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PREFACE

It is now well-accepted that the modeling and analysis of system must include a
study of the stability of the solution under perturbations of the parameters of the
problems. In fact, a given problem should not be viewed as a single entity, but in
the context of a family of problems that are possible variants of the original one.
Of particular interest, are those stability questions that involve both decision
variables and dual variables (prices in economics), or state and co-state variables
in dynamics. This leads to the study of Lagrangian and Hamiltonian functions, and
their relationship to perturbations of the original problem. This is formulated in
this paper in terms of the continuity properties of the Legendre-Fenchel
transform.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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On continuity properties of the partial Legendre-Fenchel transform :

Convergence of sequences of augmented Lagrangian functions,

Moreau-Yosida approximates and subdifferential operators.

H. ATTOUCH D. AZE R. WETS

AVAMAC, Dept.Math, AVAMAC, Dept.Math. University of California
Université Perpignan Université Perpignan Davis

France France U.S.A

Abstract.

In this article we consider the continuity properties of the
partial Legendre-Fenchel transform which associates, to a bivariate
convex function F : X xY¥ —> IR VU {+w}, its partial conjugate
L : X><Y"i

>R, i.e L(x,y*) = innyY{F(x,y)-<y*,y>}. Following
[A=-Az -W] where this transformation has been proved to be bicontinu-
ous when convex functions F are equipped with the Mosco-epi-convergence
and convex-concavelLagrangian functions L with the Mosco-e-i/hypo-
convergence, we now investigate the corresponding convergence notions

for augmented Lagrangians, Moreau-Yosida approximates and sub-
differential operators.



1. Introduction.

In [A—Wll’ [Aewzl the authors have introduced a new
concept of convergence for bivariate functions specifically designed
to study the convergence of sequences of saddle value problems,

called epi/hypo-convergence.

A main feature of this convergence notion is, in the convex

settinag,to make the partial Legendre-Fenchel transform bicontinuous.

We recall that, given a convex function F : X xY —> TR its partial

. * =
Legendre-Fenchel transform is the convex-concave function L : XxY¥ —R

(1.1) L(x,y*) = infer {F(x,y) - <Y*IY'>}-

> L is one to one bicontinuous when convex

The transformation F
functions are equiped with epi-convergence and closed convex~concave
functions (in the sense of R.T Rockafellar [R3] ) with epi/hypo con-
vergence (see [A—W2] ;[A-Az-W]).

When, foliowing the classical duality scheme, functions 3k

are perturbation functions attached to the primal problems

inf o F'(x,0)
the above continuity property, combined with the variational proper-
ties of epi/hypc-convergence,is a key tool in order to study the con-
vergence of the saddle points (that is of primal and dual solutions)
of the corresponding Lagrangian functions {L" ;n € IN}.
The reduced problem is the study of epi-convergence of the sequence of
perturbation functions {F" ; n€IN}. This approach has been successfu-
lly applied to various situations in convex analysis (in convex pro-
gramming see D. Azé [Azll , for convergence problems in mechanics like
homogenization of composite materials or reinforcement by thin struc-
tures see [Azzl , H. Chabi [Ch] ...).

Indeed there are many other mathematical objects attached to
this classical duality scheme. Our main purpose in this article is to

study for each of them the corresponding convergence notion.



Particular attention is paid to the so called augmented
Lagrangian (especially quadratic augmented) wnose definition is (com-
pare with (1.1))

* . 2 *
(1.2) Lo(x,y") = inf oy {Flx,y) + > 1yl - <y”,y>)

and which can be viewed as an "augmented" partial Legendre-Fenchel

transform. In theorem 4.2 we prove the equivalence between Mosco epi/

hypo—-convergence of Lagrangian functions L” and

(1.3) for every r > O and y* € Y* the sequence of convex functions

{L?(.,y*) : n € N} Mosco epi-converges to Lr(.,y*).

By the way since Lr can be written as an inf-convolution

2
v

(1.4) - L= (-L) ¥ zir

we are led to study the two following basic properties of the inf-con-
volution operation, which explains the pratical importance (especially

from a numerical point of view) of the augmented Lagrangian

. regularization effect

. conservation of the infirma and minimizing elements.
This is considered in Propositions 3.1 and 3.2 for general convolution

kernels, see also M. Bcugeard and J.P. Penot [B-P] , M. Bougeard [B] .

Iterating this regularization process, but now on the x-va-

riable, we obtain the socalled Moreau-Yosida approximate

.. 1 s 1 o o% 2
(1.5) LA,u(X'y ) = lnfEGX SUp, cy¥ {vig,n) + ET'HX gl ym iy =ni <}

the inf-sup being equal to the sup-inf (for closed convex-concave
functions (theorem 5.1 d)) and the Mosco epi/hypo-convergence of L® to
L is equivalent to the pointwise convergence of the associated Moreau-
Yosida approximates (theorem 5.2). Moreover Iuﬂlhas the same saadle

elements as L! (theorem 5.1 b)).



Finally we characterize in terms of graph convergence of

subdifferential operators

it —S 5 31

the above notions (theorem 6.1) and summarize in a diagram all tnese

equivalent convergence properties. .



2. Convergence of convex-concave saddle functions and continuity of

the partial Legendre-Fenchel transformation.

2.1 Duality scheme

Let us first briefly rewiew the main features of Rockafellar's
duality scheme (cf. [R31 ’ [R4]_,[R5] ).

Let X,Y,X*,Y* be linear spaces such that X (resp. Y) is in separate

duality with x* (resp. Y*) via pairings denoted by <.,.>.

Let us consider

L:Xxy —> R

which is

convex in the x variable

. * .
concave in the y variable.

Let us define

F : X x Y —>1R
G: X x Y —TR
by
, _ * *
(2.1) F(x,y) = sup {L(x,y ) +<y ,y>}
y*GY*
(2.2) G(x*,y*) = inf {L(x,y*) - <x*,x>}.
xE€X

F (resp. G) is the convex (resp. concave) parent of the convex-conca-
ve function L.

Two convex-concave functions are said to be equivalent if they have
the same parents. A function L is said to be closed if its parents
are conjugate to each other i.e.

(2.3) -G = F¥ and (-6)* = F.



For closed convex—concave functions L, the associated egquivalence

class is an interval, denoted by [L,L] with

(2.4) E(x,y*) = sup {G(x*,y*) + <x*,x>}
x*ex*
- * . *
(2.5) T(x,y ) = inf {F(x,y) - <y ,y>}.

yEY
Let us observe that

*
*X

(2.6) L = (-G)

(2.7) -L =r"Y

*
where »y (resp. *X ) denotes the partial conjugation with respect to the

y (resp. x¥) variable.

