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PREFACE 

One of the  problems tha t  a r i ses  in the  theory of evolution and control 
under uncertainty is t o  specify the  set of all  the  solutions t o  a differential 
inclusion tha t  also satisfy a preassigned restriction on the  state space vari- 
ables (the "viability" constraint). 

The l a t t e r  set .of "viable" t ra jector ies  may be described by e i ther  a 
new differential inclusion whose right-hand side is formed with the  aid of a 
contingent cone t o  t he  restriction map o r  by a variety of parametrized dif- 
ferential  i nc lus i~ns  each of which has a relatively simple s t ructure.  The 
second approach i s  described he re  f o r  a linear-convex differential inclu- 
sion with a convex valued restriction on the  s ta te  space variables. 
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ON VIABLE SOLUTIONS FOR UNCERTAIN S Y S T m  

A.B. Kurzhanski, T.F. Filippova 

This pape r  deals with the  description of the  set of all those solutions of a 

linear differential inclusion tha t  emerge from given set XO and satisfy a preas- 

signed restr ic t ion on the  state space variables (the "viability" constraint) .  This 

problem leads t o  t he  analytical description of the evolution of the  attainability 

domains f o r  the  given inclusion under t he  preassigned "viability" constraint.  The 

solution is then reduced t o  the  treatment of a parametrized variety of new dif- 

ferential  inclusions without any state space constraints.  These inclusions depend 

upon a functional parameter.  The intersection of t he  attainability domains fo r  the 

new inclusions over  t he  variety of all the  functional parameters  yield t he  precise  

solution of the primary problem. For t he  specific problem of this pape r  t he  tech- 

nique given he re - the re fo re  allows t o  avoid t he  introduction of tangent cones o r  

o ther  re la ted analytical constructions. I t  also allows t o  present  t he  overall  solu- 

tion as an intersection of "parallel" solutions over  a variety of ordinary l inear dif- 

ferential  inclusions without any s t a t e  constraints. 

A similar technique i s  given f o r  t he  description of "viable" domains - t he  sets 

of all  s tar t ing points from which t h e r e  emerges at least  one viable solution tha t  

reaches  a preassigned set M. The available resul ts  are useful fo r  t he  solution of 

problems of control and observation fo r  uncertain systems [1,2]. 



1. The Statement  o f  the Problem. The Bas ic  Assumptions. 

Consider t he  following differential inclusion 

d x  - E A ( t ) x  + P ( t ) ,  t 0 S t  S T ? ,  
d  t  

where z E Rn, A ( t )  is  a continuous map from T = [ t  o,T?]  into t he  set RnXn of 

( n  xn)-matrices,  P ( t )  is  a continuous multivalued map from T into the  set conv Rn 

of convex compact subsets of Rn , [3] .  

Assuming set X O  E conv Rn t o  be  given, denote X(., to,Xo) t o  be  t he  "bundle" of 

all Caratheodory - type solutions x  ( . , t  o , xO)  t o  (1.1) that  start at 

x ( t 0 )  = x 0  € 9  (1.2) 

and are defined f o r  t  E T [4] .  The cross-section at instant "t" of x ( . , t o , 9 )  will be 

denoted as X(t  ,t o , ~ O ) .  

Denote co Rn t o  be  t he  set of closed convex subsets of Rn,  Y ( . )  t o  be a con- 

tinuous multivalued map from T into co Rn , [5 ,6] ,  X O  L Y ( t  O ) .  

Definit ion 1.1. A t ra jec tory  x  [ t ]  = x ( t  , t o , x O )  , t  E T ,  of equation (1.1) will 

be  said t o  be viable on T ,  = [ t O , r ]  , T S 19, if 

x [ t ]  E Y ( t ) ,  f o r a l l  t  E T, ,  (1.3) 

W e  fu r the r  assume tha t  t h e r e  exists at least  one solution x  [ t ]  of (1.1) that  

satisfies (1.2) and is viable on T,. The conditions f o r  t he  existence of those solu- 

tions may be  given in t e r m s  of generalized duality concepts [2,7] .  

The subset of x ( . , t & x O )  tha t  consists of all solutions viable on T ,  will be  

denoted as x,(. , t  o , ~ O )  and its cross-section at instant s  E TT as XT(s , t  O , ~ O ) .  Our 

fu r the r  aim will be t o  find an analytical description fo r  t he  evolution of sets 

X [ T ]  = X ( T , ~ ~ , X ' )  = X , ( T . ~ ~ . X O )  which are actually the  attainability domains of 

inclusion (1.1) under t he  phase constraint (1.3). I t  is known that  X [ T ]  € conv Rn 

121. (According to  ou r  assumption w e  f u r the r  have X [ T ]  + $ f o r  a l l  T E T ) .  

