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FOREWORD 

One of the  activities of the  Adaptation and Optimization Project  of the System 
and Decision Sciences Program is to  develop mathematical methods and approaches 
fo r  treating models of systems characterized by limited information about parame- 
t e r  distribution. 

This paper  presents t h ree  approaches which ref lect  different assumptions 
about the  incomplete knowledge of the distribution and which can be applied t o  
model building as well as t o  sensitivity analysis, approximation and robustness stu- 
dies in stochastic programming problems. The suggested methods build a bridge 
between the purely deterministic approaches of nonlinear programming stability 
and the tools of mathematical statistics. 
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STOCHASTIC PROGRAMMING WITH INCOMPLETE 

INFORISIIATION 

Ji tka DupaE ovh 

Abstract 

The possibility of successful applications of stochastic programming decision 

models has  been limited by the assumed complete knowledge of the distribution F of 

the random parameters as well as by the limited scope of the existing numerical 

procedures. 

We shall introduce selected methods which can be used to  deal with the incom- 

plete knowledge of the distribution F, to  study robustness of the optimal solution 

and the optimal value of the objective function relative to  small changes of the 

underlying distribution and to get  e r r o r  bounds in approximation schemes. 

The research w a s  mostly carr ied out at the Department of Statistics, Charles 

University, Prague and i t  w a s  stimulated by a close collaboration of the author  

with the ADO project  of SDS. The present version of the paper  w a s  written at 

IIASA Laxenburg. 

1. Introduction 

Quite a large class of stochastic programming decision problems can be 

transformed t o  the following mathematical programming problem 



maximize go  ( x  ; F )  

s u b j e c t t o g i ( x  ; F ) r O ,  1 5 i  S m ,  

g , ( x ; F ) = O , m  + 1 5 i S m  + p  , 

x E X  

where X c Rn i s  a given nonempty set. The functions gi , 0 5 i 5 m + p ,  do not 

depend on random paramete rs  d i rect ly  but  by means of t h e i r  distr ibution F only. 

An example of (1.1) i s  when a nonlinear program 

maximize ho ( x  ; o) (1.2) 

subject  t o  hk (x ; o) 2 0 ,1 S k 5 1 , hk ( x  ; o) = 0 ,1 + I S  k 5 s , 

E x 0  

contains random paramete rs  o in hk (z ; o)  , 0 5 k 5 s , and t h e  decision x E 5 

has  to b e  chosen b e f o r e  t h e  values of these  pa ramete rs  are observed.  

Among o thers ,  two well known decision models of s tochast ic  programming can  

b e  evidently written in form (1.1): 

Stochastic program w i t h  recourse 

maximize EF tho ( x  ; o) - q ( x  ; o) j (1.3) 

subject  t o  x E X C 

where t h e  penalty function q ( x  ; o)  evaluates t h e  loss corresponding t o  t h e  case 

t h a t  t h e  chosen X E X  does  not fulfill t h e  const ra ints  

hk ( x  ; o)  r 0 ,  1 s  k 5 1 , h k ( x ; o )  = 0,l + 1 5 k S s ,  f o r  t h e  observed values of 

t h e  random parameters .  The set X c X, i s  defined by induced const ra ints  which 

guaran tee  t h a t  q i s  well defined. 

Stochastic program w i t h  probabilistic constraints 

maximize EF tho ( x  , o)j 

sub jec t  t o  PF {hk ( x  ; o) 2 0 ,  k E Iij 2 ai , 1 S i S m , 

x EXCX' ,  

where Ii c 11, . . . ,1 j ,ai E <0,1 > , 1 C i S m , are given in advance. 

For  both mentioned basic types  of decision models, numerous remarkable  theoret i -  



cal results were achieved and numerical approaches suggested. However, the 

numerical solution is r a t h e r  complicated in general, mainly due t o  the  fact  that  

repeated evaluation of function values and gradients is  needed which is r a t h e r  

time consuming and demands special simulation and/or approximation techniques. 

The question of e r r o r  bounds is  evidently both of practical and theoretical 

interest .  

The optimal solution z (F) and the  optimal value of the  objective function in 

(1.1) depend on the  chosen type of model and on the  distribution F which is usually 

assumed t o  be  completely known and independent of the  chosen decision z .  How- 

ever ,  t he  distribution F is  hardly known completely in r ea l  situations. The numeri- 

cal  resul ts  obtained should thus be  at least  complemented by an  additional informa- 

tion about sensitivity of the  optimal solution with respec t  t o  eventual changes of 

the  distribution F. In the  robust case,  a small change in the  distribution F should 

cause only a small change in t he  optimal solution. 

A f i r s t  idea could be t o  study stability of the  optimal solution of program (1.1) 

with respect  t o  t he  underlying distribution F directly.  However, the  space of pro- 

bability measures provided with a metric corresponding t o  the  weak topology is not 

a linear one, so  tha t  the general resul ts  of parametric programming are not appli- 

cable directly. 

In this pape r  t h r ee  approaches will be presented. They re f lec t  different 

assumptions on the  (incomplete) knowledge of the distribution F. A s  w e  shall see,  

they may be  used t o  perform sensitivity analysis and postoptimality studies, to  get  

e r r o r  bounds and to  solve problems of stochastic programming under an explicitly 

given assumption of incomplete knowledge of the  distribution F. 

(i) Assuming that  the  considered distribution is known t o  belong t o  a parametric 

family of distributions, say F E IFy , y E Yj, w e  can rewrite program (1.1) making 

the  dependence on the  parameter  vector  y explicit: 



maximize g, (z  ; y ) 

subject t o  g i ( z  ; y )  2 0 , 1 s i 5 m , 

g i ( z  ; y ) = O , r n + l S i  5 m  + p  , 

z E X  

where gi ( z  ; y ) , 0 S i 5 m +p,  are used instead of gi ( z  ; Fy ) , 0 S i s m +p , 

respectively. The stability of the  optimal solution of program (1.5) with respect  t o  

t he  parameter vector  y E Y can be studied t o  a cer ta in  extent through the 

methods of parametric programming and through the methods developed f o r  non- 

l inear programming stability studies (see e.g. Armacost and Fiacco (1974), Garstka 

Having in mind the  statist ical  background of the  parameter values which are 

typically statistical estimates of the  t rue  parameter values, t he  resul ts  of 

parametric programming have been complemented by statistical approaches (see 

~ u p a g o v d  (1983), (1984) fo r  problem (1.3), Dupazovd (1986a) f o r  problem (1.4)). 

The resul ts  are summarized in Section 3. 

(ii) The local behaviour of t he  optimal solution x (F )  with respec t  t o  small 

changes of the  underlying distribution F can be studied via t-contamination F by a 

suitably chosen distribution G ,  i.e., instead of F, distributions of the  form 

Ft = ( 1  - t ) F + t G  , o s t  s1 

are considered (see Dupa~ovd (1983), (1985a) fo r  problem (1.3), ~ u ~ a z o v d  (1986a) 

fo r  problem (1.4)). The original stability problem thus reduces t o  tha t  linearly 

per turbed by a sca la r  parameter  t .  This approach gives a basis f o r  performing 

sensitivity analysis of the  optimal solution z (F) and f o r  post-optimality studies. 

(See Section 4.) 

(iii) In typical cases of incomplete knowledge of the  distribution, F is  known t o  

belong t o  a specified s e t  F of distributions. One approach is  via minimax. W e  shall 

discuss in Section 5 t he  case when the  constraints in (1.1) do not depend on F and 

* 
are incorporated into X For convex compact set F, the  minimax so lu t ion  z (F  ) 



is the optimal solution of the  problem (1.1) corresponding t o  t he  least  favourable 

* * * 
distribution F E F and, similarly, t he  maximax solution z (F  ) corresponds t o  

t he  most favourable distribution z (F**) E F. Even without compactness of F w e  

may get minimax and maximax bounds 

max inf go (z  ; F )  
I E X  F E F  

and 

max sup g o ( z ; F )  
I E X  F E F  

which provide an interval estimate f o r  t h e  optimal value max go (z  ; F )  f o r  any 
I E X  

F E F. This fact  can be used t o  draw conclusions about t he  dependence of t he  

optimal solution on changes of F within t he  given set F and t o  get  e r r o r  bounds in 

numerical methods. 

