li o 1<is<m.
j=1 fi (F:L (ai )]

Let B =AIT be the optimal basis of the linear program dual to (4.11); then
z(F) = AI‘lbI and X; (F) =F‘[1(ai) , 1 €. According to our assumptions, z (F) is
unique and nondegenerated, so that B is optimal for ¢ belonging to a neighbour-

hood of zero and

¢ =Gy (F () ]
AR CT)

E(t)=z(F) +t 41 = (4.12)

1 el

=z(F) +tdz(F; G~F)
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using the result (4.10).

4.5.4. One joint probabilistic constiraint (Dupaéové (1986a))

maximize ¢ (z) (4.13)
subject to Pridz 2 w2 «a
with a € (0,1), 4 = (a.ﬁ) given.

Assumpitions:
i c¢:R™ - R1is twice continuously differentiable.

(ii) There is a Kuhn-Tucker point w(F) = [zF); u(F)] for (4.13) such that
u (F) > 0 and the second-order sufficient condition is fulfilled.
(iii) In a neighbourhood of X(F) : = Az (F), the distribution functions F and G are

twice continuously differentiable and

AT v FX@Fy) »0.

Gateaux differential

dw(F ; GF) =

I |
L AT @) VXG(X(F))——S—l‘ G Uy FXE) | + 1 VXF‘(X(F')IG(X(F‘)) —a]i
L(F) L(F) l ]

| ]
_1(G) 1 1
u (F) [1 i) + 1 lG(X(F‘)) aj

where

L=V L(w@FE:F) =V c @) +ulF ATVEF X E)4,

Z

LG =V FxXENT aL2aTv 6 x 7)),

LF)Y =V FXENT AL AT F X F) .
Comment. Having solved the original problem (4.13), we know z (') and we have to
compute w (F), L 71 and to evaluate G4z (F)) — « , Vy G (Az (F)), Vx F (Ax (F))
to get the Gateaux differential. For a given z(F), u(¥), F and G, it depends on

the difference between the values of the distribution functions F Az (F)),G (Az (F))

and on the relative differences of their gradients which are measured by -lli(%)l and
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Vy G (4z (7)) - %(%)l Vy F Az (F)).

For the gradient of F we have
Vy F(X) = . FOX)
where f =diagi{f;(X;), 1<i <m {and F1)(X) is the m-vector of the conditional
distribution functions F‘(X“) | X;j), 1=i <=m ; here X) denotes the (m —-1)-
dimensional subvector of X in which the i-th component, X;, was deleted. Similar

formulas hold true for Vy G (X).

In Example 2.3, the two considered distributions F and ¢ are multinormal ones
and differ by their correlation matrices only. In this case, g; =/; , 151 =m ,
the conditional distributions F‘(X“) | X3) . G(X“) | X;), 1=i =m , are normal

and

Uy G(X) = GP0x)

with

EDe0 = |ex® | Xi)]lst sm -
These circumstances make the numerical evaluation of the Gateaux differential

realistic.

9. The minimax approach

Assume now that the set X of admissible solutions is defined by fixed con-
straints only and that the objective function g,(z ; F') is linear with respect to F’
(for a generalization to the nonlinear case see Gaivoronski (1985)). In this case,

we can set

9oz i F)=Epf, (z; w),

where f,(x , ) may e.g. correspond to the difference h,(z ; w) — ¢(z ; w) in the
‘general stochastic program with recourse (1.3). Let F be a given set of distribu-

tions to which F is known to belong. (The case of the complete knowledge of the
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distribution corresponds to F = {F{.) Consider the two-person zero-sum game
H=(X,F,g,) (5.1)
where X is the set of strategies of the first player, F is the set of strategies of the
second player and g, is the pay-off function. Any optimal pure strategy of the

first player in the game (5.1) will be called the minimax solution of stochastic

program

max g,(x ; F) forF €F . (5.2)
reX

Under quite general assumptions on F, Xand f,, a minimax solut.ion exists and

su min z ;F) = min su z  F
zspxrsl? go( ) Fsl?zspx g°( )

(See e.g. Zaékovd (1966), Theodorescu (1969).)

To find a minimax solution means in general to solve an optimization problem

maximize Finfr 9,(xz ; F) on the set X. l (5.3)

€ .
If the set F of distributions is defined, inter alia, by prescribed values of certain
moments of the distributions F° € F, it is possible to use general results of the

moment problem to get

inf z  F
Aol 9o )
in a form suitable for further computations (see Dupaéova (1977)). We shall out-

line the results of the moment problem briefly and we shall indicate their applica-

tion in stochastic programming.