I t  is not difficult t o  observe t ha t  sets X(t , to ,xO)  satisfy a semigroup property:  



X ( T , ~ ~ , X O )  = X(T,S ,X(S , t O , p ) )  . 

They t h e r e f o r e  define a generalized dynamic system. The descr ipt ion of th is  

dynamic system will b e  given through a var ie ty  of new differential  inclusions con- 

s t ruc ted  from (1.1), (1.3). (See [8]). 

2. The Set  X [TI. 

Introducing some notations let us denote t h e  suppor t  function of set X as 

p(l  (X)  = s u p I ( l , x )  x  EX^ , 1 ER" . 
( h e r e  (1 , x )  s tands  f o r  t h e  inner  product  1 'x with t h e  prime as t h e  t ranspose) .  

Also denote Cn (T) (CF(T)) t o  b e  t h e  set of all n-vector-valued continuous 

functions dsfined on T (respectively t h e  set of k times continuously differentiable 

functions with values in Rn , defined on T). Let Mn (T) stand f o r  t h e  set of a l l  n - 

vector-valued polynomials of any finite degree ,  defined on T. Obviously 

g (.) E Mn (T,) if 

and 

Mn (T) s CZ (T) 

Applying some duality concepts  of infinite dimensional convex analysis [7] as 

given in t h e  form presen ted  in [2] w e  come t o  t h e  following relat ions.  For  any 

1 E Rn , A(.) E Cn (T) denote 

Here ,  in t h e  f i r s t  var iable  the .  function S ( t  ,T)  i s  t h e  matrix solution f o r  t h e  

equation 



s = - s A ( t ) ,  S ( r , r )  = E ,  t s T ,  

the  second and third members of t he  sum (2.1)  are Lebesgue-type integrals of mul- 

tivalued maps P(<)  , Y ( < )  respectively (see, f o r  example, [4-61). 

In [ 2 ] ,  56, i t  w a s  proved tha t  

max I ( l , x ) ! x  E X [ T ] {  = p ( l  I X [ r ] )  = 

inf !Q,( l ,  A(.)) I A(.) E Cn IT,] I . 
A slight modification of t he  respect ive proof shows tha t  t he  class  of functions 

Cn (T,) in t he  last  formula may be  substituted by e i t he r  CE (T,) o r  even Mn (T,). 

Hence 

inj' )Q,(1 ,A(.)) I A(.) E Cn (T,)1 = 
inj' I Q,(1, A(.)) I A(.) E CE (T,) 1 = 

inj' I Q,(1, A(.)) I A(.) E Mn (T,) 1 

From relations (2.2)  i t  is possible t o  der ive t he  following assertion 

Lemma 2.1. The following equality is t r u e  

X[r] = n I R ( r ,  M ( . ) )  I M (.) E C" Xn (T,) 1 = 
= n IR(r ,M(-1 )  I M ( . )  E cEXn (T,){ = 
= n I R ( r , M ( . ) )  I M ( . )  E Mn Xn (T,) 1 . 

where 

7 

R ( T , M ( . ) )  = ( S ( t O , r )  - J ~ ( 6 s ( t ~ , t ) d t ) f l  + 
t 0 

7 7 

+ J ( s ( T , ~ )  - J ~ ( s )  S ( t  , s )  d s )  P ( O ~  t 
t 0 4 
7 

+ J M ( S  ) Y ( s  ) d s  
t 0 

and Cp ' " (T)  , ( 0  s k s m) , Mn xn (T) stand f o r  t he  respect ive spaces  of (n  x n ) -  

matrix-valued functions defined on T. 

The proof of Lemma 2.1 follows immediately from (2 .2) ,  (2.3)  a f t e r  a substitu- 

tion A'(.) = 1 ' M ( . )  fo r  I + 0 .  The infimum over  A(.) in'(2.2) is then substituted by an 

infimum over  M ( a ) .  Hence f o r  every 1 + 0 w e  have 



~ ( 1  I X[TI) Q,U ,M'(.)L (2.5) 

f o r  any M(.) E CnXn(T,) (o r  CEXn (T,) o r  MnXn(T,)). Frorri (2.1) - (2.5) i t  now fol- 

lows t ha t  

f o r  any M(.). 

Hence 

X [ r l  c n IR(-r,M(.)) I M(.) E Cn Xn (T,)j 

(or  over  cEXn (T,) o r  Mn (T,)). 

Equalities (2.4) now follow from (2.6) and (2.23, (2.3). 

