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PREFACE

Optimization is of central concern to a number of discip
lines. Operations Research and Decision Theory are often consi
dered to be identical with optimization. But also in other
areas such as engineering design, regional policy, logistics
and many others, the search for optimal solutions is one of the
prime goals. The methods and models which have been used over
the last decades in these areas have primarily been "hard" or
"crisp", i.e. the solutions were considered to be either fea
sible or unfeasible, either above a certain aspiration level or
below. This dichotomous structure of methods very often forced
the modeller to approximate real problem situations of the
more-or-Iess type by yes-or-no-type models, the solutions of
which might turn out not to be the solutions to the real prob
lems. This is particularly true if the problem under considera
tion includes vaguely defined relationships, human evaluations,
uncertainty due to inconsistent or incomplete evidence, if na
tural language has to be modelled or if state variables can
only be described approximately.

Until recently, everything which was not known with cer
tainty, i.e. which was not known to be either true or false or
which was not known to either happen with certainty or to be
impossible to occur, was modelled by means of probabilities.
This holds in particular for uncertainties concerning the oc
currence of events. probability theory was used irrespective
of whether its axioms (such as, for instance, the law of large
numbers) were satisfied or not, or whether the "events" could
really be described unequivocally and crisply.

In the meantime one has become aware of the fact that un
certainties concerning the occurrence as well as concerning the
description of events ought to be modelled in a much more dif
ferentiated way. New concepts and theories have been developed
to do this: the theory of evidence, possibility theory, the
theory of fuzzy sets have been advanced to a stage of remarkab
le maturity and have already been applied successfully in nu
merous cases and in many areas. Unluckily, the progress in
these areas has been so fast in the last years that it has not
been documented in a way which makes these results easily ac
cessible and understandable for newcomers to these areas:
text-books have not been able to keep up with the speed of new
developments; edited volumes have been published which are very
useful for specialists in these areas, but which are of very
little use to nonspecialists because they assume too much of a
background in fuzzy set theory. To a certain degree the same
is true for the existing professional journals in the area of
fuzzy set theory.

The editors of this book have succeeded to avoid this
weakness by starting with an introductory section which provi
des - even for the newcomer to this area - the necessary back
ground to understand the contributions of the following sec
tions.

xi



xii PREFACE

Section II of this volume focuses on methodological advan
ces in the areas of optimization and decision making. Three of
the most relevant topics in this area have been chosen to il
lustrate modern tools and techniques using fuzzy sets and pos
sibility theory: preference theory, decision theory and multi
criteria decision analysis.

The editors can be congratulated on the selection of
authors they have succeeded to convince to contribute to these
sections. They are all internationally well-reputed and lead
ing scientists in their respective areas o

The same is true for the two subsections of this chapter
which are of a slightly different character o One treats fuzzy
approaches to location and distribution problems. This will
certainly be of particular interest to people working in logis
tics. The second subsection introduces the reader into the most
modern area of knowledge-based decision support systems which
links past experience and available optimization models to
future developments as they will be needed, for instance, in
the 5th Generation Computer Technology.

One of the frequently asked questions is: "Can fuzzy sets
be used in practice?" At the start of any new theory this ques
tion is particularly hard to answer. Nevertheless the editors
of this book give an answer by presenting in the third chapter
of the book five descriptions of the use of fuzzy sets in solv
ing real world problems in quite diverse areas such as regional
policy, water resource allocation and hydrocracking processes.
They could not have thought of a better and more convincing
conclusion of their book.

Altogether this volume is a very important and appreciable
contribution to the literature on fuzzy set theory. The editors
have succeeded in presenting a well composed selection of con
tributions by leading scientists from allover the world. They
have also provided enough background information to make the
book selfcontained and valuable to newcomers to this area as
well as to specialists. It can only be hoped that it will be
read in all parts of the world. It really deserves it!

H.-J. Zimmermann
President
International Fuzzy Systems Association

Aachen, June 1986
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NEW PARADIGMS IN SYSTEI-lS ENGINEERING: FROM "HARD" TO "SOFT"
APPROACHES

Brian R. Gaines

Department of computer Science
University of Calgary

Calgary, Alberta, Canada T2N 1N4

Abstract. Developments in fuzzy sets theory are
considered in relation to those in expert systems.
It is suggested that these are not just mathema
tical and technological advances but also repre
sent major paradigm shifts in system theory. The
main shift is away from the normative application
of technology to change the world to be theoreti
cally tractable, and towards increasing model rea
lism. The limitations of classical "hard" system
theory when applied to natural systems are the im
petus behind the development of modern "soft" sys
tem theory, its foundations in fuzzy sets theory
and its application in expert systems.

Keywords: systems theory, systems engineering,
fuzzy sets, expert systems.

1. INTRODUCTION

Lotfi A. Zadeh first discussed the need for a "mathematics
of fuzzy or cloudy quantities" in a paper entitled "From circuit
theory to system theory" published in 1962. This led to his
publishing his seminar paper, "Fuzzy sets", proposing such a
mathematics in 1965. A comprehensive bibliography for the first
decade shows an increase from 2 papers published in 1965 to
over 227 in 1975 with a cumulative total in 1975 of some 620
items (Gaines and Kohout, 1977) and in 1979 of some 1400 items
(Kandel and Yager, 1979). The number of papers a year and cumu
lative total fit well to exponential growth at 60% a year for
the first decade. However, it is now almost impossible to track
the growth of a literature which has grown from the output of
a small group of specialists to that of an international commu
nity involving almost every nation and discipline. The growth
rate of the dissemination of knowledge about, interest in, and
work on fuzzy sets theory (FST) and its applications has been
spectacular.

Why has there been this tremendous growth of interest in
the past twenty years in the mathematics of fuzzy or cloudy
quantities? What changes have occurred in systems engineering?
This paper suggests that there has been a shift in the modes of
thinking and problem-solving for a significant community of
theoretical and ~pplied scientists and technologists. The "hard"

3



4 OPTIMIZATION MOOELS, FUZZY SETS, AND POSSIBILITY THEORY

systems approach that has proved so powerful in the development
of man-made systems is far less useful in developing models for
the management of natural systems, or coupled man-made and na
tural systems. A "soft" systems approach has become necessary to
extend our science and technology to systems engineering for ma
jor ecological, social and economic processes.

Nowhere is the significance of this change more apparent
than in the development of expert systems (ESs) where a soft
systems approach has been taken to the encoding of human exper
tise for computer-based systems (e.g. Michie, 1979; Gevarter,
1983; and Reitman, 1984). This is an interesting area, not only
for its high intrinsic value, but also because it enables us to
contrast differing aspects of the role of FST in modern informa
tion science. Expert systems development leads to requirements
for reasoning with imprecise data where FST provides an alterna
tive paradigm to those of classical logic and probability theo
ry. The most well-recognized breakthroughs in ESs such as MYCIN
(Shortliffe, 1976) were not based on FST, but on heuristic me
thods that turn out to closely resemble FST. Other early break
throughs such as linguistic process controllers (Mamdani and
Assilian, 1901) were based directly on FST.

The next section outlines the development of ESs and the
role of FST, and the following section considers the paradigm
changes involved.

2. EXPERT SYSTEMS AND FU~ZY SETS THEORY

The computer simulation of people in the roles of experts
on some topic has become an important application of interactive
computer systems. It has generated a new industry based on crea
ting expert systems to make the practical working knowledge of
a human expert in a specific subject area such as medicine or
geology widely available to those without direct access to the
original expert (Reitman, 1984). Programs now exist that have
made practical achievements in medical diagnosis, interpreta
tion of mass spectroscopy results, analysis of geological sur
vey data, and other problems where one would normally go to a
human expert for advice.

One of the first ES developments was the fuzzy logic con
trol system developed in 1974 by Mamdani and Assilian. The sy
stem accepted human knowledge of control strategies expressed
verbally and encoded it directly as computer programs which
acted on the environment (Mamdani and Assilian, 1981). This
work was undertaken as part of a study of machine learning in
process control and the system controlled was a small steam
engine. The verbal rules were of the form shown in Fig. 1.

IF the pressure error is positive and big and the
change in pressure error is not negative medium
or big

THEN make the heat change negative and big

Fig. 1. Rule from a fuzzy logic controller

What was surprising at the time and made the 1974 results
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a recognized breakthrough was that the control rules derived
from the verbal statements were extremely effective. They com
pared favorably with those derived by tuning a standard PID
(proportional-integral-derivative) controller for optimum per
formance. It was also found that the learning machine then pro
ceeded only to learn less effective strategies. Hence interest
switched to the process whereby human expression of verbal rules
that appear vague can lead to highly effective control strate
gies. In the past ten years Mamdani and Assilian's results have
been replicated in many different countries for many different
control processes, including a number of significant industrial
processes such as pig iron smelting where effective automatic
control had been thought to be impossible (Mamdani, ¢stergaard
and Lembessis, 1984).

The concept of an ES was not prevalent at the time of the
initial fuzzy control studies and their significance as examples
of early ES development was noted only later. In parallel with
the controller development, other rule-based ESs were being de
veloped for completely different domains. The system widely re
cognized as an early breakthrough, MYCIN, is a medical diagnosis
ES which aids a clinician to act as a consultant on infectious
diseases (Shortliffe, 1976). It uses rules of the form shown in
Fig. 2.

RULE 50
IF 1) the infection is primary-bacteremia, and

2) the site of the culture is one of the sterile
sites, and

3) the suspected portal of entry of the organism is
the gastro-intestinal tract,

THEN there is suggestive evidence (.7) that the identity
of the organism is bacteroides

Fig. 2. A MYCIN rule

These rules are obtained from specialists in microbial in
fections and their application to particular data is fairly
simple data processing. The rules are validated through their
application to many cases and revised when they fail to give
the correct diagnosis. MYCIN is designed to interact with a
clinician in order to make a diagnosis and suggest therapy for
a particular patient with suspected microbial infections. It
first gathers data about the patient and then uses this to make
inferences about the infections and their treatment.

Note that the MYCIN rule of Fig. 2 involves an assertion
that is evidential rather than true. Shortliffe found it neces
sary to encode rules of inference that were imprecise and could
not be encoded simply in terms of truth and falsity. He ascribed
a verbal label, "suggestive evidence", and a numerical truth
value, "0.7", to a rule and developed a calculus for combining
such truth values in chains of logical inference. Thus, lingu
istic reasoning and multivalued logics were key components of
early ES developments although the MYCINdevelopers were ini
tially unaware of FST and the linguistic controller developers
were initially unaware of ES concepts.
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It was also discovered that the rule-based approach to know
ledge encoding could be applied to high-level capabilities such
as learning processes through the use of metarules. Mamdani,
Procyk and Baaklini (1976) found that learning could be introdu
ced effectively in the steam engine controller through metarules
that expressed the way in which the basic rules should be chan
ged as a result of performance feedback. The learning level of
their controller operated on rules of the form shown in Figo 3.
This was sufficient for the fuzzy controller to acquire a con
trol strategy similar to that induced through verbal rules from
a human expert.

IF time is small and error is negative big
THEN desired change is big

IF time is big and error is positive zero
THEN desired change is zero

Fig. 3. Metarules from a fUzzy learning controller

Metarules were also introduced independently by Davis to
aid the debugging of MYCIN. It was difficult to set up the
MYCIN rules initially and also difficult to trace errors in the
deductions. To overcome these problems TEIRESIAS (Davis and
Lenat, 1982) was added as an auxiliary ES with expertise about
MYCIN to explain MYCIN's decisions and help the clinician amend
the rules when they lead to incorrect conclusions. TEIRESIAS
uses a similar rule-based approach to reasoning as does MYCIN
but the rules are now rules about the forms of rules and the
use of rules. A typical such metarule is shown in Fig. 4. Where
as MYCIN's rules are specific to microbial infections, those of
TEIRESIAS are more general and can be used in other domains.
Davis (1983), for example, shows TEIRESIAS being used as an in
vestment decision system for clients of a stockbroker.

METARULE003:
IF 1) there are rules which do not mention the

current goal in their premise
2) there are rules which mention the current

goal in their premise
THEN it is definite that the former should be

done before the latter

Fig. 4. A TEIRESIAS metarule

One of the important features of MYCIN/TEIRESIAS that has
bec~me an essential characteristic of ES is their capacility to
provide explanations of the deductions given. "Why?" questions
are accepted as responses when data is requested and are inter
preted as a request for the rule to be shown that requires the
data requested. A "why?" question may also be asked when con
clusions are drawn and this is interpreted as a request for the
complete chain of logic used in arriving at that conclusion to
be shown. The facility to answer such questions make ES accoun
table for their behavior and conclusions. This is itself a major
new feature of systems programmed for computers.

Another important feature of ES is that they are not sta
tic representations of knowledge but can continue to acquire
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knowledge as they are used. Essentially, the use of metarules
allows ES to be programmed interactively by their users. From
one perspective the metarules of the fuzzy learning controller
and TEIRESIAS can be seen as an important development in auto
matic programming. From another they can be seen as a way in
which a machine acquires knowledge through interaction with its
environment or with a person, These are analogous to the funda
mental ways in which people acquire knowledge (Gaines and Shaw,
1984a). For such applications computational logics capable of
dealing with the uncertainties of imprecise data and fallible
hypotheses are essential.

Since the early success with fuzzy logic control and MYCIN,
a very wide range of ESs have been developed. Gevarter (1983)
has summarized some well-known expert systems and their appli
cations but the numbers and domains have since increased so ra
pidly that it is now impossible to make any accurate count. Most
universities have some activity in this field and many indus
trial ESs are regarded as highly proprietary. ESs are a pragma
tic example of the success of a soft systems approach based on
linguistic reasoning with uncertain rules and data (Gaines and
Shaw, 1984b). They contrast with previous unsuccessful approach
es to similar problems based on the development of precise ma
thematical models and their use in the development of optimum
control and decision algorithms.

The next section considers the significance of this change
of approach.

3. SHIFTS IN SYSTEMS PARADIGrlS

The previous section has shown how the early applications
of FST to control and decision systems paralleled the develop
ment of early expert systems in the use of linguistic rules,
fuzzy reasoning and metarules. This role of FST, significant as
it is in itself, is only an indication of the deeper paradigm
shifts from which FST and ES both stem. The classical approach
in decision and control system design is shown in Fig. 5. This
positivistic paradigm underlies the methodologies of the physi
cal sciences and technologies based on them. It has the merit
that it has been extremely successful in engineering much of
the technological infrastructure of our current civilization.

However, this paradigm is successful only to the extent
that the systems under consideration are amenable to instrumen
tation and modeling. Its greatest successes have been where
this amenability can be achieved normatively, that is in cases
where the system to be controlled is itself a human artifact.
For example, linear system theory has not become a major tool
in systems engineering because most natural systems are linear
- they are not. The implication is in the opposite direction:
that linear systems are mathematically tractable and that we
design artificial systems to be linear so that we may model
them readily.

The application of "a linear model with quadratic pefor
mance criterion" to natural systems is often attempted but, in
general, it does not work. We have done so not because the tool
was appropriate, but because it was the only one we had. How-
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STEF 1
Thoroughly instrument the system to be controlled or

about which decisions are to be made

STEP 2
Use the instrumentation to gather data about the

system behavior under a wide variety of circumstances

STEP 3
From this data build a model of the system that

accounts for this behavior

STEP 4
From this model derive algorithms for decision or

control that are optimal in terms of prescribed
performance parameters

Fig. 5. The hard systems approach

ever, the use of a hammer to insert screws, although partially
effective, tends to distort, destroy, and generally defeat the
purpose of using a screw. Similarly, the use of an inappropria
te system theory to model a system may give useful, but limited,
results when we have no other, but it distorts reality, destroys
information and generally defeats the purpose of modeling that
system.

Much of our current technology succeeds to the extent that
it is normative. In agriculture we reduce the complexity of a
natural ecology to a comprehensible simplicity by the use of
pesticides, herbicides and chemical fertilizers (Gaines and
Shaw, 1984c). We reduce the system to one which is amenable to
our modeling techniques. That simpler is not necessarily better
and that re-engineering nature to impose uniformity destroys
variety which is itself valuable have only been realised in re
cent years.

The four shifts in perspective that we see in FST and ES
are shown in Fig. 6. The last three perspectives all stem from
the first. The importance ot this first perspective to Zadeh is
apparent in his 1962 paper where he discusses the fundamental
inadequacy of conventional mathematics for coping with the ana
lysis of biological systems, noting also' that the need for a
new mathematics was becoming increasingly apparent even in the
realm of inanimate systems.

The second perspective is that which lead to FST. Optimal
control theory was regarded as the peak achievement of system
theory in the 1950s and 1960s. However, it proved limited in
application because it demanded precision in system modeling
that was impossible in practice. It was too sensitive to the
nuances of system structure expressed through over-precise sy
stem definition.

The third perspective is that which led to the success of
linguistic fuzzy controllers and later ESs. Hayes-Roth (1984)
has noted the many problems that have been felt to require human
management are now amenable to ESs. Modeling the way the expert
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PROBLEH 1
The models available are inadequate to capture the system

OLD APPROACH: PROCRUSTEAN DESIGN
Change the world to fit the model - normative technology

PARADIGM SHIFT: HODEL REALISI1
Use system methodologies and information technology that

enable the natural world to be modeled without
distortion and destruction

PROBLEM 2
Optimal control is over-sensitive to system uncertainties

OLD APPROACH: SUB-OPTIMALITY
Use a sub-optimal controller that is robust

PARADIGll SH 1FT: MODEL UNCERTAINTY
Model the uncertainty as part of the system

PROBLEll 3
Data is unavailable or inadequate for modeling

OLD APPROACH: IffiNAGE
Do not automate - leave to human decision/control

PARADIGM SHIFT: EXPERT SYSTEMS
Model the person as a decision-maker or controller

PROBLEll 4
Neither a human nor an automatic system alone is adequate

OLD APPROACH: AD HOC SYSTEM DESIGN
Use a mixture of automatic and human decision/control

PARADIGM SHIFT: ACCOUNTABLE INTEGRATION
Integrate automatic and human activity - make the

automation accountable ("Hhy?" in ES)

Fig. 6. Paradigm shifts in systems engineering 
from the hard to the soft systems approach

performs the task rather than modeling the task itself is the
primary characteristic of an ES.

The fourth perspective is an important one for both ES and
FST. They are knowledge-based systems because they make provi
sion for explaining the decisions reached in terms of the data
and inferences used. It is interesting to note that logics of
uncertainty that aggregate evidence, such as probabilistic lo
gics, do not provide a simple mechanism for explanation. Expli
cable logics have to be truth-functional and non-aggregative;
fuzzy logic satisfies these requirements (uniquely among those
logics satisfying the weak axioms of a standard uncertainty
logic (Gaines, 1983)). It is also interesting to note that the
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capability to give explanations is seen by some philosophers of
science as a key difference between models that make accurate
predictions and scientific theories that in addition provide
causal explanations (Salmon, 1984). The "why?" question has im
portant implications for both the practical and theoretical sig
nificance of ESs and the logics on which they are based.

4. CONCLUSIONS

FST was from the outset an attempt to create a new mathe
matical system theory that corresponds to Paradigm Shift 1 and
fits the realities of the world without distorting them. It was
created by a person who had extended the boundaries of current
system theory, attempted to encompass in generality the key con
cepts of applied systems engineering (Zadeh, 1956, 1957, 1963
and 1964), and recognized the failure of that theory in this
task. Developments in ES have shown the practical significance
of this paradigm shift in enabling systems to be engineered for
problems previously considered intractable. FST and ESs, and the
application of one to the other, are not just mathematical and
technological advances but also represent major paradigm shifts
in system theory. This has involved fundamental changes in sy
stem philosophy and technology, shifts from a positivistic, nor
mative approach to a more realistic and naturalistic approach.
These shifts are apparent throughout science and technology and
its application to our world and society.

Fuzzy sets theory cannot be either right or wrong. It is
applicable mathematics tested by its uses. However, the rationa
le behind it, the systemic principles inVOlved, can be right or
wrong. They are right for our time, for the objectives of deal
ing adequately with a complex universe and extending the capa
bilities of the person with computer enhancements. The soft sy
stems principles involved do not replace hard systems princip
les but extend the domain of systems theory to encompass both.
The re-development of system theory is not yet complete and the
seminal notions of stability, adaptivity, modeling, and so on,
still need adequate expression. However, we now have the founda
tions on which to build a system theory that combines realism
with power and provides applicable mathematics for our knowled
ge-based society.

The papers in this volume present the state-of-the-art of
soft systems engineering based on FST, mainly in a decision
making and optimization context, and its application to a wide
variety of practical problems.
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HlTRODUCTION TO FUZZY SETS AND POSSIBILITY
THEORY

Hario Fedrizzi

Institute of Statistics and Operations Research,
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Via Verdi 26, 38100 Trento, Italy

Abstract. The purpose of this introduction is
to discuss the essence of fuzzy sets and pos
sibility theory in order to make the interes
ted reader familiar with the basic elements of
these growing fields of research. Thus such
issues as basic definitions and properties of
a fuzzy set, fundamental operations, fuzzy re
lations, the extension principle, fuzzy num
bers, linguistic variables and some basic ele
ments of possibility theory are briefly re
viewed.

~words: fuzzy set, fuzzy relation, fuzzy
number, linguistic variable, pos
sibility distribution

1. INTRODUCTION

The purpose of this paper is to provide the reader with an
introduction to fuzzy sets and possibility theory. Ilathematics
is used only instrumentally, that is, as.a tool; no proof ap
pears explicitly in the paper and no specific mathematical pre
requisite is required.

To see fuzzy sets in a proper perspective, let us notice
that analysis and modelling of any real world phenomenon or
process must take into account an inherent uncertainty. In many
cases this uncertainty is not due to randomness but to some
imprecision whose formal treatment cannot be performed inside
the mathematical framework of probability theory. \;e could say
~hat such an i~precision may be: ambiguity, i.e. the associa
tion with a given object of a number of aiternative meanings,
generality, i.e. ·the application of the symbol's meaning to a
multiplicity of objects, and vagueness, i.e. a lack of clear
cut boundaries of the set of objects to which the symbol (mean
ing) is applied. Notice that all the above imprecisions, and
more particularly vagueness, may be viewed as an effect of na
tural languages used by humans.

In 1965 Zadeh (1g65) provided the first tools, i.e. fuzzy
sets, specially devised for dealing with this last form of im
~recision, vagueness, and by now more then two thousand works
dealing with this topic have been published, and hundreds of

13



14 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

researchers allover the world are still working on the theory
itself or on its application.

The theory of what Zadeh called fuzziness also stimulated
a constructive debate on the several forms of uncertainty
(Gaines, 1976), and on their mathematical representation (among
others, Shafer, 1976: H~hle and Klement, 1984) 0

2. BASIC DEFINITIONS

In mathematics, sets are used to formally represent a con
cept. For instance the "integer numbers which are greater than
4 and smaller than 12" may be represented by the set A ={ 5,6,
7,8,9,10,11} or by its characteristic function (/JA : X -+[1. 0 ,1).
Here X is the universe of discourse (the set or intege~ num
bers), (/JA(x) = a means that x does not belong to set A,

while (/JA(x) = 1 means that x belongs to it.

Some difficUlty arises when we want to use set theory to
characterize vague concepts, say "numbers more or less equal to
8" which do not present a clear-cut differentiation between the
elements belonging and not belonging to the set.

Zadeh (1965) suggested the replacement of the characteris
tic function by the so-called membership function PA: X -+ [0,1]

which associates with each element of the universe X its gra
de of membership in a fuzzy set A, belonging to the interval
[0,1]. Thus, PA(x) = a means that x does not belong to At

p(x) = 1 means that x belongs to At while a < u(x) < 1 means
that x partially belongs to A.

For example, a fuzzy set A = "numbers more or less equal
to 8" may be represented by the membership function PA(x)
shown in Fig. 1 0

P
A

(x)

1

a

f' ig. 1

)(

Let us notice that the membership function is in this case
in fact discrete but it is represented in the figure in a con
tinuous form to make it more illustrative •. I-Ie could also notice
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that the form of membership function is subjective due to the
fact that a statement such as "number more or less equal to 8"
contains some inherent subjectivity.

For instance, as another example, consider the set X of
roses growing in a garden, and the subset A of X including only
red roses. Of course, some roses of X will be definitely red,
others definitely not red, but there will be borderline cases.
The more an element of X belongs to A, the closer to 1 is its
membership grade. The membership grades are obviously subject
ively assessed and reflect an ordering of the universe X with
respect to the vague predicate, i.e. the fuzzy set A.

Formally, we can now give the follori~g definition: a fuz
zy set A in a universe of discourse X = tX], A S X, is defined
as the set of pairs

A {(VA (x) ,X)}, x E. X (1)

where ~A : X ~ [0,1] is the membership function of A and ~A(x)

is called the grade of membership of x E X in A.

Generally, for the sake of brevity, fuzzy sets are equated
with their rolembership functions and so we can say "fuzzy set
~A(x)" instead of "fuzzy set A characterized by membership fun-

ction ~A(x)".

Usually the pair (~A(x) ,x) is also denoted by PA(x)/x and

the following notations are introduced:
n

A PA(xl)/xl+".+PA(xn)/xn L PA(x.)/x., when IXI n
i=l 1 1

A = J ~A(x)/x, when X is a continuum
X

and "+" and "L" are in the set-theoretic sense.

For example, the fuzzy set whose membership function is
shown in Fig. 1 may be written as

A = 0.1/5 + 0.3/6 + 0.8/7 + 1/8 + 0.8/9 + 0.3/10 + 0.1/11,

In order to simplify the exposition, only finite universes
of discourse will be used, even if membership functions will be
graphed in a continuous form to make them more illustrative.

We must underline some facts here: first, the range of
values of the membership function may be generalized, for in
stance to some lattice (see, e.g., Goguen, 1967); second, the
exposition of fuzzy sets theory could be axiomatized even if
some attempts ofaxiomatization, e.g., Chapin, 1971; or Novak,
1980, are not generally accepted.

Before concluding this section we will introduce other
useful definitions.

The support of a fuzzy set A ~X is defined as

supp A = {x E X
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I1A (x)

Example. If X ={2,4,6,8,10}and A = 0.2/2 + 0.1/4 + Oj6 +

+ 0/8 + 0.3/10, then supp A ={ 2,4,10}.

The a-level set (a-cut) of A S X is defined as

Aa ={x EX: I1A (X) ~ a}
Example. If X ={ 1,3,5,7,9} and A = 0/1 + 0.6/3 + 0.7/5 +

+ 0.9/7 + 1/9, then A
O

• 2 ={3,5,7,9}, AO,5 ={3,5,7,9}.

AO: 9 ={7,9}.
Let us observe that supp A and Aa are conventional (nonfuzzy)
sets.

The height of a fuzzy set A ~ X is defined by

hgt(A) = sup
xEX

Example. If X = {1,2,3,4,5} and A = 0.3/1 + 0.5/2 + 0.6/3 +
1/4 + 0/5, then l'igt(A) = 1-

Following Dubois and Prade (1979b) we could say "hgt(A)
evaluates the possibility of finding in X at least one element
which fits the predicate A exactly".

lIe close this section defining two fundamental relations
between fuzzy sets, i.e. equality and containment.

The fuzzy sets A,B£X are said to be equal, written A = B,
if and only if I1

A
(X) = I1

B
(X), for each xEX.

This definition seems, however, to contradict to some
extent a "soft" character that the equality of two fuzzy sets
should have. Bandler and Kohout (1980) introduce a degree of
equality of two fuzzy sets suggesting some "indexes" for the
measurement of such a degree.

We say that A is a fuzzy subset of B or, alternatively,
that A is contained in B, written A£B, if and only if I1A (X) ~

I1B (X), for each xEX.

Bandler and Kohout (1980) have suggested the use of a
degree of containment in this case too (see also Dubois and
Prade, 1980).

3. SET OPERATIONS AND THEIR PROPERTIES

All the definitions of the basic operations of the algebra
of fuzzy sets will be given, as usual, in terms of the respec
tive membership functions.

Given the fuzzy sets A, BsX the following basic operations
are defined:

union: I1AUB (x) = I1A(x) v I1B (X) for each xEX

intersection: PAnB(x) = I1A(X) A I1B (X) for each xEX

(2 )

(3 )
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where "v" and "A" are the maximum and minimum operators, res
pectively.

Example. If X = [1,2,3,4,5}, A = 0.2/1 + 0.4/2 + 0.2/3 + 0.5/4 +
0.8/5 and B 0.t/1 + 0.6/2 + 1/3 + 0.1/4 + 0/5, then:

AUB 0.3/1 + 0.6/2 + 1/3 + 0.5/4 + 0.8/5

AnB 0.2/1 + 0.4/2 + 0.2/3 + 0.1/4 + 0/5.

Graphically the union and intersection may be portrayed as
in Figs. 2 and 3.

p(x)

x

Fig. 2. Un ion

p(x)

Fig. 3. Intersection

x

The complement of a fuzzy set A~ is defined as

PA(x) = 1 - l1A (x) for each xEX (4)

Example: If X ={1,2,3,4}and A = 0.8/1 + 0.6/2 + 0.3/3 + 0.1/4,
then ~ = 0.2/1 + 0.4/2 + 0.7/3 + 0.9/4.

Graphically, the complement may be illustrated as in Fig. 4.

p(x)

~-----~---------------------;------
J1 (x I

A

x

Fig. 4. Complement
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These operations were originally defined by Zadeh, and
many more were proposed later. Their definitions and properties
may be found by the interested reader in, i.e., Dubois and
Prade (1980), Kaufmann (1975), Mizumoto and Tanaka (1981) and
Mizumoto (1981).

Let us conclude this section by pointing out a problem
crucial for the theory of fuzzy sets, i.e. the adequacy of
basic operations on fuzzy sets o This problem is still somewhat
open and several approaches were proposed for studying it. Some
exposition of these approaches may be found by the interested
reader in, e.g., Bellman and Giertz (1973), Fung and Fu (1975),
Rtldder (1975), Yager (1980), and Kacprzyk (1983).

4. FUZZY RELATIONS

The concept of a relation plays a key role in mathematics.
The same is true for a fuzzy relation in fuzzy mathematics. For
the sake of simplicity the exposition will be restricted here
to fuzzy binary relations.

Given two (nonfuzzy) universes X and Y, a (binary) fuzzy
relation R is a fuzzy set in the Cartesian product X x Y, hence

R = {(IlR(X,y)/(x,y)}, for each (x,y)EX x Y (5)

The membership grade IlR(x,y) may be considered an estimated
value of the strength of the link between x and y.

Example. If X = {JOhn, Paul, Ronald} and Y ={Richard, Jim},
the fuzzy relation R labelled "reselitblance" may be, e.g., de
fined as follows:

R O.S/(John, Richard) + 0.4/(John, Jim) + 0.7/(Paul,
Richard) + 0.3/(Paul, Jim) + 0.9/(Ronald, Richard) +

+ 0.1/ (Ronald, Jim).

Any fuzzy relation (in a finite X x Y)may be represented
in a matrix form. The following matrix corresponds to the above
relation "resemblance"

John

Faul

Ronald

Richard

[

0.5

0.7

0.9

Jim

0.4]
0.3

o•1

As ordinary relations, fuzzy relations can be composed,
and the most important composition is the so-called max-min
composition.

Given two fuzzy relations R £ X x Y and S £ Y L Z, such
a composition, written R 0 S, is defined as follows

Il RoS (x,z) = max(Il R(x,y) " Il S (y,z», for each xEX, zEZ (6)
yEY

Example. If X = { 1 ,3}, Y = { 2,4 I 6}, Z = { 1 , 2,3},
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[0.2
,

0.3 °.1 ] r 0.7
0.5 0.81

R and S 0.4 0.2 0.6
0.5 0.9 0.6 .0. 1 1 0.3.

then

[0.3
0.2

0.3]R 0 S
0.5 0.6 0.6

ruzzy binary relations satisfy a set of properties in an
analogous way as nonfuzzy finary relations do. For example, a
fuzzy binary relation R Z X x X is said to be:

(i) reflexive iff Il R(x,x) = 1, for each x E X;

(ii) symmetric iff Il
R

(x l ,x
2

) = Il R (x
2

,x l ), for each

x l' x 2 EX;

(iii) min-transitive iff PR(x l ,x 3 ) ~ PR (x l ,x 2 ) A P R (x 2 ,x 3 ),

for each x
l
,x

2
,x

3
E X.

A fuzzy binary relation satisfying (i) - (ii) is called
a proximity relation. A proximity relation satisfying (iii) is
called a similarity.

Fuzzy (binary) relations play the same fundamental role
in decision analysis under fuzziness as nonfuzzy (binary) re
lations in decision making in the conventional (nonfuzzy) set
tings, e.g., for preference modelling. Hence fuzzy partial
ordering, preordering, etc. are defined and used to find, e.g.,
nondominated sets of elements in ordered structures. The in
terested reader may find an exhaustive exposition of such
topics in, e.g., Ovchinnikov (1981) and Orlovsky (1978). For
a detailed discussion of fuzzy relations, see Kaufmann (1973,
1975) •

5. THE EXTENSION PRINCIPLE AND FUZZY NUlffiERS

is defined as

PB(y) max
(xl"" ,xn ) EA l x ••• xAn:

y = f (x 1 ' ••• , x n )

where the Cartesian product A
l

x ••• xAn

The extension principle, introduced by Zadeh (1975), is
one of the most important and powerful tools in fuzzy sets
theory. It addresses the following fundamental problem: if
there is some relationship between nonfuzzy entities, what is
its equivalent between fuzzy entities? Owing to this principle,
models and algorithms involving nonfuzzy variables can be ex
tended to the case of fuzzy variables.

The principle may be so stated: given some fuzzy sets
Al £ xl , .•• ,An £ Xn and a (nonfuzzy) function f: X

l
x ••• xXn ~ Y,

Y = f(x l ,· •• ,xn ), the fuzzy image B ~ Y of A
l

, ••• ,An , through

f, has the following membership function
n
A }.IA. (xi)' for each yEY

i= 1 ], (7)
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J mW(IlA (x 1), ••• ,IlA (x )/(x 1 ' ••• ,xn )
X1x ••• xX2 1 n n

Example. If Xl ={1,2,3}, X2 ={1,2,3,4}, f is addition, i.e.

y = x 1+x 2 ' A1=0.1/1+0.6/2+1/3 and A2=0.6/1+1/2+0.5/3+0.1/4,

then

B = A1+A
2

= 0.1/2+0.6/3+0.6/4+1/5+0.5/6+0.1/7

Notice that we use here "+" both in the arithmetic and set
theoretic sense.

The proposed example pertains to a very important applica
tion area of the extension principle, i.e. to real algebra. In
fact a composition law "*" in the set of real numbers R can
be extended, according to (7) to a composition law" G>" in the
set of fuzzy numbers.

A fuzzy number is defined as a normal and convex fuzzy set
A S R, i.e. a fuzzy set satisfying the two following properties:

i) IlA (x) = 1 , for at least one x E R

ii) IlA[';\x 1 + (1-~)x2] ~ llA (x 1 ) 1\ llA(x 2), for each x 1,x 2ER,

and ':\E[O,1]

Then, if A and B are two fuzzy numbers, A G> B is defined as

max (IlA (x) 1\ IlB (x) ), for each zER
x * y=z

(8)

Thus, for example, if A,B~ are two fUzzy numbers with
respective membership functions PA(x) and PB(x), the four

basic extended arithmetic operations, i.e., addition, subtrac
tion, multiplication and division give, for each x,y,zER, the
following results:

IlA e B (z) max (PA(X) 1\ PB(y)) (9)
x+y=z

PA 0 B(z) max CPA (x) 1\ PB (y) ) ( 10)
x-y=z

P
A0B

(z) max (PA (x) 1\ PB y)) ( 11 )
x·y=z

IlA e B (z) max (IlA(x) 1\ PB (y) ) ( 12)
x/y=z

y#O

An exhaustive treatment of all extended operations and
their properties may be found in Dubois and Prade (1978, 1979,
1980) who also suggest an efficient approach for computing the
membership grades of the resulting fuzzy members. It consists
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in assuming the fuzzy numbers to be given in a standard form,
i.e. the so-called L-R representation, characterized by three
parameters. All the extended operations are performed only on
these parameters.

Formally, a fuzzy number A is said to be an L-R type
fuzzy number iff:

21

[

L«(a
P

A
(xl =

R( (x

- xl/a)

- a) /l3l

for

for

x .~

x >

a, a > 0

a, 13 > O.
( 13)

Land R are the so-called left and right reference, respec
tively, while a is the mean. value of A and a and 13 are
called the left and right spreads, respectively.

Symbolically, we write

A = (a,a,l3l LR

and graphically A may look like in Fig. 5.

p(x)

a
x

Fig. 5. An L-R type fuzzy number

6. LINGUISTIC VARIABLES

As the complexity of a problem increases, the ability of
the conventional mathematical tools to precisely yet signifi
cantly represent it diminishes, says the principle of incompati
bility formulated by Zadeh (1973).

The solution suggested by Zadeh leads to the use of a
linguistic description in order to provide a simple but often
adequate tool to describe even the most complex situations and
to provide an extraordinary information aggregation.

Such an approach, called the linguistic approach, was de
veloped by Zadeh (1973, 1975) starting from the notion of a
linguistic variable, i.e. a variable whose values are not
numbers but words or sentences in a natural or artificial
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language. For example "small", "high", "around 4", "a little
less than high", are values of linguistic variables.

In fuzzy set theory, the values of linguistic variables
are equated with appropriate fuzzy sets. For example, a variab
le such as "Age" may be viewed as a linguistic variable which
takes its values in a so-called universe of discourse, e.g.,
U = {youJ' not young, very young, not very young, quite young,
old, etc o , and each of these values may be represented by a
fuzzy su et of the universe of discourse X = [0,150].

Generally, as suggested by Zadeh (1981) the values of a
linguistic variable such as "Age" can be built up applying the
so-called fuzzy hedges together with conjunctions and disjunc
tions to a set of primary terms, e.g. ,"young" and "old". The
interested reader may see Zadeh (1975, 1981).

A fundamental problem to be solved in the linguistic ap
proach is how to characterize a relationship (dependence) be
tween linguistic variables.

Usually a fuzzy conditional statement is used. For instan
ce, if Land K are linguistic variables taking on fUzzy
values A S X and B £ Y, respectively, then a dependence
between Land K may be given by a fuzzy conditional state
ment IF(L = A) THEN (K = B), or, shorter, IF A THEN B.

It is usually assumed that

IF A THEN B = A x B ( 14)

i.e. is equated with the Cartesian product A x B being a fuzzy
relation.

Andsimilarly, for more complex fuzzy conditional statements

IF A THEN B ELSE C = A x B x A-x C

IF A
1

THEN B
1

ELSE IF A
2

THEN B
2

ELSE

( 15)

ELSE IF

(16 )

An immediate problem associated with the use of fuzzy con
ditional statements is: if L takes on a value, what is the
value of K implied by the dependence between Land K?

The answer gives the compositional rule of inference: if
R £ X x Y is a fuzzy relation representing a dependence between
Land K (a fuzzy conditional statement), L is taking on a value
A, then the induced value of K is

~B(Y) = max (~A(x) ~ ~R(x,y)) for each yEY (17)
xEX

which evidently corresponds to the max-min composition (7).

Example. Let the fuzzy conditional statement be

IF (L is "low") THEN(K is "high") = IF("low") THEN("high")
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( "high")

23

which, for "low" = 1/1 + 0.7/2 + 0.3/3 and "high"
0.5/2 + 0.8/3 + 1/4, corresponds to

0.2/1 +

R ("low") x ("high") x
1 [0 ~ 2
2 0.2
3 0.2

2
0.5
0.5
0.3

y
3

0.8
0.7
0.3

If now L = "medium" 0.5/1 + 1/2 + 0.5/3, then

K ( "medi urn") 0 R = 0.2/1 + 0.5/2 + 0.7/3 + 0.7/4.

For more details, see the source papers by Zadeh (1973, 1975).

7. POSSIBILITY DISTRIBUTIONS

Zadeh (1978) in his seminal paper wrote: "••• the mathema
tical apparatus of the theory of fuzzy sets provides a natural
basis for the theory of possibility, playing a role which is
similar to that of measure theory in relation to the theory of
probability ••• ".

Even if Zadeh·s concept of possibility does not state a
clear difference between probability theory and fuzzy sets
theory, it undoubtly offers some tools to represent most of the
imprecision intrinsic in human decision processes.

Let us start with the following non-fuzzy proposition p:

p ~ u is an integer in the interval [1,6],

which asserts that it is possible for any integer in the inter
val [1,6] to be a value of u.

Without any other information it seems natural to say that
p induces a possibility distribution which is uniform, i.e.
the pussibility values are defined as

poss{u=x} =[~
for

for x < or x > 6

Here poss{ u=x} means "the possibility that u may assume
the value x" ana usually it is also written as

Poss {u = x } ~ TT (x)
U

( 18)

Now, let us fuzzify the proposition p in this way:

q ~ X is a small integer,

where "small integer" may be considered as a label of a fuzzy
set, for example

"small integer" 1/1 + 0.9/2 + 0.7/3 + 0.5/4 + 0.3/5+0.1/6.
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In this case we may write:

poss{u = 1 }= 1

POSSf u 2 0.9

Poss u 3 0.7

poss{ u 4 0.5

poss{ u 5 0.3

poss{ u 6 O. 1

poss{ u x) = 0 for x < 1 or x > 6.

More formally, if u is a variable which takes values in
X and A is a fuzzy subset of X, the proposition

q ~ X is A

induces a possibility distribution n(X
A, i.e.

( 19)

u) which is equal to

n(u=x) ~(x) = PA(x), for each xEX (20 )

Given rr , the possibility for x to belong to a non-fuzzy
set E is dMfined as

n(uEE) sup rr (x)
xEX u

(21 )

According to Dubois and Prade (1979) we could say that
such a definition is consistent with our intuition of the pos
sibility of anyone of several events (3xEE, u = x) as the pos
sibility of the most possible one.

Starting from the concept of possibility distribution, we
can define, in the framework of possibility theory, something
analogous to the probability measure in the framework of pro
bability theory, i.e. a possibility measure.

In fact, if the normality condition sup rr (x) = is sa
xEX u

tisfied, a possibility measure is defined as a function
n : P(X) [0,11, such that:

i) rr(¢) = 0, rr(X) = 1

ii) rr(y Ai) = Suprr(A.), for any collection Ai of sub-
~ i 1

sets of X

Zadeh (1978) points out that it seems natural to think
that "what is possible may not be probable and what is impro
bable need not to be impossible". This principle, known as the
consistency principle, gives rise to a deep discussion and a
consequent portion of papers which aimed at developing a better
understanding of the interplay between possibility and proba
bility.
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Details on this problem may be found, e.g., in Dubois and Prade
(1980), Hisdal (1982), Hahle and Klement (1984), Lindley (1982),
Nahmias (1978), Prade (1979) 0

8. CONCLUDING REMARKS

The aim of this introduction was to make the interested
readers, and especially those not yet exposed to fuzzy sets,
familiar with the relevant elements of fuzzy sets and possibi
lity theory. We hope that the exposition was facilitated by the
illustrative examples which should also help the readers find
po~sible applications of fuzzy tools in their specific areas
of work.
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INTRODUCTION TO DECISION P~KING UNDER VARIOUS KINDS
OF UNCERTAINTY

Thomas Whalen
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Atlanta, GA 30303, USA

Abstract. A~l interest in decision making proces
ses stems from uncertainty: when we are certain
what course of action is best, we simply perform
it without further consideration. Unfortunately,
many obstacles exist which can prevent us from
having this ideal certainty. Section 1 of this
chapter surveys some of these obstacles, together
with the paradigmatic problems that arise from
each obstacle in its pure form. Section 2 presents
a unifying framework, the general multiple facet
optimization problem, which exploits some important
isomorphisms among these problems. In Section 3,
a fairly simple two-stage decision problem is
viewed at several different levels of information,
ranging from a mere incomplete ordering to an ap
proximate statistical specification, in order to
illustrate a number of different techniques for
decision making that have been developed for the
various levels of information. Finally, Section 4
summarizes the results presented in this chapter
and discusses some promising areas for future
research.

Keywords: uncertainty, decision making under un
certainty, optimization

1. OBSTACLES TO CERTAINTY

In order to know for certain what to do, we must satisfy
three conditions. First, we must comprehend all of the alterna
tive courses of action from which we can choose. Second, we
must know all the consequences of each alternative course of
action. Third, we must know which set of consequences is prefe
rable to any other achievable set.

1.1. Uncertainty About Alternative Courses of Action

Comprehension of the set of alternative courses of action
can be limited in three ways: failure of imagination, immensity
of choice, and imprecision of specification.

Failure of imagination simply means that relevant alterna
tive courses of action exist which we are unaware of. The
advance of technology provides a simple example of this.
Engineering design choices that not so long ago were limited to
choosing between metal and wood construction are now enriched,

27
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but d~SO complicated, by the availaoility of many new plastics
and ceramics. Unless we can be certain that all possible alter
native courses ot action have been enumerated, we cannot be
certain ttat the one we select is indeed optimal.

Sometimes it is possible to specify all available choices
in an abstract (intensive) way, but the resulting set is too
large to be extensively listed, or at least too larse to be ex
haustively evaluated. When this immense set of alternative
courses of action can be represented as a continuum of real
numbers or vectors, there are many well-known tools such as
mathematical programming to proceed more or less efficiently
to aD optimal solution. However, in other cases the large num
ber of alternative courses ot action is due to a combinatoric
explosion rather than a real continuum. To take an example
widely advertised to be unsolvable in the remainins lifetime
of the universe, cracking a public-key cryptogram requires
selecting correctly from a set ot pairs of very large prime
numbers, If such combinatoric problems are to be solved at all,
heuristic methods of search must be used. These heuristics
typically do not afford proofs of optimality, so a decision
made in this manner is uncertain.

ifuen a iorernan on a job site decides which order to give
to a laborer, the foreman knows what the demanded course ot
action is; the laborer r,lay perform we~l or badly, but the
toreman-s decision alternatives are clear, On the other hand,
when a senior executive chooses a policy directive for a large
business, government, or voluntary organization, the policy
must be interpreted and fleshed out by successive layers of
intermediate decision makers before it is eventually carried
out by the operative personnel (Dimitrov and Driankova, 1977)
Thus, the senior executive aoes not really know exactly what it
weans to choose one policy rather than another; the policy de
cision is by nature fuzzy, and thus uncertain.

The process of limiting and coping with uncertainty in the
set of alternative courses of action has not generally been the
focus of paradigms for decision making under uncertainty. As
part of Simon-s (1977) "intelligence" phase of problem solving,
the requirements for this process vary more significantly fro~

problem to problem than uncertainty about consequences or about
preferences.

1.2. Uncertainty About Consequences

IIhen we cannot predict with certainty what outcome will
follow from a given course of action, we usually model this
situation using the concept of "states of the world". (For an
alternative approach see Fishourn, 1960). lie hypothesize that
the outcomes of our actions depend on two things: on which
course of action we select and on the current values of one or
more variables called "state variables". If we knew the values
of the state variables, ~2 would know the outcomes of each
alternative course of action; if we do not know these values
for certain, we must make an uncertain choice.

Much analysis and specific background knowledge of the
domain of the decision in question are necessary to enumerate
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the relevant set of states of the world. Once these are enumer
ated, the next ste~ is to marshal whatever information is
available regarding the relative likelihood of these states.
Several levels of information have been studied. The lowest
level of information we shall consider is when the states of
the world are s~ecified but no infor~ation about their relative
degree of ~ossibility or ~robdbility is known. With more infor
mation we reach the second level, in which some states of the
world are known to be more possible than others (incomplete
order); a third level is reached when states can be ~ut in a
co~~lete weak order from most to least possible, so that for
dnj two states \Ie can eitr.er say vlhich one is more possible
than the other or else we can say that they are of exactly equal
possibility. The fourth level of information is when we can
specify approximate statistical probabilities for all states of
the world using iuzzy real numbers, and the fifth level is when
we can s~eciiy the probability distribution over states exactly,
usinS (cris~) real nu~illers. Ga~e theory can be viewed as a
sixth level of information, in which our opponent-s actions,
while unknown in advance, will be determined by our own actions
and the payoff structure of the game.

Because the nature and amount of information about the
relative Jossibilities of states of the world that can be use
fully applied to decision making depends strongly on the nature
and al,lount of information about preferences that is available,
the ~aradigmatic problems for each of the above levels will be
discussed in the context of uncertainty about preferences.

1.3. uncertainty About Freferences

The I<1OSt senerally accepted view o[ preferences among
economists is that utilities are measurable by a complete weak
oraer. In other words, an individual will always either be able
to specify one of a pair of outcomes as better than the other,
or else be strictly indifferent between the two. In this view,
it is meaningless to assign numbers to the utilities of out
comes, and hence no arithmetic can be performed on them. From
an information content point of view, it is clearly equivalent
to talk about ordinal gains, in which the best outcome ranks
iirst, and ordinal losses, in which the worst outcome ranks
first. A more so~histicated view of ordinal utilities postulates
that it is not a static ~osition that is valued, but rather the
gain or loss between a prior position and a subsequent position.
On this basis, well substantiated by studies of human behavior,
it is ~ossible to talk about an ordinal theory of regrets in
the context of decision makins under uncertainty. The regret
associated with a particular (state-action) pair is defined by
the difference bet~een the outcome of that particular (state 
action) pair and the outcome of the best possible action for
that particular state.

A well-established minority view, however, holds that
~eaningful nu~eric measures of an individual-s utilities for
outcomes can be generated. The most sophisticated varieties of
this theory derive from the work of von Neumann and horgenstern
(1947). In these a~proaches, utility is measured on an interval
s~ale anchored by specific, context-dependent "best" and "worst"
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outcomes, and utilities for inter8ediate outcomes are deter~ined

by betting preferences. More recently, work has been done usinq
fuzzy nurillers rather than crisp numbers to represent these
utilities (watson, Heiss and Donnell, 1979; Freeling, 19(0);
this can be a very valuable way to handle the fact that some of
the hypothetical choices between bets are much easier than
others in the von Neumann - Morgenstern methodology. Fuzzy
utilities cor,le into play even more directly when the outcomes
thei"selves are only vaCJuely known in advance. When utilities
are measured by crisp or fuzzy real numbers, it is possible to
compute regrets by subtracting the utility of the outcome of
eacL (state - actio~) pair f~om the utility of the best pos
sible action for that particular state.

In the following two subsections, we examine in detail
some of the paradigmatic problems which arise from specific
combinations of information about states o[ the world and about
utility; first we examine cases that arise when utility is
ordinal, then cases which require crisp or fuzzy real numbers
to measure utility.

1.3.1. Ordinal Utilities

NO fiELATIVE POSSIBILITY INrOR~~TION. When we have no in
formation about the relative likelihood of the various states
of the world, we must make our decision on the basis of the
utilities of the outcomes of the various (state - action) pairs
together with a fundamental choice of philosophies. The
"optimistic" philosophy in such a situation is to choose the
course of action whose best possible outcome is better than
that of any other (maximax algorithm). The "pessimistic"
philosophy, on the contrary, seeks to cut losses by choosing
the course of action whose worst possible outcome is better
(or less bad) than the worst possible outcome of any other
course of action (minimax loss algorithm).

The minimax regret approach steers a course between the
extremes of optimism and pessimism. Outcomes are ordered in
terms of regret rather than actual gains or losses, and that
course of action is selected for which the worst possible re
sret is less bad than the worst possible regret for any other
course of action. This approach has the effect of focusing our
attention primarily on those states of the world for which our
choices have the greatest effect, whereas minimax focuses on
the most dangerous states of the world and maximax on the most
pror'lis ing ones.

ORDINAL POSSIBILITIES. If only ordinal information about
utilities is available, then whatever information is available
about the relative possibility or probability of the various
~ossible states of the world is also most appropriately express
ed in an ordinal manner. The Commensurate Ordinal Decision
:\nalysis algorithm (Hhalen, 1984a) uses two distinct ordinal
scales, one tor disutility (loss or regret) and the other for
possibility. These scales define three L-fuzzy sets (Goguen,
1967): the set of poor outcomes, the set of possible states of
the world, and the set of risky exposures. An "exposure" is an
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orGered pair consistins of an outcome and the state of the
world in which that outcome occurs; its membership in the set
OL risky exposures is also defined by an ordered pair consist
ins of the poorness of the outcome and the possibility of the
state.

The inputs to the algorithm are a (complete or incomplete)
rank ordering of the poorness of all possible outcomes, and a
separate rank ordering oZ the possibilities oZ all possible
states of the world. It is also necessary to speciZy, by means
of a decision tree in normal Zorm, which outcomes go with which
states of the world and which strategies. The algorithm then
dutomatically determines the Zuzzy set of risky exposures and
uses this to eliminate suboptimal strategies using a series of
aor'linance criteria which are successively more powerful but
less robust. These criteria, discussed below in turn, are com
plete dominance, global riskiest-states dominance, and pair
wise riskiest-states dominance. Typically, commensurate ordinal
risk minimization alone will not be sufficient to narrow the
range of alternative strategies to just one, but it can be very
useful as a preliminary screen. Given the results oZ a commen
surate ordinal decision analysis, we are better prepared to
seek additional information about those states and actions
identified as critical or to use informal/intuitive methods to
pick a final course of action from the "short list".

Complete Dominance. A strategy a is completely dominated by
another strategy a- if for all possible states of the world
the disutility D(aI6) arising from strategy a when b is the
actual state of the world is worse than or equal to the
disutility D(o-IG) arising Zrom strategy 0- in the same state
of the world 5, and the inequality is strict for at least one
6. This is essentially the Pareto rule; a strategy is dominated
by another if it is possible to improve one criterion of the
outcome without worsening any other criterion. The different
criteria in this case are the conditional outcomes given the
different jJossible states of the world. !lote, however, that
mixed strategies are undefined when utilities are ordinal; a
strategy can only be dominated by a speciZic other strategy,
not by a convex combination of two or more as is possible in
numerical utility theory.

Global Riskiest-States Dominance. For each alternative strategy
a, let R equal (The set of all' such that (p(S-) > p(6»
implies ~u(alb-) < D(alo» . For any strategy a, Ro is th~
(nonfuzzy) set of states 5 such that, if another state S is
more possible, then the outcome of 0 when state 6' is in ef
fect is less poor than the outcome of a under state b. Ra is
referred to as the set of riskiest states for strategy a,
since any state not in Ro is either less likely or leads to a
less poor outcome for 0 than any state in Ro .

Let R = Uo(Ra ), the set of states of the world which
belong to the set of riskiest stutes for any strategy. RC

, the
set of states not in R, is thus the set of states which are
neither very possible nor ever very poor regardless of what
strategy is selected.
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The "global riskiest-states dominance criterion" is
evaluated by deleting the states in RC from consideration and
eliminating any strategies which are completely dominated on
just those states i~ R. A strategy 0 is global-riskiest-states
dominated by another strategy 0' if O(Olb) ~ 0(0' Ib) for all a
in R and the inequality is strict for at least one ~ in R. In
effect, we are saying that 0 completely dominates 0 if we
ignore the "unimportant" states of the world in pC.

Pairwise Riskiest-States Dominance. For each pair of alterna
tive strategies 0 and 0', let R...., be the set union of Ro and

Ro " the set of states of the world which are in the riskiest
set for either of the two strategies a and a: Then strategy ~

is pairwise riskiest-states dominated by strategy a' if
O(alb) > O(a'l6") for all b in R , and the inequality is
strict for at least one b in Ra~? The argument in this casc
is that two strateg ies can be compared taking in to cons ic1era L:i (ill.

only those states which are risky ones for one or the other ac
tion, ignoring any states which may be risky for some extraneous
third alternative as well as the unimpurtant states in RC

Clearly, any strategy which is completely dominated is
also dominated according to the olobal riskiest-states criterion
and any strategy which is dominated according to the latter is
also dominated according to the pairwise riskiest-Qtates crite
rion. Nevertheless, it is useful to know the most robust crite
rion under which a specific strategy can be eliminated, since
each of the three criteria differs from its predecessor by
making stronger assumptions and discarding more information as
lI un irnportant" .

The assumptions of the L-Fuzzy Risk Hinimization algorithI1
(lihalen, 1900) differ from those of the Commensurate Ordinal
Decision Analysis algorithm by allowing, on one hand, direct
comparisons between the grade of mewhership of an outcome in
the set of bad outcomes and, on the other, the grade of member
ship of a state of the world in the set of possible states. The
riskiness of an exposure is equal to the minimum of the poor
ness of the relevant outcome and the possibility of the corres
ponding state of the world. As in the Commensurate Ordinal De-

cision Analysis algorithm, the incompletely ordered lattice
structure of the L-fuzzy risk minimization algorithm allows
many comparisons to remain undefined, concentratino our atten
tion on just those few comparisons which actually affect the
course of th2 decision making process. Furthermore, the'user
has the option of refusing to make any given requested compa
rison. In this case, the algorithm continues to pass through
the decision tree, and in many instances, the difficult compa
rison which the user has declined to make can be rendered most
by further analysis. If the user's refusals to make a final
solution impossible, the algorithm will identify several alter
native unresolved pairs of memberships such that at least one
of these difficulties must be resolved by the user before
analysis can continue. Symbolically, the strategy selected by
L-Fuzzy risk minimization is the one for which max[min[O(al~),

p (In] is least.
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FUZZY OR CRISP NUl1ERIC PROBABILITIES. When utilities are
known on an oruinal scale only, there is no meaningful ~ay to
weight them with nu~eric probabilities. If probabilities are
known, they should be rescaled to ordinal possiDilities, perhaps
after ap~lyin9 a cutoff to eliminate extremely unlikely states
of the worle..

GAME THEORY. The literature of game theory will not be re
viewed in detail here; in brief, ordinal payoff information
allows us to evaluate only pure strategies. A pure strategy is
one in which, if identical circumstances occur repeatedly, we
will predictably take the same course of action each time
rather than attempting to keep our opponent guessing.

1.3.2. Fuzzy or Crisp ImfLleric Utilities

~hen the utility of the outcome of each alternative course
of action under each possible state of the world is specified
Dy 3 real number, we can combine these utilities with numeric
~robability measures to compute expected values and choose of
action for which the expected value is best. If the utilities
and/or the probabilities are only known aproximately, we can
represent them as fuzzy numbers and calculate fuzzy eXgected
utilities by the extension principle of fuzzy mathematics;
this process reduces to ordinary arithmetic when the operands
are crisp.

NO RELATIVE POSSIBILITY INFORMATION. llith numeric utili
ties, minimax loss and maxirLlax g"ain approaches are simj?le
Qatters of numeric comparisons, while the regret measures need
eu for the minimax regret approach can be found by subtractins
the utility of each outcome from the best utility obtainable
in the relevant state of the world. Another approach, unique
to the situation with numeric utilities and no information
about relative possibilities, is the maximum entropy approach.
In this approach, we treat all possible states of the world as
equally probable in the absence of information to the contrary;
operationally, this means simply taking the average across
states of the worle of the utilities which might arise from
each alternative course of action, and choosing that course of
action for which this average is nest.

ORDINAL POSSIBILITIES. If by "ordinal possibilities" we
mean only that some possiDilities are known to be greater than
others, there is little advantage to combining this information
with fuzzy or crisp numeric measures of utilities. However, if
we also know just a little more, for instance that one state
has a probability of more than .5 or that state u' is more
than three times as likely as state 0, these constraints allow
meaningful bounds to be placed on the expected value of the
outcome of each alternative course of action. Smith's (1980)
"textured sets" approac:1 demonstrates how linear proc;ramming
techniques Can be used to find the maximum and mini~u~ possible
expected values of each alternative course of action subject
to linear constraints on the probabilities of the possible
states of the world. Any course of action whose maximum expect
ed utility is less than the minimum expected utility of another
can then be eliminated from further consideration.
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FUZZY OR CRISP NUMERIC UTILITIES. The most commonly dis
cusseG technique for decision makins under uncertainty is
statistical decision analysis (~aif~a, 196C). In this techni~ue,

tLe iI,lperfect ir.formation about the state of the world is re
presentea by a probability distribution over the set of such
states, and the utility of each stratesy siven each state of
t~e world is ex~ressed on an interval scale after the manner of
von r;euf,lann and Morgenstern (1947). 'l'he expected value of each
stratesy is found oy Qulti~lyins the corres~onding utilities
anu ~rouabilities and adaing the products; the stratesy whose
utiLity is greatest (or, equivalently, whose aisutility is
least) is the one that is chosen.

Sometimes it is possio~e to specify the utility and proba
uility information required oy statistical decision analysis,
but oniy in an approximate way. If the degree of imprecision
in the estimates of probability or of utility is relatively
small, statistical decision analysis provides ~or the use of
sensitivity analysis, in which the numerical inputs are "per
turbed" about their orisinal values and the analysis re-done
to see whether the final decision chanses.

Fuzzy statistical decision analysis as presented by Watson,
Heiss and Donnel (1~79) and by Freelins (1980) can be viewed as
an extension o~ sensitivity analysis to the case where the
degree and qualitative shape of the imprecision need to be
considered throushout the entire analysis of a decision. A
major soal of this approach is to represent the imprecision of
eacil value ext.Licitly, anG. to f,lanipulate these imprecise vaiues
in such a way as to determine the desree and nature of the re
sultins im~recision in the final decision.

In order to accomplish this, fUZZy decision analysis uses
Linguistic and graphical techniques to elicit prObabilities and
utilities in the form of fuzzy numbers (Dubois and Prade, 1979).
h fuzzy number is a set of numbers, some of whose members are
considered to have hiSher desrees of membership in the set than
other mer,lbers do, alons a scale ransins from total membership
to total nonmembershi~. For example, the number 11 has a Im,er
membershijJ in the fuzzy number "around a dozen" than the number
12 Goes, but a higher membership than the number 10 does.

The "extension principle of fUZZy mathematics" (Zadeh,
1965; Dubois and ?rade, 1979) allows any mathematical opera
tions that can be performed on real numbers to be performed on
fuzzy numbers as well. Fuzzy statistical decision analysis
hlahes extensive use of this principle to compute a fuzzy number
re~resenting the statistical expected value of each alternative
course of action siven the fuzzy probabilities and utilities
in the input. The course of action for which this fuzzy number
is highest is chosen; the method also specifies the desree of
confidence that this action is actually the best, by ffieasurins
the degree to which the highest ex?ected utility is clearly
hisher than the next-highest as opposed to the desree to which
these two ruzzy nuniliers overlap. (It is in the assessmer.t of
confiaence that Freelins differs from Watson, ~eiss and Donnel) .
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GAME THFORY. W~en the payoff table is expressed in terms
of numericcl utilities, there exist situations in same theory
in ~~ich our opponent could gain an advantase over us if our
behavio~ were too pre~ictable. In these situations, solvins
the a~propriate linear equations for a maximum payoff to us
resu~ts in a convex conbination of stratesies rather than a
sinsle strategy. ~he interpretation of this is that, on each
"~lay" of the same, we should ran60mly select one of those
stratesies with a proDability ~ro~ortional to the wei~ht siven
to t~at stratesy in the mathematical solution to the same
equations. A faniliar exam~le of this is seen in the stratesy
of bluffing in the gaffie of ;oker; a player who is known never
to bluff or one who is known always to bluff will do less well
than one whose bluffs are random.

2. GENERAL HULTIPLE FACET OPTHlIZATION

'l'he above discussion centerea arouna problems whic;1
satisfy two i~portant sim~lifying features: first, the amount
oj information about states of the world was fixed throushout
the course oi the c;ecision makins process rather than increa
sinS at later decision stages as a result of what is learned
at earlier ones; and second, the utility of any single possible
outcome was viewed as a unit. I,e will now rela>. each of these
sir"plifying assumptions, and state a unified theoretical frame
work for the resu:ting broader class of problems.

2.1. Multistage Decision Making

A very important and widely-studied class of problems
arises when it is possible to break a decision process down
into stages so that later decisions are made in the light of
information gained in earlier stages of the process. In fact,
we may often choose to perform experiments or otherwise take
actions designed deliberately to obtain information about the
states of the world; typically this information is both
imperfect and costly, so that a major part of our burden as
decision makers is knowing when to seek information and when
to make a substantive decision on the basis of what we already
know.

For analytic purposes, however, it is convenient to trans
form a multistage problem into an equivalent single-stage
probler" in "normal forlil" (F-aiffa, 1968). A multista,,:e problem
can be c;iasrar,lmed by a decision tree with alternating choice
and chance nodes: at each choice node that we encounter in
working throush the tree we Must pick one of several alterna
tive action branches, while at each chance node that we en
counter, the unknown state of the world will determine which
one ot several possible outcome branches we will observe.

~he first step to convert the problem into normal form is
to define al: possible "strategies" for movins throush the de
cision tree. ~o specify a strategy, besin by selecting one
alternative action at the first decision node of the decision
tree. ~his action branch will lead to a chance node, each of
whose branches in turn will lead to another choice node. For
each of these possible second choice nodes, we must s?ecify
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what action branch our stratesy would dictate, and so on
throush the tree. 7he normal form decision tree will have only
one choice node, with one branch for each ~ossible stratesy
derived froD the original tree. (A multistage specification of
a decision ~roblem an~ its correspond ins tree are called the
"extenc.ed form" to distinguish them from the normal form s~eci

fication of the same ~roblem.)

The second step in normalization is to resfecify the set
of ~ossible states of the world. To do this, we must enumerate
all fossible combinations that can be formed by select ins one
outcome branch from each chance node. Knowledse of the back
Srounu of the speci~ic ~robiem-situation is essential here to
avoic. a comoinatoric explosion; while the total number of com
binations is likely to be unmanageably large, many combinations
wi~l be physically im~ossible because of identity or dependency
between the variables beins observed at the corresponding chance
noces.

The last step in convert ins a froolem into normal form is
to c.etermine the utility of each stratesy defined in step 1
under each state of the world defined in ste~ 2. This involves
working throush the extended ~orm of the tree for each (stra
teSY - statel pair, usinS the strategy to decide all choice
branches and the state of the world to deci~e all chance bran
ches, and accumulating all the gains and losses associated with
the various partial actions and outcomes. The result is a
shorter but wic.er tree; a satisfactory or optimal solution of
the structurally simpler normal form of the problem is guaran
teed to yield a satisfactory or optimal stratesy for traversins
the extended form of the problem.

2.2. Compound Heasures of Utility

The current literature on utility theory devotes much
concern to conditions which make numeric utility measurements
or even ordinal utility com~arisons difficult. These conditions
include: multicriterion or multiattribute decision making, in
which outcomes are valued along several dimensions; discount
theory, in which costs and benefits occur over a Ions period
of time a~ter the uecision is made; an~ social decision makins,
in which several different stakeholders interests must be
respected.

These problems, alons with the problem of uncertainty
about the state of the world, can be subsumed in to a general
mathematical structure, which I will call the seneral multi~le

facet decision problem. In this abstract problem, we have a
number of possible courses of action to choose from; the value
of each strategy deyends on a number of different facets, some
of which may be more important than others.

In multicriterion or multiattribute decision making, each
facet is one of the criteria or attributes that different
choices are being judsed on, and the relative importance of
each facet de~ends on the importance weight given to that
attribute or criterion. ~he multiple facet approach can be
viewed as an extension of wulticriterion decision makins to
situations which have trac.itionally been viewed as distinct
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topic s.

In discount theory, each facet is the net cost or benefit
accruing at a particular point in time, and the relative im
portance of each facet is the degree of discount to be applied
to events at that point in time; the further into the future an
event is, the more it is discounted and thus the lower the re
lative importance of the facet.

In social decision making, the various facets of an alter
native course of action are the utility assessments of that
course of action by the various interested individuals and
groups, and the relative importance of each facet may be asso
ciated with the "cloqt" of each interested party. In a pure
democracy, the clout of a facet depends on the number of
persons it represents; in other situations, it may mean rhetorical
skill, financial resources, or political or military power, de
pending on the circumstances and mores surrounding the decision
making process.

In the problems considered in Section 1 above, the dif
ferent facets of a given course of action consist of the out
come of that course of action under the different possible
states of the world, and the relative importance of each facet
depends on the relative possibility or probability of the cor
responding state of the world.

Obviously, treating these different decision making
problems under a single theoretical framework closely resembling
traditional views of multicriterion decision making does not
remove the need for considerable situation-specific work in
unraveling these and other difficulties in any specific situa
tion. However, recognizing the structural commonalities between
the problems will allow any methodological advance in one field
to be readily transported to the others.