If we denote by T(X xY) the class of all convex l.s.c

functions defined on X x Y with values in IR, we have the following

([Ry1).

Theorem 2.1.

The map K > F establishes a one-to one correspondance

between closed convex-concave equivalence classes and (X xY).

In the sequel, closed convex-concave functions will be as-
sumed to be proper i.e convex parent F is neither the function = + «

nor the function = - =,

In the classical theory of convex duality (see [E=-T ] ,[RS])
the Lagrangian associated to the proper closed convex perturbation
function F is the convex-concave function L defined in (2.5). The
research for a primal and dual solution is then equivalent to that

of a saddle point for the equivalence class which contains L.

2.2 Mosco epi-convergence

For further results see [Al] 131, [Mz].




Définition»2.2

Let X be a reflexive Banach space.
A sequence

F" : x —> R

is said to be Mosco-epi-convergent to F : X —> 1R

if

i) for every x € X, for every X, > X, linliann(xn) 2> F(x)

n

S

ii) for every x € X, there exists X, > x, lim supEJlbﬁj < P(x)

where w and s denotes respectively the weak and the strong topology
of X.

We then write
. n
(2.8) F = M-llme F.

A basic property of Mosco-convergence is the following
(cf. [Ml] )

Theorem 2.2

Let X be a reflexive Banach space and {Fn; F : X—> IR U{+=}}

a collection of closed convex proper functions.

Then

F o= M-limg F? <—> F¥ = M-lime(Fn)*.

Comment.

The above result establishes that the conjugation operation
is bicontinuous with respect to Mosco-convergence., In fact this ope-
ration, as proved in [A—W31 is an isometry for a gpuitable choice of

*
. t » 1- ’ .
metrics on o(k) and TO(X )




2.3 Extended Mosco-epi/hypo-convergence

Let (E,T)'and F,d)-be topological spaces and I":ExF — R
a sequence of bivariate functions, we define, for every (x,y) € E x F

(2.9) (e_/h -1s L) (x,y) = sup inf (lim sup L%(x_, y.))
/o s e n n'’Yn
Yy X *X

(2.10) (h /e_-=-1i Ln)(x,y) = inf sup (lim inf Ln(x P YL )) .
o/ 1 T g n n

n
*>X >
xn yn Y

Definition 2.3 (see [A—Wl] ,[A—W2], [ a-AzZ-W ])

Let X and Y be reflexive Banach spaces and

n

{",L : XxxY* —> |} a collection of bivariate functions.

We say that L" Mosco epi/hypo—converges to L in the ex-
tended sense if

_ n — _ 414 7D
(2.11) _g_l_(es/hw ls L) < L <c1(hs/ew i ).

where ¢l and cl denotes respectively the extended lower closure and
the extended upper closure, that is, for any function F : (X,71) —mIR

(cl F if Ccl F > -o
cl F =

t-m otherwise.
cl F denoting the l.s.c regularization of F, and
cl F = cl (-F).
For a convex function, it is well known that
cl F = F*f.
(let us observe that es/hw-ls L™ is convex in x and hs/ew-li 1" is cor-

cave in y* + then in definition (2.11) the extended closure operations

reduce to biconjugation).



The following result ((A-~Az-¥]) establishes that the par-
tial conjugation defined in (2,4) and (2.5) is bicontinuous when
TO(X><Y) is endowed with Mosco convergence and the classes of closed

convex~concave fonctions is endowed with extended Mcsco epi/hypo-convergence.

Theorem 2.4 ([A -2z -W] theorem 3.2)

Let us consider X and Y, refla=xive Banach spaces, and
{F" ,F : XxY —> IR} a collection of closed proper convex functions
with associated equivalence classes of closed convex-concave functions
denoted by Lt , L.

Then, are eguivalent

M

ii) i —E:EZE—> L (extended Mosco epi/hypo-convercence)

The extended Mosco epi/hypc-convercenrnce) is a variational conver-

gence in a sense made precise by

Theorem 2.5 (A-2Az-%W], theorem 2.6).

Let us consider (X,T) and (Y,o) two ceneral topological spaces and

{K" ,K : X x Y —> TR} a sequence of bivariate functions such that

n — . D
cl(e /hy-1s K) < K < cl(h /e -1i K")

_ - n
!(x yY.,) is a saddle point of K k for all k € Iv ,
(2.12) k7 7k
Xy > x and Yy > y.
Then

— — — n — —
(2.13) (x,y) is a saddle point of K and K(x,y) =]3im K k(xk ,yk).
-4
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3. Further properties of infimal convolution : regularization effects,

conservation of infimal value and minimizing elements

In preceding section 2.3 the partial Legendre-Fenchel transform
F—X 5 1 = - (F*)

. *
L(Xry*) = inf {F(x,y) - <y ' y>}
yEY
has been introaucea and its continuity properties have been briefly

reviewed. In the case of convex programming

min f_(x)
xEX ©

subject to f,(x) <0 i =1,2,...,n

the Lagrangian function L attached to the classical perturbation func-
tion F is given by

* *
' <
Y5 fi(x) if y 0

=3

fo(x) -

L(x.y*) = i=1

- otherwise

A major technical difficulty which arises when using directly this
Lagrangian comes from the fact that the value -« is taken on. A natural
idea is to replace it by some smoother function either by approximation
(penalization of the constraint y* < 0) or even better relying on the

approximation-regularization by infimal convolution (with respect to

the perturbation variable y*). This last approach gives rise to the so
called augmented Lagrangian for example

¥, 1 2
Lr(x,y ) = L(x,.) A 55 “." *

b4

(where 4 denotes the sup-convolution) is the "quadratic" augmented
Lagrangian) .

In the next section we shall study the correspondance

F > L

r

which can be viewed as a "generalized" partial duality transform and

shall describe its continuity properties.
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In this paragraph we study two main features of the infeconvolution
cperation which enlight the pratical Importance of augmented Lagrangian

functions

(3.0) . The inf-convolution by a smooth kernel has a smoothing
effect.

(3.1) . The inf-convolution preserves the infimal value and the

set of minimizing elements.

In the above setting it follows that the Lagrangian and corresponding

augmented Lagrangian functions have exactly the same saddle elements.

The following propositions, which are related to some re-
sults obtained simultaneously by M. Bougeard and J.P Penot [B-P] , see
also [B] allow us to select well-behaved convolution kernels for which

the two above basic properties (3.0) and (3.1) hold.

Proposition 3.1

Let (X,d) be a general metric space, F : X —> TR a real
extended valued function and k : r' —r" a positive function such
that
{3.2) k(0) = 0.