3. A General ized "Lagrangian" Formulation 

The asser t ions  of t h e  above yield t he  "standard" duality formulations for  cal- 

culating 7, (1) = p(l  X[T]), (see [2, 8, 91). 

Denoting 

P(-) = Ip(*) :  p ( t )  E P ( t ) ,  t ET,j 

w e  come t o  t h e  following "standard" 

Primary Problem 

over  all  

u(*)  E P ( * ) ,  z0 EXO 

where s [t ] is t h e  solution t o  t he  equation 

x [ t ]  = A ( t ) z [ t ]  + u ( t )  , z[ tO]  = z0 

In o the r  words 

Y,(L) = maxl*(zO,  u(*)  I z0 € R n  , u(*) EL; (Tt)j 

under res t r ic t ion (3.2) where 



Here 

0 i f z E Y  
6 ( ~  n = ( + =  i f z  F Y  

The primary problem generates  a corresponding "standard" 

Dual Problem: 

Determine 

rO( l  ) = inf I @,(I , A(*)) i A(-) E Cn (T,) 4 

along t he  solutions s [t ] t o  t he  equation 

s [ t ]  = - s [ t u ( t )  + A ( t ) ,  s[r] = I  

where @,(I , A(*)) may be  rewrit ten a s  

Relations (2.2), (2.3) indicate t ha t  7, (1 ) = 7O(1 ) and tha t  A(*) in (3.5) may be 

selected from Cz (T,) o r  even from Mn (T,). 

A "standard" Lagrangian formulation i s  also possible here .  

Lemma 3.1 The value yo(l )  = 7( l )  may be achieved as t h e  solution t o  t h e  problem 

7 ( l )  = inf max L (A(*) , u (a) , z O )  
A(.) U (.) , z0 

where 

and 

A(*) E Cn (T,) , u (*) E P(*) , z0 E XO . 

The passage from (2.2), (2.3) t o  (2.4) yields another  form of presenting X[T]. 

Namely, denote S [ t  ] t o  be  t h e  solution t o  t h e  matrix differential equation 



Also denote 

Obviously 

Lemma 2.1 may now b e  reformulated as 

Lemma 3.2. The set X [ T ]  may b e  determined as 

o v e r  all 

M(* )  E Cnxn (T,) , zO EX' ,U (0) E P . 

This resu l t  may b e  t r e a t e d  as a generalization of t h e  s t andard  Lagrangian formula- 

tion. However h e r e  one deals  with set X [ T ]  as a whole r a t h e r  than with i t s  projec-  

tions p(L I X [ T ] )  on t h e  elements L E Rn. The resu l t s  of t h e  above indicate t h a t  t h e  

description of set X [ T ]  may b e  "decoupled" into t h e  specification of sets 

R ( T  , M ( * ) ) ,  t h e  var ie ty  of which desc r ibes  t h e  generalized dynamic system 

X ( t  , to?) .  

However i t  should b e  c l e a r  t h a t  t h e  mapping R ( T  , M(* ) )  may not  always b e  a n  ade- 

quate  element f o r  t h e  decoupling p rocedure ,  especially f o r  t h e  descr ipt ion of t h e  

evolution of X ( t  , t o  , p) in t  . The reasons  f o r  th i s  are t h e  following. 

Assuming function M (0) t o  b e  fixed,  r edeno te  R ( T  , M(* ) )  as lRM (T , t  , XO) .  Then, in 

general ,  f o r  any fixed M ,  w e  have 

R M ( ~ ,  t o ,  9 )  + l R M ( ~ ,  S ,  RM(s  , t o ,  x O ) ) .  

There fore  t h e  map RM ( T  , t o  , A&) does  not  g e n e r a t e  a semigroup of t r ans for -  

mations t h a t  may define a generalized dynamic system. The necessa ry  p roper t i e s  



may be  however achieved fo r  an  alternative variety of mappings, each of the  ele- 

ments of which will possess both t he  property of type (2.4) and the  "semigroup" 

property,  [ l o ] .  

4. An Alternative Presentation of X [r]  

Denote C? Xn (T,) t o  be  t he  subclass of Cn Xn ( T )  t ha t  consists of all continu- 

ous matrix functions M ( e )  that  satisfy t he  condition; 

Assumption 4.1 For any ( E T ,  w e  have 

7 

det  ( S ( ( ,  r )  - J M ( s ) s ( ( ,  s )  d s )  2 0  
< 

In o the r  words, if K  [ t ]  is  t he  solution of t he  equation 

K ( t )  = - K ( t ) A ( t )  + M ( t ) ,  K ( T )  = E  , ( to S t  S  r )  

then M ( t )  must be  such tha t  aet K [ t ]  # 0  fo r  all  t E [to , T I .  