A fruitful area for future research will be to use the
multiple facet approach for problems where two or more of the

above sources of complexity interact; for example, many pressin~

problems in economic and energy policy revolve around social
decisions with uncertain outcomes distributed over a long
future. When we must combine such fundamentally different kinds
of information as social, financial and engineering, the result
tends to be less precise than the least precise individual class
of information. Thus, the "soft optimization models" discussed
here and elsewhere in this book can be of great usefulness.

3. EXAHPLE

The following example, adapted from a classic text in
statistical decision analysis (Raiffa, 1968), will serve to
illustrate the operation of some of the algorithms discussed in
Section 1. The problem illustrates the normal form of analysis,
with simple utilities dependent on the selected strategy and on
the state of the world; as discussed in Subjection 2.2, these
algorithms can be extended to other types of multiple facet
problems. The algorithms illustrated are: the commensurate
ordinal risk minimization algorithm, L-fuzzy risk minimization,
and fuzzy statistical decision analysis.
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The exam~le concerns an oil wildcatter~s decision whether
to drill an exploratory well at a new site, and whether to per
form a seismic experiment to get additional information about
the site before making the drilling decision. The seismic
structure of the area, revealed by the experiment (if it is
performed) may be "No structure," "Open structure," or "Closed
structure," (N,O and C, respectively, in Tables 1-11) and the
oil content may be "Dry," "\iet,", or "Soakins." (D, Wand S,
respectively, in Tables 1-11). ~he three seismic structures
together with the three oil contents generate 9 possible states
of the world, ranging from dry-no structure (DN) to soakins
closed structure (SC). Ten strategies are possible: strategy 1
is to do nothing (NO) and strategy 2 is to drill without expe
rimentation (DRILL), while strategies 3 through 10 prescribe
drilling only if the experimental outcome is in a particular
subset of the three seismic structures. Table 1 shows the dollar
profits, in thousands, of each of the ninety possible outcomes
generated by pairing each strategy with each state of the world,
and the numeric probabilities of each state of the world, taken
from the original text.

Eowever, the numbers in Table 1 come from a specific
example in a book published in 1968. Changes in prices and
technology will have altered the dollar amounts, and the proba
bilities will be different at a different class of site. Even
so, it is reasonable to assume that the ordinal structure of
the problem remains the same; if one outcome was more profitable
than another in 1968 it is probably more profitable than the
other today although the exact ratio between them will have
changed, and if a state of the world is more probable than
another in one situation it will be more probable than the
other in a broader class of similar situations than the class
where the two probabilities remain unchanged. Thus, it is ap
propriate to see what can be deduced from only the ordinal data
contained in Table 1, abstracting from its numerical details.

3.1. Commensurate Ordinal Decision Making

The first step in analyZing the problem ordinally is to
view the outcomes as regrets rather than as profits and losses.
In Table 2, this is done in terms of the numeric values given
by Raiffa; in Table 3 the more stable ordinal relations among
the regrets and among the probabilities are abstracted from the
specific numbers appropriate to Raiffa~s example. To help us in
using the information on the relative possibilities of states,
Tabie 4 shows the same information as Table 3 with the columns
representing the more possible states listed before those re
presenting the less possible states, and Table 5 shows the rows
representing the ten strategies sorted by regrettability, using
regret unGer the most possible state (Dry-No structure) as the
primary sort key, regret under the second-likeliest state as
the second key, etcetera.

Examination of Table 5 shows that strate0Y 10, which is to
experiment but drill regardless of the outcome, is worse than
strategy 2, to drill without experimenting, regardless of the
state of the world. Similarly, strategy 3, to experiment but
not drill regardless of the outcome, is always worse than stra-
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teSY 1, to do nothins, Thus, strateqies 10 and 3 are completely
dominated. In Table 6, these two strategies are eliminated from
~urther consideration.

Tables 7 through 9 demonstrate the global riskiest-states
dominance criterion. In Table 7, the set of riskiest exposures
=or each strategy are marked with an asterisk. Thus, any expo
sure not so marked is either less regrettable or less possible
(or both) than any marked exposure in its row. At the top of
Table 7, states which are in the set of riskiest states for any
strategy are also marked with an asterisk. These states form
the global riskiest set R, and those not marked are the states
in RC , in Table 6, tLe states in RC are e1 imina teci. Cons icier ing
only the states in R, we can see that strategy 6 (experiment;
Crill if No or Open structure) is always worse than or equal to
strategy 2 (drill without experimenting), that strategy 7 (ex
periment; drill if No structure) is always worse than or equal
to strategy 9 (experiment; drill if No or Closed structure),
and that strategy 5 (experiment; drill if Open structure) is
always worse than strategy 6 (experiment; drill if Open or
Closed structure). The only exceptions to these dominance rela
tions are under the states of the world in RC , which are neither
very possible nor ever very regrettable and thus may be ignored.
~able 9 shows the result of eliminating strategies 8, 7, and 5,
which are dominated according to the global riskiest-states
criterion.

Table 10 shows the pairwise comparisons involved in
evaluatins the pairwise riskiest-states criterion. Consider a
pair of strategies 0 and 0-, Roo' 1s the set of all states which
are in the riskiest set for either 0 or 0- or both. A state
is entered into Table 10 in the row corresponding to strategy 0

and the column corresponding to strategy 0- if b 1s in Roo'
and D(ol~) is worse than D(o-I~). States for which the outcomes
of the two strategies are tied are ignored; thus, the main
diagonal cells are automatically empty. The asterisks in the
strategy 9 column of the rows for strategies 2 and 4 indicate
that there were no states of the world satisfying the above
conditions when 0 is 2 or 4 and 0- is 9. Strategy 9 is worse
than or equal to strategy 2 for every state in R2 9 and worse
than or equal to strategy 4 for every state in R4 '9' so we say
that strategies 2 and 4 each dominate strategy 9 ~y the pair
wise riskiest-states criterion.

Table 11 shows the four remaining nondominated strategies.
No further reduction is possible using only commensurate ordinal
comparisons, but we have reduced ten original strategies down
to a "short list" of four reasonable candidates. This short
list would then be subjected to some more information-intensive
decision analysis technique to arrive at a final decision.

3.2. L-Fuzzy Risk Minimization

~n order to apply the L-=uzzy risk minimization technique
(Ilhalen 1980, 1984b) let us make the following assumptions:
(1) The truth val"", of the statement "State SC is very possible"

is intermediate between the truth values of the statements
"Outcome B is very regrettable" and "Outcome F is very re-
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grettable."

(2) It is truer to say "State 00 is very possible" than to say
"Outcome C is very regrettable."

(3) ~he truth value of the statement "Outcome E is very regret
table" is intermediate between the truth values of the
statements "State 1'10 is very possible" and "State SO is
very possible."

According to the L-fuzzy risk minimization algorithm, the
disutility of each of the ten candidate strategies is:

0(2) max{o"p, D"Q, H"R, H"S, H"T, H"T, H"U, O"V, H"W)

max{o, 0, H, H, H, H, HI\U, V, ~;I\W}= D

0(6) max{g"p, C"Q, S"R, g"S, E"T, g"T, gAU, C"V, A"W}

max{g, C, g, g, E, g, gl\U, U, W}= C

0(4) max{g"p, g"(, E"R, g"S, E"T, g"T, A"U, C"V, A"V;}

r.1ax{s, <:;, 2, g, E, g, U, U, w} = E

u(1) max{H"f" H"Q, ['"R, B"S, F","" r""T, B"U, H"V, B"W}

max{o, H, P, 5, F, F, U, HV,W}=S

Since outcomes C and D are more regrettable tha~ outcome E, we
can eliminate strate~ies 2 and 6. This allows us to conclude
that strategy 4 is preferable if it is truer to sa:' "Outcome E
is very regrettable" than to say "State SC is very possible,"
and that strategy 1 is preferable otherwise. (Note that our as
sumptions do not allow us to conclude whether it is truer to
say "g is regrettable" or to say "u is possible", and similarly
for Hand U, h and V, and Hand 1'1, but none of these comparisons
are necessary to arrive at a final decision.) See Whalen (1984a)
for an evaluation of these ordinal results, using a Monte Carlo
simulation sampling from the space of all probability and
utility distributions meeting the ordinal constraints.

3.3. Fuzzy Statistical Decision Analysis

To illustrate the use of fuzzy statistical decision
analysis for this problem, let us make the following assumptions:

(1) The cost of the seismic study and the cost of drilling are
fixed by contract at $10 000 and $70 000 each.

(2) The conditional probabilities of No structure, Open struc
ture, and Closed structure given Dry, Wet or Soaking oil
content are known to be as follows:

P(NID)=.6, P(OIO)=.3, P(CID)=.1,
P (N I II) =.3, P (0 IW) =.4, P (C I 1'1) = .3 ,
P(N\S)=.1, P(OIS)=.4, P(CIS)=.5.

(3) The probability of a Ory well is 1 minus the sum of the
probabilities of ~et and Soaking.

(4) The revenue from a Ory well is zero.

(5) Our knowledge of the probability of Wet is given by a
triangular fuzzy nUumer with support running from .25 to
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.35 with a peak at ,30 .

(6) Our knowledge of the probability of Soaking is siven by a
triangular fuzzy number with support running from ,25 to
.35 with a ?eak at .20 .

(7) Our knowledge of the revenue from a Wet well is given by a
triangular fuzzy number with support running from ~70 000
to ~170 000 with a peak at ~120 000.

(8) Our knowledge of the revenue from a Soakin~ well is given
by a triangular fuzzy number with support running from
~170 000 to ~370 000 with a peak at ~270 000.

~ssumptions 1 throush 4 are exactly as given in Raiffa (1968),
while assumptions 5 through 8 are fuzzifications of the Raiffa
dOita.

~he goal of fuzzy statistical decision analysis is to find
a stratesy whose expected profit is not less than any other
stratesy. We compute expected values by exactly the same
formula as in statistical decision analysis, applyinS the ex
tension principle of fuzzy mathematics to perform the required
r.lUltiplications and additions of fuzzy numbers. FiS. 1 shows
the graph of expected profit versus possibility for the four
nondominated strategies,
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If we restrict our attention to only the top 2.6 percent
of memlJershit' 'Jraues in :::' i9. 1 (r.,er.1berships (,rea ter t:-',an or
equal to .974), then the lowest expected value for strategy 6
(test; drill only if Open or Closed structure) is higher than
the highest expected value for strateCjY 2 (drill without test
ing) or for any other stratesy. Thus, by this very tight stand
ard of possibility, we can say that the expected value of
strategy 6 is strictly greater than the expected value of
strategy 2. \latson, ,Ieiss and Donnell (1979) suc;gest that the
strength with which we can make this statement, its "truth
value", is given by the complement of the lowest membership
grade above which the statement is true; thus the statement
"Strategy 6 is strictly better than strategy 2" has a truth
value of .026.

For membership CjTades above .803, there may be overlap
between the range of possible expected values of strategy 6 and
strategy 2, but the highest possibility for strategy 6 is high
er than the highest possibilit~ for strategy 2 and the lowest
possibility for strategy 6 is higher than the lowest possibi
lity for strategy 2. Thus, the truth value of the statement
"strategy 6 is at least as good as strategy 2" is 1-.803 or .197.

Strategy 6 also outperforms the other two nondominated
strategies; the statement "stratesy 6 is strictly better than
strategy 4" has a truth value of .184, the statement "strategy
6 is at least as good as strategy 4" has a truth value of .595,
and the statement "strategy 6 is strictly better than strategy
1" has a truth value of .586. Since no statement assertin9 that
any of the strategies is better than strategy 6 has a positive
truth value, the fuzzy statistical decision analysis algorithm
advises us to select strategy 6; unlike the crisp statistical
approach discussed in Raiffa, it also tells us how much confi
dence we are entitled to have in the superiority of the chosen
strategy as a function of how much confidence we have in our
data.

4. CONCLUSION

One of the most important parts of making a decision is
the early choice of what formal model (if any) will be used to
structure the remainder of the decision process. Different
decision models make different assumptions about the nature of
the alternative actions, goals (utilities) and other considera
tions for evaluating the alternative actions. Early choices
among models, made on the basis of the general appropriateness
of their assumptions to the case in point, further determine
the way in which the relevant data will be collected and de
fined.

Because of this effect on the way a decision will be
structured, it is important to have a wide variety of techni
ques with differing assumptions. Furthermore, these techniques
need to be classified within an integrative framework according
to the nature of their assumptions. Only then can we be confi
dent of choosing a model which makes the most effective possible
use of the available data without introducing the distortions
which result from a mismatch between the data and the algorithm
(e.g., treatin0 nominal or ordinal scale data as if it were
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~easured on a ratio scale) 0

The methodologies discussed in this chapter constitute a
subset of the various possible assumptions about the kind of
inforlaation that can be obtained and used. Once a new practical
decision problem has been identified as belonging to the general
class of decision-tree type problems, the quality and quantity
of the data associated with the new problem can be compared
with the information presented herein to select the best model
around which to structure the processes of estimating numeric
probabilities or relative possibilities, assessing utilities,
and arriving at a final decision.

The goal is to maximize the efficient use of whatever in
formation is actually available while minimizing the need for
introducing arbitrary assumptions or spurious precision. For
example, if the information actually available in a given
problem situation were just sufficient to satisfy the require
ments of the L-fuzzy risk minimization algorithm, then to use a
less information-intensive algorithm such as minimax regret
would require ignoring real information which might be critical
to an optimal decision, while using a more information-intensive
technique such as statistical decision analysis would require
introducing arbitrary assumptions about cardinal measurement
scales which might distort the solution enough to lead to a
suboptimal decision. In general, a problem situation will not
fit the assumptions of anyone model exactly. In such a case,
a good strategy might be to bracket the problem by comparing
the results of using two techniques: the most information-inten
sive technique whose assumptions are completely satisfied by
the situation (but which does not use all the available infor
mation); and the least information - intensive technique which
uses all the available information (but which also requires
some additional assumptions). If the two "bracketing" techniques
agree on a single decision alternative, that alternative may be
adopted with some confidence; if the two techniques disagree,
their respective recommendations may be compared more intensive
ly as a "short list" from which the final action is to be
selected.

Further advances in the field of enriching and guiding the
choice of methodologies for soft optimization can take three
separate directions; development and refinement of individual
techniques; systematic comparisons of their characteristics and,
development of tools to aid in the selection of appropriate
techniques for a particular problem.

One advantage of the conceptual framework used in this
chapter is that it can suggest important gaps in the spectrum
of techniques, and thus serve as a stimulus to the development
of additional techniques which may fit some practical problems
better than the ones currently in place. Examples of useful
potential additions include hybrid systems combining information
at different levels such as ordinal and real numbers, and an
extension of the L-fuzzy risk minimization technique based on
wholistic comparisons between commensurate pairs of (possibili
ty, utility) tuples to eliminate the conceptually difficult com
parisons between a possibility on one hand and a utility on the
other. In addition to investigation of the technical efficiency
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of new and existins techniques, research is also needed regard
ing their potential tor user acceptance; any decision making
methodology which imposes major conceptual shifts on its intenc
ed users will be accepted only very slowly, regardless of its
other merits, as witnessed by the histories of Bayesian statis
tics and, more recently, fuzzy mathematics.

The framework of this chapter provides a starting point
for the systematic comparison of techniques in terms of their
basic assumptions regarding uncertainty. However, in order to
provide really effective guidance as to what techniques ought
to be used in a particular situation, it is also necessary to
l,ave a bocy of knowlecige comparing ti-,e difficulty of use and
the quality of results using each technique in a variety of
situations. Such a body of knowledge exists only in fragmentary
form at present, and needs to be expanded and systematized
using both axiomatic analysis anci experimental studies with
realistic problems and user populations.

As the number of techniques in the collection and the
number of criteria for selection become large, the difficulty
of choosing a technique using printed reports such as this one
becomes greater. This suggests a third avenue of research: the
development of an "intelligent index" to help a decisionmaker
to find the technique which best matches his perception of his
problem. Since the choice of technique must be made very early
in the decision process, at a time when the problem is still
relatively ill-structured, a fuzzy ordinal approach to such an
index seems most appropriate.
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TAB I.. E 1 : PROFITS AND PROBI\B IL ITIES

DN DO DC HN WO WC SN SO SC
1 t:O 0 0 0 0 0 0 0 0 0
2 DRILL -70 -70 -70 50 50 50 200 200 200
3 E{ } -10 -10 -10 -10 -10 -10 -10 -10 -10
4 E {c} -10 -10 -80 -10 -10 40 -10 -10 190
5 E{O} -10 -80 -10 -10 -40 -10 -10 190 -10
6 E {o f c} -10 -80 -80 -10 40 40 -10 190 190
7 E {n} -80 -10 -10 40 -10 -10 190 -10 -10
8 E {n, o} -80 -80 -10 40 40 -10 190 190 -10
9 E {n,c} -80 -10 -(;0 to -10 40 190 -10 190

10 E{n,o,c} -80 -80 -80 40 40 40 190 190 190

PROBABILITY .30 .15 .05 .09 • 12 .09 .02 .08 • 10

TABLE 2 : REGRETS

DN DO DC W! '10 \'IC SN SO SC
1 NO 0 0 0 -50 -50 -50 -200 -200 -200
2 DRILL -70 -70 -70 0 0 0 0 0 0
3 E~ } -10 -10 -10 -60 -60 -60 -210 -210 -210
4 E[c} -10 -10 -80 -60 -60 -10 -210 -210 -10
5 E{o} -10 -80 -10 -60 -10 -60 -210 -10 -210
6 E{O,c·.:· -10 -80 -80 -60 -10 -10 -210 -10 -10
7 E{n} -80 -10 -10 -10 -60 -60 -10 -210 -210
8 E{n,o} -80 -80 -10 -10 -10 -60 -10 -10 -210
'1 E(n,c} -80 -10 -80 -10 -60 -10 -10 -210 -10

10 E (n,o, c} -80 -80 -80 -10 -10 -10 -10 -10 -10

PROBABILITY .30 .15 .05 .09 .12 .09 .02 .08 • 10

TABLE 3: ORDINAL REGRETS

DN DO DC I'm \'10 viC SN SO SC
1 NO H H H F F F B B B
2 DRILL D D D H H H H H H
3 E{ } g g g E E E A A A
4 E{c} g g C E E C; A A g
5 E{o} g C g E g E A g A
6 E{o,c} g C C E g g A g g
7 E{n} C g g C; E E g A A
8 E{n,o} C C g g g E g g A
9 E{n,c} C g C g E g g A C;

10 E{n,o,c} C C C g g g g g g

POSSIBILITY P Q v T R T ,I U S
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TABLE 4: SORT STATES BY POSSIBILITY

DN DO 1-10 SC WN IIC SO DC SN

1 NO !J H F B F F B H B
2 DRILL D D H H H H H D H
3 E{ } 9 9 E A E E A 9 A
4 E{e} 9 C; E 9 E 9 A C A
5 E{o} 9 C 9 A E E 9 9 A
6 E {o,e} 9 C 9 9 E 9 S C A
7 E{n} C 9 E A 9 E A 9 9
8 E{n,o} C C r; 1'. 9 E 9 9 9
9 E{n, e} C 9 E 9 9 9 A C 9

10 E{n,o,e) C C 9 9 9 9 9 C 9

POSSIBILITY P Q R S T T U V II

TABLE 5 : SORT STRATEGIES BY REGRET
(HOST POSSIBLE STA'lE ~ PRIMARY KEY)

ml DO \~O SC lIN I'iC SO DC SN

8 E{n,o} C C 9 A 9 E 9 9 9
10 E{n,o,c} C C 9 9 9 9 9 C 9 >2

7 E{n} C 9 E A 9 E A g 9
9 E{n,e} C 9 E 9 C; 9 A C 9
2 DRILL D D H H H H Ii D H
5 E{o} 9 C 9 A E E 9 9 A
6 E{o,e) 9 C 9 9 E 9 9 C A
3 E{ } 9 C; E A E E A 9 A > 1
4 E{e} 9 9 E 9 E C; A C A
1 NO H H F B F F B H B

POSSIBILITY P C R S T T U V W

TABLE 6 : ELIMINATE COHPLETELY DmlH1ATED STRATEGIES

DN DO 1-10 SC lIN HC SO DC SN

8 E{n,o} C C 9 A 9 E 9 9 9
7 E{n) C 9 E A CJ E A 9 9
9 E{n,e} C 9 E C; 9 9 A C 9
2 DRILL D D H H H H H D H
5 E{a} 9 C 9 A E E 9 9 A
6 E{o,e} 9 C 9 9 E 9 9 C A
4 E{e} 9 9 E 9 E 9 A C A
1 NO H H F B F F B H B

POSSIBILITY P Q R S T T U V IV
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ThB:,E 7 :
IDENTIFY WORST-SET EXPOSURES FOR EACH STRATEGY

* * * * * *
DN DO WO SC ,iN WC SO DC SN

8 E{n,a} C* C 9 h* 9 E 9 g 9
7 E{n} C* 9 E A* 9 E A 9 9
9 E{n,e} C* 9 E 9 9 c; A* C 9
2 DRILL D* D H H H H H D H
5 E{a} g* C* 9 A* E E 9 9 A
6 E{o,e} g* C* 9 9 E 9 9 C A*
4 E{e} g* 9 B* 9 <: S A* C A
1 NO H* H F* B* F f' B H B

POSSIBILITY P Q R S 'L T U V V'I

TABLE 8:
DELETE STATES ViITI1 NO EXPOSURE IN IIORST SEc£

DN DO WO SC SO SN
8 E{n, a} C* C 9 A* 9 9 >2
7 E{n} C* 9 E A* A 9 >9
9 E{n,e} C* 9 E 9 A* 9
2 DRILL D* D H H H H
5 E{a} g* c* 9 A* 9 A >6
6 E{a,e} g* C* 9 9 9 A*
4 Etc} g* 9 E* 9 A* A
1 tlO H* H F* B* B B

POSSIBILITY P Q R S U W

TABLE 9 :
ELH1ItiATE STRATEGIES DOMItIATED ON REHAINING STATES

DN DO 110 SC SO SN
9 E{m re} C* 9 E 9 A* 9
2 DRILL D* D H H H
6 E{a,e} g* C* 9 g <; A*
4 E{e} g* 9 E* 9 A* A
1 NO H* H f'* B* B B

POSSIBILITY P Q R S U W
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'CABLI: 10: C'JI.ImiISE Cm~PARISONS

(States listed are in riskiest set for either row strategy or
column strategy, anll have a worse outcome for row strategy than
for column strategy,)

9 2 6 4 1

E{n,o}
DtJ DN DN DN

9 SO SO WO
SO

2 DRILL * DN DN DN

E{O'C}
SN DN

6 DO DO DO DO
SN

E{C}
\10 HO HO

4 * SO SO SO
DN

1'10 WO
1 NO SC SC SC SC

TABLE 11 :
ELIMINATE PAIRviISE HORST-SET DOHHJATED STRATEGIES

DN DO VlO SC SO SN
2 DRILL D* D H H H H
6 E{o,c} g* C* 9 9 9 A*
4 E{c} g* 9 E* 9 A* A
1 NO H* Ii F* B* B B

POSSIBILITY P Q R S U vi
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Abstract. Some general concepts and ideas re
lated to fuzzy optimization as, e.g., a fuzzy
constraint, fuzzy goal (objective function),
fuzzy optimum, etc. are introduced first. A
general fuzzy optimization problem involving
these elements is formulated and solved. The
cases of single and multiple objective func
tions are dealt with. Secondly, basic classes
of fuzzy mathematical programming are discuss
ed, including: fuzzy linear programming (with
single and multiple objective functions), fuz
zy integer programming, fuzzy 0-1 programming
and fuzzy dynamic programming. Finally some
newer, knowledge-based approaches are mention
ed. An extended list of literature is included.

Keywords: fuzzy decision making, fuzzy optimi
zation, fuzzy mathematical program
ming.

1. INTRODUCTION

The book focuses on optimization problems which belong to
a much wider class of decision making problems.

Decision making has always played, and is playing, a cru
cial role in human life. In fact, any human activity is a suc
cession of decision-making-related acts. A growing complexity
of social, economic, technical, military, etc. problems faced
by human decisionmakers has finally led to a necessity of using
some formal (scientific) tools. This has stimulated the deve
lopment of modern mathematical tools and techniques for that
purpose.

The analysis of a real decision making situation is vir
tually based on two types of information:

- information on feasible alternative decisions (options,
choices, al terna tives, variants, ••• ),

- information making possible the comparison of alternative
decisions with each other in terms of "better", "worse",

50
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"indifferent", etc.

To apply mathematical tools and techniques, these two ty
pes of information should be adequately quantified and formali
zed in the form of some mathematical models.

Having such models, diverse, more or less formal analytical
methods may be used by the analyst to derive a rational choice
(s) to be recommended to the decision maker. Evidently, the ap
plicability of analytical methods at the analyst"s disposal de
pends in a straightforward way upon the form of the model em
ployed to represent a real decision making situation.

If a model of a decision making situation is not adequate
enough, then the results of analysis may be misleading. This
may also occur in case of unreliable or inaccurate data.
Unfortunately, in many cases - above all in economic, social etc.
systems where human judgments, preferences, etc. playa crucial
role - information on a particular decision making situation
must be elicited from human experts. It is therefore full of sub
jectivity and of ambiguity or vagueness which stem from the use
of a natural language that is the only fully natural means of
human communication. And it is our ability to adequately incor
porate this type of information in an analytical mathematical
framework that is crucial for enhancing the applicability of
mathematical methods in real-world decision making situations.

Optimization problems constitute a wide class within deci
sion making. Basically, information on the preferences among
alternatives is in them described by some utility (objective,
performance, ••. J function that maps a given set of feasible
alternatives into the real axis; this allows one to compare the
alternatives with each other in a straightforward way through
their numerical evaluations as, e.g., the greater the value of
that function, the better the corresponding alternative.

The set of feasible alternatives in an optimization pro
blem is frequently described by a system of equations and/or
inequalities. In such a case the problem is referred to as one
of mathematical programming.

Methods and techniques of optimization, or - more specifi
cally - those of mathematical programming have been successful
ly used for years in various problems involving, and related
to, technical systems of relatively well-defined structure and
behavior, the so-called "hard" ones. This has allowed the for
mulation of corresponding optimization problems with precisely
specified constraints and objective functions solvable by well
developed and quite efficient traditional analytical and compu
tational means.

That success has motivated a direct application of the
same traditional approaches to the modeling and analysis of what
is often called the "soft" systems in which a key role is play
ed by human judgments, preferences, etc. Unfortunately, the
progress in this direction has been much less than expected,
which has even raised doubts whether traditional mathematical
tools are at all applicable to problems with relevant human
rel2ted elements.

It seems, however, that a more justified viewpoint is pro-
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bably such that to be able to successfully use optimization
methods in complex systems, which are "soft" in thp above
sense, a "technological change" towards "softer" approaches is
needed, toward approaches that would make it possible to incor
porate fuzziness (imprecision) of information into optimization
models and into methods of dealing with them. This need for
"softer" approaches in broadly perceived systems analysis and
systems engineering has been articulated and advocated for a
long time (e.g., Rapaport, 1970; or Checkland, 1972) and has
recently gained impetus in view of advances in knowledge engi
neering (see Gaines- paper earlier in this volume).

As already mentioned, a major "obstacle" in the applica
tion of traditional modeling and optimization tools in "soft"
economic, social, environmental, etc. systems is the subjective
nature of available information and its predominantly imprecise
(fuzzy) form due to the use of a natural language. A rapid de
velopment of fuzzy sets theory over the last two decades gives
more and more evidence that this theory provides useful means
for a more adequate modeling of "soft" information and for the'
development of analytical approaches that make possible an ade
quate processing of such information to finally arrive at a
realistic decision. It is in this sense that we say fuzzy sets
theory is a promising tool for "softening" traditional optimi
zation models and techniques.

In this introductory paper we briefly review some basic
developments in the field of "soft" optimization via fuzzy
sets and, to a lesser extent, possibility theory. We present
various existing approaches to the formulation of fuzzy opti
mization problems, and methods of their solution. In principle,
in all of them a fuzzy optimization problem is transformed into
some equivalent nonfuzzy problem which,in turn, can be solved
by using some traditional techniques (e.g., mathematical prog
ramming) and widely available commercial software packages.

2. APPROACHES TO FUZZY OPTnnZATION HITH AN EXPLICITLY SPECI
FIED FEASIBLE SET

As it has been already mentioned, the formulation of an
optimization problem contains two essential elements: (1) a
set of feasible alternatives, and (2) an objective function
whose values serve the purpose of comparing the alternatives
with each other. The optimization problem itself lies in deter
mining some "best" (in a sense) alternative(s).

The description of both the objective function and fea
sible set may be fuzzy. In this section we consider formula
tions in which the feasible set is explicitly specified by its
corresponding membership function whose values indicate the de
grees of feasibility of the particular alternatives. In further
sections we also consider formulations in which the feasible
sets are described by systems of fuzzy equations and/or inequa
lities, and refer to such formulations as to fuzzy mathemat'ical
programming. Paranthetically, let us mention that some of them
are based on extracting an explicit specification of the fea
sible set in the form of a membership function.

The class of problems considered in this section can be
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stated as follows. Let X ={x} be a set of relevant alterna
tives (options, choices, decisions, ... ).

The objective function is generally defined as a mapping
r : X -+ L(R) where L(R) is a class of fuzzy subsets of the
real line R. The value of F for xEX, F (x), is a fuzzy num
ber which represents a "soft" evaluation of the alternative
XEX.

The feasible alternatives are those "belonging" to a fuz
zy set C ~ X described by its membership function
Uc:X -+ lO,11. The alternatives may therefore differ in their

degrees of feasibility represented by the values of UC(x).

In traditional terms, our "soft" optimization problem can
be written as

f (x, r) "max "
xf..C

( 1 )

to be read as to "maximize" (the quotation marks mean that maxi
mization is not understood in the "hard" traditional sense but
in a "soft" one, i,e. to attain "possibly great" fuzzy values
of f(x,r») the objective function f(x,r) with respect to x
"belonging" to the fuzzy constraint C; r is a parameter.

We will outline now two approaches to solving the above
general formulation of a fuzzy optimization problem.

2.1. Attainment of a fuzzy goal subject to a fuzzy constraint:
Bellman and Zadeh s approach

In this approach by Bellman and Zadeh (1970) which forms
the basis of an overwhelming majority of fuzzy decision-making
-related models, the underlying assumption is that besides an
explicitly formulated fuzzy set of feasible alternatives C ~ X,
called a fuzzy constraint, we also have an explicitly specified
fuzzy set of alternatives that attain a goal, denoted G ~ X and
called a fuzzy goal.

The value of uG(x), the membership function of G, indi

cates the degree to which an alternative xEX satisfies the
fuzzy goal G. For example (see, e.g., Kacprzyk, 1983a), the
membership function UG(x) may be defined as

for
for
for

f (x) ~ f
f < f(x) < f
f(x) ~ 1.

( 2)

to be read as: we are fully satisfied (UG(x) = 1) with the

values of x for which our_objective function f(x) is not
below an aspiration level f, we are less satisfied
(0<g(x)<1) with x~s for which f < f(x) < f, and we are fully
dissatisfied with x-s which do-not exceed a lowest possible
level i, i,e. such x-s are unacceptable.

The problem is now generally stated as

"satisfy C and attain G" (3 )
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i.e. satisfy the fuzzy constraint G and attain the fuzzy goal G.

If we introduce a fuzzy set D S X which solves this pro
blem, and is called a fuzzy decision, then (3) can be written
as

D = C n G (4)

where" n" is an intersection operator corresponding to "and"
in (3).

In terms of membership functions, we can write (4) as

for each x E X (5 )

where "*" is an operation corresponding to " n°.
Host frequently, "*" is assumed to be a minimum dE'noted by

"A", i.e. a 1\ b = min(a,b), and then (5) is

for each x E X (6 )

This form of fuzzy decision may be viewed as a fuzzily
specified instruction (which x to choose), the execution of
which ensures the achievement of the fuzzy goal subject to the
fuzzy constraint. Evidently, the fuzziness of this instruction
is implied by the fuzziness of the problem formulation.

In the above form of fuzzy decision there still remains
some uncertainty as to its execution, i.e. the choice of a spe
cific x. A number of approaches are possible here (see,e.g.,
Zadeh 1968; Bellman and Zadeh, 1970,or Sommer and Pollatschek
1978)" One of the most popular is to choose an alternative
"belonging" to D to the maximum extent, that is to choose
x*EX such that

*~D(x ) = max ~D(x)
xEX

(7 )

In case of multiple fuzzy goals, G
1

, ••• ,Gn ~ X, and fuzzy

constraints C1, ••. ,CmSX, (6) becomes

PG (x) A••• APG (x) A Pc (x) Ao •• A~C (x)
1 n 1 m

for each x E X

(8 )

*and we seek x EX such that (7).

Moreover, if the fuzzy constraint is defined as a fuzzy
set in X, C S X, and thE' fuzzy goal in Y, G S X, and a
function y = w(x) is known, then (6) becomes

(9 )

(7 )

x E Xfor each

X induced by G S Y;

PD(x) = PC(x) 1\ PG, (w(x»,

where G- ~ is a fuzzy goal in
remains thE' same.

Finally, let us notice that within Bellman and Zadeh-s ap-
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proach other forms of trade-offs between the degrees of feasi
bility and goal satisfaction are possible (see, eog o, Bellman
and Zadeh, 1970; Kacprzyk, 1983a; Kacprzyk and Straszak, 1984;
Yager, 1978, 1979); the choice depends here on the specifics of
the problem considered.

lie will now outline the application of Bellman and Zadeh~s

approach to the analysis of our optimization problem (1). First,
we assume that our goal is to attain, by choosing an appropria
te feasible alternative, some fuzzily specified value of the
objective function. We assume this desired fuzzy value to be
described by the membership function of a fuzzy goal,
Il

G
: R ~ [0, 1 ] •

Consider first the case when the objective function is
precisely defined, i.e. f: X ~ Ro To use Bellman and Zadeh"s
framework, we first determine the subset of alternatives provi
ding for the satisfaction of our fuzzy goal. Clearly, this sub
set is the inverse image P

G
of Il

G
under the mapping (objec-

tive function) f : X ~ R, that is

for each x E X (10)

type (6) with PG(x) replacing PG(x)

IlC (x) as the fuzzy feasible set

Now, our problem is of

as the fuzzy goal, and with
(fuzzy constraint).

The fuzzy solution of the problem is now of type (9),

for each x E X

i.p: •

(11 )

*For determining x EX, such that

*IlD(x ) = max IlD(x)
xEX

( 12)

some well-known methods of mathematical programming can be used
(see, e.g., Tanaka, Okuda and Asai, 1974, or Negoita and
Ralescu, 1975).

Let US now consider a more general case with fuzzily speci
fied values of the objective function, i.e. f : X x R ~ [0,1].
As before, we assume that Ilc (x) is the membership function of

the fuzzy feasible set in X (fuzzy constraint), and Il
G

(r) ,

rER, is the membership function of the set of satisfactory
values of f (fuzzy goal) •

To apply in this case Bellman and Zadeh~s framework, we
can introduce (Orlovski, 1981) the following equivalent defini
tion of a solution to the problem of fuzzy goal satisfaction.

A fuzzy decision D ~X in our problem is a maximal (with
respect to the containment of two fuzzy sets - see Fedrizzi-s
paper earlier in thi.. volume) fuzzy set satisfying:

1. DeC (feasibility of the solution),

2. D 0 f c G (attainment of the fuzzy goal),
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where
tion
sets.

D 0 f
f : X x

is the image of D under the fuzzy objective func
R -> [0,1], and "e" is the contalnment of two fuzzy

It can be easily verified that for the above case of a
precisely defined objective function, this definition of D is
equivalent to (11).

Following Orlovski (1981), we introduce now the following
sets:

N ={(x,r): (x, r) E XxR, f (x,r) > I1 G(r)} ( 13)

N = { r: r E R, (x,r) E N} (14 )
x

xO = {x: x E X, N x f- (il} ( 15)

Then, the membership function of the fuzzy solution to our
problem is

I1 D (X)
1\ inf PG(x)

rEN
x

for x E xO

otherwise

(16)

It can be easily seen that for the conventional (nonfuzzy)
objective function, f:X -> R, this boils down to (11).

As before, we can seek an alternative yielding the maximum
value of Il

D
(x), and use for its determination computational

methods of mathematical programming.

2.2. The use of a-cuts of the fuzzy feasible set

"hile the approaches outlined in the previous subsection
use the concept of goal satisfaction, there also exist appro
aches that use in a more explicit manner the concept of maxi
mization. As an illustrative example, we will outline here an
approach by Orlovski (1977).

The problem is as (1), that is

fIx) -> "max"
x£.C

( 17)

where f:X -> R is an objective function and C ~ X is a fuzzy
constraint characterized by its membership function PC:X->[O,l].

The first problem is to introduce some concept of a solu
tion. We will present two of them; both define the solutions
as some fuzzy sets.

In the first solution ,oncept, we employ the a-cuts of C,
i.e. Ca ={XEX: PC(x) ~ aJ' aE(O,l]. For each a, such that

Ca f- (il, we introduce the (nonfuzzyl set

N(a) ={ x EX: fIx) = sup f(zl}
zEC a
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By solution 1 to the problem (17) we now mean a fuzzy set
Sl £ X, such that

P S . (x)
l

for x E'-J N(o)
0>0

otherwise

for x EU N(O)
0>0

otherwise
( 18)

we say that solution 1 exists if an only if there exists
such that N(o) f ~.

0>0,

we define the fuzzy maximal value of

sup
-1xEf (r)

for each rER

Next,
pCix) as

Pf(r) IJ
S

(x)
1

sup
-1xEf (r)

sup 0

xEN (0)

fix) over

(19 )

Notice that the choice of a single
not simply based on taking the x

but also on the value of fix) corresponding to
mely, the greater r

o
the smaller the value of

x=xo
ed.

such that

x as a final solution is
with the highest IJ

S
(x)

1
that x. Na

IJ S (x) for
1

A compromise is therefore need-

Solution 2 to the problem (17) is based on the concept of
the Pareto optimum. Namely, for the two functions fix) and
IJC(x) we first define P, the set of Pareto maximal elements,

i.e. the (nonfuzzy) subset P of X, such that xEP if there
exists no yEX for which either:

f (y) > fix) and IJC(y) ) IJC(x)

or

f (y) ) fix) and Pc (y) > IJC (x) •

Solution 2 is now defined as a fuzzy set S2 S X such that

[ IJC(x) for x E P
IJ S (x) = (20 )

2 0 otherwise

As shown in Orlovski (1977), this solution gives the same
fuzzy maximal value of fix) over IJC(x) as solution 1 in (18),
i.e.

sup
-1

xU (r)

IJ S (xl
2

sup sup a
XEf-1(r)X~N(a)

for each rER

(21 )
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Solution 2 explicitly suggests therefore that we should
consider as rational choices only those x"s which cannot be
simultaneously improved in the values of both f(x) and ~C(x) 0

Moreover, notice that P c U N(o) which implies Ps (x)~

0>0 2
~ ~S (x) for any XEX, ioe. solution 2 is a subset of solu

1
tion 1.

Among other approaches to fuzzy optimization with a sepa
rate treatment of f(x) and ~C(x), some of which employ and

extend Or lovski - s (1977) ideas, we should mention, e. g. ,
Negoita, and Ralescu (1977), Ralescu (1979,1984) or Yager
( 1979) •

2.3. The case of multiple objective functions and fuzzy
constraints

The problem is now basically as follows.
jective functions, f, (x), i=1, ••. ,n, and m

l *
~C (xl, ••• ,~C (x). He seek x EX, such that

1 n

He have n ob
fuzzy constraints

max
x

(22 I

subject to ~C (x),.oo,~C (x)
1 m

where max is maximization in the sense of Pareto.

Similarly as in case of a single objective function, we
can apply the approaches outlined in subsections 2.1 and 2.2.

Here we will sketch another approach based on Orlovski
(1980, 1981, 1983, 1984) which is intuitively appealing and
efficient.

relations over the set of alter
~ [0,1], given by

Through ~F (x)
1

n fuzzy nonstrict preference
natives X, i.e. Pi: X x X

First, let us assume a more general case when the objec
tive functions are not real valued as before but take on fuzzy
values Fi(X) £ X; the real valued functions are here evident-

ly special cases. Thus, the membership grade of a value of
fi(x) = r in Fi(X) is ~F,(X)(r).

l

we obtain, using the extension principle,

i= 1 t ••• ,n (23 I

The next step is to define a way of comparing
ves using these n fuzzy preference relations. lie
fuzzy strict preference relation PI:X x X ~ lO,1]

ing to Pi as

alternati
define a
correspond-
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where "v" is maximum, i.e. avb = max(a,b) 0 Then

59

(24 )

n
I\.
i=l

(25)

the degree to whichis
n
1\

i=l
a.

l
= a i "·Q_l\an -

is strictly preferred to x 2 ' where

Next, we introduce a fuzzy subset of nondominated alterna
tives

n
PND(x) 1 - sup pS(y,x) 1 - sup I\.ps(y,x)

yEX yEX i=l l
n

1 - sup I\. (Pi (y ,x) - Pi (x,y)) (26 )
yEX i=l

The value of flND(x) is a

tive x. Thus, if flND(x) > 0,

nated by some other alternative

As the second element of
of feasibility of alternative
constraints C1 'ooo,Cm- This
lows:

nondominance degree of alterna

then x may be strictly domi

to a degree smaller than 1-0.

the approach, we define a degree
x with respect to the fuzzy

can be done for instance as fol-

(27 )IlFS (x) = IlC (x)" •• -"IlC (x)
1 m

The solution of the optlmizatlon problem (22) is now meant
to flnd an alternative x*EX for which

and (28)

where 0 is a desired degree of nondominance and ~ is a desired
degree of feasibility. In fact, a compromise between 0 and ~

is sought.

In Orlovski (1984) some conventional (nonfuzzy) optimiza
tion problems equivalent to (22) are described.

Among other approaches, most of them also being based on
some degree of nondominance , we should mention, eog., Takeda
and Nishida (1980), Leung (1982,1983,1984), Yager (1980) and
Carlsson (1982).

3. BRIEF INTRODUCTION TO FUZZY llATHE!lATICAL PROGRAMMING

The point of departure is here a general mathematical pro
gramming problem written as
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( f(xl -+ max
x

subject to

i= 1, ••• , m

(29 )

x = (x 1 ' ••• ,xn ) E Rn is a vector of decision variables,

R is an objective function, g.:Rn
~ R are constraints,

l

E R are the so-called right-hand-sides. EVidently,

where

f :R
n

and b.
l

maximization and
tion and ")011.

", " can be easily transformed into minimiza-

Specific forms of the decision variables, objective func
tion and constraints lead to specific types of mathematical
programming as, e.g., linear, quadratic, nonlinear, integer,
0-1, dynamic, etc.

In the following we present some basic approaches to in
troducing fuzziness into the general mathematical programming
problem (29). Emphasis is on fuzzy linear programming, which,
as its nonfuzzy counterpart, is of particular relevance from
the practical viewpoint.

3.1. Fuzzy linear programming

The problem of conventional nonfuzzy linear programming
may be written as

n
f (x) = L c. x.

i=1 l l

subject to:

n
L a. x. " b.

i=1 lj l J

max
x

(30)

j=l, ••• ,rn

i=l,~",.,n

"Softening" of this problem may proceed along two main
lines. First, we may "soften" the rigid requirement to strict
ly maximize the objective function and to strictly satisfy the
constraints. Second, we may allow the coefficients, i.e. c~ s,
a.~s, and b.-s, to be fuzzy numbers. We will sketch now th~

l J
two approaches.

3.1.1. Fuzzy linear programming in the setting of Zimmermann

The first attempt to fuzzify a linear program is due to
Zimmermann (1975, 1976).
To show its essence, we first rewrite (30) as

n
r---f(x) = L e i xi ~ min
I i=1 x
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l;bj:CC to

x. .~ b. j:::1, ••• ,rn
i= 1 J l l J

x. ~ 0 i=1, ••• ,n
l

( 31)

where, eVidently, e
i

- c
i

•

The fuzzy version of this problem is now written as

n

L eixi~ Z
i=l

n

i:1 a ji xi ~ b j j=l, ••• ,m (32)

n
which is read as: the objective function fIx) = i~l e i xi

should be "essentially smallernthan or equal to" an aspiration

level ~, and the constraints i~l a ji xi should be "essential

ly smaller than or equal to" the right hand sides b j or, in

another words, should be possibly well satisfied.

(33)

for

for

for

The above "essentially smaller than or equal to", written
'~" is formalized as follows. First, we denote by H = [hkiJ,

k=1, ••• ,m+1, i=l, ••• ,n, the matrix obtained by adding to the
matrix A = [a .. J the row vector [e.] as the first row of A.

Jl n l

We denote (Hx)k = L hki xi' and define the function
i=l

{

1 (Hx)k _ w
k

f k (Hx) k) = ~ - d
k

where wk-s a:ce

piration level

the original right-hand-sides b.-s and the as-
. T T J T

Z, l.e. W = (w 1 , ••• ,wm+ 1) =(Z,b 1 ,.0.,bm) ,

and dk"s are some 'subjectively chosen admissible violations of

the constraints.

We wish to satisfy all the constraints of (32), hence the
new objective function of the fuzzified linear programming
problem, i.e o the fuzzy decision (see (8)), is

m+1
IlD (x) = I\. fk«Hx)k) (34)

k=l
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(35)max
x =(x l ' ••• ,xn )

* * *and we seek an optimal solution x = (x l , .•. ,x n ), such that

m+l
1\ f k ( (Hx) k) ....
k=l

or, by substituting w~ = wk/dk and (Hx1;

dropping 1 in (2).

(36 )
m+l
1\ (w; - (Hx1k) .... A
k=l

max
x=(x l '···,xn )

It is easy to show (see, e.g. Negoita and Sularia, 1976)
that this is equivalent to

~ max
? E [0, 1 ]
to:

[
o"",e~,
'). ~ w

k
- (HX) ~

xi ;. a

k=l, ••• ,m+l

i=l, .•• ,n

(37)

in the sense that an optimal solution to (37) is also optimal
to (32) 0

While using a fuzzy linear program the decision maker is
not forced to state the problem in precise terms, required by
the mathematics involved but possibly strange from the prac
tical point of view. This is a serious advantage.

Zimmerman-s approach has found numerous applications in,
e.g.: designing the size and structure of a truck fleet
(Zimmermann, 1975), designing of a parking place (R~dder and
Zimmermann, 1977), media selection in advertising (Wiedey and
Zimmermann, 1978), air pollution regulation (Sommer and
Pollatschek, 1978), determination of agricultural policies
(Kacprzyk and Owsiriski, 1984; and owsiriski, Zadrozny and
Kacprzyk later in this volume).

The model was also a point of departure for some exten
sions, as, e.g., the transportation problem (Oheigeartaigh,
1984; Verdegay, 1983; but particularly Chanas and Kolodziej
czyk, 1984; and Delgado, verdegay and Vila later in this volu
me); tuzzy linear programming with constraints given as fuzzy
relations (Nakamura, 1984), fuzzy stochastic linear program
ming (Luhandjula, 1983), etc.

Let us mention that for fUzzy linear programming in
Zimmermann"s setting there are some works on duality (Hamacher,
Leberling and Zimmermann, 1978; but particularly Verdegay,
1984a and Llena, 1985) sensitivity analysis (Hamacher, Leber
ling and Zimmermann, 1978), derivation of the whole fuzzy de
cision (34) using parametric linear programming (Chanas, 1983;
and verdegay, 1982) etc.

The presented approach can also be employed for solving
mUltiobjective linear programming problems (see, e.go,
Zimmermann, 1978, Hannan, 1981a, 1981c).
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Moreover, attempts to develop fuzzy goal programming (eog.,
Hannan, 1981b; Narasimhan, 1984; Llena, 1985) are relevant.
Interactive approaches to a practical solution of multiobjec
tive problems, also in a nonlinear case, have been developed
by Sakawa and collaborators (e.g., Sakawa, 1983, 1984a, 1984b;
Sakawa and Seo, 1983; Sakawa and Yumine, 1983) 0

3.1.2. Fuzzy linear programming with fuzzy coefficients

The first attempt to solve linear programs with fuzzy
parameters is due to Negoita, Minoiu and Stan (1976). Basical
ly, they consider the problem

n
f (x) = L c. x. max

i=1 1 1 x

subject to:

x 1K1 + ..... + x K e K (38)
n n

x 1 ~ ° i= 1, • " • ,n

where Ki-s are fuzzy sets. By using o-cuts of Ki-S, i.e.

Ro(K i ) ={XEX: IlK()':) )o} they replace (38) by
1

f(x)
n
L

i=1
C.X.

1 1
max

x

subject to:

i=1, ••• ,n for each 0 E (0,1]

(39)

which, for ~K(X)E{o1""'op}' is a finite set of the so-called

set inclusive linear programs solvable by conventional linear
programming techniques (see, e.g., Soyster (1973) for details).

It should be noted that the above approach has some
serious drawbacks which are often prohibitive in its practical
use. First, "e" is the conventional fuzzy set inclusion (see
Fedrizz~~s paper earlier in the volume) of a "yes-no" character
which makes the problem unnecessarily rigid, The use of a less
rigid definition of containment of two fuzzy sets to a degree
(cf. Kacprzyk, 1983a) could help, although presumably at the
expense of analytical tractability. Moreover, even if ~K(x)

takes on a finite number of distinct values, this number is
usually high so tha~ we obtain a high dimensional equivalent
conventional linear program. Several approaches have appeared
to overcome this difficulty. In one of th~~, due to Orlovski
(1984b) fuzzy information on coefficients in a fuzzy mathema- ,
tical programming problem is used to extract a fuzzy preference
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relation over the set of alternatives, and then to use this
relation for determining nondominated alternatives as solutions
to the problem.

Many approaches assume fuzzy coefficients to be some spe
cific numbers. For instance, Dubois and Prade (1980) use the
so-called L - R representation of fuzzy numbers, and Tanaka
and Asai (1984a) and Tanaka, Ichihashi and Asai (1984) use
fuzzy numbers with triangular (pyramidal) membership functions.
The latter approach makes it also possible to obtain a fuzzy
or nonfuzzy optimal solution. It seems to be quite promising
as it has been successfully applied to designing agricultural
policies (Owsinski, Zadrozny and Kacprzyk-s paper later in this
volume). Some more information on approaches to using some spe
cific representations of fuzzy coefficient numbers can he found
in Slowinski~s paper later in this volume.

3.2. Fuzzy integer and 0-1 programming

Although mathematical programming problems in which deci
sion variables are required to take on discrete values, inte
ger or 0-1, as opposed to real values in the previous problems,
are of utmost importance in many fields, e.g., in all opera
tions - research - and management-related ones, not much work
has been done on fuzzification of those models. We will sketch
below some attempts.

3.2.1. Fuzzy integer programming

Almost all of the progress in the field is due to Fabian
and Stoica (1984). They start from the conventional nonfuzzy
integer program

[
fIx) max

x

subject to:

g (x) ~ 0

Xi - integer

(40 )

where f(~) and g(x) are real-valued functions. This prob
lem (40) is now fuzzified as follows:

-.....
fIx) .... max

x

subject to:

g(x) ~ 0
......

Xi - integer

( 4 1 )

to be read as: find a "possibly maximal" (m~) solution x *
which satisfies the constraints to a "possibly high" degree,
and whose components, xi-s, are "almost" integers. Let us no-
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tice that the last requirement does not force the solutions to
be exactly integers which may be a source of serious numerical
difficulties in conventional large integer programs.

Basically, by choosing appropriate fuzzy sets to represent
fuzziness in (40) concerning an approximate optimization, con
straint satisfaction and integral values of the decision varia
bles, an eqUivalent nonlinear mixed integer program is derived,
and a procedure for its solution is given.

The model has found application in some production schedu
ling problems.

A solution technique for solving fuzzy integer programming
models with multiple criteria appeared in Ignizio and Daniels
( 1983) •

J.2.2. Fuzzy 0-1 programming

Practically, the only works on fuzzy 0-1 programming are
those of Zimmermann and Pollatschek (1979, 1984). They extend
Zimm~rmann-s fuzzy linear progr~mming model (cf. Section 3 01.1)
by adding the requirements Xi E\.0,1}, i.e.

n

i:1 e i xi~ Z

i=1, ••• ,n

n

i:1 a ji Xi ~ b j

XiE{0,1}

j=1, ••• ,m (42)

Then, following in principle the line of reasoning (33) - (36),
a conventional (nonfuzzy) equivalent of (42) is derived. A
branch-and-bound procedure for its solution is developed.

3.3. Fuzzy dynamic programming

Dynamic programming is an effective approach to solving
a variety of optimization (decision making) problems of multi
stage (dynamic) character. The first attempts at the fuzzifica
tion of dynamic programming appeared very early (Chang, 1969;
Bellman and Zadeh, 1970). Their essence pay' be best seen by
using the follOWing framework, Let: X = \. x} = { s l' ••• , sJ be

a state space, U ={u} ={c 1 , ••• ,cm} be a control space, the

temporal evolution of a dynamic system under control be des
cribed by its state equation x t + 1 = f(xt,u t ), where x t '

E X are states at times t and t+ 1 , respectively, and

U is a control at time t. Xo E X is an initial state

N is a fixed and specified termination time.

For simplicity, we assume that for each t = 0,1,0 •• ,N-1,
a fuzzy constraint ~ct(Ut)' and only for t N a fUZZy goal

~GN(xN) are defined. The problem is to find an optimal sequ-
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* *
ence of controls u O', •• ,uN_ 1 ' such that

(43)max (IlCO(uO)t- •• ot-IlCN-1 (uN_1)t-flGN(xN)
u o' ••• , uN _ 1

where, x t + 1 = f(xt,u t ), t=O,1, •.• ,N-1.

It is easy to see that this problem can be solved by dyna
mic programming through the following set of recurrence equa
tions

[

1.1GN- i (xN_i ) max (11CN- 1 (uN-i) /\ fl
GN

- i + 1 (xN- i + 1»
u N - 1

xN_ 1+ 1 = f (xN-1 ' uN _ 1) i =1 , .•• , N
(44 )

This basic formulation can be considerably extended, main
ly with respect to: (1) the type of termination time: implici
ty given by entering a termination set of states, fuzzy, and
infinite, and (2) the type of system under control: stochastic
or fuzzy. For an excellent short review, see Esogbue and Bell
man (1984), and for a detailed analysis - Kacprzyk (1983a).

Among numerous applications of fuzzy dynamic programming
we should mention those for: research and development control
(Esogbue, 1983), health care systems, clustering, water sy
stems (for all, see Esogbue and Bellman, 1984), and regional
development (Kacprzyk and Straszak, 1984).

4. REMARKS ON SOHE RECENT KNOIVLEDGE-BASED APPROACHES

Recently, some newer approaches to fuzzy optimization
have appeared. Basically, they try to further "soften" the
models presented in the previous sections by representing some
commonsense perceptions. In fuzzy multicriteria optimization
an optimal solution is sought that best satisfies, e.g., most
of the important objectives (Yager, 1983, Kacprzyk and Yager,
1984a, 1984b) as opposed to that satisfying all the objectives
in the conventional models. In the multistage case an optimal
sequence of controls is sought that best satisfies the goals
and contraints at, e.g., most of the earlier control stages
(Kacprzyk, 1983b; Kacprzyk and Yager, 1984a, 1984b). The ap
proach may also be used in other problems, as, e.g., in group
decision making (see Kacprzyk (1985a) for a review). The above
approaches employ Zadeh~s (1983a, 1983b) representation of
commonsense knowledge equated with a collection of disposi
tions (propositions with implicit linguistic quantifiers)
handled by using fuzzy logic.

The above may be seen as attempts to develop what might
be called knowledge-based optimization and mathematical pro
gramming models as opposed to the data-based conventional
ones. This should eventually lead to an expert-system-based
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decision support for optimization which should greatly enhance
implementability of optimization tools and techniques in real
world problems.

5. CONCLUDING RE~~RKS

~his paper is a brief introduction to fuzzy optimization
and mathematical programming and a survey of the main contribu
tions in these fields. An interested reader, who has not yet
been exposed to the subject, will here find a body of basic
knowledge needed to be able to read both the folloWing artic
les in the volume and other literature. For other readers, the
paper can be a source of basic contributions in the field.
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Abstract. This paper should be considered as an in
troduction to the fundamental properties of binary
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1. INTRODUCTION

In many decision making problems, the preference relations
in the set of alternatives are of a fuzzy nature, reflecting
the imprecision of experts' estimates or uncertain aspects of
preferences.

The literature on non-fuzzy preference relations is rather
rich and deals with structures called complete or partial orders
and preorders, semiorders, interval orders, etc. These defini
tions can be extended to the fuzzy case in different ways.

Sections 2 and 3 deal with the basic properties of binary
fuzzy relations using the min and max operators. Related a-cuts
and nested families of crisp relations are emphasized.

Section 4 investigates three different strict preference
concepts and determines the logical relationships between the
transitivity properties of these preference relations.

Sections 5 and 6 introduce different tools to solve the
ranking and choice problems: utility functions, domination
concepts, etc.

Section 7 presents a short survey on multiple criteria
decision making methods using fuzzy outranking relations.

2. SOME PROPERTIES FOR A BINARY FUZZY RELATION

We consider a binary fuzzy relation S in a finite set A,

77
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to [0,1]: PS(a,b) will de

(a,b) by this mapping. A bi

be:

ps(a,a)=1, VaEA:

if ps(a,a)=O, VaEA;

if ps(a,b)=ps(b,a), Va,bEA;

if min[PS(a,b) ,PS(b,a) ]'t,va,bEA,a;tb:

if max[US(a,bl ,ps(b,al ]'2,va,bEA,a;tb:

if min[ps (a, b) ,PS (b,a)] =O,Va,bEA,a;tb:

if max[ps(a,b) ,ps(b,a) ]=1,Va,bEA,a;tb:

if min[ps(a,b) ,PSlb,a) ]>O,Va,bEA,a;tb:

if Ps (a,c) ~min[ps(a,b) ,PS (b,c) ], v~~~;.

if ps(a,c)"max[ps(a,b) ,ps(b,c)] ,Va,b,
cEA:

if PS(a,b»ps(b,c)~ps(a,d)~ps(b,d),

Va,b,c,dEA:

is a mapping Ps from A x A

the image of the ordered pair

fuzzy relation S is said to

reflextive if

irreflexive

symmetric

weakly anti symmetric

weakly complete

antisymmetric

complete

saturated

transitive

negatively transitive

linear

that

nary

note

probabilistic if PS(a,b)+Ps(b,a)=l,va,bEA, a;tb.

Some of these properties naturally follow from the equiva

lent crisp relations if we adopt the following usual concepts,

Sand T being two fuzzy relations on A:

SeT iff PS(a,b) , PT(a,b) ,Va,bEA;

~nT(a,b) min[ps(a,b),PT(a,b)]:

rSUT(a,b) max[ps(a,b) ,PT(a,b)];

P d(a,b) = l-PS(b,a)
S

PS.T(a,b)

PS'T(a,b)

ps-(a,b)

P (a,b)
SC

max min[ps (a,c) ,PT (c,b)];
c

max[o,ps(a,b)-PT(a,b) 1;

PS(b,a) : S is the converse relation of S;

SC is the complementary relation
of S:

sd is the dual relation of S.

For example, the crisp antisymmetry is defined as

S n S n{(a,b), a;tb} = !/l.

Dealing with a fuzzy relation, we obtain the definition presen

ted here. It is also the case of transitivity and negative tran

sitivity which, for a crisp relation, are defined as S.Se Sand

SC.Sc esc, respectively.

On the other hand, the reader will easily verify the follow-
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ing proposition, generalizing the crisp situation.
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Proposition 1. The dual relation of a reflexive (resp. irrefle
xive, symmetric, weakly antisymmetric, weakly complete, anti
symmetric, complete, saturated, transitive, negatively transi
tive and probabilistic) relation is irreflexive (respo reflex
ive, symmetric, weakly complete, weakly antisymmetric, complete,
antisymmetric, non-saturated, negatively transitive, transitive
and probabilistic) •

The previous properties are common and were used for in
stance by Zadeh (1971) to define concepts like fuzzy orderings,
preorderings, partial orderings, weak orderings and linear or
derings.

3 0 a -CUTS OF A BINARY FUZZY RELATION AND NESTED FAMILIES OF
CRISP RELATIONS

• For each fuzzy relation 5, a nested sequence of crisp re
lations {Sa,aE(O,1]}, called a-cuts, can be defined as follows:

a 5 b iffa lIS (a,b) ~ a •

A natural way of defining a property P of fuzzy relation
consists in asking that all its a-cuts have this property P.
As an exercise we leave the proof of the following proposition
to the reader.

proposition 2. A fuzzy relation 5 is reflexive (respectively:
irreflexive, symmetric, antisymmetric, complete, transitive and
negatively transitive) iff every a-cut of 5 has the corres
ponding crisp property.

Conversely, given a family F ={Sj\,?lE(O,1J}of crisp re
lations on A such that

'), 1 > ';\ 2 -+ 5",
1

c Sj\ ,
2

we obtain a fuzzy relation 5 given by

lIS (a,b) = max lIS (a,b).

'" ~It is clear that the family of a-cuts of 5 coincides with the
initial family F. SO,it is equivalent to study properties of
fuzzy relations and of nested families of crisp relations (for
a more complete and rigorous proof, see DOIGNON, MONJARDET,
ROUBENS and VINCY-E, submitted).

Now, giving a fuzzy relation 5, it may be interesting to
determine the crisp relation which is, in some sense, the near
est to S. Using the Hamming distance, we have:

Proposition 3. Given a fuzzy relation 5 on A, the O.S-cut of
5 minimizes

d(S,T) L IIlS(a,b) - IlT (a,b) I·
a,bEA

among the set of all possible crisp relations T on A.
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Proof 0 d(S,T) will be minimum if PT (a,b)=1 when PS (a,b».5,

and PT(a,b)=O when Ps (a,b)<.5.

4. FUZZY PREFERENCES

Suppose that PS(a,b) represents the degree to which the

proposition "a is not worse than boo is true so that S may be

considered a fuzzy preference relation. It is reasonable to de

fine fuzzy indifference I and fuzzy incomparability R as in the

crisp situation, i.e.

that is

flI(a,b)

PR (a,b)

min[ps(a,b), Ps(b,a)],

1-max [ PS (a, b) , PS (b , a) ] •

Now, several possible expressions exist to define the
strlct preference P. We give three of them here. The first one
is an extension of the crisp definition

P 1 = S n Sd,

that is

Pp (a,b) = min[PS(a,b), P d(a,b)].
1 S

The second one is from ORLOVSKY (1978) and consists in conside
ring the so-called anti symmetrized relation of S given by

Pp (a,b)
2

corresponding to the crisp definition P2 = S'S

The third one is by OVCHINNIKOV (1981):

_ [PS (a,b) if fl S (a,b)
P p (a,b) -

3 a if fl
S

(a,b)

> ps(b,a),

, Ps (b,a) •

The last definition is also obtained in considering the nested

family of crisp preferences CSa n s~, a E (0,1 ]}, where Sa

are the a-cuts of S.

The folloWing proposition summarizes the main properties
of all these fuzzy relations.
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Proposition 4, We have:
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(i) S reflexive ~ I reflexive, R, P" P 2 , P3 irreflex

iv€;

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

I and R are symmetric;

S antisymmetric or complete ~ P, antisyrnrnetric;

S weakly antisymmetric or weakly complete ~ P,

weakly antisyrnrnetric;

P2 and P3 are antisyrnrnetric;

S=P, iff PS(a,b)+PS(b,a)(', ta,b;

sd=p, iff PS(a,b)+PS(b,a)~',1(a,b;

S=P
2

=P
3

iff S is antisymmetric;

S crisp ~ P,=P 2 =P3 ;

S transitive ~ I transitive;

sd transitive (i.e. S negatively transitive) ~ R

transitive;

Sand Sd transitive ~ P, transitive;

S or Sd transitive ~ P
2

transitive;

P, transitive ~ P
2

transitive;

S transitive ~ P
3

transitive;

S transitive f P, transitive;

P, transitive ~ P2 or S transitive;

P2 transitive ~ P, or P3 or S transitive;

P3 transitive ~ P, or P2 or S transitive.

Proofs. (i) to (ix) are easy;
d d - d(x) to(xii) result from I=SnS-, R = S n(S) and P, = sns and

from the fact that the intersection of two transitive rela

tions is also transitive; given two transitive relations S

and T, we have

PSnT(a,c) min[PS(a,c), PT(a,c)]

~ min[min[PS (a,b) ,PS (b,c)] ,min[PT(a,b) ,PT(b,c) ],Vb

min[min[PS(a,b) ,PT(a,b) ],min[pS(b,c),PT(b,c)]~b

min[PSnT(a,b) ,PSnT(b,c)] ,Vb.

(xiii) see ORLOVSKY ('978)

(xiv) results from (xiii) and from the fact that for each a,b:

PS(a,b) - PS(b,a) = Pp (a,b) - Pp (b,a);, ,
indeed, if PS(a,b) , '-PS(b,a), then PS(b,a) ~ '-PS(a,b)
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so that II p (a,b) = Il s (a,b) and II p (b,a) = Il s (b,a); if
1 1

11 S (a, b) >1-11 S (b ,a), then 11 S (b , a) > 1-11 S (a, b) so tha t

II p (a,b) = 1-IlS (b,a) and IIp (b,a) = 1-Il
S

(a,b)
1 1

(xv) see OVCHINNIKOV (1981).

(xvi) consider Il S (a,b)=.7, Il s (b,a)=.7, Il s (b,c)=.7, Il s (c,b)=.7,

PS(a,c)=1 and PS(c,a)=.8

(xvii) consider Il s (a,b)=.8, Il s (b,a)=.5, Il S (b,c)=.8, pS(c,b)=.3,

u S (a,c)=.6 and PS(c,a)=.2

(xviii) consider Il S (a,b)=.4, Il
s

(b,a)=.2, ps(b,c)=o6, Il s (c,b)=.4,

Il S (a,c)=.3 and ps(c,a)=O

(xiv) consider Il S (a,b)=.2, Il S (b,a)=O, ps(b,c)=.7, pS(c,b) =.5,

ps(a,c)=.5 and PS(c,a)=.4.

5. THE RANKING PROBLEM

Many decision problems in which preferences between alter
natives from a given set are described by a single preference,
consist in providing a ranking of the alternatives from the best
to the worse.

The most usual tool used to solve the ranking problem is
provided by the definition of a utility function 9 which is a
real-valued function calculated for all the alternatives of the
set A due to, e.g.,

9 1 (a) MAX Il(a,b)
bEA

g2(a) L Il(a,b)
bEA

9 3 (a) = L [11 (a, b) -11 (b, a) ]
bEA

where 11 is considered as Il S or II p '

The ranking is obviously obtained by the rule:

a is better than b (a>b) iff g(a»g(b).

The definition of g1' where Il(a,b) = II p (a,b), is linked

to the concept of dominance which was introduced by ZADEH (1971)
in the context of fuzzy partial orders (reflexive, antisymmetric
and transitive fuzzy relations) and was also studied by BLIN
(1974), DUBOIS and PRADE (1980), ORLOVSKY (1978), SISKOS et al.
(1984), TAKEDA and NISHIDA (1980), etc.

The non-domination degree IlND (a) - see ZADEH (1971) and
ORLOVSKY (1978) - and the non-domlnance degree ~d(a) for an

alternative a in A are respectively defined as:
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1 - I'IAX IIp (b,a)
bEA 2

83

PNd(a) = 1 - ~~X II p (a,b)
bEA 2

1-g 1 (a)

The real valued function g is then provided by PND (or

1-PNd ) and the alternatives can be ranked according to the de

creasing values of PND or the increasing values of PNd •

One can also obtain a crisp partial preorder S on set A

according to the following rules:

+
b iff ~D(a) PND{b) ,a P >

+
b iff IlND(a) ~D(b) ,a I

a p n iff IlNd (a) < ~d (b),

a I b iff PNd (a) PNd (b) •

The preference structure (P,I,R) , where S
ponds to

S (P+VI+) n (P -VI=

with: aPb iff a
+

b and a b,P P

or a p+ b and a I b,

or a P b and a 1+ b,

alb iff a 1+ b and a I b,

aRb otherwise.

PUI, corres-

S is obviously reflexive and transitive.

The function g2 is used by KACPRZYK (1985) in the probabi

listic situation with P=P 2 and is called "strength of (strict)

preference".

The function g3 is called the score when p(a,b) = Il S (a,b)

and will be used in section 6.