Let us deiine, for every x belonging to X
F (x) = inf {F(y) + k(d(x,y))}.
yEX
Then
a) inf Fk(x) = inf F(x)
xX€X xE€X
b) argmin (cl F) C argmin (cl Fk).

Moreover, if we assume that

(3.3) Inf F >=-» and
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(3.4) k(t) —> O implies t ~> O
then
c) argmin (cl F) = argmin (cl Fk)

where cl(.) denotes the lower-semicontinuous regularization operation

(with respect to the topology induced by 4 !).

Proof

a) inf Fk(x) inf [inf (F(y) + k (d(x,y)) 1
xX€X X€X y€vY

= inf [inf (F(y) + k(d(x,y))) 1]

yEY  xEX
= inf F(y)
yEY

since k(0) = 0.
b) Let us now consider X € argmin (cl F), that means

cl F(X) = inf(cl F) = inf F = inf F, = inf cl F

X X X X k

thus we derive, since Fk < F

cl Fk(i) < cl F(X) = inf c1 F

X k

and b) follows.

c) If F = +~, there is nothing to prove, so, we can assume

that F is proper.
. # . .
Let us consider x° € argmin (cl Fk), that is

cl Fk (x#) = inf cl Fk = inf F.
X X
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For every € > O, by definition of chK , there exists ge € X which sa-

tisfies

(3.5) ae, L xT) < e

Fk(ge) < 1§f F + ¢

(let us recall that inf F is finite thanks to (3.3) and the properness
X

of F). Using now the definition of Fk , we derive the existence of
Ye € X such that

(3.6) Fly,) + k(aly.,E.)) < inf F + e.
X

Since F(yE) > inf F, we obtain

k(d(yE IEE)) < €
which ensures Y. —_— x#, thanks to (3.4)and (3.5).
Passing to the limit inferior on both sides of (3.6), using the fact

that k =2 0, we derive

cl F(x#) £ lim inf F(yE)
E+0

< inf F
X

-
that is, x minimizes cl F.
The next proposition deals with regularity of the approximates. Roughly
speaking, Fk inherits the Lipchitz regularity of k. For technical rea-
sons, we shall distinguish the Lipschitz case and the locally Lipschitz

one which is surprisingly more involved.

Proposition 3.2

Let us assume that the function

k : 1t > T satisfies k(0) =0

and let us consider a proper function
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Fi:X— R

which satisfies the growth condition

for every x € X, there exists c(x) € IR such that

(3-7) F(y) 2 -k (d(x,y)) + c(x), for every y € X.
a) If k(.) is Lipschitz on Rr*
then
(3.8) F, 1is Lipschitz on X.
b) If k(.) is locally Lipschitz and verifies
(3.9) F(.) + k(d(.,x)) is uniformly coercive when x ranges over

a bounded set,

(this means that F(y)+k(d(y,x)) < M with x in a bounded set implies thet

Yy ranges over a bounded set).
Then

(3.10) F. is locally Lipschitz on X.

k

Proof

Let us observe, thanks to the growth condition (3.7)and the
properness of F, that Fk is everywhere finite.

a) Let x, € X, X € X, € > 0 and El e € X such that
14

1
I
F(El,e) + k(d(’l,e’xl)) < Fk(xl) + €.
From the definition of Fk(xz), we derive

Fy(xy) S F(E) ) + K(A(E) ,%))).

Adding the two last inequalitiesand keeping in mind that F(El E) is
’

finite, we obtain
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(3.11) Fk(xz) - Fk(xl) S KAy o %p)) = k(A(Ey y%p)) e

Assuming k(.) to be Lipschitz, there exists L > O such that
|k (s) =k (t)
guality in (3.11), we derive

< L|s-t| for every s » 0, t > O. Using the triangle ine-

Fk(xz) - Fk(xl) < L d(x1 ,x2) + €.
Letting €40, we obtain that Fk is Lipschitz.
b) We claim that

(3.12) Fk is bounded from above on bounded subsets of X.

Indeed
Fk(x) < F(xo) + k(d(xO , X))

where X € X is such that F(xo) < 4o,

Therefore (3.12) follows from the continuity of k(.).

Let us consider a bounded set B C X, (x1 ,xz) € B x B and El e defined
4
as above.
By definition of El
) E

F(E, ) + k(A(E) ,%))) S Fu(x)) + ¢

1

< M

when x, ranges over B (see (3.12)) and 0 < ¢ < ¢

Using (3.9), we  know  that El e remains bounded.
4

On the other hand, let us recall that

(3.13) Fk(xz) - Fk(xl) < k(d(al’s,xz)) - k(d(Elre,xl)) + €.

Usinc the fact that gl e is bounded, we derive the existence of M > O
’

such that
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d(gl’s ,xz) «M
d(&l’e ,xl) <M
< L]
for every (xl,xz) € B x B.and O <¢ €5

The function k(.) being locally Lipschitz, is Lipschitz on [O,M] , so,
there exists L > O such that

|k(s) -=k(t)| < L|s-t|, for every (s,t) € [O,M] x [O,M].
From (3.13) we derive
F(xy) = Fp(xy) < le(&lle P Xy) = d(&lle.,xl)| + €
< Ld(xl,xz) + €
for every (xl,xz) € B x B,
Letting € + O achieves the proof of (3.10) D

Ccmments

1) A sufficient condition which guarantees the growth con-
dition (3.7) and the ccerciveness assumption (3.9) is the following :

For every B C X bounded, there exists a < 1 and C € IRsuch

(3.14 a)
that F(y) 2 -ak(d(x,y)) -C for every x € B and y € X
and

(3.14 b) k(.) is coercive (lim k(t) = += ),

t>+x

Indeed by taking B = {x} for every x € X the growth condition (3.7) is
fulfilled. Moreover if B is a bounded subset and if F(y) +k@(x,y) < M
with x € B we derive, using a < 1 and C € IR defined in (3.14)

- C+ (l-a) k (d(x,y)) <M and

k(d(x,y) < %;g for every x € B.
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From the coercivness of k(,) and the boundedness of B, (3,9) follows.