We will f u r the r  denote K [ t  ] = K ( t  , T , M (e)) f o r  a given function M ( e )  in (3.1). 

Consider the  equation 

Z  = ( A ( t )  - L ( t ) )  Z  , t o s t  S r  (4.2) 

whose matrix solution Z [ t  ] ( Z [ T ]  = E )  will be  also denoted as Z [ t ]  = Z ( t  , T ; L  (e)) 

(2' ( t  , T , l o ! )  = S ( T  , t ) )  

Under Assumption 2.1 t he re  exists a function L  (e) E cn Xn (T,) such tha t  

K [ t l  = Z ( t ,  T , L ( ~ ) ) ,  Vt E T , ,  (4.3) 

Indeed, if f o r  t E T ,  w e  select  L  ( t  ) according t o  t he  equation 

L  ( t )  = A ( t )  - ~ - l  ( t )  ~ ( t )  = 
A ( t )  - ~ - l ( t )  ( - K ( t )  A ( t )  + M ( t ) )  = 

- ~ - ' ( t )  M ( t )  + 2 A ( t )  

then, obviously, equation (4.3) will be  satisfied. From (2.4),  (4.3),  (4.4) i t  now fol- 

lows ( M  (e) E C? Xn (T,)) 



However i t  i s  not difficult t o  observe  t h a t  t h e  right-hand p a r t  of (4.5)  i s  

XL( . ) ( r ,  t o  , X O )  = X [ r  L(-)  ] which is  t h e  cross-section at instant  T of t h e  set 

XL (.) (* , to 9) = X [- i L ( a ) ]  of al l  solutions t o  t h e  differential  inclusion 

Since t h e  c lass  of a l l  functions L ( 0 )  E Cn  Xn (T,) genera tes  a subclass of func- 

tions M(-) E C n X n  (T,) we now come t o  t h e  following asse r t ion  in view of (2.3) ,  

Lemma 4.1 The following inclusion is  t r u e  

X [ T I  c n Ix[r I L(9l I L ( - )  E cnXn (T,)l (4 .7)  

There fore  X [ T ]  i s  contained in t h e  at tainabil i ty domains at instant  T f o r  t h e  

inclusion (4 .6 ) ,  whatever is t h e  function L ( t  ). 

The objective is  now t o  p rove  t h a t  (4.7)  t u r n s  t o  b e  a n  equality. W e  will the re -  

f o r e  pursue t h e  proof t h a t  a n  inclusion opposite t o  (4 .7)  i s  t o  b e  t r u e .  

5. The Exact Formula for X [ T ]  . 

In o r d e r  t o  p rove  t h e  equality in (4 .7)  we shall  'start by some preliminary 

resul ts .  

Lemma 5.1 Consider t h e  system 

z ( t )  E Y * ( ~ ) ,  t  E T , ,  (5 .3)  

( Y * ( t )  S ( t  , 7 )  Y ( t ) )  , 

Denote t h e  set of i t s  solutions viable on T, with r e s p e c t  t o  p ( t )  as X: ( 0 ,  to , x?)  

and t h e  cross-section of t h e  latter at instant  T as 



X: ( 7 ,  to x? )  = X *  (T , to , XE)) = x*[T] 

Then X[T] = x*[T]. 

The proof of this Lemma follows from definition 1.1 and from the  propert ies  of 

l inear systems (1.1) , (5.1). 

Assume x*(-) t o  be  a viable t ra jectory of (5.1) due t o  constraints (5.2), (5.3), 

t E T,. (The existence of at least one viable t ra jectory x*(*) w a s  presumed ear- 

l ier .  ) 

Def in i t ion  5.1 Denote x ** [TI = x **(T , t , x:,) = x:* (T , t , x:,) t o  be  the  

cross-section at instant T of the  s e t  x** ( 0  , t o  , X :,) of solutions of system 

x ( t )  E y**( t )  ( p * ( t )  = Y*(t) - x * ( t ) )  , t ET, , 

Lemma 5.1 The following equality i s  t r u e  

X[T] = X**[T] 

The proof follows from the  definition of viable t ra jector ies .  Note t ha t  sets 

P**( t )  , x?, , Y'*(t) - all contain the origin as an inter ior  point. Their support 

functions are therefore  a l l  nonnegative. 

The principal resul t  of this paragraph is  given by the  proposition: 

Theorem 5.1. The following equality i s  t r ue  

X[TI = n l X [ r  I L (41 I L (9 E Cn Xn (T,)j 

Before passing to  t he  proof of this theorem, denote 

X*[T I I,(*)] = x;(.) ( r  , t o  , 9) t o  be the  cross-section at instant T of the set 

Xi(.) (* , t o  , x O )  of the  solutions t o  the inclusion. 