In specific cases (reliability, worst case analysis) t he  minimax solution itself 

is  of g r ea t  interest .  In addition, i t  is possible t o  combine complete and incomplete 

knowledge of the  distribution of specific random parameters of t he  given problem 

( ~ u ~ a 6 o v b  (1985b)). Even in t he  minimax approach,  however, t he  solution depends 

on the  choice of t he  set of distributions F and i t  i s  necessary t o  choose such a set 

which f i ts  t o  the  presented problem as well as possible, using all  t he  available 

information. For getting e r r o r  bounds (as a p a r t  of an i terative algorithm) one 

cannot probably increase the  level of information too much. 

A s  t he  set F i s  often defined by prescribing values of cer ta in  moments of t he  

distributions F E F, the  resul ts  of the  moment problem can be used t o  get  comput- 

able minimax/maximax solutions and bounds (see ~ u ~ a 6 o v d  (1977) ,(1978)). When 

the  prescr ibed values 7 of moments are not known precisely enough, namely, when 

they are estimated on the  basis of observed data,  the problem of stability of the  

minimax solution comes to  the  f o r e  and t o  solve i t ,  methods mentioned sub (i) can 

be  applied. 



2. Examples 

To get  some motivation, l e t  us consider f i r s t  a f e w  examples. 

Example 2.1. The cattle-feed problem (van de  Panne and Popp (1963)). The prob- 

l e m  is t o  find the amounts x j  of input j which lead to  the  minimum cost of the final 

mixture in which res t ra in t s  on the nutrition contents are satisfied. In the  formula- 

tion, the protein content weight percentages pe r  ton, a j ,  fo r  each of four  con- 

sidered inputs are assumed to  be  normally distributed random variables with means 

p, and variances of , 1 a j a 4. Besides of deterministic l inear constraints,  one 

probabilistic constraint 

is constructed. 

Under normality assumption, (2.1) can be written in the following way 

where ( a )  denotes the  a - quantil of the  N(0,l)  distribution. The parameters 

p j  . of. 1 a j a 4,  are estimated by sampling and in applications, t he  estimates 

are used instead of the  t r u e  parameter values. In Armacost and Fiacco (1974) the  

problem of stability of t he  optimal solution with respec t  t o  parameter  values was 

solved, namely, derivatives of the optimal solution with respec t  t o  t he  parameter 

values were obtained. 

Having in mind the  statist ical  background of the considered parameters  w e  

shall aim to  complement the  deterministic stability results by statist ical  ones. 

Example 2.2. A simple stochastic model of water reservoi r  design. The problem is 

t o  minimize t he  required capacity c of the  reservoi r  subject t o  the following con- 

straints:  



Freeboard const ra int  

PIsi  S c - v i  j 2 a l ,  l S i  S n ,  

Minimum s t o r a g e  const ra int  

P I s i 2 m i j 2 a z ,  l ~ i ~ n ,  

Minimum re lease  const ra int  

P f x i r y i j 2 a , ,  l s i s n ,  

where, in t h e  pa r t i cu la r  time interval ,  si i s  t h e  s to rage ,  v i  i s  t h e  flood control  

f reeboard  s to rage ,  mi i s  t h e  minimum s to rage ,  xi i s  t h e  to ta l  release and y i  i s  t h e  

p resc r ibed  minimum release. 

Using l inea r  decision ru le ,  t h e  var iables  xi , si are expressed via .monthly 

inflows ri , ri whose marginal distr ibutions Fi are supposed t o  b e  known. Usu- 

ally, log-normal distr ibution i s  used and i t s  pa ramete rs  are estimated on t h e  basis 

of relat ively long time s e r i e s  of t h e  observed monthly inflows. However, in par t ic-  

u la r  months, specific deviations from t h e  assumed distribution may appear :  in 

spr ing,  t h e  distr ibution may b e  relat ively close t o  t h e  normal one. Under these  

circumstances,  w e  can  a c c e p t  t h e  hypothesis t h a t  t h e  t r u e  marginal distr ibutions 

are mixtures of given log-normal and normal ones. We are interes ted t o  desc r ibe  

. changes of t h e  original  optimal decision due t o  t h e  influence of t h e  a l t e rna t ive  dis- 

tribution. 

Even in th is  simple example, t h r e e  di f ferent  types  of var iables  typical  f o r  sto- 

chast ic  models of water r e s o u r c e s  systems can b e  distinguished at f i r s t  sight: 

- constant coefficients and parameters ,  such as system reliabil i t ies,  flood con- 

t r o l  f r e e b o a r d  s to rage ,  minimum s to rage  o r  ru le  c u r v e  and penalty coeffi- 

c ients  in t h e  corresponding r e c o u r s e  model 

- random var iables  with a known distr ibution (i.e., with a w e l l  estimated distr i-  

bution), e.g. t h e  monthly inflows 



- random variables with an incomplete knowledge of distribution, such as the  

future  demands ( ~ u p a z o v d  (1985b)). 

A deeper  insight into the  modelled r e a l  life problem, however, leads t o  t he  

conclusion tha t  the  parameters  are far from being known precisely, tha t  t he  dis- 

tribution has  been estimated from time ser ies  of data  which are observed with a 

relatively high measurement e r r o r  o r  tha t  the  type of t he  distribution follows from 

the past experience and the  parameters  of the  distribution are estimated on the  

basis of random input data.  On the  o the r  hand, t he  final decision should not be  too 

sensitive t o  the  changes of t h e  parameters  and distributions, i t  should be robust 

enough. 

Example 2.3. The STABIL model (Prdkopa et al .  (1980)) w a s  applied t o  the  fourth 

Five-Year Plan of the  electr ical  energy sec tor  of Hungary. Besides numerous 

deterministic l inear constraints,  one joint probabilistic constraint 

w a s  used; the  four  right-hand sides w i ,  1 S i s 4, were regarded stochastic and 

the  joint distribution of these random variables w a s  supposed t o  be  normal. Due to  

the  lack of reliable data,  some of t he  correlations could not be  given precisely 

enough. That is why two alternative correlation matrices were considered in 

Prdkopa e t  al. (1980) and the  numerical resul ts  were compared. 

Alternatively, instead of given normal distributions N ( p  , El) o r  N ( p  , E2) 

the i r  mixture 

(1-t) N ( p ,  El) + t N ( p ,  E2) (2.2) 

can be  considered which helps t o  study the  changes of t he  optimal solution in prin- 

ciple f o r  0 S t S 1 ;  (2.2) corresponds t o  t he  gross  e r r o r  o r  contamination model. 

Example 2.4. Project  planning. The problem is  t o  fix t he  completion time T of the  

given project.  The reduction of the  completion time is  profitable a t  the  rate of 



c r 0 and the  eventual delay in the completion is penalized with q 2 c p e r  time 

unit. The project  is represented by a network whose a r c s  correspond t o  the 

planned activities. Assume tha t  there  is one sink and one source only and tha t  the 

activities a r e  numbered by indices 1 S i S n . Whereas the  s t ruc ture  of the  pro- 

ject (the network) is supposed t o  be given, the completion times, say o i ,  of the 

activities a r e  random variables and so  is the total  completion time T. According t o  

our  formulation, the decision T has t o  be made before the realizations of oils a r e  

known and one has to  solve the stochastic program 

min IcT + q EF [T(w) - TI + j 
T 

(2.3) 

where F denotes the joint distribution of the n-dimensional random vector  w and 

the explicit form of the ~ ( w )  can be derived. 

In practice,  the distribution F is hardly known completely. Using the PERT- 

method, one usually solves the  problem (2.3) under assumption tha t  the random 

completion times wi a r e  independently distributed with a Beta-distribution over  a 

given interval. The parameters p , q of the  Beta distribution a r e  usually fixed on 

the basis of the available information about some character is t ics  of the distribu- 

tion, such as the mean value, mode and variance. 

EzampLe 2.5. (Seppala (1975)).  In his stochastic multi-facility problem Seppala 

considers the  case of stochastically dependent weight coefficients. In o r d e r  t o  

eliminate the estimation of the correlation coefficients, he introduces a parameter 

to  the model which weights the  totally correlated case and the uncorrelated one. 