2) Take X a Banach space, for the following possible

choices of k(.), we have

2
k(r) =-%? Moreau-Yosida approximate
k(r) = ¢ Baire-Wijsman apprcoximate
k(r) = %-r2 + er Gauvin approximate

3) We stress the fact that, as far one is only-concerned
by the minimization problem, one can replace any function F by a
smoother Lipschitzian function which has exactly same minima and same
minimization set as the original one.
This feature has been already exploited by the authors ([A-W3]) when
defining rate of convergence for sequences of convex functions.
A major difficulty in this kind of question is that the domains of the
functions may also vary. By using the above device (note that the re-
gularized functions F,_ are everywhere defined and locally lipschitz)

k
one can define for every p 2 O the following distance

d (F,G) = sup |F (x) = G_(x) |
P I xi<p k k
which allows us to derive convergence rates for the solutions of
the corresponding minimization problems.2
Indeed, in the convex case, and k(r) = %7 (that's the Moreau-Yosida
approximate), the whole function F is determined by one of its approxi-

mates. Just notice that

2
F = F V=5
* * 2 * *
hence Fk =F + k"2 (Fk stands for (Fk) )

and if F is closed convex

W # 2
5—)

(3.15) F=F =(F:-k' *.
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At this stage a natural question is : what is the largest class of
functions for which the correspondance F —> Fk is one to one ?

(i.e F uniquely determined by one approximate). The class of closed
convex functions by the prededing argument, does satisfy this proper-
ty. Indeed one can exhibit a larger class, namely functions which are
convex up to the square of the norm, for which this property still
holds (further results concerning this class of functions can be found

in M. Bougeard [B] ). This is made precise in the following

Proposition 3.3

Let H be a Hilbert space ; for any proper function

F : H >IRU {+»0} and X» > O let us denote

(3.16) F,(x) = inf {F(y) + 2—lx I x=yl 2}
yex

the Moreau-Yosida approximate of index X of F.
Let us denote by I, the class of functions F : H —> IRV {+=} such that

F + kl-12 is closed and convex. Then, for every A > O, k > 0 such that

f% > k the correspondance

FerT > F

k A

is one to one, i.e F € Fk is uniquely determined by one of its appro-
Ximates. Moreover FA is cl.

Let us first notice that F satisfies a growth condition
2
F(x) 2 =kbxl® - c(Ixl+1)

since F +kl 12 is closed convex and proper.
1
2X
tions of proposition 3.2 and FA is locally Lipschitz everywhere

defined.
Introducing ¢ a closed convex function such that

Hence for every X > O, k 2 O such that 5= > k, F satisfies condi-

F=g¢-kl.l?
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we have
F.(x) = inf  {o(y) = kiyl? + 2 Ix=yl1?}
A = Y -y V7N Y
yEX
inf  {e(y) + (55 - iyt? - Lop? 4+ L iy ?y,
yEX

Simplifying this last expression, we obtain

Fy, (x) = inf {e(y) + Gr-KIy1? - 3 <x,y>} + 5% I 12}

yex A 2A
_ 2 * 1 2
=2—1>\llx|l2 - @*v 11 112y (&)
2(7--2k)
and finally
(3.17)  F ) = o Ixt? - wh, &,
—-—2k

A

From this last expression we easily derive the conclusions of proposi-
tion 3.3, we first notice that given FA r (3.17) uniquely determines
*

(w )1/ 2k,and from the above argument in the convex case, ¢ 1is uni-
guely determined. The function ¢ being closed and convex is again uni-
quely determined by its conjugate and so is F.

Moreover from classical properties of the Moreau-Yosida approximation
for closed convex functions (cf. H. BREZIS [Br ], [All) (w ) is a

1ok

C1 function and from (3.17) so is F A

X°

Remark
Without geometric assumptiohs on F, the Moreau-Yosida trans-

form F —> FA fails to be a one to one mapping. Take for instance H = IR,

A = % and
-1 if X <0
F(x) =

2
1 if x>0

A quite elementary computation shows that all functions Q such that
F>0Q0=>0G with
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-1 if x<O0
Glx) =< 1 - (M3-x)%2 if 0o<x <72
1 if x > /2
verify
-1 if x <O
Q,(x) = F (x) =1 x°-1 if 0<x</2

1 if x 2 /2



21

4, Convergence of augmented Lacrangians and continuity of the "auomen-

ted" partial Legencdre-Fenchel transform.

From now on we assume that

X, X*, Y, ‘el are reflexive Banach spaces equipped with
(4.1) strictly convex norms and satisfy the following property :
weak convergence and convergence in norm imply strong

convergence.

s far as one is only concerned with topological properties it is not

a restrictive assumption since a theorem of S. Trojanski and E. Asplund
asserts that every reflexive Banach space can be renormed in order to
verify (4.1). When this is done, the norm is Frechet-differentiable
(except at the origin !) and one can define

(4.2) vxex, Hx =b@l0%x €x"
The map H : X —> x* is called the duality map anc is characterized by

; , * * . e
H(x) is the unique element x € X which satisfies

(4.3)
Ix"I, = Ixl and <x",x> = IxI? .

The duality map is then a homecmorphism between X and Xx* and verifies

BE()x) =XAH(X)

5 x¥

1 2 *
D1 -12) (x")
where H-H* is the dual norm of -} .,

From precedincg results (section 2 and 3) it follows that
the "augmented" partial Legendre-Fenchel transform

F —> Lr

is a one to one correspcndance, where
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F:XxY > IR VU {+=} is a closed convex proper function
. ® —
L : XxY —— IR is an element of the class of closed precver

ccnvex-concave functions associated to F by (2.4) and (2.5).

L : X x Y

r > IR VU {+w} , r > O,

is the classical "guadratic" augmented Lagrangian (gee [Bel] ' [F1,
[Rll ' [RZ])

¥, _ 1 12 *
Lr(le ) = CL(X,.) A Z_I' I "Y*) (y )
1 * 2 -
= Sup {L(x,n) - 3r Iy 'ﬂ"*} for every LE€[L,L].

ney

The terminclogy is justified by the following equivalent formulation of

L., obtained by taking L = L

-1 =Yy j% u.ni*
(4.4)
= (F+3 u-ng)*y .
thus
Lr(x,y*) = iniey{F(x,y) + % MyH2 - <y*,y>} ,
which amounts to replacing Fby F + % [ -||§ where Y is the perturbation

space.
In the case of convex programming the quadratic augmented Lagrangian
is given by the following formula

* mo * * )
Lo(x,y ) = £ (x) + iil Vo(E;(x), ¥y;) ¥Yx€X, Vy € R
E%— - ts if s = E
I
where wr(s,t) = 1 t2 if s < t
' 2r r

The following proposition guarantees that the saddle points and saddle
values are preserved when replacing L by Lr , in the general (metric)

setting.
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Proposition 4.1.

L and Lr have same saddle value and every saddle point of L

is a saddle point of L.