Let «:=(xq,...,6): 0 -» Rk, c,: 0 - R be Borel measurable mappings.
Denote x£(Q)) the image of the set () under the mapping «, by Y: =conv «(Q0) the
convex hull of «({?) and assume that int ¥ # 0. For y € int Y denote by Fy the set
of distributions of a random vector @ on (1, B) such that «4,...,%, , £, are

integrable with respect to all elements F° € F and

Epk;(0) =y ,1<i sk, forallF €F, . (5.4)
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The moment problem is to find
Uy): = Fsggv Ep k,(w) (5.5a)
or
Ly):= Fiélfr Ep ky(w) . (5.5b)

v

Under the above assumptions,

k
L(y) = sup {d, + )} d; vy} (5.6)
where
k+1 k
D:={d €R :do+jz—:1djtcj(w)51co(w)‘v’w€m.
In many important cases, e.g., for 2 compact, Ky, ..., K, continuous, «, lower

semi-continuous, the infimum (5.5b) and the supremum (5.6) are achieved. In this

case, there exists a distribution /* € F and a vector d* € D such that

k
L(y) =E]l’" ICO(QJ) = d*O + J.El d*j yj B.7)

and for the given ¥ € int Y, problem (5.5b) reduces to

k
L = max (d, + d .
(v) dEDso jz=:1 jyj;
Evidently, as a function of the parameter ¥, L (y) is convex. Parallel results can
be given for the upper bound U(y). It is important from the point of view of com-

putation that F* in (5.7) is a discreie distribution. The corresponding probability

measure must evidently be concentrated in the points @ €Q), for which

k
do* + ) d;* k;(w) = £,(w). Denote
=1

B(d*) = fu = (@) : dy* + ) ds* £5(0) =k,(0), @ €Q;
J
Then for almost all ¥ € int Y, there is a unique d* € D such that y €conv B(d*),

i.e.

l
y =Y p; c(o) with x(o?) € B(d*) 1 si <1, (5.8)
i=1
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and

l
Y p,=1,p,20,1<i=1.
i=1

Corresponding to this representation,

L i » k *
Ly)= Y oy £,(0*) =dgy + 3 d; vy .
i=1 j=1
For these and other related results see e.g. Kemperman (1968), the case of the
inequality constraints on the moments was studied by Kemperman (1972), different

approaches to the case of the noncompact {2 can be found e.g. in Richter (1957),

Kemperman (1972), Cipra (1985), Gassman and Ziemba (1885).

When applying the above results to the minimax problem, it is quite natural to
put F = Fy and
Ko@) = folz; w).
The dependence of f, on the decision variables z together with the final goal - to

solve the "outer' maximization problem

maximize FirslfF Ep f,(x ; w)ontheset X —
are the reason why the direct application is possible only in special cases.
This will be the case if the set of the considered discrete distributions possessing
the properties (5.8) would be relatively small and independent on z or if it would
be possible to reduce the corresponding moment problem to finite number of one-
dimensional moment problems. As an example of the first mentioned possibility, we
have

Theorem 5.1. Let Q cR* be a conver polyhedron with exireme poinlts

ol ..., o and let y €int Q).

Let f, : XxQ -+ R! be a concave function of w for any fized z € X. Denote by

F

y the set of distributions F for which

Prloe) =1, Erw=y VFer.
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Then

Fmeir},, Ep fo(z ;i @) =L(y)

where

N
L(y):=max ), p,f, (z;&")
v=l

N
subjectto ) p, /=y, .1=<is=<k ,
v=1

N
Y p,=1,p,20,1<vs<N.

vel

The proof follows form the more general result with a piecewise concave function

fo (z : 9 which was studied in Dupaéova (1976); see also Dupac‘:’ova (1980a).

The "worst” (i.e. the extreme) distribution F* e Fy is a discrete distribution

concentrated on at most k +1 extreme points of (). The set F c Fy of all distribu-
tions concentrated on at most k +1 extreme points of (0 is well specified and does

not depend on x.

For f, separable in o, i.e., for

k
Fo@iw)= Y fo (i wy)
i=1

where for arbitrary fixed z.f,;(z : @;), 1 <i <k , is a concave function of one-
k —
dimensional variable w; , and for 1= X <w; @; >, a version of the Edmundson
i=1

-Madansky bound follows easily from Theorem 5.1 (see Dupac'iovei 1977)):

k k
min Ep fo(z 5 0) = 3 Ay fog(@ i)+ X (L =N Sfoy(x:0y) (5.9)
FEFV i=1 ji=1

with
©; -~y
Ai==t—L 1<i<k.
Wy Ty

In addition, by Jensen's inequality

max Ep fo(z ;@) =f,(z; Epw) =fo(z:v). (5.10)
FeF,
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Repeated application of (5.8) and (5.10) to sets of conditional distributions with

k

respect to subintervals of X <w;,&; > possessing fixed conditional mean
i=1

values leads to closer bounds (see Ben-Tal and Hochman (1972)). This idea has
been successfully applied to algorithmic solution of the complete recourse problem
by Kall and Stoyan (1982), see also Wets (1983), Birge and Wets (1983). From the
just explained theoretical background it follows in addition, that the dounds are
the best with respect to the considered set Fy. It means that without an additional

information about the distributions, these bounds cannot be improved.