3. Nonlinear programming s tabi l i ty  r e su l t s  and est imated parameters  

A s  ou r  starting point, consider the following deterministic nonlinear program 

depending on a vector parameter y: 

Let Y c Rq be an open set ,  h : Rn XY -+ R m + P f l  be  given continuously dif- 

ferentiable functions. For a fixed y E Y, the problem is  t o  



maximize ho ( z  ; y ) 

s u b j e c t t o h i ( z  ; y ) 2 O ,  1 5 i  5 m  , 

h i ( z ;  y ) = O , m + l S i S m + p .  

The corresponding Lagrange function has  the  form 

m 
L ( z .  u .  v : y  ) = h o ( z ;  y )  + ui hi ( z ;  y ) +  f vi  h,,, ( z ;  y )  

i =1 i =I 

and by w ( y )  = [ z ( y )  , u ( y )  , v ( y )  ] ER'" X R ?  x R P ,  the  Kuhn-Tucker point of 

M ( y )  will be denoted. The knowledge of the Kuhn-Tucker conditions of t he  f i r s t  

and second o r d e r  as well a s  t he  knowledge of the  l inear independence condition 

and the  s t r i c t  complementarity conditions (Fiacco (1976),  Robinson (1980)) will be  

assumed throughout the  text .  

Theorem 3.1. Let y O E Y a n d  let  w ( y  O )  be t h e  Kuhn-Tucker  p o i n t  of M ( y  O )  for 

w h i c h  t h e  Kuhn-Tucker  cond i t ions  of t h e  f i r s t  a n d  second order ,  t h e  l i n e a r  

independence  c o n d i t i o n  a n d  t h e  s t r i c t  complementari ty  c o n d i t i o n s  hold t r u e .  

Let o n  a neighbourhood of [z ( y  O ) ; y O ] , hi , 0 S i S m +p , be twice  c o n t i n u -  

o u s l y  d i f ferent iable  w i t h  .respect to z a n d  c o n t i n u o u s  d e r i v a t i v e s  

a2 hi ( z  ; 31) 
e x i s t s f o r  al l  1 S k  s q ,  1s j S n ,  O s i  s m + p .  

ayk azj 

Then  t h e  following s ta tements  hold t r u e :  

(a) For y E 0 ,  ( y o ) ,  there  exists a u n i q u e  once c o n t i n u o u s l y  d w e r e n t i a b l e  

j 'unction w ( y  ) = [z ( y  ) , u ( y  ) , v ( y  ) ]  s a t i s f i i n g  t h e  Kuhn-Tucker  condi-  

t i o n s  of t h e  f i r s t  a n d  second order ,  t h e  l i n e a r  independence  c o n d i t i o n  a n d  

t h e  s t r i c t  complementari ty  c o n d i t i o n s  for  M (y). 

(b )  Let I ( y )  c i l ,  . . . , m 1 c o n t a i n  t h e  i n d i c e s  of t h e  ac t i ve  i n e q u a l i t y  con- 

straints 

h i ( z ( v ) ; y ) = O , i  E I ( u ) ,  

a n d  denote b y  



V , h I ( x ; y ) = [ V , h I ( x ; ~ ) , i ~ I ( y ) , V x h i ( x ; y ) , m + 1 ~ i ~ ~ + ~ l ~  

V ,  h I ( x ; y ) = [ V ,  h I ( x ; y ) , i  € I ( y ) , V ,  h i ( x ; y ) , m + l S i s m + ~ l .  

Let further 

and the  remaining components of equal to  0. av 

The statements of Theorem 3.1 a r e  a modification of results by Fiacco (1976), 

and Robinson (1974). Due t o  the assumptions, the implicit function theorem can be 

applied t o  the  system of equations which correspond t o  the  active constraints in 

the Kuhn-Tucker conditions of the f i rs t  o rder .  Namely, the s t r ic t  complementarity 

conditions play an  important role  reducing locally the program M ( y  O ) t o  a classi- 

cal maximization problem with equality constraints. 

The assumptions can be weakened using results by Robinson (1980): Without 

assuming the s t r ic t  complementarity conditions in M ( y  ), let  us denote 

and formulate the strong second order sugpicient condition: 

For each n # 0 with 

n T v ,  hi ( x ; y ) = ~ ,  i E I + ( Y )  

nT V ,  hi ( x  ; y )  = 0 ,  m+l  S i  S m + p  , 

the inequality nT v:, L (w ( y  ); y )n < 0 holds t rue.  

Except f o r  the  differentiability of the Kuhn-Tucker points w ( y ) ,  the  f i r s t  asser- 

tion of Theorem 3.1 can be parallelly reformulated. The differentiability property 



was studied, e.g., by Jittorntrum (1984). I t  is possible t o  get directional deriva- 

tives of w ( y )  in any direction under t he  strong second o r d e r  sufficient condition 

without assuming s t r i c t  complementarity conditions. W e  shall use this result  l a t e r  

in connection with the  contamination method (see Section 4). The most general 

result  on differentiability is due t o  Robinson (1984); fo r  i ts  application see the  

forthcoming paper  ~ u p a z o v d  (1986b). 

A s  w e  shall see later, the parameter vector y may correspond t o  the parame- 

ters of t he  underlying distribution F (see Theorem 3.2), t o  t he  parameter  of con- 

tamination (see Section 4) and, eventually, t o  the  probability levels ai , 1 s is m , 

in (1.4) or to o the r  parameters  used to build a specific decision model of stochas- 

t i c  programming. 

Assume now tha t  the  parameter vector  y in M(y ) is  connected with statistical 

assumptions about t he  distribution F of random coefficients in a stochastic pro- 

gramming decision model. I t  comes typically when F is  known to belong to a 

parametric family of distributions IFy , y E Y], so that  y is  t he  parameter vector 

identifying the  distribution. 

For the  stochastic program with recourse (1.3) i t  means tha t  for a fixed dis- 

tribution Fy , M(y ) is the  program 

maximize go ( z  ; y ): = EFY [ho (Z ; a )  - ~ ( z  ; o )  ] 

on a set Xwhich does not depend on Fy, e.g., 

X = [ z  ~ R ~ : g ~ ( z ) 2 O , l s i ~ m  , g i ( z ) = O , m + l s i s m + p  ], 

fo r  t he  stochastic program with probabilistic constraints (1.4), M(y)  is  the  pro- 

gram 

maximize go (z  ; y ) : = EFnjho ( z  ; o )  j 

subjec t tog , (z  ; y ) :  =PFYlh,(z;  o ) 2 O ,  n € I i ]  -ai 2 0 ,  15i  s m  , 

EXO 



In general ou r  aim is  t o  solve program (1.5) for  the  t rue  parameter vector,  say 

7) E Y. However, our  decision can only be  based on the  knowledge of an estimate, 

say y N ,  of 7. A s  a result ,  the  substitute program Al(yN) is  solved instead of M ( 7 ) .  

Under t he  asymptotic normality assumption on the  distribution of the  estimate y N  

in ~ ( y ~ ) ,  t he  deterministic stability resul ts  of Theorem 3.1 can be  complemented 

by statistical ones. 

Theorem 3.2. Let y N  be a n  asymptotically normally distributed estimate of the 

true  parameter vector 7 that i s  based o n  the sample of size N :  

- ( yN  - 7 )  " N(O , C) 

wi th  a known variance matriz  C .  Let the assumptions of Theorem 3.2 be fu l -  

filled for M ( 7 ) .  Then the optimal solution z ( y N )  of h f ( y N )  i s  asymptotically 

normal 

f l ( z : ( y N >  - Z ( 7 ) )  " N ( O  , n 
with  the variance matrix 

is  the (n  , p )  submatrix of (3.3). 
where [ ay ] 
R o o $  Under assumptions of Theorem 3.1, x ( y )  i s  a continuously differentiable 

(vector) function on a neighbourhood of x (7). Using the  normality assumption and 

the  &method [ Rao, 1973, p.3881, w e  get the  resul t  immediately. 