Take (§,§*) a saddle point of L ; it is characterized by the

following inequalities

sup L(§,y*) < inf L(x,§*).
yrey® x€X

By prcposition 3.1

- % - *
sup L_(x,y) = sup L{x,y ).
yrev* y*ey*

Noticing that L. is greater than or equal to L

inf L(x,Y) < inf L_(x,79).
x&eX x€X

Combining the preceding inegualities it follows

sup Lr(§,y*) = sup L(X,y") < inf L(x,¥") < inf Lr(x,§*)
*__ ¥ *_* €X XEX
y & y €Y
that is
— R . .
(x,vy ) is also a saddle point of L.
and
— ik - —%
L(x,y ) = L_(x,y)

r

i.e L and Lr have same saddle value., O

Remark.

The preceding conclusions still hold when instead of qua-
dratic augmented Lagrangian, one considers auagmented Lagrangian obtai-
ned through inf-convolution by a kernel k(.) satisfying assumptions of
proposition 3.1.
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In the convex-concave setting, a more precise result can be obtained

Proposition 4.1'

et L ¢ X X Y* —> TR be a closed convex~-concave function

where X,Y are reflexive Banach spaces verifying 4.1.
Then
L and Lr have the same saddle points and saddle values.
Proof
In the lines of R.T. Rockafellar (see [R3] ,[R4] ), we
consider, for a closed convex-concave function L, its subdifferential

BL(x,y7) = 8, LOt,y") X(= o,(- Lix,y™))

where alL and 32(-L) denote the convex subdifferential with respect
to the first and the second variable. It is well known that

> (u¥,y¥) € 3F(x,-v)

(4.5) (w¥,v) esn(x,y¥) <

(X,7¥7) is a saddle point
(4.6) <
of L

> (0,0) € 3L(X,¥D),

moreover when (§,§*) is a saddle point of L

L(%X,¥) = F(%,0) = G(O,7)

where F and G are respectively the convex and concave parent of L (see

(2.1), (2.2)).
Let us now return to the proof of proposition (4.1').

— —%
(X,¥%) is a saddle point of L. <=——> (0,0) € 3L _(X,y")

<—> (0,7%) € 8(F + & H.Hi)(§,0).
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Let us observe that
NF+§u~@>um>=aFum>+(mern

. . r 2 . .
since the function 5 H-HY is continuous.

(H(y) is the duality map defined in 4.3).

Using the fact that H(O) = O, we derive

(X,7%) is a saddle point of L_ <—> (0,7") € 3 F(%,0)

> (0,0) € 3L(X,¥") (from 4.5)

> (%,Y°) is a saddle point of L.

Moreover the saddle values verify

= ¥ r
Lr(x,y ) (F + >

2. —
1-12) (%,0)

F(x,0)

— —*
L(x,y )
which ends the proof of proposition 4.1'. O

Comment

The conclusions of proposition 4.1' still hclds when re-
rlacing Lr by

* *
L (x,y7) = sup {L(x,n) - k(ly® = n'h)}
n*ey*
where k : IR —> IR 1is an even convex function such that k* is deri-
vable at the origin and verifies k*(o) = 0 and (k*)'(O) = O.

Indeed, in this setting, Lk is the closed convex-concave function
associated to the convex parent

d(x,y) = F(x,y) + k*(nyu),

We can give now the main result of this section.
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Theorem 4.2

Let X,Y be reflexive Banach spaces renormed as in (4.1).
There is equivalence between

iy PP F

ii) Ln itféﬁ_> L

iii) L;l Me/h L for every (resp. same) r > O.

* *
iv) 12 (.,y*) > Lr(.,y*) for every r >Oandy €Y .

Before detailing the proof of theorem 4.2, we recall the key facts

used in this proof.

(4.7) F M > p < > (FHy¥ — M, ¢

(4.8) " > F < >V A >0, Vx€X, lim (F), (x)=F ()
n-++oc

where Fn, F : X— IR 1is a collection of convex closed proper func-
tions and

(4.9) FX(X) = inf{F(y) + f% Hy—xﬂz} is the Moreau-Yosida appro-
’ YEX

Xximate of parameter A of F. Equivalence (4.7) was proved by U. Mosco

in [M1] and (4.8) is Theorem 3.26 of [A1] .

Proof of theorem 4.2

i) < > ii) is theorem 2.4
i) => 1ii)
n N n r,.,2 M r 2
F F > F° o+ 5" "Y >F“P§" “Y

and iii) follows from theorem 2.4 and formula (4.4)

iii) > 1)

Assuming iii) holds for some r > O, we derive, from Theo-
rem (2.4) that

2o+

Nl R

2 M r 2
Nl —_— = .
v > F + > I IIY



27

and then

P+ L (u.ui + n.ni) M P4 z (n.ni + n.ng),
From (4.7), we derive that
(4.10) (Fn); — M (F*)r , for some r > O.

Using the resolvent equation (sor)s =y , we obtain from (4.8) and

r+s

(4.10) that

(Fn): (x*) [0 (F*)p (x*) for every p > r ané x* e x¥.
Using again (4.8) (in fact a slightly weakened version, see [A1] ) we
derive

(Fn)*‘ L) F*
and by (4.7)

R
i) < > iv)

We cbserve that the ccnvex function
v(x) =L (x,y*) = inf{F(x,y) + % IIyII2 - <y*,y>}
r yeY

is not identically equal to +» sinceF is proper, does not take on ==
value and is l.s.c since, for every x € X, the function

> F(x,y) + 5 0y1? - <7,y

Y

is uniformly coercive when x remains bounded. Let us define (in the
following argument y is fixed)

¥ (x)

L?(x,y*)

¥ (x)

Lr (XIY*)
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and observe that

(Wn)*(x*) = (Fn-+§-ﬁ.[§)*(x*,y*) for every y* € Yf
= inf ()X 0" + o2 1y* - %12},
n*ey*
n, *

Let us now consider o > 0 and (VY )p the Moreau-Yosicda approximate of

(Wn)* of parameter p, we derive

™M *(x*) = inf {(Wn)*(é*)'+—l-"x*- E*"Z} for every x € x*
P *_ % 2p
£ €X
(4.11) S MECYRE inf LENTE et R

(£¥, n*yex®xy*
1 * *, 2

The same calculation holds for Y and we obtain

(4.12) ¥ (x*) = Inf {F*(g*,n*)-+fL hx*-g%12 4
P * * * * P
(£ ,n )EX xY
2
1 * *|
S PARE A

Let us return to the proof of the equivalence i) <=—> iv), by definitions
of ¥ and Y™

>vr>0, vy ey, v M,y

iv) <

M

<==> V¥V r >0, V y* € Y* ' UﬂB* > W*

<===> ¥V r > O, Vop>0,V (x*, y*) € X* x Y* '
. n, % *
lim (¢H)7 &) = v*(x¥)
n-+-<+o© P p

*
«—> v r >0, ¥(x¥, y) e x* x¥*,

*

* * * *
n ) = F;(x 'Y )

lim(F) _(x ,y
r
n-++«
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«—> FH* s F*
> PP M . F
which ends the proof of theorem 4.2. o

Comments

1) Theorem 4.2 can be viewed as a continuity result of the

generalized partial duality transform

- Lr(X:y*) = Ssup (y*IY) - F(x,Yy)
yEY

where (y*,y) denotes the non bilinear coupling

vy = <ty - 5w’

(cf. the lecture of J.P Penot in this volume and the papers of M. Volle
[V] and S. Dolecki [D]).