The above results on the moment problem hold out the possibility of construct-
ing bounds of more general type using all available information on the set F, for-
mulated either in terms of higher order moment conditions or qualitative condi-
tions like unimodality. The knowledge of these béunds enables one to draw conclu-
sions on robustness of the optimal value of (5.2) with respect to the distributions
belonging to F . On the other hand, the applicability of the more complicated
bounds in approximation schemes for solving stochastic programs is limited by

their numerical complexity.

From the point of view of real-life applications the case of distributions with
given mean values and second order moments is quite typical. As an example of the

related result, we have
Theorem 5.2. Let Q c R,
F={F:Epo, =y, varpow, =0f,1<1i <k | (5.11)
and
Jolz ; @)= min {¢i(z) + T ri}
1<7=<J
where fj € R* and :p’ :X-RrRl, 1< J =J, are given and such that f (x ; ) is

bounded from above on X X (.
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Then Fmirl; Ep fo(x ; w) equals to the mazimal value of the linear program
€
v

o+2 mw+2 g (0F + ¥

1=1 =1

subject to conditions

_2 —0’{ w)¥zu, @), 1sjsJ.
j=1 Hit

For the details see Dupadovéd (1980b). The resulting program is a convex one,

2

its form is suitable for stability analysis with respect to parameters y , 0° and

with respect to the decision variables z.

Special case 5.3. Using the general approach for the simple recourse problem

maximize me E’F{c z - Z o Z Qs Ty "Ut) JonasetX
i=1

with F given by (5.11), we evidently can write
min_ EpteTz - 2 2 (Z ayzy — o)t =
=1

cTz - g, max () a;;x; —w;)?t
2_1 lrek 21 Rt

where F; is the set of marginal distributions F; corresponding to F € F and as a
result, we get an explicit formula

T o & N
min Epfc'z — ), g4 (Y ayyz; —w)* =

m Tt 2 n
j=1

For the proof see Dupacové (1977) , (1980a), Jagannathan (1977).

The complexity of the problem substantially increases if the information about
covariances is considered. A similar situation is well known both in stochastic
linear programs with recourse (e.g., the case of simple versus complete recourse)

and in probabilistic programming (e.g., the case of individual versus joint proba-
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bilistic constraints).

A method of solving problem (5.3) for the set F described by general moment
conditions was suggested in Ermoliev, Gaivoronski and Nedeva (1985). Using the
fact that the extreme distribution F' € F can be found among the discrete distribu-
tions together with the corresponding duality relations helps to reformulate the

problem

max min Ep f,(x ; @),
zreX FeF

with £, concave in z,

F={F:Pr() =1, Epe()Sy;, 1 5% sk |

and X, {] convex, compact, into the following one

k
. e;n,a:fs}?i ::nénn Jolz i @) -t§1 My [xg (@) —yy]

which is solvable by means of stochastic quasigradient methods or other methods

suitable for nondifferentiable optimization.

In many real-life situations, one has at their disposal besides knowledge of
some moments, a qualitatively different information about the distribution such as
its unimodality. We shall see, that it is often possible to remove this additional
condition by a suitable transformation and to reduce the problem to the original

moment problem.

Definition 5.4. A random variable & is unimodal if there is a number y, such that
the distribution function of & is convex on (—e, y, > and concave on <y, , + ).

Any number y, with the given property is called the mode of the distribution.

Denote by Fy [¥,] the set of unimodal distributions on R1 with the given mode
Y, such that forall F € Fy [v,], the moment conditions (5.4) are fulfilled. Define a
transformation T on Borel measurable functions ¢ which are integrable over any

closed sub-interval of (—e, y,) and (y, + *) as follows:



-33 -~

u
o*(u): =(Tod)(u) = ﬁf ¢(v)dv foru #y, (5.12)
0 Yo

= &(u) foru =y, .
Denote further by F the set of all distributions such that

EpT(lk;]) <= 0] sk, VFeF.

Then
e iFr;f[yo] Ep £,(w) = inf {Ep £y (w) : F € F, Ep e/ (@) =y, , 125 sk} (5.13)

The transformed moment problem (5.13) has the form of the classical moment
problem (5.4), (5.5b), the number of moment conditions remains unchanged whereas
the qualitative condition of unimodality does not appear any more. All extremal
points of the set Fy [v,] are mixtures of uniform distributions over (u , y,) or
(¥, » u) and of the degenerated distribution concentrated at y,. (For these and

related results see Cipra (1978).)