Remark 3.3. All elements of [el are continuous on a neighbourhood of 7 ,  so tha t  

t he  asymptotic distribution (3.4) can be substituted by 

see Rao (1973, p. 388). 



Ezample 3.4. The application of Theorem 3.2 t o  Example 2.1 is  straightforward. 

Let y be  the  vector consisting of asymptotically normal estimates s j  , 1 S j S 4 , 

of the t r u e  variances a j  , 1 S j S 4 .  According t o  Theorem 3.1, t he  derivatives 

az - exist  and the i r  values were obtained by Armacost and Fiacco (1974). W e  have 
ay  

thus asymptotic normality of the  optimal solution. To get  the  variance matrix of 

the  resulting distribution, the  variance matrix C (diagonal in ou r  case) should be  

az 
known besides of -. 

ay  

Special cases 3.5. In some special cases, i t  is possible t o  get  explicit formulas fo r  

the  derivatives - az and thus f o r  the  variance matrix V of the  asymptotic distribu- 
ay  

tion (3.4). W e  shall introduce the  results applied t o  the  simple recourse problem 

(see ~ u p a E o v d  (1984)): 

maximize go ( Z  ; y ): = c T~ - EFv 15 qi aij z j  - ui ]+I 
i =1 =I 

on the  set 

X =  Iz €Rn : R = p  , z 2 0 1 ,  

where P is a given (r  , n )  matrix of rank  r ,  c and p are fixed vectors,  

qi > 0 , 1 S i S m ,  are given and A = (a i j )  is  of the full column rank. 

To get  regularity w e  assume tha t  X i s  nonempty, bounded with nondegenerated 

vertices.  Further  w e  assume asymptotic normality of t he  estimates y N  of t he  t rue  

parameter  vector  q .  The differentiability propert ies  of g o ( z  ; q )  in a neighbour- 

hood of [ z  (7)  , q ]  are implied by assuming tha t  the marginal densities f i  are con- 

tinuous and positive in neighbourhoods of the  points 

I n 

L=1 
aij z j  (7)  ; q ,1 S i zs m , respectively. i 
Two types of parametric families will b e  considered: 

3.5.1. yi , 1 S i S m are location parameters. Then w e  have f o r  the  nonzero 



components z j  ( 7 )  , j E J of the  optimal solution z ( 7 )  

where 

Pj = @ y ) l < i  < r  e C = -AT QA t B = A T Q  
j d  

with 

3.5.2. y i ,  1 s i S m a r e  scale parameters, yi > 0 Vi . Then 

where 

c = - A ~ Q A ,  B = ~ ~ ~ d i a g  a i j z j  ( 7 ) . 1 s i  s m  
1 

and Q is  given by (3 .5) .  

4. Contaminated distributions 

Throughout this section, the functions g i  , 0 s i s m + p in (1.1) will be 

assumed t o  depend Linearly on the distribution F .  This assumption is evidently 

satisfied f o r  the  stochastic programs with recourse as well as f o r  those with pro- 

babilistic constraints, and in all cases when gi are expectations of suitable func- 

tions derived from h i .  Furthermore, we shall assume tha t  X = Rn , i t  means only 

tha t  the original deterministic constraints and the induced ones have been incor- 

porated into the  explicit constraints in (1.1)  ( with gi  (z  ; F )  independent of F ,  of 

course). 

The local behaviour of the  optimal solution z ( F )  of the  program (1.1)  with 

respect  t o  small changes of the  distribution F can be studied via t-contamination 

of the  distribution F by a suitably chosen distribution G ,  i.e., instead of F ,  distri- 

bution of the  form 



Ft = ( l - t ) F + t G ,  O s t  5 1  (4.1) 

will be  considered. In (4.1), Ft is called dis t r ibut ion  F t-contaminated b y  d is t r i -  

but ion  G. Due t o  ou r  assumption, the  original stability problem thus reduces t o  

tha t  linearly per turbed by a sca la r  parameter t E < 0 , 1 >: 

maximize ( 1  - t )  go ( z  ; F )  + tg, (z ; G )  

s u b j e c t t o ( 1 - t ) g i ( z ; F ) + t g i ( z ; G ) 2 0 ,  I s i s m ,  

( 1  - t ) g i  ( z  ; F ) + t g , ( z ;  G )  = 0 ,  m + 1 5 i  5 m + p .  

In principle, i t  is possible t o  get the  t ra jec tory  of the  optimal solutions 

z (Ft ) , 0 5 t 5 1; f o r  an  appropriate  method see e.g. Gf re re r  et al. (1983). 

We shall aim t o  obtain t he  ~ S t e a u x  differential d z ( F  ; G -F) of the  optimal 

solution of (1.1) in the  direction of G -F. To get  the  explicit results,  one has t o  

check the  differentiability and regularity assumptions of Theorem 3.1 and to  com- 

pute matrices B ( O ) ,  D(0) corresponding t o  t he  contamination parameter  t = 0.  

The knowledge of t he  Ggteaux differential of z ( F )  at F in t he  direction of 

G-F is useful not only f o r  t he  f i r s t  o rde r  approximation of the  optimal solutions 

corresponding t o  distributions belonging t o  a neighbourhood of F but also f o r  

deeper  statistical conclusions on robustness, namely, in connection with statistical 

propert ies  of the  estimate z(F,) of z ( F ) ,  which is  based on the  empirical distribu- 

tion F,. For fixed constraints in (4.2) and f o r  t he  special choices G = 6, (degen- 

e ra ted  distribution concentrated at one point w ) ,  t he  Ggteaux differential 

d z  (F ; 6, -F) corresponds t o  the  influence curve  RF(w) widely used in asymptotic 

statistics. Different character is t ics  of RF(w) suggested by Hampel (1974) measure 

the  effect of contamination of t h e  data  by gross  e r r o r s ,  the  local effect  of round- 

ing o r  grouping of t he  observations, etc. For an  example see ~ u p a z o v d  (1985a). 

Theorem 4.1. For the  program 

maximize go ( z  ; F )  

subject t o  gi (z ; F )  2 0 ,  1 5 i 5 m , 

g i ( z ; F ) = O ,  m + 1 5 i S m + p  



assume: 

( i )  g f  ( 0  ; F )  : Rn -, R' are twice cont inuously  dmerentiable,  0  s i s m + p ,  

( i i )  the Kuhn-ikcker conditions of the f irs t  and second order, the l inear 

independence condition and the strict complementarity conditions are 

fulfilled for w ( F )  = [z  ( F )  , u ( F )  , v ( F ) ]  E Rn X RT X RP , 

(iii) there i s  a neighbourhood 19(z ( F ) )  c Rn on which  gi (* ; G )  , 0 s i s m +p 

are twice cont inuously  dinerentiable. . 

Then: 

(a )  There i s  a neighbourhood 19(w ( F ) )  c Rn x RT X RP , a real number to > 0 

and a continuous funct ion w : < 0 , t o )  -, 19(w ( F ) ) ,  w (0 )  = w ( F )  such  that  

for a n y  t E < O , t o )  , w ( t )  = [ x ( t )  , u ( t )  , v ( t ) ]  i s  the Kuhn-Tucker point of 

(4.2) for which  the second order sugpicient condition, the l inear  indepen- 

dence condition and the s tr ict  complementarity conditions are fulfilled. 

( b )  The G t e a u z  dinerential  dw (F ;G -F) of the Kuhn-Tucker point w ( F )  of 

(4.3) in the direction of G -F i s  given by  

The remaining components of dw (F ; G -F), which  correspond to  the non-  

active constraints  in (4.3), equal to  0. 

R o o f  is a straightforward application o f  Theorem 3.1. We took the liberty o f  

adopting the notation t o  our case; namely 

wr(F> = Cz ( F )  , ~1 ( F )  , i E I ( F ) ,  v (F)]  

with I ( F )  c i l ,  . . . , m j containing the indices o f  the active inequality constraints 

g i ( z ( F )  ; F )  = 0 , g I ( x ( F )  ; G )  and g l (x(F)  ; F )  are vectors consisting of com- 

ponents g f ( x ( F ) ; G )  and g f ( z ( F ) ; F )  for i ~ I ( F ) , m + l s i s m + p ,  



respectively,  

V, g1 ( x  ( F )  ; F )  i s  a matrix consisting of columns V, gi ( x  ( F )  ; F )  f o r  i E I ( F )  

a n d m + l S i  S m + p .  