2) One can give an equivalent expressicn of the augmented

Lagrangian in the Hilbert spaces by using theorem 2.9 of [A—W3]

(F* v f% .02y (x,v5)

= Lr (le*)

(F*)_(x,v")

_ 1 * 2 *
= 5= Iy 1° - F(xs.)y ,p (v /7). o
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5. Moreau-Yosida approximates of closed convex-concave functions.

Equivalence between extended Mosco‘egi/ﬁypb'conVeraence’and point-

wise limit of Moreau-Yosida approximates.

In [A—Wll , H. Attouch and R. Wets have defined the upper
and lower Moreau-Yosida approximates of general bivariate functions L

by means of the following formula

!t (x,y") = inf sup {L(£,n™) += hx - E""--L"y”F - n*llz}
AdH * 2A 2u
EEX N EY
¥ I N . * 1o a2 __1 * % 2
LX,U (x,y ) = sup inf {L(g,n ) + =3 Ix -zl >0 Iy n <y,

n*EY* rex

When L is a closed convex-concave function these two gquantities turn

to the equal as made precise by the following

Theorem 5.1

Let X,Y be reflexive Banach spaces (renormed as in (4.1)) and

> IR a closed convex-concave function,

a) Then, for all » > 0, u > O

¥ 4
5. = = L .
(5-1) Lk,u Lk,u A,u
L is called the Moreau-Yosida approximate of index A,u of L.

Asu

b) L and Ly " have same saddle values and saddle points.
14

¢c) For all (x,y*) € X x Y* the function

1 1 2

Le,n®) = ng,n™) s | %l 2 -5 1y* - n*i

has a unique saddle point (xx U’y: u) characterized by
14

*

- Y
X=X, _17__&)) € 3L(x

(5.2) (H(

*
Uy, - 5N Aout YA,

A
* * * ) . .
wnere H : X —> X and H : Y —> Y are the duality maps defined in
(4.3) '
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and oL = Bl L % b‘Bz('L)).

d) L is a locally Lipschitz convex-concave function

Asu
of class Cl on X x Y*, with derivative
*

X=X, Yy -y
¥y = AsMy _g* AsH
DLx'u(x,y ) (H( ) ~H ( T )).
Proof
a) and c). We shall use the inf-sup theorem of J.J. Moreau

[Mol] , let us recall this result.

Under the assumptions

U,V are locally convex t.v.s

K: UxV >IR is convex-concave.
K(.,v) € T(U) for all v € v,
(5.3)
there exists v_ € X, k >inf K(u,v_) such that
o o o
u€vu
{u€vu; K(u,v ) < ko}is weakly compact.
Then
(5.4) inf sup K(u,v) = sup inf K(u,v)
usyu vev. vEV u€l
moreover
(5.5) inf sup K(u,v) = min sup K(u,v).

uey vev ueyu vev
Let us define

. * * 1 2 1 * * 2
K(E,n ) = L(E, + = lE—xl“ == 1| - I
£,n E/mn) 73\ E-x 2un Yy

14

K is a closed convex—-concave function such that

= ¥, _ = * 1 2 1 * *, 2
K(E,n) = L(E,n ) + N g - xl —ﬁ i n -y i
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e By ¥ . 1 2 1 % _ *k 2
5(5,&) = LE,n) + 5 LE-xl '51-1-“& y 1<,

It is clear thaﬁ K verifies the assumptions (5.3) ,we derive that

sup inf K (gn*) = sup inf K (£,n)
n*EY*gex q*ey*gex

= min sup E(E,n*) (from (5.4),(5.5))
£ex n*EY*

= min sup R(E,n™)
fex n*e v*

. *
= min sup K(&,n")
cex n*e *

the same argument applied to (-K) shows that

. * *
inf sup K(§,n) max inf K(&,n )
cex ntey* n¥ey* rex

it follows that

*
max inf K(E,n*) min sup X(&,n )
¥*

*
n*ey® fex rex nrey®

which ensures the existence of a saddle-point which is unique thanks

to the strict convexity-concavity of K, the characterization (5.2) of
this sadéle point is then straightforward.

b) Let us consider the guadratic augmented Lagrangian

L (x.y*) = sup {L(x,n") - -zl—lly* —n*ﬂz}.
u * % i
n ey

From proposition 4.1°', Lu and L have same saddle values and saddle
points. Exchanging the role played by the variables and taking the
augmented Lacgrangian of parameter X of (—LU)' we obtain the closed

cencave-convex function K defined by
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. ; 2
K(x,y") = sup inf {L(E,7) +§'1E[y*en*ll2—-2-‘1xllx-§ﬂ }
rex ntey™
4 *
= -.LAIU (xyy7)

*
- L;\,u (X,y )u
Using again proposition 4.1', part b) of theorem 5.1 follows.

éd) We claim that the operator

* *
(5.6) Ty ey ) = (x5 0y, )

is strongly continuous anéd bounded on bounded sets.

Indeed, let us consider Xq € X and YZ € Y* such that

we deduce the existence of a positive constant c such that

E(x,y;) > -c(lxl +1) for every x € X

- * *
L(xgry ) <clly'l +1) for every vt e v*.