For application to the minimax problem (5.3), the following result ( Dupaéova

(1977)) is important.:

Theorem 5.5. Let ® be a real valued concave (convezx) function on R?! that is

integrable over any closed subinterval of (—e, Y,) and (y, ., +=). Then

@* = T¢ defined by (0.12) is concave (convex).

Special case 5.6. Let

k
Fol@iw)= ) Sfou (T ),
1=1

where for an arbitrary fixed z € X, f;(x ;*),1=<i <k is a concave function of.
the one-dimensional variable @,. Let @; be independent random variables whose
distributions F; are unimodal with a given mode v;,, given range <w,; , @; > and
mean value Yy . 1<1i <k. Solving the k-dimensional moment problem reduces to

solving one-dimensional one of the following type:
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inf Epf (x; @)
FeFyly] | °

where w € <w , @ >, the distribution F is unimodal with a given mode vy, and fulfills
the moment condition Ep w =y and f,(x ; +) is concave in @ for any fixed z €exX
Using (5.12) for «4(w) = w we get

Yo
u +y
x:(u)=;i—y- fwdc.>=——2—°—foru # Y,
0 u

u+yo

=u = for u =y,

The moment condition in the transformed moment problem (5.13) reads

w+vy
EF IC;(CJ) =EF [—2—0-]=y

so that
Epw=232y -y, -

Using now the concavity property of f:(x ; u) together with (5.9), (56.12) and

(5.13), we get for yp €int < @, © >

s * o—
Feg;f[y,] Epfo(@ iw)= Af(x @)+ (1 —A)f:(z y @) =

Yo x]
1 1
v - {fo(z wydo + ( ) — yfofo(z wdw

where

w -2y + Y,
© - '

The "worst” distribution F* 3 Fy [¥°] possesses the density

w -2y + v,

p(w) for w e <w, Y,)

Y — Y, -
= — = for w €(y, , @ >
(0 —@)© =1vy,)

or in other words, it is the mixture of two uniform distributions over <@, y,) and
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(y, » @ > with the weights A and 1 — A, respectively.

In the case of an unknown mode, its position can be found in an optimal way
(i.e., giving the "worst” distribution again). As a result we have (see Dupaéové

1977)):

Theorem 5.7. Let Fg be a set of unimodal distributions (with an urknown
mode) with a fized support < w, ® > and a given mean value y. Let k, be con-

cave on < w , @ >. Then the minimum of Ep k,(w) for F € F; is attained
(i) for the uniform distribution F*over <@ ,3>, if% (@ +w) =vy,

(ii) Sfor the distribution Fy; € F9, which is a mizture of F* and of the degen-

yl

erated distribution concentrated at w if% (@ +w) >y,

(iii) for the distribution F, € F¢, which is a mizture of 1*"“l and of the degen-

yl
erated distribution concentrated at @ U’% (T +w)<vy.
These results are directly applicable in stochastic programming, see e.g.
Klein Haneveld (1984) for their application to project planning under incomplete

knowledge of distribution: Instead of stochastic program with recourse described

briefly in Example 2.4 he solves the problem

minimize sup {c¢T + ¢ Ep [7(w) = T1%}
FeF
where F is set of distributions whose marginal distributions are unimodal with a
given support and a given mean value.

To summarize - the results on the minimax approach can be used

(i) to approach the specific problems of stochastic programming with an incom-

plete information about the distribution of the random parameters,

(ii) for computing minimax (maximax) bounds on the optimal value of the objective

function; these bounds are of the type
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Ly = max inf E z ;W
F = max JufEr (= o)

and

Up= max supk @
F= max supfpfol )

and for any F € F, we have inequalities

Lps:r:ngxx Epfo(x, 0) sUp.
The knowledge of the bounds Lpand Up, provides an information about
robustness of the optimal value of the objective function Ep f,(z ; ») with
respect todistributions F € F. With an increasing information about F we get
narrower bounds. A special type of the bounds has been successfully used in
approximation schemes for numerical solution of the stochastic programs

(with the complete knowledge of the distribution).

(iii) It seems reasonable to use the worst distribution F* € F in place of the distri-
bution ¢ in the contamination method (see Section 4) at least in cases when
there is no evidence for using any other distribution. The resulting objective

function

(1 =0 Ep folz ; ) +tEy folz i @)

corresponds to the Hodges-LLehman decision rule (see e.g. Schneeweiss (1967))

and the optimal solutions can be related to the 'restricted Bayes strategies”
of Nadeau and Theodorescu (1980).
In all the cases mentioned, the advantage of the minimax approach is rela-
tively easy computability of the resulting program
:l:nzéxxE’F, Solx 5 @)
at least in the cases when the "worst” distribution F* or EF“‘ Jolx ; @) can be

determined explicitly.
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