Hence f o r  any matrix function L (0) E C n  X n  (T,) w e  have 

X*[T I L (*)I = X[r I S ( r  , -) L (*) S ( - ,  r )1  

T h e r e f o r e  i t  suffices t o  prove t h e  following equality 

x*[T] = n lx* [r I L (91 I L (9 E CZ xn (T7)l (5.8) 

In o t h e r  words, theorem 5.1 will b e  a l ready  t r u e  if i t  i s  proved f o r  A ( t  ) = 0 and f o r  

a r b i t r a r y  9 ,  P ( t )  , Y(t) from t h e  respect ive  c lasses  of sets and set-valued maps 

introduced in 5 1. W e  will t h e r e f o r e  follow t h e  proof of equality (5.8) omitting t h e  

stars in t h e  notations f o r  X* , X? , P *  , Y'. 

According t o  (2.2), (2.1) w e  now have (A ( t  ) = 0) 

~ ( 1  ! X[rI) = (5.9) 

= inf I Q(l ,- A(-)) I A(-) E Cn (T,); = inf IQ(1 , A(*)) I A(*) E I t n  (T,) j 

where 

Denoting 

w e  may subst i tu te  (5.9), (5.10) f o r  

where 

Let us f u r t h e r  assume t h a t  t h e  vec to r  1 E R in (5.9), (5.10) and (5.11), (5.12) 

is  such t h a t  i t s  coordinates  It f 0 f o r  a l l  i = 1, . . . , n  Let us demonstrate t h a t  if 



w e  substitute the  class of functions g (a) that  appears  in (5.11) f o r  a "narrower" 

class MTxn (T,) then the  value of t he  infimum in (5.11) will not change. The class 

M r  xn (T,) which w e  will consider consists of all functions g ( t )  of t h e  form 

gl ( t )  = l l M ( t ) ,  M(T) = E  , 

M (m) E CE xn (T,) (or  M(*) E Mn Xn (T,)) 

and 

de t  M ( t )  # 0 ,  Vt E [ t o ,  T] 

Hence the  following lemma is  t rue.  

Lemma 5.2 The support  function p ( l  I X[T]) satisfies t he  condition 

~ ( 1  I X[TI) = = inf I+(g (*>I I g (a> E M'? Xn (T,) I 
For t he  proof of t-his p roper ty  w e  will distinguish t he  cases of n being an  even 

number and n being odd. 

Suppose n = 2. First  of all, note tha t  f o r  calculating the  infimum in (5.11) i t  

suffices t o  r e s t r i c t  ourselves t o  the  class of such functions g (0) = (gl(*) , g2(a)) 

that  g ( m ) ~ M ~ ( T , ) , g ( ~ ) = l ,  g t ( t ) g ( t ) # 0  fo r  any t ET,. Indeed, f o r  any 

g (a) E M2(~,) (g (T) = 1 ) i t  i s  possible t o  construct a sequence of functions 

g(f)(m) E M~(T,) , g ( f ) ( ~ )  = I ,  E -, + 0 , fo r  which 

and 

For example, assume 

where 

g j f ) ( t )  =12  g2( t  + E) / g2(T + E) , t ET,. 

Since i t  i s  assumed that  g (T) = 1 , 1 # 0 , 1 # 0 , t he  function g.#f) (T) is well- 

defined fo r  minor values of E (i.e. g(f)(*) E M2(T,) , g ( f ) ( ~ )  = 1) . 



Since the  number of nulls of the polynomials gl ( - )  , g2(*) is finite, i t  is possible t o  

select the  "shift" E = E' in g2( t  + E )  SO that  t he  nulls of g l ( t )  and g2( t  + E )  will not 

coincide f o r  all E E (0 , E'].  Now fo r  each t  E T,, g ( ' ) ( t )  + g  ( t  ) and g ( ' ) ( t )  + g ( t  ) 

with E -, + 0.  The sequence g ( c ) ( t  ), g ( ' ) ( t )  is equibounded in t  f o r  E E (0 , &'I. 

Therefore (5.12) is t rue .  

I t  is now possible t o  demonstrate that  any function g  (m) E M'(T,) , with 

g ( r )  = 1 , 1 ' 1  # O ,  g r ( t ) g ( t )  # O ,  W E T , ,  may be  presented in the  form 

g(*) = I ' M ( * )  wherede t  M ( t )  $0, W E T , ,  M ( r )  = E .  