Due t o  t he  fac t  tha t  (4.2) is  linearly per turbed,  w e  have 

V:,L ( w ;  t ) = V , L  ( w  ; G )  - V t L  ( w  ; F ) ,  

vt 91 ( x ;  t )  =g1 ( X  ; G )  -91 ( X  ; F ) ,  

s o  tha t  

v:, L ( w  ( F )  ; t )  = V, L ( w  ( F )  ; G )  

vt 91 ( X  ( F ) ;  t )  = B I  ( X  ( F ) ;  G ) .  

Remark 4.2. For fixed constrains in (4.2), i.e., f o r  gi ( x  ; F )  independent of F ,  w e  

have evidently gi ( x  ( F )  ; G )  = gi ( x  ( F )  ; F )  = 0 f o r  i E I ( F )  or m +1 s i s m +p 

in (4.4).  In t he  case of stochastic program with recourse  

maximize go ( x  ; F )  

on a s e t  X described by fixed constraints g i ( x )  2 0 , 1 S i S m ,  

g i ( x )  = 0 ,  m + l S i  S m + p ,  wehave thus  

Theorem 4.3. Let a s sump t ions  of Theorem 4.1 hold t r u e .  

(a) Let t he  m a t r i x  

L = v:, L ( w  ( F )  ; F )  

be nons ingu lar .  Then t he  G t e a u x  d w r e n t i a l  of t he  isolated Local maxim-  

i z e r  x ( F )  of (4.3) in the  direct ion of G -F i s  g i ven  by 

dx (F;G-F)  = -C-~V,L ( w  (F ) ;G)  

where  

c-1 = [ I  -L - l p ( p T ~  -1p) - 1 p T - j ~  -1 

P = V, 91 ( x  ( F )  ; F )  

a n d  I i s  the  n -d imens iona l  unit m a t r i x .  



(b) Let t h e  m a t r i x  P = V,gI(x(F);F)  be of r a n k  n.  m e n  the  S t e a u x  d m r e n -  

tiaL of t he  isoLated LocaL maximizer  x ( F )  of (4.3) in the  direct ion of G -F i s  

g iven  b y  

d z ( F  ; G-F) = -(pT)-l gI ( z ( F )  ; G ) .  

A.ooj'follows from (4.4) by well known formulas fo r  inversion of the  matrix 

which is nonsingular and which contains the nonsingular square submatrix L in the 

case of (a) o r  the nonsingular square submatrix P in case (b). 

The assumptions of s t r i c t  complementarity play an essential role  in the proof 

of Theorem 4.1. They guarantee that  the interval < 0 ,  t o )  on which w ( t )  is  the 

Kuhn-Tucker point of (4.2) is  nonempty. Aitsrnatively, the  s t r ic t  complementarity 

conditions can be replaced by the strong second o rde r  sufficient condition which 

w a s  stated in Section 3. Thanks to  the fact,  tha t  we have a sca la r  parameter only 

and tha t  w e  are in fact  interested in the  right-hand derivatives of the  optimal solu- 

tion with respect  to  the  parameter at the given point t = 0 ,  the resul t  of Jit- 

torntrum (1984) applied to  ou r  problem gives the desired assertion on the Ggteaux 

differential. 

Denote I+(F)  = ti G ( F )  : ui ( F )  > 01, I0 ( F )  = ti G ( F )  : ui ( F )  = 01. Under 

s t r ic t  complementarity conditions, I0  ( F )  = $. 

Theorem 4.4. Let in assumpt ions  of meorem 4.1, s t r ic t  compLementatity condi- 

t i o n s  be repLaced b y  t he  s trong second order suppicient condition. Then: 

(a) There i s  a neighbourhood ?P(w ( F ) )  c Rn x Ry x RP , a reaL number  to > 0 

a n d  a con t inuous  func t ion  w : < O , t o )  -, ?P(w ( F ) )  , w (0) = w ( F )  s u c h  t h a t  

for a n y  t E < 0 ,  t o ) ,  w ( t )  = [ z ( t )  , u ( t )  , v ( t ) ]  i s  the  Kuhn-Tucker po in t  

of (4.2) for w h i c h  the  strong second order s u m c i e n t  condi t ion a n d  the  

Linear independence condi t ion a re  fuLfiLLed. 



(b) There i s  a se t  R of i n d i c e s  s u c h  tha t  

I f ( F )  c R c I+(F)  u I0 (F) = I (F )  , 

for w h i c h  the  nonzero components of the  G i t e a u z  d i n e r e n t i a l  d w  ( F  ; G -F) 

a r e  g i v e n  b y  

'-I [ vz  L ( w  (F) ; C) 1 
dwR(F ; G-F) = - 

[ V, g~ (2 (F) ;F)  I T  o g~ (2 (F) ; G) 1 .  
Special  cases  4.5. For specific decision models of stochastic programming, w e  can 

get correspondingly t he  specific form of t he  assumptions as well as the  explicit 

formulas f o r  t he  ~ g t e a u x  differentials. The assumptions can be  subdivided into 

t h r e e  categories: 

(A) The basic model assumptions, including the  absolute continuity of t he  distribu- 

tion F. 

(B) The general assumptions such as the  existence of the  Kuhn-Tucker point fo r  

which s t r i c t  complementarity conditions are fulfilled. 

(C) The assumptions of differentiability, t he  linear independence condition and 

the  2nd o r d e r  sufficient condition, which can be  fitted t o  t he  considered 

model. 

In t he  following survey of results,  w e  shall l ist  mostly the  form of the assump- 

tions of t h e  last  category and w e  shall give explicit formulas fo r  t h e  reduced vec- 

t o r s  of t he  Gsteaux differentials containing the  nonzero components only. The full 

statements can be  found in Dupa;ovd (1983), (1985a), (1986a). 

4.5.1. Simple recourse  problem (Dupazovd (1983)) 

with qi > 0 , 1 s i 5 m , A = (ai,) and c given and F such tha t  EFa exists. 

Assumpt ions:  



(i) Denote J = [ j : xj (F)  > 0 1 ; t h e  matrix AJ = (aij)l , ,,, has  full column rank.  
f  € 3  

(ii) The marginal densit ies f ,  , 1 S i S m ,  are continuous and positive at t h e  

points + (F)  = z aij x j (F)  , 1 r i S m , respectively.  
j 

(iii) G is  a n  m-dimensional distribution whose marginal distr ibution functions Gi 

have continuous derivatives on neighbourhoods of t h e  points 

+ (F) , 1 S ?; i m , respectively.  

&tea- d i f lerent ia l  

dzj ( F  ; G - F )  = ( A ~ K A ~ ) "  (CJ -~!k), 

where 

with 

ki = q i  Gi (Xi(F)), 1 i i  s m  , 

and 

K = d i a g I q i  f i ( + ( F ) ) ,  1 i i  s m  1 . 
4.5.2. I n d i v i d u a l  p r o b a b i l i s t i c  c o n s t r a i n t s  ( ~ u ~ a d o v d  (1986a)) 

maximize c (x  ) 
n 

subject  t o P p i  z aij xj 2 O, 1 2 a, , 1 i i i m 1 
j =I 

with a, E (0 , I ) ,  , 1 i i i m and A = (ai j)  given; ai denotes t h e  i -th row of A .  

Assumptions:  

(i) c : Rn -, R1 i s  twice continuously differentiable.  

(ti) The rank  of AI = (a i j  ) , I equals t o  c a r d  Z(F) = c a r d  I. 
l r j r n  

(iii) The marginal densit ies f i  , 1 9  i i m , are continuously differentiable on 

neighbourhoods of + (F) = z aij xj (F) , 1 i i i m , respectively,  and 
j 



(iv) G is an  m-dimensional distribution whose marginal distribution functions Gt 

are twice continuously differentiable on neighbourhoods of the points 

3 (F) , 1 5 i 5 m , respectively. 