Another possibility is to find the ranking (complete order)

which is "the nearest" to the fuzzy preference relation. This

implies the choice of a distance which is as subjective as the

choice of g in the previous method.

Some more sophisticated methods have been proposed like the

"distillation algorithm" of ROY in ELECTRE III (1978).

In any case, there is a lack of theoretical basis allowing

the comparison of the results of these different approaches and
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an axiomatic justification of a choice, However, let us mention
some works which could be useful in this respect.

HASHI~O~O (1983) and ZADEH (1971) have extended to the
fuzzy situation the well-known SZPILRAJN's theorem allowing one
to complete a partial order to obtain a complete order" The re
sulting fuzzy relation implicitly contains a natural complete
order given by

a better than b iff Il(a,b) > O.

Some results on the numerical representation of a fuzzy
relation can also be useful in this context, as for example:

Proposition 5. The necessary and sufficient condition for the
existence of a real-function g such that, Va, b€A

Il s (a,b) > 0 .... g(a} ~ g(b) + Il s (a,b)

is that the valued graph (A,S-) does not contain any circuit of
positive value.

This proposition is a immediate consequence of theorem
VIII.1 of ROY (1969).

In the probabilistic situation where IlS (a,b)+IlS (b,a)=1, for
1all afb, and IlS(a,a) = 7, for all a, FISHBURN (1973) introduced

some stochastic transitivity conditions. One of these conditions
is called "strong stochastic transitivity", briefly SST, and
corresponds to:

1
MIN[PS (a,b) 'IlS (b,c)]~ "2 .... Il S (a, c) ~l1AX[pS (a,b) ,IlS (b,c) ],

Va,b,c€A.

Due to the probabilistic situation, transitivity and nega
tive transitivity are equivalent and

S probabilistic and transitive ....

MIN [PS (a,b) ,PS (b,c) ]~IlS (a,c) ~MAX[pS (a,b) ,PS (b,c) ] ,Va,b,c€A.

We then have

Proposition 6. There holds:

(i) S probabilistic and transitive .... SST

(ii) : S probabilistic and SST f S transitive.

~. If S is probabilistic, transitive and MIN[Ps(a,b),Ps(b,c)]
1 1

~ "2 : '2 ~ Il S (a,c) = MAX[ps(a,c), Ils(b,c)]

In order to prove this, suppose that Ps(a,c)<MAX[ps(a,b),

ps(b,c)] with ps(a,b) ~ Il S (b,c) (the proof is still valid in

the complementary situation). We thus obtain ~ ~ Il s (a,c) <

< rS(a,b). Transitivity implies that pS(a,b) ~ MAX[ps(a,c),

Ps(c,b)]. pS(b,c) ~ ~ .... pS(c,b) < ~ and ps(a,b) ~ PS(a,c) which
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is impossible.

As pointed out by ROBERTS (1979), SST is related to some
functional representations. The interested reader will find in
ROUBENS and VINCKE (1984) characterizations of fuzzy relations
leading to a representation by real intervals for the probabi
listic case. Generalizations of these results and applications
to other fields than preference modelling are presented in
DOIGNON, MONJARDET, ROUBENS and VINCKE (submitted).

6. THE CHOICE PROBLEM

In this section we consider decision problems for which
we want to rationally determine the best alternatives, i.e.
those which are better than all other alternatives or the non
dominated alternatives, i.e. those alternatives for which bet
ter ones do not exist.

The class of alternatives with maximum non-domination
(resp. non-dominance) degree is called the class of non-domina
ted (resp. non-dominating) elements.

An element is unfuzzily non-dominated (resp. unfuzzily
non-dominating) iff ~D(a) - 1 or equivalently Pp (b,a) = 0,

2
all bEA, (resp. IlNd(a) = 1).

ORLOVSKY (1978) proved that any fuzzy preorder (reflexive
and transitive relation) has unfuzzily non-dominated and non
dominating elements.

He also gave some sufficient conditions for the existence
of unfuzzily non-dominated elements.

Starting with the Ils-tableau{ps(a,b)}we consider the

IlS-board which is an ordered 3-tuple (S,L 1 ,L 2 ) where S is a

fuzzy binary relation on A and L
1

,L 2 are two linear orders on A.

The Ils-board corresponds to a representation of the fuzzy rela

tion S by the PS-bableau whose lines (columns) are labelled by

the elements of A, ranked according to L 1 (L 2).

The IlS-board is monotone (MONTJARDET (1984), ROUBENS and

VINCKE (1983)) iff there exists a linear order L on A such that,
for all a,b,cEA,

bLa(a<b) -0 IlS (a,c) ~ Il S (b,c) and PS(c,a) ~ PS(b,c).

When S presents a monotone IlS-board, it can be represented

by a tableau with non-decreasing monotonicity of the elements
IlS in a line and in a column. In this particular situation, it

is interesting to consider the~ for each element aEA:

sp(a) = I {ps(a,b) - ps(b,a)},
bEA

the crisp score relation S such that
p
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a sp b iff sp(a) ~ sp(b)

and the trace which is a crisp relation Tp such that

a Tp b iff ¥ c : ps(a,c)~ps(b,c) and ps(c,a)~ps(b,c)

In any case, the score relation is a weak orderla complete,
reflexive and transitive crisp relation) and the trace is a
quasi order(a reflexive and transitive crisp relation; •

It can be proved that the following statements are equiva
lent (MONJARDET (1984», when ps(a,a)=O, for all a in A:

Ii)
(ii)

(iii)

(iv)

S is linear,
S represents a monotone ps-board,

Trace Tp is a weak order,

Tp = Sp.

and

Condition (iv) is a very efficient way to recognize if a fuzzy
relation is linear: for all a,bEA with a sp b, one should test

if a T
p

b.

In MONJARDET (1984) some other results related to a linear
fuzzy relation are reported. They generalize the results of
ROUBENS and VINCKE (1983) obtained in the context of probabilis
tic relations.

Dealing with a fuzzy preorder S it is clear from proposi
tion 4 that P2 is irreflexive, antisymmetric and transitive.

The fuzzy graph G(A,P2) - where A is the set of nodes and P2

the set of arcs (a,b) with values Pp (a,b) - is acyclic and set

A can be decomposed in subsets NO, •• ~,Nk such that

pp (a,b) > 0 ~ aEN i , bEN j , i<j.
2

For every element xEN O' we have ps(y,x) = 0, all yEA, and

for every element yEN k , PS(x,y) = 0, all xEA. NO(Nk ) can be de

fined as the class of unfuzzily non-dominated (non-dominating)
elements.

If S is a linear fuzzy relation, the IlS-board is monotone

a S b .... IIp (a, b) ~ 0, II p (b,a) = O.
p 2 2

We then obtain the following upper-triangular IIp board
2
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S
P

a
n

o

S
P a

n

o

and PP
2

(a i ,a 1 ) = 0, all i = 1, ••• ,n, PP
2

(an ,a j ) = 0, all

j = 1, ••• ,n. Alternative a
1

is unfuzzily non-dominated and an

is unfuzzily non-dominating.

7. FUZZY OUTRANKING RELATIONS AND MULTIPLE CRITERIA DECISION
MAKING (MCDM) METHODS

Let g(a) be the evaluation of an action a~A for a given
criterion. Considering two thresholds PT and IT (called strict
preference threshold and indifference threshold, respectively)
the fuzzy outranking relation between a and b is given by the
following membership function (see Fig. 1):

g(a)+IT

for [g (b) -g (a) ]e[IT, PT]

g(a)+PT

~S'a,b\

IT

g(a!

Fig.

ps(a,b) describes the degree to which the statement "a is not

worse than b" is true.

It is easily seen that the dual relation sd is given by
the following membership function (see Fig. 2)
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11 d(a,b)
S { =1 if g(b) ~ g(a) -PT

is decreasing for g(a)-g(b)E[IT,PT]

=0 if g(b) ~ g(a)-IT

Fig. 2

-----g(b)

It is interesting to consider a preference fuzzy relation
IIp to be understood as the degree to which the statement "a is

strictly preferred to b" is true. In this particular context,
it is worth while to notice that

11 d(a,b) = IIp (a,b) = II p (a,b) for all possible values of
S 1 2

the pair (g(a) ,g(b)), a,bEA.

Finally, we easily obtain that ~I(a,b) looks like in

Fig. 3 and corresponds to the statement "a is indifferent to b";
~R(a,b) = 0, for all values of (g(a) ,g(b)) such that a and b

are never considered incomparable; uS(a,b), with a linearly

IT

PT

gia)

IT

g(b)

Fig. 3
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decreasing shape, was considered by ROY (1978) in the ELECTRE III
method and by SISKOS, LOCHARD and LOMBARD (1984). BRANS,
MARESCHAL and VINCKE (1984) introduced a preference fuzzy rela
tion when dealing with an MCDM method called PROMETHEE.

In some MCDM techniques, the fuzzy outranking relations
corresponding to different criteria are aggregated using various
kinds of procedures (see, e.g., ROY, 1978; SISKOS, LOCHARD and
LOMBARD, 1984, ORLOVSKY, 1984) to obtain a single fuzzy outrank
ing relation that gives a degree of overall outranking of one
alternative by another. A ranking procedure is then derived
using the non-dominance degree (see section 5), distillation
proposed by ROY (1978) or network flows as in BRANS, MARESCHAL
and VINCKE (1984).

Real problems were recently solved using these techniques:
choice of metro stations to be renovated (ROY and HUGONNARD
(1985) and comparison of energy alternatives (SISKOS and HUBERT
(1983».
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Abstract. This paper is concerned with two mo
dels of decision making in a fuzzy environment.
The first one is based on Zadeh's idea of a
maximizing fuzzy set and on an approach to de
cisionmaking suggested by Bellman and Zadeh o
The second model employs fuzzy preferences to
describe the choice of "best" alternatives.
Recent results in the area of representation
theory for fuzzy binary relations are used to
study relationships between these models.

~words: fuzzy choice, fuzzy decision making,
fUZZy preference relation, transi
tivityo

1. INTRODUCTION

In his 1972 paper Zadeh (1972) introduces a maximizing set
as follows o Let A be a set and f a real-valued positive function
on A. (For our purposes it is convenient to consider A as a fi
nite set of alternative~ and f as a goal function or criterion.)
Then a maXimizing set M is defined by its membership function

Mf(X) =~
sup (f)

A

x E A

x E A.

"Intuitively, a maximizing set IIf ••• is a fuzzy subset of A

such that the grade of membership of a point x in 1/ repre
sents the degree to which fIx) approximates to sup(f) •• 0"

(Zadeh, 1972). lie regard a maXimizing set I1f as ~ fuzzy goal
associated with a given criterion f.

If a set F of real-valued positive functions on A is given
(vector criterion) then the corresponding maXimizing set can be
defined as

MF (x) = inf{~} ,
fEF sup(f)

A

In this definition we follow Bellman-Zadeh-s (1970) idea of a

91
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fuzzy goal in multiple-criteria decision making.

The notion of a maximizing set can be generalized as
follows. Let ~ be a strictly increasing function mapping a unit
interval [0,1] onto itself. We define a maximizing set II by

f (x)
M(x) ~(sup(f))' x E A.

A

In the multiple-criteria case a maximizing set is defined as

M(x) inf
fEF

x E A.

One can consider maximizing sets as values of a linguistic va
riable "goal" (see zadeh, 1975 for definition of a linguistic
variable). It follows from the results of Ovchinnikov (1981)
that different generalized maximizing sets are synonyms; we will
discuss in this paper how the particular choice of a maximizing
set affects the decision making model. One can find it helpful
to regard a maximizing set as a fuzzy dominating subset with
respect to a given (vector or scalar) criterion (see Ovchinni
kov, 1982 for details) •

A fuzzy binary relation R on A is defined as a fuzzy sub
set of the direct product AxA; it is completely determined by
its membership function R(x,y). We regard fuzzy binary relations
as fuzzy preference relations considering R(x,y) as a degree of
preference of x over y. The fuzzy upper bound is defined in
Zadeh (1971) as a fuzzy subset inf R(x,y). A decision making

model based on a fuzzy preferen~~Arelation introduces the fuzzy
upper bound as a fuzzy goal. Usually, certain restrictions are
imposed on a fuzzy binary relation in order to guarantee non
voidness of the fuzzy upper bound. As in the classical theory,
these restrictions are the reflexivity and transitivity condi
tions. We introduce properties of fuzzy binary relations in
the next section.

It is convenient to compare decision making models in the
general framework of choice theory, Let us suppose that for
every subset X S A a fuzzy subset C(X) of X is defined. Elements
of C(X) are considered as "best" elements in X, where, of course,
"best" is a value of the fuzzy linguistic variable "best". A
correspondence X ~ C(X) is called a fuzzy choice function.
Decision making models based on maximizing sets and on fuzzy
preference relations generate fuzzy choice functions which are
most important in applications. \Ie demonstrate in this paper
that these two fuzzy choice mechanisms are, essentially, the
same - the result well known in the classical choice theory.

An excellent review of the classical choice theory can be
found in Aizerman and Malishevski (1981); fuzzy choice is dis
cussed in Ovchinnikov (1981a, 1982, 1983).

2. TRANSITIVITY AND t-NORMS

A fuzzy binary relation R on a set A is said to be reflex
ive iff R(x,x) = 1 for all x E Ai only reflexive relations are
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considered in this paper. The most general definition of a fuz
zy transitive relation was suggested by Zadeh (1971) : a rela
tion R is called a fuzzy transitive relation iff

R(x,y)*R(y,z) $. R(x,z) for all x,y E A,

T(x,1) T(1,x) = x,
T(x,y) ,< T(u,v) if x ,< u, Y ~ v,
T(x,y) T(y,x),
T(x,T(y,v)) = T(T(x,y) ,v).

where * is a binary operation on [0,1]0 In contemporary fuzzy
set theory, the operation * is defined as a triangular norm
(t-norm). We begin with a brief discussion of t-norms (see
Alsina, 1983 and Klement, 1981 for details).

A (two-place) function T from [0,1]x[0,1] into [0,1] is a
t-norm if it satisfies the following conditions for all x,y,u,
v in [0, 1] :

( i)
( ii)
( iii)
(iv)

There are numerous examples of t-norms; we list below some
of the most interesting ones:

sE(0,1).

1 ,

) , if

min(x,y) ,

x.y,

max(x+y-1,0),

[

min(X,y), if max(x,y)
Tw(x,y) =

0, otherwise,
(sx_1). (sY_1)

Ts (x,y) = logs (1 + s-1

TO(X'y)

T
1

(x,y)

Too(x,y)

A t-norm is said to be Archimedean if it is continuous and
satisfies

T(x,x) < x, for all 0 < x < 1

For example, a product (t-norm T1) is an Archimedean t-norm.

Any Archimedean t-norm T(x,y) can be represented as

T(x,y) = f(g(x) + g(y»

where g is a continuous strictly decreasing function from [0,1]
into R+ such that g(1) = 0, and f is a function from R+ into
[0,1] such that flO) = 1 and f(x) = 0, for all x > g(O), f is
continuous and strictly decreasing on [O,g(O)] where f(x)=g(x) 0

The t-norms T and T are extreme cases of t-norms because
of the following w impor~ant inequalities

for any T.

Now let T be a t-norm. A fuzzy binary relation R on A is
said to be transitive (or, better, T-transitive) iff

T(R(x,y),R(y,z».$. R(x,z), for all x,y,z E A
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Classical examples are the max-min transitivity

min(R(x,y) ,R(y, z)} ~ R(x, z),

and the max-product transitivity

R(x,y) -R(y,z} ~ R(x,z), for all x,y,z E A.

We call R a fuzzy transitive relation if it is T-transitive
for some t-norm T. Reflexive and transitive fuzzy binary rela
tions are called fuzzy preferences in this paper.

The following proposition establishes simple necessary and
sufficient conditions for a fuzzy binary relation to be transi
tive.

Proposition 1. A fuzzy binary relation R on A is transi
tive iff R(a,b) - 1 implies

R(x,a) ~ R(x,b) and R(a,x) ~ R(b,x)

for all a,b,x E A.

This is a rather trivial but important and simple charac
terization of fuzzy transitive relations. One can recognize the
T -transitivity in the conditions given above; the statement of
P~oposition 1 follows immediately from the fact that T i.s the
l0ast t-norm. w

A fuzzy similarity relation is defined as a reflexive,
sym~etric and transitive relation, i.e. S is a similarity
relation iff,

(i) S(x,x) = 1,
(ii) S(x,y} = S(y,x), and
(iii) T(S(x,y) ,S(y,z)) ~ ::;(x,z),

for all x,y,z E A and sowe t-norm T.

Let us i.ntroduce a crisp (nonfuzzy) binary relati~n

{ (>.,y) S(x,y) = I}
for a qiven fuzzv 3i~11arity relation S. It is an equivalence
relation which we denote by ~. The following proposition es
tablishes a nice characterization of fuzzy similarity rela
tions.

Proposition 2. A reflextive symmetric fuzzy binary rela
tion S is a similarity relation iff its corresponding crisp re
lation is an equivalence relation and

S(x,y) = S(u,v}, whenever x 11 and y ~ v.

These two propositions clearly illustrate the fact that
transitivity is not a very demanding property and may be sub
stituted by rather weak conditions when special classes of fuz
zy binary relations like the fuzzy preference and similarity
relations are considered.
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Let R be a fuzzy preference relation. There are infinitely
many t-norms T providing the T-transitivity of R, It is an
interesting and difficult problem to describe and study the
class of all these t-norms. One can always construct, say, an
Archimedean t-norm providing transitivity of a given fuzzy pre
ference relation on a finite set A.

It is convenient for our future purposes to introduce a
different representation for some Archimedean t-norms. Namely,
let ~ be a strictly increasing function mapping a unit interval
[0,1] onto itself. lie def ine a two-place function T on
[ 0 , 1 ] x [ 0 , 1 ] by

T(x,y) ~ Q-1 (tp(x) <l;>(y».

It is easy to verify that T is, indeed, an Archimedean t-norm.
Moreover, if A is a finite set, then any reflextive fuzzy binary
relation on A satisfying conditions of Proposition 1 is a fuzzy
preference relation for some T belonging to the class of t-norms
just introduced. Let us write a T-transitivity condition for a
fuzzy preference relation R

~-1 (~(R(x,y)) <liJ(R(y,z»)) ~ R(x,z),

or, equivalently,

<;>(R(x,y».<;>(R(y,z) ~ liJ(R(x,z»).

In summary, we have the following

Proposition 3. A fuzzy binary relation R is a preference
relation iff there exists a strictly increasing mapping ~ from
[0,11 onto itself such that Q(R) is a reflexive and max-product
transitive fuzzy binary relation.

If a linguistic variable "preference" is introduced with
values being fuzzy preferences on a finite set A, then follow
ing an approach developed in Ovchinnikov (1981b) one can say
that any fuzzy preference is a synonym of a max-product tran
sitive reflexive fuzzy binary relation.

3. REPRESENTATION THEOREMS

Representation theorems for transitive fuzzy binary rela
tions were introduced in Ovchinnikov (1982) and Ovchinnikov
(1984) for the max-product transitivity, and generalized in
Valverde~s (1982) Ph.D. thesis. We are concerned in this paper
with only the max-product transitivity because of the results
discussed in the previous section.

Let Rand S be, respectively, a fuzzy preference and simi
larity relation on a finite set A, i.e.:

(i) R(x,x) = 1,
(ii) R(x,y)·R(y,z) ,< R(X,z),

and
(i)
(ii)

S(x,x)
S(x,y)

1 ,
S (y ,x) ,
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(iii) S(x,y) 'S(y,z) ~ S(x,z),

The proofs of the following theorems can be found in Ovchinni
kov (1984).

Theorem 1. A fuzzy binary relation R is a preference rela
tion iff there exist a family F of positive functions on A
such that

R(x,y) . f . {fIX) 1}
~ In mln r---()' .

fE:F Y

Theorem 2. A fuzzy binary relation 5 is a similarity rela
tion iff there exists a family F of positive functions on A
such that

S( ) . f . {f(X) f(Vl}x,y ~ In mln ----f() ~
fE:F y' f(x)

Note again that the6e results are established for the max
product transitivity only.

For completeness, we present here Valverde~s general re
presentation theorem for thx similarity relations. For a given
t-norm, T, a quasi-inverse T is defined by

T(xlyl ~ sup{u E: [0,1] : T(u,x) ~ y}.

Then we have the following

Theorem 3. Let S be a fuzzy binary relation on A and T a
continuous t-norm. Then S is a similarity relation (assuming
the T-transitivity) if and only if there exists a family of
fuzzy subsets {h.} such that

J .ljE:J

S(x,y) inf T (min (h . (x) , h . (y) ) I max (h . (x) , h . (y) ) ) •
jE:J J J J J

4. CHOICE IN A FUZZY ENVIRONI1ENT

Let A be a finite set of alternatives. We say that a fuzzy
choice function C is given if, for every nonempty set X ~ A, a
fuzzy subset C(X) of X is defined. Following ideas presented in
the introduction, we define two choice mechanisms.

Let F ~{f} be a family of positive functions on A (a
vector criterion). We define

F,'P ( ) _ . f { ( f (x) l} E:C" x - In 4J ~~(-f-) , x X.
f>. fE:F sup

X

where 4J is an automorphism of the unit interval [0,1], i.e. a
strictly increasing function mapping [0,1] onto itself.

Let now R be a fuzzy preference relation on A. We define

C~(X) inf {R(X,y)}, x E: X.
yE:X
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We show below that the two classes of choice functions de
fined above are the same. Indeed, for a given family F a fuzzy
binary relation R defined by

R(X,y) = inf min{~«x)), 1}
fEF Y

is, in accordance with Theorem 1, a reflexive max-product tran
sitive fuzzy binary relation; therefore ~(R) is a fuzzy prefe
rence relation" We have

= c~,(jl (x) •C~ (R)
X

(xl = inf{~(R(X,y))
yEX

Hence, a fuzzy choice function c~,Q generated by the family F

and automorphism ~ coincides with the fuzzy choice function
generated by the fuzzy preference relation ~(R).

Conversely, let R be a fuzzy preference relation on A.
Then there is an automorphism ~ such that R = ~(R-) where R~

is d reflexive max-product transitive fuzzy binary relation.
By Theorem 1 there is a family F of positive functions on A
such that

. {f (x)
inf mln fly) ,
fEF

Hence

R(x,y)

Then we have

inf min{Q(~~Xy:)' 1}.
fEF

R
Cx (xl inf{R(X,y)} = inf min{Q ( f (x(f)) l} = cFX'w (x) •

EX fEF supY X

Therefore, a choice function generated by a fuzzy prefe
rence relation R coincides with a choice function generated by
vector criterion F and automorphism w.

We proved the following

Theorem 4. Choice mechanisms based on maximlzed sets and
on fuzzy preference relations generate identical families of
choice functions.

5. CONCLUSIONS

The results presented in this paper generalize some clas
sical theorems concerning decision making models based upon
multiple-criterion optimization and preference choice. It is
interesting to note that in a fuzzy environment transitivity
properties of preference relations do not play the same crucial
role as they do in the crisp case. Transitivity can be substi
tuted by rather wea' conditions which are easily verified in
applications. The ideas developed in this paper can be employed
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to expand the classical choice theory; some preliminary results
in this direction are found in Ovchinnikov (1981, 1982).
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FUZZY CHOICE

V.B. Kuz'min and S.I. Travkin
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Abstract. The~erations of fuzzy maximum, Max,
and minimum, Ilin, def ined on a cr isp set, and
their multivariable analogon, i.e. the concept
of a fuzzy Pareto optimum, are introduced. A mo
del of fuzzy choice based on the concept of fuz
zy concentration and on rules of fuzzy logic is
presented. The rules of fuzzy choices are clas
sified by a number of options chosen by infini
tely concentrated, therefore crisp, rules. The
correctness of the given definitions is shown by
applying the extension principle. The probabili
ty distribution of the height of a fuzzy Pareto
optimum, and an asymptotic result for the expec
ted value of the height are calculated. The rate
at which the concentrated fuzzy set converges to
the limit crisp set is estimated. Some proper
ties of fuzzy choice classes are discussed.

Keywords: ~zy choice, generated fuzzy Max and
Min, limiting concentration, fUZZy
Pareto optimum, fuzzy choice rule.

1. INTRODUCTION

Choice theory supplies methods to cope with imprecise op
timization problems when their traditional statements are impe
ded by conflicting adjectives. This replacement of an optimiza
tion problem by a choice problem is only one, not necessarily
the best, way to take into account the underlying uncertainty.
The problem of choice is dealt with in a number of studies con
ducted within the framework of fuzzy sets theory applied to mul
ticriteria programming (e.g., Sakawa 1983, Takatsu, 1984, etc.).
Zadeh (1976) proposed a fuzzy version of a trade-off procedure
to limit the number of Pareto optimal options.

In this paper a somewhat different approach is adopted. We
are taking only one standard fuzzy set to generate a rather
wide system of fuzzy choice rules.

The operations of fuzzy MaX and MIn defined on a crisp set,
and their multivariable analogon, i.e. the concept of the fuzzy
Pareto optimum are introduced. A model of fuzzy choice, based
on the concept of fuzzy concentration and on rules of fuzzy
logic, is presented. The rules of fuzzy choices are classified
by a number of options chosen by infinitely concentrated, there
fore crisp rules. The correctness of the given definitions is

99
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shown by applying the extension principle.

The probability distribution of the height of a fuzzy Pa
reto optimum, and an asymptotic result for the expected value
of the height are calculated. The rate at which the concentra
ted fuzzy set converges to the limit crisp set is estimated.
Some properties of fuzzy choice classes are discussed. In par
ticular, it is shown that the rule R c R(I, I ,A) selects no more
than two options and a rich choice is possible by the rules of
higher order classes.

2. FUZZY SETS AS SOME RESULTS OF FUZZY OPTIMIZATION

1
f x/x which is defined on [0,1]
o

pIx) = x. Then a function

and B =
of the set ~ •
x = (x 1 ' ••• ,x n )

~ X as

Suppose

accord-

are

equidis-

E B

{
Let ~ be a Cfuntable, linearly ordered set

= X c g : Ixl< OOrlj a family of finite subsets
To each set X = { x. ~=1 cQ we assign a vector

and define two functions Min: Xn ~ X and Max: Xn

Min x min { x; xEX ) ,

l1ax x max {x; XEX).

we have a fUZZy set A

and whose membership function is
. n-1

(j) : [0,1] ....{~) maps the interval [0,1] into n
n-1 i=O 1

tant points and generates a fuzzy set Q = L ~(x)/x
n 0

ing to the extension principle. If members of a set X

enumerated according to their increasing values, then by appli

cation of the extension principle to ~he function 8(n~1) = x i + 1
- 1 1we will produce the fuzzy set X = L n=1/8(n=T) with the member-

ship func~ion Pn(x i ) n~1' Denote the set of all such fuzzy

sets by B.

Definition 1. The operation which assigns to each set XE B

a fuzzy set X is called fuzzy maximization, written X = l~ X.

Let us show that the given definition agrees with the defi-
~

nition of Max introduced in Dubois and Prade (1978). For this

we have to prove that for any subset Xm = {xi }7=1 of a set

Xn c B, there holds the equality PMax(x) = PmIX) where

PMirx(x) is defined due to the extension principle as

P _ (z) =
Max

sup
x: z=I·\ax x

iE'i';iii.

But, due to monotonicity of p(x), we have

Pl'ia'x (z) sup p(Min x) = p(z),
x:z=Max x
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because the maximum value of p(Hin x) among the vectors of a

fixed maximum of coordinates is reached on the vector z·1 ~

~ (z,z, •.• ,z). A similar consideration with the use of the fuz

zy set } (1-x) /x leads to the definition of r~.o __ __

Note tha t ~Iax = -, Min, in the sen se that Illfiix ( • )

1-p~U;(.), and that instead of standard membership functions

p(x) = x (or pIx) = 1-x) one may choose any strictly increasing

(or decreasing) function, for instance pIx) = l_ex /(1_e- 1) and

its complement.

3. THE FUZZY PARETO CHOICE RULE

The introduced operations of fuzzy optimization map every

crisp set into its fuzzy subset. By comparison with the known

definition of a choice function as the decreasing mapping of a

boolean B, we may classify ~~ and Min as fuzzy choice func

tions.

This enables us to give the following definition.

Definition 2.

the finite set X
n

into the family of

The fUzzy Pareto choice rule is a mapping of

{ -i}n -iERm f d' . 1= x i=1' x , 0 m- lmenSlona vectors

fuzzy Pareto subsets, such that

n.
J

J
n.

J

min rank.x-1
l

n-1
/i ,

where: n
1

TTX ={ x:xEX , <Y EX n ) & <Y :> x) =0 y=x},n j -1 n
n. TT(X " U n

k
) ,

J n k=1

rankix is the rank of vector x in Xn ordered by the

decreasing values of coordinates of its members.

Denote Rank x = (rank 1x, rank
2
x, ... ,rankmx). To clarify

the underlining assumptions let us try to arrive at this defini

tion by the use of the extension principle starting with the

standard fuzzy set J x/x; thus
o

v(y) sup
x:yE\il(x)

fI (x) •

1
Construct the Cartesian product (6 x/x)n and a step func-
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[°,1 ] m --+ o:nm, s uc h t ha t

<;> (X) =[0
n -

i

if

if

x °
i X < i

where the j-th coordinate i j of vector-index i is equal to

i j -l if the j-th coordinate i j of vector-index i is not zero,

and i~ = 0 in the opposite case. The extension principle gives
J

us the fuzzy lattice

L [Min i /
n-l

i
n=1

IT ,IXn ) will bring us
J

Till now we were able to transfer fuzziness of the stand

ard set J~ x/x on the lattice L
n ={i} by using a simple func

tion ~ . But now we have to pass from L
n to xn and there is no

n
obvious functional mapping and therefore we are forced to use a

more general extension principle. It gives the freedom to choose

any sort of a mapping L
n

--+ xn in which some points i may have

no images whatsoever while several images can be assigned to

the other. A straightforward way to define the needed mapping
-n

is to retract the fuzzy set L on

n j = IT j {Rank x
k

} ~ = 1 )

and then a family of functions 8 j n j
to the desired fuzzy sets

n.
J

min rank.x-l
i 1

n-l
/x .

Perhaps a more promising approach which is not per sued

here consists in mapping each point i into a part of the Pa

reto set n. whose elements dominate i. The difference between
J

these two definitions becomes meaningful if we have in mind the

possibility of a more complicated standard fuzzy set than

J1 x/x.
o

4. THE HEIGHT OF THE PARETO SET

In any case, the fuzzy Pareto optimization on a sample Xn

leads to a subnormal fuzzy set. The height of it varies consi

derably with the variation of elements in xn •
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P(H _< h-1) = (~)m
n!

Let us look at Xn as on n independent realizations of

a random vector ~ = (T1"'" Tn)' Suppose that the coordinates

of l are continuously distributed independent random variables.

Thus the height

H = sup PP-m2rx (x)
. n-1

becomes a discrete random variable over L = {n=l}i=O • It is

important that its distribution is free from the distributions

of the vector, • The exact result is that
n
n

i=h+ 1

The proof is based on the consideration of random ranks

(Rank ~ j ); =1 and calculation of the number of assignments of

points to the nodes of lattice Ln which fulfill the folloWing

requirements:

1) if a point is assigned to the node i = (i 1 , •.• ,iml,

then no other points may be assigned to the node I-= (i~, .•• ,i;),

such that for some j E ~, i j = ij holds;

2) no points are assigned to the nodes T i ~ (h,h, ..• ,hl.

The expected height H of a random fuzzy Pareto set tends

to 1 with the increase of the size of a sample. An asymptotic

estimation has the form

1 - 'l! H "" 1. B (1. n+ 1) "" n
I m rn'

1

m r(l + 1.)
m '

n -+ 00 •

5. THE GENERALIZED CONCENTRATION

To design a general system of a choice rule we have to

quarantee that a system of rules will include the crisp rules

of choice at least as extreme cases. For this purpose we utili

ze the concept of concentration in a somewhat generalized form.

Let X be a fuzzy set which later will be interpreted as

a result of a fuzzy choice with the membership function p(x).

Let y and fi be two real numbers subjected to the restrictions:

y > and 0, y - fi < 1.

The operation of concentration I = I(Y,fil transforms the

fuzzy set X into the fuzzy set IX with the membership func

tion



104 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

11
1

(x) (sup Il(x) )-~pY(x)
x

Note that if X is a normalized set, then I(y,~) equals I(y),

the concentration operator by Zadeh (1975) for y ~ 2. Operator

1(1,1) is the normalizer, Le"

fl1 (x) ~ 11 (x) Isup p (x) •

Dilation is defined as I ~ 1- 1 such that

1 1 1

fl_
1

(x) ~ (sup 11 (x)) y::t; - y (11 (x) y

Repeated application of the introduced operators generates

a compound modificator. It is easily seen that the superposition

of operators I and 1- 1 gives the identity operator, i.e. II-1~E.

The set of modificators is a free group with one generator.

By means of several concentrations we will arrive at high

er fuzzy sets. To find how close we are to the crisp set after

a number of concentrations, let us derive the operator of

n-tuple concentration.

Denote h
o

sup Il(x) and let Pn be the membership func
n-tion of the fuzzy set I X, and h n _ 1 ~ sup Iln "

As a result of the second concentration we get I
2

X I(IX)

with
(p ) y

1
fl2 ~1

where
(sup illY

h 1
xEX hY-~

h~

Then

2

P2
~

llY d~f IlY2
hl'>y + (y-M~ ~

Suppose that after n-concentrations we get a fuzzy set with

the membership function
Yn

11 ~ _11__
n h~n

Then h
n

y -~

h n nand
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yn y Yn +1
(11 ) 11

Iln +1 h
LSnY + (yn-t>n)n t> n+1

h

Hence Y = '(.Y and t> = t> Y +
n+1 n n+1 n

hence Yo = 1 and t> O. Therefore
0

(Yn-t>n)t>. But

:y = y n and
n

105

and

t>
n+1

or

t>
n+1

Denote 't n

From this

t> I(y-t»n, then
n 't'n+ 1

"C n

t> n

y-t> L
k=1

Returning to the sought variables ~ n' we get

Finally the process of n-concentration bring us to the fuzzy

set

The first factor

(y_t»n

f
h

h(y-t»n is

n
(I1~X») y Ix.

the height of this fuzzy set.

When y=t>, then I(y,y) is the operation of concentration

for the normalized fuzzy set and that leaves only the second

factor (Il/h)y)n.

The rate at which the height h(X) converges to 1 is expo

nential, i.e.

max
x

p (x) = h = 1 + (y_t»n In h(1+0(1).
n n

The other values of the membership function converge to zero at

a more than exponential rate, i.e. fln(x) = (p/h)yn+ 0(1).

6. A MODEL OF FUZZY CHOICE

7he techniques f concentration allow~e to express the
fuzzy optimization problem in the form InMax, nEN =[O,±1,,..}.
An obvious next step is to use the statements of fUzz~ logic
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R(I, ) ={ R(n) :R(n)

It can be shown that n f

and to construct a whole system of fuzzy choice rules, But the
operations of negation and concentration do not commute, for

instance, 1_x,n 1 (1_x),n, and thus lIn IIa"; X ¢ InIM;;;' X.

To present the class R(I,I) of rules generated by these two

operations I and I, let us introduce the set of finite sequen

ces N ={n:n=(n 1 , ••• ,nk ), kEN+={1,2, ••• }} whose elements njEN,

but none of the sequences n except n (0,0) has two consecutive

zero elements, i.e. n. 0 => (n. 1 f 0 & (n. 1 f 0), Now define
J J- J+

n 1 n 2 n k ...., }
I I I I • ••11 P-Ilax, nEN •

The conjunction of two rules from R will give us another

rule T = R(n)~R(n-) which need not belong to R(I,I). This will

certainly be the case if Idim n - dim n-I= 2k+1 because the

membersh ip function IlT (x) is not monotonic, Thus

k
R(I, ,~) ={R:R ~ R(nJ),nJEN}::::> R(I,I).

j=1

Concentration of the rules from R(I,I,A) leads to an ele

ment of the class R(I,I,~,I), This class may be treated in the

same way as the class R(I) ={ Inl~,nEll} to generate a class

R2 (1,1) = R(I,I,~,I,I), and, following the same procedure, to

generate classes R
3

(1,1), R
4

(1,1), ...

Note that De !1organ-s formulae imply R2 (I, ) ::::> R(I,v) and

that the order of operations in a class is important. For in

stance, R(I,~,I) f R(I,I,~) because

__ {I n1 "'" n 2 ...., }
R(I,~) Max A I Max, niEN

={ Inax(n1,n2) Mc;';}= R(I).

7. THE LIMIT CRISP CHOICE

How many options will be chosen if we apply a given choice

rule, is a natural question in the crisp theory of choices.

But, as soon as fuzzy choice leads to an answer in terms of

fuzzy subsets, we may then say that all the elements are chosen

but with a different membership degree. An alternative to this

classical interpretation is based on the following definition.
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Definition 3. A fuzzy rule of choice R(.) selects as many
options as can be chosen by its crisp counterpart, that is the
infinitely concentrated rule R(.).

By means of infinite concentration we may arrive at the
same crisp choice rule starting from different fuzzy choice ru
les. The only requirement to be made is that the fuzzy rules
reach their heights on the same set of points. From now on we
will restrict ourselves to t~ on~imensional case where we
can utilize the equation ~ Ilax = Min. It is quite obvious that
any rule from the class R(I) has only one limit crisp rule
which chooses max Xn • The rules from R(I,~) are of two types,

i.e. with increasing and decreasing membership functions. If an
n k n n

element of R(I,~) is presented in the form I ~ r k-1~ ••.~I 1 ,
........

then Max = R(n 1 , ••• ,nk ) = R(n), and if it is such that dim n is

even, then PR(n) (x) increases, and if dim fi is odd, then

PR(n) (x) decreases.

Hence for the rules of the first type the limit crisp rule

is max Xn , and for the second type of fuzzy rules, its limit

rule is min X •n
Proposition 1. Any fuzzy choice from the class R(I,~,A,I)

selects no more the two options from Xn •

First note that instead of R(I, ,A,I) it is sufficient to

deal with the class R(I,~,A), and that any element RER(I,~,A)

may be represented as

k 1
R = (A R(~.)) A (A R(ffi j »)

i=1 l j=1

where dim n
i

, iE f;K is even for all iE f;K, and dim m. is odd
J

for all JED.
0 0

If we find (i , j ) such that

H(R
O

) = min H(R(n i ) A R(n j ))
i,j

where

Ro = R(n. o ) A R(m. o )
l J

then we assert that the choice by the limit crisp rule will in

dicate an option XEXn for which PR (x) = H(Ro )' To demonstra

te that there are no more than two o~tions, it suffices to con

sider the above construction applied to a system of fuzzy choi

ces not on X
n

but on [0,1]. In this case for each rule R we

have instead of RXn a fuzzy set R[O,1] which is concave in the
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fuzzy sense and unimodal. Implementation of the extension prin

ciple as shown above leads to the retraction of the membership

function ~R(x) on Xn " So the retracted membership function can

not have more then two maximum points.

To gain insight into the structure of the rules from

R(I,I,A) let us consider three examples.

Example 1. The limit choice rule for the rule from

R(I,I,A) which has the form R = ImM~ A In ~i:Ln is the same for

the rule Im-n~~x A r1:Ln. Therefore, even for the problems of

choice from the whole interval [0,1] of options, there is no

more than a countable set of ~imit choices which are given by

the roots of the equation x y = 1-x. For the rule R the li-
m k

mit rule selects arg max H(TI) which is a root of x Y = (l-x)Y •

Hence no concentration of the rule of this form may result in

the selection of an option from the interval [1/2, x o ] where

Xo is a root of x Y = 1-x.

Note that fixing n but varying the parameter Y may make x
0

to be any given number from ( 0 , 1 ) •

Example 2. Let a fuzzy choice rule be R =1 InM~ 1 A
I-m .......

A Max(n,m>O) , then, no limit crisp choice rule is in the

interval (1/2, xo ) where x is the same as above.
0

Let us prove this statement by contradiction. Suppose

that for some arbitrary but fixed n we may find a value of m

y = max ~(Y,x) E (1/2,xo ). ~hen y is a single root

yl/lmin
x

(O,1) By taking the logarithm, we get

such that
n

of 1-yY

y m in 1
1_yyn = in y and doing this once more we get

m in y + in in 1
1_yyn

Hence, for m we have

in in 1
y

in y
m

1
ln v (in n

, in(1-y)y

But ~ > 1 so 1/inl' > O. For m to be more than zero, it is

necessary (and sufficient) that in y/ln(1-yyn ) > 1 , i.e.
yn

< 1-y. The root of 1-yyn = y 1/lm which is in the intervaly

(0, 1 ) is an increasing function of n. (Assume for a moment
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that n is a real number and take the differential of y given as

an implicit function of n by the equation 1_yyn = yym Then it

will be seen that y-(n) > 0 follows from y (0,1),) This means

that y >min y(yn) = y (y) X
o

which contradicts the assumption,

Example 3. In this example we illustrate the case of limit

(crisp) choice from [0,1] by the rule resulting in the selection

of two options (see Fig. 1)
,...., ........,....,

( I -, Max 1\ l1ax) v (I Max 1\ -, r1ax)

ER3 (I,-').

Fig. 1
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Abstract.Preferences can be deduced by ques
tioning a given population, which ~ay be
either reduced to a group of experts or con
sidered as a set of inquired persons. Vague
ness frequently appears in the asked ques
tions or proposed criteria, and in the an
swers or characteristics given by the indi
viduals. Fuzzy preferences are then neces
sary and, in some cases, they must lead to
crisp conclusion • We study several means of
evaluating the preferences in the case of
fuzzy or imprecise answers to crisp ques
tions (or criteria) or in the case of deli
berately vague or subjective questions (or
criteria). We deal with the problem of co
rning to the "best conclusion" with respect
to the obtained results and we propose to
use fuzzy relations and a method based on a
measure of crispness of the classes of fuzzy
opinions they determine.

Keywords: preference modelling, questionna
ires, vague answers, fuzzy prefe
rences, measure of crispness,
fuzzy partitions.

1. INTRODUCTION

Decision making processes can be based on the opinion of
members of a population with regard to a given problem; they are
asked questions which often deal with fuzzy concepts such as a
qualitative characterization - "useful", "important" -, a sub
jective appreciation - "beautiful", "good"-, imprecise measure
ments - "approximately one meter", "about 20 years old"-, in
complete information - "no opinion" -, modifiers of qualitative
concepts - "very high", "almost achieved" -, imprecise evalua
tion - "most customers"-, or fuzzy probabilities - "likely",
"unlikely"-. The fuzziness is involved either in the questions
themselves, in order to allow the inquired persons to express
their opinion in a flexible way, or in the answers because of
non-understanding, uncertainty, unreliability, difficulty of
these persons to express their feelings.

To deal with this vagueness before making a decision, we

110
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propose to use concepts of fuzzy classes of a given universe,
fuzzy partitions, measure of proximity and crispness.

Hore precisely, let X ={ x l , .•. ,xn } be a finite universe

of discourse which is linked with a set of decisions O={d l , ..• ,

d }, r ~ n, by a mapping from X onto O. A decision tree is built
b9 using sequences of questions in order to obtain more and more
precise classes of X until each element of X is identified and
can be associated with a decision of o. When questions or
answers involve some fuzziness, an inquired person cannot cor
respond to a unique path of the decision tree as in the non
fuzzy (or crisp) case and it is impossible to deduce a decision
from its preferences without any treatment allowing to cope with
the fuzziness and to determine crisp preferences not too far
from the vague ones.

The problem of determining the choice of a population with
regard to a decision when the preferences are not certain has
been studied from several points of view. A fuzzy majority may
be expressed as an impresice evaluation of the part of the po
pulation in favor of the decision,Kacprzyk (1984). The problem
of defining a consensus when preferences are defined by means
of fuzzy relations is studied for instance in Bezdek, Spillman
and Spillman (1979). The existence of a socially satisfactory
group function using fuzzy information about the opinions of
the individuals is based on the definition of elementary requi
rements generalizing classical ones,Dimitrov (1983). The utili
zation of questions asked to the population to determine their
opinions has been introduced in Bouchon (1982), and the con
struction of questionnnaires as sequences of such questions is
presented in Bouchon (1985)

2. CREDIBILITY OF ANSHERS

2.1. Description of the problem
The set X corresponds to the description of the opinions

of the population which would enable us to make a decision if
questions and answers were not fuzzy. In this crisp case, every
asked question q would produce a partition of X , finer and
finer as we progress from the first question to the last ones.

Let X(q) ={x
l

, .•• ,xm}be the set of cri

JP classes of X deter
mined by q,' and let us note M = 1, ..• ,m. In the fu zy case, 1
questions produce fuzzy classes,{i.e. fu zy subsets tCl, ... ,Cml
of X(q), defined by means of membership functions
f l : X(q) ... JO, 1], i Eli, such that

\/iEM ( 1 )

Their values may be represented by a binary relation R(q)
defined by the expert analyzing the answers and described by a
matrix with elements Rij = fi(c j ), iEM, jEM.

Example 1. Consider an inquiry about a new product to be put on
the market, with X ={x l , .•• ,x 5} and D = {d

l
,d 2 ,d 3} as portray-
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ed in Fig. ,.

is it useful

no es

d
3

Forsake the
product

d
Z

dl
Improve the
product

~
Put it on the

market

Fig. ,. Example

Example 2. The opinion of inquired persons is not completely
reliable and the expert processing this inquiry weights the ob
tained results with coefficients of credibility (or certainty),
yielding fuzzy subsets of X, as exhibited in Fig. 2.

D.Z/mod.,D.B/yesD.Z/yes

x
X3 moderato 4

,-------'=~----

D.l/no, D.B/mod., D.l/yesll D.I/no, D,3/mod., D.6/yes!

0.8/ no, D.Z/mod.

Fig, 2. Example 2

Vie get X(q,) ={ c"c 2 ,c 3 } in example' and f, (c,) = 0.8, f, (c 2 )

o•2, f, (c 3) = 0, f 2 (c ,) = 0.2, •• , in ex amp 1 e 2.

A fuzzy partition E(q) ={E" ••• ,Em}Of M is then deduced,

with each class E. definedbyL R, ./c,. In order to make a crisp
J iEM 1J 1

decision, it is necessary to determine a crisp partition of M
as close to E(q) as possible, which means that we decide to
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which element of X(q) every fuzzy answer c i must be associated o

In the previous eXattlJs, wJerr l:l }- { 1, 2, 3>, it is ob
vious that the partition 1 , {2 , \..3J is close fo E (q), but
it can be difficult to p d ce s ch a partition in more compli
cated cases and a criterion is necessary to measure the proxi
mity between fuzzy and crisp partitions.

We further suppose that a probability distribution p is
defined on X(q), P(X(q) , which can be defined either from
the probability of making the decision associated with every
c i or from the freguencies of answers obtained in every ci '

or in such a way that p(c i ) = 11m for every iEM. \,e denote
Pi p(c i ) .

1.2 0 Determination of crisp partitions

A threshold s is chosen in (0, 1] and we consider, for
every CjEX(g), the elements i of M such that Rij ~ s to con-

struct the class E. of a crisp partition e of X(g). We can
J

restrict ourselves to the values of s in the interval [s1' s2]'

wi th s 1 = min min R .. , s2 = min max R
iJ

·, to be able to put
J i 1J j i

every element of X(g) in a class of a crisp partition.

It is obvious that this process defines either a partition
or a covering of X(g.). As we need a unigue decision for every
fuzzy answer, we only take an interest in crisp partitions e

of X(g) defined for a given s. Let ES(g) be their family; we
look for a tool describing their proximity from E(g) •

For any e ={E 1 , ••• ,EJEEs (g), we define the relative s

probability of Ej , jEM, as

(2)

which satisfies

P (E.) ~ p(E
J
.)

s,e J
(3 )

for every eEEs(g), with p(E.)
J L Pi'

c
i

EE j

If Ej is a crisp subset of M, then the choice of E
J

Ej
implies the equality in (3). If P1 is the freguency of answer

~., then P (E.) represents the average credibility in c. when
1 s,e J 1

using e as a reference. If p. is egual to 11m, then P (E.) is
1 s,e J

proportional to the fuzzy cardinality of the s-level set of Ej
(i.e. the subset of X(g) containing the elements c i such that

R ..
1J

~ s).

The problem is to choose one crisp ptrtition in ES(g) which
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is the closest to E(q) in order to use the greatest amount of
information included in E(q) when restricting ourselves to crisp
situations instead of directly utilizing the fuzzy opinions we
get.

We propose to measure the proximity between eEEs(q) and
E(q) by means of the following quantity

FS(e,E(q») = ~ h(p(~.),P (E.))
i l s,e ~

(4 )

for a given real-valued function h, positive and continuous, de
fined on [0,11 x [0,11, such that h(x,y) = 0 if and only if
x = y, and nonincreasing in y.

A particular case of such a quantity is given by the gain
of information defined for incomplete probability distributions
(~P (E.) ~ 1, ~ p(E.) = 1 because of condition (1), (see

j s,e ] j ]

Renyi, 1970»

h(x,y) x log (x/y) ( 5)

1.3. s-crispness of fuzzy partitions

Let us consider a partial order defined on the family of
fuzzy partitions of X(q). We study the variations of F s with

respect to this order, to prove that F
s

may be regarded as a

measure of the fuzziness of E(q), allowing to evaluate the
closeness of their resemblance to crisp partitions.

Let E(q) and E' (q) be two fuzzy partitions of X(q) respec
tively defined by values Rij and Rij' ViEM, VjE~I, as indicated

previously. \Ie say that E' (q) is s-sharper than E(q) if, for
every jEM, we have

ViEM

ViEl1

such that Rij ~ s

such that R.. < s.
~J

crisp situation than E(q)
same family of crisp par
E'S(q). \Ie get the follow-

we write E (q) ~ s E' (q)
This means that E' (q) is closer to a
and this implies that they admit the
titions for the threshold s, ES(q)
ing:

Property 1: If E(q)-<s E'(q), then Fs(e,E(q) ~ Fs(e,E'(q»),

for every e~Es(q).

Proof. For every eEEs(q), we get Ps,e(Ei ) ~ Ps,e(Ei), for each

iEM. Thus, the monotony of h entails the property.

Example 3: Let US consider a question ql and another question

q2' for instance "Is it really useful: yes? no? can be discuss

ed? ".
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We consider the following coefficients:

115

2 3
i

2 3

1 0.8 0.2 0
2 0.2 0.6 0.2
3 0 0.2 0.8

1
2
3

0.9 0.1 0
0.2 0.7 0.1
o 0.1 0.9

Then, E(q2) is O.S-sharper than E(q1) and we get, for the crisp

partition e defined by Ei = Cc i }, i = 1, 2, 3, and function h

introduced in (5), with Pi = 1/3, i 1, 2, 3:

FO• S (e,E(q1) = 0.46 and F o•S (e,E(q2)) = 0.27

which proves that F o• s (e,E(q1» >,. F O• S (e,E(q2))'

~e call s-crispness of E(q) the quantity

F (E (q») = min F (e, E (q) ) (6 )
s eE:Es (q) s

It is null if and only if P (E.) = p(E.) which means that
s,e J J

Rij for every C 1E:E j and jEM. It is particularly the case if

E(q) is crisp and it is the only possibility if ~ Rij = 1 YjE:M.

Property 2: If E (q) -<. s E' (q), then Fs (E (q») >,. Fs (E' (q)), for

every eiEs(q).
Proof. We have

This property means that if the fuzzy partition E(q) is s
sharper than another one, then it is also closer to its nearest
crisp partition.

Property 3. For two thresholds sand t, such that s ~ t, it
holds

Ft(E(q).) >,. Fs(E(q)

Proof. For s ~ t, every eEEt(q) belongs to ES(q). Then

Ft(E(q») = Ft(eo,E(q» = Fs(eo,E(q» ~

min Fs(e,E(q») = Ps(E(q»).
eE:Es(q)

Consequently, the s-crispness of E(q) is non-decreasing
with respect to s. He preserve more information from the fuzzy
classes when using a small threshold. He can state the following:
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Proposition 1. For a given threshold s, the s-crispness of a
fuzzy partition E is a measure of its closeness to the nearest
crisp partition E and of the loss of information deduced from
the replacement of E by Eo A means of determining E is to choose
s in [s1' s2]' and to find a crisp partition E such that

Fs(E,E) = Fs(E).

Example 4. If we consider questlon Q1' the crisp partition e
exhibited previously is such that F O. S (e,E(q1) = i'0.S(E(q1)).

But, for s = 0.2, e would not be the only crisp partition cor
responding to E(q,). For instance, e' defined by £, = {c 1 , c 2},

£'2 = 1:1, £'3 ={c3} would give F O• 2 (e',E(q1» = 0.44 =

F O• 2 (E(q1» and F Oo2 (e,E(q,) = 0.46.

1.4. Choice between questions

Let us suppose that two different questions q and q' may
be asked by the expert to the inquired persons to get their
opinion about the same criterion, in such a way that the results
{c" ••• ,cm} are obtained in both cases when no fuzziness is

taken inca account. ~hen coefficients of credibility are added
by expert, fUzzy partitions E(q) and E' (q) of X(q) are deduced.

To choose which question is more interesting to ask, we
calculate their s-crispness, for a as low as possible threshold
s, and the smallest obtained value corresponds to a question
loosing little information and which we recommend to use.

For instance, if we substitute q, to q, in example " we

obtain the fuzzy results defined in example 5.

Example 5. Let the situation be as in Fig. 3, and

i ,
2
3

0.8
0.2
o

2

0.2
0.6
0.2

q'
1

3

o
0.2
0.8

is it useless?

i

1
2
3

j

0.9
0.2
o

2

0.'
0.6
0.5

3

O.g/yes, O.l/mod. O.2/yes, O.6/mod., O.2/no

Fig. 3. Example 5

O.5/mod.,O.5/no
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ViEM. we get:

e introduced previously,

to e" ={E~,E;} with

We suppose once more that Pi = 11m,
F

O
• 5 (E(q1)) = 0.46, corresponding to

and Fp 5(E(q;)) = 0.63, corresponding

E~ t ~1} and E; ={c2 , c 3}

Thus, individuals answering "no" to question q; are

treated jointly with those answering "moderately" and question
q2 may further be asked of all of them, in the case of q;.

Nevertheless, q1 is more interesting than q; because its

0.5-crispness is smaller than that of q;. The latter is com

patible with an intuitive point of view, since it gives less
precise information about the opinions, due to the given coef
ficients of credibility. We also verify that the crisp parti
tion e" intuitively close to E(q1) admits a provimity of E(q1)

equal to its 0.5-crispness; then, decision d 3 corresponds to

individuals answering "no" to q1' decision d 1 to those answer

ing "yes", and question q2 is asked to those answering "modera

tely". We are then facing a classical decision tree.

1.5. How to trade on questions with coefficients of credibility

As a conclusion of this section, we suggest the two follo
wing propositions.

Proposition 2.When coefficients of credibility are assigned to
answers of a question, we make a crisp decision in partition
ing the population giving fuzzy responses which split it in a
fuzzy partition E into crisp classes of a partition e yield
ing Fs(e,E) as the s-crispness of E. The question is acceptab-

le if its s-crispness is not greater than a given level v.

If the s-crispness of the question has a high value, we
can conclude that the question is not well-defined (or well
formulated) and it is not interesting to be utilized.

Proposition 3. When several questions exist giving information
about the same criterion but corresponding to different values
of the coefficients of credibility, we choose the one giving
the smallest s-crispness.

2. VAGUE QUESTIONS

A different point of view consists in the determination
of preference coefficients by the questioned person himself,
when answering a question q with possible issues c 1 , ••• ,cm•

Consider question q3 in example 6, concerning preferences

of a population about a product to be put on the market.

Example 6. Let

q3: Indicate your preference order with regard to the color of
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the product, by assigning a number between a and 1 to the
possible issues c

1
= "red", c

2
= "blue", c

3
= "yellow".

Let Rij be the value assigned by the individual number i

We get a fuzzy partition E(q) ={E 1 , ••• ,Em }Of the given

population Y into m classes.

A crisp determination of the preferences would correspond

to values of Rij equal to a or 1. The proximity between this

crisp situation e and the fuzzy one is measured by Fs(e,E(q))

We take Pi = 11k, with k = IYI, ViEY. For a given threshold s

and a crisp partition eEEs(q), we obtain P (E.), jEM, as the
s,e J

average preference coefficient assigned by the persons corres-

ponding to the s-level set of Ej , that is to say giving a coef

ficient at least equal to s for the issue c j ' Let dU(j) denote

the decision corresponding to every c j in the decision tree,

which can be either an element of D or the decision to ask an

additional question. We can also interpret Ps,e(E j ) as the

index of satisfaction of the population if the decision dU(j)

is made.

Then, Fs(e,E(q» represents the lack of satisfactoriness

in making decisions d U (1) , ••• ,du(m) corresponding to c 1 , ••. ,cm'

If in the case of crisp preferences, there is no ambiguity in

the determination of the decision, then e = E(q) and Fs(e(q»)=O.

In the case of complete indifference of the population

(Rij = 11m, ViE{1, .•• ,k}, VjEM), to make any decision corres

ponding to one of the c j ' i.e. a crisp partition with one class

e = { y}, would give

Fs(e,E(q)) = k. h(1, 11m)

and for instance with h defined in (5)

FS(e,E(q)) = k. log m

which has a high value.

Suppose that, in a second interview, every individual in
creases all the coefficients at least equal to the s he has
given in the first interview. This means that if his indiffer
ence to the proposed issues is diminishing, then property 1 ,en
tails that Fs(e,E(q)) decreases towards zero.

proposition 4. If several persons are asked a vague'question,
their preferences, described by a fuzzy partition E, can be ag
gregated by splitting them into a crisp partition e such that

Fs(e,E) is as small as possible for some threshold s. The value



DEDUCED PREFERENCES 119

of Fs(e,E) indicates the non-satisfactoriness of this crisp

partition, which can be regarded as acceptable if Fs(e,E) is

not greater than a given level v.

We are then reducing our study to a crisp classical prob

lem. If the number of persons is small, Fs(E) can easily be

reached, for a crisp partition e of Y. Otherwise, the combina

torial description of all the crisp partitions compatible with
the threshold s and with the fuzzy partition E is too long, and
it is sufficient to choose one of them, say e, such that
Fs(e,E) is smaller than a given level of acceptability v.

Another possibility consists in preserving the fuzziness
of the answers and defining the following fuzzy decision

( 7)

32j
i

Example 7. Coming back to question q3 indicated in example 6,

we consider the following answers, for a population of 4 per
sons (k = 4):

R(q3)

1
2
3
4

0.6
0.5
o
o

0.2
0.5
O. 1
0.7

0.2
o

0.9
0.3

We get F O• 5 (E(q3») 0.178, corresponding to e ={E 1 ,E2 ,E3},

with £:1 ={ 1}, £:2 ={2, 4}, £:3 ={3).

Then, individual number 1 is considered as in favor of de
cision d u(1 )' individuals 2 and 4 are in favor of d u (2) and in-

dividual 3 in favor of d
U

(3)' A fuzzy decision could be the

following, as indicated in (7)

O. 15 I d u ( 1)' O. 3 I d u ( 2)' O. 225 I d u ( 3) •

3. CONCLUSION

The model proposed here can be used in several situations:
if a group of experts is asked to give coefficients of credibi
lity, or certainty, to several evidences and their opinions
must be concentrated in a single one, if a set of persons is
questioned before a decision is made which must satisfy them
as far as possible, if an inquiry is hold to verify a supposed
hypothesis, in social sciences for instance, or for market re
search.

What we have called a question may aiso be a physical, me
chanical or medical test, the results of which are not comple
tely reliable because of difficulties in measurement, observa
tion or utilization of subjective criteria such as the strength
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of suffering, the color of a chemical product, etc.

The measure of proximity Fs and the s-crispness are inte

resting quantities because of their isotony with regard to the
s-sharpness of partitions. They could be utilized in other ty
pes of problems than those studied here, such as identifications.
classifications or pattern recognition, for example. They per
mit the measurement of the closeness of a crisp partition to
a fuzzy one, to give an idea of the accuracy of fuzzy classes
of a universe, of the fuzziness of imprecise partitions with
overlapping classes. They indicate the "quality" of a fuzzy
partitioning which can be reasonably precise or so vague that
no information can be deduced from its study. They also express
the fact that a crisp partition is adequate for making a deci
sion or that it is so far from the original fuzzy situation
that it has no sense.

In conclusion, we have dealt with the problem of determi
ning crisp decisions from answers to questions assigned with
coefficients of credibility, certainty, reliability, and with
the problem of utilizing answers to questions or results of
tests expressed by means of grades of preference, either to
reduce the situation to a near classical one, or to define fuz
zy decisions. Numerous other types of problems could be regard
ed from an analogous point of view and treated with the studied
tools or with related ones.
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Abstract. We discuss the problem of selecting an
optimal alternative in the face of uncertain know
ledge about the state of nature. We then introduce
a general framework for representing the knowledge
about the state of nature. This general framework
is based upon the use of fuzzy sets, possibility
theory and the Dempster-Shafer mathematical theory
of evidence, Ive then suggest an approach to the
selection of an optimal alternative in this more
general framework.

Keywords: Decision Theory, Fuzzy Sets, Possibility
Theory, Evidence Theory.

1. INTRODUCTION

A classic decision making paradigm involves the selection
of a best alternative in which the payoffs are a function of
the state of nature which is in some sense unknown, The classic
solutions to this problem concern themselves with the situa
tions in which the knowledge about the state of nature is
either purely probabilistic or purely possibilistic.

In many cases the information available about the state
of nature is obtained from some type of auxiliary evidence and
is much subtler than that which can be represented by a purely
probabilistic or complete ignorance characterization. In parti
cular our knowledge about the state of nature may be better re
presented by a possibility distribution or more generally a
Dempster-Shafer type evidential belief structure (D-Sgranule)
(Zadeh, 1978, 1979; Shafer, 1976; Yager, 1985a, 1985b). These
D-S granules provide a framework in which the uncertainty asso
ciated with a state variable can manifest possibilistic, fuzzy
as well as probabilistic uncertainty components.

The main concern here is to suggest a methodology for solv
ing the alternative selection problem in the situation in which
the state of nature is described by a D-S granule, As we may
see, the classic characterizations become special cases of this
more general framework.

Special attention is given to the fact that in the face of
possibilistic uncertainty one must choose a "decision attitude",

123
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The classic decision attitudes of pessimism, optimism and least
regret are s~udied in this new framework"

2. A DECISION MAKING PARADIGM

A problem of considerable interest to decision theorists
can be captured in terms of the following matrix,

In the above matrix A
1

corresponds to a particular ac

tion clternative available to the decision maker. Sj sorresponds

to a variable called the "state of nature". Cij corresponds to

the payoff to be received by the decision maker when selecting

action Ai when the state of nature is Sj' The problem faced by

the decision maker is to select the action which provides him

with the "best" payoff. In its simplest form, if the decision
maker knows that the state is Sk' his problem is simply reduced

*to that of finding the A such that C'k is maximized, that is
* 1

find i such that

*C = M~X e ik
1

This is called decision making under certainty.

In most realistic problems the decision maker does not
know the value of the state and is thus faced with the problem
of making a decision in the face of uncertainty. Two situations
in regards to the uncertainty have been considerably studied in
the literature. In the first case the decision maker assumes he
has knowledge as to the probabilities of the occurrence of each
state of nature. This is called decision making in the face of
probability. In this case we let Pj equal the probability that

the value of the state is Sj' The accepted procedure for solv

ing the problem in this situation is first to find the expected
payoffs for each Ai' which we denote

n
E{A./P) = L (C., x PJ.l

1 j =1 1J

*and then to select the alternative A which has the maximum
*expected payoff" That is, select as the action alternative A

such that
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*E(A IP) = Max E(A./p). ~
~

125

r .. =C .. -T.
~J ~J J

is the maximal value obtainable under the occurence

In the second situation the decision maker assumes no know
ledge of the state of nature other than the list of possibilis
tic states. This is sometimes called decision making under igno
rance. In this situation the decision maker must introduce some
additional criteria called the decision attitude to help in
making the decision. A number of decision attitudes have been
suggested. Four of these shall be considered here.

The maximin strategy is essentially a pessiQistic attitude.
In this strategy the decision maker first finds the worst pos
sible payoff for each alternative and then selects the alterna
tive with the best worst outcome.

The maximax strategy is essentially an optimistic attitude.
In this strategy the decision maker first finds the best pos
sible payoff for each alternative and then selects the alterna
tive with the maximum best outcome.

The so-called Hurwicz strategy is a combination of these
two. One first finds the worst possible outcome for each alter
native, call this W

1
and then finds the best outcome for each

alternative,call this B
1

• Next one selects a coefficient of

pessimism h and calculates Hi = h*Wi + (1-h)*B i • Then the de

cision maker selects the alternative with the highest Hurwicz

value Hi. We note that if h=1, we get the maximin strategy,

and if h=O, we get the maximax strategy.

The fourth approach is called the least regret strategy.
In this approach we create a new matrix called the regret matrix
denoted R. To calculate the regret matrix, each element in this
new matrix, r ij , is obtained as

where T.
J

of state 5 .• Then for each alternative we calculate minimum va-
J

lue of r ij in that row, the max regret. Finally, we select the

alternative with the largest value, the least regret. All these
approaches can be formalized under the following unifying frame
work.
Let 5 be the state of nature. Let E(Ai/5) be the evaluation of

the alternative A. under this state of nature where
~

E(Ai/5) = f/C,i,5)

*We then select as best alternative the alternative A such that

*E (A 15) = Max f (C, i, 5)
i

*We denote E(A IS) as E(5).
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In decision making under certainty S S and therefore
a

In decision making under ignorance we know that the value
of the state of nature S is a member of the set (S1""'Sn l but

we do not know which element it is. In this case the evaluation
function is dependent upon the decision attitude we choose.

( 1 ) For the pessimistic attitude

E (AilS) = Min C ..
j

l]

(2 I For the optimistic attitude

E (AilS) = Max C.
j lj

(3) For the Hurwicz attitude with coefficient of
pessimism h

h * Min C .. + (1-hl * Max C i ].
j l]

(4) For least regret attitude

where r ..
l]

Min r ..
l]

= C .. - T. in which T. = Max C ..
l]] ] i l]

In all cases the selected alternative is the one which
maximizes the evaluation function E(Ai/S) over all i.

The above approaches are limited in that they are valid
for distinct formulations of our knOWledge about the state,
certainty, randomness or ignorance o In the following we present
a formalism which captures all of these types of uncertainty in
one general structure, D-S granule.

3, REPRESENTATION OF STATE KNOwLEDGE

In this section we shall present a more general framework
in which to represent the knowledge about the state of nature.
This approach is based upon the theory of possibility developed
by Zadeh (1978) and the theory of mathematical evidence deve
loped by Shafer (1976).

Assume V is a variable which can assume its value in the
set X o Let A be a subset of X. The knowledge that

V is in A

can be seen to induce a possibility distribution
that

x such

1

o
if

if

x E A

x ~ A
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The function n v(x) is interpreted as being the possibility

that V is x. Thus if all we know is that V is some ele
ment in the set A, we get a possibility distribution as its
representation.

More generally, if A is a fuzzy subset of X, the know
ledge that

V is A

induces a possibility distribution n
V

on X such that

where A(x) is the membership grade of x in the fuzzy subset
A of X, Zadeh (1965).

The use of fuzzy subsets, which parenthetically include
crisp sets as a special case, becomes particularly useful for
the representation of knowledge that is vague as well as possi
bilistic. For example if V is a variable corresponding to the
interest rates, then the knowledge that the interest rates are
"high" can be represented as

V is H

where H is a fuzzy subset representing the concept "high in
terest rates".

An even more general framework can be obtained by the in
troduction of basic probability assignment functions which will
allow for probabilistic as well as possibilistic and fuzzy
uncertainty.

Assume m is a mapping from the fuzzy subsets of X into the
unit interval

m: IX .... [0, 1 ]

Let Ai' i=1, •.• ,p be the collection of fuzzy subsets for which

m(Ai) a. t O. We call these A.' s the focal elements of m.
l l

If

(2) m(¢) = 0

we shall call m a basic probability assignment (bpa) function.

Let V be a variable which takes its values in the set X
and let m be a bpa. We shall call a statement of the form

V is m

a D-S (Dempster-Shafer) granule.