It  may be  verified directly that  with 1 given 

satisfies these conditions, namely 

de t  M ( t )  = g f ( t )  11' + g z ( t )  12' f 0 .  

Let us now assume tha t  the  dimension of Rn is even: n = 2k , k  2 2. Then fol- 

lowing the  scheme f o r  n = 2,  i t  i s  possible t o  verify tha t  i t  suffices t o  calculate the  

infimum in ( 5 . 1 )  (5.12) over  such functions g  (0) = (g . . . . , g  (2k )), 

g ( r )  = 1 , 1 ' 1  f 0 ,  that  g z i - l ( t )  f g Z i ( t )  > 0 ,  V t  E T,, Vi E [ I  , k ] .  

Any function g  ( 0 )  of t he  given type may be presented in t he  form 

g ( t )  = I '  M ( t )  where the  (2k  x 2 k )  - dimensional matrix M ( t )  is  block-diagonal: 

be  calculated due t o  formula (5.14) where in the  place of gl(*) , g2(*) w e  should sub- 

sti tute (gZi  , g z i  (*)), (i = I ,  . . . , k ) .  The function M ( * )  belongs t o  t he  class 

Mn Xn (T,), M ( T )  = E  and f o r  any t  E T, we have 

M ( t )  = 

k 
d e t M ( t )  = n det  Mi( t )  > 0  

i =1 

and each of the  matrices Mi ( t  ) , i = 1, . . . , k ,  is ( 2  x 2 )  - dimensional and may 

Ml(t 0  

0  Mk ( t  
d 

(5.15) 



Assume now tha t  n is odd: n = 2k + 1.  Then again we may calculate the 

infimum in (5.11), (5.12) over  the  class of functions. 

g ('1 = (gl( ')  , . , g2k  (*) t g 2 k + l ( * ) )  Mn (T7) I B ( T )  = 1 

such that  

ggi - 1 ( t )  + g & ( t )  > 0 ,  v t  E [ t o  T ]  ; i = 1, .  . . , k ,  

Each of such functions may be  presented in the  form g  ( t  ) = 1 ' M ( t  ) where 

by g z i  -l , gzi (i = 1, . . . , k  ). Obviously 

M ( t ) =  

M ( T )  = E , M ( - )  E M~ Xn (T,) 

and 

* 
M i ( t ) ,  0  .... 0 ,  0 ,  m ( t )  

0  , ( 1  . 0  , 0  , 0 , 
. - .  . . . 9 . .  

0 ,  . . . 0 ,  M k ( t ) ,  0  I 

, 0 ,  . . . 0 ,  0 ,  1 ,  

k 
d e t M ( t )  = det  Mi( t )  > 0  

i = 1  

m ( t )  = ( 6 2 k + l ( t )  - l 2 k + i )  l 1 .  

Here Mi ( t )  is  determined similarly t o  (5.14) where gl(a) , g 2 ( 4  are to  be  substituted 

f o r  all t  E T,. 

In o rde r  t o  finalize the  proof of lemma 5.2 w e  have t o  consider the case when 

n = 1. For n = 1 the  class M t X 1  (T,) may be substituted by all  positive functions 

m (a) E C ;  (T,). However, due t o  (2.3) w e  will be  able t o  confine ourselves t o  t he  

case when m (m) E c~(T,) .  

A s  before ,  l e t  C ;  (T,) stand fo r  the  set of such functions m ( t ) ,  tha t  m ( ~ )  = 1; 

m ( t  ) > 0 ;  V t  E T,. W e  also assume tha t  

0  E xO n n P(O)  (5.17) 

where obviously X o  , Y ( s  ) , P ( s )  tu rn  t o  be  compact intervals in R'. 

Recall tha t  in view of (5.12) the  function 



where 

W e  shall demonstrate tha t  

With t  decreasing from the  value T ,  denote T* t o  be  f i r s t  instant of time where 

m  ( t )  tu rns  t o  zero  ( m  ( T * )  = 0) .  Therefore m  ( T * )  = 0  , m  ( t )  = 1 and 

Denote 

K ( t ) = m ( t )  f o r 7 ' 5 t  5 7  

E ( t )  = O  fo r  t o  t  < T *  

In view of (5.17) w e  have 

Hence 

*(l m  (*)) 2 *(l  Gi(*)) 

whatever is t he  function m  (*) E C; (T,) 

A number E > 0  being given i t  i s  possible f o r  every m(*)  t o  select  a 

6  = 6 ( ~  , m(*))  > 0  such tha t  t he  function m  ,(t) defined as 

m ,  ( t )  = G ( t )  fo r  T *  ( 6 )  5 t  5 T , 

m 6 ( t )  = 6  f o r  t o  s t  s ~ * ( 6 ) ,  

satisfies the  inequality 



1 *(L ('1) - *(L m 6(')) 5; E 

Here ~ ~ ( 6 )  is  the  f i r s t  instant of time where m ( ~ ~ ( 6 ) )  = 6 with t decreasing from T 

t o  ~ * ( 6 ) ,  SO tha t  ~ ~ ( 0 )  = T*. 