(v) For all  1 ERn , 1 # 0, fo r  which AIL = 0, inequality 1 V& c ( z  (F)) 1 < 0 holds 

t rue  and the  matrix 

L = v : ~ L ( ~ ( F ) ; F ) = v : ~ c ( x ( F ) ) +  C u ~ ( F ) ~ ~ ( ~ ( F ) ) u ~ ~ u ~  
t E I C F )  

is nonsingular. 

where 

GI = [Gi ( 3  (F))], ,IF) and "I = [at It E IF) . (4.9) 

4.5.3. For the case of individual probabilistic constraints and a l i n e a r  objective 

function c ( z )  = c T z ,  substantially weaker assumptions can be  used t o  get  a resul t  

comparable with tha t  of Theorem 4.3; s ee  ~upaGovd (1986a). 

Assumptions: 

T (i) c ( z )  = c  z 

(ii) The optimal solution z (F) is unique and nondegenerated. 

(iii) The marginal densities f t  , 1 5 i 5 m are continuous and positive at the 

points 3 (F) , 1 5 i 5 m , respectively. 

(iv) G is an  m-dimensional distribution whose marginal distribution functions Gi 

have continuous derivatives on neighbourhoods of the points 

3 (F) , 1 5 i 5 m , respectively. 

a t e a u z  d ine ren t i a l  



where PI , GI , az are given by (4.8) and (4.9). 

Comment. In the  las t  case,  t he  assumptions on the  distributions are comparable 

with those f o r  t he  simple recourse  problem, which is quite natural. Contrary t o  

t he  case of nonlinear objective function, z ( F )  is the  optimal solution of t he  l inear 

program 

maximize c T z  subject t o  Az 2b (4.11) 

where bi = Fi-l(ai ). Similarly, z ( t  ) is t he  optimal solution of t he  l inear program 

maximize c T z  subject t o  Ax 2 bt , 

where bit = Fiil ( a i ) ,  1 S i S m ,  are the  quantities of the  contaminated marginal 

distribution function 

Fit ( K )  = (1 - t )  Fi ( K )  + tGi ( K )  . 

Let us approximate Firl(ai) linearly (see e.g. Serfling (1980)): 

and approximate z ( t )  by the  optimal solution z ( t )  of t he  following linear 

parametric program: 

T maximize c z 

n - Gi ( ~ ~ - ~ ( a ~ ) )  
subject t o  aij z j  2 Fi-l(ai ) + t , 1 S i  S m .  

j =l Pi (Fi-l(ai 1) 

Let B = A :  be  the  optimal basis of t h e  l inear program dual t o  (4.11); then 

z ( F )  = AZ-lbz and 5 ( F )  = Fi-l(ai) , i E I . According t o  our  assumptions, z ( F )  is 

unique and nondegenerated, s o  t ha t  B is optimal fo r  t belonging t o  a neighbour- 

hood of zero and 

= z ( F )  + t d z ( F  ; G-F) 



using the  result  (4.10). 

4.5.4. One jo int  probabilist ic cons t ra in t  ( ~ u p a z o v d  (1986a)) 

maximize c (z  ) 

subject t o  PFfAz r o j r a 

with a E (0 ,1) ,  A = (aU ) given. 

Assumptions:  

(i) c : Rn + R' i s  twice continuously differentiable. 

(ii) There is  a Kuhn-Tucker point w ( F )  = [z ( F )  ; u (F) ]  f o r  (4.13) such tha t  

u ( F )  > 0 and the  second-order sufficient condition is  fulfilled. 

(iii) In a neighbourhood of X(F)  : = A z  ( F ) ,  the  distribution functions F and G are 

twice continuously differentiable and 

A VX F(X(F) )  # 0 . 

where 

T 2 L = V& L (w ( F )  ; F )  = V& c ( z  ( F ) )  + u ( F )  A Vx F (X (F) )A  , 

L ( F )  = v x ~  ( X  ( F ) ) ~  A L - ~  A T V ~ F  ( X  ( F ) )  . 

Comment. Having solved the  original problem (4.13), w e  know z ( F )  and w e  have t o  

compute u ( F )  , L and t o  evaluate G (Az  (F)) - a , VX G (Az  ( F ) )  , OX F (Az ( F ) )  

t o  get  the  Ggteaux differential. For a given z ( F )  , u ( F )  , F and G , i t  depends on 

the  difference between the  values of t he  distribution functions F(Az(F)) ,G(Az  ( F ) )  

and on the  relative differences of the i r  gradients which are measured by a%L and 
1 ( F )  



Vx F (Az (F)). VX G ( ) )  - I(F) 

For the gradient of F we have 

Vx F(X) = j'. ?')(x) 
where .f = diag ifi (4 ) , 1 S i S m j and F(')(x) is the m-vector of the conditional 

distribution functions F(x(~) I 4 ) , 1 S i S m ; he re  x ( ~ )  denotes the  (m - 1)- 

dimensional subvector of X in which the  i -th component, Xi, w a s  deleted. Similar 

formulas hold t rue  fo r  VX G (X). 

In Example 2.3, the two considered distributions F and G a r e  multinormal ones 

and differ by the i r  correlation matrices only. In this case,  gi = pi , 1 S i S m , 

the conditional distributions F(x(~) 1 4 ) , G (x(' ) I 4 ) , 1 S i S m , a r e  normal 

and 

with 

These circumstances make the numerical evaluation of the  Ggteaux differential 

realistic. 

5. The minimax approach 

Assume now tha t  the set X of admissible solutions i s  defined by fixed con- 

s t raints  only and tha t  the  objective function g,(z ; F) is l inear with respec t  t o  F 

(for a generalization t o  the  nonlinear case see Gaivoronski (1985)). In this case,  

we can set 

9,(z ;F)=EFfo  (2 ; o ) ,  

where f ,  (z , o) may e.g. correspond t o  the  difference h, (z ; o) - cp(z ; o) in the  

general stochastic program with recourse (1.3). L e t  F be a given set of distribu- 

tions t o  which F is known t o  belong. (The case of the complete knowledge of the  



distribution corresponds t o  F = IF{.)  Consider the  two-person zero-sum game 

H = (X ,  F, g o )  (5 .1)  

where X i s  t he  set of s t ra tegies  of the  f i r s t  player,  F is  the  set of s t ra tegies  of the  

second player and go is t he  pay-off function. Any optimal pu re  s t ra tegy of the  

f i r s t  player in the  game (5 .1)  will be called t he  m i n i m a x  s o l u t i o n  of stochastic 

program 

max g o ( x ; F )  f o r F  E F  . 
T EX 

(5 .2)  

Under quite general assumptions on F, Xand J', , a minimax solution exists and 

sup min go ( x  ; F )  = FmpF ::px go (z ; F )  
r E X F E F  

(See e.g. 2dGkovd (1966),  Theodorescu (1969) . )  

To find a minimax solution means in general t o  solve an optimization problem 

maximize inf go ( x  ; F )  on the  set X . 
F E F  

(5 .3)  

If t he  set F of distributions is  defined, inter  alia, by prescr ibed values of cer ta in  

moments of the  distributions F E F, i t  is possible t o  use general resul ts  of t he  

moment problem t o  get  

inf g o ( z  ; F) 
F E F  

in a form suitable f o r  fu r the r  computations (see ~ u ~ a z o v d  (1977)) .  W e  shall  out- 

line t he  results of t he  moment problem briefly and w e  shall  indicate t he i r  applica- 

tion in stochastic programming. 

Let K : =(nl ,  . . . , n k )  : R + Rk , no : R + R 1  be  Bore1 measurable mappings. 