The statement "V is m" is an appropriate way to model our
knowledge about the variable V in the following situation.
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Consider a random experiment in which the outcome space is
the set

in which a i equals the probability of Yi occurring. Further

more, assume that if Yi occurs as a result of the performance

of the experiment, then we know that V is in the set Ai'

Ai 1 fl, but do not know which element in Ai'

We feel that these D-S granules can provide a more general
structure in which to represent the knowledge about the state
associated with the decision problem previously introduced.

_ { Let V be}a variable indicati~g the state of nature. Let
S - S1, ••• ,Sq be the set of posslble states of nature o The

si~uation in which our knowledge about the variable V is com
plete ignorance can be represented by the statement

V is m

in which m(S) = 1.

This is equivalent to Lhe information "V is in SR.

The situation which we previously called decision making
under uncertainty, that is the one in which we have probability
Pi associated with each state Si in S, can be represented as

V is m

in which

where

m(A i ) = Pi'

Ai ={Si}

i=1, ••• ,q

The situation in which we have complete knowledge of the
*state of nature, V is S can be represented as

*where S E S

This is what we call decision making under certainty.

In addition to being able to represent these three notable
types of knowledge in a uniform framework, the use of D-S gra
nules allows us to easily represent more complex pieces of know
ledge about the state of nature in this uniform format.

Let A be a subset of S. If our knowledge about V is such
that we know that the probability that V is in A is at least a,
we can represent this as

V is m

where m is such that

meA) = a and m(S) 1-0
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In Yager (1985b) the representation of various forms of know
ledge in this framework is discussed.

4. DECISION MAKING WITH D-S GRANULES

129

In this section we shall extend the 'decision making para
digm to the case in which our knowledge about the statement of
nature V is formulated in terms of a D-S granule, "V is mg.

Again consider a decision situation as captured by the
matrix

A.
~

A
q

C ..
~J

S
n

Thus in this case V is a variable taking its values in the set

S = { S 1 '.0.' Sn}

Let our knowledge about V be represented by

V is m

We shall let E(Ai/m) indicate the value of selecting alternative
A. in the case of our knowledge, V is m. As before the optimal
~ *

alternative A is selected as

*E(A 1m) = Max E(Ai/m)
i=1,oo.,q

Our first goal is to be able to evaluate E(Ai/m). We shall

initially restrict ourselves to the situation in which m is of
the form m(B) = 1, B is some crisp subset of S. This corresponds
to the case in which all we know about V, the state of nature,
is that it lies in the crisp subset B of S. For ease of nota
tion we shall indicate the valuation in this situation as
E(Ai/B): Note that the decision under ignorance is a special

case of this, E(Ai/S).

Let Ci(B) indicate the set of possible payoffs in the situ

ation in which we know the state of nature is B and the select
ed alternative is Ai' therefore

C.(B) ={C .. lover all j such that S. E B}.
~ ~J J

Our evaluation E(Ai/B) then becomes dependent upon Ci(B) 0 At

this point we must select a decision attitude as we have pre-
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viously had to do. Four possible attitudes are:

(1) Pessimistic
(2) Optimistic
(3) Regret
(4) Hurwicz

We shall indicate the evaluation function under these situa
tions as EpIAi/B), EOIAi/B), ERIAi/B), and EHIAi/B). In the

pessimistic attitude we are in the mind of maximizing the worst
possibilities. In the optimistic we are interested in maximizing
our best possibilities and in the regret we are interested in
optimizing our least regret. In the Hurwicz case we use some
balance between the pessimistic and optimistic.

Thus in the pessimistic case

Ep(A,/B) = Min C, IB) = Min x
I i I xEC,(B)

I

thus Ep(Ai/B) is the minimum payoff that occurs in the subset

of payoffs under Ai from the subset B. This is exactly the

procedure originally suggested.

In the optimistic case

In the regret situation let

as follows

Max x
XEC

i
IB)

RiIB) be the matrix obtained

Ri (B) ={ Cij - T/ j such that S. E B}J

where T. Max Cij' then
J i

In the Hurwicz case

Hin x
XER

i
(B)

EHIAi'B) = h * EpIAi/B) + 11-h) * EO(Ai/B)

It can easily be seen that these formulations are the same
as in the classic approach. He shall now extend the analysis to
the situation in which again our knowledge about the state is
still

mIB) = 1

but in this case we shall allow B to be a fuzzy subset of S.

In this case the set C. IB), the possible payoffs under al
ternative A'I becr~es a Ifuzzy subset of payoffs; in parti-
cular I

n
= U {BIS.lIC, ,}={BIS 1)/C· 1,BIS,I/C· 2 ,.oOlBIS ltc, }.

j =1 J 1 1 I ~ I n In



ALTERNATIVE SELECTION AND EVIDENTIAL KNOWLEDGE 131

in which B(Sj) is the membership grade of state of nature Sj

in the set B.

In order to calculate E (A./B) we must be able to find
p l

1·lin C. (B). However, in this case Ci (B) is a fuzzy subset of
i l

numbers and therefore the calculation of E (A ./B) ~ IUn C. (E)
pl. l

requires us to find the minimum element of a fuzzy suBset. In
order to calculate this value we shall draw upon some ideas
suggested by Yager (1981).

Let D be a fuzzy subset of real numbers. lie define the
a-level set of D as

D(a) ={y: D(y) ~a)}

Thus D(a) is the crisp subset of numbers which have the mem
bership grade of at least a. Let us furthermore define

Min D(a) to be the smallest element ~n D. We note that Min D(a)

is defineable since D(a) is crisp. We then define
1

Min D = f Min D(a) da
o

Thus Min DO is an effective minimum element in D. It can be
easily shown that if D is crisp, then the above procedure leads
to the usual smallest element in D. More generally, if Sup D =
={X/D(X) > O}, i.e. the set of elements with non-zero member-

ship grade, and if the Min(Sup D(a)), i.e. the smallest element

in Sup D(a), has membership grade one, then Min D(a) equals
this element.

Using the above methodology in the case where B and there
fore C1 (B) are fuzzy subsets, we obtain

1
E (A

1
/B) = f Min c~a) (B) da

p 0

*which is an ordinary number. Therefore we can easily obtain A
as

Max Ep (Ai/B)
i=1, ••. ,q

The optimistic situation can easily be obtained by repla
cing the min by the max. Thus

1
Eo(A/B) = b Max c~a) (B) da

In the case of minimum regret we replace C
1

(B) by R
1

(B) in
which

n
R1 (B) = U {B(S.)/C .. - T.}

i=1 J lJ J
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where T. l1ax C .. , and then
J i l-J

1
E

R
(A

1
/B) = I Min R~O) (B) do

o

An example at this point will help clarify the methodology.

Example. Consider the matrix

S1 S2 S3 S4
r 10 -15 5 :: ]:;l 5 5 10

A3 0 10 15

Assume what we know about the state is "V is m" where m(B)
and

B ={1/S 1, 1/S 2 , .5/S 3 , ,Z/S4}

Then it follows that

C1 (B) ={1/10, 1/-15, .5/5, .Z/20}

C2 (B) = {1/5, 1/5, .5/10, .Z/10}

C3 (B) = {1/0, 1/10, .5/15, .2/0 }

The associated level sets are:

C
1

(N) for Max lUnrWO
'20}

0 " o "
.2 20 -15

-15,5,10} 2 <
o "

.5 10 -15

-15,10} o > .5 10 -15

Cz (B) for Max Min

{ 5,10} 0 " o "
.5 10 5

{ 5} o > .5 5 5

C3 (B) for Max Min

{0~5} 0 " o "
.5 15 0

{ O,10} o > .5 10 0

Therefore
.Z .5

Ep (A 1/B) I(-15)do+ I(-15)do+ I(-15)do -15
0 .Z .5
.5 1

Ep(AZ/B) I 5do + Ida = 5

~5 .5 1
Ep (A3 /B) I 0 do + I o do 0

0 .5



ALTERNATIVE SELECTION AND EVIDENTIAL KNOWLEDGE

Hence the maximum Ep comes with the selection of A2 ,

To calculate Eo we proceed as follows

.2 .S 1
Eo (A 2 /B) = J 20 do + J 10 do + J 10 dO

o .2 .S

(02) (20) + (.3) (10) + (-S) (10) = 12

.S 1
Eo ,(A

2
/B) J 10 do + J S do = S + l.S = 7.S

0 .S

.S 1
Eo (A 3 /B) = J 1S do + J 10 do 7.S + S 12. S

0 oS
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Hence the maximum Eo is under the selection of A
3

• To calcula

te the regret approach our regret matrix is

51 52 53 54

A
1

[ 0

-2S -10

-1: ]A 2
-S -S -S

A
3

-10 0 0 -20

Then

R
1

(B) 'flO' 1/-25, .S/-10, .2/0}

R
2

(B) = 1/-S, 1/-S, .S/-S, .1/-10}

R
3

(B) = 1/-10, 1/0, .S/O, .2/ .20}

The associated level sets are

R
1

(B)

CO, -2S, -1O}
CO, -2S}

R2 (B)

{-S~}
{ -S}

R
3

(B)

{-1~ -20}

{-10, o}
Therefore

o ~ 0 ~ .S

o > •S

o " 0 ~ .2

o > .2

o ~ 0 ~ .2

o > .2

Min

-2S

-2S

-10

-S

-20

-10
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.2 1
ER (A

2
/ B ) J -10do + J -5 do -2 + (-4 ) -6

0 .2
.2 1

E
R

(A3
/ B ) = J-20do + J -10 do -4 - 8 -12

0 .2

Therefore under the condition of selecting using least regret
we would select A2 •

We shall now consider the most general case in which our
knowledge about the state variable V is a D-S granule of the
form "V is m" where m is bpa which satisfies

m(B k ) = a k , k = 1,2, •.• ,n

where the Bk are fuzzy subsets of S. Without loss of generality

we shall assume our decision maker has a pessimistic attitude.
Thus in this case we shall let Ep(Ai/m) indicate the evalua-

tion of the choice of alternative A. in the face of the evi-
l

dence "V is mil.

We note that if as a result of the "underlying experiment"
the outcome Yk occurred resulting in the fact that "V is Bk ",

then the evaluation could be calculated as Ep(Ai/Bk) by the

procedure we have already discussed. Since the probability of
any Bk occurring is a k , we can calculate Ep(Ai/m) as the ex-

pected value of these E (A./Bk ) 'so thus
p l

P
E {A. 1m) = ~ (Ep(Ai/B k ) * a k )

p l k=1

In the case of an optimistic decision attitude we get

In the case of the Hurwicz attitude with coefficient of pessi
mism h we obtain

Finally the case of a least regret attitude yields

Again in all cases the best alternative is selected by
finding the A* which maximizes the appropriate evaluation
conditioned upon m.

Example. Consider the situation in which the payoff matrix is
the same as in the first problem. However, now assume that the
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knowledge about the value of the state variable V is that we
believe th~t{there is at least a .7 probability that V lies in
the set D - S1' S2}.

In this case we represent our knowledge by

V is m

where m is a bpa such that

m(B
2

) .7

m(B
2

) .3

where: B1 = D =[ S1' S3} and B2

In this case

!lax Min

10

10

15

5

5

o

therefore

E
p

(A
1

/B
1

) 5 Eo (A,JB 1 ) 10

E
p

(A
2

/B
1

) 5 Eo (A 2 /B 1) 10

Ep (A
3

/B
1

) 0 Eo (A,JB 1 ) 15

Furthermore

Max !lin

C 1 (B 2 ) ={10,-15,5,20}

C 2 (B 2 ) ={5,10}

C 3 (B 2 ) ={0,15,10}

therefore

20

10

15

-15

5

o

E
p

(A
1

/B
2

) -15 Eo (A
1

/B
Z

) 20

E
p

(A 2 /B Z) 5 E (AZ/B Z) 10
0

Ep (A
3

/B 2 ) 0 E (A
3

/B 2 ) 15
0

Since
p

Ep (Ai/m) ~ Ep (Ai/Bk ) * a kk= 1

we get

E
p

(A
1

/m) (5) (.7) + (-15).3 -1
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E
p

(A
2

/m)

E
p

(A
3

/m)

(5)(.7) + (5)(.3)

(0)(.7) + (0)(.3)

5

a

Thus A
2

is the best alternative under the pessimistic attitude.

Since in the optimistic case
p

Eo(Ai/m) ~ EO (Ai/Bk ) * a kk=1

we get EO (A,!m) (10) (.7) + (20) (.3) 13

E
o

(A 2 /m) (10) (.7) + (10) (.3) 10

Eo (A 3 /m) (15)(.7) + (15)(.3) 15

Thus A
3

is the best alternative under the optimistic attitude.

He shall not do the least regret and Hurwicz cases in this ex
ample.

While in general the four different attitudes may lead to
different selections of best alternative there are two special
cases of knowledge about the state in which all four attitudes
always lead to the same selection of best alternative.

The first is the case of decision making under certainty.
In this case the knowledge about the variable is

V is m

where

.l.
where Ci is the unique payoff under the

m(B) = 1

and B ={ s.l.} where
In this case

Ci(B) ={C:}

SJ. is some element in S.

selection of Ai with the value of nature S • In this case

.L
Min Ci(B) = max Ci(B) = Ci

hence

Furthermore since m(B) =

Ep(Ai/m) = Eo(Ai/m)

In addition, since

then

.1
Ci

then
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EH{A1,/m) = E (A,/m) = E (A,/m) = C,P 1 011
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*Therefore the alternative A which has the maximum payoff for

any alternative with S fixed at S~ is the same for all three
cases. In the case of the least regret criterion

Ri (B) = {~ - i} where C~ is as above and Tl. is the

biggest payoff under S~. Therefore

~ .L.
ER{Ai/m) = Ci - T

*and again A

S fixed at

is
S~

the alternative with the largest payoff under

The second situation in which the selection of optimal al
ternatives is indifferent to the choice of decision attitude is
the purely probabilistic case.

Theorem. Assume that our knowledge about the state of nature is
purely probabilistic. That is "V is m" where

m(B k ) = a
k

Bk = {Sk}

k = l, •.. ,n

Then the four attitudes toward decision making lead to the same
selection of optimal alternative, the A*, such that

n
L C'k * a k is maximum.

k= 1 1

Proof. If Bk ={Sk} then Ci(Bk ) = {cik}and therefore

Max Ci{B k ) = Min Ci(Bk ) Cik

Hence Ep(Ai/Bk) = Eo(Ai/Bk) = Cik and therefore

n
E (A,/m) = E (A,/m) = L C1'k * a1'k

p 1 0 1 k=l

In the least regret approach, the regret matrix R is such
that Rij = Cij - T j , where Tj is maximum of Cij " Therefore

Ri (B k ) = { r ik} ={Cik - Tk } and hence

hence
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n
letting ~ T

k
* a k = T, therefore

k=1

and thus the ordering is the same.

In general we see that if the focal elements are specific,
i.e. consist of one and only one element and therefore introdu
ce no possibilistic uncertainty; the selection of best alterna
tive is indifferent to the decision attitude.

5. UNCERTAINTY IN THE PAYOFFS

In this section we shall further generalize the situation
by allowing for some uncertainty in the payoff values, the Cij'so

Under this situation assume we have the knowledge that the
state of nature is B, that "V is B" where B is a fuzzy set of S.
In this case

Ci(B) = U{<B(S)/C .. )}
j=1 J 1J

In this case we are now allowing the Cij's to be uncertain.

Initially we shall assume that Cij is simply possibilistic, that

this our knowledge of Cij is that

C .. is F.
1J J

in which F j is a fuzzy subset of the reals indicating the value

of Cij , for example, F could be "about 50", "high", etc. Thus

in this case
n

Ci(B) = U{(B(S.)/F.)}
j =1 J J

Thus Ci(B) is a fuzzy subset over the set F where F is a set of

fuzzy subsets of real numbers. In particular we have a fuzzy
subset over fuzzy subsets. We shall use an alternative represen
tation developed by Yager (1983) for these types of situations.
Let R be the set of real numbers, let x E R. In Yager (1983),
it is suggested that a fuzzy subset of the type mentioned above
can be converted to a fuzzy subset over the base set of the
Fj'S, the real numbers, as follows. For x E R the membership

grade of x in Ci(B) is

Ci(B) (x) = !1ax (B(S.)" FJ.(X»)
j=1, ••. ,n J

Thus Ci(B) is now sj~ply a fuzzy subset over the set of real

numbers. We can now use our previously defined methodology to
obtain the max and min of Ci(B) necessary f,r using the optimis-

tic or pessimistic attituup approach.
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Let us now consider the situation in which our knowledge
about the value of the payoff involves independent D-S granu
les. In particular assume that for each i,j

C .. is m..
1J 1 J

where mij is a bpa in which the focal elements are F ijk ,

that

such

m(F ijk )

where k=1,,.o,n(ij).

We further assume independence of the mij's, To calculate

Ci(B) we proceed as follows. Let Gijk = B(Sj)/F ijk ), then

using the previous methodology we can represent Gijk as a fuzzy

subset of the real line where for each x E R

Then we let

G ..
1J

n (i, j)
L

k=1

Therefore Gij becomes a fuzzy subset of the real numbers such

that

G ..
1J

that is, for any r E R

!1ax
all

x 1 ,···,xn,(ij)

such that

'rhen

n
Ci(B) = U

j=1
G ..

1J

~e note in this case Ci(B) is again simply a fuzzy subset of

the real line and thus all the previously developed mechanisms
are available to us.
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6. CONCLUSION

\~ have provided a general framework for the selection of
best alternatives in the face of state knowledge obtained by
evidential reasoning in the form of D-S granules.
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AtiALYSIS OF FUZZY EVIDENCE IN DECISION 1·IAKING MODELS
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Abstract. Analysed are contradictions. incomple
teness and redundance of information in the sets
of subjective conditional statements of the form
"IF L THEN C" where L is a logical expression
including values of parameters that are used for
the description of alternatives and C contains
an assertion about the value of some criterion
that is used for the choice of alternatives. The
coordination of information in the parametric
description of alternatives and in the sets of
such conditional statements is tested. A method
for choosing the best alternatives is presented}
based on computation of the degree of fulfilling
demands for the values of criteria.

Keywords: information analysis, fuzzy evidence,
decision making in uncertain environ
ment, compositional rule of inference.

1. INTRODUCTI01i

The interest in expert systems (see, e.g., Alekseeva
and Stefanyuk, 1984) and logical-linguistic models (e.g.,
pospelov, 1982; or Eshkova and Pospelov, 1978) has lately been
growing. The knowledge bases of such systems contain sets of
heuristic rules of the type "IF L THEN C". These rules are con
structed on the basis of sUbjective opinions and may contain
contradictory, incomplete or redundant information.

If parameters in the statements are probabilistic, and
probabilities are fuzzy or linguistic, then description of al
ternatives may also be contradictory, incomplete or redundant.
Contradictions in the description of alternatives become evi
dent when a subjective probability distribution has no objec
tive support, while incompleteness and redundancy - when the
probabilities for some possible values of a parameter are not
defined or are defined repeatedly.

2. THE USE OF CONDITIONAL STATEMENTS IN DECISION MAKING

Let us consider the set of alternatives A ={ ad:d = 1,... 'f}. Each alte~native is described by the set of parameters
Y: Y

J
:j:1, ... ,Jj and is evaluated on the set of criteria

X - Xi ol-1, ••• ,I} dependent on the parameters. Suppose that

141
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dependence of each criterion on the set of parameters can be
expressed only approximately, by means of a set of statements
"IF L THEN CD, where L is a logical expression containing an
assertion about the values of parameters, C is an assertion
about the value of some criterion,

If the values of Land C may be not only numerical but
also fuzzy or linguistic, then the dependence of a criterion
on the subset of parameters is expressed by the set of fuzzy
conditional statements (Zadeh, 1979)

(1)

where L
t

is a logical expression of the form

G. t) 1\ '" 1\ (Y.
J 1 Jm

More complicated statements may consist of several simple
conditional statements joined by the connective "ELSE"

{ ~~
IF

(2 )

Each conditional rule may have a degree of confidence

oE [0, 1].

For choosing the best alternative one must first of all
compute the values of criteria using information about their
dependence on parameters,

Alternatives
their description

where ?, can be
J k

may be probabilistic, i,e o , parameters in
may take values G. with probabilities ~. ,

J k J k
numerical, fuzzy or linguistic.

3. COMPUTATION OF FUZZY RELATIONS AND THEIR GRAPHIC REPRESEN
TATION

Let us denote Lt
written as

-* -* -* -*
L 1 1\ L21\ •• I\L t _ 1 1\ Lt' Then, (2) may be

(3 ){~: .~ ~ .~~~: . ~:: , ~ .~ ~:
IF Ln THEN (Xi = Hn )

Each string in (3) is a simple conditional granule but together
they are evidence (Zadeh, 1979)

(4 )
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In the slmplest case an eVldence may conslst of a single granule
E = [g1. Taklng lnto account the information contained in the
eVld~nde (4), one can construct a fuzzy relation R between a
criterion Xi and parameters YjEY which are used in eviden
ce E.

Let y E and y t be the sets of parameters which are used
in the evidence E and the granule 9 t , respectively> The

power lyE I of the set yE is equal to mE' Iyt l = m ,
t{t t} E{E E} E ntty = Y. 1 ' .• or y . , y = y J. 1 ' • 0 • , y J. mE' y = U Y.

J J mt t=1
Let us designate by R

t
a relation between the parameters

and criterion, induced by a granule gt' Rt is a fuzzy set

with the membership function (Dubois and Prade, 1980)

t t t t
~Rt(YJ."'o,Y. ,x) = 1-PL (YJ.""'YJ. ) + PH (x),

J mt t mt t
where

are the sets of nonfuzzy basic mean-x E X; yt , X
J k

yt and X, and P
L

(.) is a membership function for
J k t

the fuzzy set defined by expression Lt'

The cylindrical extension of the relation R
t

to yE = yE x

yE lC ••• x yE can be obtained as follows (Zadeh, 1975) J 1
J 2 J mE

yt E yt ,
J k J k

ings for

J t EPR (y ) Y
yE t

And, finally, the relation R induced by evidence E is
(Dubois and Prade, 1980)

PR(yE,x) = min P (R ) (yt,x)
t c t

If several evidences {Eh } exist, then each of them induces a

fuzzy relation Rh •

Knowing the parameter valuations for the alternatives and
using the compositional rule of inference (Ilizumoto, 1981), we
can define the fuzzy value H of criterion X as follows

E
max 0 (pc(GE) (y ,x),

E 0
Y

E
PR(y,x» (5 )

where GE
o

extension of

the cylindricalG.
J 10

GE
o

"bounded-product"

".... <>AG j 0'

E mE E
to y.1 •••• xy. xX, and the operation of

J J mE
is defined by the following expression

The fuzzy value H can also be obtained using fuzzy linear
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interpolation methods (Alekseev, 1982) but in a multidimension
al case they demand more time-consuming computations.

Each evidence E can be depicted by a sector of a seman
tic network (Fig. 1), where vertices correspond to criteria or
parameters, and vectors of parameters or criteria; the non-mar
ked arcs show the direction in which the values of parameters
and criteria are being passed on; the marked arcs define trans
formation in accordance with a fuzzy relation R; a dot near a
vertex denotes synopsis and shows that for the excitation of a
vertex it is necessary to have information from all vertices
joined by this synopsis.

Fig. 1. Representation of the statement by the sector of the
network

If the value of X can be derived on the basis of eviden
ce E, then we write

(6 )

Generally speaking, yE may include not only parameters of an
alternative-s description but also other variables, the values
of which must be computed using other evidences, for example

(7 )

The network corresponding to the set of evidences (7) is
depicted in Fig. 2.
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x

Fig. 2. The network for representation of the set of eviden
ces (7)

145

(8)

4. REVEALING OF CONTRADICTIONS, INCOMPLETENESS AND REDUNDANCE
OF A SET OF STATEMENTS

Let us divide the whole set of statements into subsets
such that all the statements of one subset have common parame
ters and the same criterion. Let us consider one of such sub
sets. Suppose that it includes statements gl,g2, ••• ,g • This
subset can be considered as an evidence no

E = { 9 l' 9 2' ••• , gn }
o

Assume for simplicity that evidence (8) describes a dependence
of criterion Xi on a parameter Yj •

o
The subjectivity of statements, and perhaps their differ

ent origins, can lead to contradictions. Generally speaking,
the dependence Xi = E(y E) may be of various kinds, therefore

the only manifestation of contradictions in E is the existen
ce of such gt' and gtU that G. t/~ G. t" and H~ t Hth ,

J o J o
where G1 :: G2~}lG (y) ~ \lG (y).

1 2
The origin of statements (1) and (2) can be not available

when the alternatives are analysed, that is why it is necessary
to get more information about the dependencies of criteria on
parameters while the statements are collected.

The degree of incompleteness of evidence can be expressed
as
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ine = max
yjE:Y j

max(O,
n

o1 - L \lG (y . ) )
t=1 jt J

(9 )

( 10)rede =

Some statements can express values of the criterion for
the same or close values of the parameters. The degree of re
dundance of evidence is equal to

n omax (0, L \lG (y.) - 1)
t=1 jt J

where

. min E
J:Y /Y

Similar evidences may be obtained for an evidence in which

only replaceconsists of more than one parameter. \~ must
Ein formulas (9) and (10) by PGE(y),

t
flG (YJ.)

jt

Il
GE (yE)

t

5. DEGREES OF CONFIDENCE IN EVIDENCE

Conditional statements "IF ••• THEN .•• " are commonly gat
hered from different experts. If the number of statements is
rather high , for example, in the MYCIN expert system - about
500, then some of them can be mutually conflicting, That is why
after dividing the set of statements into evidences (8) it is
expedient with the help of experts to assign the degree of con
fidence aE:[O,1] to each. These a·s will "escort" each ex
pression of the type (6) as follows

X = E (y E ) , a

If the criterion value is computed on the basis of m conflic
ting evidences, then the vertex, corresponding to this criterion,
must be supplied with a special kind of synopsis (Fig. 3).

X

Fig. 3. The network for the representation of two conflicting
evidences
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The degrees of confidence are assigned directly in a heu
ristic manner or are defined by using statistical methods and
training algorithms (Lesmo, Saitta and Torasso, 1983). We do
not consider here the methods of obtaining o-s assuming they
are known.

Let the evidences E
l

and E 2 be given, i.e.

X E
l

(Y
l

, Y2 ) ,a
l

; X = E 2 (Y 3 , Y
4

) ,a
2

•

If we compute the value of criterion X using each of
these evidences, we shall obtain a different H

l
and H2 "

Methods of combining evidences are discussed in, e,g., Borisov
and Glushkov(1983), Dempster (1961), Shafer (1976), Yager (1981),
Zadeh (1979). In Zadeh, (1979) the resulting value of H is
suggested to be

or, taking into consideration the degrees of confidence (Yager,
1981) ,

a 1 a 2
PH (x) = min (PH (x), flH (x) (12)

1 2

If the "product" - operation is used instead of "min", then
(Smets, 1983)

( 13)
maxlPH (x) PH (x)1

x 1 2

Formulas (11), (12) and (13) were derived from the results
of Dempster (1967) and Shafer (1976) on the basis of fuzzy sets
theory. But in Shafer (1976) it is pointed out that if the mu
tual contradiction of evidences is rather great, then the ad
ding of "belief masses" leads to more natural results. For fuzzy
evidences it corresponds to the computation of H by the for
mula (Glushkov and Derkach, 1985):

a
l

O
2

PH (x) = a 1 + a 2 PH 1 (x) - a 1 + () 2

Analysis of the merits and shortcomings of different
methods of combination (Glushkov and Derkach, 1985) allows a
generalized formula to be suggested, which, depending on the
degree of mutual conflict and the degrees of confidence in se
parate evidences, gives a result close to the one mentioned
earlier.

Let M be the set of evidences which enables the computa
tion of the value of criterion X and for which all values of
parameters are known. Suppose Ml is the set of all non empty
subsets of M. Then, the membership function of H is defined by
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!1H(X) ~ (1 - max 0,) min(min ~H (x), min (1-~H (x»))
mOl 1 iE:r1-m ~ iEm i jE:!l-m j

( 14)

where

6. COMPUTATION OF THE VALUES OF CRITERIA FOR THE VALUES OF AL
TERNATIVES

The value of a criterion X, may be computed using the
so-called algorithm of the conseeutive excitement of vertices.
Values of the parameters must be known. Vertices corresponding
to these parameters are considered to be excited" The algorithm
consists of consecutive excitements of the vertices that have
nt least one excited synopsis. A synopsis is excited if all
its incoming arcs come out of the excited vertices.

The algorithm of the consecutive excitements of vertices
is:

Step 1. The set 11 1 of all vertices corresponding to the crite

ria of alternatives is determined.

Step 2. The set 112 of all vertices of the network is deter
mined.

to

not

such thats,

M
1

;M1 : =M
1

Urn.

"2;M2 :=M2 -m. Go tois excluded fromm

Step 3. A vertex mEI1
2

is sought from which it is possible

immediately reach any vertex sEM 1 • If such m does
exist, go to Step 5.

Step 4. The vertex m is included into

The vertex
Step 3.

Step 5. The set S1 of excited vertices
is determined.

Step 6. The set S2 = 11 1-S
1

is determined.

Step 7. Each sES 2 is tested to determine whether one of its

synopses can be excited if all the vertices in S1 are

excited. If a synopsis can be excited, then the corres
ponding value of the criterion or other variable (see
Fig. 2) is computed using the relations, marked on in
coming arcs, and the vertex s is included in S1;
S1:=S1 Us ; S2:=S2- s •

Step 8. If in Step 7 at least one vertex is included in S1'

then repeat Step 7. If S2 = ¢, then the algorithm is

successfully finished, otherwise it is unsuccessfully
finished,

7. NONDETERHINISTIC VALUES OF PARAMETERS

ELet it be known that for some alternative parameters YjEY

for evidence E take values G'k with probabilities P'k;
J j J j
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k
j

= 1, •.• ,n j
; jEME; ME is the set of indices of parameters of

evidence E. The algorithm for computing values of X remains
almost the same, only the exciting of the vertex is accompanied
by assigning to a vertex not one value H but a set of values
{Hk :k=1, ••• ,m}. Each of them has the probability Pk' k=1, ••• ,n,

n=n 1*n 2 * •• o*nmE • The method of computing Pk s i3 determined by

the existence of a dependence between parameters Yjo If para
meters are mutually independent, then

( 15)

If the degree of mutual dependence is unknown, then Pk can be
estimated by the interval

Pk = [0, min
jUtE

( 16)

If the probabilities of parameter values are fuzzy and equal to
~'k ' then for the independent parameters

J j

~ 'k
J j

( 17)

but for the parameters with an unknown degree of mutual depend
ence

~k = ~(6, min ~'k )
J j

(18)

where
Prade,
ction

..-.J

min is an operation of extended minimum (Dubois and
1980) and 6 is a fuzzy number with the membership fun-

8. CONTRADICTIONS, INCOHPLETENESS AND REDUNDANCE IN THE DES
CRIPTION OF ALTERNATIVES

The description of an alternative is contradictory if the
subjective probability distribution for at least one parameter
has no objective support, i.e. no probability distribution
f(Yj) satisfies the conditions

f f (y jl dy j = 1
yjEY j

PG (y.)f(y.)dy., k
J
.E{1, ••• ,n

J
.}

jkj J J J
(19 )
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or the 1-level

'). 'k •
J j

The degree of contradictoriness is expressed as follows

where F
k

, is the nonfuzzy probability of
J j

subset of

contra min
fEF

with the restrictions (19) being fulfilled, where F is the
set of all possible probability distributions. The degree of
redundance of an alternative~s description can be computed by
the formula

ina min (~,1 - max 1
PEsuPPI'\

p)

where A 1 is the

a=1. The degree of
is equal to

n,
a-level subset of A = L J A 'k' for

k = 1 J J
J

redundance in an alternative~s description

reda = min (0, max 1 p - 1)
pEsupp A

It is expedient to eliminate undesired characteristics of
information while statements defining the dependences and des
criptions of alternatives are being collected. It is not diffi
cult for the decision maker (OM) to correct his set of state
ments (to add, delete or change some of them) if the origin of
inaccuracy is pointed out.

Correction of an alternative~s description is more diffi
cult so that if it cannot be eliminated in dialogue with OM,
then a heuristic method of normalization of probabilities
ISlyadz and Borisov, 1982) should be used.

9. THE CHOICE OF ALTERNATIVES

The choice is performed on the basis of computed degrees
of fulfilling the OM requirements for each alternative. These
requirements must be given by an unconditional statement about
ideal (hypothetical) values of criteria for the best alterna
tive.

We shall determine the degree of fulfilling the simplest
unconditional statement (Xi = Q) where Q is some fuzzy value

of Xi by two values: the expected certainty EC (Q) (Borisov

and Glushkov,1983)

EC (Q)
n
L "k(suP Hk - sup(Hk f1 a))

k=I
(20)

and expected possibility (Zadeh, 1979)
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En(u)
n
L "'k sup(Hk n Q)

k=l
(21 )

areand= maxwhere sup A
x

computed by formulas (15) - (18). If the probabilities are non
fuzzy, then EC(Q) and En(Q) may be directly computed by the
formulas (20) and (21). If the probabilities ? k are fuzzy or

linguistic, then their computation comes to solving of the set
of linear programming problems (Borisov and Glushkov, 1983).
?or a more complicated hypothetic statement (X. = Q. )".,.V••.

1
1

1
1

,,(Xi = Q
1

) evaluation of its fulfillment can be done in
m m

the same manner. If, for example, the statement is

then H
k

by (H l "

tions

X =
1 Ql " (X 2 = Q2) v (X 3 = Q3)

Q in formulas (15) and (16) must be substituted
and (Ql" Q2 v Q3) which have membership func-

It has already been shown that it is not necessary to know the
values of all parameters for some criterion value computation.
The set of parameters that are used for computation of any
criterion value has been defined in Steps 1-4 of the algorithm
given in Section 5. On the other hand, if any vertex corres
ponding to the primary parameter is included in the list of
vertices to be excited, but no value is assigned to that para
meter, then the procedure of inference must have a means to
elicit the missing information from the data base or from the
decision maker in an interactive manner.

10. REVEALING THE SET OF BEST ALTERNATIVES

If the set of alternatives{ad : d=l, ••• ,O}iS given and

valuations ECd(Q) and End(Q) are obtained, then we can deter

mine the set of nondominated alternatives ~O. Alternative ad
1

belongs to ~O if there is no alternative ad £ A such that:
2

or

EC
2

(Q) > EC
l

(Q)

Some other methods of revealing the best alternatives are
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described in Borisov and Glushkov (1983).

11. CONCLUDING REMARKS

The proposed method of choosing alternatives enables us to
update information about nondeterministic fuzzy values of para
meters, to compute the fuzzy values of criteria and, at the
same time, to take into consideration the degrees of confidence
in statements defining the dependence between the parameters of
descriptions of alternatives and criteria of their evaluation.
In future it is necessary to develop a more effective procedure
of inference and ways to accelerate the computations for large
networks of statements.
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FUZZY INCLUSIONS AND FUZZY DICHOTOMOUS DECISION PROCEDURES

L .M. Kitainik
MLTI, Moscow, USSR

Abstract. An approach to decision making with
an arbitrary antireflexive fuzzy binary rela
tion (FR) is developed, generalizing some well
known ordinary constructions: undomination,
intrinsic and external stability, kernels of
a graph, etc.

The main concept of the method is a fuzzy
dichotomous decision procedure (FDDP). An op
timal decision is defined due to the general
maximal decision principle. Basically, it
gives a "soft" estimate of the applicability
of a decision procedure and of its quality,
Subprocedures of coordinating the decision
maker's a priori preferences and the results
of FDDP application are presented as a basis
for examining the decision maker's qualities
(competence, resoluteness), and also for im
proving the final choice. The conventional
multiattribute majority approach to formation
of binary relations is axiomatically extended
to FR construction. A practical example of ap
plication of the method is given.

Keywords: decision making, choice, fuzzy
preference, fuzzy set inclusion,
undominance.

1. INTRODUCTION

A fuzzy binary relation (FR) is an acknowledged object in
decision making. It is known that "ordinary fuzzy" and L-fuzzy
FR's describe some well-defined group preferences (e.g., Kuzmin,
1982; Danilov, 1984). The nonfuzzy multiattribute "majority
approach" to decision making may also be extended to formation
of PR's, carrying more knowledge of the decision maker's (DM)
preferences (see Section 4).

A general "maximal decision" principle in fuzzy decision
making (Bellman and Zadeh, 1970) is to be adapted to decision
making problems involving FR analysis procedures. Consider first
ordinary analogues. Any ordinary binary relation (OR) G is re
lated to a graph (all graphs in the paper are supposed to be
oriented), also called G (Hasse diagram), and most admissible
decision making structures are associated with the way this
graph affects subsets Z S X, X being the set of initial
alt~rnatives. Suct are the subsets of all undominated nodes
M = Max(G), the sets of all intrinsically stable - I(G), exter
nally stable - £ (G), G-invariant - S(G) subsets of X, an~

154
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the set of all kernels 1{;(G) = I (G) n S (G) [not by chance this
concept is central in Roy, 1972 - see Section 4]. Note that any
of the concepts can be expressed in terms of inclusions of a
subset Z c X, the supplement z, and G - image GZ, that is, by
means of a-"dichotomy" on X being defined by G. More precisely:
Z eM .. GZ c Z & GZ c Z; Z E J (G) .. GZ c "2; Z E £ (G) .. GZ ::J Z;
Z E S(G) .. GZ c Z; Z-E::J<:(G) .. GZ c Z & GZ::J Z. To generalize
such dichotomies, consider two concepts: "G-independence" and
"G-domination". For V,W c X, we say that V is G-independent
of W iff GW c V (GW n V-= ¢), and VG-dominates W iff GV ::J W.
Replacing V,W-by z,Z in the previous definitions, one can
easily obtain all the foregoing structures. To be meaningful,
these structures call for antireflexivity of G, and this is
the only constraint on FR's assumed below.

Fuzzy decision procedures can be designed in the same way.
The notion a for a fuzzy subset (f.s.) a is traditional;
ga (g being a FR) may be any v-o composition (we use tLE' most
"economical" V-A composition). However, the choice of a tuzzy
inclusion is not so evident and needs further discussion (see
Section 2).

The subsequent analysis of the nonfuzzy case shows that
the "optimal decision" is unquestionably unique with a transi
tive G; under this condition, ~(G) reduces to M = Max(G) [this
concept is basic in the classical fuzzy decision making - see
Orlovski, 1978], and M is beyond comparison, since Max generates
the well-defined "graphodominant choice function" (Berezovski,
Borzenko and Kempner, 1981). But with intransitive G, M may be
empty (a nonempty M may be inadmissible - see Section 3), and
all of the remaining above-mentioned optimal decisions are
generally not unique. This allows us (or, maybe, requires) to
use less formalized structures for the final choice, that is,
to enlist descriptive decision theory problems. To mention only
two of them (Larichev, 1980):

1) different estimates by the OM of those "entire" alterna
tives and the criterial evaluations; in particular, the OM may
have "a priori" preferences often varying from his criterial
choice;

2) intransitivity of OM preferences leading specifically
to the above intransitivity of binary relations. Therefore, we
consider subprocedures of coordination between optimal decisions
and a priori preferences as an integral part of any normative
decision making procedure, the subprocedures to be applied, when
possible, to the exploration of both OM qualities and decision
making psychology.

Quality measuring for optimal decisions is a more specific
fuzzy problem. While in an ordinary case, the preferences of
the chosen alternatives to the remaining ones are 1 : 0, the
fuzzy optimal decision k E $ (X) with kl Z ,,1, kl Z ,,0.999
can be hardly considered as a consistent one; furthermore, if
any optimal decision is like this, then either the initial FR
or the decision making procedures are unfit.

The follOWing problems will be dealt with here: fuzzy in
clusions study (Section 2), construction and research of fuzzy
dichotomous decision procedures {Section 3}; a few aspects of
coordinating "a priori" and "a posteriori" preferences as a
basis for learning certain qualities of the OM (Section 4).
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A 1.4 (y).
yEY I a

tersection, and conjunction;

Common notation: I = [0.1]; X - a finite set containing n
ordinary initial alternatives; Sn - symmetric group of

order n; Y - an arbitrary set; ~(Y) ; ~1 (Y) - the set of all

f. s. of Y; Ii> (Y) ; 9
1

(Y) - the set of all ordinary subsets of

Y; y m _ the m-th Cartesian power; 9 (Y) = 9 (9 1 (Y)) - them m-
set of all level m Ls. of Y (usually denoted by ;;i>m(y); how-

ever, we reserve superscripts for Cartesian powers);~ (Y)
m

9 (9m- 1 (y) ); fa (y) - membership function for aE q> (Y); nonfuzzy

subsets of Yare denoted either by A,B,C, .•• , and {Y i } (with

usual operations u,n,-,=, or, when associated with elements of

9(Y) el1>(Y), by characteristic functions, Le. aE I1'(Y) .. l"a='X.A
with A = supp(a) =r;l (1); zero, unit elements, and the "median"

in ~(Y) are denoted by 0, 1, 1/~(Oy,~y,U/ly). For brevity, V

is max, sup, f.s. union, and disjunction, A - min, inf,f.s. in-
o 0
va = v ~a(Y); Aa

yEY
Other notations are introduced when necessary.

2. AXIOMATICS AND PROPERTIES OF FUZZY INCLUSIONS

There are several reasons for the subsequent discussion on
fuzzy inclusions. We share the opinion that the conventional
Os" is very strict (Dubois and Prade, 1980). For instance, let
Y-={Y1' Y2' Y3}; a = 0.S/Y1 + 0.S1/Y2 + 0.001/Y3; b = 1/Y1 +

0.S/Y2 + 0.S/Y3; c = 1/Y1 + 1/Y2 + 0/Y3' The statement "a =c"

is obviously mU~h more reliable than "b e c"; however, not a
single pair in a;b;c"\ satisfies "e". 'i'urning to different
fuzzy inclusion, we ~te the £- i~clusions for IS(a,b) =

~(avb), 1 4 (a,b} = ~(a U b), and also the family of weak inclu

sions -<0 (Dubois and Prade, 1980). One can easily find dis

couraging "strict examples" for any of these inclusions. It is
not a matter of specific record form, but Zf ordinarity (any
of the pointed out inclusions is an OR on Cj> (Y)), and hence,
discontinuity. We see no reason why fuzzy inclusion must be an
ordinary concept; below, this constraint is rejected. Moreover,
the diversity of the available fuzzy inclusions calls for an
axiomatic study.

Definition 1. A Fuzzy Inclusion (FI) is a FR inc on 2j) (X) (we
take for simplicity a finite X so as not to deal with topolo
gical details), inc~(~(X)} satisfying four axioms given in
Table 1. 'i'he set of all Fls is denoted by Inco

_ Axioms 1 and 2 link FI with the algebraic structure on
~(X); Axiom 3 sets the symmetry of alternatives (rinc(a,bl as

dependent only on the relative position of ra'~b); Axiom 4 re

quires inc to be an extension of the usual =. First of all,
we state four simple properties of any Fl.
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Table 1: FI Axioms

Ordinary prototype: c Fuzzy generalization: inc
I

-
(A, B, e '= X; _E Sn) (a,b,c E q; (X) ; bE Sn) i

i
;

- - - -
1 • A c B .. B c A 1 • t' inc (a,b) = t'inc(b,a)- -

2. A U B c e .. A c e & B c e 2. P- inc (avb,cl = t""inc(a,c) 1\- -

t""inc(b,cl

3 • A c B .. bA C DB 3 • t-'inc(a,b) = t""inc (6a,6b)- -

4 • incl
'Y 2 (X)

= C (rinc (~A'~B) =-

= [1'
A C B-

0, otherwise

1. finc (a,bAc) = rinc (a,b) A t"'inc (a,c) •

2. ~inc(a,b) ~ ~

~ inc (..;l{x) ,

Property 1 directly follows from Axioms 1, 2; 2 - from Proper

ty 1, Axiom 2, and also the equivalences (a 1 ~ a 2 )e:> (a
1
va2 =a 2 ),

(b 2~ b
1

)c;:=::> (b 1Ab 2 =b 2 )

3. For any ol,(\EI, x,Z£ X, x I' z implies

~'X.{z}) = 1. _

Proof. !'" inc (...1# ' ~l[z\) ~ t" inc ('X{x} , ~l.[z}) ~ "'inc (~[x}' 'XfY =
1; both inequal1ties !/e due to Property t the equali\y 1S

from Axiom 4, since x I' z =CO {x} <;; 0}.

~b (Zl'X-{z}) •

hence, a

Property 1,

4. ~inc(a,b) = ~X ~inc(t'a(X)'X.{x}'rb(X);:t{xY·

Proof. The evident identities a = V t'"a(X)'X-{x}'
xeX

result, because of Axiom 2 andb = ~x fb (Z)'X-{z)
in the equality r. (a,b) = 1\ ..... (IJ- (X)'X-f,),

1nc x,zEX 11nc la tX

Next, Property 3 makes any term with x I' z a unit;

minimum is achieved with x = z. Q.E.D.

The main result of this section is as follows:

Theorem 1. (Inc realization). Inc is in a one-to-one corres

pondence with the set flf of functions defined on the triangle

T ={ (a,a)E I2Ia~(\). ¢ ={ ljJ:T .... II(j)(a,a) ~ ; 'f(O,O) = (j)(1,0)=1;
a,a
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'/'( 1 ,1) 0}. (throuc;hou t in the paper, both inc rea se I' and

decrease ~ are not strict, and the ordering of ~(X) is due

to §i) •

Proof. Let l"'inc(a(,P.) t'lnc("''X.{x1'~'X.[x})' He prove that a

mapping i: Inc - ~, i (lnc) ~ r'inc ts a bijection. 'f inc

correctness is due to Axiom 3; the belonging of ~ to ~

follows from Property 2 and Axioms and 4; thus, ~inc(OrO)

t'inc(lt',U = 1, t"inc(L~) = l"inc(L(\) = O. Injectivity of i is

implied by Property 4, since inc is uniquely defined by the

set {~WC(oIl-{X},(~X{x})}(01,~)£I2 = {~inc("''X.{x}'~''X.{x}}(Cl.r»ET;
~{~inc(""f!')} • To prove sunectivity, we define, with'f£cP,

- -2an wc f Eo cP (e:Jl (X»:

~inc (a, b) = 1\ 'f' ( I'"a ( z) v r b ( z), I-' a ( Z )" P'b ( z) ) •
z£x I

is '!'.(<Krlll ,,~,.
o

= 1 -p.. = i(inc*) with 14. (a,b) = IS(a,b) =1\. (a:Vb). In turn,
I lnc* 0

inc* is the unique FI representable as I\. p(a,b), p being a

polynomial form of two fuzzy variables.

First, we establish inc'f£Inc. Axioms 1 and 3 are evidently

valid. Axiom 4 is easily verified due to f values in the

apexes of T; e,g., (1(AC;;;B»4-'+(3Yfi:AnB)"""'('X.A(Y)='X:B(Y)=1)~

(Pinc"('X.A')::,B) = If(1,1) = 0), Next, we note that monotonicity

of If implies the equality ("rOl:,(!o,'Y E I) ~(Ol:V(!oV Y, (""Vp) " 1') =

'f'(cl.Vl',cli\l') i\ 'f«(!oVlI ,(!'i\ll), yielding Axiom 2 for inc'!' with

co = u. (z), ~ = t'b (z) , "6 =~' Furthermore, with (01,(\) E T,I a c _

we have 'finc (Ol:,(l) =rinc (oI'X.{x},(l>'X{x}) = z~x~\oll-{x}(Z)V

~x,{x} (Z) ,OI'X-{x}_( Z )i\/'>x,[x} (Z) ) = (z/)x If( 0,0) )i\ 'f (oI,~) =~(;,Ill ;

hence, 1', - 'f , tbat lS, 'f - lnc'( lS i . Q.E.D.
lncf

Corollary 1. The only linear function in cP

Proof. The statements concerning If * are evident. The fact

inc* E Inc is tested directly. Next, (",(!o) E T implies:

If· (<K '~) u, (oI't{,\, 1l,'X.{,\) = ~ (el'Xr{:lV (\'X-{i) = 1 I\. (d.V(\)lnc* I lnc* xl I' xl xl x

=~= 'f'*(ol,(l), so that 'I (inc*) ='P*. Let now p(a,b)£Inc;
o

write p in a disjunctive form. Axiom 4 implies I\.p(~A'~B) Aa,B
o -
I\.().A v 1- B). It follows from the usual properties of ordinary

Boolean functions that any minterm in p, except for a and b,
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is a trivial Boolean conjunction, that is, contains either aAa

or bAb; however, any such min-term is absorbed by aVb, and the
o

reduced form of p is aVb; hence, A p = inc*. Q.E.D.

This is a quite natural tie, due to Corollary 1, of the F1

(an object of fuzzy set theory) to the implication (a function

of fuzzy logic).

Theorem 1 yields a convenient device for an F1 analysis

according to the f inc behavior, as shown in

Corollary 2. Let T'"= {(0I,(3) l' T lol~ ~}, T" = T\T'·, T;'={(""~)ET"I

~<~}, T2 = T"'-T1, n = card(X)~2.

(1) An F1 inc is reflexive iff ~inclT' ~ 1, that is, inc

is consistent with ~ (a~ b ==> Pinc(a,b) = 1).

(2) inc is [perfectly] antisymmetric iff 'fincI T,," 0

(clearly, only ~ is both reflexive and [perfectly] antisym

metric) •

necessary - "'f. IT ¥ depends only
lnc 2

"'f. I~q depends only onoe."; (ii)).nc .1

depends only on (?> ) " •

sufficient - (i)

"'1'. ;: 0 &
lnclT2"

on 0' II;

(3) The three simple one-sided conditions for inc transi

tivity are as follows (V-A transitivity criterion for F1-s is

a rather complicated one):

(4) No F1 is weakly linear (see Dubois and Prade, 1980;

Kuzmin, 1982; Orlovski, 1978). The proofs are evident, except,

maybe, for (3).

Corollary 2 shows that any perfectly anti symmetric F1 is

transitive. To review weak inclusions in ",-terms", note that

-<l is nothing but a l' -cut of inc*, and '1'-<. =-y.,rl( ) 112. -}"
¥ ~",<, "T \,~J

Therefore, Corollary 2 yields all -<. properties; reflexivity

with ~ " 1/2, transitivity with 11' > 1/2, etc. (see Dubois and

Prade, 1980). Furthermore, some of the "inclusion grades

measures" are not FI·s: Axioms 1 and 2 fail for 1 1 (a,b) =

UaAbli/uall; Axiom 2 - for 1 2 (a,b) = II iiW b U and 1 3 (a,b) =

lIaVbll. A F1 incc;;,* = 14 is a "quasilinear" one; that is,

'f~*(.. ,~) = (j\:J;t= 1-A(~+;;() is the only element in ~ being

both consistent with § and linear on T"; hence, incc * is,

unlike inc*, reflexive; however, both are intransiti~e. As to

the other "polynomially represented" Fff's, with degree 2, the
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result is: <jJ(o,l3) = ~+ (t(;+uB) (uE:[-1;1], tE:[0;1-u],+ is a

probabilistic sum), the only {v;,,;-;~;.1 algebraic preimages
..-1 -2 ,,-,-1.-2 -1 -

being inc*·inc* = • (13), inc*+inc*=i (13) and inc"='1 (013)
0-+

= 1\ (a+b) •with t". (a,b)lnc t
Finally, we describe global algebraic structures of Inc

and ~ • Assume 0 to be a binary commutative operation on I,

extended to any$(y) as ~aob = raO ~b. The result is:

(i) Inc is closed under 0 iff 0 is a "generalized conjun-

ction", i",e.

(ii) ct>

ool3=fO (O "(3), with fo : 1...11'1, fo(O) = 0, f o (1)=1;

is closed under 0 (ct>C$(T» iff olO~ ./'.. ,?,
000 = 0, 10 1 = 1.

Hfnce, ep is much more tolerant, being closed under" ,v,~, .,l:I,
A, etc., whereas Inc - only under" • However, Y is evidently

a "local homomorphism", that is, (inc 1 ,inc 2 ,inc 1 inc2~ Inc)~

("l(inc,oinc 2 ) ... (inc,)o'Y (inc 2).

3. CONSTRUCTION AND ANALYSIS OF FUZZY DICHOTOMOUS DECISION
PROCEDURES

In this section, we try to answer the following questions:
(?) how can one define procedures for FR analysis, an opti

mal decision and quality of a decision?
(??) what properties of FR~s and the procedures do guarantee

high quality decisions?
An answer to (?) comes from what is stat2d in Section "

also involving the concept of Fl. Below ~o(X ) denotes the set

of all antireflexive FR's on X; we also set y; = y2'\ {(y,y)}.

Definition 2. Let geGJ> (X 2 ), inc£ Inc.o
(i) fuzzy (g,inc)-independence and fuzzy (g,inc)-domination

are FR·s indp, domn on ~(X) defined as:

I"indp(a,b)
ters; formally,

fdomn(a,b)
(ii) Basic

= 14. (gb,a) (we omit for brevity some parameIlnc
findp(a,b;g,inc) "a is independent of b";

= ~inc(b,ga) "a dominates bOo

(g, inc) dichotomies are the level 2 f. S. A 1,A 2'

t""indp (a, a) ;

a (A 1 ) and of a (A 2) I

A3 E.q>2(X): /""A1 (a) =~indp(a,a); I'"A2.(a)

\'"A1(a) = l""dO!!!Jl (a,a) (a is independent of

a dominates a (A31)

(iii) A fuzzy dichotomous decision procedure (FDDPI is a

monotone nondecreasing polynomial form p(A,-,A 2 ,A 3 ), pe<?2(X)'

(iv) An optimal decision when applying a FDDP p to a rR g

is, an ordinary set of f.s. ~ (g) = l4-' (~*)C: ~(X), with
pip I P
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* V up(a). The last item is nothing but a "maximal
aE~(X) I

decision principle" for p.

In an ordinary case, (g = G, inc =~), any FDDP coincides
with a certain notion of Section 1 (.:l)A I\A (G) = Ii' (H), C6A (G) =

\ Z. 1.
= I (G), etc.) •

An approach to quality measuring for optimal decisions
stems from a general analysis of f.s. "resolution".

Definition 3. (i) The dichotomousness of an Ls. a E $ (Y) is

b(a) = V 1\ _ (oV (I"a(u) - t'"a(v»)).
Z"Y uEZ,veZ

(ii) The dichotomousness of an ordinary set 3E of f.s.

(3: c.= (j'>(y» is a value S(~) = 1\ .f(a)
a~::E

In other words, SIal is the "maximal gap" in the p (y) graph,
and b(~) is a gap of that kind guaranteed for any g~~.
Examples. (1) Y is a connective Hausdorff space, f (y) is con
tinuous; o(a) €_ ~2) X ~s finite, as defined is

a
Section 1,

acqi(x); b(a) ~ a~ a (3) b(/f'(¥),{cP,i}= 1. (4) .... i E."X(oleI).

b ('£) = o.
- 2Definition 4. Let p be an FDDP, g an FR, gE:Po(X). Set .fp(g)=

~(~ (g». A pair (g,p) is called dichotomously contensive (DC)
p

iff ~p(g) > 0, and dichotomously trivial (DT), otherwise. A

FDDP (FR) is called DC/DT iff there exists (does not exist) a

DC pair containing this FDDP (FR).

To explain the meaning of 'bp(g) as an evaluationforthe~ua

lity of an optimal decision , we note that any element of c2 (g) is
p

an f.s. of X, yielding a certain variant of "a posteriori" pre
ferences, being consistent with (g,p,inc), i.e. resulting from
the analysis of an FR g by means of an FDDP p. In general, we
cannot expect, due to the lack of transitivity and/or antisym
metry of g, that .;z\ (g) should be "coherent", thus ordering X

p
or at least any subclasses of alternatives (e.g., equivalence
classes). lIoreover, nonfuzzy optimal choice itself is often
ambi~uous (see Section 1). However, the ultimate end of deci
sion making is an ordinary choice; therefore, one would like to
have a guaranteed preference of arbitrarily selected "optimal
alternatives" over the remaining ones. Just such a guarantee is
proposed by 0p(g). For instance, if ~ pig) contains a constant

~.', then no positive partition of X, based on (g,p), can be
made, and at least the applicability of p to g is dubious.
So we believe that r (g) characterizes the two decision making

p
aspects: applicability of FDDP to FR analysis, and a certain
superiority of the alternatives to be chosen over all the other
ones.

To answer (??), we desc~ibe all DC FDDp#s and propose a
method for .:II (g) design and cf (g) computing in the case

p p



162 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

inc=inc~(that is, with a linear F1 model).
First, we modify the ~-cut definition, Consider the set

_={~,>,~;<;=}, OWing an unary idempotent operation ~~ <=>, <=>,
(=)=(=). Ive assume the ct.-cut to be a mapping '>.~OI.: ~(X)~ql(X)

(-rE~,.... E I) , ~-r", (a) = a-r", ="f.,A-r"" ' A'tol. = {xEXI fa (x) -rol.}. The

needed algebraic properties of the "cut method" are presented in

Lemma 1. (i) \lith any'l:€{ >,>,=}ct.€ I(a,b~$(X),9Ec$(X2»,,,,'l:"

is a homomorphism of a lattice t;lS (X) with operators in ~ (X
2

)

(the action being a Y -1\ composition) onto a lattice !i>(X} with

operators in q>(X
2

) , that is, (aYb)-roi. = a-r...Yb-r.... ' (al\b)-r",= a-r",1\

b-r..c:' (ga)-ro< = g't<ol-a't......

(ii) Ilith anY1:: E '1G,olE1, aE4)(X), (a)-r.... = a'i';/'

The proof easily follows from the definitions (see, e.g., Dubois

and Prade, 1980).

lie begin with examining min-terms A~ =(': Ai (~E;q({1,2,3}»);
that will do for all FDDP-s. For brevity, we wIll write in the

subscripts" for A.,: (S123(g),:tl23 (g), etc.)o

Let 'f'", be the following functions on ~ (X 2 ». C? (X) :
f' 0

1'1 (g,Z) = _V t"g(X,y), '+'2(g,Z) = V tLg(X,y); \f'3(g,Z)
xEZ,yeZ x,Y£Z

/\_ V t" (x,y) ('t'1(g,X) ='t'3(g,X)=1); '1''0 (g,Z) = ./\'t'i(g,Z).
YEZ x£Z 9 , 1.€'1

For olE. 1
1

/
2

=] 1/2,1], ZSX, let L(ol,Z) =[..-x.z,'X.z Y;;{'X.zl be

an interval in cji(X) (~,b] = {c EO e$ (X)I a~c~b)>. The complete

description of FDDP~s is due to connections between the sets

and

hence, t"2(a)

p, L.L (.12) ~ 1/20
I P •

= ..c: impl ie s \.l2 (a) ~ 0( ,

0 __ -0--

(ga,a) = 1\ (gaVa) = Y qal\a= t"indP(a,a) = fine, *

I (G>oI. ), £(G>..c:)' S(G>oI.)' X(G>.J' Max (G>o<) (see Section 1),

the functions 't''1(9,A~), and the intervals L(a(,A~), aEi;l)p(g).

Below in the paper, J(.(G>1/2) is denoted byX, and

Max(G>1/2) - by M.
.- 2

Lemma 2. (For (1), (2), 9E;q>o(X), aE!i>(X),oC,(3E1
1

/
2

, ZSX):

(1) (i) 1"-23 (a) = 0( implies A>ii = A~ .... G:J( & oC ~ If 23 (g ,A....) •

(ii) '+'23(g,Z) = r.- & bEL(~,Z) implies ZE'X & (l~ t""23(b).

(2)(i) t"123(a) =01. implies A);;(= A~",= Ml¢ &'X={~I}&

"'~ 't' 123 (g ,A~",).

(ii) "'123(g,Z) = ~&bEL(P,Z) implies Z

~~ t"-123(b)0

(3) For any FDDP

Proof. (1) (i) \A-23(al
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~gal\a ~;;;:. Application of the homomorphism ?>Oi to gal\a

yields, clue to Lemma 1, (i), G>.. A>.. nA>O'c=~; it follows that

A:>o:r: EJ(G>'i ). Since "6 >;;. implies G:;.'l C;; G:;.o< , we also have

A>;;( E: J(G>l); hence, A>Ot (;; J(G>1/2)' In the same way, usinS_ _ 0

~3(a) ~domn(a,a) t""inc*(a,ga) = 1\ (gaVa)~o(, and applying

?~ .... to gaVa, we obtain that A>.- .. EE(G~l); owing to

( 11' <....~ G >'l 2 G~ ..), A~.. E: E (G>"I) al so holds, lead ins to

A~.o<G: £(G>1/2)' Moreover,Oi<co<. implies A>;;; 2 A>;.... , so

that J(G>1/2) ~ A:>Oi 2A~",E:E(G>1/2)' It follows easily that

both A>Ol and A~o( belong to J(G>1/2) n E(G>1/2) = 'J(

however, the proper inclusion of kernels of an ordinary graph

is evidently impossible; therefore, A>a< = A~ ... ~ 'J<: • Furthpr-

more, A _ E: J(G _) is equivalent to (V' x YEA llydG -{x}l.>'" >... ' >Oc .,. > '" ,
hence, V t"-g(X,y) ~;;;:,ando(~ V f'-(xy)",~(q,A)

X,Y6A>0l. x,y~A> <J' :2' >0<

Similarly, A~ ..E:f(G~O\) leads to \V3(9,A~.. ) ~ Finally,

ot. ~ 'f2 (g, A>;;;) 1\ 'fJ 3 (g, A~ ....) = 'f2 (g, A~ ....)I\ '!' 3 (g, A~ ) = '!' 23 (g, A:, ...) •

(ii) is inverse to (i). Indeed, ""23(g,7.) = (3 implies

Vzp (x,y)~~& "-z V_zu (x,y)~r,.; arguing exactly as in (1) (i),
x, y" 9 YEO XE:' 9
we ontain that Z€J(G>~) & ZE:':lC. tlext, bE:L(r--,Z) is the

same with B>jI = B~(\ = Z; therefo~gbl\b»(S = G>'j!.zn Z=~;
o _ (0

hence, vgbl\b ~(!I, and 1'-2 b) = v gbl\b ~~. Similarly,
o

(gbVb)~f} = G~~Z U Z = X, and 1"3 (b) = 1\ (gbVb) ~(3 • Finally,

1-123 (b) = 1"-2 (b) 1\ 1"3 (b) ~ ~

(2) (i) Using (1) (i) (the initial 1-12 (a) ~ ot. & t'"3(a) ~'"

is valid), we corne up to A,>o< = A~",-£'JC. Calculation of

t'-l(d) results in "'1 (a) e ga-I\a ~"'- , so that egal\a~;

hence, G>.. (A»« fl A>o< = ~. Since (A»o<= A<oc (see Lemma 1, (ii),

we obtain G>a<A<... nA>o..=~' that is, G>o..A<ocC;;(A>..) = Ao$;<'

The already proved A >0< = A ~o( easily resul ts in G> Oi A,;C C;;

A~o< and (A~..) = A,;;(£S(G>1/2)' It follows that A~ ... is a

kernel of G>1/2 with G>1/2-invariant supplement, thus coin

ciding with M ~nd being the unique kernel. Next, just as for

""2 in (1) (i), we obtain that a(~ '1'1 (9,A~.); together with (1)

(i), this yields oq;:'!'123(g,A~",,).

(ii) is proved by inverting of (2) (i) exactly as (1) (ii) •

(3) Clearly, g~/2 = g~/~ § ~/l. Using the formulas for

l"i (a) from (1) (i) and (2) (i), one can easily obtain that
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leads to:

*'t'23> 1/2.

= O.and*1'"123 = 1/2impliesM

~1(~/2) t"2(1l/2) ~ 1/2 and l'-3(1l/.l) = 1/2. For any different

FDD~ p, the statement is implied by the monotvnicity of p with

respect to .0.
1

,.0. 2 and .0.
3

' (J.E.D.

A complete analysis of DCity is now given by the followinS

Theorem 2. (1) Let Pt = {.o. l ;.o. 2 ;.o. 3 ,.o.
l

l\ .o.2;.o.ll\.o.3}' Any element

in lOt is both a normal Ls. of <P(X) and a DT FDDP.

(2) ~= ¢ implies both ~2*3 = 1/2 and b23 (g) = O. For
* * { * }Xf ¢, set '+'23 = V '+'23 (g,K) and 'J{.: = K£,'JC1't'23 (g,K) = 't'23 •

. K",J<: . * *
The follo':'ln g formulas are valld: ~23 = '+'23; 06 23 (g) =

•U L ('t' ,K); b (g) = [2'+'23- 1 ,Xt,.. {X}.
KE'X* 23 23 0 I Jl."'{ X} *

A pair (g ,il. 2 1\ il. 3) is DC iff 'K f ¢ & X

*
* * * {2't'123-1 ,I1IX

t"123 ='t'123 ='+'123(g,H); ;;l!123(g)=L('f123 ,11);.)123(g)
o ,M=X

A pair (g,il. 11\ il. 21\il.
3

) is DC iff Mf¢ & "-={M}I{X} & 'f'~23>1/2.
(4) Any DC case is either (2) or (3).

Proof. (1) Normality immediately follows from the equalities

t"1 (ID) = t'"1 (t) = t'"2 (0) = 1"3 (jl) =~12 (0) = t"13 (~) 1; hence, for

any p £: P t either () or t is in Jl p (g), and p is DT

(see Example 4) •

(2) Let 0( = 1";3' aEJJ23 (g). Hith respect to Lemma 2, (3),

"" = 1/2 implies 11/2~ J)23(g) and cf23 (g) = 0, so that

(g,il. 2 " il. 3 ) is DT. For 01. > 1/2, Lemma 2, (l)(i) results in

*A>Gl = A:lJ .... E ')£ I ¢; hence, J<. is also nonempty; moreover,
* ... * * *

0( = t"'23 "'t'23(g,A~",) ~ '1'23" Let now K E 'X, bE.L('t'23,K).

* *Lemma 2, (1) (ii) leads to '+'23 = '1'23 (g ,K) ~ tA23 (b~ ~ ~2r The

comparison of the two inequalities yields both ~23 = ~23 =

* *'t'23(g,A~ ...) (hence, A>ii= A~ .... 6'J<:, and aeL('f23 , A~"J, and

*tl23(b) = f23 (so that b~;n23ig»· Therefore, 0ll23(g) =

U L ('1';3 ,K). Next, with 'JC f { X} we obtain from L (<<, Z)

K€"JC. * -r *
the definition that &23(g) = '1'23 - 't'23 = 2'f'23 - 1, whereas

1l ={X}leads to 11.£..:6 23 (g) and b 23 (g) = O. Ilore results

on il. 2 ".o. 3 are given in (Kitainik, 1981).

(3) The proof is a repetition of the previous one, involv-
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ing Lemma 2, (2).

(4) Let p be represented in a disjunctive form, contain

ing none of <!l.1' <!l.2' <!l.3 (the representation possibility is equi

valent to the monotonicity of p), P = V':!ri , 11' i being min-terms.
lIf, for some i, '1r

i
E P

t
, then (1) makes p both normal and

D'i'. Hence, only the two FDDF"s, <!l.2" <!l.3 and <!l.1 "<!l.2"<!l.3' are

the DC ones, the disjunction being <!l.2" <!l. 3' Q.E.D.

~. G>1/2 is nothing but the nearest OR to a FR g (Kaufmann,

1977) •

We discuss first the structural intention of the results.

A. Both a definitive and qualitative choice based on a FR

g analysis is due to the case when X* = {K*} contains exactly

one of the G>1/2 kernels. <!l.1"<!l.2"<!l.3 suits K* = H, and

DCity is estimated as S 123 (g); otherwise (K*f M), <!l. 2" <!l.3 and

~23(g) are to be used. A sufficient but by far not necessary

condition for the A-case is the V-A transitivity of g.

To classify other situations, we set Kn = (\ * K.
K E 'J(

B. Kn f ¢. In this case Kn is contained in any DC choice
*K £ 'J( , being amplif ied by some "peripheral elements" K'" Kn

(a proper choice of Kn is DT). For MSKn , evidently, any

undominated node i~ G>1/2 is always chosen.