Usinc the fact that

X-Xx y*'-y* )
(H(—2e¥y  _p* T A ) e gk, L yT )
we derive
Xy u-x
7 - - *
<H( ) ), XA, X > < L(x ’yA,u) L(xx’u,yx u)
y* _ y*
* <A, U * * * *
< -
H ( m ), yk u yo > L(XA u,yx U) L(Xxlu,yo)
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Adding these two inequalities, we obtain

., W LI % * | ¥
<p H(xo\’uex), (xhu'vx) + (x-xo)>-i< AH*(YA,{J'-Y ),(y,,\m ~y ).+ (y "Yo)>

*
<SAul e, ¥y ) =Ly v 1
Using (5.8) and properties of H and H*, it follows

2 * * 2 * * * %
Tt Y T A I LR [P S I A A | B s 4

¥
SRR (RN B DAY B
From this it follows that
*
|y )

(5.9) SN R I e

IU“

with M depending only on (on", "yle, c, A, u), and that the operator
JA l is bounded on bounded sets.
14

Let us now rrove the continuity of JA ne Consider x" > X and
14
*n S * . n s *n S *
y >y , we claim that X\, > X0 and Ya,u > Yy, u
Incdeed, define
n * * 1 n 2 1 *n * 2
XKPEm) = L) + o5 |x0 = &7 - 55 |y - nf

It is clear that

zh M-ec/h > K
where
* *
K(E,n%) = L(g,n") + fx - g2 - 2 |y* - o2
2 2

Indeed

\

v

. . *
N > £, lim inf §n(£n,n ) = E(E,n*)

n
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and
’ * - * . 7 L
v on, —— 0", EE,n") > limsup K7 (E,n).
: n .
From theorem 2.5, it follows that the sequence (xk u’yA ) which is

bounded, converges weakly to (XA u’yk u) since the saddle peint of K is
unique. Moreover we obtain, for every Kn € [K ,K ] and K € [K K]

. ,n o, .n *n , _ *
(5.10) Lim KOy v,y T KO ey
that is
- . n ) 1 n n, 2 1 ,_*n * 2 = *
(5.11) L (xk,u’yk,u) * 357 ka,u x| i “yk,u ynH =g L(Xk,u’yk,u) *
1 Cuw2 1 _ ¥ 2
M L MRl Bl B/ 4 I

Fram the saddle pcint property of (x?lu,yz?u), we derive

IAx nH2

1 n n,2
A u’yk W T "x)\,u_x ]

- *) 1
< L(Xklu'ykr,lu)" + 35l T

Passing to the limit superior in the above inequality and using (5.11)
we derive

. *1 *, 2 * %, 2
llmnsup ”yk,u —yn" <||yk,u-'y “

n s * .
so, yl,u —_— yA'u since weak-convergence and convergence of the

norms imply . strong convergence thanks to assumption (4.1),

The strong convergence x? N S_> Xy N is then obtained
[ ’

by using similar method.

Let us now compute the Frechet derivative of Ly ne Let L be the qua-
’
dratic augmented Lagrangian defined 1n(4 4) ,its convex parnnt F is the

the function F(x,y) = F(x,y) + 2ﬂyﬂ

Using formula (4.5) we derive
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(u*'v) € aLlJ (x’y*) < == (u*’y*?)_e_ BFU (x("V)
— (u*%,y*) € aF (x,-v)+(0,-uE" " (v))
> (u¥,v) € aL(x,y +u E "1 (v)).

An analoguous calculation after regularization of parameter A on the

first variable provides

(¥, v) € or,  x,y") <= (v € anx-arThwh),yT eurt T o))

and then

X-X)\

y =Y
* — T Iu - * AIu
3L, LGy = B - ()

. *
thanks to the unicity of (Xl,u'yl,u)'

*
Let us fix y* € v*. The function L, u(.,y ) is then convex, continuous
’

(in fact locally-Lipschitz) and its subdifferential taken in x reduces

X=X
to H(———ALE), it follows ([E-T ] chap. I, proposition 5.3) that
A

* . . . .
LA u(.,y yis Gateaux differentiable in x and then Frechet differentia-
7
ble since its derivative is continuous as seen above. In the same way,

the function L u(x,.) has a continuous Frechet cerivative namely

A,
v -y
* (A It follows that L
u

-H AL is a Cl function and is locally
7

Lipschitz since its derivative is bounded on bounded subsets of X x Y*,
which ends the proof of theorem 5.1.

Now we can prove

Theorem 5.2

There is equivalence between

i) Ln M> L
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V (x,y) €EXXY,VA>0, Vyu»oO

ii)
. n . * - *
lim L, . (x,y7) Ly, xey)
n-+-+-co
Proof
Let us consider the augmented Lagranagians LS and Lu ; we
define

W™ (x) Lﬁ(x,y*)

*
v (x) Lu(x,y )
from theorem 3.2 we know that

nM S e— P By for a11 v* e v

F

Let us compute, for A > O, the Moreau-Yosida approximation ¢§

n . n * 1 2
vo(x) = inf (L(E,y ) + 55 [E-%[7)
)A gex u 27 ” ||
n . n 1 *, 2 1 2
v, (x) = inf sup (L7 (£,n) =-=— kn-y + == & =%{"7)
A it il R O B Pl Rt
= L;\I,U(X;y*)

using the characterization of Mosco-convergence in terms of pointwise
convergence of the Moreau-Yosida approximates ( 4.8), we derive that

ii) is equivalent to i). @

Comments

1) In the Hilbert case, an easy computation based on the

formula
2
* =L 1° -
(¢ )A(') = 53 wl (A) for v € TO(X)
' A
(see [A-W 3] theorem 2.9) shows that

L (x,y) = F,(x,\y) - 2 |Y|2-
1 A 2



38

It follows, in an evident way, that

ppMe/h s v A s o0, ¥ (x,y) € X x Y,
n
lim L _
e A (D) =L Gy

A,T
which is stronger than the equivalence i) <==> ii) in theorem(5.2).

2) An interesting open question is to know 1if the equi-
valence

(5.12) i Mee/h s vaso0,vxeEX Vy ey,

, * *
lim L? k(x,y y = LA l(x,y )
n++e ' !

is true. If it were the case, the class of maximal monotone operators
(see [R4] or [G])

* *
Blx,y") t = 3 L0x,y) x 3,(-L) (x,y")
associated to closed proper convex-concave functions L would verify

for every segquence An, for every (x,y*) € X x Y
(5.13)
I

P‘A (le*) ¥

> Ax(x,y*) implies A?(x,y*) s> A(x,y*)

where A? and AA are the Yosida approximates of the operators a" and 2.

In [Al], remark 3.30 H. Attouch has proved that (5.13) is true for

the subaifferentials of convex functions.
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6. Equivalence between Mosco-epi/hypo conyvergence of closed convex-

concave saddle functions and graph convergence of their subdiffe-

rentials.

In [All H. Attouch has established the following egui-
valence for seguences of closed convex proper functions defined on a

reflexive Banach space with values in RV {+}, (see also [Ma])

(6.1) F"———> F

(6.2) aFn —C oF + normalization condition where 3 F is the

subdifferential of the closed convex proper function F.