Denote c(R) t he  image of t he  set R under t h e  mapping n, by Y :  = conv n(R) t he  

convex hull of n(R) and assume tha t  int Y + 0. For y E int Y denote by FY t he  set 

of distributions of a random vector  o on (R , B) such tha t  cl ,  . . . , nk , no are 

integrable with respec t  t o  all  elements F E F and 



The moment problem is  t o  find 

L ( y  ) : = inf EF no (w)  . 
F E F,, 

Under t h e  above assumptions, 

where 

In many important cases, e.g., f o r  n compact, nl,  . . . , nk continuous, no lower 

semi-continuous, t h e  infimum (5.5b) and t h e  supremum (5 .6 )  are achieved.  In th is  

case ,  t h e r e  exis ts  a distr ibution P E F and a v e c t o r  d* E D  such t h a t  

k 
L ( y )  = E p  n o ( u )  = d*,  + C d* j  ~j 

j = l  
and f o r  t h e  given y E int  Y ,  problem (5.5b) reduces  t o  

Evidently, as a function of t h e  pa ramete r  y , L ( y  ) i s  convex. Para l l e l  r esu l t s  can 

b e  given f o r  t h e  u p p e r  bound U ( y  ). I t  i s  important from t h e  point of view of com- 

putation t h a t  FC in (5 .7)  i s  a discrete distribution. The corresponding probabil i ty 

measure must evidently b e  concentra ted in t h e  points o ER, f o r  which 

k 
do * + x d j  * nj  (w)  = no ( a ) .  Denote 

j = l  

Then f o r  almost a l l  y E int Y ,  t h e r e  i s  a unique d* E D such t h a t  y Econv B ( d * )  , 

1 
y =' x pi n ( w i )  with n ( w i )  E B ( d * )  ,1 5 i 5 1 , 

i =1 



and 

Corresponding t o  this  representation, 

For these and o the r  re la ted results see e.g. Kemperman (1968),  t he  case of the 

inequality constraints on the  moments w a s  studied by Kemperman (1972),  different 

approaches t o  the  case of t he  noncompact R can be  found e.g. in Richter (1957).  

Kemperman (1972),  Cipra (1985),  Gassman and Ziemba (1985). 

When applying the  above resul ts  t o  t he  minimax problem, i t  i s  quite natural t o  

put F = Fy and 

no ( w )  = Po (z  ; W )  . 
The dependence of f o  on the  decision variables z together  with the  final goal - t o  

solve the  "outer" maximization problem 

maximize inf EF f o  (z ; a )  on the  set X - 
F E F  

are the  reason why the  d i rec t  application is  possible only in special cases. 

This will be  t he  case if the  set of the  considered discrete  distributions possessing 

the propert ies  (5 .8 )  would be relatively small and independent on z o r  if i t  would 

be  possible t o  reduce t he  corresponding moment problem t o  finite number of one- 

dimensional moment problems. A s  an example of t h i  f i r s t  mentioned possibility, w e  

have 

Theorem 5.1. Let R c R~ be a convex polyhedron w i t h  extreme points  

ol,  . . . , c;N and  Let y Eint R. 

Let f o  : X x R -, R' be a concave func t ion  of w for a n y  fixed z E X. B n o t e  b y  

Fy the set of d i s t r i bu t i ons  F for w h i c h  



Then 

where  

min EFP0(x  ; w) = L ( y )  
F E Fy 

N 
L ( y )  : =max x pvP0  ( z  ; oV) 

v = l  
N 

subject  to p v o y =  yi , 1 S i  S k  , 
v = l  

The proof follows form t h e  more general  resul t  with a piecewise concave function 

Po ( z  ; 0) which w a s  studied in Dupa60vd (1976); see also Dupa60vd (1980a). 

The "worst" (i.e. t h e  extreme) distribution F* E FI, i s  a d i sc re te  distribution 

concentrated on at most k + 1  extreme points of R. The set F* c FI, of a l l  distribu- 

tions concentrated on at most k + 1  extreme points of R i s  well specified and does 

not depend on z 

For  Po separab le  in o ,  i.e., f o r  

where f o r  a r b i t r a r y  fixed z ,Poi ( z  ; o f ) ,  1 S i S k , i s  a concave function of one- 

k 
dimensional var iable  oi , and f o r  R = X <gi Sf >, a version of t h e  Edmundson 

i =l 

-Madansky bound follows easily from Theorem 5.1 (see Dupa;ovd (1977)): 

with 

z j  - Y j  
A j  : = - , l S i  S k .  

*j -y j  

In addition, by Jensen's inequality 

max EF Po ( z  ; o )  = Po ( z  ; EFo) = Po ( z  ; 3 ) . 
F E Fy 



Repeated application of (5.9) and (5.10) t o  sets of conditional distr ibutions with 

k - 
r e s p e c t  to subintervals  of X < _ o C  , u C  > possessing fixed conditional mean 

C =l 

values leads  to c l o s e r  bounds (see  Ben-Tal and Hochman (1972)). This idea h a s  

been successfully applied to algorithmic solution of t h e  complete r e c o u r s e  problem 

by Kall and Stoyan (1982), s e e  also Wets (1983), Birge and Wets (1983). From t h e  

just explained theore t i ca l  background i t  follows in addition, t h a t  t h e  bounds are  

the best with r e s p e c t  to t h e  considered set Fv. I t  means t h a t  without a n  additional 

information abou t  t h e  distr ibutions,  these  bounds cannot b e  improved. 

The above  r e s u l t s  on t h e  moment problem hold ou t  t h e  possibility of construct-  

ing bounds of more genera l  t y p e  using all available information on t h e  set F, for-  

mulated e i t h e r  in t e rms  of h igher  o r d e r  moment conditions or  quali tat ive condi- 

t ions l ike unimodality. The knowledge of t h e s e  bounds enables  one to draw conclu- 

sions on robustness  of t h e  optimal value of (5.2) with r e s p e c t  to t h e  distr ibutions 

belonging to F . On t h e  o t h e r  hand,  t h e  applicability of t h e  more complicated 

bounds in approximation schemes f o r  solving s tochast ic  programs is limited by 

t h e i r  numerical complexity. 

From t h e  point  of view of real-life applications t h e  case of distr ibutions with 

given mean values and second o r d e r  moments i s  quite typical. A s  a n  example of t h e  

r e l a t e d  resu l t ,  we have 

Theorem 5.2. Let n c R k  , 

F = j F : E F u i  = y r ,  v a r F u C  = u f , l S i  S k  1 

and 

f o b ;  a ) =  min { & ( z ) + u T f f ]  
1 r j r J  

where f j  E R k  and  d : X +'R1 , 1 S j S J , a r e  given a n d  such  tha t  f, ( z  ; o) i s  

bounded from above on  X x R. 



m e n  min EF f o  ( x  ; o )  equals to the mazimal value of the l inear program 
F E P,, 

subject t o  conditions 

For t he  details see ~ u p a z o v d  (1980b). The resulting program is  a convex one, 

i ts  form is  suitable f o r  stability analysis with respec t  t o  parameters y , u2 and 

with respec t  t o  t he  decision variables x . 

Slpecial case 5.3. Using t h e  general approach f o r  t h e  simple recourse problem 

n 
maximize min E F ) c T x  - 2 qf ( c  a f j x j  - o f ) + {  o n a s e t X  

F E P f=1 j=1  

with F given by (5.11), w e  evidently can write 

m n 
min EFlcTx - C qf ( C  a f j x j  - o f ) + {  = 

F E P f =1 j=1 

n 
cTx - q, max ( C  a f j x j  - a i ) +  

( = I  F E P i  j=1 

where Ff  is t he  set of marginal distributions Ff corresponding t o  F E F and as a 

result ,  w e  get  an explicit formula 

m n 
min EFlcTx - C qf ( C a f j x j  - o f ) + ]  = 

F E P  f =1 j=1 

For t he  proof see ~ u ~ a z o v d  (1977) , (1980a), Jagannathan (1977). 

The complexity of the  problem substantially increases if t h e  information about 

covariances is  considered. A similar situation is well known both in stochastic 

l inear programs with recourse (e.g., t h e  case of simple versus complete recourse)  

and in probabilistic programming (e.g., t h e  case of individual versus joint proba- 



bilistic constraints). 

A method of solving problem (5.3) fo r  the  set F described by general moment 

conditions w a s  suggested in Ermoliev, Gaivoronski and Nedeva (1985). Using the  

fac t  tha t  t he  extreme distribution F E F can be  found among the  discrete  distribu- 

tions together with t he  corresponding duality relations helps t o  reformulate the  

problem 

max min EF Yo ( z  ; w) , 
x E X  F E P  

with yo concave in z , 

F =  IF: PF(R) = 1 ,  E F K ~ ( u )  r u t ,  l S i  S k  j 

and X , R convex, compact, into t he  following one 

k 
max @I - * [ K ~ ( ~ ) - Y ~ I ]  

t E X , ~ E R $  o E ~ I  i =I 

which is solvable by means of stochastic quasigradient methods o r  o the r  methods 

suitable f o r  nondifferentiable optimization. 