C. K n = ¢, '"X f ¢. The choice is most ambiguous. It may
*well occur that JC defines a partition of X, that is, any

alternative is optimal when considered in a certain neighbor

hood (see Example 8 below). Clearly, M is empty, as well as Kn•
*D. 1C = ¢. G>1/2 has no kernels (though M may be non-

empty); any choice is inadmissible since the dichotomousness

estimate of any (Z, Z), due to arbitrary ~ (g), is O.
P

In any of the cases A-C, the common choice formula is in
* -effect: take any K E'JC. and reject K; the preference of K

to K is at least* ,....;-.;,.;:;, p being in{<!l.2 A <!l.3; <!l.1 A<!l.2 A <!l.3};

the difference I"p - ....p is S P (g) • 0

Note. A "consistency condition" is S (g) » ~ (see Example 2).
P n 2

To improve the argumentation of Theorem 2, (1) concerning

DTi ty, let us consider in detail the FDDP <!l.1 A <!l. 2' The technique

of Lemma 2 and Theorem 2 easily results in the equality ~12(g)=

={ a E 9(X)I A>O C;;; MO MaX(G>o)}; hence, any alternative

being dominated in G>O is to be rejected; however, there
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exists no suppriority pstimatp for MO' sincp 'V"x~Mo' I'"a (x) may

be anywhere in I. This is another rpason to avoid graphodominant

choice with intransitivp g. As to the transitive 9 (A-case),

thp usual nonfuzzy approach is supplied by the choice efficien

cyevaluation 6 123 (g) (not b 12 (g)!).

Let us examine several special cases.

Examples.

/"g(x,y)

thp

the

procedure assuming

"pure uncertainty" case~

is complete, 'J( J{xl.}-\: J' XEX,

is a trivial graph, % = { X},(5 ) 9 '§ ll/Z! 2' G>1/2
X

dichotomy is also trivial - a

(6) gI221/~ 2' G>1/2
X"" Xo 0

choice is due to the usual max-min

FDDP-s may be constructed by mpans of subse
- 2

of glK 2 £ ~(K ); note that, due to Theorem 2

any K E 'J{* is unimprovable, sinceand Example 5,-..
9 IK2 -= t"p' j[ 2c.~/2 2'- K"" K

to be a payoff.

(8) With a reciprocal 9 (Bezdek, 1978), the following re

sult is easy: either 9 is DT or the A-case with ~1A ~2A ~3

and a one-point M is valid.

Multistage

quent analysis

The decision making process algorithmization, tased on

Theorem 2, is evident, excluding, maybe, the search for'JC ; to

this end, one can use "kernels ascent" from G>1/2/(C), (C)

being the retraction of cycles.

4. COORDINATION OF PREFERENCES

Let apr E c;> (Xl be an a priori estimate by the OM of a

fuzzy notion of an "optimal alternative", i.e. OM preferences

(see Section 1). With g~~o(X2), p being a FDDP, we define

"concordance of decisions" as a fuzzy concept con,

~con(apr,g,p) = V ~ (apr,a), eq being the fuzzy equiva-
a £:Dp(g) eq

lence, tAeq(a,b) = t"inc(a,b)" jlinc(b,al (inc EInc). Here, the

concordance may be interpreted as a degree of "anticipation"

by the DM of the "objective analysis result" due to (g,p),

thus yielding an evaluation of OM competence. For the inc*-
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" V 0 _r v( (1\ aprl,K)1\
p K€ '3<.*

based con, we have fcon(apr,g,p)
o

A( 1\ aprl K) ) •

One can also discover an analogy "dichotomousness-resolu-

teness": the more polarized are the 0/1 preferences the more

resolute his position seems to be. Most promising is a joint

an ide terminate initial

r*

provided that an "ideal OM" achieves

~con and ~res in any well-defined

Let us consider a special case with
~ 2 *FR, gli r c /P-(X ). By setting I'" =

{

- 0 * con
= g£rll"con(apr,g,p) = fcon}' one

g~r.~p(g), ;;r·\(g) as an interval

implicit estimation of I"res' being compatible with 0/1 compe-
*tence (dually, /"'con may be used for the final choice determi-

nation). This approach is most attractive in multiattribute

decision making problems when using preferences of the same 0/1

V fcon(apr,g,p),
g~r

can examine the values

analysis of con and res,

a maximum values of both

decision making problem.

for establishing "attribute significance". We dwell on this

situation from the viewpoint of FR formation.

Let C(x) ={c.(x)}. Q X be a multiattribute decision
l. l.IE ,xc;

making problem. For the majority approach, the sets I+(x,y)

{i~QI x 'r c. y } are conventional (Roy, 1978; Beresovsky,

Borzenko aftd Kempner, 1981; etc.), and a OR G is constructed

as (G (x,y) = 1 iff + L col. i > + L 0( i)' with "attribute
I (x,y) I (y,x)

additive weights" 01. i • Fuzzy refinement may be made imme-

diately; e.g., set l"'g(x,y) +L o(il V 2 +L o(i.
I (x,y) (X,y)E X

o
I (x,y)

However, one can use a more axiomatic method. Let 0( i

= ~sgca(ci)' sgca being a fuzzy concept of "significant attri

bute". Clearly, the elements of g must be in accord with an ex

tended Pareto ordering, say, Par.s (for al. =f'i}iEF' (l={l'>i}iEH'

we say that otPar.sl!> iff there exists an injectionS' :H-'F,

yielding (\i < 01 ~ (i), for any i€H) of the sets l+ (x,y)

={ 01 i l iliI+ (x,y)} (note that Par.s turns X~ into a transitive

graph IT ). So we propose the following "fuzzy majority axi"oms".
2 + +

FM1. (..... (x,y),(u,v)liXo)(l (x,y)Par.s ~ (u,v) -+t'"g(x,y) ~t'"g(u,v).

2 [+ + JFM2. (..... (X,y)EXo ) (t'"g(X,y)E 1\ ,\,(x,y); V l(x,y) (that is,

l"'g(x,y) must belong to a corresponding interval of ~sgca

values) •
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The set r of all FR-s satisfying (FM1, FM2) for a given

decision making problem is a nonempty convex subset of

[g,,;gv]; gv ~ V 9 has ~,(x,y) +V .,(.; 9 ~I\g isr gv I (x, y) 1 "r
easily restored by means of the transitive skeleton of TT •

To illustrate the developed approach, we suggest a prac

tical example (for details, see Alyabyev, Kitainik and

Perelmuter, 1982).

Example 8. Table 2 contains the estimates of six systems of

machines for wood-road engineering based on seven attributes,

and also the DM-s subjective evaluations of apr and sgca.

g~:g is given in Table 3. For 9 , it is the A-case

(;< ~v{{x6}})' whereas g" is due ~o the C-case, and

X ~ {{x1;x2}{Xt;X4;x5};{x6}}defines the partition of X.

Moreover, ~r ~~,.{x1;x2 ;{x6 }}; hence, no g .. r is transi

tive. usin~ the above formula for u , we obtain that* I con
l"-con ~ 0.4 is achieved with K ~ {x3 'x 4}, yielding a pointwise

value l"-res ~ 0.2 and a dichotomy 0.61K : 0.4!R. However,

both the resoluteness and the competence of the DM are ques

tionable since apr ~ 'X, {Xli} (most stable optimal choice for

the given sgca) yields ttcon ~ 1 and rres ~ 0.6, and a

dichotomy 0.81{x
6
} : 0.21{x

6
}. Therefore, one can hardly re-

gard the initial (apr; sgca) to be consistent. The DM may be

advised either to revise apr or to lower 01 1 and 01 5 with a

simultaneous more resolute choice of K (thus, with 01 1 ~ 0/. 5 ~

~ 0.2, and apr ~ "'K the choice of the DH is "ideal").
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Table 2. Alternatives and Attributes (OM problem datal
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a

-
Attributes (c i ) Alternatives (x

j
)

Signi- x 1 : x 2 : x 3 : x 4 : x 5 : x 6 :

denomination ficance 2B+T+ 3B+T+ 2B+E 2B+E 3B 3B1)
~sgca +M+R +R +'1'+1-1 +T+R +2R +R

(,,\)

I. Quantitative (calcu-
lated relative 2 )
values)

C 1 : specific layout 0.3 6 0 64 46 100 50

C2 : cost price 0.8 0 7 89 94 100 62

C3 : labour productivity 0.8 0 0 100 96 98 75

C4 : labour mechanization
level 0 0 7 0 0 100 97 99 71

C5 : specific metal contentO.4 0 15 33 48 100 65

C6 : specific energy ca-
pacity 0.6 1 0 95 100 57 26

II. Qualitative (estima-
ted by OM)

C7 : equipment unification 0.4 sf. gd isf. isf. gd ex 3 )

OM a priori preferences I'-a pr 0.6 0.5 0.7 0.8 0.3 0.5

1) B - a bulldozer, '1' - a tip-lorry, M-a motor-grader, R
roller, E - an excavating machine

2) The scale for attributes: 100x(c. (x)- A c. (x)/(V c. (x)-
_ A c. (x» 1 x 1 X 1

X 1

3) sf. = sufficient, gd = good, isf.-insufficient, ex.-excel
lent

Calculation accuracy: c
1
-c 3 - to 10%, c 4 -c6 - to 4%

(this, x 1 and x 2 are indistinguishable due to c 1 ' c 2 and c 6 )
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Alter- Alternatives
natives x

1 x 2 x 3
x

4 x 5 x 6
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x
2
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x 4 0.7:0.8 0.7:0.8 0.3: 0.3 0 0.4: 0.4 0.7: 0.8
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x 6 0.7: 0.8 0.7:0.8 0.6: 0.8 0.6: 0.8 0.6:0.8 0
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Abstract. Combinatorial search methods known as
graph-search techniques aim at finding optimal
or feasible solutions to a problem, among a usu
ally finite but possibly very large set of alter
natives, while obviating brute-force enumeration.
The search process is guided by evaluations of
how close is a solution. Usually evaluation
functions are supposed to provide precise esti
mates. Here we discuss two kinds of situations
where such estimates are naturally represented
as fuzzy intervals: first, the case when several
evaluation functions are available; a fuzzy in
terval can synthetize this information. The se
cond case is when data defining the problem are
themselves imprecise; the traveling salesman
problem is used to illustrate the latter point.

Keywords: combinatorial optimization, combina
torial search, graph search, travel
ing salesman problem

1. INTRODUCTION

Most combinatorial problems can be solved by graph search
procedures (e.g., Nilsson, 1980). Such procedures consider the
solution of a combinatorial problem as one of building a search
graph, whose initial node represents the initial state of the
solution, until a goal node providing a feasible or optimal
solution is reached. The efficiency of these procedures heavily
relies upon the search strategy, i.e. the branching principle
by which new nodes are created. Usually the combinatorial pro
blem involves some cost to be minimized, and the search strate
gy uses estimates of the cost of solutions which can be reached
from each pending node. The branching principle then says that
one should start from the most promising node, in terms of the
estimate at this node, to build a path to the goal.

In this paper we discuss some issues pertaining to the use
of fuzzy intervals (Dubois and Prade, 1980, 1985c) in graph
search procedures. First, the branching principle usually as
sumes that only one cost estimate is used in the search stra
tegy. It is indicated that a multiple criteria strategy can be
contemplated when bounds on the real cost, together with several

171
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cost estimates, are available. A fuzzy interval can be built to
synthetize the heuristic information; the branching is carried
out by comparing fuzzy intervals. Another situation is when the
input data are imprecise. Data are then naturally represented
by fuzzy intervals, and induce fuzzy estimates. In both situa
tions one is led to compare fuzzy intervals in order to make a
branching decision. This problem has received attention by the
authors (Dubois and Prade, 1983b) previously, and finds here
some application to graph search strategy. To our knowledge, no
work using fuzzy intervals in combinatorial search has been
pUblished except an early attempt by Farreny and Prade (1982).
However, combinatorial problems with fuzzy constraint sets or
fuzzy goals have been solved in the past, especially via dynamic
programming (see Esogbue and Bellman, 1984, or Kacprzyk, 1982)
and more recently integer programming problems (Fabian and
Stoica, 1984; Zimmermann and Pollatschek, 1984) < In these works,
following Bellman and Zadeh (1970), a membership function is
built by aggregation of fuzzy constraints and goal sets, and
the question is then to find a solution with the greatest mem
bership grade. Formally, this is but a classical optimization
problem which our concern clearly departs from.

The flrst two sections are brief refreshers on graph search
and fuzzy intervals. Then the questions of multiple criteria
branching and combinatorial search with fuzzy data are successi
vely addressed, and illustrated on the traveling salesman
problem.

2. GRAPH SEARCH WITH HEURISTIC INFORMATION

Solving a combinatorial problem can be viewed as finding
a path in a directed graph, called the search graph, from a node
r called the root to a node t called the goal node, belonging
to a prescribed subset of nodes. The root is the representation
of the initial state of a system, or of the solution to a prob
lem (in the latter case it may be a possibly infeasible solu
tion or a set of unassigned decision variables). A goal node
embodies an admissible final s~ate of a system, or a feasible,
or even optimal solution to a problem. A path from the root to
a goal node is viewed as the set of elementary transformations
modelling the trajectory of the system, or the process of build
ing a feasible solution to the problem at hand.

The search graph, which can be interpreted as a state space,
is only potentially defined, in the sense that only the root and
the goals are explicitly available, together with a set of rules
which specify how to build the successors of a current node.
Sometimes goal nodes are described by means of constraints.

Using applicable rules on some node ("the father") creates
new nodes ("the sons"), together with an arc from the father to
each son. This is called node expansion. Each arc is valuated
by a cost which is supposedly a positive number. The cost of a
path is the sum of the costs of its arcs. An optimal solution
corresponds to a minimal cost path from the root to a goal node.
The graph search methodology consists in applying rules, where
possible, to nodes until a goal node is reached. As long as a
goal node is not reached, the main problem is to select the
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proper node to be expanded o

This choice can be driven by the knowledge of a so-called
evaluation function f, so that its value, f(n), at any node n
estimates the sum of the minimal cost from the root to node n
(denoted g(n» and the minimal cost from node n to a goal state
(denoted h(n»). g(n) is called the backward evaluation, and h(n)
the forward estimate. Let g*(n) (respectively, h*(n» be the
cost of an optimal path from r to n (respectively: n to t) .
Generally, an upper bound g(n) of g*(n) is available; it is the
cost of the best path from r to n which has been actually built
by the procedure. If the search graph is a tree, then g(n) =
= g*(n) = g(n). Upper and lower bounds of f*(n) are denoted f(n)
and ¥(n). respectively. An upper bound of f*(n) is availab!e is
soon as a feasible solution to the problem is available. f(n)
is the cost of the corresponding path and can be used to reduce
the width of the search graEh by pruning pending (= not expand
ed yet) nodes n' such that f(n) ~ f(n'). An estimate f(n) which
is not established as an upper or lower bound is called
heuristic.

A graph search procedure can then be defined as follows,
when the search graph is a tree (otherwise, see Nilsson, 1980)

1 - Start with the root r. Put it on a list PENDING.
2 Create a list EXPANDED which is empty.
3 If PENDING is empty, exit with failure.
4 Select the first node n in PENDING, put it on EXPANDED.
5 If n is a goal node, exit successfully with the path

from r to n.
6 Expand node n, generating a list M of nodes (They are

new ones due to the tree assumption); add members of
M to PENDING.

7 - Reorder the list PENDING according to f(n).
8 - Go to 3.

If h(n) ~ h*(n) V n, then such an algorithm is called A*
by Nilsson (1980) and has interesting properties: it terminates
in a finite number of steps (if the cost of each arc is bounded
from below by a positive number); when it terminates, either it
provides an optimal path (exit 5) or such a path does not exist
(exit 3). The algorithm is then said to be admissible. When h(n)
is only heuristic, then the optimality of a solution discovered
by the algorithm is no longer guaranteed. However, the use of a
heuristic evaluation may enable such a solution to be discover
ed faster than using a bad lower bound h(n) (for instance h(n)
= 0 only produces a uniform-cost algorithm). Besides, if for
each node n, a dedicated upper bound h(n) is available together
with a lower bound h(n), then it is possible to cancel nodes
in PENDING in step 7 by pruning. Pruning is only heuristic if
only a heuristic estimate is available.

In the following, we shall try to synthetize all the avail
able information concerning the value of h*(n), in order to
allow for a more elaborate reordering of PENDING in step 7 ioe.
reordering in terms of the whole information, not only a single
heuristic term. Por this purpose we need the notion of a fuzzy
interval.
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NoB. A* algorithms are very close to branch and bound algorithms,
long since used in operations research (see Geoffrion and
Marsten, 1972 for an old but yet excellent introduction).

3. FUZZY INTERVALS

A fUzzy interval is a fuzzy set (Zadeh, 1965) of real num
bers, denoted M, with a membership function ~M{WhiCh is unimodal
and upper semi-continuous, that is VOE]O,1J.MO= rlllll(r) ~ O}

(the a-cut of M) is a closed interval (cf. Fig. 1).

o

Fig. 1.

-------- R

A fuzzy interval generalizes the conc€pt of a closed in
terval, including that of a real number. It may model the range
of some variable x with more sophistication than a usual inter
val. tlamely, the support S(M) = {rIIlM(r) > o} is the widest

range for x (x cannot take values outside S(M», while the
peak M ={rIIlM1r) = 1 }is the set of most plausible values of x,

called modal values. Interval analysis (Moore, 1966) generali
zes to fuzzy interval analysis by Zadeh~s extension principle
(e.g., Dubois and Prade, 1980, 1985c): Let * be an operation
between real numbers, M and N two fuzzy intervals associated
to variables x and y respectively, the fuzzy range of x*y,
denoted by M*N,is obtained by

~M*N(w) = sup{min(uM(U),UN(V))I u*v = w} (1)

This formula can be derived by applying the rules of compu
tation of possibility theory (Dubois and Prade, 1980; Zadeh,
1978), and assumes that x and yare not linked (non-interactive).
As soon as the supremum is attained in (1), we have

(~*N)O = Ma*N a ={u*v I u E Ma , v E No}

which is interval analysis.

The operations used in classical graph search algorithms

(2 )
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are addition and comparison. Ue shall assume that the involved
fuzzy numbers are all of the same type, i.e. there are shape
function L, R, modal values m, mER, spreads a,~ ~ 0 such
that -

u ~ ill

u ~ ill

~ (u) = L(lli - u)
H a

m : ~H (u) = 1

~M(u) = R(u ~ m)

where L (or R) is an upper semi-continuous monotonic function
with L(O) 1, 1> L(x) > 0 'I x E (0,1), L(x) = 0 'I x > 1. H
is said to be of type L-R and denoted (m, ~,a'~)LR. Closed

intervals are modelled by a = ~ = O. If moreover N = (n'~/Y/~)LR'

we have (Dubois and Prade, 1980)

M+N (3 )

when * is the addition in (1), i.e. M+N is still of the L-R
type.

The comparison of fuzzy intervals can be carried out con
sistently with interval overlapping analysis, in the setting
of possibility theory (Dubois and Prade,1983b). Let M and N be
usual intervals [m,m] and [n,n]. We consider four respective
locations of M and N: -

i) 'Ix E M, 'I Y E II, x > y (equivalent to m > n)

ii) 'Ix E M, 3 Y E N, x >; y (equivalent to m >; ~)

iii) 3x E M, 'I Y E N, x > y (equivalent to m > n)

iv) 3(x,y) E MxN, x >; y (equivalent to m > ~l"
These are the only four possible statements expressing that
"M is greater than N". i) is the strongest one and means that
M is on the right of N and does not overlap it. iv) is the
weakest statement, and means that finding x at least as great
as y is possible (simple overlapping). Statements ii) and iii)
are implied by i) and each implies iv); they,respectively,re
fer to least and greatest values of x and y ,

If M is a fuzzy interval describing the range of a variab
le x, then [M, +00) and ]M,+oo) denote the fuzzy sets of number~

respectively, greater or equal to x, and strictly greater than
x. They are defined by their membership functions:

~[M, +00) (u)

~]M,+oo) (u)

SUP{~M(X)

inf{l-~M(xl

u >-- x}
u ~ x}

(4 )

(5)

l-~(_=,M] (u)

where l-~F defines the membership function of the complement F
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of F. If M is an interval, [M, +=) (iii,+=) 0

R
..

---------JM,+oo

o

-+--------------zr-~~~~r-~ - - - --- J ,1-----------
/ / I -- - [M,+oo'

/ M 'I
# 1/

-1- ' I
=~==f~~~--

Fig. 2.

The extent to which M is greater than N can thus be discussed
in terms of overlapping or inclusion of M in [N,+=) or [N,+=) 0

The extent to which an overlapping between fuzzy sets F and G
exists is assessed by the following index (Zadeh, 1978)

n(F;G) = sup min(PF(u), PG(u») = n(G;F)
u

(6 )

called possibility of the fuzzy event F (given G) or G (given
F). The quantity N(F;G) = l-n(F;G) can be used as a grade of
inclusion of G in F, and is called the necessity of the fuzzy
event F (given G) (Duuois and Prade, 1985a). Namely

3u, PF(u) = PG(u) = 1 n(F;G) =

F n G = Y;~n(F;G) = 0

PG ~ PF(Zadeh fuzzy set inclusion) ~ N(F;G) ~ 0.5

S(G) <;; F .. N(F;G) = 1.

The four following indices were suggested in Dubois and Prade
(1983b) to assess the extent to which 1\ is greater than N:
Nec(~ > ~) = N(]N,+=);M); Nec(~ ~ y) = N(]N,+=) ;M); Pos(i>~)=

=IT(]N,+=) ;M); Pos(x >/ y) = "'(]N,+=) ;M). ~ (resp. i) is short

for the least (resp.: greatest) values of x. Nee and Pos are
short for necessity and possibility. These four indices are
fuzzy counterparts of statements (i-ivl since:

i) is true_Nee (~ > ~)

ii) is true~Nec(~ ~ y)

iii) is true<=:>Pos (i > ~)

iv) is true~Pos(x >,.. y)
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The links between properties relating (i - iv) are reflected
in the following inequalities:

177

Pos(x >, y) >, max(Pos(x > y),Nec(~ ~ y)

Nee (~ > y) ,< min (Pos (x > y), Nee (~ ~ y)

(7 )

(8 )

Moreover,the following dependencies can be observed when M and
N are exchanged in the indices:

pos (x ~ y) = 1 - Nec(y > x) (9 )

max(Pos(x >/ y) , Pos (y >/ ~) ( 10)

Pos (x > y) + pos(y > x)= ( 11 )

Nec(~ >/ y) + Nec(y ~ ~)= ( 12)

(11) and (12) may fail to hold in pathological configurations
(e.g. M and N are not fuzzy, ~ = ~, and then Nec(~ > y)
Nec(y > ~) = 1). From a computational point of view, obtaining
the index values is a simple matter of intersecting membership
functions ~M' UN' 1-uM, 1-uN. The soundness and intuitive ap-

peal of the approach to the ranking of fuzzy intervals, based
on the four indices has been experimentally checked by Degani
and Bortolan (1985).

4. FUZZY BRANCHING IN TREE SEARCH

A drawback of search algorithms based on a single evalua
tion function is that one uses only part of the available in
formation in many cases. When both a lower bound h and a
heuristic estimate h are at hand, it may not be interesting
to ask whether h or h must be chosen to guide the search for
a new node to expand. A more relevant question may be how to
use both items of information. Similarly the knowledge of an
upper bound h on the cost of an optimal solution can be useful
not only for pruning purposes, but can also be involved in
the branching decision.

The idea of using an upper and a lower bound to guide the
search is not new. A similar concern appears in Berliner (1979),
in the framework of 2-person searches, where one player tries
to maximize a given function while the other tries to minimi
zes it. For tree search algorithms considered in this paper,
the following facts are easy to establish:

- If the upper bound h(n) of a node is available, then the
upper bound associated to any ancestor n' of n can be
updated as min(h(n') ,h(n»)

- If the lower bounds h(n') of all sons n' of n are avail
able, the lower bound of n can be updated as
maxImin h(n') ,h(n)

n' - -

Hence, as the search tree develops, it is possible to shrink
the intervals [~(n),h(n)] each time newly expanded nodes are
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where H(n) = [h(n), h(n)],
if several heuristic estima
is the interval bounded from
by the least (respectively:

evaluated. If, eventually. there is_a son n of the root such that
for any other son n' of the root h(n) ~ min ~(n'). then the op-

n'
timality of arc (r,n) is proved and all n' can be pruned. This
remark applies also to all subtrees of the search tree, and is
the basis of Berliner-s (1979) B* algorithm.

Knowing h(n) and h(n), any estimate h(n) of the form
oh(n) + (l-o)-h(n) is a heuristic forward evaluation (oE[O,l]).
The value of 0 may reflect the tightness of the lower bound
with respect to the tightness of the upper bound. An idea to
preserve the possible branching efficiency of the heuristic
term, while keeping the optimality checking capability of the
B* algorithms is to synthetize the available information re
garding node n under the form of a fuzzy interval F(n) restric
ting the estimate variable f(n), and defined as follows:

- Its support is g*(n) + H(n)
- Its peak is g* (n) + h(n)

tes are available, the peak
below (respectively: above)
greatest) estimate value,

- The membership function is triangular or trapezoid
shaped, accordingly.

The problem of ranking pending nodes for further expansion
becomes less trivial. It requires a ranking of fuzzy estimates
of the cost to be performed. Using the results of section 3, we
can proceed in the follOWing way:

- For each node n belonging to the set P of pending nodes,
define four dominance indices expressing the extent to
which fIn) is smaller than other fIn'), n'E P - {n}; let
k(n) = min f(n); the four indices are:

n',n

Ij(n),j = ~ respectively defined by:

I 1 (n) =tlec(k(n) > fTi1l); 1 2 (n) = Necl!U!l) ~f(n»

1
3

(n) = Pos (k (n) > f (n»); 1 4 (n) = Pos (k (n) ~ Ll.illJ
- These four indices equip P with a partial ordering{struc

ture, which is that of the set of vectors I(n) = II (n),

1
2

(n), 1
3

(n), 1
4

(n) I n E P}. Find the set H of maximal

elements of P (in the sense of Pareto-optimization).
M contains the set of nodes to be further expanded.

The fuzzy interval K(n) associated with variable ml'n fIn)
n',n

is defined by the extension principle, substituting 'minimum'
to * in (1). In order to account for the convention of linear
membership function, a reasonable approximation is to define
K(n) as a trapezoid-shaped fuzzy interval such that (Dubois and
Prade,1985a)

o ,..- 0

K (n) = min F (n')
n' ,n

S (K (n» min S(F(n'))
n',n
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min ([a,b], [c,d]) = [min la,c) ,min(b,d)]

179

( 1 3)

The advantages of this tree search methodology seem to be the
following:

- reduction of the horizon effect: it is well known that
the ordering of node evaluations at a given level of depth 1 in
the search tree may be misleading in the sense that the ordering
of nodes at level 1+1 can be completely different. Hence best
first strategies selecting only one expandable node may lead to
explore non-optimal paths too far ahead. The selection in terms
of fuzzy estimates is a "limited-breadth" strategy which only
leaves behind pending nodes which are dominated in terms of the
4 ranking indices. Hence the horizon effect is coped with. It
is also possible to discriminate further in the set 11 of non
dominated pending nodes, if we use, as done by Pearl and Kim
(1982), an estimate of the computational effort required for
completing the search. For instance, if n, n'~ M and the depth
level of n is significantly greater than that of n', it may be
better to expand n first and get a solution earlier.

- bring together the merits of admissible algorithms and
the efficiency of heuristic search. Indeed, because the peak of
F(n) reflects the heuristic evaluation, the value of the ranking
indices is more influenced by this evaluation than by the upper
and lower bounds. The latter intrDduce a perturbation in the
ranking only if they significantly contradict the ordering along
the heuristic estimate. Hence, if a good heuristic estimate is
at hand, a feasible solution will be found fast. On the other
hand, the support of the fuzzy estimate is useful for optimali
ty-proving by updating the fuzzy estimate supports of ancestors
of pending nodes as done in the B* algorithm (Berliner, 1979).
Optimality-proving is achieved by considering index 1

1
since

it checks for disjointness of fuzzy intervals.

5. TREE SEARCH WITH FUZZY DATA

In this section, we assume that due to incomplete know
ledge regarding the data of the considered problem, the elemen
tary costs involved in the evaluation function f are available
under the form of error intervals. Evaluation estimates are
then obtained by means of the rules of interval analysis (Moore,
1966) (see (2»). In order to adapt tree search algor i thms to in
terval-valu~d estimates, three questions must be answered.

- "hat can be the branching strategy?
- What is a reasonable stopping rule for the algorithms?
- What are the properties of the obtained results?

The choice of a node to expand is a matter of comparing
the respective location of intervals of the form F(n) = [f(n),
fIn)] for n E P. But the meaning of this in~erval is quite dif
ferent from the meaning of interval [f(n), f(n)] used in the
previous section. In the case of an A* algorithm, F(n) is the
possible range of the lower bound of the cost of the best solu
tion of the subtree rooted in node n; this range reflects the
imprecision of the data and is not the range of possible costs
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of the best solution rooted in node n. Particularly, F(n) does
not allow for optimality-proving as in the B* algorithm.

In order to rank the set{ F(n) In E p>, we consider the
four points of view expressed in statemenfs (i) - (iv) of sec
tion 3, applied to F (n) and min F(n'), vn E P, i.e. the four
selection criteria can be used for each n' 1 n,

n E P:

C1 - select n such that min ~(n') > f(n),
n1n'

C2 - select n which minimizes ~(n),

C3 - select n which minimizes f(n),

C4 - select n such that min f(n') ~ t(n).
n1n'

~f C1 is verified for some n E P, the evaluation F(n) is
certainly better than the evaluation of other nodes, in spite
of the imprecision. However,if n satisfies only C4, F(n) is
only pcssibly better than other evaluations. Let Iii be the sub-

set of pending nodes satisfying Ci , then M1 S M2 n M3 , M2 U M
3

S M
4

• M
1

contains at most one node and can be empty, while M
4

is never empty but can be P itself. Hhen n E 11 2 n M
3

, one may

write, introducing a new selection criterion

C23 : min F(n') = F(n)
n'EP

where m~n is defined by (13). This criterion is less drastic
than C1 (intervals may overlap) but intuitively satisfactory.
C2 and C3 rank intervals according to their lower and upper
bounds, respectively, and cannot be compared, while C1, C23 and
C4 are decreasingly demanding in this order. It is natural to
select nodes to be expanded on the basis of the most demanding
criterion which is able to discriminate among pending nodes.
If C23 does not discriminate, C2 will be given priority~over

C3 if there is some evidence that the lowest values in F(n) are
more plausible than the greatest values. Hence the selection
procedure can be summarized as follows:

- Find M1 ; if M
1

1 ¢, M = M1
- Find M2 , M3 ; if M2 n M3 1 ¢, M = M2 n M3
- If C2 has the highest priority M = M2 otherwise M = M3
- If no priority has been assigned, M = M2 U M

3
.

Note that M2 1 ¢, M
3

1 ¢ anyway, so that criterion C4 is not

useful for the branching strategy. A further refinement in the
selection of the nodes to be expanded can be introduced on the
basis of other evaluations (for instance,the proximity to a
solution) •

When a terminal node is reached, thus yielding a solution,
one may wish to keep on searching when the stopping rule used
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too weak a criterion. Indeed,each of the above introduced cri
teria can be used as a stopping rule, once a node has been
acknowledged as meeting the constraints which define feasibili
ty. However, because M

1
and M2 ~ M3 can be empty, there may not

exist any optimal termlnal noae in the sense of criteria C1 or
C23. In that case the algorithm may never stop, or stops
proving no optimal solution exists (if the search tree is
finite). Hence when an admissible algorithm (such as A*) is
used with fuzzy data, optimality becomes uncertain, depending
upon the stopping rule criterion; if C4 is adopted, then the
algorithm stops earlier but the obtained solution is only pos
sibly optimal. If C1 is adopted, then if the algorithm comes up
with a solution it is optimal with certainty; but such a solu
tion may not exist. Intermediary criteria C2 and C3 provide
sure optimality only with respect to lower or upper estimates
of the data.

Now the data can be available under the forQ of fuzzy in
tervals as well, and the ranking indices introduced in section
2 can be used to deal with the admissible algorithm in a fuzzy
environment. Once again the interpretation of the fuzzy esti
mate F(n) is quite different from section 4; F(n) only reflects
the imprecision of the data and its support is not the range
of costs of solutions rooted in n. As a branching rule, Farreny
and Prade (1982) suggested the selection of pending node n such
that:

F(n) '"mln
n'EP

F(n' ) ( 14)

where min is the minimum operation extended to fuzzy arguments
by (1). However, such a nodemay not exist, because the fuzzy
interval min(M,N) may be neither M or N (see Dubois and Prade,
1980); in that case any pending node may be expanded! Moreover
(14) is a very strong selection criterion because it is equi
valent to the simultaneous application of criterion C23 to all
a-cuts of the fuzzy evaluations.

Another idea is to select a node to expand by means of the
four ranking indices, as done in section 4. Note that although
the fuzzy estimates of the cost do not have the same interpre
tation, the same branching methodology applies, i.e. to build
the set M of non-dominated elements in P. Note that this stra
tegy is consistent with the selection procedure used in the
case of usual intervals since;

- if 1
1

(n) = 1r then from (7) and (8), I (n) = (1, 1, 1, 1)

and n E M. Moreover, V n' F n, 1
1

(n') = 0 SO that M = M
1

= {n}.
- if V n,I 1 (n) = 0, but 3 n:I 2 (n) = 131n) = 1, then from

(8) n EM and M M2 n M3 is easy to conclude with.

- If V n, 1 1 (n) 0 = min (I2 (n) , 13 (n) ), then if 1 2 (n) 1 ,

node n is not dominated (I(n) = (0, 1, 0, 1» and if

13 (n) = 1, node n is not dominated either (I(n) ~
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(0, 0, 0, 1) n is dominated;(0, 0, 1, '); but if I(n)
thus M = M2 U M3 .

i.e. choosing M as the set of candidate pending nodes for ex
pansion reduces to the selection procedure of nodes with in
terval-valued estimates when no priority has been assigned to
C2 and C3. Such a priority assignment can reduce the set of
candidates (to M. ={nlvn' I.(n) >,. I. (n')}, i = 2 or 3) in the
fuzzy case too. l l l

As previously, a stopping rule can be defined by choosing
one of the ranking indices Ii' and searching for a terminal

node n such that Ii(n) is greater than some threshold 8 > O.

The counterpart of criterion C23 is the rule 1 23 (n) = min(I 2 (n),

1 3 (n») > 8. Once again with I, or 1 23 the stopping rule may

never apply to any terminal node. 8 can be interpreted as a
grade of certainty of optimality (if I, is chosen) or possibi
lity of optimality (if 1 4 is chosen); etc •••

Example. Consider a traveling salesman problem with a non
directed graph G defined in Fig. 3.a, together with edge costs
Cij of edges (Si,Sj):

SI

So S4 So
S4

S3
S3a. b.

Fig. 3

Using any A* algorithm, it is easy to obtain (SOS,5 2S4 S35 0 ) as

an optimal Hamiltonian circuit, with cost ". In Fig. 3.b, the
data, i.e. the edge costs, become fuzzy, here interval-valued.
We consider an extension of an A* algorithm defined as follows:

- Any non-terminal node n of the search tree is a path in
G of the form SjO Si1 .•• 5ik containing no circuit. The

root is SiD = SO' A terminal node is a length-N(=5)

Hamiltonian circuit, i.e. k = 6, 5 i6 = SO'

- Node expansion consists in adding one edge at the end
of the path corresponding to the node to be expanded.
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A lower bound !(n) is obtained for n

as (Pearl and Kim, 1982):

k
r C. ,+ r min Ci . l

j=1 lj_1
l

j H:{1,2, ... ,k} 1 J
( 1 5)

in the case of precise data. With interval-valued costs
Cij ' the rules of interval analysis are applied to (15),

and yield F(n).

The branching rule is to select pending nodes according
to criteria C1, C23, C2, C3, C4 in this order. When
several nodes are selected, the left-most one only is
expanded if they are of the same depth level.

- The stopping rule is based on criterion C23.

The obtained tree is given in Fig. 4 Note that the same Hamil
tonian circuit is obtained as in the case of precise data (note
that G in Fig. 3.a is a special instance of the interval-valued
graph) in spite of imprecision. Criterion C23 is indeed satis
fied for node (SOS1S2S4S3S0)' against the 10 other pending nodes
at the end of the search. Note that if only C2 had been used as
a stopping rule, only 9 nodes would have been expanded. Besides
it is clear that using a branching strategy based solely on C2
(respectively: C3) (as well as the stopping rule), yields the
regular A* algorithm with edge costs equal to the lower (res
pectively: upper) bounds of the cost intervals, i.e. we are
back to the precise data case. More particularly if the optimal
solutions obtained using C2, then C3, correspond to one Hamil
tonian circuit (at least), this circuit is optimal for C23 and
is obtained by the extended A* algorithm with C23 as a stopping
rule. This is what happens here. Note that an optimal solution
in the sense of C1 does not exist since the sons of 9 and 16
are not comparable with respect to C1.

6. CONCLUSIONS

In this paper, we have discussed the possible use of fuzzy
intervals in graph search methods. Not only can these methods
be extended to deal with fuzzy data, but the concept of a fuzzy
interval might be useful to synthetize the available branching
information and guide the search strategy in an attempt to im
prove upon previous approaches. The types of extension of graph
search methods proposed here clearly differ from search proce
dures based on non-additive evaluation functions as studied by
Pearl(1984) or Yager (1986). The preliminary nature of this
paper is not hidden: computational experiments with fuzzy in
tervals should be run in the immediate future in order to verify
conjectures regarding efficiency of the fuzzy branching stra
tegy. Both extensions, presented in sections 4 and 5,respecti
vely, do not compete with each other. One may be interested in
applying a fuzzy branching strategy to a problem with fuzzy
data. In that case intervals containing the optimal solution
costs would be intervals with fuzzy bounds. Processing this
~ype of information requires the concept of a twofold fuzzy set,
Dubois, Prade (1983, 1985bL
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LINEAR REGRESSION ANALYSIS BY POSSIBILISTIC HODELS
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Abstract. Fuzziness must be considered in systems where
human estimation is influential. Since Zadeh has intro
duced the concept of possibility, fuzziness of system
equations has been grasped by possibility distributions.
Possibilistic linear systems have been studied as fuzzy
arithmetic operations of fuzzy numbers by the extension
principle. In this paper, possibilistic linear systems
are applied to the linear regression analysis which is
called possibilistic linear regression. In the back
ground of usual regression models, deviations values
are supposed to be due to observation errors. Here, on
the contrary, it is assumed that these deviations de
pend on the possibility of parameters in systems struc
ture. More specifically, linear systems with parameters
of fuzzy numbers are considered as possibilistic linear
models. The estimated values obtained from the possibi
listie linear model are fuzzy numbers which represent
the possibility of the system structure, while the con
ventional confidence interval is related to the obser
vation errors. This possibilistic linear regression
analysis might be useful for finding a fuzzy structure
in a fuzzy environment.

Keywords: linear regression analysis, possibilistic
linear regression, possibility theory,
possibilistic linear models.

1. INTRODUCTION

Linear regression analysis is an important and general
method to analyze situations in which one observed variable is
assumed to be a linear function of other variables. Statistical
regression models are constructed in the framework in which the
difference between observed data and estimated values comes
from the statisti~al observation error.

100
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Tanaka, Kejima and Asai (1982) have proposed fuzzy regres
sion analysis based on fuzzy set theory. In that fuzzy regres
sion model the difference between observed and estimated values
is not considered as a statistical error, but is assumed to re
sult from the fuzziness of a system structure itself. Regarding
the deviation between the data as the reflection of fuzziness
on system parameters, the fuzzy structure is represented as a
linear function with fuzzy parameters, which is called a fuzzy
linear function.

In this paper we give a possibilistic interpretation to
a fuzzy regression model. The possibilistic concept in fuzzy
sets theory has been discussed in many articles since its pro
posal by Zadeh (1978). In the possibilistic regression model,
fuzzy parameters expressed as fuzzy numbers represent possibi
lity distributions of parameters. Furthermore, the possibility
of the value of a fuzzy linear function can be calculated from
the viewpoint of possibility measure (Zadeh, 1978). The possi
bilistic linear regression analysis is formulated by a fuzzy
linear function as a model of the possibilistic structure of
systems. The fuzzy linear function is calculated from possibi
lity distributions of parameters by the extension principle
(Dubois and Prade, 1980; Negoita and Ralescu, 1975; Zadeh, 1975)
which can also be explained in terms of possibility measure.

A decision problem concerning the number of local public
service workers is considered as an application. Generally, the
number of the staff is determined through the analysis of the
staff's individual duties, but here we have analyzed the number
of the staff of local governments in the Osaka Prefecture by a
possibilistic linear model. This model tells us whether the
number of public service workers of some city is determined on
the same basis as that of similar cities. It is understood in
this example that real data are interpreted through a fuzzy
linear function taken as the model.

2. POSSIBILITY DISTRIBUTION AND POSSIBILITY MEASURE

Zadeh (1978) has proposed possibilistic interpretation of
a fuzzy set wherein a possibility distribution is defined by
a membership function of a fuzzy set.

"middle agel!

1.0

0.7

0.0

o 10 20 30 40 50 60 70 80

Fig. 1. Fuzzy set "middle age"
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Let us consider the proposition "John is middle aged".
where "middle age" is defined as a fuzzy set in R characterized
by a trapezoidal membership function as shown in Fig. 1. In Fig.
1, consider a numerical age. say 37. whose grade of membership
in the fuzzy set "middle age" is 0.7. This grade 0.7 can be in
terpreted as the degree of possibility that John is 37. given
that proposition "John is middle aged".

Let F be a fuzzy subset of a universe X whose membership
function is denoted by PF(x). Given a proposition "u is F".

t.he degree of possibility that U=X is denoted by nIx) and is
defined to be numerically equal to the membership of x in F.
i.e ..

11 (x) = P
F

(x) (1)

where u is a variable on the universe X. Given a possibility
distribution n(x). a possibility measure of a crisp set E is
defined as

n (E) sup nIx)
xEE

(2 )

In a similar way. the possibility measure of a fuzzy set A is
defined as

n(AI SUp! P
A

(x) A n (x))
xEX

(3 )

1.0

n(A)

0.0

Figure 2 illustrates a possibility measure.

x

Fig. 2. Possibility measure of a fuzzy set

A possibility measure has the following properties:

(i)

(ii)

(iii)

n
X

(\1» o.

nx (A 1 UA21

nX(X) = 1

nx (A
1

) v nx (A
2

)

(4 )

( 5)

(6)

(iii) derived from (ii) shows that nx is monotonous. Let
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us denote a possibility space (Nahmias, 1978; Sugeno, 1983) as
(X,9i: (X), nx (.)), where ~ (X) is a set of all fuzzy subsets

of X. Given two universal sets X and Y and a function
f:X -> Y, a possibility space (Y,';l\"(Y), ny (.)) can be induced

from the given possibility space as follows:

Denoting set E as E={(xIY=f(X)}, a possibility dis
tribution of y is induced from nx (.) as

(7 )

which can be rewritten by the definition of possibility measure
as

ny(y) = sup nx(x)
{XIY=f(X~

Hence, we have for B E ~ (y)

ny(B) = sup (~B(Y) ~ ny(y»)
y

(8 )

(9 )

which leads to a possibility space (Y, 'J;:'(Y) ,ny (.». (8) brings
about the relations:

, , -~~

" " f BA '\ /-......... ,
/ O.2/x1----\;- I \

I \ ---------L \

I O.3/x2
Yl I, I I\ I \

\ O.4/x3 Y2
I

, I \ I, / \ /"- /' " ----~-

X Y

A = O.2/xl+O.3/x2+0.4/x3

-1
f (B)= 0.3/x1+O.3/x2+0.4/x

3
f------. B

f (A) = B

f- l (B) A

Fig. 3. Mapping of a fuzzy set

rsup IlA (x)
{x I y=f (x~

IlB (y) =

o
IlA (x) IlB (f (x)

otherwise

(10)

(11 )
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yinBx, for the fuzzy set

nx(A)~ny(B).f(A) = B, we havesuch that

Figure 3 explains briefly the above-mentioned relations.

Relating to the function f: g;: (X) --.-;r; (Y), we have the pro
perties:

(i) Given a fuzzy set A in

(ii) Given a fUzzy set B in Y, for the fuzzy set A in X

such that f- 1 (B)=A, we have nx(A)= ny(B).

These are proved as follows:

( i) n y (B) = sup{ ~B (y) td\ (y)}
Y

sup{ Pf (A) (y) 1\ ny (y)}
y

sup{ sup PA (x) 1\ sup nx (X)}
y y=f(x) y=f(x)

~ sup sup {llA (x) 1\ nx (X)}
y y=f(x)

sup P
A

(x) 1\ nx (x)
x

(ii)

nx(A)

sup{PB(y) 1\

y

sUP{ ~B (y) 1\

y

SUP{llA(f(X)
x

sup nx (x)}
y=f(x)

1\ nx(x)}

= sUP{ P -1 (x) 1\ nx (Xl} = nx (A)
f (A)

A fuzzy function whose parameters are fuzzy numbers is
denoted by f(y,A). By the above-mentioned relation (10). the
fuzzy number of Y=f(y,A) can be calculated as

py(y) = sup PAl a )
y=f(x,a)

where Py (y) =0 for the case of {a Iy=f (x,al}=(Il.

3. EXTENSION PRINCIPLE

( 12)

The extension principle introduced by Zadeh(1975) plays a
central role in dealing with a possibilistic model. It is a
method for extending nonfuzzy mathematical concepts to fuzzy
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quantities. Let us explain the extension principle for handling
possibilistic linear functions.

Definition 1. Let f be a mapping from the Cartesian product of
'Jniverses Xl and X

2
, X

1
)( X

2
to a universe Y such that

y=f(x
1
,x

2
). The fuzzy function of fuzzy numbers A

1
EX

1
and

A2 EX 2 is defined as

( 1 3 )

In the case that f is a binary operation * we have

( 1 4 )

A function whose parameters are fuzzy numbers

fined as

A
J

is de-

Now, let us define the form of a synunetric fuzzy number
sidered in this paper.

Definition 2. A symmetric fuzzy number Aj is denoted by

(CXj,C j ) and defined as

con-

a.-cx.
L(~l

c.
J

(16 )

where L(xl is a reference function satisfying:

(il

(iil

L(x)

L (0)

L(-x)

(iii) L is a monotone function which strictly decreases
in [O,+ao).

Example 1. Let us give some examples of the reference function:

max (0, l-Ix I p)

-!xI P
e

1/ ( 1+ I x I p)

where p > O. In the case when p=l, L 1 (xl=l-lxl, the membership

function of fuzzy parameter Aj is written as

Il
A

(a.)
j J

L(I aj-CXjl/C j )

1- laj-cxjl/cj (17 l
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Fuzzy parameters are defined by such fuzzy sets as
illustrated in Fig. 4. In Fig. 4, the fuzzy parameter Aj is

~

1.0

0.0 -'-----,1-'--------\------...3....-----..

c.
J

Fig. 4. Fuzzy set of parameter Aj:Ajc"approximately 0:. 11

J

denoted as (OJ'C
j
); where 0 j and c

J
stand for the center

and width of fuzzy set Aj , respectively.

Theorem 1. Given a fuzzy parameter A = (o,c), 1, ••• ,n, the
fuzzy linear function

( 18)

( 19)y 0

y t 0

is obtained as the following membership function (Tanaka, Uejima
and Asai, 1982)

ulyl ~C y-,ul/oN 'L : : : ::

where Ixl= (lx11"'Oflxnl) and \ly(Y)=O, when c'lxl<ly-x' (,

and c~ x' denote the transpose.

This type of fuzzy linear function can be symbolically
rewritten as

In contrast to the above, the linear function whose para
meters are Gaussian random variables can be symbolically written
as

N(1l1' b~)x1 + ••• + N(lln,I>;)xn N(\l'X, (6
2

)x) (20)

2 2 2
where G = (b 1 ' •.• , r; n) •

The above calculations are similar in form, but their
meanings are different as reflected by t~e terms "Possibility"
and "Probability", respectively. Hence, the fuzzy output Y is
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calculated in view of the possibility of parameter A.

3. POSSIBILISTIC LINEAR REGRESSION HODEL

In ordinary linear regression models, data such as shown
in Table 1 are given and the coefficients of a linear function
are determined so as to coincide well with the data. Let a li
near regression model be y=a'x. In this case the difference
between the estimated values and the data

( 21)

(22)

is considered to be the observation error, where x i =(x i1 ' •• o'

x in ). In the possibilistic linear regression model of this pa

per, deviation of data from a linear model is supposed to be
due to the possibility of the parameters of the linear function.
The problem here is to choose a fuzzy linear function

Y = A1x 1 + ••• + Anxn

as a model and to determine the fuzzy parameters A so that the
output Yi may be contained in the estimated fuzzy set

Yi A xi to more than to a certain dearee.

We will obtain the fuzzy number A of a parameter vector
in a linear model which fits well with the ordinary data as
given in Table 1. The following are supposed to obtain a possi
bilistic linear regression model:

Table 1. Input-output data

Sample Output Input
Number Yi xi l' x i2 ' ... , x.ln

1 Y1 x 11 ' x 12 ' 'OJ • 'OJ , x 1n

2 Y2 x 21 ' x 22 "···, x 2n

· · . ·. · · . ·. · · ·
N YN x N1 ' xN2 ' ... , xNn

given by L1 (x) with p=1.

(iii) Given input-output relations

threshold h, it must hold that

(ii) The type of fuzzy parameter A. denoted as
J

11 *(y.) ~ h
Y. 1

1

i = 1, .•• ,N (23 )
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*This means that the estimated fuzzy set Yi contains the ob-

served values Yi at least to the degree of more than h.

(ivl The index of fuzziness of the possibilistic linear model
is

+ ••• + k c
n n

(24)

I
I y i-x

data are contained in the
h degree, (i)-(iii) and

where k j is a weight parameter.

Given the condition that all the
possibilistic interval with more than
(19) lead to the following inequality

n
~ (1-h) L c

J
' IxiJ.1

j =1
i=1, •.• ,N (25 )

The possibilistic linear regression model
fuzzy parameters A = (0, C) that minimize s
to constraints (25). Given a threshold h, this
the three linear programming problems:

is obtained by
in (iv) subject

problem leads to

+ ••• + k c }
n n

(26)

subject to:

( 1-h)

n
(1-h) L c

J
' Ix .. 1 - xo ~Yi

j= 1 1J

(27)

The possibilistic parameters Aj = (OJ'C j ), j=1, ••• ,n,

can easily be obtained by solving the above linear programming
problem. As for threshold h, it should be noted that if suffi
cient sample numbers are given, we can set h=O in terms of
possibility. In this case, only the possibility given by the
data is considered; if the given sample number is half as com
pared to the ideal one, it is suggested from theorem 5 that
h=O.5. This means that the Y is obtained at h=O.

Another type of a possibilistic regression model (Tanaka,
Shimomura, Watada and Asai, 1984) has been formulated by mini
mizing the maximum fuzziness among all parameters.

4. APPLICATION

Let us consider a problem of determining the number of the
staff of self-governing bodies in the Osaka Prefecture by means
of possibilistic linear regression analysis. Thirteen cities
which are considered to be small or middle sized were chosen
from the self-governing bodies in the Osaka Prefecture, as
shown in Table 2 (see Annual Reports ••• , 1979a, 1979b). The
sample numbers 1-13 in Table 2 are used for constructing a
possibilistic lir,ar regression model, and cities 14-24 are
taken as new samples. As explanation variables, total revenue



N
u

m
b

er
o

f
T

o
ta

l
S

ta
te

o
f

S
ta

te
o

f
C

it
y

S
ta

ff
R

ev
en

u
e

P
o

p
u

la
ti

o
n

U
ti

li
z
a
ti

o
n

C
o

m
m

it
io

n
to

o
f

C
o

m
p

u
te

r
O

u
ts

id
e

1
:
Iz

u
m

i
'1

58
1

1
9

5
5

0
3

9
2

1
2

1
7

2
9

13
5

2
:I

z
u

m
io

ts
u

8
6

3
1

0
4

4
4

0
6

6
6

6
8

1
4

8
9

5
(I

l
3

:K
a
iz

u
k

a
9

1
3

1
0

2
2

4
6

8
3

8
0

9
7

2
18

4
IlJ S

4
:K

a
sh

ih
a
ra

6
4

2
8

8
0

9
7

0
3

6
7

3
4

9
18

6
'0 I-

'
5

:K
a
ta

n
o

5
3

7
7

5
8

4
8

7
0

5
9

2
1

3
10

6
ill

6
:K

ad
o

m
a

1
4

0
7

1
7

8
4

9
2

0
5

1
4

2
2

2
6

12
7

H
1

7
:K

a
w

a
c
h

in
a
-

0 'i
g

a
n

o
5

3
6

1
0

8
4

9
9

6
9

7
4

3
9

8
15

7

~
8

:K
is

h
iw

a
d

a
1

9
1

4
2

6
5

6
7

2
1

7
1

7
6

5
7

5
8

7
0-

9
:S

h
ij

o
n

a
w

a
te

4
9

0
8

3
2

1
9

3
5

5
2

2
8

9
8

2
ill

1
0

:T
a
k

a
is

h
i

6
0

7
9

5
2

1
8

9
4

6
6

9
1

7
21

6
I-

' ,...
11

:H
a
b

ik
in

o
7

2
3

1
1

9
7

6
7

8
1

1
0

1
5

3
8

12
4

::;
1

2
:F

u
ji

id
e
ra

5
3

5
8

2
2

6
6

2
6

6
2

6
1

4
9

7
cO

1
3

:M
a
ts

u
b

a
ra

1
1

1
4

1
7

0
0

3
0

7
6

1
3

5
9

2
9

9
6

1
4

:I
k

e
d

a
1

3
4

7
1

6
6

1
3

8
5

6
1

0
2

1
1

5
8

1
z

1
5

:I
z
u

m
is

a
n

o
1

1
3

4
1

1
6

5
0

1
9

2
8

9
3

1
7

7
4

ill
1

6
:I

b
a
ra

k
i

1
8

0
2

3
1

8
3

7
4

7
8

2
2

4
1

5
5

23
8

:(
1

7
:S

e
ts

u
7

7
8

1
1

5
5

4
9

4
2

8
0

7
8

0
16

10
(I

l
1

8
:S

e
n

n
a
n

4
7

3
8

1
6

8
8

2
9

5
0

6
8

2
8

11
IlJ S

1
9

:D
a
it

o
1

2
4

5
2

3
4

4
2

2
1

8
1

1
4

3
6

4
24

2
'0 I-

'
2

0
:T

o
n

d
a
b

a
y

a
sh

i
7

1
0

1
6

5
5

2
0

5
9

9
5

7
1

1
8

7
ill

21
:N

ey
ag

aw
a

2
3

7
5

3
5

0
1

0
1

7
6

2
5

9
3

6
4

9
9

2
2

:M
in

o
9

6
3

2
2

3
5

4
7

9
3

9
1

9
3

2
1

3
4

2
3

:M
o

ri
g

u
c
h

i
1

9
8

5
2

4
3

7
5

9
4

5
1

6
8

1
2

5
20

3
2

4
:Y

a
o

2
5

1
6

3
8

4
1

6
1

4
2

2
7

1
4

9
1

10
0

....J IlJ t
) I-
'

ill tv

1-
'>

-3
fo

'.
;T

::;
ill

ill IlJ
0-

'i
IlJ rT

r
'i

IlJ
Z

ill
m

cO
IlJ

)..>
'i

::;
;;J

J
ill

IlJ
;;J

J
U

l
I-

'
m

U
l'
<

C
l

fo
'.

N
;;J

J
o

ill
m

::;
0-

V
l

V
l

a
t
)

(5
0

'<
z

0-
:l>

ill
rT

Z
I
-
';

T
:l>

ill
r '<

'0
~

0
V

l
U

l
U

l
fo

'.
t
)

fo
'.

I-
'

fo
'.

U
l rT fo
'.

(]

«> '"



196 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

x
1

' population x
2

' state of utilization of computers x 3 ' and

state of commission to the outside x
4

are taken. Thereby a

possibilistic linear model which explains the real number of
the staff y is obtained. Here, the state of utilization means
the number of computerized duties from 51 duties performed by
the city, such as personal management, management of various
sorts of city rates and national pensions, management of water
supply and drainage. The state of commission to the outside
means the number of duties committed to outside traders from
18 duties, such as cleaning, levy of rental fee for public
housing and management of public facilities. The data in Table
2 are standardized in obtaining a possibilistic linear regres
sion model in practice.

In a fuzzy parameter A
J

(OJ'C j ) for each explanation

variable x
j

' OJ ~ 0 is taken if y increases as the value of

x
j

increases, and OJ ~ 0 is taken if y decreases as the

value of x
J

increases. That is, OJ ~ 0 or OJ ~ 0 is added

to the constraint condition (23). In this example, as an in
crease in the values of x

1
and x

2
causes y to increase,

and an increase in the values x 3 and x 4 causes y to de

crease, the following constraint is added

01 ~ 0,

In conventional regression models, if some explanation
variables are correlated with other variables, the sign of the
obtained parameter cannot be explained well. On the contrary,
in the possibilistic model, when independency among explana
tion variables is broken, OJ for a certain variable becomes

zero. This means that the obtained parameter A
j

of a possi

bilistic linear model reflects the input-output relation in
the above sense.

Let us denote the possibilistic linear regression model
as

The optimal fuzzy parameters obtained from samples 1-13

Table 3. The optimal fuzzy parameters

Popula- State of State of
Constant Total Revenue Utilization Commission totion of Computer the Outside

A
O

A
1

A
2

A
3

A
4

(903.199) (466, 0) (0. 0) (0. 0) (-51 • 72)
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are shown in Table 3, where h = 0.4 and ko k
l

= ••. =k
4

= 1

in (24). Since there is no knowledge about the weights, identi
cal ones are chosen.

Lack of conformity in the data of the 13 cities used for
modeling is represented by fuzzy parameters. Therefore, in this
model, dispersion of data is represented by giving fuzziness to
the parameters corresponding to the constant and to the number
of commissions to the outside. Figure 5 shows possibilistic
estimates of cities only in odd numbers, using optimal parame
ters. In Figure 5 a possibilistic estimate of the i-th city is
denoted as Yi where i=1,3, •.• ,13, and also a symbol shows

the real number of the staff Yi of the i-th city and the

degree to which Yi is contained in its possibilistic estima-
*te Yi • This degree, which is called the grade of fitness of

*Yi to Yi , is shown in Table 4. Since the data 1-13 are used

~A7

YA5YA9: YA3YAll YAl3 YAl
'\.. ", ,rl... Ii. ,..."

y

Fig. 5. The estimated fuzzy sets Y

for modeling with h = 0.4, it is assured for i=1, ••• ,13 that
Py*(y.) > 0.4. From the grade of fitness of the samples in

i ~

Table 4, cities which are close to the model of the training
group can be found. If the city with a higher grade of fitness
than 0.4 is considered to be the same as that of the modeling
group, cities 14, 17, 18, 21 and 23 belong to the modeling
group and cities 15, 16, 19, 20, 22 and 24 do not belong to
this group. As for the cities not belonging to the model group,
the number of the staff of city 15 is rather large, and that of
the cities 19, 20 and 22 is extremely small. These cities are
considered to have another structure than that of the modeling
group.
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Table 4. The grade of fitness of to

Sample for ~iodeling New Sample

City Y City Y

1;Izumi 0.40 14:Ikeda 0.99
2:Izumiotsu 0.42 15: Izumisano 0,00
3:Kaizuka 0 0 40 16:Ibaraki *
4:Kashihara 0.68 17:Setsu 0.69
5:Ktano 0.72 18:Sennan 0.74
6 :Kadoma 0.40 19:DClito *
7:Kawachinagano 0.40 20:Tondabayashi *
8:Kishiwada 0.95 21 :Neyagawa 0.60
9:Shijonawate 0.52 22 :tUno *

10:Takaishi 0.91 23:Moriguchi 0.71
11 :Habikino 0.40 24:Yao *
12:Fujiidera 0.84
13:Matsubara 0,55

From the results of the application mentioned above the
following can be asserted about possibilistic linear regression
models.

When the center of the optimal fuzzy parameter 01 is 0,

the i-th item is strongly correlated with other items. Since
* *we have A2 = (0.0) and A3 = (0.0) of Table 3, the population

and the state of the utilization of computers can be explained
through the total revenue and the number of commissions to the
outside, respectively. In the formulation of this possibilistic
linear regression, if there are any items of large correlation,
the center of its fuzzy parameter becomes 0 automatically.
Therefore, there is no contradiction in interpreting a fuzzy
linear function Y = Ax (see Table 3).

In this model, the whole fuzziness of the parameters is
defined additively, and the optimal fuzzy parameter which mi
nimizes this fuzziness occurs only in the items of x 2 and x 3 •

Since an estimate of a new sample by a possibilistic model
is obtained as a fuzzy set, it can be interpreted as the possi
bility of an estimate. The maximum possibility of the estimate

Y: = A*Xi of input data Xi is the closure Of{ yl r * (y) >O}
Yi

which can be considered to be an interval estimation (see Fig.
5) •

As described above, a possibilistic linear regression mo
del is constructed from a new point of view, and is convenient
for a model that analyzes and explains possibilistic phenomena
in which human recognition is involved.
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5. CONCLUDING REMARKS

199

Possibilistic linear regression models are formulated and
applied to a model of the number of the staff of local self
governing bodies. The emphasis in this paper is placed on the
possibility by which the fuzziness of data is interpreted in
terms of possibility measure. Thus, our linear regression ana
lysis is based on a possibilistic model. This formulation is a
new trial, and will be effective for modeling vague phenomena
in management systems and social systems as shown in this pa
per.
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11.3. Fuzzy Multicriteria Decision Making, Optimization,

and Mathematical Programming: Analysis, Solution

Procedures, and Interactive Approaches





A FUZZY MULTICRITERIA DECISION MAKING MODEL

Vladimir E. Zhukovin

Institute of Cybernetics
Academy of Sciences of the Georgian SSR
S. Euli 5, Tbilisi, Georgian SSR, USSR

Abstract. A multicriteria decision making model
with a collection of fuzzy preference relations
is presented. A concept of the nonfuzzy set of
nondominated alternatives is formulated for this
case. It is analogous to the Pareto set in the
multicriteria decision making theory. The possi
bility of representation of that collection by
one fuzzy preference relation, called the convo
lution, is studied. An interconnection of the
multicriteria and fuzzy decision making models
is examined.

Keywords: fuzzy preference relation, multicri
teria decision making, nondominated
alternatives, Pareto set, effective
convolution.

1. INTRODUCTION

With the growing number of applications of fuzzy sets in
decision making, one is confronted with the multicriteria de
cision making problem. Decision making is the most important
and popular aspect of application of mathematical methods in
various fields of human activity and many spheres of research
include it. Two of them are important for this paper. These
are multicriteria decision making and decision making on the
basis of fuzzy information. The terms "multicriteria" and
"fuzzy" are now being used often in many decision making publi
cations. But the theory of fuzzy multicriteria decision making
is not developed yet. Usually the decision making problem is
formulated as a fuzzy multicriteria one. But in the first
stage of research, a collection of fuzzy preference relations
is substituted for one fuzzy preference relation by a certain
method, and then a scalar fuzzy decision making problem is
studied. This method is often intuitive and its effectiveness
cannot be estimated since the Pareto set for fuzzy decision
making is not det~rmined. In this paper an essential intercon
nection of the multicriteria and fuzzy decision making models
will be examined. We shall combine them and develop a fuzzy
multicriteria decision making theory on this basis.

First- we present some definitions and results which shall
be needed in the sequel. The decision making situation is for-

203
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Relation (PDR) are introduced as
respectively.

Rj , j=1";"ii\, are

is a quasi-order

mulated as the pair <X,R>, where X is a set of competitive
alternatives and R is a binary preference relation defined

in X. For any preference relation R, the relations R- 1 ,

Re ; RnR- 1 and RS
; R!R- 1 can be determined. Also we maximal

(effective) alternatives set, which we call the "Pareto set"
and denote by Xn(R), corresponds to any preference relation R

defined in X. It is the core of the relation R.

Definition 1.1. For the subset Xo of the set X, the pro

perty "external stability" holds if for any xEX - Xo there ex

ists a yEX such that (y,x)ERs .o
Theorem 1.1. If the set X is finite and R is transiti

ve, then the Pareto set X (R) f!2l and the property "external
stability" holds for it.

The proof of this theorem is not presented here since it
is known.

Theorem 1.2. Given is a finite set X of the alternatives
with two preference relations, R1 and R2 , defined in this set.

s sIf R1 ~ R2 , then X (R2) ~ X (R 1).

Proof. Let us examine the sets A1 = X - X (R 1 ) and A2 = X 

Xn (R 2). Let x be in A1 • Then there exists an alternative

yEX such that (y,x)ER~ and hence (y,x)ER~. This means that

xEA 2 • Thus A1 ~ A2 and hence X (R 2 ) ~ X (R1 ). Q,E.D.

If a preference relation can be presented as R:{ R1,R2 ,

••. ,Rm1, where any Rj , j:T;;, is a binary preference relation

defined in X, then we have a multicriteria decision making
situation. In this case we denote R as the Vector Preference
Relation (VPR). For it, the Pareto set and Pareto Domination

k m
X

n
(Rk ) : Xn and Rk = n R.,

j =1 J

Theorem 1.3. For a given VPR, if all

linear (connected) quasi-orders, then Rk
which is not necessarily linear.

The proof of this theorem is known and is not ?resented
here.

For a given vector criterion K(x) ={K 1 (X),K 2 (X), ... ,

Kn(X)}, where Kj(X), j~1,m, is a scalar function, defined

in X, the preference relation Rj can be presented as

R
j

= {(X,y) : Kj (x) ~ Kj (yl}, (x,y) EE and E = XxX.

Definition 1.2. Any binary relation

is a convolution of the initial VPR if

Xn(RI f C/J.
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(3.11

Definition 1.3. A convolu~ion is effective if R~ c RS

k
when Xn of f/!.

The last fact is important because the decision making mo
del with the empty Pareto set can be studied. But we do not
consider this case in this paper. From Theorem 1.2 we conclude

that X (Rl c xk for an effective convolution R.n - n
2. FORMULATION OF THE PROBLEM

A fuzzy preference relation (FPR) has been introduced in
Zadeh (1965) and is denoted as P = [E, p(x,yl], where
(x,y)EE = XxX and p(x,y) is the membership function (MFI of
the corresponding FPR. Let p(x,yl~ [0,1J. A fuzzy decision ma
king situation is :oFmulated as the pair <X,P> .. :f-!he FPR can
be presented as P - ~P1,P2"",Pm}' where P j , ]-l,m lS a par-

tial FPR, defined in X, then we have a fuzzy multicriteria
decision making problem. In this case we call P the Vector
Fuzzy Preference Relation (VFPR). The principles of effective
choice must be studied for this problem. The methods and results
of the multicriteria decision making theory which have been de
veloped well enough will be taken as a point of departure for
this study.

3. SOME NECESSARY INFORMATION ON FPR

Some results on FPR are presented in this section. We need
the following properties of it: reflexivity, symmetry, asymmet
ry, transitivity and connectivity. If an FPR is given, we can

determine the corresponding binary fuzzy relations: p- 1

-1 e e] s [ s= [E, P (x,y)], P = [E, P (x,y) and P = E, fl (x,y)], where
-1 e -1

p (x,y) = p(y,xl, P (x,y) = min[p(x,y),p (x,yl] and

__[n(x,yo) p(x,y) p(y,x), if n(x,yl>O,
(x,y)

if n(x,y) ~ O.

On the basis of the last binary relation we shall present
the nonfuzzy set of nondominated alternatives which has been
introduced by Orlovski (1978).

The membership function of the fuzzy set of nondominated
alternatives (decisions) is

ND sfl (x I = 1 - max }l (y , x)(3 • 2 I
yEX

and then

UND { ND }X (p) = x: u (x) = 1 (3.3)

is the nonfuzzy set of nondominated alternatives which is ana
logous to the Pareto set in the multicriteria decision making
problem for the case of one FPR.

Definition 3.1. xoEX is the maximal alternative corres

ponding to the FPR P = [E, p(x,y)] if there does not exist
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a fory€ X such tha t

all Y€X).

The minimal, best and worst alternatives in X corres
ponding to an FPR can be defined analogously, but we do not
present them here. The set of all maximal alternatives, corres
ponding to a FPR P, is the core of the FPR or the Pareto set
in the multicriteria decision making terminology and denoted
as Xn(P).

Theorem 3.'. XUND(~) = Xn(P).