Hence fo r  any m ( 0 )  E c1 (T,) and any E > 0 the re  exists a function 

m 6(*) E C: (T,) such tha t  

*(L m ( 0 ) )  r *(L m 6(@)) - E 

Comparing (5.19) with the  obvious relation 

inf [+(I m (-)) 1 m (a) E C1 (T,) { S inf I+(L m (a)) I m (-1 E C: (T,) 

w e  a r r i ve  at the  equality (5.18). 

Note tha t  t he  class C: (T,) in (5.18) might well be  substituted by CL (T,) 

where 

n xn c:, (T,) = IM(a) : /M(-) E C, (T,) ; M(T) = E  , de t  M(t) > O  Vt E (T,){ 

From the  proof of t he  above w e  came t o  the  assertion: 

Lemma 5.2 The set X[T] may be described as 

Following the  suggestions tha t  led t o  Lemma 2.2 w e  may deduce 

Corollary 5.1 Relation (5.20) is  equivalent to  

P(L / X[TI = inp IP(L I X [ T  I L  ( ')I) I L  ('1 E cZXn (T,) I . (5.21) 

In o r d e r  t o  finalize the  proof w e  will make use of t he  following lemma. 

Lemma 5.3. Assume !Xu{ to  be  a variety of convex compact sets tha t  depend 

upon the index a E A with X = n !Xu ( a E A{ + q5. Denote 

Then 

p(1 !X) = p ' * ( l )  

where p" (1) i s  the  Fenchel second conjugate t o  ~ ' ( 1 ) .  



In o t h e r  words 

f " ( 1 )  = (co f ) ( 1 )  

where (co f )  ( 1 )  s tands  f o r  t h e  function whose epigraph i s  t h e  closed convex hull 

f o r  t h e  epigraph of f  (1  ) (1 E Rn ), [7] .  

Applying th is  lemma t o  X[T I L  ( + ) I  with L  (-) acting as t h e  pa ramete r  w e  find t h a t  

P U !  n l x [ ~ I L ( . > l l ~ ( . >  E cZxn (T,>l> = (co h )  ( 1 )  (5.21) 

where 

h(1) = i n f  I &  I X [ T I L ( ' ) ] )  IL( - )  E CZXn(T t ) j  (5.22) 

and 

h(1) = p(1 ] X [ T ] )  f o r  1 E A .  

From (5.21) - (5.23) i t  now follows t h a t  

X [ T I  = n I x [ ~ l L ( - > l  IL(9 E c",n(~,>l . 
Indeed, s ince  always 

X [ T ]  r X[T L  ( - ) I  , L  (.) E cn Xn (T,) . 
assume t h a t  t h e r e  exis ts  a point x  ' = X [ T ]  such t h a t  

X '  E n l x [ ~ i L ( . ) I l L ( . )  E cZXn(~,)j 
Then t h e r e  exis ts  a vec to r  1 ' t h a t  ensures  t h e  inequality 

(1 ' ,x '1 > p(18 IXCTI) 

( X [ T ]  being a convex compact set w e  may always assume 1' E A). Hence t h e r e  

exis ts  a vec to r  1 * E A such t h a t  

~ ( 1 '  i n IX[T IL (.)I iL (-1 E c"," (T,>l> > P ( ~ ' ( X [ T I >  . 
However, th i s  i s  in contradiction with (5.23), (5.22). 

Thus (5.21) i s  t r u e  and  in view of (5.24) Theorem 5.1 i s  now fully proved. More- 

o v e r  we have established 

Lemma 5.3. The following equality i s  t r u e  



A d i rec t  consequence of the relations of the  above is 

Lemma 5.4. Assume tha t  in (1.1) the  matrix A ( . )  E CF Xn(T). Then 

X [ T I  = n IX<T IL(.>> IL (9 E CF Xn(T)] . 

6. The  V i a b l e  Domains. 

Consider system (1.1), (1.3) fo r  t E [ s  ,191, with s e t  M E comp Rn . 