The rormalization condition comes from the fact that F is cdetermined by

oF up to an additive constant and is described below

|3 (x,x") € 3F, J(x_,x;) € 3F" for every n € W
(N.C)

such that X,

S * [ * o n
> x, X —> x anc F (xn) > F(x).

The code letter G means graph convergence that is

S *

. * s * . *
(i) V(x,x ) € aF ]xn —> %, X > X with (xn,xn)

belonging to 3F" for every n € IN

n
(ii) for every seqguence (xk ,x;) € JF k such that

s *® s * *
Xy > X, Xy > x we have (x,x ) € 3F.

In fact (ii) is implied by (i) thanks to the maximal monotonicity of
the subdifferential operator.

Moreover (ii) can be replaced by a weaker asumpticn in which one of
the two strong limits is in fact a weak limit (see [A1] , 3.7).

Let us return to convex-concave functions. In [R4], R.T. Rockafellar
has introduced the notion of subdifferential of a closed@ convex conca-
ve function L by the formula
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(6.3) aL(x,y*) = BlL(x,y*) X (=9,(-L) (x,y*)

where BlL and 32(—L) denote the partial convex subdifferentials with
respect to the first and the second variable. He proved that dom(9L)
and 9L itself is independant of L € [L , L] and that the graph of 3L
is related to the graph of the subdifferential 3F of the convex
parent F via the relation

(6.4) (u*,v) € BL(x,y*) <=——> (u*,y*) € 3F(x,-v).
It is clear that
(6.5) (x,y*) is a saddle point of L <=> (0,0) € aL(x,y*).

From (6.4) , and the definition of graph convergence, it follows

G G

(6.6) sF? L5 3F <—>3L" > 3L.

Puttinc together (6.6), the equivalence between (6.1) and (6.2) and
theorem 2.4 provides

Theorem 6.1

n * -
Let LT : X XY > IR a sequence of closed convex-concave

functions (X and Y are reflexive Banach spaces) whose convex parents
(Fn)verify (N.C).

Then, are eguivalent.

i) Ln M) L

ii) P —S 5 31

Theorem 6.1 points out the fact that extended Mosco epi/hypo-conver-
gence is the notion of convergence for classes cf closed convex-con-

cave functions associated to graph convergence of the subdifferentials.
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This graph conyergence makes precise the variational properties of
extended Mosco epi/hypo-convergence in order to obtain strong stabili-
ty of saddle points (see [Z] and [Az; ] for applications in convex

programming) .

Proposition 6.2

Let {L™, 1L : X x v* — TR} be a collection of closed convex-

concave functions (X and Y are reflexive Banach space) such that

Ln M-e(h > L.

Then
for every sequence (xn,y;) of saddle points of 1", which is
(6.7) (w x w) relatively compact, each (w x w) limit (x,y*) of a
subsequence is a saddle point of L.
For every saddle point (x,y*) of L, there exist seguences
x ——> x
* s *
Yn >y
(6.8)
¥ s
u, >0
S
Vi >0
such that
* n *
(un,Vn) € 3L (leyn).

¥, ;
The seguence (xn,yn) is then a saddle point of the convex-concave
functions

*
KM (x,y) = 1% (x,y) - <u:,x> - <vn,y*>

whose convex parent is

Qn(x,y) = Fn(x,y-vn) - <u:,x>.
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Proof
Since L" -E:EZ§—> L, we derive, from theorem 6,1 that
oL® —& > 31, 1f (x,yﬁ) is a saddle point-of L, we derive

(O;O) € 3L(Xry*)-

Using the definition of graph convergence it follows (6.8) , the cal-
culation of K" and o" being straighforward.
In order to prove (6.7), let us consider (f£,n) € X x Y and En = £,

n, S n such that F(£,n) = lim Fn(gn,nn) ; such seguences exist
n-++owo
M-e/h
since F" LN F, thanks to the assumption that P ————é——> L (see

theorem 2.4).

From the fact that (xn ,y:) is a saddle point of Ln, we derive
*
(0,0) € 3L (x ,y;)
* n
(O,yn) € JF (xn,O) (see (6.4) and (6.5)).
It follows that
n n *
F (En,nn) - F (ano) = <yn ,nn>.

Taking the lim sup on both sides and still denoting by X and y:
W

the sequences such that X ¥ > x and y: > y*, we cbtain
* . *
F(¢,n) - F(x,0) = <y ,n> that is (O,y ) € 9F(x,0)

and (x,y*) is a saddle point of L, which proves 6.7.

Let us conclude this work by giving an other characterization of
extended Mosco epi/hypo-convergence in terms of the resolvents and
Yosida approximates of the maximal monotone operator

Ax,y") = ((*,v) e Fx v ; (u¥,-v) e sL(x,y")}

associated to every closed convex-concave functicn L.
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Let us return to (4.2) and :ansiderAx% A and y; A defined in (4.2) ;
Y '

it follows
*.

L X = Xa. Y =Y.
<H<——A}(’A¢>,H*(—+“—)> e alx,y™)

which yields the following formulae

* = A * . A
(XX,A’YA,X) Jk(x,y ) (resolvent of index A), and
% - x y*-y*
(H(———TLLA),H*(————Tlilﬁ) = Ax(x,y*) (Yosida approximate

of index X\).

Theorem 6.3

Let X,Y be two reflexive Banach spaces which verify (3.21),
and {L", L : X x ¥ > IR} be a collection of closed convex-concave

functions.

Then, are eguivalent

M-e/h
i) L — m—— 1,

n

e
ii) J? (x,y*) L

> Ji(x,y*) strongly, for every A > O,

(x,y*) € X x Y*.

iii) Aa(x,y*)-2313> Ai(x,y*) strongly, for every A > O,

(x,y7) € X x YV,

Proof
From theorem 6.1, we obtain

M- ¢/h

) L G

> aL"

> 9L,

from the definitions of A" and A, we derive

nG>3L< >An G

dL

> A.

Then apply Propositicn 3.60 of | Ayl and theorem 6.3 follows. O
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Let us summarize the preceding results with the help of the following

diagram
n n
F > F Crm> ] > L
>‘pointwise A ArH pointwise MM
2 A
' ﬁthm.S.Z
v A\
thm. 2.4 thm. 4.2 " " * *
F' — > F < > LB > L < >L§(.,y) >L (.,y ) Vy €Y
Mosco.epi Mosco.epi/hypc Mosco.epi
N
A ” thm.6.1
|! :
v v
oF" > F <«—> oL” > 3L
Grarh.conv. Graph. conv.
I
4
iithm.G.B
v
n
J>\ > J>\
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