Proof. Let x be in the set X (P). Due to Definition 3.',
s n

this means that p (y,x) = a for all yEX, including x. Thus
ND UNDP (x) = and hence xEX (p). Now let x be in the set

XUND (¥). This means that pND(x) and hence pS(y,x) = a
for all yEX, including x. Thus xEX (P). Q.E.D.

It has been proved by Orlovski ('978) that the set XUND(r)
is not empty if set X is finite. We add that the property of
"external stability" (Definition ,.,) holds for it too if the
FPR P is transitive. This fact can be formulated and proved
as a theorem analogous to Theorem ,., but using fuzzy sets ter
minology.

If XUND (¥) ,~, any effective choice procedure or rule
must produce an alternative (or some equivalent alternatives)
from this set.

Theorem 3.2. (analogous to Theorem '.2). Given is a finite
set X of competitive alternatives with two FPR, P

6
and P2 ,

defined in this set, such that P~ c P~. Then x UN (P2) c

X
UND

(p,) •

Proof. Let us introduce two sets: A, = X/xUNDlp,) and A2 = X -

XUND ( )P2' where p, (x,y) and P2(x,y) are the membership

functions corresponding to the FPR's P, and P2 . Let x be

in set A,' Then an alternative yEX exists such that
s s s sP, (y,x) > O. Because P, =P2 , this means that p, (x,y) ~

~ p~IX,Y) for any pair (x,y)EE, the inequality p~(y,X) > a
holds, and hence XEA 2 which means that A, =A2 and hence

XUND (P2) c XUND(p,). Q.E.D.

We want to extend the concept of the nonfuzzy set of do
minated alternatives for the VFPR case. Unfortunately, formula
13.3) cannot be used with this aim in view. And now we present
some results which we need later on for this problem.

Definition 3.2. Two preference relations, crisp - R and a
fuzzy - P, are consentient if the following conditions hold:

(x,y)ERS ~ps(X,y) > 0,

(x,y) ~Rs "'}Is (x,y) O.

(3.4)
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Theorem 3.3. The following equality is implemented for the
consentient crisp and fuzzy preference relations, Rand P:

Proof. Let x be in the set X(R). This means that there does
n s

not exist a y from X such that (y,x)ER • Thus (y,x)ERs for all

yEX, including x. By Definition 3.2, pS(y,x) = a for all yEX

and hence pND(x) = 1 and XEX UND ( ). Now let x be in the set
UNO () h ' h NO ( ) d s () 1X p. T 1S means t at p x = 1 an p y,x = a for a 1 y

from X, including x. By Definition 3.2 this means that

(y,xlERS for all y from X and hence xEXn(Rl. Q.E.D.

Definition 3.3. Let us introduce a crisp preference rela
tion F corresponding to FPR as follows

F = { (x,yl !::. (x,y) ~ a}.
For it we can form the relations F- 1 , Fe, F S and the Pare

to set Xn(F).

Theorem 3.4. The preference relation F is consentient

with the initial FPR and hence Xn(F) = XUND(p).

4. FUZZY MULTICRITERIA DECISION MAKING

In this case the choice situation is presented as the pair
<X,P>, where P is VFPR or the collection of the FPRs. The
crisp relation F

j
corresponds to the fuzzy relation Pj ,

j=l,m, (see Definition 3.3), with the membership function
p, (x,y). Let us introduce the Pareto domination relation for P

J m
as Fp jQ 1 F j , and the Pareto set as Xn(F p )'

Definition 4.1. The Pareto set X (Fp ) is the set of non

fuzzy nondominated alternatives for the VFPR case. We denote

it as X~~D so that x~ND = Xn(F p )'

The introduced set is analogous to the Pareto set xk in

the multicriteria decision making problem and will be used for
the estimation of the effectiveness of choice procedures and
rules.

Let all the components P" j=~, of the VFPR be transi-
J

tive. By Definition 3.3 and Theorems 3.3 and 3.4, the corres
ponding to them crisp preference relations F

j
are also tran-

sitive, and hence the relation Fp is a quasi-order by Theorem

1.3. Since the set X is finite, we can conclude on the basis

of Theorem 1.1 that XU NO is not empty and the property ofp

"external stability" holds for it.
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Definition 4.2. The choice procedure or rule is effective
if it produces an alternative (or some equivalent alternativesl

UNDfrom the set xp •

Thus, for the one FPR case the choice rule based on formu
la (3.3) is effective. The proof of this result is not present
ed here.

Now we shall study the problem of representation of the

11 h UND , 1VFPR by one FPR. Usua y t e set xp contalns many a terna-

tives and is too large for the decision maker (DM). Then DM
uses some representation of the VFPR by one FPR or the convolu
tion of the VFPR for his choice.

Definition 4.3. The FPR P = [E, p(x,yl], where the mem

bership function is determined as p(x,y) = f[P1 (x,y), r2(x,y),

.•• ,rm(x,yJ] will be called the convolution of the VFPR if
XUND(}i) f C/J.

Let us present some examples of convolutions:

are determined for these convolutions (formulaXUND ( . ':X)PL'
(3.3) ) •

(4.2)

(4.1)

and

and

Pj (x,y),

rj (x,y);

= min
j =f;iii

= max
j =J;;iii

L 1I
J
, P

J
' (x,y) ,

j =1

'A = {~1 '~2'··· '~m},

/\={~:Aj~O;
m
L~J,=1}

j=1
It is clear that the sets XUND(Pvl,

where

rV(x,y)

Pz(x,y)

PL(x,y)

1 •

2.

Definition 4.4. The convolution of the VFPR is effective

if XUND(p) ~ X~D.

Theorem 4.1. The convolution of the VFPR, represented by
formula (4.2), is effective for all ~£/\if the FPRs P"
j=i;ID are transitive. J

Proof. The crisp relation F(PL; 11) corresponds to the convo

lution PL(x,y) - see Definition 3.3. This relation can be re

presented as

can be easily proved that

on the basis of Theorem 1.2

m
F (rL' 11) ={ (x,y): L ~J'

j = 1

where ';\ £/\ (formula (4.3». It

F~ = FS(PL;A) if ';\£/\. Then,

the following result holds:

6 j (X,y) ?O}, (4.4)
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is a VFpR, i.e. the col
functions p. (x,y),

UND J
xoEX p there is such a

X [F (ilL; '). )] ~ Xn(F1'), and hence on the basis of Definition 4.1
n . UND UND

and Theorem 3.2, X (PL; A) ~ xl' for all ~E: /\ (formula

(4.3)). Since all the FpRs included in the VFPR I' are transi

tive, the set XUND(PL; ~) is not empty for all/o.f/\.

This means that the convolution given by formula (4.2) is
effective (Definition 4.4) Q.E.D.

Unfortunately, we cannot say anything about the effective
ness of the convolutions of VFpR given by formula (4.1). Let us
note that they are the convolutions introduced by zadeh (1965)
for the intersection and union of the fuzzy sets and relations,
respectively.

Let all components of the VFpR be determined in the line~r

space. Then for the convolution of VFpR given by formula (4.2),
an interesting result holds. An analogous result in the multi
criteria decision making case is called Karlin's Lemma (Karlin,
1959) •

Theorem 4.2 (Karlin's Lemma) .Given
lection of FpRs p. Let all membership

j=1,m, be concave in X. Then for any
o /\ UND'X E: that xoEX (PL; ~ ).

UNDProof. If XoEX p , then the separating plane exists for the
set of points

where yEX since all the membership functions are concave in X.
This plane can be represented by the following inequality

m

L ?. /::,.J' (y,x) " 0
j =1 J

for all ye:X and ,,0 ={ ? ~ ,?I~, ... ,?I~} from /\. This means
UND 0

that xoEX (PL;?')' Q.E.D.

This fact is very important, because any alternative (deci

sion) from the set x~ND is reachable for the DM if he uses a

choice procedure based on the convolution (4.2).

Now We shall consider another decision making model using
fuzzy preference relations. It is introduced for the case when
the partial FpRs in VFpR are not the same in view of their im
portance for the decision maker and so are ordered lexicograph
ically.

5. A LEXICOGRAPHIC DECISION MAKING MODEL

Let us consider a collection of fuzzy preference relations,
where the relations are indexed so that the second relation is
more important than the first one, the third relation is more
important than the second one, etc.
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Definition 5.1. The decisions x and yare equivalent
with respect to a fuzzy preference relation (FPR), if the fol
lowing condition holds

This means there exists no decision which strictly dominates
another one.

Definition 5.2.

rela tion s ( )Plex x,y
following relations

The strict fuzzy lexicographic preference

holds for (x,y) from E if one of the

holds:

s
Pm(y,x)

1 •

2.

s
Pml x,y) > 0

p~(x,y) o and sPm-1 (x,y) > 0

(5.1)

(5.2)lex') p. (x,y)
j J

so for all r=2,m, and P1 (x,y) > O.

Plex(x,y)

s sm. Pr (x,y) Pr (x,y)

s s
Here Plex(x,y) = Pm-j+1 (x,y), where is the number of the

string in which the comparison of x and y was ended.
s s --If Pr(x,y) = Vr(y,x) = 0 for all r=1,m, then the deci-

sions x and yare lexicographically equivalent.

Let us introduce the following convolution
m
L

j = 1

where ~lex, j=1;ffi, are the lexicographic coefficients,
J

which are calculated by the formulae

') lex
s

where s
B. = max p. (x, y) ,

J x, y"X J
a = min A

j
,

s
A. = min Pj(x,y) > o.

J X,YEX
j =1, m

XUND
(0 ) forrlex

Plex(x,y) are defined with res-

The sets of nonfuzzy nondominated decisions
UND

Plex(x,y), and X (Plex ) for

pect to formula (3,3).

Theorem 5.1. XUND(Plex) = XUND(PleX)'

Proof. Let us remember that

l (X,y),
-s
Plex(x,y)=

o ,

if

if

L'. (x,y) ~ 0,

L'.(x,y) < 0,
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!J.(x,y)
m
L

j =1

~lex

J

For any element X€XUND(Plex) we have Plex(y,x) = 0 for

all y or P~ex(x,y) ~ O. First we shall consider the y for

which the equality takes place. This means that if P~ex(x,y)=o
s s s

and Plex(y,x) = 0, then Pj(x,y) Pj(y,x) = o. As a result we

obtain that

_s _s (
Plex(x,y) = Plex y,x) = 0 for all y from x.

i.e. we have
UND

xU (Plex) •

s
Now we shall consider such y for which Plex(x,y) > O. From

this we have that starting from j=m, the first membership fun

ction which is not equal to 0 is positive, i.e. for some 1

1l~(X,y) > O. The coefficients ,,~ex are combined so that

P~ex(x,y) is necessarily positive and hence P~ex(Y'x) = O.
sThus we have lllex(y,x) = 0 for any y from X. We thus have

UNDobtained that x,X (Plex ) •

Conversely, let x be from XUND(o ). This means thatrlex
-s -slllex(y,x)=0 for all y from X or Plex(x,y) ~ O. Let us

consider such a y that the equality takes place, i.e. the fol

lowing two equations are true at the same time: P~ex(Y'x) = 0

and P~ex(x,y) O. As a consequence we obtainA(x,y) O. The

coefficients are selected so that jl. (x,y) - jlj(y,x) = 0 for
- s s J

all j=1,m and Plex(y,xl 0, Plex(x,y) = O. Let us consider

such a y for which P~ex(x,y) > O. We obtain A (x,y) > O. This

means that, in sum, components which are not equal to 0 exist.

Also, the first component which is not 0, say when j=l, start

ing from j=m in the converse order is necessarily positive.

This also follows from the properties of the coefficients "le~
s s J

PI (x,y) > 0, and hence, Plex(y,x) = O. Thus,

Q.E.D.

It is

XUND ( )Plex
tion 5.1.

not difficult to prove that all the decisions in

are lexicographically equivalent in terms of Defini-

6. INTERCONNECTION OF THE MULTICRITERIA AND FUZZY REPRESENTA
TIONS OF THE DECISION MAKING PROBLEMS

Intuitively, it is clear that a fuzzy representation of
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the decision making problem must include its crisp counterpart
as a special case. For example, it is known that the fuzzy set
includes the ordinary set. On this basis we shall formulate the
principle of the interconnection of these two representations
of the decision making problem. Let us suppose that both repre
sentations are defined in the set X, and are given as the
pairs <X,R> and <X,P>. For them the Pareto domination rela
tions are given as R

k
and Fp ' respectively.

Definition 6.1. Two representations of a decision making
problem, multicriteria and fuzzy, are concordant (noncontradic
tory) if R~ =F~. Let us notice that the numbers of criteria

and fuzzy preference relations are not necessarily equal.

For the concordant representations of the decision mak~ng

problem on the basis of Theorem 1.2, the inclusion X~ND =Xn
holds. This result is important and published in Zhukovin

(1983, 1984). It is known that usually the initial Pareto set
k

Xn of a crisp multicriteria decision making problem contains

too many alternatives and is hardly visible for the DM. By in
troducing fuzziness in it, i.e. using VFPR instead of a vector
criterion, we can diminish the number of alternatives in the
Pareto set. Fuzziness in the multicriteria decision making
problem can be introduced in the following way. Let us consider
the equality

(6.2)

*X.
J

Theorem 6.1. For this case, the equality
holds.

J.I . (x, y) = [K. (x) - K. (y) ] /2d. + 1/2, (6 . 1 )
J J J J

where d = max[K. (x) - K. (y) ] and is the K. - criterion's
J J J J

scale range. The set of maximal alternatives of criterion Kj
is determined as

K~ ={x : max K.(X)}.
J xEX J

Proof. The next strict fuzzy relation corresponds to the
initial FPR

(6.3)

0,
s

J.Ij (x,y) [
~K' = [K.(x) - K.(y)]/d., if t>.K. ~

J J J J J

0, if t>.K j < O.

From the condition J.IND(x) = (formula (3.3» we conclude
sthat max J.Ij(x,y) = 0 and hence t>.K j ~ 0 for all yEX. Then

yEX
we can determine the nonfuzzy set of nondominated alternatives
for this case as

(6.4)
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where

holds.

d.
J

const. This means that the equality

Q.E.D.

*X.
J

7. AN l-LEVEL FUZZY DECISION MAKING MODEL

Such models have been discussed for the first time by
Orlovsky (1978). Using .6 (x,y) let us introduce the following
l-level preference relations

F ( 1 ); { (x, y) (7. 1 )

where 0 ( 1 ~ 1. They are crisp unconnected strict (asymmet
ric) relations when 1 f O. The Pareto sets Xn(l) correspond
to them. On the basis of Theorem 1.2, Xn (11) =Xn (12) holds

if 1 1 < 12 , If 1 = 0, then the equality F(O) = F holds where

F(O) is a connected reflexive relation. In the general case
these relations are not transitive. Let us now study the inter
connection of the introduced relations with the nonfuzzy set of

nondominated alternatives XUND(~). Let us introduce the con
cept of the set of r-nondominated alternatives

XND(r) ={ x : ~ND(x) ~ r),

where 0 ~ r ~ 1.

(7.2)

ND UND
It is clear that X (1) = X (~).

Theorem 7.1. xND(r) = X (1) if r = 1 - l.n
Proof. Let 1 f O. Let also x be from the set X (1). It means
that there does not exist a yEX such that (y,x) E F(l) and
hence .6 (y,x) < 1 for all yEX including x. Let us remember

that 1 > O. Then the inequality max ~s(y,x) < 1 holds and
ND yEX ND

hence ~ (x) > 1 - 1 = r f 1. Thus xEX (r). Now let x be in

the set xND(r). This means that ~ND(X) > r and max pS(y,x)
yEX

< 1-r = 1. It follows that ~(y,x) < 1 for all yEX and

XEXn(l). Q.E.D.

An analogous result for 1 = 0 and r has been
proved earlier.

then x
ND

(r 1) =x ND (r2 ).

X (1 1) and xND (r2 ) =
1 2 = 1 - r 2 and hence

c Xn (12)' which means that

Theorem 7.2. If r 1 > r 2 ,

Proof. By Theorem 7.1, xND (r 1)

X (1 2), where 1 1 = - r 1 and

l~D> 1 1 , B~DTheorem 1.2, Xn (11)
X (r 1) c X (r 2). Q.E.D.

Thus changing the value of the levell, the decision
maker has an opportunity to obtain the set of effective alter
natives of different cardinality from which the final choice
would be made. The effectiveness of the final choice is quaran-
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teed. This fact is very important for an elaboration of the
man-machine decision making procedures.

An analogous model can be considered for the VFPR.

8. APPLICATIONS

The methods and results of the fuzzy multicriteria deci
sion making theory can be used in many practical problems.

The following points are essential while dealing with some
what complex decision making problems:

1. The estimation and choice is carried out by a number of
criteria.

2. All the criteria are qualitative.
3. All the information about comparison of alternatives on the

given criteria is obtained from experts.
4. The experts' data are fuzzy.

Therefore the methods and results of this paper seem to be use
ful in practice.

Here are some examples of their use:

1. Yearly plan formation for a manufacturing branch.
2. Project competition.
3. Election of a candidate for a vacancy.
4. Distribution of homogeneous supply (cement, fuel, water,

etc.) •

The initial information for the computer is obtained from
experts by an interactive mode. Through comparison of alterna
tives in pairs as follows: the one out of the two compared al
ternatives which is preferable, according to the criterion and
the degree of the expert's certainty is made known. The latter
represents a strict fuzzy preference relation (formula (3.1)).

The initial information is then processed in accordance
with the given approach dependent on the problem (also in an
interactive regime) •

The fuzzy multicriteria decision making procedure is used
together with some other auxiliary procedures such as:

1. Revalation and formation of criteria on the basis of a sy
stem approach.

2. Formation of a set of competitive alternatives in case when
the latter is not given initially.

3. Decrease of material processed by experts.
4. The possibility for experts of returning to the previous

steps (feedback) on the decision maker's demand.

9. SUMMARY

It is known that the multicriteria decision making theory
is developed well enough. Many interesting results are proved
and methods are studied in it. Using them we have developed in
this paper a basis for the fuzzy multicriteria decision making
theory. We have introduced the concepts of the VFPR instead of
the vector criterion and the nonfuzzy set of nondominated alter
natives for this case which is analogous to the Pareto set in
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the multicriteria decision making problem. For one FPR it
agrees with the concept introduced by Orlovski (1978). We have
considered some convolutions of the VFPR, defined the concept
of an effective convolution of the VFPR, and proved the effec
tiveness of the linear convolution. We have proved Karlin's
lemma for it too. The lexicographic aspect of the fuzzy multi
criteria decision making problem has been studied. Interconnec
tions of the two representations of the decision making problem,
multicriteria and fuzzy, have been examined. The given approach
and results and methods related to it have been realized as a
man-machine decision making procedure and used in some practi
cal problems.
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Abstract. In this paper, limitations of the clas
sical model of optimization are indicated and a
more general model is given in terms of fuzzy sub
sets theory. The concept of a fuzzy value set of
a function is defined and other important concepts
involved in the model are established, based on
the fuzzy value set. In this model an objective
function and a constraint are symmetric. The
former is only a special case of the latter.
Moreover, the multiple objective problem and the
single objective problem are also unified. Opti
mization problems often emerge in a fuzzy environ
ment. A nonfuzzy environment is only its special
case, so that this model is of great value in sol
ving realistic problems of optimization in a large
spectrum of fields. In this paper, a relationship
between an optimal solution of fuzzy programming
and important concepts of multiobjective program
ming, the efficient and weak-efficient solutions,
is shown.

Keywords: fuzzy optimization, fuzzy mathematical
programming, efficient solution, weak
efficient solution.

1. INTRODUCTION

Modelling is of prime concern in solving real world
problems by using mathematical tools. As research goes deeper
it is necessary to find some new mathematical tools, so that
a mathematical model to better reflect the real situation can
be established.

The classical mathematical models of optimization with a
single objective, i.e.

f(x) .... max
xER

R={X:9(X) ~ 0; i=1,2, , •• ,m}
have some limitations.

First, the constraint conditions of real problems often
occur in a fuzzy environment. If we solve it neglecting fuzzi
ness, a more proper solution may sometimes be lost.

Second, there is no unbridgeable gap between multiple
objective optimization and single objective optimization and

216
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also between the objective function and the constraint. Some
problems are originally of the multiobjective type, however,
in order to simplify the solution process, the function value
of some objective functions is artificially restricted and the
objective functions are turned into constraints, hence multiple
objective optimization becomes single objective optimization.
However, this artificial simplification may sometimes be ina
dequate. This is one of the reasons that more and more interest
is recently being shown in the research on multiobjective op
timiza tion.

Generally, the problem of multiobjective optimization is
stated as

(VP) [ F(x) .... V - max

Subject to: g(x)?O

Twhere TF(x) = (f
1
(x),f

2
(x), ••• ,f (x» , g(x)=(gl(x),g2(x), ••• ,

gm(x» , xE:En • p

This is only a notation, not a mathematical model, because
it cannot indicate what is meant by a result.

On multiobjective optimization, Wierzbicki (1979) stated:
"••• its various applications still result in vexing methodolo
gical and theoretical questions. The resulting tools are often
applied because of certain traditions rather than their suita
bility for solving a given problem. The most important ques
tions in multiobjective optimization are how and in what form
the additional information which comes from decision-maker can
be obtained". Basically, this argument states that multiobjec
tive optimization needs a suitable mathematical model.

In order to solve the above-mentioned problem, in this
paper a more general model of optimization is given in terms
of fuzzy subsets theory. The classical mathematical model of
optimization is only a special case of this model which can
contain more realistic cases that cannot be included in the
classical model. In this paper, the concepts of a fuzzy feasi
ble set, fuzzy optimal point set and fuzzy programming are
defined. These concepts are of great value in solving real
world problems of optimization in a variety of fields. The so
lution effectiveness of this model is proved. Therefore, the
theoretical suitability of this solution is ensured. A method
using fuzzy subset theory to solve the multiobjective problem
is given in Feng (1981, 1983) and Feng and Wei (1982). This
paper extends those results.

2. FUZZY CONSTRAINT, FUZZY OPTIMUM POINT SET AND FUZZY
PROGRAMMING

In optimization problems, values of the objective function
or the constraint functions need to be considered. In some
practical problems it is required to take function values as
fuzzy subsets. Thus we give the following definition of a fuzzy
value set of a function. Other important optimization-related
concepts will be established on its basis.

Definition 2.1. Let fIx) be a function defined on a sub
set DeEn • ~ is called a fuzzy value set of the function fIx)
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if ~ is a fuzzy subset on the value set E of f(x).

Definition 2.2. Let ~i be a fuzzy subset on DcEn and ~i

be a fuzzy value set of gi(x), ~i is called a fuzzy constraint

of gi (x) with respect to ].i if hi (x) = ~i (gi (x»).

Obviously, the classical constraint is equivalent to a
special case of the fuzzy constraint. If ~i (x) = l2.i (gi (x)) = 0

for gi (x) < 0 and lii (x) = l2.i (gi (x) 1 for g (x) ? 0, then

the fuzzy constraint with respect to ~i is equivalent to the

classical inequality constraint gi(x) ? O. However, a fuzzy

constraint can provide more information than a classical equa
lity or inequality constraint. Similarly, the following fuzzy
feasible set is also an extension of a classical feasible set.

DeE and A.
n ~1

i:::o1,2,.<J.,rn.

foro
a strictly monotone

fuzzy value set of fi(x) on

is called a fuzzy optimum set

be a

*B.
_1

*B. (y) is
-1 *

and .§i (y)

*~ be a fuzzy subset on

f i (x) ,

F (x) if

lmi,Mil

where mi ~ inf fi(x).
xED

Definition 2.5. Let

Definition 2.3. Let ~ be a fuzzy subset on

be a fuzzy constraint of gi (x) with respect to~,

R is called a fuzzy feasible set with respect to B, if
~ 1\ ~

!.(x) = A, (x) = min ~ (x)
1~i,m ......1 1"i"m

*Definition 2.4. Let B.
-1

(-oo,M.l where M. = sup
1 1 xED

of component fi(x) of

increasing function on

called a fuzzy optimum point set of F(x) if

* * A *!. (x) = /\ ~i (x) /\ ~i (f i (x) )
1,U",p 1" l'p

* *Definition 2.6. Let ~ be a fuzzy subset on DeEn , ~ is

called*a fuzzy optimum point set of F(x) on a fuzzy feasible set
~ if ~ is a fuzzy optimum point set of F{x) and

*.!!.. (x) * /!. *!:. (X)A~(X) min(~ (x) ,~(x»)

Then

*l1.) l!.. (x) --+ max
xED

*is called a fuzzy programming problem with respect to ~ •

Definition 2.7. x is called on optimal solution of fuzzy
programming problem (P) if

* - *H (x) = rna x l!.. (x) > 0
xED



A NEW MODEL OF OPTIMIZATION 219

The relationship betw~en a fuzzy feasible set f~ and a
fuzzy optimum point set A is symmetric 0 The unique differ
ence i~ that the membership functions B~(Y) of the fuzzy optimum
set B" i=1,2, ••• ,p, whose intersecti~fi forms the fuzzy optimum

-1 *
point set ~ of F(x), are strictly monotoQe increasing func-
tions on [mi,Mil. The fuzzy optimum set ~i is only a special

case of the fuzzy constraint. In this way, both the concepts
of a multiobjective problem and single objective problem and
the concepts of objective function and constraint are unified.

In solving multiobjective programming (VP) by classical
mathematical methods, a number of difficulties are encountered.
For example, the finding of an optimal solution of (VP) by ad
ding weighted individual objective functions requires the de
cision maker to use many simplifying assumptions about the
underlying value structure. It is easier to represent the deci
sion maker~s requirements by membership functions B~(Y) of the

* -fuzzy optimum set ~i' The decision maker can express different

requirements for the individual objective functions by using
*different membership functions ~i(Y) 0

For instance, we may take a convex function as the member
ship function B*(Y) of the fuzzy optimum set of component

-1

fi(x) if there is a desire to minimize trade-offs between it

and other objectives. That is, if the value of the component
fi(x) slightly decreases, its degree of membership will greatly

decrease. Analogously, we may take a concave function as the
membership function ~~(y) of the fuzzy optimum set of some com-

petent fi(x) if there is a willingness to exchange its perfor

mance for that of another objective. That is, if the value of
the component fi(x) decreases a little, its degree of member-

ship will decrease only a little too. In this way, various
points of the feasible set can be given various "weights".

In definition 2.4 it is realistic to require the member-
* *ship function ~i(Y) of the fuzzy optimum set ~i to be strictly

monotone increasing on [mi,Mil. If this were not fulfiled, the

corresponding optimal solution of fuzzy programming (P) would
not a~ways be an efficient or weak-efficient solution. Hence,
this solution would not be reasonable • In addition, the requi-

* *rementAi(x) =~i(fi(x)) 0 for fi(x) < mi means that the

solution of fi(x) < m
i

is rejected by the decision maker.

The determination of an optimal solution to fuzzy program
ming (1;) is equivalent to finding a solution to a nondiffe
rentiable optimization problem, as, e.g.,

*Ai (x)
A. (x)
-J

?I .... max
*1!i(f i (x)) ):>.

1!j (g j (x)) ) ~

i=1,2, •.. ,p,

j=1,2" •• ,m.
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Obviously, 0 ~ ~, " This transformation leads both to a
method for solving fuzzy programming problems and yields a
"grade of membership" (i.e, ~ ) of a solution. If ~ =0, then
there exists no solution fulfiling the decision maker~s requi
rement.

Example. The following problem illustrates how the above
approach can be used to solve optimization problems via fuzzy
programming. This problem comes from Zimmermann ('978).

A company manufactures two products , and 2 under given
capacities. Product' yields a profit of 2 units per piece and
product 2 of , unit per piece. Product 2 can be exported with
a profit of 2 units per piece. Product , needs imported raw
material of , unit per piece. The two goals are an optimal
balance of trade and a maximum profit while the capacity cons
traints are, eog.:

-x,+3x 2 ~ 2'

4x,+3x 2 ~ 45

x"x 2 ~ 0

x

8

f
l

6

4

2

x, +3x 2 " 27

3x, +x 2 ~ 30

4x

f 2

2 4 6 8 10 xl

Fig. ,
Figure , shows the feasible set of the problem. The objec,

tive functions are f, (x) = -x,+2x 2 , f 2 (x) = 2x,+x 2 • Clearly, x

is optimal with respect to the first objective I f, (x') = '4,

the maximum net export) while x 4 is optimal with respect to the

profit objective (f2 (x 4 ) = 2', the maximum profit). Solution x 5

gives the worst result, namely f, (x 5 ) = -3 (3 units imported)

and f 2 (x 5 ) = 7 (7 units of profit).

Let us apply the fuzzy programming approach to this prob
lem. Vie may take m, = -3, m2 =7 and M,='4, /12 =21. The decision
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In this way, we can obtain the membership functions of
fuzzy optimum set of f, (x) and f 2 (xl as

* { 0 for y < -3
~, (y)

~ for -3 ~ Y ~ '417

* ={ 0 for y < 7
'!?2 (y)

L.2
'4

for 7 ~ Y ~ 2'

* *maker can choose various membership functions £, (y) and ~2(Y)'

The choice assumed there is to use linear functions on [m i ,lI i ]

the

The corresponding membership functions of the fuzzy opti
mum point set of F(x) become:

*1::. (x) =

The membership function of the fuzzy feasible set can be
taken as

j!.(xl 0 { 0

for -x,+3x2>2', x,+3x 2>27,

4x,+3x 2 >45, 3x'+'<2>30,x, ,x 2<0

elsewhere

The fuzzy programming becomes therefore

*min (f::. (x) ,E-(x)) -t max
x

As is well known, it is equivalent to solving the following
linear programming problem:

'A max,
)~

,
)~subject to: TI(-x,+2x 2+3) -,--,r/2x,+X 2-7)

-x,+3x 2 ~ 2' x,+3x 2 ~ 27

4x,+3x2 ~ 45 3x 1+x 2 ~ 30

The optimal solution of the fuzzy programming is

x = (5.03,7.32)T yielding an export of f 1 (x) = 4.58 and a

profit of f 2 (x) = 17.38.

3. SEVERAL CONCEPTS OF AN OPTU1AL SOLUTION IN FUZZY PROGRAM/lING

As fuzzy programming is involved in multiobjective optimi
zation, it is required to show a relation between an optimal
solution of fuzzy programming and important concepts of multi-
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objective optimization, the efficient and weak-efficient solu
tions, so that the theoretical suitability of that solution be
ensured.

Definition 3.1. Let xER, x is called an efficient solu
tion of r(x) on R if there is no xER, such that

fi(x) ~ fi(X), iE.{1,2, ... ,P}

and

for at least one iE{ 1,2, •.• ,P}
x is called a weak-efficient solution of F(x) on R if there is
no xE.R, such that

i = 1,2, ••• ,p

x be an optimal solution of fuzzy
feasible set R is not active if

Clearly, if x is an efficient solution on R, then x is
a wea~-efficient solution on R. The converse is true only under
some restrictions. Let F(x) be a strictly concave vector func
tion and g(x) - a concave vector function. If x is a weak-ef
ficient solution on R, then x is a efficient solution on R
(Kiyotaka,1976)0

A new concept is introduced firsto

Definition 3.2. Let
programming (~). A fuzzy

* - -!:. (x) , ~(x).

Theorem 3,1. If x is an optimal solution of fuzzy pro
grammi~g (~) and the fuzzy feasible set ~ is not active, }
then x is a weak-efficient solution on r = {x :k.* (x) ,~(x) •

Proof, Since the fuzzy feasible set ~ is not active, we
can get xE rand

* - * -l!. (x) = l. (x) ( 1 )

Suppose that
Then, there is an

x is not a weak-efficient solution on r •
51Er, such that

* -.lii (x)
o

hence

and

f i (51) > fi(x), i = 1,2,oo.,p

.. P { }First, we prove that xEn = n x: f, (x) , m,
i=1 ~ ~

If ~~R, then there is i O' such that f i (x) <
* 0

B, (f. (xl) = °
-10 lo

(2 )

* -.!i (x)
* -

~ (x) 0,

* - -which constradicts l!. (x) > 0, Hence, xER. Analogously, we can
prove x(R.

*Because !i(y) are strictly monotone increasing functions
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on [mi,MiJ, we can obtain by (2)
* a * _ * _

~i(x) = £i(fi(x)) > .!i.i(fi(x))

Thus

* -
= !ii (x) , i = 1,2, .•• ,p,

By (1)

* =!i (x)

* =!.!. (x)

*!\ A, (x)
-~l(i(p

have

* = * - * -Jl (x) > Ii (x) =!.!. (x)

*
~ (x)

which contradicts that x is an optimal solution of (~).

Theorem 3.2. Assume that F(x) is a strictly concave vector
function and g(x) - a concave vector function. If x is an
optimal solution of fuzzy program~ing (~) and the fuzzy feasi
ble set ~ is not active, then x is an efficient solution on

F = {x :J::.* (x) " E,(x)}.

The relation between the efficient and weak-efficient so
lutions immediately leads to the above conclusion.

lie shall now show that under an appropriate assumption a
converse statement is also satisfied. ~hat is, if x is an ef
ficient solution or a weak-efficient solution, then we can con
struct a fuzzy feasible set and a fuzzy optimum point set A*
of F(x), and the solution x is an optimal solution of fU~zy
programm1ng (.f).

Theorem 3.3. If x is a weak-efficient solution of F(x)
on R =r x:g(x),o}, then there is a fuzzy ~easible set ~ and
a fuzzy~ptimum point set A*, such that x is an optimal solu
tion of fuzzy programming (~).

Proof. First, we construct the fuzzy constraint by defin
ing the membership function

A,(X)=B,(g,(x)) ={O
-1 -1 1 1

for

for gi(x),O, i=1,2, ••. ,m

We define the membership function of a fuzzy feasible set
as

E.(x)

*Secondly, we construct a fuzzy opt1mum point set J::. as
follows. Let O<c<l. If fi(x) f Mi and fi(x) f mi ,

ii{1,2, ••• ,p}, then we define the membership function of a fuz-

zy val:e set{a:,~:~:m,c for mi~y<fi(x)
B, ( ) = 1 1

..... 1 Y -
y-f, (x)
M,_~,(X)(l-c)+c for fi(x),y(l\

1 1
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or f
io

(x) = m
io

'

fuzzy value set as

i ot:{1,2, .•. ,p}, such that f (x) =H.
l lo 0

then we define the membership function of the

is some i o 'If there

*B. (y)
~l

o M. -m.
l lo 0

c for y ~ f. (x)
l

and

*B. (y)
~l

o

y-m
i

,..-_-,0<-_ ( 1-c) + c
M. -m.

l lo 0

for

are the infimum and supremum of

and

aye strictly monotone

i=1,2, ••• ,p,*~i(fi(x)),

where mi ' Hi
o 0
Clearly, B~(Y)~S

-l
f i (x), respectively.

o
increasing.

*Let ~i (x)

respectively,

then

*!::. (xl

•1::. is a

1\ A~(X)
1"i'p ~l

fuzzy optimum point set and

* -A. (x)
~l

i = 1,2, ••. ,p.

is not an ~ptimal

={x:g(X))OJ' such

Now, we prove that a weak-efficient solution
timal solution of fuzzy programming (.E).

* -Obviously, ~ (x) > O. Suppose that x
solution of (~). Then, there exists an ~ER

that

is an op-

* (x) * (x).!! > H-
and since

* (~) * (x) , * (x) * (x)H 1::, H A

then

min
l"i,p

* min A. (x)
1,i,p -l

Therefore

* -A. (x) ).min
-l l'i.(:p

It follows that

* -A. (x)
-l

c, i=1,2, ••• ,p.

i = 1,2, ••• ,p.

*Because ~i(Y) are strictly monotone increasing functions for
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i=1,2, ,."p.

which contradicts that x is a weak-efficient solution of F(x)
on R.

Corollary 3.1. AssJme that x is an efficient solution of
F(x) on R~x:g(x) , O. Then, th~re is a fuzzy_feasible set
~ and a fUz~y optimum oint set a, such that x is an opti
mal solution of fuzzy programming problem (E).

This completes our analysis of relationships between opti
mal solutions of fuzzy programming and multiobjective program
ming.
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Abstract. This paper studies the use of fuzzy pro
gramming in determining undominated, and only un
dominated, solutions to multicriteria decision pro
blems. The multicriteria problem is not fuzzy, and
fuzzy programming is employed to generate the set
of undominated solutions. Membership functions are
defined in the usual way when the objective is to
maximize all the objective functions in the multi
criteria decision problem. We first consider the
product operator as a method of combining the mem
bership functions. We show that the set of solu
tions to the fuzzy program is the Pareto optimal
set for all multicriteria decision proolems. We
also discuss an interactive application and a so
lution algorithm for solving the fuzzy program.
He next discuss the minimum operator as a procedure
for combining the membership functions. We show
that the set of solutions to the fuzzy program
always contains the set of undominated solutions,
but some solutions to the fuzzy program may be do
minated. We then study arbitrary methods G of com
bining the membership functions. We show that the
set of solutions to the fuzzy program is the Pareto
optimal set for all multicriteria decision problems
if and only if G has the dominance and the zero pro
perties. We then apply these results to some new
methods of combining membership functions that have
recently appeared.

Keywords: fuzzy programming, Pareto set, efficient
points, undominated solutions.

1. INTRODUCTION

The objective of this paper is to investigate how fuzzy
programming may be used to determine the Pareto optimal set
(the set of efficient points, the set of undominated solutions)
for any multicriteria programming problem.

The mUlticriteria decision problem is

m~x (f 1 (x), ••• ,fn (x))

subject to: xEX

226

(MC)
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only if u. < v. for all i. Vector v dominates
1 - 1

only if v > u and vk > uk for some k, If A is

then PtA) denotes all the undominated vectors

P = F (P) •

where n > 2 and the f. are real-valued functions defined on
1

X. In general, no assumptions will be made about the feasible

set X and the objective functions f i except in Section 2.

There we will assume that max(fi(x)), for XEX, exists and is

known for i = 1,2, ••• ,n when we discuss a solution algorithm,

In fact, one might consider generalizing to the case where the

objective functions take their values in some linearly ordered

space, but in this paper we will assume the f i are real-valued,

Let F(x) = (f l (x),.",fn (x)), a mapping from X to Rn , De

fine 0 = F(X), the image of the feasible set under the mapping

F. If x, y~X, then x dominates y if and only if fi(x) ~ fi(y)

for all i and fk(x) > fk(y) for some k, The Pareto optimal set

P is all the undominated x in X. If u, VeRn, then u ~ v if and

vector u if and

any subset of Rn ,

in A. Define

Since the feasible set and the objective functions are ar

bitrary, it may turn out that the Pareto optimal set is empty.

If P is empty, then P and P(O) are both empty and hence equal.

If P is not empty, then it was shown in Buckley (1983) that

P = P(O) and they are not empty. See Buckley (1983) for suffi

cient conditions guaranteeing that P is not empty.

Problem (Me) is not fuzzy and we will now employ fuzzy

programming as a tool to generate p. We first need to define

the membership functions Pi for each objective function, If xEX,

let c = F(x) where c = (c l '.,.,cn ). Also, let vi = fi(x),l~i~n.

For each objective function f i , 1 < i ~ n, define

p. (v.)
l' 1

if

if

where hi (c i ) = 6 i , 0 < 6 i <

increasing on [ci,+oo) with

discuss in Section 4 why we

positive. He do not need to

continuous or differentiable

add one further condition on

1, and the hi are monotonically

hi(v i ) < 1 for all vi > Cia We will

have required hi(c i ) to be strictly

assume that the functions h. are
1

on (ci,+oo). In Section 4 we will

the h. where we will assume that
1
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h.(v.) =1.
l l

lim
V.-++OO

l

If the maximum value of a fi(x) on X exists - as assumed

earlier - and is known to equal b i , the corresponding member

ship function Pi could be changed to equal one for vi ~ d i ,

where b i ~ d i • The definition of Pi would then be

[ 0,
if vi < c i '

Pi(vi ) = hi(v i ), if c. < v. < di'l l

"
if v. > d

i
,

l

where c i < b i ~ d i , hi(c i ) = 6 i , 0 < 6 i < " and the hi are

monotonically increasing on [ci,d i ) with hi(vi ) < ,. If, in

addition, c i = b i = d i , then we would need to define Pi as

follows

=[ 0, if v. < c. b. d i ,
Pi (v i)

l l l

"
if v. > c. b. d i •l l l

We will employ this second definition of the Pi in Section 2

when we discuss a solution algorithm, otherwise we use the

first definition of the membership functions.

Other types of membership functions are used in fuzzy pro

gramming. If a goal was to make f,(x) approximately equal to N,

then a triangular membership function centered at M might be

appropriate. But, we are not assuming vague, or fuzzy, goal

statements. The multicriteria decision problem is crisp, not

fuzzy. We are employing fuzzy programming only as a technique

to obtain undominated solutions. Therefore, our type of member

ship function is appropriate if the objective is to maximize

all objective functions.

We next need to specify a procedure of combining the mem

bership functions into one objective function. Let P = [O,,]n

and G: P ~ R. The fuzzy program is

max G (p, (f , (x) ) , ••• , Pn ( f n (x) ) )

subject to: xEX.

Problem (G,) is the same as

max G(p,(v;), ••• ,Pn(vn »
subject to: YEO.

(G, )

(G2)
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We will investigate arbitrary methods (G) of combining the

~i in Section 4. Two important candidates for G are

and
n
11 Pi'

i=1

where Pi = Pi(v i ), 1 ~ i < n.

The minimum operator has been the most popular method of

combining the ~i since it was first introduced in Bellman and

Zadeh (1970). The minimum operator has been described as a non

interactive technique while the product operator has been called
an interactive procedure (Yager, 1978); see also Bellman and
Zadeh, 1970, p. 280; Dyson, 1980). The minimum operator, and
the product operator, have not gone uncriticized (Carlsson,
1982; Dyson, 1980; Luhandjula, 1982; Thole, Zimmermann and
Zysno, 1979; Zimmermann, 1983; Zimmermann and Zysno, 1980,
1983). We first study solutions to problems (G1) and (G2) in
Section 2 when the product operator is used to combine the
membership functions. In Section 3 we look at solutions to (G1)
and (G2) using the minimum operator. Some authors (Luhandjula,
1982; Yager, 1978; Zimmermann, 1983; Zimmermann and Zysno,
1980, 1983) have suggested other ways to combine the ~i. We

will discuss their methods in Section 4 together with a general
result on the structure of G so that solutions to problem (G1)
equal p.

Several authors (Buckley, 1983, 1984; Feng, 1983; Hannan,
1979; Leberling, 1981; Zimmermann, 1978) have studied fuzzy
programming as a tool to determine p. The initial papers were
on linear multicriteria programming using the minimum or pro
duct operator. The most general results to date are in Buckley
(1983), Ester and Schwartz (1983) and Feng (1983). Both Buckley
(1983) and Feng (1983) do assume concave objective functions
and place restrictive assumptions on the feasible set in order
to obtain some of their major results. They also consider only
the minimum or product operator for combining the membership
functions.

Finding the Pareto optimal set, without fuzzy programming
techniques, has also been an active area of research. In
Geoffrion (1968) it is shown that all solutions to

n
max ( L ';\. f. (x))

i= 1 1 1

subject to: xEX,

for ~i > 0, all i, and ';\ 1 + ••• +I\n = 1, are the properly effi

cient solutions to (MC) when the f i are concave and X is convex.
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See Gal (1983) for a survey of this research area. Recently,
some authors (Choo and Atkins, 1983; Ester and Schwartz, 1983)
have been able to extend these results to non-convex X, or to
other settings.

Before proceeding to the main results of this paper we
need to define some notation that will be used in the following
sections. Let 11 = (11 1"" ,Iln ) and 6 = (6 1", .,6n ). We usually

assume that 6 is fixed and we vary the Pi through changing the

c i • One changes c by choosing different x in X and computing

c F(x). If v, v, and v* are vectors in 0, then p = v(v),

p = p(v), and p* p(v*) are their corresponding values in P.

We are usually interested in solving (G2) and then translating
*back to X. Suppose v solves (G2). We then need to solve

* *F(x) v, for x , producing a solution to (G1). The solution
*for x involves solving a system of non-linear equations simul-

taneously. If F is defined on a larger space containing X,then

some solutions may not belong to X and must be discarded. In

fact, we sometimes wish to solve F(x) v for x when v is any

vector in Rn • If F is defined only on X and v is not in 0, then

F(x) = v has no solution. If F is defined on a space containing

X and v is not in 0, then solutions to F(x) = v will not belong

to X. Throughout this paper, if v is in 0, then only those x in

X solving F(x) = v will be considered solutions to the system

of non-linear equations. If v is an arbitrary vector in Rn ,

then we have a test to see if v is not in 0: either F(x) = v

has no solution or its solutions are not in X.

2. THE PRODUCT OPERATOR

We are interested in solutions to

n
max( n Il i (f i (x»)

i=l

subject to: XEX.

Problem (P1) is equivalent to

n
max ( n Pi (v i»

i=l

subject to: vEO.

(Pl)

(P2)

* *We need to specify what is meant by v or x being a solu-
*tion to (P2) or (P1), respectively. If there is a v EO so that
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Proof. If problem (P2) has no solution

set of solutions is empty and a subset
*solve (P2) for some c in O. Suppose v

* *for all v in 0, then v solves (P2). If x is any solution to
* * *F(x) = v , then x solves (P1). Conversely, if there is an x ~X

so that

n n
*n Pi(fi(x) 5- n Pi(fi(x » < + '"

i=1 i=1

* * *for all x in X, then x solves (P1 ) and v F(x ) solves (P2) "

Since X and the objective functions are arbitrary, problems (P1)

and (P2) may have no solution either because the product is un

bounded or the maximum is not attained in X, or O. Naturally,

we are always assuming X is not empty or else there is no prob

lem to solve.
* * *Notice also that if v €P, then any x solving F(x) = v

* *belongs to P. Conversely, if x €P, then v = F(x) belongs to P.

Theorem 1. The set of solutions to (P2) for c in 0 is P.

for any c in 0, then the
*of P. Therefore, let v

is not in P which implies
* *that there is a v in 0 that dominates v with vk > vk for some

- *index k. Domination implies Pi(vi ) ~ Pi(v i ) for i = 1~2, ••• ,n.

From the way the p. were defined we know that no p. (v.) can
1 * 1* 1

equal zero because v ~ c. Therefore, Pk(Vk ) > Pk(vk ) and it

follows that

n n
n Pl' (V l.) > n P (v*)

i=1 i=1 i i·

* * -This contradicts v solving (P2). Hence v €P.

If P is empty, it is a subset of the set of solutions to
* * *(P2) , so suppose v belongs to p. If c = v, we claim v solves

* * ii, there(P2) • Choose any v in 0 not equal to v . Since v is in
*must be some index k so that vk < vk • Then Pk(vk ) is zero and

n
n Pi (vi) = O.

i=1

*The product is zero for every v in 0 not equal to v and the
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* *product evaluated at v is positive. Therefore, v solves (P2)

*for c = v 0

Notice 6i > 0, all i, was used in Theorem 1 especially to

show P is a subset of the set of solutions to (P2). We will show

in Section IV that the fuzzy program (G1) can have dominated

solutions when all the 5 , equal zero o
1

Corollary 1. The set of solutions to (P1) for x in X, where

c = F(x), is Po

The results of Theorem 1 and Corollary 1 are the best pos

sible because they are true for all multicriteria decision pro

blems. They are true for any feasible set and for all real-va

lued functions defined on X.

An interactive method for finding a "best" compromise so

lution to (MC) may be constructed for the product operator. An

outline of the procedure is as follows:

rejected by the decision maker and

(randomly) in X and solve (P2) for

c b = F(xb ) '0" • Let the solutions

1. Choose xa'xb,xc"o.

c ,cb ' ••• where c = F(x),
a * * a a

to (P2) be va'vb,ooo •

* *2. Show v ,vb"" to the decision maker. The decision ma-
a * *ker rejects some Vb and does not reject some other va'

*3. Suppose v is not
* * a*

let v = (va1 ••• 'van ) and c a (cal'oo.'can ). ;'he decision

maker expresses a desire to see the values of v , increase for

C
al *

iEI, I is some proper subset of 1,2,.0.,n}. Choose c , > v ,_ _ _ al _*al
for i not in I. Solve (P2) for c = (c l""'c ) giving v

_* * a a an a _
with vai > vai for each i in I. If (P2) has no solution for ca'

choose smaller increases for C , when i is in I but keep the
* al

values at least equal to vai •

You never have to translate solutions to (P2) back to X

"best It

maker accepts

only need to

to the decision

*on v as

until the end of the process when the decision

*some v as the "best" compromise solution. You

*show the values of the objective functions v

maker at each stage. When the decision maker decides

*the solution, then you solve F(x) = v for x in P as the

compromise solution.

If max(fi(x», for xEX, exists and is known to be b i , for

some i in I at step (3), then the choice of the c ai is much
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easier. One could use

= ';\ *v . +
al.

for ';\ *1/4,1/2,3/4,1. If vai is equal to b
i

, then we would

is

if vi < c.
1.

if c. < vi ~ b i •1.

if vi 2'.. b i ,

+ e,
[

0,

= mi(vi-c i )

1 ,

delete this i from I.

What is needed to implement the interactive procedure is

a solution algorithm for problem (P2). For the rest of this

section we assume max fi(x), xEX, exists and is known to equal

b i for i = 1,2, ••• ,n. The results of Theorem 1, and Corollary

1, are independent of the type of function hi used in the de

finition of ~i and for simplicity we will now make the hi

linear. Also, we will set 6
i

= a, 1 < i ~ n, where 0 < e < 1.

If c i < bi,the definition of Pi

where mi = (1 - e)/(b i - a i ). If ci=b i , then ~i(vi) is zero

for vi<c i and equals one when v i 2'..c i • We will first assume that

c i < b i for all i. If b = (b 1 , ••• ,bn ) belongs to 0, then the

objective functions are not conflicting and the solution to

(MC) is any x solving F(x) = b. We therefore assume b is not

in O. Problem (P2) becomes

n
max( n [mi (vi - c i ) + el)

i=1 *(P2 )

subject to: vEO and v 2'.. c.

If we set wi = m~(vi - c i ) + e, 1 ~ i ~ nand w

then problem (P2 ) is equivalent to

n
max n

i=1

subject to: wEO and w 2'.. 6 ,
(P3)

where 6 (e,e, ••• ,e) and
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*If w solves * *(P3), then v solves (P2 ) *where v.
l

< i < n.

We will outline an algorithm fo~ solving (P3), and hence
*(P2 ) and (P1), when there are two objective functions. The

procedure is easily extended to n > 3. The algorithm depends

on an efficient method of testing if v is in 0 given any v in

Rn • Equivalently, it requires testing if x is in X given any

solution x to F(x) = v, where vERn. Of course, if F(x) v has

no solution for x then v is not in O. One must solve a system

of non-linear equations simultaneously to obtain x given v.

There are numerous algorithms available to solve this problem.

Let £ be a suitably small positive number, set r = 1 - £,

and let K be a sUitably large positive integer. The algorithm

is:

1. For j = 0,1, ••• ,K let w1 = r + j([1-r]/K), w2 = r/w
1

,

vi = (wi - 8)/m i +c i for i = 1,2, and v = (v 1 ,v2 ). Test to

see if v belongs to O. If v is in 0, then go to 2. Otherwise,

increase j by one if j is less than K. If j equals K, then set

r = r-£ and go back to 1.

2. Refine the estimate of r so that we obtain the desired
*accuracy on the value of r where

{ wlw 1w2 r *} n 0 f 0
but

{ w1w1w2 r}n 0 0,
*for any r > r .

* * *
3. Choose w (w 1,w2 ) to be any element in the intersec-

* * * * *tion of *w 1w2 = r and O. Then v (v
1

,v
2

) solves (P2 )

*where v. = (wi ~)/mi +
C i' i = 1 ,2 •

l

The geometry of problem (P3) is shown in Fig. 1. The first

part of the algorithm finds values of w along the curve

w1w2 = r. The idea of the algorithm is to find the first inter

section, as r decreases, of the curve w1w2 = rand O.

Notice that we need r < 1 because (1,1i does not belong to 0

and the curve W1W2 = 1 will not intersect O.
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*r

\ 0,1)

I- - - - - - --+------..l,-~....-_+_---_+_--___I_"'--------

Fig. 1. The geometry of the solution algorithm for two

*objective functions (r2 < r < r 1 < 1)

A c i value could equal b i because we have assumed that

the maximum value of f
i

is known. When this happens we set,

and keep, the corresponding w. to be equal to one, and the
1 *

procedure obtains the solution where vi equals b i •

3. THE MINIMUM OPERATOR

We now study solutions to

max (m in [1l 1 (f 1 (x) ) , ••• , Iln (f n (x) ) ] )

subject to: xEX.
(M1 )
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Problem (M1) is equivalent to

subject to: vEO. (M2)

or equal to all other
*= F(x) solves (M2)"

as large as any other maxi-
*solves (M1) if x is a so-

*x solves (M1 ) if its maxi-

*A vector v in 0 solves (M2) if and only if its maxi-

min value is finite and is at least
*min value for v in O. Then x

*lution to F(x) = v Conversely,

min value is finite and is greater than
*maximin values for x in X. Then v

Of course, both problems may have no solution for a given c

in O.

Theorem 2.

p. If S

then PIS)

The set of solutions to (M2) for c in 0

is the set of solutions to (M2) for a fixed

is a subset of P.

contains

c in 0,

then we must have vk <

P. But then Pk(vk )

Proof. If P is empty, then it is a subset of the set of solu-
* - *tions to (M2). Therefore, assume v EP. If c = v , then we show

* *that v solves (M2). Given any v in 0, not equal to v,
* *vk ' for some k, because v belongs to

o and

*The minimum is zero for any v in 0 not equal to v. Since

* *min ( P 1 (v 1) , ••• , Pn (vn») = min[6.J > 0
1

we see v* solves (M2) and P is a subset of the set of all 50-

lutions to (M2).

Fix c in 0 and let S be all solutions to (M2). If S

vall i. This implies that

This contradiction says

long to P, then there is a v in
- *mination implies ~i(vi) ~ Pi(vi )

also solves (M2) and belongs to S.

*that v belongs to P.

is empty, then its set of undominated vectors is also empty and

a subset of P. Also, if P (S) is empty, it is a subset of p.

* *Hence, we assume v belongs to P(S). If v does not be-
*o that dominates v. Do-
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Corollary 2. The set of solutions to (M1) for x in X and

c = F(x) contains P. If S is all solutions to (M1) for

is containedsome fixed c = F(x), with x in X, then PIS)

in P.

The following example shows that S may not be contained

in p. Therefore, the above results are the best possible for

the minimum operator. They are true for any feasible set and

for all real-valued objective functions.

This example, adopted from Chanas (1985), shows that so

lutions to (M1) may be dominated. It is a linear multicriteria

decision problem which implies that even with very strong as

sumptions about X and the f i , solutions to (M1) may not be

long to P.

Example. Let (M1) be:

max(x
1

+ x
2

+ 1 , 2x
1

- x 2 + 2, x
3

+ 1)

subject to: x
1 < 1,

x 2 < 1,

x
3 < 1,

x 1
+ x

2
+ x

3 < 1 .5,

x. > O.
1

and b 3 = 2. The membership

on [ei,b i ] and their defini-

He

and the

O.

x

is a subsetx

in

is in

xexists for

The variables x. are real variables so
1

of R 3 • Let c = (19/10, 11/10, 16/10) which

can easily see that max fi(x)

b i values are b 1 = 5/2, b 2 = 4

functions ~i will all be linear

tions are

111(v 1 ) (2/3)v 1
- 2/3, if 19/10 < v

1 < 5/2

112 (v 2 ) (2/15)v 2
+ 7/15, if 11/10 < v 2 < 4,

113 (v 3 ) v 3
- 1 , if 16/10 < v 3 < 2.

Each Pi is zero if v. < c. and equals one when v. > b i •1 1 1 -

All the 6. values are positive.
1

In 0 the solution set to (M2) is

S ={ (19/19,v2 ,16/10) 11/10 ~ v 2 ~ 38/10}.

*with only v = (19/19,38/10,16/101 in p. All other v in S
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*are dominated by this v One may check that each v in S

produces a ma~imin value of 3/5 and this is the optimal maximin

value for v in O. 7ranslating back to X, the set of solu

tions to (M1) is

S ={

*with only x (9/10, 0, 6/10) in p.

Theorem 3 below. With 6 fixed, the domain of G is

P = [O,nn. Let 0 = (0, ••• ,0), r ={ pip ~ 6, Pi
/\ ={ p I some Pi = 0, the rest 6. < p. < 1}. If D

~ - ~

union of 0 and r and /\ then p(v) is in

Therefore, in comparing the product operator and the min~

mum operator, the product operator is preferable if one wishes
to employ fuzzy programming to generate the set of undominated,
and only undominated, solutions to multicriteria decision prob
lems.

4. THE G OPERATOR

In this section we are interested in finding conditions on
G so that the set of solutions to (G2) and (G1) is P and P,
respectively. We will keep the 6 i , 0 < 6 i < 1, values fixed

and let 6 = (6 1 , ••• ,6n ). We also assume that

lim
v.-+too
~

for i = 1,2, ••• ,n. This will be used in the "only if" part of

not all of

< 1} and

is the

D for every

v in O. Therefore, G is only evaluated at those p values

in D. In this section it is assumed that all the p values

always belong to D.

Definition 1. G satisfies the dominance (D) condition if and

only if p dominates p and G(p) ~ G(6), then G(p) > G(p).

Definition 2. G satisfies the zero (Z) condition if and only

if G(6) > G(p) whenever pE/\ or p = o.

The dominance condition is a basic property of any ordinal

utility function. Suppose v dominates v, both in 0 with

v > c. Any decision maker would prefer v to v. Then the

"utility" of v should be greater than the "utility" of v.

If P = p (v)

G(p) > G(6).

and p = p(v), then

Hence G(p) > G(p)

P

if

dominates p and

G has the dominance pro-
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perty. Vectors v not greater than or equal to c are exclud

ed from consideration and cannot solve (G2).

Theorem 3.{VX,VFlv*

* -}v E Pl if and only

implies
*v

solves (G2) for some p if and only if

if { G possesses properties (D) and (Z)}.

G satisfies both conditions (D) and (Z).

belong to F. We will use the p with c
*If v is in 0 and v does not equal v

*for some k because v is undominated. Hence
* *O. If P = Il(v) and p = p(v), then p belongs

*= 0, while G(p) = G(S). Property (Z)
*for any V, not equal to v, in O. Hence

First suppose
*v

Proof.

1. Let
*equal to v •

;,

then v k < v
k

Pk = Ilk (vk ) =

to 1\ or p

*G (p ) > G (I')

solves (G2) oaf course, if P is empty, it is a subset of the

set of solutions to (G2).

*vLet

G(S)

2 0

*G(p ) >

*solve (G2) for some p. We know v > c so

if p* (v*). If v* is not in P, then some ~
* *in 0 dominates v. If P = p(v), then p dominates p.

* *Condition (D) implies that G(p) > G(p ) contradicting v

solves (G2). Hence v* belongs to P. Again, the case where

(G2) has no solutions for all p is trivial.

To show the "only if" part of the theorem we will prove

the contrapositive. We show if G does not satisfy condition

(D) or (Z), then there exists an X and an F so that

or

*does not solve (G2) for any p and v belongs to

lv* solves (G2) for some p and v* is not in Pl}.
Our examples will be for two objective functions which may

be extended to n > 3. Also, we choose 0 to be any subset of

R
2 because X and F are arbitrary. If 0 is a subset of R

2 ,

then we can pick fi(x) = xi for i = 1,2,. and X = O.

1. First assume G does not possess property (D). The

function G may, or may not, have property (Z). Then there

exists a p and a p, p dominates p and G(p) ~ G(6), but

G(p) < G(p). We will define v and v, and a third vector c,

in R2- so that if 0 ={c,v,v}then p = p(v), p = u(v), v do

minates v, and v solves (G2). The vector v must solve

(G2) because

The vector v

by Vo

G(p) ~ G(p) and G(p) ~ G(6) where 6 = p(c).

will not belong to P because it is dominated
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There are a number of cases to consider: p and p in r;
in r and p in 1\ ; p and p in 1\ ; p in r and p~o;

p in 1\ and p ~ o. In all cases we can choose c in

p

and

R2 and the functions hi' i ~ 1,2, so that v dominates v

and the values of p(v) and p(v) are the given p and p,

respectively. For brevity we shall present only two cases in

detail.

A and assume Pl > Pl'

c 1 ~ v 1 ~ 0, v1 1 and

c 1 ~ 0, v 1 ~ 1, v 1 2 and

v 2 ~ v2 ~ ° and c 2 ~ 1.

( 1 , 0) or v ~ (1, 0) ,

a. Suppose p and p are in r and assume P1 > P1 and

P2 ~ P2· If P1 6 1 , then set c 1 v 1 ~ 0, v1 ~ and choose

h 1 so that h 1 (1) ~ Pl. If Pl > 6 1 , then let c 1 0, v 1 ~ 1,

v 1 ~ 2 and pick h 1 so that h 1 (1) ~ P 1 and h 1 (2) ~ Pl. Now

consider the values of P2 and P2. If P2 ~ P2 ~ li 2' then let

c 2 ~v2 v2 ~ 0. If P2 > P2 ~S2' then set c 2 ~ v 2 0,

v 2 1 and have h 2 (1) ~ P2. If P2 > P2 > & 2' then let c 1~o,

v 2 l,v2~2 and select h 2 so that h2(1)~P2,h2(2)~P2.

Finally, if P2 ~ P2 > li 2' then choose c 2 0, v 2 ~ v2 ~ 1

and make h 2 (1) ~ P2 ~ P2 • The results are: c is always equal

to (0,0) and v dominates v.

b. Suppose p and p are in

P2 P2 ~ 0. If P1 ~ 6 1 , then let

h 1 (1) Pl. If P 1 >S'l' then set

h 1 (1 ) p l' h 1 (2) ~ Pl. Ai so, let

Then c ~ (0,1) and v (0,0), v
v ~ (2,0). Therefore, v dominates v.

We conclude that there is a multicriteria decision problem

so that (G2) has dominated solutions if G does not satisfy

the dominance condition.

does not solve (G2) for every p.

V ~{(0,V2)lv2>1}, H ~{(vl,O)lv1>1}and ° is the

(1,1) and Hand V. The set ° is shown in Fig. 2.
* *v (1,1) and P consists of only v. There are

Let

union of

Clearly,

2. Next assume G does not possess the zero property. We

may at this point assume that G does have the dominance pro-

perty. Then there is a p in A or po, so that

G(p) ~ G(6). Assume p ~ (O,P2)' with P2 ~ 62 if P E 1\ or

P2 ° wh;n p ~ o. We show there is an ° in R2 with v* in

P but v

three cases.
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• (l,l) *v E r

/H
-+-----------+ .....;;;",. .... V z

Fig. 2. The second example of a set 0 in Theorem 3

when there are two objective functions

*,. Suppose c = v • There is an M > 0 so that P2(M) > P2

since we have assumed the h 2 values may be made arbitrarily

close to one, Let v ={(0'V2(M)~, Then ply) dominates p

with G(p) ~ G(6). The dominance property implies G(0,V2(M» >
*> G(p). Therefore v does not solve (G2) because G(6) =

*G(p(v ».
* *2, Assume c is in V, Then Il(v ) = (11,('),0). If v

is to solve (G2), then we must have G(I1,(1),O) :.. G (6) • There is

an M > 0 so that II, (H) >11,(') because the h, values may

be made arbitrarily close to one. Let v = (M, 0) • Then ply) do-
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minates (111 (1) ,0)

perty implies that

with G(1l1 (1) ,0) ~ G(6). The dominance pro-
*G(1l1(M) ,0) > G(1l 1 (1) ,Ol and v cannot

solve (G2).

3. Assume c is in H. The proof is similar to case 2

above.

We conclude that there is a multicriteria decision problem

with an undominated solution not solving (G2) if G does not

have the zero property but does satisfy the dominance condition.

(G1) for some ~ if and only

possesses properties (D) and

corol;ary 3. {¥X,VF[X* solves

if x E PJ} if and only if { G

(Z) }.

The dominance and zero properties are the strongest condi-

for all possible multicriteria decision prob

are concave and X is convex, then one couldf.
1

possibly obtain a result like Corollary 3 with weaker conditions

tions to be placed on G because we require that the solution

Pset to (G1) is

lems. If the

on G.

The zero condition is satisfied for

n
G(p) n gi(Pi)

i=1

if gi(O) = a and gi(Pi) > a for

also monotonically increasing, then

Pi > O. If each gi is

G satisfies the dominance

condition. Various possibilities for the are

- (1 -p , ) n , n > 0,
1

log (Pi + 1) ,

The functions in the product do not all have to be the

same.

Notice that the minimum operator does not have the dominan

ce property. There have been several articles recently

(Luhandjula, 1982; Thole, Zimmermann and Zysno, 1979; Yager,

1978; Zimmermann, 1983; Zimmermann and Zysno, 1983) proposing

new methods of combining the membership functions. One such
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G (p)

for 0 < , < 1, This operator does satisfy the dominance and

zero conditions and hence may be used to generate undominated,

and only undominated, solutions to any multicriteria problem.

Another procedure is

n
y min Pi + (1 - y) min ( 1 , n Pi)'

i i=1

for 0 < Y < 1. This method satisfies neither the dominance nor

the zero property and would be a poor choice to determine the

Pareto optimal set for an arbitrary multicriteria problem.

Finally, let us consider what happens if 0i = 0 for all

i. \Ie show by example that (G2), and hence (G1), may have domi

nated solutions, Let 0, a subset of R2 , be {(v1,v2 )1 0~v1~1}.
*Then P consists of only v = (1,1). If c = (1,1), then

G(p(v)) = G(O,O) for all v in 0 implying that 0 is the
*solution set. All vectors in 0, not equal to v, are domi-

*nated by v •

5. SUMMARY

This paper investigated employing fuzzy programming as a
tool to obtain undominated, and only undominated, solutions to
an arbitrary multicriteria decision problem. We showed that if
the product operator is used to combine the membership functions,
then the set of solutions to the fuzzy program is the Pareto
optimal set for any multicriteria problem. If the minimum ope
rator is employed to combine the membership functions, then so
lutions to the fuzzy program may be dominated.

The major results pertain to arbitrary methods G of com
bining membership functions in a fuzzy program. lie showed that
the set of solutions to the fuzzy program is always the Pareto
optimal set if and only if G has a dominance and zero property.
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HIERARCHICAL PROGRAHMING \HTH FUZZY OBJECTIVES AND CONSTRAINTS

Yee Leung
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Abstract. Procedures of hierarchical programming
with fuzzy objectives and constraints are propo
sed in this paper. Compromise solutions are de
termined through a sequential optimization proce
dure by which the objectives are optimized accor
ding to their descending order of priorities. In
each step, a fuzzy objective function is optimi
zed subject to the fuzzy constraints and the
trade-off functions constructed from the permis
sible trade-offs for the current objective with
respect to the higher order objectives. The more
stringent the decision makers are on the trade
offs, the more favorable the compromise solution
is to the higher order objectives.

Keywords: fuzzy optimization, fuzzy hierarchical
programming, compromise solution.

1. INTRODUCTION

Decision making within a complex system ordinarily invol
ves a set of conflicting objectives. Resolution of conflicts
among objectives is generally accomplished through the search
for a compromise solution. System complexity and imprecise
cognition often exist in our decision making processes. Pro
gramming with fuzzy objectives and constraints is thus perti
nent to the modeling of human decision making problems.

Based on a general fuzzy mathematical programming frame
work proposed by Bellman and Zadeh (1970), optimization with a
fuzzy objective and fuzzy constraints has been developed in
the last decade or so (see, for example, Tanaka, Okuda, and
Asai, 1974, Negoita and Sularia, 1976; Zimmermann, 1976).
Several attempts have specifically been made on solving multi
objective linear optimization problems embedded with fuzziness
(see, for example, Zimmermann, 1978; Hannan, 1981a, b; Narasim
han, 1980; Rubin and Narasimhan, 1984; and Leung, 1982, 1983,
1984) •

One of the basic issues in multiobjective programming is
the treatment of priorities. In general, objectives are of
varying degrees of importance. Often, a compromise solution
is reached by sacrificing, to a certain extent, lower order
objectives for the betterment of higher order objectives, To
guarantee that objectives are optimized according to their

245
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priorities, methods of implicit priorities (Zimmermann, 1978),
explicit fuzzy weights (Zeleny, 1973; Hannan, 1981a, b), and
composite objective with weighted contributions of individual
goals (Narasimhan, 1980; Rubin and Narasimhan, 1984) have been
employed.