Def in i t ion  6.1. The viable domain f o r  system (1.1), (1.3) a t  time s i s  the  set 

W(s , d )  that  consists of all vectors  w E R n  such that  

Z ( ~ ~ , T , W )  c M .  (6.2) 

Using the  duality relations of convex analysis as given in [2] i t  i s  possible t o  

observe tha t  

W(s,19) L R - ( s , M ( . ) ) ,  V M ( . )  E 

where 

Similar t o  52 w e  come t o  

Lemma 5.1. The se t  W ( r , I 9 )  may be  determined a s  

Returning t o  equation (3.6) denote 

X-[s ,  IL ('11 = XL7.) ( S  ,d,M) 

t o  be the  cross-section a t  instant s of the  set Xj,<.) ( - , 2 9 , M )  of all  the  solutions 

ZL ( t  ,19,z6) t o  the  inclusion (3.6) that  are generated a t  instant 19 by point z6 E M 

and evolve in backward time until the  instant T < I9 , ( T  5 t 5 19). Along the 



schemes of 554, 5  i t  is possible t o  a r r i ve  at t he  analogy of Theorem 5.1: 

Theorem 6.1. The following relations are t r u e  

7. The S t a t e  Estimation Problem 

Assume inclusion (1.1) ,  (1.2) is considered together  with a measurement equa- 

tion 

Y ~ G ( t ) z  + Q ( t ) ,  t o s t  S T ,  (7.1)  

where y  € R m ,  G ( t )  is a continuous matrix and Q ( t )  a continuous multivalued map 

from T, into conv Rm.  

Suppose tha t  due t o  equations (1.1), (1.2) and (6.1) (that substitutes f o r  (1.3)) 

an  "observation" y  ' ( t )  , t E T ,  has appeared.  (The function y *  ( t )  is obviously 

generated due t o  equations 

z = A ( t ) z  + u  , y  = G ( t ) z  + #  (7.2)  

by t r iplet  z 0  , u (-) , #(.), where z 0  E x O ,  u ( t  ) E P ( t  ) , # ( t )  E Q ( t  ) and u ( t  ) , # ( t )  

are measurable functions.) 

The estimation problem will consist in specifying the  set X ( . ; y 8 ( . ) )  of all t he  

solutions z ( . , t o , z O )  of inclusion (1.1) tha t  start at t o  from points z0  €9 and 

satisfy both (1.1) and (7.1) fo r  y ( a )  = y  '(.), t o  S t  S T ,  (being therefore  consistent 

with both t he  system equation (1.1) and the  measurement equation (? . I ) ,  

y  (.) = y  * ( a ) ) .  The l a t t e r  problem then reduces t o  the  one of $51 - 4: t he  specifica- 

tion of set X [ T ]  and i ts  evolution in T where t he  set-valued map Y ( t )  of (1.3) 

appears  in t h e  form 

Y ( t )  = j z : G ( t ) z  E ~ ' ( t ) j  

and 

~ ' ( t )  = ~ ' ( t )  - Q ( t ) .  

This specific type of set Y ( t )  may be  t rea ted  along the  schemes of t he  above. 



The resul ts  reduce t o  t he  following relations. Consider the  inclusion 

denoting its solution as 

and taking 

% ( . ) ( t , t O , X )  = u ~ z L ' ( t , t ~ , z O ) z ~  E x 0 ]  

Along the  schemes of 482-4 w e  a r r i v e  at the  proposition. 

Theorem 7.1. The cross-section X *  [ T I  at time T of the  set X ( - ,  y * (.)) of all 

solutions t o  the  system (1.1), (7.1),  y ( t  ) = y * ( t  ) , t  5 t  5 T ,  may be  described as 

X *  [ T I  = n I x ; ( ~  ,to.?) I L ( . )  E C" Xn (T,) 1 . (7.4) 

Thus if the  information on an uncertain t ra jec tory  z ( t  ,t o,z O )  of (1.1), (1.2) is 

reduced to  t he  knowledge of the function y * ( t  ), t  E [ t  0 , ~ ] ,  then the  set X' [ T I  gives 

a "guaranteed" estimate f o r  z [ r ]  = z ( T  ,t o,z O ) .  

Remark From the  assumption tha t  the  function ( ( t )  in (7.2) is measurable, i t  

follows tha t  set ~ ' ( t )  is measurable in t  (with values in comp Rn).  This leads to  

the  fact tha t  t he  respect ive set 

Y ( t )  = I z : G ( t ) z  E Q e ( t ) ]  

may be  also measurable r a t h e r  than continuous in t  as required by the  assumptions 

fo r  Theorem 5.1. The proof of Theorem 5.1 however allows a modification tha t  

ensures Theorem 7.1 t o  be  t rue .  

The scheme presented h e r e  i s  o the r  than those suggested in e i ther  [2]  o r  [ I l l .  
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