In many real-life situations, one has  at t he i r  disposal besides knowledge of 

some moments, a qualitatively different information about t he  distribution such as 

i ts  unimodality. W e  shall see, tha t  i t  is often possible t o  remove this additional 

condition by a suitable transformation and t o  reduce t he  problem t o  t he  original 

moment problem. 

Definition 5.4. A random variable w is  unimodal  if t h e r e  is  a number yo  such tha t  

the  distribution function of w is convex on (-- , y o  > and concave on < yo  , + -). 

Any number yo  with the  given property is  called the  mode of t he  distribution. 

Denote by Fy [yo] t he  set of unimodal distributions on R' with t he  given mode 

yo  such tha t  f o r  all  F E Fy [yo], t he  moment conditions (5.4) are fulfilled. Define a 

transformation T on Bore1 measurable functions Q which are integrable over  any 

closed sub-interval of (-- , y o )  and (yo + -) as follows: 



= @(u)  fo r  u = yo  . 

Denote fu r the r  by @ t h e  set of all distributions such tha t  

E F T ( c j 1 )  < a , O ~ j  ~ k .  V F  E P .  
Then 

* * 
inf EF co(o) = inf IEF c o ( w ) :  F E P .  EF ~ ~ ( o )  = y j  . 1 S j S k i  (5.13) 

F E Fy [yo I 

The t ransformed moment problem (5.13) has t he  form of t he  classical moment 

problem (5.4),  (5.5b),  the  number of moment conditions remains unchanged whereas 

the  qualitative condition of unimodality does not appear  any more. All extremal 

points of the  set Fy [ y o ]  are mixtures of uniform distributions over  (u , y o )  o r  

( y o  , u )  and of t he  degenerated distribution concentrated at y o .  (For these and 

related resul ts  see Cipra (1978). ) 

For application to  the  minimax problem (5.3), the  following resul t  ( ~ u ~ a z o v d  

(1977))  i s  important: 

Theorem 5.5. Let @ be a real va lued  concave (convex] func t ion  o n  R' that is  

integrable  over a n y  closed sub in t e rva l  of ( - a ,  y o )  a n d  ( y o  , +a) .  Then  

@* = T @  defined b y  (5.21 is  concave (convez). 

m e c i a l  case 5.6. Let 

where for an a rb i t r a ry  fixed z E X ,  f o i ( z  ; a), 1 S i 5 k is  a concave function of. 

the  one-dimensional variable oi . Let oi be  independent random variables whose 

- 
distributions Fi are unimodal with a given mode yio, given range <gi , oi > and 

mean value yi , 1 S i S k .  Solving the  k-dimensional moment problem reduces t o  

solving one-dimensional one of the  following type: 



inf EF Po (Z ; w) 
F E Fy [YO] 

where o E <g , 3 >, t h e  distr ibution F is  unimodal with a given mode yo and fulfills 

t h e  moment condition EF w = y and Po (z ; *) i s  concave in w f o r  any fixed z E X 

Using (5.12) f o r  nl(o) = o w e  g e t  

Yo u + Y O  
c:(u> = J u d o =  f o r  u # yo 

-yo ,' 

= u  = u + Y O  
2 

f o r  u = yo . 

The moment condition in t h e  transformed moment problem (5.13) r e a d s  

s o  t h a t  

Ep w = 2 y  - y o  . 
* 

Using now t h e  concavity p r o p e r t y  of Po (z ; u )  toge ther  with (5.9), (5.12) and 

- 
(5.13), w e  g e t  f o r  y o  E int  < _w , w > 

* * 
inf EF Po (Z ; w) = Afo (Z ; a )  + (1 - A) Po (Z ; 'ij) = 

F E F y  C u o l  

where 

- 
0 - 2 ~  + Y O  

A =  - 
w -g 

* 
The "worst" distr ibution F E Fy [y O] possesses t h e  density 

- 
0 - 2 ~  + y o  

~ ( 0 )  = f o r  w E < g  , yo) 
(W - 0)(yo - 0 )  

- - 29 - y o  -a - 
f o r  w € ( y o ,  w > 

( 0  -a)(= - y o )  

o r  in o t h e r  words, i t  i s  t h e  mixture of two uniform distr ibutions o v e r  (y , yo) and 



(yo , E > with the weights h and 1 - A ,  respectively. 

In the  case of an unknown mode, i ts  position can be found in an optimal way 

(i.e., giving the "worst" distribution again). A s  a result  we have (see ~ u ~ a 6 o v d  

(1977)): 

Theorem 5.7. Let F'; be a set  of unirnodal d i s t r i bu t i ons  (w i th  a n  u n k n o w n  

mode) w i t h  a f ixed suppor t  < g , z > a n d  a g i ven  mean  v a l u e  y . Let no be con- 

- 
cave o n  < _o , w >. Then t h e  m i n i m u m  o fEF K, (w) for F E Fi i s  a t t a ined  

* - 1 
(i) for t h e  unigorm d i s t r i b u t i o n  F over < Y , w >, if 2 (Z + Y) = y , 

* 
(ii) for t he  d i s t r i b u t i o n  F1 E Fi, w h i c h  i s  a m i x t u r e  o f F  a n d  of t he  degen- 

erated d i s t r i b u t i o n  concentrated a t  g i f L  (Z + y) > y ,  
2 

* 
(iii) for t he  d i s t r i b u t i o n  F 2  E Fi, w h i c h  i s  a m i x t u r e  of F a n d  of t he  degen- 

erated d i s t r i b u t i o n  concentrated a t  z ig L (Z + g )  < y . 
2 

These results a r e  directly applicable in stochastic programming, s ee  e.g. 

Klein Haneveld (1984) f o r  the i r  application t o  project planning under incomplete 

knowledge of distribution: Instead of stochastic program with recourse described 

briefly in Example 2.4 he solves the problem 

minimize sup IcT + q EF [ ~ ( w )  - T ]  + j 
F E F 

where F is  s e t  of distributions whose marginal distributions a r e  unimodal with a 

given support and a given mean value. 

To s u m m a r i z e  - the  resul ts  on the minimax approach can be used 

(i) to  approach the  specific problems of stochastic programming with an  incom- 

plete information about the distribution of the random parameters,  

(ii) f o r  computing minimax (maximax) bounds on the  optimal value of the  objective 

function; these bounds a r e  of the type 



L F =  max inf EFj',(z ; o )  
t E X  F E F  

and 

UF = max sup EF j', (z  ; o )  
t E X  F E F  

and f o r  any F E F, w e  have inequalities 

L F S  max EFj',(z , o )  < U p .  
t E X  

The knowledge of the  bounds L and UF , provides an information about 

robustness of the  optimal value of the  objective function EF j', (z  ; o )  with 

respec t  t o  distributions F E F. With an increasing information about F w e  get  

narrower bounds. A special type of the  bounds has  been successfully used in 

approximation schemes f o r  numerical solution of the  stochastic programs 

(with t he  complete knowledge of t he  distribution). 

(iii) It seems reasonable t o  use the  worst distribution F* E F in place of t he  distri- 

bution G in t he  contamination method (see Section 4) at least  in cases when 

t h e r e  is no evidence fo r  using any o the r  distribution. The resulting objective 

function 

(1 - 1 )  EF Po(z  ; 0 )  + t EF* f O ( z  ; 0 )  

corresponds t o  t he  Hodges-Lehman decision rule  (see e.g. Schneeweiss (196'7)) 

and the  optimal solutions can be related t o  t he  "restricted Bayes s t ra tegies"  

of Nadeau and Theodorescu (1980). 

In all  t h e  cases mentioned, t he  advantage of t he  minimax approach is rela- 

tively easy computability of the  resulting program 

max E f , ( z  ; o )  
2 E X  

at least  in t he  cases when the  "worst" distribution F* or EF* f , (z  ; o )  can be  

determined explicitly. 
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