A common characteristic of these methods is that weighted
objectives are simultaneously considered in the optimization
process. However, when objectives can be ranked and form a hie
rarchy, decision makers often consider the objectives one at a
time by the descending order of their priorities. The stepwise
optimization procedure is executed in such a way that the most
important objective is optimized first. The next most import
ant objective is then optimized within a tOlerable trade-off
specified for the optimal value of the preceding objective.
Similarly, the third most important objective is optimized
under the restraints imposed by the tolerable trade-offs of
the previous optimal solutions. The final solution is then
the most appropriate compromise solution favoring the higher
order objectives (Waltz, 1967; Nijkamp, 1977). Such a sequen
tial procedure appears to be common in many real-life decision
making problems.

The purpose of this paper is to propose some procedures
for hierarchical optimization with fuzzy linear objectives and
constraints. Two major methods are first discussed. Their
variants are then examined.

2. PROCEDURES OF HIERARCHICAL OPTIMIZATION

Let the following be a multiobjective fuzzy linear opti
mization problem:

[ fi(x) ~ zii~i' i = 1 , ••• , m
( 1 )

gj (x) ~ b j ;£j' j m+1, ••. ,n

x ~ 0

where f
l

and gj represent, respectively, fuzzy objective

functions and constraints of the fu~zy "Jreater_than or equal
to" type with tolerance intervals [z.-z. and [b.-b.], xE:Rn.

l -l l -J
Let the satisfaction functions of f

i
and gj be defi-

ned,respectivel~by the following membership functions

{
if fi(x) ~ z.

l

Pi (f i (x»
zi-fi(x)

if ~i<fi(x)<zi,i=1,.o.,m (2 )

Zi-l:.i

if fi(x) " l:.i
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[

1

b-g. (x)

\1.(g.(x) =11 - J J
J J b.-b.

J -J

o

if

if

if

£{gj(xl<b j , j=m+l,oo.,n

(3 )

Assume that the fuzzy objectives can be ranked in a des
cending order of priorities as

(4 l

with f 1 being the most important objective and

important objective.

f the least
m

tolerable levels of
*

fZ' The process continues until \lm is optimized o

Since trade-offs can be specified in different ways, the
sequential procedures can be of varying formats. Two methods
and their variants are discussed in the remaining part of this
section.

To obtain a compromise solution which would be in favor
of more important objectives, sequential optimization of indi
vidual objectives by their descending order of priorities
should be carried out. The satisfaction function \1

1
is first

optimized subject to the fuzzy constraints \1.'so A tolerable
* J

level of deviation from the optimal value f 1 is then employed

as a restraint on the optimization of \1Z in the next step.

By the same token, \l3 is optimized subject to \1.'s and the
J *

deviation from the optimal values f
1

and

Method 1. Given is the mUltiobjective fuzzy linear optimization
problem defined by (1) - (4).

* * *Step 1. Obtain the optimal solution (A
1

; x , f 1 ) by solving

the following single objective optimization problem:

m+1, ••• ,n (5)

Equivalently, we solve

[~'
A

s.t. ?I~ \11(f 1 (x»)

?" \1 j (gj (x)) , m+1, •.• ,n

:\ > 0, x ? 0

(6 )
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by solving

OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

max? ,

s.t. 'A,

gl' (x) - b,-J

';I, ~ 0, x ~ a

1 , ••• , n ( 7)

obtained in Step "

which indicates the

*Step 2. Based on the optimal value ':\,

determine a trade-off coefficient B~

" *extent to which A, can be compromised in order to best

achieve f 2 by maximizing P2' That is, B~ can be treated
*as the tolerance level for the permissible deviation from A,

in the process of optimizing f
2

•

Determine the compromise solution by solving

max "2
s.t.

- z-2

~2

gJ' (x) - b,
A 2 ~ -J j

b, - b,
J -J

2 * f, (x) - ~,

B, A, ~

~2 ~ 0, x ~ a

m+1, •.• ,n (8)

B, can be set in a

f, would always be

where a ~ B, ~ B~ ~ " with B, being the maximal tolerable
* *trade-off of f, for f 2 • For example,

way that the degree of satisfaction of

greater than or equal to that of f 2 •

* *Step 3. Based on 'A, and 'A 2 obtained in the previous steps,

select trade-off coefficients B; and B; to serve as restra

ints on the optimization of f 3 • Then, the next compromise so-
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lution is obtained by solving

~ max '>.3
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s. t.

g. (x) - b.
'A 3 ~

J -J
m+1,.~~,n

b. - b
J -J

(9)

3 * f 1 (x) - 10 1
13 1~1 ~

z1 - .c:1

3 * f 2 (x) - .c:2
13 2:>'2 ~

z2 - .c:.2

1. 3 ~ 0, x ? 0

where 13
3 2 3 1 , witho ~ 13 1 ~ 1 .. 13 1 ~ 1 and o ~ 13 2 ~ 13 2 -<i: 13 1

and 13~ being respectively the maximal permissible trade-offs
* *of f 1 and f 2 for f r

Step m. Applying the same method throughout the sequential op
timization procedure, the compromise solution in the mth step
is obtained by solving

max?
m

s.t. ~m
z - zm -m

g. (x) - b.
J -J

b. - b.
J -J

m+1, ••• ,n

( 10)

m * fi(x) - Z.
-l

il3i~i ~ ,
z. - Z.

l -l

~m ~ 0, x ? 0

m m-1 i+1 l'where 0 ~ l3 i ~ l3 i ~ l3 i ~ •••~l3i ~ 1,

1, ••• ,m-1

1, ••• ,m-1, with
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Bi being the maximal permissible trade-off of •f. for
1.

Remarks:

(a) Except for the initial step, in each step of the sequen
tial optimization process a fuzzy objective function is opti
mized over a decision space delimited by the fuzzy constraints
and the trade-off functions (constraints constructed from the
permissible trade-offs for a lower order objective with res
pect to the optimal satisfaction of all higher order objecti
ves). The compromise solution thus derived depends on the ex
tent to which decision makers are willing to trade-off the
higher order objectives. The more stringent we are on the
trade-offs, the more favorable the compromise solution is to
the higher order objectives.

The relation 0 ~ B. ~ Bm~ B~-1 ~ •.•~ Bi
+

1 ~ 1 indicates
1. 1. 1. 1.

that the trade-offs for more important lower order objectives
are more lenient than those of the less important ones. That
is, the trade-off extent decreases with decreasing order of
priorities of the lower order objectives. Such a specification
makes the search for a compromise solution consistent through
out the sequential procedure. The solution obtained from later
steps would not reverse or contradict that obtained from the
preceding steps.

for all i, the optimization process

infeasibility may

for all i, the hie-

position

if B~ =
1.

In (10), if Bm
= 1

1.

takes on a non-compromising

most likely occur. However,

and
Am--.
';\.

1.

rarchical optimization process becomes a one-stage optimiza
tion process and all objectives are treated equally.

(b) The trade-off functions in (10) are formulated with res
pect to how much satisfaction of the higher order objective i,
•

~i' a decision maker is willing to give up in return for bet-

ter achievement of a lower order objective m.

Sometimes, decision makers may find it easier
•mine the trade-off on the basis of how much of f~,

how much of ~:' they are willing to trade for f m•

situation, we can replace

to deter

instead of

Under this

Z.
1.

i 1, ••• ,m-1 (11 )

in (10) by

mo.
1.

1, •.• ,m-1 ( 12)

where

1, ••• ,m-1 with 0i being
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* *the maximal permissible trade-off of f i for f m.

Actually, (11) and (12) are identical if

Specifically,

i 1 , • 0 • , m- 1 0 ( 13)

( 14)

Ic) Although our formulation is for fuzzy "greater than or
equal to" type of objectives, it can easily be extended to
hierarchical optimization problems involving fuzzy "less than
or equal to" and/or fuzzy "equal to" type of objectives.

(d) To mEke the hierarchical optimization process more flex

ible, suitable adjustments of Bm,s should be allowed if the
1

compromise solution obtained in each step is not satisfactory.
That is, decision makers could be involved throughout the pro
cedure and the process could be iterative.

Example. Let the following be a simple two-objective fuzzy
linear programming problem

f 1 x
~

60;20

f 2 x~ '0; 90

g x >-- 50;70
( , 5)

x >-- 0

with the priority ordering being f, ~ f 2 (see Fig. 1) 0

/',11,1 /llg I

08

06

04

0.2

ol..--,....--f-----.----r---,-----,------\---r----''''r--...,--- x
10 20 30 40 50 60 80 90 100

Fig. 1. Membership functions of two fuzzy objectives and one
fuzzy constraint
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I~""s. t. 'i\ 1 ~
x-20
40

l 'A 1 ~
70-x
~ ( 16 )

~1 ~ 0, x ~ 0

*step 2. Obtain )2 by solving

max

s.t.

~2

~ 2

02 x-20
(.833H1 ~ 40

::1 2 ~ 0, x ~ 0

( 17)

Table 1 and Fig. 2 summarize the results of the hierarch i
2cal programming procedure for selected values of ~1.

Table 1. Compromise solutions with varying trade-off
specifications

Compromise solutions I

Trade-off coefficients

(~2 ) * * ~*x A11 2

0 20 0 0.875

0.1 23.332 0.083 0.833

0.2 26.664 0.166 0.792

0.3 29.996 0.250 0.750

0.4 33.328 0.333 0.708

0.5 36.660 0.417 0.667

0.6 39.992 0.500 0.625

0.7 43.324 0.583 0.583

0.8 46.656 0.666 0.542

O. 0 49.988 0.750 0.500

1 53.333 0.833 0.458
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08

06

0.4

02

o I.£:-,---,----r---r--,---,-----.-.-,----,----,--
o 1 02 0.3 04 0.5 06 0 7 08 09

Fig. 2. Trade-offs of objective-achievements

Apparently, not all trade-off specifications favor the op
timal achievement of the more important fuzzy objective f

1
,

The critical trade-off coefficient is 0.7. At this level of
trade-off, the degrees of satisfaction of both objectives are
identical, 0.583. Actually, it is the result of simultaneously
optimizing both f 1 and f~ by treating them as if they were

of equal importance. For ~1 < 0.7, the degree of satisfaction

of f 1 is lower than that of £2. For ~~ > 0.7, it is the oppo

site. Therefore, to guarantee that the degree of satisfaction
of f

1
would always be higher than that of f

2
, in reaching a

compromise, the maximal permissible trade-off of f
1

for f 2
should be set at a value greater than 0.7. That is, the condi-

2
tion, 0.7 = ~1 < ~1 ~ 1, should be enforced.

Method 2
In method 1, decision makers need to specify trade-offs

for all individual lower order objectives with respect to the
optimal value of each higher order objective. Often, it might
prove to be too taxing an information drill, albeit useful.
A less onerous task is to require the determination of an over
all permissible trade-off for any lower order objectives.

Should that be the case, the first step of the hierarchic
al optimization procedure would remain the same, (7), and the
second step becomes
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s. t. ~2

L
gj(x)-f2j

b j -12 j

f1(x)-~1

~
z -z

1 -1

~2;l.O,x;l.O

( 18)

wher~ 0 ~ ~1 ~ is the overall trade-off coefficient based
on :\ 1 •

Likewise, the mth step becomes

max ~
m

s.t.

(19)

';\m;l.O,x~O

where 0 ~ ~1 ~ 1 is the coefficient of overall trade-off of

objective i for any lower order objectives. It remains the same
in every step of the sequential optimization procedure.

In both methods 1 and 2, it is assumed that the uncon

strained optimal values of the individual objective functions
(values obtained when individual objective functions are opti
mized subject to the fuzzy constraints without the imposition
of the trade-off functions of the higher order objectives) are
not known. If such information is available, trade-off coeffi
cients can be directly specified on these unconstrained optimal
values. The variants of methods 1 and 2 are summarized in me
thod l' and 2~ respectively. Without loss of generality, only
the mth step is discussed.

~lethod l'

Let 71 1 , i 2' ••• , and ~ m be the unconstrained optimal va

lues of the objective functions P1,P2"'" and Pm' Then, the
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mth step, (10), of method 1 becomes

255

max ')
m

Sot. ~ ~

fm(x)-~m

m Z -z
m -m

~m ~

gj (x) -12
j

b j -!2 j

m- fi(x)-~i
~i ';\i ~

z.-z.
1 -1

i

m+l'Q •• ,n

1,o •• ,m-l

(20)

~m~O,x~O

The difference between the optimization problems in (10)
and (20) is that trade-off coefficients in (10) are specified

*for the sUboptimal values ~i while those in (20) are specified

for the unconstrained optimal values ~.' S
1

Method 2'

Similarly, the m-th step in method 2 becomes

max ':\
m

f (x)-z
m -m

z -zm -m

.:2(xl-!2j

b j -12 j

, j m+l, .•• ,n (21)

1, ••• ,m-l

~m~O,x~O

Remark. In all of the above methods, trade-offs are only speci
fied for the hierarchical fuzzy objective functions. The fuzzy
constraints are strictly enforced throughout and are of equal
importance with the current objectives. Sometimes, a more sa
tisfactory or pragmatic compromise solution may require the
relaxation of constraints also. Under these circumstances, dif
ferent procedures need to be formulated to keep track of the
trade-off and relaxation processes.



256 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

3. CONCLUSION

Hierarchical optimization with mUltiple fuzzy objectives
and fuzzy constraints has been examined in this paper. Several
methods, by no means to be exhaustive, have been formulated.
Dlffering from other single-step methods, the proposed optimi
zation procedures are sequential in structure. Fuzzy objectives
are optimized one at a time in the descending order of priori
ties. The final compromise solution is determined over the de
cision space delimited by the respective trade-off functions
and the fuzzy constraints, Instead of assigning weights, pre
ferential treatment of objectives is provided through the con
trol of the trade-off coefficients.

Although trade-off coefficients can sometimes be difficult
to determine, they are at least no more difficult than the de
termination of explicit or implicit weights required by other
methods. In addition, compromise is ordinarily reached by giv
ing up part of the achievement of one obJective for the return
of another. The hierarchical procedure ties in qUite satisfac
torily with such a decision making process and should be appli
cable to many real-life decision making problems with conflict
ing objectives of varying importances and conflicting interest
groups. International disarmament, national economic policies,
interregional development, environmental management, growth of
a firm and personal investment are just a few of the applicable
areas.

Since the hierarchical and the nonhierarchical procedures
are constructed on the basis of different rationales, it is
then difficult if not impossible to compare their superiorities.
Depending on the structures of the decision making problems,
one method may be more applicable than the other. However, it
may prove to be beneficial to extend the hierarchical procedure
to solve large-scale multilevel, multistage problems 1n a fuzzy
environment.
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Abstract. This paper presents a new interactive
satisficing method for multiobjective nonlinear
programming problems with fuzzy parameters o The
fuzzy parameters in the objective functions and
the constraints are characterized by fuzzy num
bers. The concept of a-Pareto optimality is in
troduced in which the ordinary Pareto optimality
is extended based on the a-level sets of the
fuzzy numbers o In our interactive satisficing
method if the decision maker (DM) specifies the
degree a of the a-level sets and the reference
objective values, the augmented minimax problem
is solved and the DM is supplied with the cor
responding a-Pareto optimal solution together
with the trade-off rates among the values of the
objective functions and the degree a. Then by
considering the current values of the objective
functions and a as well as the trade-off rates,
the DM responds by updating his reference ob
jective values and/or the degree a. In this
way the satisficing solution for the DM can be
derived efficiently from among an a-Pareto op
timal solution set o On the basis of the proposed
method, a time-sharing computer program is
written and an illustrative numerical example is
demonstrated along with the computer outputs o

Keywords: multiobjective nonlinear programming,
fuzzy number, interactive optimization,
satisficing solution.

1. INTRODUCTION

h~en formulating a multiobjective nonlinear programming
problem which closely describes and represents the real decision
situation, various factors of the real system should be reflec
ted in the description of the objective functions and the con
straints. Naturally, these objective functions and the con
straints involve many parameters whose possible values may be
assigned by the experts. In the conventional. approach, such
parameters are fixed at some values in an experimental and/or
subjective way through the experts' understanding of the nature
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of the parameters.

In most practical situations, however, it is natural to
consider that the possible values of these parameters are often
only ambiguously known to the experts. In this case, it may be
more appropriate to interpret the experts' understanding of the
parameters as fuzzy numerical data which can be represented by
means of fuzzy subsets of the real line known as fuzzy numbers
(Dubois and Prade, 1978, 1980). The resulting multiobjective
nonlinear programming problem involving fuzzy parameters would
be viewed as the more realistic version of the conventional one.

Recently, Tanaka and Asai (1981, 1984) formulated multi
objective linear programming problems with fuzzy parameters.
Following the maximizing decision proposed by Bellman and Zadeh
(1970), together with traingular membership functions for fuzzy
parameters, they considered two types of fuzzy multiobjective
linear programming problems; one is to derive a nonfuzzy solu
tion and the other is to derive a fuzzy one.

More recently, Orlovski (1985a,b) formulated general multi
objective nonlinear programming problems with fuzzy parameters.
He presented two approaches to the formulated problems by making
systematic use of the extension principle of Zadeh (1975) and
demonstrated that there exist in some sense equivalent nonfuzzy
formulations.

In this paper, in order to deal with the multiobjective
nonlinear programming problems with fuzzy parameters characte
rized by fuzzy numbers, the concept of a-Pareto optimality is
introduced by extending the usual Pareto optimality on the basis
of the a-level sets of the fuzzy numbers. Then an interactive
satisficing method to derive a satisficing solution of the de
cision maker (DM) efficiently from among an a-Pareto optimal
solution set is presented as a generalization of the results
obtained in Sakawa (1983), Sakawa and Yano (1984), Sakawa and
Yumine (1983), and Sakawa, Yumine and Yano (1984).

2. a-PARETO OPTIMALITY

In general, the multiobjective nonlinear programming
(MONLP) problem is represented as the following vector-minimi
zation problem:

min fIx) ~

subject to

T
(f 1 (x) , f 2 (x) , ••• , f k (x) )

xE:X ={ x E: Enlgj(x) ~ 0, j=1, ••• ,m}

where x is an n-dimensional vector of decision variables,
f 1 (x) , ••• ,fk(x) are k distinct objective functions of the de-

cision vector x, g1 (x) , ••• ,gm(x) are inequality constraints,

and X is the feasible set of constrained decisions.

Fundamental to the MONLP is the Pareto optimality concept,
also known as a noninferiority of solution. Qualitatively, a
Pareto optimal solution of the MONLP is one where any improve
ment of one objective function can be achieved only at the ex
pense of another. Mathematically, a formal definition of a
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Pareto optimal solution to the MONLP is given below:

Definition 1. (Pareto optimal solution) x* lO X is said to be
a Pareto optimal solution to the MONLP, if and only if there
does not exist another x ~ X such that f i (x) ~ fi(x*),

i=l, ••• ,k, with strict inequality holding for at least one i.

In practice, however, it would certainly be appropriate to
consider that the possible values of the parameters in the des
cription of the objective functions and the constraints usually
involve the ambiguity of the experts' understanding of the real
system. For this reason, in this paper, we consider the follow
ing fuzzy multiobjective nonlinear programming (FMONLP) problem
involving fuzzy parameters:

FMONLP

min f (x,a')

subject to

- - - T~ (f 1 (x, a 1 ) , f 2 (x, a 2) , 00 • , f k (x, a k ) )

XEX(b) ~{XEEnlgj(X,bj) ~ 0, j=l,oo.,m}

--where a i and b j represent, respectively, a vector of fuzzy

parameters involved in the objective function fi(x,ai ) and the

constraint function gj(x,bj ).

These fuzzy parameters are assumed to be characterized as
the fuzzy numbers introduced by Dubois and Prade (1978, 1980).
It is appropriate to review here that a real fuzzy number p
is a convex continuous fuzzy subset of the real line whose
membership function p_(p) is defined as:

p 1
(1) A continuous mapping from E to the closed interval [0,1],

(2) p_(p) = 0 for all p E (-00, Pl],

(31 Sfrictly increasing on [Pl' P2]'

(4) 1l_(P) = 1 for all p E LP2' P3]'
P

(5) Strictly decreasing on [P3' P4J,

(6) 1l_(P) = 0 for all p E [P4,+ooJ.
p ~-(p)

P
1

OL-------''------'------'---------'-__ p

Pl P2 P3 P4

Fig. 1. Membership function of a fuzzy number p
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a and b. in the FMONLP are fuzzy
~ J

numbers whose membership functions are p_ (a.) and p (b.),a i ~ n j J

respectively. For simplicity in the notation, define the follow
ing vectors:

Figure 1 !}lustratesthe graph of a possible shape of a
fuzzy number p.

We now assume that

Then, we can introduce the following a-level set or a-cut,
Dubois and Prade (1980), of the fuzzy numbers a and o.
Definition 2. (a-level set). An a-level set of fuzzy numbers a
and ~ is defined as an ordinary set La(a,b) for which the
degree of their membership functions exceeds a level a, i.e.

LaCa,b) = {(a,b) I Pir(a) ~ a, \lfi(b) ~ a} (3)

It is clear that the level sets have the following pro
perty:

if L (a,b) ~ L (a,b)}a
1

a 2
a, the FMONLP (2) can be understood

a-multiobjective nonlinear program-

a 2 if and only

For a certain degree
as the following nonfuzzy
ming (a-MONLP) problem:

"'-MONLP

min{f(x,a) ~ (f1(X,a1),f~(X,a2),••• ,fk(X~ak»)T} J
subJect to xEX(b) ~{XEE 19j(x,b j ) ~ 0, J=1, ••• ,m} (4)

(a,b) E La (a,b)

It should De emphasized here that in the a-MONLP the
parameters (a,b) are treated as decision variables rather than
constants.

On the basis of the a-level sets of the fuzzy numbers, we
introduce the concept of a-Pareto optimal solutions to the
a-MONLP.

*Definition 3. (a-Pareto optimal solution). x EX(b/ is said to
be an ~-Pareto optimal solution to the a-MONLP(4) if and only
if there does not exist another xEX(b), (a,b/EL (a,n) such
that fi(x,a) ~ fi(x*,a*), i=1, ••• ,k, with stric@ inequality

holding for at least one i, where the corresponding values of
parameters (a*,b*/ are called a-level optimal parameters.

In order to generate a candidate for a satisficing solu-
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(5 )

tion which is also a-Pareto optimal, the DM is asked to specify
the degree a of the a-level set and reference levels of achieve
ment of the objective functions, called reference levels. Obser
ve that the idea of the reference levels or the reference point
was first proposed in Wierzbicki (1979). For the DM's degree a

reference levels f
i

, i=1, ••• ,k, the corresponding a-Pareto

optimal solution, which is in a sense close to his requirement
(or better, if the reference levels are attainable), is obtain
ed by solving the following augmented minimax problem:

k _

{ max (fi(x,a i ) - f i } + f L (f. (x,a.)-f.}}
1~i~k i=1 1 1 1

min
xEX(b)

(a,b) EL(a,E)

or, equivalently:

min {v +
x,v,a,b

(6 )

subject to:

(7)

lla-(a) ?o a

llb'(b} ?o a

x E X (b)

(8)

(9)

( 1 O)

The term augmented is adopted because the term

(fi(x,a i ) - f i } is added to the usual minimax problems,
k

OL
-i= 1
where g is a sufficiently small positive scalar. Such an
augmented minimax problem can be viewed as a modified version
of the augmented weighted Tchebycheff norm problem of Steuer and
Choo (1983) or Choo and Atkins (1983).

The relationships between the optimal solutions of the
augmented minimax problem and the a-Pareto optimal concept of
the a-MONLP can be characterized by the following theorems.

Theorem 1. If (x*,a*,b*) is an optimal solution to the
augmented minimax problem for some I = (I1 , ••• ,Ik ), then x* is

an a-Pareto optimal solution to the a-MONLP.

Proof. Assume that x* is not an a-Pareto optimal solution to
the a-MONLP, then there exists xEX(b), (a,b)EL (a,b).such that
f(x,a) ~ f(x*,a*). Then, it holds that a

max (f. (x, a .) - I,) ~ max (f , (x * , a ~) - I.)
1~i~k 1 1 1 1~i~k 1 1 1

k k
~ L (f.(x,a.) - I.) < P L (f.(x*,a~) - I.)

i=1 1 1 1 ) i=1 1 1 1

This ,neans that
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k
max (f i (x, a i) - f i) + ~ ;: 1 (f i (x, a i) - f i) <

1$i$k •

k
< max (f.(x*,a*) - f) +() L (fi(x*,a~) - f;),

1$i$k ~ ~ • ) i=1 ••
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which contradicts the fact that (x*,a*,b*) is an optimal solu
tion to the augmented minimax problem. Hence x* is an a-Pareto
optimal solution to the a-MONLP.

Theorem 2, If x* is an a-Pareto optimal solution and (a*,b*)
is an a-level optimal parameter to the a-MONLP, then there
exists f = (f

1
, ••• ,f

k
) such that (x*,a*,b*) is an optimal solu-

tion to the augmented minimax problem.

Proof. Assume that (x*,a*,b*) is not an optimal solution to the
augmented minimax problem for any f satisfying

f 1 (x * , a;) - f 1 =,., = f k (x * , ak) - f k '

Then there exists xEX(b), (a,b)EL (a,n) such that
k c<

max (f. (x * , a'!') - f.) + ~ L (f . (x * , a '!') - f.) >
1$i$k ~ ~ ~ i=1 ~ ~ ~

k
> max (f i (x, a i) - f.) + Y L (f. (x, a .) - f i) •

1$i~k ~ i=1 ~ ~

This implies that

k * *max (f . (x, a .) - f; (x * , a ~») + CI L ( f . (x, a .) - f; (x , a; ) ) <O.
1$i$k ~ ~ • • J i =1 ~ ~ • •

Now, if either any fi(x,a i ) - fi(x*,ai) is positive or all

f i (x,a i ) - f i (x* ,ai)' i=1" •• ,k, are zero, this inequality will

be violated for sufficiently small positive S • Hence

f (x,a) - f (x* ,a*) ~ 0

must hold which contradicts the fact that x* is an a-Pareto
optimal solution and (a*,b*) is an a-level optimal parameter to
the a-MONLP,and the theorem is proved.

It is significant to note here that from the property of
the a-level set, the following relation holds for any two
optimal solutions (x 1 ,v1 ,a 1 ,b 1) and (x 2 ,v2 ,a 2 ,b 2 ) to the

augmented minimax problems with the same reference levels cor

responding to a 1 and a 2

a 1 $ a 2 if and only if
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3. TRADE-OFF RATES

Now given the a-Pareto optimal solution for the degree a
and the reference levels specified by the DM by solving the cor
responding augmented minimax problem, the DM must either be satis
fied with the current a-Pareto optimal solution, or update the
reference levels and/or the degree a. In order to help the DM
express his degree of preference ,trade-off information between
a standing objective function and each of the other objective
functions as well as between the degree a and the objective
functions is very useful. Fortunately, such trade-off informa
tion is easily obtainable since it is closely related to the
strict positive Lagrange multipliers of the augmented minimax
problem.

To derive the trade-off information, we first define the
Lagrangian function L for the augmented minimax problem (6)-(10)
as follows:

L(x,v,a,b,~f,~a,~b,~g,f,~)

k
= v + ~ L

i =1

k f
(f i (x, a i) - f.) + L ~ i (f i (x, a i) - f. -v) +

1 i=1 1

the augmented minimax prob
fi(x(a*),ai(a*» - fi' then

m k m
L ?gJ.gJ'(X) + L ",':l(a -~_ (a.» + L').b(a -~15'(bJ'» (11)

j=1 i=1 1 a i 1 j=1 J J

In the following, for notational convenience, we denote
the decision variable in the augmented minimax problem (6)-(10)
by Y = (x,v,a,b) and let us assume that the augmented minimax
problem has a unique local optimal solution y* satisfying the
following three assumptions.

If all the constraints (7) of
lem are active, namely if v(a*)

the following theorem holds.

Theorem 5.

Let all the assumptions in Theorem 3 be satisfied. Also
assume that all the constraints (7) of the augmented minimax
problem are active. Then it holds that

d f i (x,a i ) I
da

a=a*

1

1 + ~ k

k
( L
i=1

a* m b*
?. + L')..)

1 j =1 J
(13 )

Regarding a trade-off rate between f
1

(x) and fi(x) for

each i=2, ••• ,k, by extending the results in Haimes and Chankong
(1979) ,we can prove that the following theorem holds,Yano and

Sakawa (1985).

Theorem 6. Let all the assumptions in Theorem 3 be satisfied.
Also assume that the constraints (7) are active. Then it holds
that
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d f. (x,a.) Il. l.

f*
').1

- ---p
~.

l.

i=2, ••• ,k (14 )

It should be noted here that in order to obtain the trade
off rate information from (12) and (13), all the constraints (7)
of the augmented minimax problem must be active. Therefore, if
there are inactive constraints, it is necessary to replace f.
for inactive constraints by f. (x*,a~) and solve the correspona-

l. l.

ind augmented minimax problem for obtaining the Lagrange multi
pliers.

Assumption 1. y* is a regular point of the constraint of the
augmented minimax problem.

Assumption 2. The second-order sufficiency conditions are satis
fied at y*.

Assumption 3. There are no degenerate constraints at y*.

Then the following existence theorem, which is based on
the implicit function theorem Fiacco (1983), holds.

Theorem 3. Let y* = (x*,v*,a*,b*) be a unique local solution
of the augmented minimax problem (6)-(10) satisfying assumptions

f* a* b* g*
1,2 and 3. Let ~* = (~ ,~ ,~ ,~ ) denote the Lagrange multi-
pliers corresponding to the constraints (7)-(10). Then there
exist a continuously differentiable vector-valued function y(.)
and ~(.) defined on some neighborhood N(a*), y(a*) = y*,
~(a*) = ~*, where y(a) is a unique local solution of the
augmented minimax problem (6)-(10) for any aEN(a*l satisfying
assumptions 1,2 and 3, and A(a) is the Lagrange multiplier cor
responding to the constraints (7)-(10).

k
In Theorem 3, inf{ v +~ l: (f.(x,a.)-f.)If.(x,a.)-f. ~ v,

x,v i=1 l. l._ l. l. l. l.-

(i=1, ••• ,k), ~a(a) ~ a'!""15'(b) ~ a, XEX(b)} can be viewed as the

optimal value function of the augmented minimax problem (6)-(10)
for any aEN(a*). Therefore, the following theorem holds under
the same assumptions as in Theorem 3.

Theorem 4. If all the assumptions in Theorem 3 are satisfied,
then the following relations hold in some neighborhood N(a*)
of a*

k
l: (f.(x,a.)

i=1 l. l.

da

C)L k m
l:~~ + l:~b

i=1 l. j=1 )
( 12)

4. INTERACTIVE ALGORITHM

Following the above discussions, we can now construct an
interactive algorithm in order to derive a satisficing solution
for the DM from among the a-Pareto optimal solutions. The steps
marked with an asterisk involve interaction with the DM.

~. Calculate the individual minimum and maximum of each
objective function under given constraints for a=1.
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Step 2*. Ask the DM to select the initial value of a(O < a < 1)
and the initial reference levels f i , i=1, ••• ,k.

Step 3. For the degree a and the reference levels specified by
the DM, solve the augmented minimax problem.

~' The DM is supplied with the corresponding a-Pareto op
timal solution and the trade-off rates between the objective
functions and the degree a. If the DM is satisfied with the
current objective function values of the a-Pareto optimal solu
tion, stop. Otherwise, the DM must update the reference levels
and/or the degree a by considering the current values of the
objective functions and a together with the trade-off rates
between the objective functions and the degree a and return to
step 4. Here it should be stressed for the DM that: (1) any im
provement of one objective function can be achieved only at the
expense of at least one of the other objective functions, and
(2) the greater value of the degree a gives worse values of the
objective functions for some fixed reference levels.

5. NUMERICAL EXAMPLE

Based on the proposed method, we have developed a new in
teractive computer program. Here we demonstrate the interactive
processes using our computer program by means of an illustrative
example which is designed to test the program. Consider the
following three-objective nonlinear programming problem with
fuzzy parameters:

subject to: g1(x,b1)

min{f 1 (x,a1 )

min{f 2 (x,a2 )

min{f 3 (x,a3 )

- 2a
11

x
1

+ (x
2

_ 2
(x

1
+a

21
) +

i = 1,2,3.

( 1 5)

The membership functions for the fuzzy numbers a
1

, a 2 , a 3
and b 1 in this example are explained in Table 1 where Land E

represEnt respectively linear and exponential membership fun
ctions.
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INPUT SUFFICIENTLY SMALL POSITIVE SCALAR FOR AUGEMENTED TERM:
=0.00001

---------------------( ITERATION 1 >----------------------

INPUT YOUR REFERENCE VALUES F(U (1=1,3):
=4925 5640 6042

INPUT THE DEGREE ALFA OF THE ALFA LEVEL SETS
FOR THE FUZZY PARAMETERS:
=0.5

( KUHN-TUCKER CONDITIONS SATISFIED )

ALFA-PARETO OPTIMAL SOLUTION
TO THE AUGEMENTED MINIMAX PROBLEM
FOR INITIAL REFERENCE VALUES

OBJECTIVE FUNCTION

F (1)

F (2) =
F(3) =

X ( 1) =
X ( 3) =

6030.7663
6745.7663
7147.7663

6.4142
4.8060

X( 2) = 6.8306

TRADE-OFFS AMONG FUNCTIONS
-DF(2l/DF(1) = 1.2226
-DF(3l/DF(1l = 1.4022

TRADE-OFFS BETWEEN ALFA AND FUNCTIONS
DF/DALFA = 549.4475

ARE YOU SATISFIED WITH THE CURRENT OBJECTIVE VALUES OF
THE ALFA-PARETO OPTIMAL SOLUTION ?
=NO

---------------------( ITERATION::: >----------------------

INPUT YOUR REFERENCE VALUES F(I) (1=1,3):
=5500 7500 6500

INPUT THE DEGREE ALFA OF THE ALFA LEVEL SETS
FOR THE FUZZY PARAMETERS:
=0.6

••••••••• •••• ••••• •••• 0 •••••••••••••••••••••••••••

Fig. 2 Interactive Satisficing Processes



268 OPTIMIZATION MOOELS, FUZZY SETS, ANO POSSIBILITY THEORY

Table 1. Fuzzy numbers

TYPE
I P P1' P2' P3' P4 left right
I

a 11 (308, 4.0, 4.0, 4.3) L E

a12 (57.0, 59.0, 60.0, 63.5) E L

a21 (18 00, 19.5, 20.0, 22 05) E E

'a22 (1 .75, 2.0, 2.0, 2.25) E L
I

a'31 (2.3, 2.5, 2 05, 2.75) L E

~32 ( 1 .25, 1 .4, 1 .5, 1. 7) L L

~33 (17.5, 20.0, 20.0, 22.0) L E

15'11 (0 09, 1 .0, 1 .0, 1.1 ) E E

15'12 (0.8, 0.95, 1 .0, 1 .2) E E

b
13 (0.85, 1 .0, 1 .0, 1 • 15) E L

In Fig. 2, the interaction processes using the time-sharing
computer program under TSS of the ACOS-1000 digital computer in
the computer center of Kobe University in Japan are explained
expecially for the first iteration through the aid of some of
the computer outputs. a-Pareto optimal solutions are obtained
by solving the augmented minimax problem using the revised
version of the generalized reduced gradient (GRG) (Lasdon, Fox
and Ratner, 1974) program called GRG2 (Lasdon, Warren and
Ratner, 1980).

In this example, in the 4th iteration, the DM's satisficing
solution is derived and the values of the objectives and deci
sion variables are shown in Fig. 3. The whole interactive pro-

THE FOLLOWING VALUES ARE YOUR SATISFICING SOLUTION :

OBJECTIVE FUNCTION

F (1)

F(2)
F(3)

x( 1) =
X ( 3,\ =

COMMAND:
=STOP

5624.2467
8324.2467
6724.2467

7.5887
6.7895

X ( 2) = 0.9739

Fig. 3. Satisficing Solution for the DM
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cesses are summarized in Table 2. CPU time required in this
interaction process was 5.046 seconds and the example session
takes about 10 minutes.

Table 2. Interactive processes

269

; Iteration 1 2 3 4

i -
f 1 5025 5500 5500 5300

- 8000f 2 5650 7500 7900

£3 6062.5 6500 6300 6400

j
a 0.5 0.6 0.6 0.65

,
f 1 6030.77 5769.10 5763.16 5624.25

i, f 2 6745.77 7769.10 8163.16 8324.25

f 7147.77 6769.10 6563.16 6724.253
x 6.41 7.64 8.08 7.591

x
2 6.83 3.11 1 .25 0.97

x 3 4.81 6.18 6.21 6.79

C)f 2 /Clf 1 -1.22 -1.88 -2.49 -2.84

<>f 3 /;)f
1 -1 .40 -1.22 -1.08 -1.19

df/'Jo<. 549.45 561 .49 560.61 547.38

6. CONCLUSIONS

In this paper, we have proposed an interactive satisficing
method using the augmented minimax problems in order to deal
with the multiobjective nonlinear programming problem with fuzzy
parameters characterized by fuzzy numbers. Through the use of
the concept of the a-level sets of the fuzzy numbers, a new
solution concept called the a-Pa:r'eto optimality has been intro
duced. In our interactive scheme, the DM's satisficing solution
can be derived by updating the reference levels and/or the
degree a based on the current values of the membership functions
and a together with the trade-off rates between the objective
functions and the degree a. Furthermore, a-Pareto optimality
of the generated solution in each iteration is guaranteed.
Based on the proposed method, the time-sharing computer program
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has been written to facilitate the interaction processes. An il
lustrative numerical example demonstrated the feasibility and
efficiency of both the proposed method and its interactive com
puter program by simulating the responses of the hypothetical
DM. However, further applications must be carried out in coope
ration with a person actually involved in decision making. From
such experiences the proposed method and its computer program
must be revised.

REFERENCES

Bellman, R.E., and L.A. Zadeh (1970). Decision making in a
fuzzy environment. Mang. Sci. 17, 141-164.

Choo, E.U., and D.R. Atkins (1983). Proper efficiency in non
convex multicriteria programming. Math. Oper. Res. 8,
467-470.

Dubois, D., and H. Prade (1978). Operations on fuzzy numbers.
Int. J. Systems Sci. 9, 613-626.

Dubois, D., and H. Prade (1980). Fuzzy Sets and Systems: Theory
and Applications. Academic Press, New York.

Fiacco, A.V. (1983). Introduction to Sensitivity and Stability
Analysis in Nonlinear Programming. Academic Press, New
York.

Haimes, Y.Y., and V. Chankong (1979). Kuhn Tucker multipliers
as trade-offs in multiobjective decision-making analysis.
Automatica 15, 59-72.

Lasdon, L.S., R.L. Fox, and M.W. Ratner (1974). Nonlinear opti
mization using the generalized reduced gradient method.
Revue Francaise d'Automatique, Informatigue et Research
Operationnelle 3, 73-103.

Lasdon, L.S., A.D. Waren and M.W. Ratner (1980). GRG2 User"s
Guide. Technical Memorandum. University of Texas.

Orlovski, S.A. (1983a). Problems of Decision-Making with Fuzzy
Information. IIASA Working Paper WP-83-28. Laxenburg,
Austria.

Orlovski, S.A. (1983b). Multiobjective Programming Problems with
Fuzzy Parameters. IIASA Working Paper. Laxenburg, Austria.

Sakawa, M. (1983). Interactive computer programs for fuzzy
linear programming with multiple objective. Int. J. Man
Machine Stud. 18, 489-503.

Sakawa, M., and T. Yumine (1983). Interactive fuzzy decision
making for multiobjective linear fractional programming
problems. Large Scale Syst. 5, 105-114.

Sakawa, M., T. Yumine, and H. Yano (1984). An Interactive Fuzzy
Satisficing Method for Multiobjective Nonlinear program
ming Problems. IIASA Collaborative Paper CP-84-18.
Laxenburg, Austria.

Sakawa, M., and H. Yano (1984). An interactive fuzzy satisfi
cing method using penalty scalarizing problems~ Proc. Int.
Computer Symposium. Tamkang, Univ. Taiwan, 1122-1129.

Steuer, R.E., and E.U. Chao (1983). An interactive weighted
Tchebycheff procedure for multiple objective programming.
Math. Prog. 26, 326-344.

Tanaka, H., and K. Asai (1981). A formulation of linear program
ming problems by fuzzy function. (in Japanese) Syst. and
Cant. 25, 351-357.

Tanaka, H., and K. Asai (1984). Fuzzy linear programming prob
lems with fuzzy nurr~ers. Fuzzy Sets and Syst. 13, 1-10.



AN INTERACTIVE SATISFICING METHOD 271

Wierzbicki, A.P. (1979). The Use of Reference Objectives in
Multiobjective Optimization - Theoretical Implications and
Practical Experiences. IIASA Working Paper WP-79-66.
Laxenburg, Austria.

Yano, H., and M. Sakawa (1985). Trade-off rates in the weighted
Tchebycheff norm method. (in Japanese) Trans. S.I.e.E. 21,
248-255.

Zadeh, L.A. (1975). The concept of a linguistic variables and
its application to approximate reasoning-1. Inf. Sci. 8,
199-249.



INTERACTIVE POLYOP'l'HIIZATION FOR FUZZY MATHEMATICAL
PROGRAMMING

Cs. Fabian, Gh. Ciobanu and M. Stoica

Academy of Economic Studies
Bucharest, Romania

Abstract. An optimization model with non-linear (de
terministic and/or fuzzy) constraints and several
objective functions is formulated and transformed
into a problem with an objective synthesis function.
The paper refers to the situation when there is no
feasible solution, this case being frequently met
in practice. A resolution method is indicated further
on. The algorithm is illustrated by an example. A con
crete model of loading up the capacities with fuzzy
constraints and with several objective functions is
also given.

Keywords: fuzzy constraints, multicriteria decision
making, nonlinear programming, global op
timization, cluster analysis, interactive
algorithms, capacity loading.

1. INTRODUCTION

The study of modelling and solving mathematical program
ming problems with several objective functions and fuzzy con
straints is a necessity resulting from economical, technlcal
and social practice. To this effect, we set fortha mathematical
optimization model and a relevant solution method.

This paper is concerned with problems which may be said
to be at the confluence of several fields, with each of them
being dealt with separately, or sometimes together. These
fields are multicriteria optimization, fuzzy mathematical pro
gramming, global optimization, interactive solving of decision
making problems and application of mathematical programming in
production scheduling.

As far as multicriteria optimization is concerned, we re
fer to the papers of Roy (1970), Boldur-Stancu Minasian (1971),
Marusciac (1970) and to the excellent works of Zeleny (1974),
Zionts (1978) and Stadler (1979). The interactive approach to
multicriterial optimization problems appears in Zionts and
Wallenius (1976), Leclercq (1982), Sakawa (1984) and Warfield
(1984).

The analysis of optimization problems by means of fuzzy
sets appears in the works of, e.g., Dubois and Prade (1984),
Negoita and Sularia (1976), and Zimmermann (1978).

272
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Global optimization is also a field very much debated. We
mention among the respective works one by Boender (1982) and
an excellent synthesis by Dixon and Szeg~ (1978). We will refer
in this paper to the T~rn (1977) clustering method and to the
directed simulation method of Hartman (1973).

The interactive approach to decision making problems is a
mode of solving them which is now widespread thanks to computing
methods and microcomputers.

In this paper we present a fuzzy optimization model with
non-linear constraints and several objective functions.

The optimization problem with several objective functions
and several (deterministic and/or fuzzy) constraints is formu
lated and transformed into a problem with a synthesis objective
function; the concept of an M-efficient solution is introduced;
the mode of associating the membership degrees to constraints
and objective functions is described, laying stress on determi
ning the parameters of the membership function and on the method
of composing several optimum functions into a synthesis function.

A resolution method is indicated further on. When there is
a feasible solution, the Sakawa (1984) method is recommended.

The main section of this paper refers to the situation
when there is an infeasible solution, this case frequently being
met in practice. For this case, a global optimization algorithm
is suggested which is founded on the combination and modifica
tion of the T~rn (1977), Hartman (1973) and Box (1965) methods.
The operation of the algorithm is illustrated by means of an
example.

We conclude the paper with a concrete model of loading up
capacities with fuzzy constraints and with several objective
functions.

2. MULTIOBJECTIVE OPTIMIZATION PROBLEM

2.1. Statement of the problem

The optimization problem with several objective functions
is represented as follows:

( 1 )

subject to

xED ={xIXERn,O" X" d,gj(x) " 0, j=1,2, ••• ,m}

where: x is an n-dimensional vector of the decision making va
riables with nonnegative components x 1 ,x 2 ' ••• ,x (x.>O,
i=1,2, ••• ,n) i d is an n-dimensional vector with nthelcomponents
d 1 ,d2 , ••• ,dn upper bounding the decision variables (xi" d i ,

i=1,2, •• ,n); f 1 ,f 2 , ••• ,f
p

are p distinct objective functions of

the decision vector x,

gj(x) ~ 0, j = 1,2, ••• ,m (2 )
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are constraints on the decision variables and D is the fea
sible set of constraints (2) in the hyperparallelepiped O<y<d

One assumes that in the practical problems the decision
maker knows at least approximatively the range d=(d

1
,d

2
, ••• ,dn )

of decision variable x = (x
1
,x 2 ' ••• ,xn ).

The concept of the Pareto optimum, also known as a non
inferior solution, is fundamental to problem (1). Qualitative
ly, a Pareto optimal solution to problem (1) is one where any
improvement of one objective function can be achieved only at
the expense of another one. Usually, Pareto optimal solutions
form an infinite set of points from D. The choice of a prefer
red solution among the Pareto optimal solutions means the solv
ing of the following problem:

max 'l(f 1 (x),f 2 (xl, ••• ,f (x») (3)
x p

subject to x E DP

where: DP is the set of Pareto optimal solutions of problem
(1) and ~(.) is an aggregating function of the functions p
f

1
(x) ,f

2
(x), ••• ,fp (x), defined as a utility function on D • As

a rule, these utility functions ~(.) are not explicitly known
by the decision makers.

It is difficult to obtain such Pareto optimal solutions
of problem (J), as the set DP is not "visible". The practical
requirements of the problem compel the decision makers to pre
sent the desired (aspiration) values of the objective functions

f 1 (x) ,f 2 (x) , ••• ,fp(X)

as bounding values M
1

,M
2

, ••• ,M
p

We may thus consider p con

straints of the form

let

fi(x) ~ Mi , i = 1,2, ••• ,p

Let DM ={xIXERn , f.(xl < M., i
PM P M 1. - 1.

D D n D • One observes that

(4 )

= 1,2, ••• ,p}. If D
M ~ ¢,

if D
PM ~ ¢, then D

P ~ ¢
and D ~ ¢, respectively. As a rule, the converse is not true,

since the set DPM may be empty due to M1 .M
2

, ••• ,M
p

selected by

the decision maker as his or her aspiration levels. But this

is not known a priori at the moment when the decision maker

selects the values M
1

,M
2

, ••• ,M
p

•

It may be noticed that when DPM ~ ¢, this is the set of

Pareto solutions sought by the decision maker.

We mention that Sakawa (1984) deals with the case when

D
M ~ ¢ and gives a method which, in certain conditions, leads

to the selection of a solution from DPM •
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Sometimes, the sets of solutions DM and DPM , respectively,

are empty, due to the set of values M
1

,M2 , ••• ,Mp supplied by

the decision maker and to their inconsistence with the data of

the problem. Thus, we consider the values of the objective fun

ctions fi(x), i=1,2,.o.,p,to be around Mi , i=1,2, •• o,p, hence

constraints (4) are fuzzy constraints

(5 )

In many practical cases (for instance, in production sche

duling and programming), constraints (2) yield an empty set

(D = ¢), the decision maker asks for the solution of problem

(1), disregarding the fact whether D is an empty set or not.

In order to solve problem (1) in this case also, we allow the

violation of some constraints (2), considering them as fuzzy

constraints

1,2, ••• ,rn (6)

2.2. Fuzzy multiobjective model

We associate with the fuzzy constraints (5) and (6) the

membership functions Pf. (x), i=1,2, ••• ,p, concerning the
1

degree of feasibility of the levels Mi , i=1,2, ••• ,p,desired by

the decision maker, and P (x), j=1,2, ••• ,m,concerning the
gj

degree of fulfillment of the fuzzy constraints gj(x) ~ 0,

j=1,2, ••• ,m. Thus, we may consider problem (1) as a multicri

teria maximization problem, the objective functions being mem

bership functions, and the constraints remaining those of va

riable boundings, i.e.

max{ pIx) =
x

subject to

(p f (x),Pf (x)"",Pf (x),
1 2 P

P (x), P (x), ... ,p (x»}
g1 g2 gm

(7 )

xEX ={ x E R
n I 0 ~ x ~ d}

Let US denote by xPM the set of Pareto optimal solutions

for problem (7); a solution xEX PM will be referred to as an

M-efficient solution.
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for Ilf .(x), i=1,2, ••• ,p,
1

red to x' if and only if

Having in view the analogy between problems (1) and (3),

for determining an optimal Pareto solution of problem (7), we

solve the following problem

max 'X. (x) ( 8 )
x

subject to

x E XPM

where: ~ (x) is a synthesis membership function obtained by

applying some algebraic composition operators on the membership

functions Ilf (x), i=1,2, ••• ,p, and Il (x), j=1,2, ••• ,m,
i gj

'X(x) =X(ll f (x), ••• ,llf (x), P (x), ••• ,1l (x»)
1 p g1 gm

Problem (3) makes sense if and only if problem (1) has a

non-empty solution set (D f ~). This also implies the fact that

the set of Pareto optimal solutions is non-empty (DP f ~). In

many concrete cases D = ~, hence DP = ~ also, and this is why

problems (7) and (8) have been considered.

Let us further consider the problem

max 'X(x) (9)
xEX

*and let x be an optimal solution.

Under some resonable assumptions (Dubois and Prade, 1984)

and 11 (x), j=1,2, ••• ,m (x is prefer
gj

(Y)i~p, Pf. (x) ~ Pf. (x') and ("t)j~mr
1 1

Il (x) > Il (x'») and for 'X (x) «1') (x 1,···,xn ), (Y1""'Yn)
gj - gj

if (t)k~n, x k ~Yk' then 'X,(x 1 '.··,xn ) ~'X.(Y1""'Ym»;it is
obvious that x* E XPM and x* E DP • In other words, an M-effi

cient solution is also a Pareto optimal solution for problem (1).

3. ASSOCIATED MEMBERSHIP FUNCTIONS

3.1. On objective functions and constraints

We define the membership functions associated with constra
ints (5) and (6). The membership function for a constraint
h(x) + 0(0)0 given), may be defined, e.g., as follows:

{
1 if h (x) < 0

~ h(x) = exp(-qh(x)), if h(x) > 0
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(10)if 0 < h (x) < B

if h (x) > B

if h (x) ~ 0

where: q is a positive scalar factor expressing the relative im

portance of the constraint h(xl ~ 0; Ph(x) depends on the or

der of magnitude of h(x) which imposes a normalization. To this

effect, the decision maker should specify an additional value

B, with B >0, by which a maximum violation of the constraint

h(x) ~ 0 is allowed. The membership function Ph(x) may be de

fined as follows

I1h (x) {~xp[- q h (x) - 0 ]

B - 0

o

Likewise, for the case of our problem, we may also define

other membership functions which have to satisfy the following

conditions:

I1h(x) - monotonously decreasing for o<h(x)<B, and

I1h(x) = 1 if h (x) ~ 0;

0 < ).Ih (x) < 1 if 0 < h(x) < B , and

Ilh(x) = 0 if h(x) > B.

The introduction of the membership functions Ilh(x) compli

cates the solving of the problems stated in the preceding sec

tion, however, in the cases D = ~ and/or DM = ¢ we are able to
supply a solution, associated with a degree of membership regar
ding the satisfaction of the constraints or of the bounds
M1 ,M2 , ••• ,Mp set by the decision maker.

As a rule, it is difficult for the decision maker to sup
ply (decide) the values of the parameters q, 0 and B • Meeting
the decision maker half way, we suggest the following procedure:

.123 c {nthe pOlnts x ,x ,x , ••• ,x from X = xER IO'Xk'dk ,

k=1,2, ••• ,n} are uniform randomly generated;

- the h(x 1 ) ,h(x 2 ) ,h(x3 ), ••• ,h(xc ) values are evaluated and
put in an increasing order, i.e.

123 ch(x ) ~ h(x ) ~h(x ) ~ •••~ h(x )

- knowing this variation range of the function h(x), the
decision maker can decide on the selection of the values 0

and B;

- for determining the parameter, q, the decision maker
should evaluate the values of the membership function relevant

to h(x 1) , ••• ,h(xc ), completing, for instance, the following

table for the points x k with 0 < h(xk ) < B

o
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thus, the value of the parameter q from the membership func
tion (10) can be statistically determined.

With our problem, according to constraints (4) [fi(xl < Mi ,

i=1,2, ••• ,pl, the membership functions (10) are

[

1 fi(x)-Mi if fi(x) < Mi (11)

).If(x) = exp[-r i if ~\<fi(x)~Mi,I=1,2,•• ,p
l. M~ - M.

l. l.

o if fi(x) > Mi

where: r i , i=1,2, ••• ,p, are positive scalar factors,correspond

ing to the factor q, expressing the relative importance of the

objective functions f 1 (x), ••• ,f p (x); Mi and Mi, i=1,2, ••• ,p,

are the aspiration levels a and ~ related to each objective

function fi(x), i=1,2, •.• ,p.

Corresponding to constraints (2) [g. (x) < 0, j=1,2, ••• ,ml,
J

the associated membership functions (10) are

[

1 if gj (x) ~ 0, (12)

= exp(-sjgj(x)/b j ), if 0<gj(x)~bj,j=1,2,••• ,m

o if gj(xl > b j

where Sj' j=1,2, ••• ,m,are positive scalar factors expressing

the relative importance of the constraints gj (x)~O, j=1,2, ••• ,m,

In this case, a = 0 and ~ = b j are considered for each cons-

traint.

The parameters r i , Sj' Mi , Mi, b j , i=1,2, ••• ,p,

j=1,2, ••• ,m,entering the expression of the membership functions

are determined in the same manner as the parameters q, a and ~

from the general membership function (10).

In order to determine the r i and Sj one may also resort to

a group of decision makers. Let us assume that, when the impor

tance of the constraint gj(x) ~ 0 is greater than that of

gk(x) ~ 0, we have Sj ~ sk' and, likewise, when the objective

function fu(x) is more important than the objective function

fv(x), we have r u > r v '

The parameters r i and sJ may be determined in case of a

group of decision makers, as follows:

- concrete values are given to the parameters r i and Sj by

each decision maker of the group;
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- when no qualitative inconsistencies exist (the importan
ce order is identical and only the values are different) the
arithmetic mean is computed on each parameter;

- when there are qualitative inconsistencies, these should
be analysed and argued, and the parameter values should be
brought into accord.

3.2. Synthesis membership functions

axioms, according to Dubois and Prade

'):(1,1, ••• ,1) =

V (x), ••• ,V (x» are
g1 gm

satisfy the following two
(1984) :

A1.

Similarly to the existing methods for solving multicrite
ria problems or decision problems, we define a series of ~ (x)
operators for problem (8) by composing the membership functions
associated to the objective functions Pf. (x), i=1,2, ••• ,p,and

~

to the constraints V (x), j=1,2, ••• ,m, respectively.
gj

These composition operators 'X(x) = "/..(Ilf. (x), ••• ,Vf (x),
~ p

synthesis membership functions if they

This condition requires the membership function ~ to take

the value if Pf.(x) = 1, i=1,2, ••• ,p, and II (x) = 1,
~ gj

j=1,2, ••• ,m. Obviously, the dual requirement is also very natu-

ral, i.e.

'):(0,0, ••• ,0) = °
A2. The second axiom will be derived from a compatibility

condition with respect to the Pareto approach to multigoal de
cision problem: xEX is preferred to yEX if and only if

Vf.(x) > Vf.(y), i=1,2,. •• ,p
~ ~

P (x) > Vg(y), j=1,2, ••• ,m
gj J

imply

( 13)

'Xo(Vf (x), ••• ,Pf (x),V (x), ••• ,V (x») >
1 P g1 gm-

~'):(Vf (y), ••• ,Vf (y),Pg (y), ••• ,Vg (y»)
1 p 1 m

Such composition operators satisfying axioms A1 and A
2

are, for example, the following:

~ 1 (x)

'A
2

(x)

min(Pf (x), ••• ,Pf (x),V (x), ••• ,p (x»
1 p g1 gm

max(Vf (x), ••• ,Pf (x),p (x), ••• ,P (x»
1 p g1 gm
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'X. 3 (x)

'X- 4 (x)
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( ~ Pf . (X) + ~Pg,(x»/(p+m)

l. l. J J

min[a min Pf, (x) + (1 - a) max Pf , (x),
i l. i l.

b min P (x) + (1 - b)
gj

max Pg , (x)]
J

( 14)

where aE[ 0,1] and bE[O,l].

While solving problem (8), the decision maker may choose
a certain composition function 'X. (x). Thus, in case of a pessi
mistic attitude (Wald's principle), the decision maker can se
lect the function 1.

1
(x). When the deci.sion maker has in view a

maximum caution, problem (8) may be modified to the effect that
'X.

1
(x) is minimized: [min 'X. (x), xEX]. This overcarefulness may

also be accepted and used when the obtained optimal version
meets the minimal requirements of the decision maker who may
select the function 'X. 2 (x) •

If constraints (5) and (6) are considered equally impor
tant (the Bayes-Laplace principle), the decision maker may se
lect the function 'X. 3 (x). The idea of maximum uncertainty and

indeterminism regarding the degree of fulfillment of constra
ints (5) and (6) is thus suggested.

By adopting the idea of a compromise between the maximum
and the minimum values of the membership functions correspond
ing to (5) and (6) (Hurwicz principle), the decision maker
may select the function 'X. 4 (x) and the constants a and b being

previously established by him on the basis of his intuition,
experience and art. From this criterion, we can derive the
pessimistic caution criterion for a = b = 1, and the superopti
mism criterion for a = b = 0, respectively.

4. RESOLUTION METHOD

Thanks to the mode of building the synthesis membership
functions, by solving problem (9) instead of problem (8) a
Pareto optimal solution of problem (7) will be obtained.

Therefor~, let us consider the following problem:

{

m~x 'X- (x)

subject to

xEX ={ xlxER
n

, 0 " x " d }

where 'X. (x) is a synthesis membership function, and d the up
per bound vector.

The problem (14) is a global optimization problem for
whose resolution T~rn (1977) suggests a cluster analysis me
thod. The method suggested by T~rn consists in generating N
uniformly distributed points xl. (i=1,2, ••• ,N). By using a lo
cal optimizer, some iterations are carried out with the view
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to
by
uni-

of forming some clusters, reaching the points

from the points xi. When only a cluster can be

yi (i=1,2, ••• ,Nl

formed, a local
optimizer is further applied until the desired accuracy is ot
tained. When several clusters are formed,a representative is se
lected in every cluster and a local optimizer applied. In the
end, the global optimum is selected.

Another method for global optimization is indicated by
Hartman (1973) and based on a directed simulation according
the marginal distribution of some random variables built up
means of the function to be optimized and of a generator of
formly distributed random numbers.

The Hartman algorithm consists in the generation of N points
by means of a uniform marginal distribution TI '. The function

] k
to be optimized is evaluated in every point generated x
(k=1,2, ••• ,N), and the obtained sequence is decreasingly arran
ged for maximum criteria, and increasingly arranged for minimu~

criteria. The first [0 N] values from the sequence (~= 0.20
- 0.25), considered to be "success" points, are preserved. The
intervals [O,d j ], j = 1,2, ••• ,n,are divided into mj subinter-

vals (m j ~ 2) and the absolute frequencies N jt , t=1,2" •• ,mj ,

of occurrence of the "success" points in the t-th subinterval
are computed. The new density TIj is defined by means of them.

The following steps result in a resolution method for prob
lem (14) founded on the modified T~rn and Hartman methods.

by

Let us consider the marginal density TI j for the component

(j=1,2, ••• ,nl of the initially uniform variable x.

Step O. The number of points to be generated is determined
means of the relation

n
N = entier ( ~ (d, + l)/v)

j = 1 ]

/:;x,
]

where: v is a value specified by the decision maker and by
means of which he as~umes the risk of havin~ D 1 ¢ non-identi
fied, or to find an xEX PM which is not in D , respectively.
In practice, the decision maker can supply the acceptable to
lerances on the variables, /:;x i • In this case, we have

n
v = n

j=l

~. N points xk (x~, ••• ,x~), k=l, ••• ,N, distributed

with densities TI j , j=l, ••• ,n,in the hyperparallelepiped
o ~ x ~ d are generated.

Ifthereexistsanxkforwhich\l (xk ) = 1, i=1,2, ••• ,m,
gi

then, e.g., the method given by Sakawa (1984) may be applied;
otherwise go to step 2.

The Sakawa (1984) method consists of:

- Selecting the levels Mi for p-l constraints so that the
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system fi(x) ~ Mi , i=1, ••• ,p,be consistent.

- Optimizing the p-th function, a Pareto optimal point is
determined as are the corresponding Lagrange multipliers. If
all the M-constraints are active, we pass to the following step;
otherwise, the inactive constraint values M. are replaced by

* 1
fi(x (Mi ) and the new Pareto optimal solution and the corres-

ponding multipliers are determined.

- Appraising the marginal rate of substitution of the deci
sion makers in a fuzzy form.

- When improvements are no longer possible, the Pareto op
timal solution of the decision maker has been obtained so that
one goes to the next step. The direction of improvement is de
termined by means of the substitution rate and of the Lagrange
multipliers.

- The preferred form of the function for local optimization
is selected and its parameters are determined with the help of
the decision maker.

- By modifying the step size, a local optimum is determined
in the neighbourhood of the starting point and the method is
resumed with the determination of another Pareto optimal point.

~. We keep [aN] (0 < a < 11 points x k and the values

~(xk) which have led to the greatest values rx, (xk ) (Hartman,
1973). We suggest for a the values 0.5; 0.035 or 0.25.

Step 3. We apply a local optimizer for the function 1L (x)

with the initial points x k for which t(xk ) ~ 1, k=1,2, ••• ,s,
~ ~ [aN].

Due to the difficulties of establishing the convexity and
differentiability of the function ~(x), we recommend the ap
plication of a method that does not use the derivative, for ex
ample that of Box (1965).

d.
J

is
n

r(n/2) n
j = 1

r

The Box method consists in determining n+1 feasible points
where the function to be optimized is evaluated. The lowest
value is determined and eliminated and the centroid of the re
maining n points is determined. The symmetric of the point re
levant to the lowest value relative to the centroid is built up
and the process goes on.

With the preViously determined number N, we divide the
hyperparallelepiped 0 ~ x ~ d in N spheres, whose volume is

n
equal to n d./N.

j = 1 J
The radius of a sphere

~--",......--

where r (x) is the well-known gamma function.
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We generate n+1 points. uniformly distributed on a sphere
with radius r (Rubinstein, 1982). Let these generated points

be xk • i=1 ••••• n+1. 0 < xk < d .• and a new xk ( yk) is calcu-
~ ~ - ~

lated according to

yk = arg max {~(Xi)' i=1 •••• ,n+1}

or by applying the Box method until 't(X~+1) < min{'),(x~_2)'

'X.(x
k

1)·'1-(Xk
), •••}.

J- J

The points yk are given by

'J,(yk) max{'J,(xk 2),'x,(Xk 1),'X-(Xk ), ••• } and we have
J- J- J

'X, (Xk ) <'X,(yk), k=1, ••• ,s

The generation of the n+1 initial feasible points in an
arbitrary domain is difficult for the original Box method. In
our case, as we have the simple constraints 0 < x < d, the ge
neration of these initial feasible points meets no-difficulties.

With the Box method, only the most unfavourable point is
eliminated with each step and thus we obtain a weak convergen
ce. We can speed up the convergence by eliminating, for instan
ce, [B(n+1)] from the most disadvantageous points, where
o < B < 1, and by generating [B(n+2)] new points with each
step.

v,hen there exists a yk for which 1- (yk) = 1, the process
may be stopped or continued for the more complete description
of the set of optimal solutions.

~. We divide the intervals 0 < x j ~ d j , j=1, ••• ,n

into mj subintervals (see Hartman, 1973) and calculate the
kvalues Mjt by counting how many times the component Yj of

the [aN] points has entered the t-th interval.

We calculate
m.

J

Pjt = I-l.tl L MjlJ 1=1

and the new marginal density TT '.
J

is characterized by Pjt'

j=f, ••• ,m j •

v,e consider TT J TT j. When p j t =0, the t-th interval can

be eliminated from the domain of component j.

As far as the parameters mj are concerned, we may proceed

at first with lower values mj and go on with the subdividing

process in the fields of interest. We also may consider
mj = [d j ] when d i are not great values or we may resort to a

dichotomization process with mj = 2.
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~. We count the groups of remaining elementary hyper
parallelepipeds. These will give the number of clusters. When
we have a single cluster or a small number of clusters, in or
der to increase the exactness, the algorithm may be successive
ly applied on the new hyperparallelepiped d' < x < d" from the
obtained clusters. - -

~. The representatives of the clusters are selected or
calculated (for instance by the arithmetic mean) and the point

xk which realized the greatest ~(xk) is considered to be the
solution of the problem. It is obvious that, from this point,
the algorithm may be resumed from step 1, when a greater accu
racy is desired in determining the global optimum, or one may

~ k+1 ~ k k+1 kstop if I,., (x ) - '" (x ) I ~ c and I x - x I ~ 6.

We conclude these considerations by mentioning that the
suggested method should be included into an interactive system
wherein the decision maker intervenes during the solving of
real problems.

The decision maker supplies some information, for instance
k kfor Mi , N, a, m

J
. and, analyzing P

f
(x ), and p (x), and

i gj
~(xk), respectively, intervenes on the previously given parame
ters until a solution is obtained, which, from the practical
point of view, satisfies to a greater degree than those previo
usly found, or he stops if the new attempts to obtain an impro
vement of the objectives considered do not end with a signifi
cant favourable by-result.

Example. Let us consider the following problem (Fig. 1):

min{f 1 (x)

max{f 2 (X)

x 1 ~ 0, x 2 ~ 0

By considering

M1=0, M;=2, M2=0, M2=0.5, b 1=16, b 2=15, r 1=2, r 2=0.5, s1=16,

s2=15, the membership functions (10) and (11) are defined as
follows:
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11 3 (x)

g1(x) ~ 0

0<g1(x)<16

g1(x) > 16

g2(x) ~ 0

o < g2(x) ~ 15

g2(x) > 15

and the global membership function, according to the operator

'X. 3 (x) , is 'X. (x) = (P1 (x) +11 2 (x) + 113 (x) + P 4 (x»)/4.

Further on we also consider: d
1

=d
2

=2, N=6, and 0=0 0 5.

When step 1 is carried out, we find:

1
(0.4; 1 .2) , 'X,(x 1 ) 0.513 ;x

2
(0.6; 1 .6) , 'l,.(x 2 ) 0.516;x

3 (0.6; 0.2) ; 'X.(x
J

) 0.668;x

4 ( 1 .2 ; o.4) , 't (x 4 ) 0.613 ;x

5
( 1 .0; 1 .4) , 'X,(x 5 ) 0.619;x

6 ( 1 .6; 1 .2) , 'X, (x6 ) 0.671;x

These points and the level curves of the function 1:. (x) are

illustrated in Fig. 2.

The best [aN] = 3 values for ~(x) are attained in x 6 ,

x 3 and x 5 • Starting from these points, by using a local optimi-
6 6zerrand with the radius r = 0.46, we proceed from x o = x

through:

6
(1.72; 1 .58) , 'X,(x~) 0.72,x 1

6
(1.21; 0.91), ~(x~) 0.57,x

2
6 ( 1 .41 ; 1.63) , 'X.(x~) 0.75.x 3

to

1
(1.41; 1 .5) , '1 (y 1) = 0.75;y

from 3 3 through 3 (0.22; 0.08) , out,x o x , x 1
3 0.63) , 3

A
j

(0.74; 'X. (X
j
) 0.72,

x 3 (0.12 ; 0.20) , 'X-(x 3 ) 0.67,

to
2

(0.74; 0.63) , 'X. (y2) = 0.72;Y
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from 5 5 through 5 (0.82; 0.97) , 't (x~) 0.66,x o x x
1
5 ( 1 .37 ; 1 .63) , 5 0.75,x 2 'X.(x 2 )

5
(0.85; 1.85) , ~(x~) 0.75,x 3

to 3 = ( 1,37 ; 1,63), 'X. (y3) = 0.753.Y
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The local optimizer stops at the next iteration since the
stopping condition given in step 3 of the algorithm is satis
fied.

By using m1=m 2=2, we obtain

clusters: C
1

= [0;1].[0;1] and

We may notice that the best

the cluster C2 at the point y3

P12=P22=0 and two elementary

C
2

= [1;2].[1;2].

value (0.753) is attained in

(1,37; 1.63).

6. A MODEL OF LOADING CAPACITIES

The loading of production capacities consists in the distri
bution of the manufacturing tasks and operations to be carried
out over the groups of equipment of a section or enterprise.

Here is a mathematical model for loading production capaci
ties by considering several objective functions (e.g., cost,
price and profit) •

Let P be the set of products to be obtained in a certain
time period:

O.
1

G. ,
1J

G

- the set of all operations required for realizing
product iEP;

- the set of groups of equipment on which operation
jEO i regarding product iEP may be carried out;

- the set of all groups of equipment;

- the amount of product iEP to be processed through
operation jEO i with the group of equipment kEG ij ;

- a time norm relevant to the group of equipment k for
carrying out operations j for product i;

the available time of the group of equipment k in a
given time period;

- the required amount from the product iEP;

- the coefficients of the objective functions: cost,
price (s=1),profit (s=2) with the decision makers'
aspiration levels N1 and N2 , respectively;

A model of the loading problem of the production capacities
is as foJlows:

sUbject to:
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( 15)

a 'l s + L bk';\k + L c:L' 1l:L'}
s kEG iEP

*Let X

L L t ijk x ijk ~ Tk , kEG;
iEP jEQi

L x ijk ~ Qi' j E Qi' i E P
kEG, .

:LJ

x ijk ~ 0, i E P, j E Qi' k E Gij -

Since, frequently, the set of solutions of the model is em
pty, it is necessary to transform the system into a permanently
consistent systeQ, obtained by making the capacity constraints
and those for the demand of products fuzzy_

Formally, this transformation consists in the substitution
of the 11(11 signs with 11<" and 11)11 with II>".- ;;; - ;;;;

A method for resolving thus obtained model, suggested by
Ciobanu and Stoica (1981), consists in supplementing the model
by some variables 'A k - the capacity surplus, lJ. i - the product

deficit and ~s - deviations of the values of the objective

functions from the aspiration levels.

The model (15) is transformed into the following linear
programming model:

L L L 1
~ N 1 + 'l1iEP jEQi kEG, '

e ijk x ijk
:LJ

L L L
2

~ N 2 - "l.2
iEP jEQi kEG ij

e ijk x ijk

L L t ijk x ijk ~ Tk + '). k' k E G
iEP jEQi

L x ijk ~ Qi - Ili' j E Qi' i E P
kEG, '

:LJ

'ls ~ a, S=1,2, ?k > a, kEG, IIi ~ 0, i E P

2
min{ L

s=1

where as' b k and c i are the corresponding importance coeffi

cients.

The variables 'ls'?k and Il i may possibly also have

upper bounds to be interactively determined by the decision
maker.

* * * *(xijk''lS'').k' IIi) s=1,2, iEP, jE<\kEGij , be the

solution of the transformed model.
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*If 1s = 0, s * *1,2, ~ k = 0, kEG, ~i = 0, iEP, the cons-

*traints system is consistent and the solution X is accepted
from the point of view of the objective functions also.

* * *If some components ls' Ak , ~i are non-zero, a membership

degree of the solution X may be calculated for the correspond
ing constraints of the system by means of membership functions
(Dumitru and Luban, 1982) of the following form

f (x) = ~ , x > 0, t > a
x+t

kEG

From these individual membership functions, a synthesis
membership function F(~,~,~) is built up.

For the capacity constraints we define

Tk

where ?lk « Tk •

Also, for the product demand constraints

Pi
1 + --

Qi-~i

i E P

where ~i« Qi - Pi·
Analogously, we define the membership functions for the

constraints derived from the objective function.

If we consider a composition operator of the multiplication
type, we obtain a synthesis membership function of the form

F(~,?I, pI = [1/(1+'l1/N11]·[1/(1-'l2/N21]· n t(Jk(';\k l • n 'j'.(p.)
kEG iEP ~ ~

Taking into consideration the form of the functions t(Jk(?lkl

and ~i(Pil, respectively, because of the fact that ~k/Tk«1

and Pi/(Qi-Pi)« 1 (the sign « should be read "much smaller

than") we have (Ciobanu and Stoica, 1981)

1
_ "1.2 Pi

- I:
N2 iEP Qi

Aiming at obtaining a high membership degree F, we consider
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In conjunction with model (16) it follows that, for the be
ginning, we may select the coefficients

as = 1/N
S

' s=1,2, bk =1/Tk , kEG, and c i = 1/Qi' iEP.

It is of importance that the model remains linear with this
approach to a linear problem with several objective functions
and fuzzy conditions by means of the membership functions, and
that this is a facility taken into consideration in regards to
resolving the model.

7. FINAL CONCLUSIONS

The method suggested in this paper is different from other
methods in the clustering side, as it is founded on the hyper

.parallelepiped type clusters, not on spheres (T~rn, 1977) or
ellipsoids (Boender et al., 1982).

This method also differs regarding the local optimizer, in
instead of using a gradient or a quasi-Newton method, both sup
posing differentiability or the existence of the Hessian, it is
based on the Box method, modified in the selection of the ini
tial points and converegence acceleration.
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Abstract. We present an outline of rule-based de
cision theory where decision knowledge is repre
sented and handled as logical rules, with probabi
lity and/or fuzziness. The theory is based on the
fundamental belief that people are able to express
their opinion on preferences using rules. The pa
per presents some practical results on obtaining,
representing, aggregating and verifying rule-based
decision knowledge for a decision support system.
We emphasise the differences between traditional
decision theory and the rule-based theory.

Keywords: multi-attribute decision-making, decision
support systems, rule-based knowledge re
presentation, consistency checking, know
ledge elicitation.

1. INTRODUCTION

Traditional approaches to decision analysis, using weights,
scores and utilities, have been useful in decision support.
However, we feel that it is not the mathematical model of the
process which is useful in itself, but the structure which the
formalism imposes upon the decision-making process that is
useful. Unfortunately, this approach means that some of the
processes which are important for effective decision-making
are made difficult, such as knowledge elicitation, learning,
group communication and explanation. It is our bElief that many
of these problems can be solved by better knowledge representa
tion methods.

Our practical experiences have shown that rule-based know
ledge representation can lead towards more effective techniques
for decision analysis and support. Therefore, we propose a rule
based methodology which has been implemented on a computer as a
mixed initiative decision support system and has been used in
practical trials (Bohanec, Bratko and Rajkovic, 1983; Efstathiou
and Rajkovic, 1979).

Recent interest in Artificial Intelligence and Expert
Systems have drawn a~tention to rule-based knowledge represen
tation (Fox, 1983). We also believe that more emphasis must be
placed on man-machine interaction, enabling the user to acquire
the knowledge for a decision.

292
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Rules are a natural method for communication. Accepting
rules as the method of knowledge representation means that man
man and man-machine interaction is easier and more effective
in terms of:

- knowledge elicitation,
- learning,
- knowledge verification,
- explanation of decision process,
- handling' soft' knowledge (Michie, 1979),
- improving effectiveness of computer usage.

2. RULE-BASED lIULTI-ATTRIBUTE DECISION-MAKING

Multi-attribute decision-making proceeds by selecting a
set of attributes which can describe the options. Each option
may be scored against the attributes. The attributes may be
weighted to reflect their relative importance. An aggregation
formula combines the weights and scores to provide an overall
figure of merit for each option, subject to independence cri
teria. The best option may be selected on the basis of these
figures.

Rule-based multi-attribute decision-making also uses at
tributes to describe the options. Each attribute is described
by a vocabulary, e.g., security: (unsafe, tolerable, secure,
very secure). The scores are now presented as a semantically
meaningful description of the option (Zadeh, 1975). For com
plex decisions, attributes are usually arranged hierarchically,
as a tree. This structures the user's decision space (Bohanec,
Bratko and Rajkovic, 1983).

Weighting of the attributes and aggregation of the scores
are replaced by rules. A rule is a combination of values of
the attributes for which the decision-maker states a utility
value, for example:

IF the security is unsafe and the price is low
THEN the utility of the system is unacceptable

The syntax of the rules accepted by the existing system
(Bohanec, Efstathiou and Rajkovic, 1983) is presented in Fig.1.

The simplicity of the rules is due to the effectiveness
of the knowledge elicitation, using an interactive computer
dialogue. Rules were accepted by decision makers from differ
ent levels and backgrounds as a natural way to express opinions
and understand the explanation of decisions. Following our work
with rule-based expert systems for decision making (Bohanec,
Bratko and Rajkovic, 1983), we formulated the postulate that
people are able to express their opinion on preferences using
rules in a way that is realistic and satisfactory for decision
support systems.

In practice, a decision may require many rules, but a
decision maker is usually capable of providing them, with the
assistance of a computer.

Let us take a simplified example with two attributes:
SECURITY and PRICE, and illustrate it by Fig. 2. Every rule
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ATTRIBUTE
OF HIGHER

LEVEL 
-e.g. UTlllT

Fig. 1. Syntax of rules for expressing an aggregated
opinion on preferences

defines a point on the UTILITY knowledge surface. The rule
mentioned above is illustrated by dotted lines in Fig. 2. In
this case, 12 rules are needed for the complete definition of
the decision knowledge. It is not necessary for the decision
maker to supply all the rules because they can also be genera
ted by computer. A new rule, i.e. point on the "utility" sur
face, can be interpolated from the points in the neighbourhood.
The computer may suggest rules for modification by the user or
may ask the user in an easy, structured way to provide the
rules. The construction of the knowledge base (utility surface
in Fig. 2) of rules is, therefore, by a mixed initiative be
tween man and machine. But it has to be emphasized that every
rule is completely under the control of the decision-maker.

The decision-maker can check the knowledge-base for con
sistency. Once the rule-base has been constructed, it may be
used in several ways:

- evaluation of options
- explanation of evaluations
- option generation

By using rules, we avoid some of the difficulties with
the traditional approach.

Our emphasis on the decision-maker and his own learning
process together with a better interface between man and com
puter means that the decision analyst's burden of acting as
an interface between man and technique is alleviated. There
fore, he can focus on decision-aming as a creative, learning
process, leading to better decisions.
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System UTILITY

[Very Good, Good, Accep1able,

UnAcceptable I

VG
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UA !----""7''---'

M H

PRICE

[low,

Medium. High J

SECURITY

(Very Secure, Secure, Tolerable, Unsecure)

Fig. 2. Graphical illustration of aggregated UTILITY
function; rule-based knowledge representation
surface
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3. CONSISTENCY CHECKING OF KNOWLEDGE-BASE AND EXPLANATION OF
EVALUATION

The rule-base will have been constructed piecewise, by
examining a small area of the decision space at once. Some
rules are interpolated by the computer and they need to be
checked. The global consistency of the knowledge-base must be
verified. In most cases, inconsistency means that the overall
utility decreases towards the more preferred end of the attri
bute scale.

The consistency can be checked by holding the values of
all the attributes except one constant and varying its values
to see how the overall utility is affected. If the terms on
the scale of the attribute have been ordered preference-wise,
then the graph should show, in general, a non-decreasing trend.

The graphs represent cross-sections through the multi-di
mension decision space (see Fig. 3). They are displayed rapid
lyon the screen and one key only is pressed to bring up the
next. In this way, the consistency of the knowledge-base can
be checked visually and very quickly. Deviations can be marked
for modification by the user •

SEX:URI'IY secure ••••• *••••••_---

v-gocxl

ace

unacc

SYSTEM (utility)

-----------------------------------} PRICE
high rredium Ie«

Fig. 3. Example of a consistency checking graph. Note
the display of the constant attributes at the
top of the picture, with attribute name, value
and bar graph representation of the value

Once the user is satisfied with the consistency of the
rule-base, then it may be used for evaluation. If an option is
described according to the attributes, its utility is derived
from the rules. An explanation of the evaluation is useful for
the decision-maker to compare options more deeply and to check
for mistakes in the description of the options and the rules.
The explanation is particularly useful when several interest
groups are involved in the decision and a consensus must be
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reached.

There are two kinds of explanation, a full explanation
and a summary. The full explanation displays all the rules that
were invoked in the evaluation of the option. The summary ex
planation uses only the rules that had an important effect in
obtaining the evaluation. It lists the good points of the op
tion, its bad points and the compensations (Bohanec, Efstathiou
and Rajkovic, 1983).

4. EXPERT SYSTEMS AND DECISION SUPPORT SYSTEMS

tlany current expert systems use similar rules but are ap
plied to quite different problems, such as fault diagnosis.
These expert systems are different from multi-attribute deci
sion support systems, such as that described herein.

Expert systems are used to record the existing, well-es
tablished knowledge of an expert in a particular domain. This
knowledge may be transmitted to novices through their use of
the expert system. A decision support system (Alter, 1980)
should enable a decision-maker to obtain insight into his own
decision-making process, using the knowledge elicitation pro
cess to learn. The construction of the knowledge base is a dy
namic, interactive, learning process for the decision-maker.
This process of decision support is the main part of any de
cision analysis.

The rules which are obtained from the user to describe
his knowledge will be quite simple, because of the structure
of the knowledge base and because it has been created by the
user. This is in contrast with other expert systems, which are
not useful unless they are complex. A simple expert system
would not be needed because it would be easily learnt. However,
the complexity means that explanations of the expert system's
decisions are unwieldy and difficult to understand. Since the
emphasis of decision support systems is on analysing and
learning, then simple rules and easily understood explana
tions are essential.

Rule-based expert systems have the problem of incomplete
ness. The absence of rules can only be detected in use. With
the multi-attribute rule-based approach, the boundaries of
the domain are defined by the attributes and their values. Let
us look at Fig. 2 again. The definition domain (PRICE 
SECURITY) of the UTILITY function is known. Therefore, we know
that 12 rules are needed and what those rules are. The missing
rules may be detected and can be added by the decision-maker
or computer.

5. PRACTICAL EXPERIENCE

Software to support rule-based decision making has been
written and used in several different problems (Bohanec, Brat
ko and Rajkovic, 1983; Bohanec, Efstathiou and Rajkovic, 1983).
It has been written in Pascal and runs on DEC-10 under TOPS-10
and VAX under VMS and on PDP under RSX and RT-11. A PC version
is in preparation. The practical applications may be divided
into three main groups: consultancy support, multi-option
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ranking and personal decision makingo

Under consultancy support, the approach has been used
mainly for hardware and software evaluation and selection. The
decision analysis phase WaS quick and the development of the
knowledge base was easy. The transparency to the user was used
as more than an explanation in another software engineering
project. The status of the project was analysed and it WaS
evaluated as no longer feasible. The software manager, using
the knowledge base, varied some values of attributes until a
feasible solution Was achieved. He discovered which aspects
of the project needed to be changed to make the project suc
cessful in future. In this case, the knowledge representation
method was significant.

In a multi-option ranking problem, about two thousand
application forms had to be rank ordered according to a stated
policy. The policy was built into the knowledge base and ap
plied consistently to every applicant. This task could have
been done by a traditional method, but the advantage was that
an explanation of the decision for each case could be supplied
to the appointment committee and to each applicant. The time
needed to carry out the ranking process was reduced to about
20% of the previous effort. Furthermore, the project led to a
new, better application form.

This software was tested by a group of students on indi
vidual multi-attribute decision making problems. They were not
assisted and were able easily to define a decision tree and
rule base. The consistency of their knowledge bases varied and
reflected their understanding of the problem. This suggests
that the software could be used as a check on students' com
prehension of a subject.

6. CONCLUSION

We conclude that rule-based decision making can be useful
and effective. Software to support this has been written and
tested extensively in real applications. The technique relies
upon mixed initiative dialogue between decision maker and com
puter. The methodology has several new features some of which
have been described above, but in particular we point out that
the computer itself plays a fundamental role. Just as Monte
Carlo techniques were known, they could not be widely used un
til computers were available. This method also relics upon the
power of the computer to enhance the human's decision-making
and learning processes.

There are similarities between this approach and existing
expert systems. However, we point out the differences which
derive from the specific features of the decision making prob
lem and argue that these differences make this effective as a
decision support system. Further research and development is
required, but we believe that this approach already provides
a toolbag of techniques that could provide the foundation for
a fifth generation decision support environmento
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FUZZY OPTIHIZATION IN NETI<VORKS

Stefan Chanas
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Technical University of Wrociaw

50-370 Wroclaw, Poland

Abstract. Some selected problems of fuzzy op
timization in networks are analysed. The maxi
mum-flow problem in a network with fuzzy arc
capacities is considered in the first part of
the paper. The fuzzy arc capacities are des
cribed by possibility distributions for feasible
flows in the arcs. The criterion of maximiza
tion of the flow value is replaced in the prob
lew with a fuzzy goal (a fuzzy set in the real
line). The next problem considered concerns
network analysis of a project with fuzzy ac
tivity times (fuzzy variables with given pos
sibility distributions). Determination of the
project-s completion time is the main topic.
The third part of the paper is devoted to cri
tical discussion on possible approaches to the
shortest path problem in a network with fuzzy
arc lengths.

Keywords: network optimization, fuzzy optimiza
tion, maximum flow, network planning,
shortest path.

1. INTRODUCTIOn

From among classic mathematical programming problems, a
class of network optimization problems may be singled out. A
network as the main element of a problem description is a com
mon feature of all problems in this class. This fact is utili
zed to a considerable degree in construction of special solu
tion algorithms which are more efficient than the general ma
thematical programming methods that could also be used to solve
the problems. For example, the following problems: the max-flow
problem, the min-cost flow problem, the shorstest route problem
and others (see, e.g., Boffey, 1982), may also be stated as
linear programming problems. But, applying the simplex method
to solve them would be very inefficient. That is why some spe
cial "network" algorithms have been developed separately for
those problems.

One may expect a similar situation among fuzzy mathematical
programming problems. Also here a class of fuzzy network optimi
zation problems can be distinguished, and, as in the classic
case, the network description of problems may be utilized to
construct solution algorithms.
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In this paper we review some problems of this type and
present solution algorithms based on a network representation
of these problems. We lay special stress on the formulation of
these problems, explanation of a solution concept, interpreta
tion of membership functions and the like, as they are not uni
quely understood and clear. This results from the existing fuz
zy parameters in the models of problems.

In section 2 some problems of choosing a proper flow in a
network with fuzzy capacity constraints in arcs are presented.
In section 3 a problem of network analysis of a project with
fuzzy activity times is discussed. Section 4 is devoted to the
shortest route problem in a network with fuzzy arc lengthso
Some results presented there are also pertiment in such prob
lems as the traveling salesman problem, the minimal spanning
tree problem, etc.

2. FLOlI PROBLEMS IN A NETh'ORK laTH FUZZY ARC CAPACITIES

In this section we present and analyse some results selec
ted from Chanas (1982), Chanas and Kolodziejczyk (19a2, 1984,
1985) •

or,non-sharply defined capacity of arc (i,j)
fuzzy interval of feasible flow in arc

of the form presented in Fig. 1. In a

Uij function may be linear on [cij,C ij ].

that c.' = c.. and in this case
l] lJ

a crisp interval.[0, c ij ] is

The C .. is a
more preci§Jly , a
(i, j) •

2.1. Max-flow problem - a fuzzy formulation

Let S = <N,A> be a directed network, where N denotes the
set of vertices and AcC x N is the set of arcs. Two vertices,
a source sEN and a sink tEN are specified in S. A fuzzy inter
val Cij is associated with each arc (i,j)EA. The membership

function, u .. : R+ ~ [0,1](R+ is the nonnegative part of the
lJ

real line) of Cij is

particular case, the

It is also admissible

C ..
lJ

tIJijlXij'

1r---------r_.

c ..
lJ

Fig. 1. The general form of the membership function Uij.
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The considered problem consists of finding a flow

x {x .. ER+I (i,j)EA}(a set of arc flows x .. ) from the source
v 1J 1J

S to the sink t such that

"v E G" --> max

rfor j = s

L x. L x jk = 0 for j t- s,t
i ~j k v for j = t

"X . E C .. " --> max, (i, j) EA,
1j 1J

(1 )

(2 )

(3 )

where v is a value of the flow x and G is a fuzzy goal
being a fuzzy interval of flow valu¥s accepted by the decision
maker. The admissible shape of the membership function ~G 1S
presented in Fig. 2. It is possible that V o = v 1 which would

mean that a decision maker requires a flow Xv of value v~voo

)JG(v)

t
1 t

I

v

Fig. 2. The admissible form of the membership function

Verbally, problem (1) - (3) may be stated as follows:
find a flow Xv fulfiling the conservation constraints (2),

an~ satisfying the fuzzy goal (1) and the fuzzy capacity constra
ints (3) to the maximum degree. It is natural to assume the va
lues ~G(v) and ~ij(xij) as degrees to which Xv satisfies

fuzzy conditions (1) and (3), respectively. One can easily
notice that problem (1) - (3) in case of linear functions ~G

and ~ij is an example of a partially fuzzy linear programming
problem as formulated in Zimmermann (1978). But, using the me
thod proposed there would not be efficient here because of the
special fo~m of the problem.

Using Bellman-Zadeh-s (1970) approach we define a fuzzy
set, D, in the set X of flows Xv satisfying the conserva-

tion condition (2), called a fuzzy decision. The membership fun-
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ction of D is

(4 )

where

(i, j)f: A
(5 )

and "~" stands for the minimum operation.

It is natural to consider a flow Xv which belongs to D

to the maximum degree, as a proper final choice. Thus, problem
(1) - (3) may be reduced now, according to Bellman and Zadeh~s

methodology, to the following mathematical programming problem:
find xv' such that

subject to (2) (6 )

Before we present solution algorithms for this problem we
will present some remarks and comments concerning a possible
interpretation of the membership functions ~ij and ~G' It

is closely related to the problem of selection of a proper
operation in the definition of the fuzzy decision D in (4)
and (5).

2.2. Discussion on interpretation of membership functions ~ij

and ~G

The first possible interpretation is closely connected
with the notion of tolerance. The arc capacities c ij and the

flow value v are considered to be standards established be-
o

forehand which may be violated in given ranges of tolerance 
maximally to c., and v

1
, respectively. However, a decision

maker is intere§fed in minimization of these deviations. In
such a case the values 1 - ~ij(xij) and 1 - ~G(v) may be regard-

ed as degrees of deviations from the respective standards and
problem (6) is reduced to the choice of a flow for which the
largest of the deviations is minimal. With such an interpreta
tion the linear form of the membership function ~ij and ~G

seems to be sensible and also the min operation used in (4) and
(5) is interpretable. Another approach, closer to the fuzzy
set theory, consists in regarding the membership functions ~ij

and ~G as possibility distributions of fuzzy variables in the

sense of Zadeh (1978). The ~ij(xij) means then "the possibili

ty" of the flow x ij performance through the arc (i,j) or, in

other words, the possibility that the (i,j) arc capacity is at
least equal to or greater than x ij • Similarly, the ~G(v)

means "the possibility" of the objective accomplishment with a
v-value flow, the possibility that a demand for the flow value
in the sink will be satisfied.
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There are two different interpretations of possibility. In
the first, a "physical" interpretation, possibility is treated
as a desree of easiness of a system performance when a concrete
value of a parameter, described by a fuzzy variable, is assumed.
The second interpretation, an epistemic one, is similar to the
interpretation of probability. Possibility is a measure of un
certainty connected with an event. Usually, the possibility
distribution is a subjective characterization resulting from
the meaning of fuzzy propositions as, e.g., expert opinions ex
pressed in a natural language (Zadeh, 1978).

In the case of the physical interpretation, functions Pij

and PG may be defined subjectively but, in some situations,
they can be determined as strict dependences on measurable
physical parameters. The min operation used in (4) and (5) is
acceptable in this case and can be interpreted. In the case of
the epistemic interpretation of the possibility distribution,
the problem is more complicated and the form of membership
functions Pij and PG, as well as the operation in (4) and (5),

should be selected separately in every case according to the
nature and structure of information used to define the member
ship functions. Formally, any operation from the class of
triangular norms (see, e.g., (Alsina and Trillas, 1980; Klement,
1980) could be used in (4) and (5).

A triangular norm, briefly a t-norm, is a binary operation
on [0,1] that satisfies:

(i) T(a,b) ~ T(c,d), for all a,b,c,dE[0,1] such that a~c,

b~d,

(ii) T(a,b) T(b,a) for all a,bE[0,1],
(iii) T(a,1) a for all aE[O,1J,

(iv) T(T(a,b),c) = T(a,T(b,c») for all a,b,cE[0,11.

The min operation is just a particular case of t-norm. Also the
product operation belongs to this class.

Presented in Chanas (1984) is the reliable flow problem
which may be treated formally as a special case of problem (1)
(3) and in which the use of the product operation is more
justified.

Let us assume that a flow value in problem (1) - (3) is
fixed and therefore condition (1) may be omitted. Thus, problem
(2) - (3) consists of finding a v-value flow Xv that satisfies

the capacity constraints to the maximum degree, i.e. such that

/\ p .. (x .. ) .... max
(i, j) EA ~J ~J

( 7)

Let the arc capacities (upper bounds on the arc flows) be inde
pendent random variables Bij , (i,j)EA, with distribution func-

tions Fij(xij ). With each arc (i,j)EA we can now associate a

random interval [O,Bij ] of "possible" flows in the arc. Next,

the random interval [O,Bij ] can be used to define a fuzzy in-

terval Cij characterized by its membership function ~ij de-



308 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

(8)

fined as follows:

p .. (x .. ) = Prob(x, .lO[O,B .. J) = 1 - F .. (x,.)
1J 1J 1J 1J 1J 1J

The membership function now has a concrete interpretation - it
is the reliability function (see, Jiang, 1983; Wang and Sanchez,
19S2). The Pij(xij ) means the reliability of the flow Xv with

respect to the capacity constraint on the arc (i,j)lOA. Natural
ly, the use of the min operation in (7) is still sensible in
the case considered but the product operation seems to be more
justified. Problem (7) with the product operation resolves it
self into maximization of the reliability of Xv with respect

to all the arc capacity constraints, i.e.

n fl, .(x .. ) =
(i,j)lOA 1J 1J

n (1 - F, . (x .. )) ....
(i,j)lOA 1J 1J

max (9)

It is shown in Chanas (1984) that problem (9) is equivalent to
the convex min-cost flow problem for a wide class of distribu
tion functions F ..• Thus it can be solved with the aid of one

1J
of the methods adapted for this problem (see, e.g., weintraub,
1974) •

At the end of this subsection we want the reader to notice
that problem (1) - (3) when (1) is replaced with "PG(v) .... max"

and (3) with "flij (x ij ) .... max, (i, j) lOA" may be treated as a mul

ti-objective programming problem. Thus, the methods used in the
multi-objective programming (see, e.g., Hwang and Masud, 1979)
could be adapted to analyse problem (1) - (3). But then the
problem arises of the proper choice of a compromise solution
concept. It is as difficult as the problem of choosing a proper
operation in (4) and (5).

2.3. Solution algorithms for real-valued flows

In Chanas and Kolodziejczyk (1984) the fuzzy max-flow
problem for real flows in a network with two-sided fuzzy capa
city constraints is exhaustively analysed. Here, for simplicity,
we present only some selected results concerning the problem
(1) - (3) which is a particular case of the problem considered
in Chanas and Kolodziejczyk (1984).

First, we formulate a theorem which is a direct generaliza
tion of the Ford-Fulkerson max-flow min-cut theorem (Ford and
Fulkerson, 1962). Next, we present the solution algorithm and
an example of calculations.

At the end of this subsection we will show, quoting some
results from Chanas (1984), that a parametric approach may be
used to analyse problem (1) - (3) when the Pij-s are linear.

Definition 1. A fuzzy set V in R+ with the membership func
tion ).lv(v) - m~x uC(xv ) is called a fuzzy capacity of the net-

work S. v

The value ).lv(v) may be interpreted, according to its defi-
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nition, as the possibility of reaching the v-value flow in the
network S in the face of the existence of the fuzzy capacity
constraints (3) 0

Definition 2. A cut in the network S is a partition of the set
of vertices Ii into two sets X, X such that the source belongs
to X and the sink to X.
Definiti~~ The fuzzy capacity of the cut (X,X) is a fuzzy
set in R defined in the following way:

C(X,X) G C iJ'iE:X
jE:X

( 10)

Obviously, the sign G appearing in (10) means the extend
ed addition operation on fuzzy numbers, i.e. given by

sup min{j..IA(x 1),
x

1
,x

2
E:R

xl x 2 =x

Let j..Iij' (i,j)E:A, be functions of the same type (see Dubois

and Prade (1980)) on the intervals [c .. ,00), i.e.
1J

for ( 11 )

where R(xl is any function continuous and decreasing on{[o,oo) ~

and ta~ing on 1 at D. For example, it may be R(x) = max O,l-lxJ'
a ij = c 1J - c ij and then llij (x1jl is linear on [cij,C ij ].

If R is fixed for all Cij ' (i,j)E:A, then Cij can be uni

quely identified with the parameters c ij and a ij and the addi

tion in (10) can be performed very easily. Let us denote Cij
(c ij ' aij)R' It follows from Dubois and Prade (1980) that

C(X,X) is a fuzzy interval of the same type as C .. ~s:
1J

where

G (c .. ,a .. I R = (c,a)R'
(i,j)E:A 1J 1J
iE:X, jE:X

( 1 2)

c = L
(i, j) E:A
iE:X, jE:X

c ..
1J

and a = L
(i, j) E:A
iE:X, jE:X

a ..•
1J

( 131

Theorem 1. Let W denote the set of all cuts in the network S.
Then, the following relation is valid

v = ® C(x,iO.
(X,XIE:W

( 14)
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Under the accepted assumption on the form of C., the ex
tended minimum operation, ~, in (14) is equivalent1J to the in
tersection operation of fuzzy sets and therefore:

v = n
(X,X)EW

C (X,X), ( 1 Sl

Jlv (v) )lC (X, Xl (v 1 •
(X,X)EW

Theorem 1 is an analogue to the Ford-Fulkerson theorem and
it states a relation between the possible flow value in the net
work (that is, the network capacity) and the cut capacities.

Now, we are prepared to present the solution algorithm for
problem (1) - (3).

Algorithm

~.
real flow x

w
work with arc

Determine using any known algorithm the maximum
and the respective minimal cut (X,X) in the net-

capacities equal to c ij If )lc(w) = 1, then Xw is

optimal. Otherwise go to Step 2.

~. Calculate the fuzzy interval C(X,X) and coordinates
(v,r) of the intersection point of the functions )lC(X,X) and )lco

If r = 0, then STOP; the problem is infeasible. Otherwise, go
to Step 3.

Step 3. De~ermine the maximum flow x and the respective
minimal cut (X,X) in S with arc capacitie~ equal to cr., where

1J
C~j = sUP{x ij )lij(xij ) ~ r}, (i,j)EA. If )lD(xw) = rand w = v

then STOP - the flow Xw is optimal. Otherwise go to Step 2.

Numerical example

Let us cons~der a s~mple network as present:d in~igo 3. ~

Assume that Cij - (c ij ' c ij - cij)R' where R(x) - maxtO,l - Ix~

Le. )lij is linear on [C ij ' Cij ], (i,j)EA. Let it be: Cs1 =
(4,16l R, Cs2 = (S,40)R' C12 = (4,4,S)R' Clt = (7.5, l,S)R'

C2t = (8.S, 4)R' Let fl
C

be linear on [v 1 'vo ] (see Fig. 2) and

v 1 = 18, v 0 = 20.
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Fig. 3. A sample network
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The algorithm runs as follows:

~. Xw = x 9 and x sl = 4, x s2 5, x 12
(X,X) = ({s}, {1,2,t}.

PG(9) = 0 ~ 1. Go to Step 2.

Step 2. C({s). {1,2,t} (9,56}R'

0, xl t

(v,r) = (19.62, 0.81). r 0.81 ~ O. Go to Step 3.

~.
r r 7.04, r 12,6, r 4.86,c .. s: c s 1 c s2 = c

12l]

r 7.78, r 9.26. = 16.3 and = 7.04,c lt c 2t w Xw : x s1

x s2 9.26, x 12 0, x 1t = 7.04, x 2t = 9.26. (X,X) = ( s,2 , 1 , t ) .
1 , t ,.

PD(xw) = 0 ~ r = 0.81 and w

~. C«s,2}.{1,t}!

16.3 ~ v = 19.62.

(12.5, 20l R,

(v,r) = (19.32, 0.66), r = 0.66 ~ O. Go to Step 3.

r ~ r
~. c ij s: c s1

r8.01, c 2t 9.86. w

r r9.44, c s2 = 13.6, c 12 = 5.53,

17.87 and x :w

x s1 8.01, x s2 9.86, x 12 = 0, x 1t = 8.01, x 2t = 9.86

(X,X) = !{S,1,2}.{t},. PD(xw} = 0 ~ r = 0.66, and w = 17.87 ~

~ v 19.32. Go to Step 2.

Step 2. C({s,1,2}, {t}) = (16, 5.5}R'

(v,r) = (18.93, 0.467), r = 0.467 ~ O. Go to Step 3.
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10.63, w

Step 3. c~, ~s:
lJ

r
8.3, c 2t

10.63, x 12 = 0, x 1t

r r12.54, c s2 = 26.32, c 12 = 6.4,

18.93 and Xw : x s1 = 8.3,

8.3, x 2t = 10.83. (X,X) = {s,1,2},

{t}>. flD(X w) = 0.467 = rand w = 18.93 = v.

STOP. The current X
w

is optimal.

Now we will show that in the case of linear flij functions

(fl
G

does not need to be linear) a parametric max-flow procedure

(see, e.g., Ruhe, 1985) may be used (Chanas, 1984).

Let us associate with problem (1) - (3) the following
parametric max-flow problem:

i

V -t max

LX, '
lJ {

-v

L x'k = °
k J

v

s,

f s,t,

j t,

( 16)

where tf[O,1] is a parameter of variation.
By solving problem (16), for instance using the method present
ed in Ruhe (1985), we obtain an a~alytically expressed set of
solutions {x

v1t
) Itf[O,1]j explicity depending on t.

The xv(t) ={ xij(t) I (i,j)fA} for any tf[O,1] fulfils the capa

city constraints at least to the degree of 1-t (i.e. Pijlxij(t»

~ 1-t, (i,j)fA) and simultaneously maximizes the flow value
v(t) (thereby I.l

G
(v(t») by this condition. For any tf[O,1] the

value I.lc (xv (t» (see (5» is equal to 1-t and it can not be

improved provided v = v(t). This results from the fact that
xv(t) is a maximum flow, Jlij(xij(t» ~ 1-t, (i,j)fA, and there

are arcs in the network (arcs of the minimal cut) for which

xij(t) = c ij + t(C ij - cij) (so I.lij (x ij (t» = 1-t). By finding

the value of parameter t for which

max ( 17)

we identify a maximizing solution of (6). The flD(Xv(t»'

tf[O,1] also provides us with information about solutions
"close" to the maximizing alternative and it may be regarded
as a fuzzy solution of the initial problem (1) - (3).

Example. Let us return to the example already considered (see
Fig. 3) in this paragraph. As the assumed Ilij and I.lG are linear

functions, we can also use the parametric technique to solve the
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problem. Reducing the problem to the parametric max-flow prob
lem (16) and applying the method from Ruhe (1985) we obtain the
following results:

for tE[0,0.0972222]:

x s1 (tl = x
1t

(tl = 4 + 16t, x s2 (t) x 2t (t) 5 + 40t,

x 12 (tl = 0, v(t) = 9 + 56t;

for tE[0.0972222, 0.2413793]:

x s1 (tl = x
1t

(t) = 4 + 16t, x s2 (tl x 2t (t) 8.5 + 4t,

x 12 (t) = 0, v(tl = 12.5 + 20t;

for tc;[0.2413793, lJ:
x s1 (t) = x 1t (t) = 7.5 + 1.5t, x s2 (t) = x 2t (t) = 8.5 + 4t,

x 12 (t) = 0, v(t) = 16 + 5.5t.

In Fig. 4 the functions pc(xv(t) = 1-t, PG(v(t) and

Po (xv (t») (the memb-ership function of the fuz.zy solution are

presented. Obviously, the maximizing flow is the same as before
and is obtained for t = 0.5333333.

0.4667

0,0972

Vi
V I

V I
V I

V I
I
I

0,5333
t

Fig. 4. Fuzzy solution for the example

2.4. Solution algorithm for integer flows

Let us extend problem (1) - (3) (and problem (6) associated
with it) with the additional condition: x ij has to be an integer

for any (i,j)EA. Naturally, C .. and G are fuzzy sets in 1+ now
l.J
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(I+ - the set of nonnegative integers). lie assume that member
ship functions ~ij and ~G have the similar form as before, i.e.

~ij(xij) = 1 for x ij = 0,1""'Cij and ~ij is decreasing on

[cij,oo). Similarly, ~G(v) = 1 for v ) Vo and ~G is increasing

on [0, vo ]'

Further on we present the solution algorithm which is a

slightly improved version of the method proposed in Chanas and
Kolodziejczyk (1982).

Algorithm.

~. Find a maximum flow Xv in the classic sense in

the network S assuming arc capacities equal to c ij ' (i,j)E:A.

EVidently, ~C(xv) = 1. If ~G(v) = 1, then STOP, Xv is optimal.

Otherwise, go to Step 2.

~. Let Xv be a current flow. Determine a path r lead

ing from s to t and maximizing the value of the expression

/\ ~,.(x" + 1)/\ /\ il,,(x,,-1)"'max
(i,j)E:~ lJ lJ (i,j)E:r lJ lJ

(18 )

where ~ and r are sets of the forward and backward arcs in the
path r, respectively. Additionally, we assume that if x ij = O.

then il··(x .. -1) = -1. If ilD(X) > ilr(X ),then STOP;x is opti-lJ lJ v V v
mal. Otherwise, go to Step 3.

~. Set Xv := xV+ 1 ' where x v +1 is the v+1 - value flow

obtained by increase of the flow Xv with a unit on the path r

(adding a unit flow to the forward arcs and subtracting it from
the backward arcs). Go to Step 2.

To determine the path r in Step 2 the shortest path algo
rithm of Dijkstra (see, e.g., Boffey, 1982) may be easily adap
ted.

Example. Let the network as in Fig. 3 be given. Assume values
of ~ij and r G as follows:

il s1 (X s1 ) = 1 for x s1 =0,1,2, and Il s 1(3)=0.7, Il s 1(4)=0.4,

Il s 1 (5) =0.2, Il s 1 (x s1 ) =0 for x s1 >6;

Il s 2(x s2 )=1 for x s2 =O, ••• ,5, and Il s 2(6)=0.8, Ils 2(7)=0.5

Il s2 (8)=0.1, Ils 2(x s2 )=0 for xs2~9;

1l1t (X 1t )=1 for x 1t =0,1, and 1l 1t (2)=0.9, 1l 1t (3)=0.4,

1l1t(x1t )=0 for x 1t>4;

1l 2t (x 2t )=1 for x 2t =0, ••• ,6, and 1l2t (t)=O.7,

1l2t (8)=0.4, 1l2t (9)=0.1, 1l2t(x2t )=0 for X2t~10;
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/-112(x 12 )=1 for x 12 =O, ••• ,2, and /-112(3)=0.7, 1J 12(4l=0.3,

u 12 (x 12 )=O for x12~5;

IJG(v)=1 for v~10, IJG (9)=0.8, IJG(8l=0.6,

IJG(7)=0.2, IJG(v)=O for V~6.

The algorithm runs as follows:

~_. x : x s 1 = 2, x s2 = 5, x 12 = x 1t
1 , x 2t 6 >v

v = 7, IJr (7 ) 0.2 t- 1 • Go to Step 2.
"
~. r = (s, 2,1 ,tl , IJr(x l o.8>IJD(x) o.2.v

Go to Step 3.

Step 3. x : x x 1t = 2, x s2 = x 2t = 6, x 12 = O.v s1
Go to Step 2.

~. r (s, 1, 2,t) , Il
r

(xv) O. 7>IJD(x) a.6.

Go to Step 3.

~. x : x = 3, x = 6, x 12 = 1 , x 1t = 2, x 2t
= 7.v s1 s2

Go to Step 2.

~. r (s, 2,1, t) , IJr(x ) O.4<llD(xv ) 0> 7 • STOP.
v

The current flow x is optimal.v

3. NET\iORK ANALYSIS OF A PROJECT WITH FUZZY ACTIVITY TIMES

We shortly review some main results from (Chanas and
Kamburowski, 1981; Dubois and Prade, 1978; Kamburowski, 1983)
(see also Chanas, 1982). Next we propose one more approach to
the fuzzy network analysis of a project. A fuzzy number is
used in this approach to induce a proper probability distribu
tion for duration of an activity. If the fuzzy activity times
are replaced in the network with random variables, then a proba
bilistic method of network analysis may be used.

3.1. Fuzzy network planning

In the sequel we assume that a project can be represented
as a{directed,}compact and acyclic network <X,A>. Assume that
X = 1,2, •• >,n is the set of nodes (events), 1 - the single
start node, n - the single terminal node, and AcXxX is the set
of arcs (activities). The events of the project are of "the
conjunction type", i.e. all the activities "starting" from a
fixed node i are to be executed and their execution can be
started at the time when all the activities "entering" node i
are completed.
For convenience we assume that the events are labelled from
to n in such a way that i<j for each activity (i,j)EA. Asso
ciated with each activity (i,j) is a fuzzy number T .. which is

+ +1.]
a normal, bounded and convex fuzzy set in R (or I ) with a
membership function denoted by IJ ..• The T .. is regarded as a
fuzzy duration time of activity l.~i,j). l.J

Determination of the earliest time at which a project can
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be completed is one of the main problems of network analysis.
A natural approach to this problem, in the case considered here,
consists in a direct extension of Ford·s algorithm used in CPt1
(Critical Path Method) by replacing the addition and maximum
operations in the algorithm with proper extended operations,
Le.

( 18)2, ... In,T.
)

0(T
i

G Tij),
iEr;

wherer; ={iEXI (i,j)EA} and T1 (fuzzy or crisp) is given a

priori. T. is the earliest (fuzzy) time at which event i may
occur. )

Naturally, the realization of formula (18) in a general
case by direct utilization of the definition of @ and 0 is
v~ry troublesome. Therefore Dubois and Prade (1978, 1980) pro
pose to use for the representation of T .. ·s fuzzy numbers of a

lJ
special form - the L-R type fuzzy numbers. Assuming the L-R
type, T .. ·s can be represented by parameters only, i.e. T .. =

lJ lJ
= (mij'~ij,eij)LR. The extended operations reduce themselves

to the usual operations on the parameters. However, it should
be stressed that from the two operations used on (18) only the
addition G) may be executed precisely in this way. The maximum
operation @ frequently provides us with a result out of the
class of the L-R type numbers and the outcome has to be appro
ximated. This may considerably distort the final result, i.e.
the project completion time Tn. The necessity of representing

all the activity times with the fuzzy numbers of the same type
is also a disadvantage of this approach.

In Chanas and Kamburowski (1981) an other way of perform
ing formula (18) is presented. In the method given there, the
properties of the r-cuts of fuzzy numbers are utilized. The
r-cut of a fuzzy number Tij , rE[O,l], is an interval defined as

T~j ={tillij(t) ~ r}= [!f j , t:fj] (19)

Since the extended operations preserve the interval operations
on the r-cuts of the arguments, the following formula gives the
precise result for any rE[0,1]

[max (t
r

+ t~.), max (t:
r

+ t: r
l
· J') ],

iEr-:- -l -lJ iEr:- l
) )

(20 )

j = 2, ••• ,n,
r [r -r]where T1 = .!o1' t 1 is given beforehand.

For being able, in a general case, to precisely identify
the membership function, Pi' i = 1,2, ••• ,n, one has to perform

formula (20) for many values of r. It seems that knowledge of
the r-cuts of Ti ; i = 1, ••• ,n, for a chosen few values or r

(e.g., r = 0.1, 0.2, ••. ,1) will be sufficient for the decision
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maker o Of course, the formula (20) is also correct for integer
activity times Tij •

Example. Let a network as presented in Fig. 5 be given. Assume
that all the fuzzy activity times are of the triangular form
(see Fig. 6): T 11 = (5, 2, 4), T 13 = (6, 5, 2), T24 = T34 = (3, 2, 1 ) 0

The activity (2,3) is dummy and T23 = (0,0,0) 0 It is assumed

that T 1 = (0,0,0).

Table 1 contains Tr , i = 1"'0,4 for r = 0.1, 002, ••. ,1.
l

In Fig. 7 the membership function P4 of the project completion
time T4 is presented. It is not a triangular fuzzy number al-

though all the Tij s are triangular.

Fig. 5. A sample of project network

! ~AI x

i
I ~ - - - - - - - - --

a

Fig. 6. A membership function for a triangular fuzzy number
A = (a, d

1
, d

2
).
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, ~T (t)
4

------t

Fig. 7. The membership function P4 of the project completion
time T4 .

Table 1. The r-cuts of T.
~

r T1 T
2 T3 T4

0.1 [0,0] [3.2, 8.6] [3.2, 806] [4.4, 12.5]
0.2 [0,0] [3.4, 8.2] [3.4, 8.2] [4.8, 12 ]
0.3 [0,0] [3.6, 7.8] [3.6, 7.8] [ 5.2, 11 .5]
0.4 [0.0] [3.8, 7.4] [3.8, 7.4] [5.6, 1 1 ]
0.5 [0,0] [4, 7 ] [4, 7 ] [6, 10.5]
0.6 [0,0] [4.2, 6 .6] [4.2, 6.8] [6.4, 10 .2]
0,7 [0,0] [4.4, 6 .2] [4.5, 6.6] [6.9, 9.9 ]
0.8 [0,0] [4.6, 5.8] [5, 6 04 ] [7.6, 9.6 ]
0.9 [0,0] [ 4 .8, 5.4J [5.5, 6 .2] [8.3, 9.3 ]
1 [9,0] [5, 5 ] [6, 6 ] [9, 9 ]

Both in Dubois and Prade (1983) and in Kamburowski (1983),
a similar definition of the critical path is proposed. Namely,
a criticality value of any path p from 1 to n is determined
as

>lIp)
n

Tn)
n

Tn) (21)= PosS(T 1 (p) is hgt(T 1 (p) n

where

T~(p) 0 T .. (22)
(i,j)Ep ~J

is a fuzzy length of path p.

Of course, one may imagine other measures of path critical
ity than (21). Anyway, the problrm of proper choice of a criti
cality measure depends on the accepted interpretation of the
fuzzy activity times Tij~S (more precisely, (f the membership
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function Il
ij

··s) .,

In the following paragraph we propose a methodologically
quite different utilization of fuzzy numbers in the network
model of a project.

3i9

3.2. A new approach to fuzzy network~nning

The membership function Il i j of a fuzzy activity tllTIe T
1J

may be treated as a possibility distribution of a fuzzy variab
le. As we said, the notion of possibility may be interpreted in
two ways (see subsection 2.2).

In the case of the physical interpretation of possibility,
procedure (18) seems to be sensible. But, Tn should be treated

as a fuzzy restriction on the possible termination time of the
project (not as an evaluation of the unknown time) - being the
result of fuzzy restrictions Tij on the activity times. Natural-

ly, if there are no additional criteria or restrictions, then
the decision maker should choose a time to' such that Iln(to)~1,

as a proper termination time.

The problem becomes more complicated when uij is treated

as a possibility distribution in the epistemic sense. In this
case Tij is a fuzzy variable which is realized similarly as a

random variable. In such a situation, the idea of replacing the
fuzzy variable with a random variable, whose probability distri
bution is "consistent" in a certain sense with the possibility
distribution, seems be natural.

The problem of approximation of a fuzzy variable by a ran
dom variable or, in other words, the problem of random genera
tion of single values of a fuzzy variable is considered
thoroughly in Chanas and Nowakowski (1985). lie will use some of
their results concerning the continuous possibility distribu
tion.

Let us assume that a fuzzy number, bounded in R, induces
by an evidence "X is A" a fuzzy variable X with the possibility
distribution (see Zadeh, 1978).

Po s s (X ~ x) ~ n X (x) = jlA (x) , xER (23 )

The following random variable, XA' may be associated with X
(or A)

XA = ~(T) + S(a(T) - ~(T», (24 )

where T and S are independent random variables uniformly dis
tributed over (0,1] and ~(t), a(t) are_the ends of an interval
being the t-cut of A, i.e. At = [~(t), a(t)].

One may make an attempt at determining the probability dis
tribution of XA (in Chanas and Nowakowski, 1985 the distribution

function of XA is found for a triangular fuzzy number A). It is
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however not necessary if we are interested only in the distri
bution parameters of XA. For example, it may be easily shown

that the expected value of XA can be obtained by the following
formula

1 ~(t) + a(t)
E(X

A
) f 2

dt
0

If A = (a, d 1 ' d 2 ) is a triangular

d - d 1
E(XA) = +

2a --4-

(25)

fuzzy number (Fig. 6), then

(26 )

If XA and XB are random variables induced by fuzzy numbers A

and B, respectively, then

(27)E(XA E)A) = E(XA) + E(XB)·

Let us return to the main topic of our consideration. If
we replace fuzzy activity times Tij in the network with random

variables XT .. , we will obtain a problem for which a probabi

listic methoaJshould be used. Such methods have been developed
intensively during the last years. For example, estimation of
distribution parameters of a project completion time is a sepa
rate problem (see Kamburowski, 1985, and its references).

(28)(i, j) fA.

Obviously, the operations "v" and "+" on random variables
X are not equivalent to the proper operations tV' and 0 onTij V:!j

T" s. It means that the random variable XT generated by the
lJ n

fuzzy time Tn need not be the same as the random completion

time obtained from the probabilistic analysis of the network.
Only in one case we get such an equivalence - namely, when we
assume a strong (functional) dependency between the random va
riables XT ", (i,j)fA, i.e. when T and S are the same random

variables f6r all X
Tij

s, i.e.

-T
+ S(t

ij

Such a way of simultaneous generating values of several fuzzy
variables was called in Chanas and Nowakowski (1985) the gene
ration according to the extension principle.

Analysis of the network model by the assumption of same
other relations among XT " is also an interesting problem. For

example, one may assume E~at XT " (i,j)fA, are independent

variables. It is the case when t~riables TiS used in (28) are
different and independent for each (i,j)fA. Such a way of simul
taneous generating random values of several fuzzy variables was
called independent generating in Chanas and Nowakowski (1985).
However, we can not elaborate on this subject here because of
space limitations.
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4. THE SHORTEST ROUTE PROBLEM IN A NETWORK ~IITH FUZZY LENGTHS
OF ARCS

In this section we make a critical appraisal of various
approaches to the fuzzy shortest path problem and of the resul
ting consequences for solution algorithms. Host of the remarks
put forward here also remain valid for other similar problems
such as: the shortest spanning tree problem, traveling salesman
problem and the like. All these problems have one common featu
re: the estimate of the alternative (of the path, spanning
tree, route for the salesman,etc.) is a fuzzy number being
the sum of several fuzzy numbers (lengths of arcs).

4.1. On the Dubois and Prade approach

Dubois and Prade (1978, 1980) and Prade (1980) touch
several times upon the problem of choosing a shortest path.
However, they do it superficially, without solving conclusively
all the questions connected with the problem. I"Ihat we mean by
this is an unequivocal formulation of a solution concept as
well as of a solution algorithm for the problem. They propose
to substitute in the Ford algorithm (for acyclic networks) and
in that of Floyd (in a more general case) for the operations
"+" and "min" the respective extended operations 0 and 0).
The realization of the algorithms with the operations changed
in this manner yields for a fixed couple of vertices i and j a
fuzzy number 1 .. , being a fuzzy equivalent of the length of

1J
the shortest path between i and j. Because the ® operation
of several fuzzy numbers does not necessarily yield one of
those numbers, it is possible that no path has fuzzy length 1 ..
For this reason the authors do not make use of these parts in1J

Ford~s and Floyd-s algorithms which serve to identify merely an
optimal path (the labeling procedure in Ford·s algorithm and
the procedure of calculating the table of predecessors in
Floyd·s algorithm). Having the fuzzy quantity T .. defined,

1J
Dubois and Prade introduce the notion of criticality of a path,
defining for each path k between i and j the value of critical
ity as equal to hgt(lk n Tij ), where Tk is the fuzzy length of

the path k (i.e. the extended sum of the fuzzy lengths of the
arcs of k). The value of hgt(Tk n T.. ) can be treated (as

1J
stated in Prade, 1980) as a membership function of the "fuzzy
set of the shortest paths between i and j". Let us add from
ourselves that, analogously as in Bellman and Zadeh (1970), one
could now treat in turn this fuzzy set as a fuzzy decision
(fuzzy solution) for the problem in question.

But the problem of the definitive choice of a proper single
route still remain. It seems natural, again by analogy to
Bellman and Zadeh (1970), to take the route of the maximal cri
ticality for the final solution (maximizing alternative).
Dubois and Prade would interpret the final solution in this
way although they do not state it clearly anywhere.

However, it is easy to notice that it follows from the
properties of fuzzy numbers and from those of the operations
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o and 0 that there always exists a path between i and j of
the criticality degree equal to 1 (hence of the maximal one)
and in order to identify it, it is not necessary to calculate
the quantities T .. - it is enough to realize one of the class i-

lJ
cal algorithms, assuming determined lengths of arcs, equal to
the modal values mij of the fuzzy lengths of arcs (such that

~ij(mij) = 1. Thus, we could say, the problem ceases to be

fuzzy.

4.2. On the Chanas and Kamburowski approach

In Chanas and Kamburowski (19B3) an attempt has been made
to differently formulate the concept of the solution of the
problem and to find a means of extending the classical algo
rithms to the case of fuzzy data. We are going to shortly
state this concept.

Suppose that a fuzzy nonstrict preferen~e relation 1.1 on
the set of the nonnegative fuzzy numbers F(R ) is given.
I.I(A,B),A,BE:F(R+), is interpreted as the degree to which the
preference A~B is true. Having defined the relation \.I, we can
construct the fuzzy strict preference relation as follows
(Orlovski, 197B):

\.Is (A,B) = max{I.I(A,B) - \.I(B,A), o}. (29)

\.Is (A,B) may be treated as the degree to which A < B (A is
strictly less than B).

Let X ={A 1, A
2

, ••• ,An}be a finite set of fuzzy numbers. The

fUZZy subset of the nondominated elements of X, according to \.I,
may be defined by the following membership function:

"ND(A.) 1 - max s(A A) A E:X (30)
.. J }I i' j' j ,

AiE:X

i.e. \.IND(A j ) describes the degree to which fuzzy number Aj is

strictly dominated by none of the numbers from X. It is natural
to regard as "the least" fUZZy number in X the one for which
the value of the \.IND function is maximal, Le. the maximal non
dominated element in X.

Let us return to our main problem. Denote by P(i,j) the
set of all paths between vertices i and j. The maximal non
dominated path in P(i,j), i.e. the path for which

1 -
s- -'

max \.I (ld' lk) ~ max
dE:P(i,j)

(31 )

is regarded as the shortest path between i and j.

Now arises the problem of constructing a suitable algo
rithm for (31). In Chanas and Kamburowski (19B5) algorithms for
a certain class of the relation \.I are proposed. Unfortunately,
the algorithms suggested there, which are a direct adaptation
of Ford-s and Dijkstra~s algorithms, are not fully correct
they may lead in some cases to nonoptimal solutions, though
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(32)

clos~ to the optimal ones. Consequently, they can be treat~d

only as approximate algorithms. In order to eliminate that
defect in one of the th~orems, on~ would have to complicate
those algorithms, as in Kolodziejczyk (1984), where he applied
an identical approach to the shortest spanning tree problem.

However, it appears that problem (31) for some definite
relations (satisfying the conditions required in Chanas and
Kamburowski, 1985 and Kolodziejczyk, 1984) becomes decidedly
simpler and does not necessitate constructing separate algo
rithms. For example, it is easy to prove that if p is a rela
tion of Baas and Kwakernaak (1977), then the solution of prob
lem (31) will be arrived at by solving the classical shortest
route problem with arcs lengths (like in the Dubois and Prade
approach treated in the preceding paragraph) to the modal
values mij of the fuzzy arc lensths.

~ow we are going to show that also for the relation intro
duced by Koiodziejczyk (1984) problem (31) (as well as the
shortest spanning tree problem considered there) resolves ifself
into the classical problem and does not require a new algorithm.

Kolodziejczyk (1984) defines the preference relation as
lC\ 1 1 pC\ P Pd(A i ~ Aj,Ai)+d(A i ~ Aj,Ai)+d(Ain~,O)

lip pd(Ai,A j ) + d(Ai,A j ) + 2d(Ai n Aj,O)

where

d(A,B)gf SIP (x) - 11 (x)1 dx
R A B

is the measure of the Hamming distance, and

[IlA (x) for x ~ z,
1 df

PA(x) = 1 for x ~ z,

P gf[~A (x)
for x ~ z,

PA (x)
for x ~ z,

(33 ),

(34 )

where z is such that IlA (z) = 1.

The following theorem is suprising and, at the sam~ time,
interesting, inasmuch as it relates the relation (32) with
the generative value of the fuzzy number (see (25») introduced
in Chanas and Kamburowski (1985). (A ranking function which is
equivalent to the generative mean value, E : F([O,1]) ~ R, map
ping each fuzzy set in the unit interval into th~ real lin~ was
earlier introduced by Yager, 1981).

Theorem 2. The following relation holds

p(Ai,A j ) ~ ~~E(Ai) ~ E(A j ),

where 11 is defined by (32) and E(.) by (25).

Proof. We are going to bring forward only the main idea of the
proof: It is easy to notice that
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(35)
S~ + S~ + S

S~ + S~ + S; + Sp + 2S

+ - + -
where SL' SL' Sp' Sp and S are areas consisting of subareas as

marked in Fig. 8.

1- S

"A (X;
J

~A. X
1

Fig. 8. The areas used in formulae (35) and (36)

Further, using (25) one may show that

EIA.I = EIA.I - l(A+ - SL- + S- - S+pl
1 J 2 L P

136 )

And the theorem follows immediately from 1351 and (36).

It is from theorem 2 and the additivity property of the
generative mean value (see (27), as well as the property of
the relation (32), ~(A,B) + p(B,A) = 1, that in order to solve
problem (31) with the preference relation (32), it suffices to
solve the classical problem with the lengths of arcs equal to
E(T .. 1. Needless to say that this remark remains valid also for
the1Jspanning tree problem considered in Kolodziejczyk (19841
and with such a preference relation as (32) the algorithms
worked out there a~e redundant.

5. FINAL REMARKS

It was not our objective to review all the problems con
nected with network optimization which may be met in the lite
rature. For example, we have not considered here the min-cost
flow problem,Chanas and Machaj (1985), and related problems
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(e.g., Chanas, Koiodziejczyk and 11achaj (1984)j. I~e rather want
ed to present and analyse more deeply some chosen typical fuzzy
network problems - such as the maximum flow problem, the net
work analysis of a project and the shortest path problem. At
the same time while presenting each of these problems, we tried
to lay stress on two questions: the mere formulation of the
problem in its fuzzy version as well as solution algorithms in
which specific features of the network representation of the
problem are used extensively. v)e tr ied not to hide the fact
that there may be different approaches to all the problems con
sidered depending on how fuzzy input data are interpreted in
the model of the problem. Therefore, for example, we presented
two completely different ways of the use of fuzzy sets in the
network analysis of a project. Different interpretation and
meaning of the membership function of a fuzzy number cause, for
example, that the problem of ordering fuzzy numbers cannot be
uniquely solved (see, e.g., Bortolan and Degani, 1985). That is
also why a solution concept for the discrete optimization prob
lems as, for example, the shortest path problem cannot be uni
quely stated. lie also wanted to stress the parts where we were
making a critical review of different approaches to the fuzzy
shortest path problem in Section 4.
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;,bstract. Typically, in location problems "optimi
sation" is judged according to criteria which are
mainly deterministic and crisply defined. In a
great many location problems, however, the policy
and decision makers are not always in a position
to determine crisply either the criteria on the
basis of which optimisation will be assumed or
the aims and objectives to be achieved or even
the restrictions imposed on the overall project.
This paper presents some fuzzy location models
and solution methodologies which can be applied
to such situations. The emphasis here is on the
application of fuzzy discrete location models on
i) The general mixed integer programming formula
tion of the discrete model, commonly known as
"the simple plant location model", and ii) the
set covering and set partitioning 0-1 pure inte
ger programming formulations.

Keywords: location problem, fuzzy location prob
lem, fuzzy set covering, fuzzy set par
titioning.

1. INTRODUCTION

The great volume of papers which has appeared in the last
twenty years on location analysis reflects the tremendous inte
rest shown by the rL'searchers. This interest is due to the theo
retical rewards and also the realisation tnat ~ocatiunal analy
sis is an area of optimization with direct impact to real life
problems such as those faced by operational researchers, manage
ment scientists, planners, etc. These problems range from minimi
zation of transport costs to maximization of social welfare.

The locational models which have appeared in the literature
can be broadly classified into three main categories: continuous
(planar), network, and discrete.

Typically, a location problem would be to optimally locate
a number of new facilities within an area. These are usually as
sumed to be dimer-sion-less points in space, 7he new facilities
could be expected to be located either anywhere in the plane
(continuous problem), or anywhere on a transport network (net
work problem), or at specific points within the area (discrete
problem) •

328
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Flanar models require more assumptions and approximations
of the distance involved, hence they are sometimes less realis
tic, while the discrete problems need less assumptions and they
are the most realistic of the three, but at the cost of tracta
bility since they are NP-hard. Network models are more easily
analysed and solved when they contain no cycles, i.e. they are
"trees". However, network problems can usually be transformed
into equivalent discrete models.

The optimization is judged according to criteria which are
mainly deterministic and crisply defined such as distances, fix
ed costs, travelling time and cost of travelling. Some more
broadly defined criteria which take into consideration charac
teristics of the population involved (Koenig, 1981) could be
used in socially orientated studies, nevertheless these are
also crisply quantified.

In a great many locational problems, however, the policy
makers and planners are not always in a position to determine
crisply either the criteria on the basis of which optimisation
will be assumed or the aims and objectives to be achieved, or
even the restrictions imposed on the overall project. Forcing
the policy/decision makers to obtain, say, specific numerical
values for the constraints or to come up with crisp criteria
may result in masking feasible alternative solutions which may
be much more within the policy lines than those an inflexible
model would provide. In these cases, the fuzzy sets approach
can be successfully used.

This paper presents some fuzzy location models which can
be applied to situations where the constraints and objectives
may be expressed as, for instance: "the optimum must be within
the policy lines" or "it must satisfy that sector of the popu
lation and be acceptable to the rest", or "the maximum number
of people served by each facility must not exceed a certain num
ber by very much", etc. The emphasis here is on the application
of fuzzy discrete location models, in particular on a) the ge
neral mixed integer programming formulation of the discrete mo
del, commonly known as "the simple plant location model" (SPLP),
and b) the set covering and set partitioning 0-1 pure integer
programming formulations. Both a) and b) are introduced in the
next section. Fabian and Stoica's (1984) approach to the fuzzy
integer programming problem, modified to describe the mixed in
teger formulation of the SPLP model, is presented in Section 3.
The same section discusses the possible use of Zimmermann and
Pollatschek's (1984) approach to formulating and solving the
0-1 fuzzy integer programming problem to describe the discrete
location problem. Next, Section 4 presents an approach based on
the set covering/set partitioning 0-1 formulation with fuzzy
criteria, and Section 5 a solution method where a simple impli
cit enumeration algorithm is used to obtain the set of covers
and their membership values according to a membership function.
Finally, Section 6 discusses the consequences of the aSBumptions
about the membership function introduced in these models and
their applicability in general. The level of fuzziness of the
problems and its impact on the choice of model used to solve
them are discussed during the examination of the above models.



330 OPTIMIZATION MODELS. FUZZY SETS. AND POSSIBILITY THEORY

2. NETWORK AND DISCRETE LOCATION MODELS

Because of the widespread interest in location models,
there are a number of excellent reviews (Francis and McGinnis,
1983; Krarup and Pruzan, 1983), and for one of the most popular
models, the simple plant location problem (SPLP), a comprehen
sive review of papers on the subject up to 1982 is presented in
Krarup and Pruzan's (1983) paper.

As far as the network location problems are concerned, the
main interest focuses on the p-centre/p-median type of problem.
In the p-centre problem new facilities are to be located with
respect to m locations in order to minimise a maximum of weigh
ted distances between each existing location and its closest
centre. In the p-median problem the difference is in the objec
tive function where the p new facilities are located so as to
minimise a sum of weighted distances between each existing fa
cility and its closest median. The existing locations are situa
ted on the vertices of the network, while the new facilities
can be anywhere on the network. An array of algorithms, backed
by theoretical development exists especially for the cases
where the network is a tree since it usually implies convexity.
However, Krarup and Pruzan (1983) have shown that the p-centre
p-median problems are transformable to SPLP. They also establish
ed relationships between SPLP and the set covering problems in
integer programming, emphasizing that way the importance of SPLP.

The general SPLP problem which is fully treated in Krarup
and Pruzan (1983) can be described by the following mixed inte
ger programming formulation:

Minimise Z = L L (c. + t .. )d .. +
iEI jEJ 1 1J 1J

Subject to:

L f
1
·y i

iEI
( 1 )

jEJ (2)

iEIkiYi - j~J d ij ~ 0,

d ij ~ 0, i I, jEJ

Yi ~ 0, Yi > and integer

(3 )

(4 )

( 5)

where:

- iEI represents the potential locations for new facilities;
I = 1 (1)m,
- jEJ represents the locations to be served by the new facili
ties; J = 1 ( 1) n,

f i is the fixed cost of opening the facility i,

- c i is the operating cost per unit for facility i,

lj is the demand by j,

t ij is the cost of transporting a unit from i to j,



FUZZY LOCATION MODELS 331

is a constant greater than the maximum production potential- k.
~

of i.

And the variables:

d ij are the units to be transported from i to j,

Yi = 1, if a facility is located at i, 0 otherwise.

The objective function (1) is the standard fixed charge
problem function where the opening of a facility i (Yi=1) im-

plies the fixed cost f
i

, and constraints (3) guarantee that if

d ij > 0 for facility i, then Yi=1, since k i can be chosen as a

constant greater than the maximum production of i, usually

each k i is replaced by the sum of lj'S (i.e. the total demand).

Constraints (2) guarantee that the demand at j is satisfied.

Discrete location models have also been successfully formu

lated as zero-one pure integer programming problems in the form

of the set covering, set partitioning problem. Typically, the

general problem in this case can be stated as the optimal loca

tion of a number of facilities at some points out of a set of

candidate points S so as to serve the whole membership of S.

In other words, let S =[ 1,2, ... ,i, ... ,n}be the set of n poten

tial locations and K ={{1 ij ,jEJ}, iEI}be a class of subsets of

S where lijEK locates a facility at i to serve the rest of the

points in the subset (points in lij)

Let:

=[ 0

1

Yij

Minimise Z

if 1.. is in the cover
~J

otherwise

L L a .. Yij
iEI jEJ ~J

(6 )

Subject to:

L Yij >

for {lij' j€J}

i&I (7 )

Yij > 0, Yij ~ 1 and integer (8)

The objective function (6) will minimise the "cost" of sub

sets of S (members of K) necessary to cover the members of S,

and thus obtain the minimum cost facilities needed, according to

certain criteria quantified by a ij • The coefficients a
ij

repre

sent the "cost" of serving the group of points of the subset
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1. by a facility located at i, The constraints (7) guarantee
q

that every ieS will be covered by at least one lijEK, since for

every i there is a constraint forcing at least one lij to be in

the cover (Yij = 1).

In the case where (7) are equalities, the above formula

tion is known as the set partitioning type of formulation.

Several specialised algorithms, as well as the standard

integer programming ones, can be used to solve these types of

problems. However, their combinatorial nature (NP-hard) imposes

limitations on the size of the problem which can be solved.

3. THE FUZZY MODELS

A number of papers appeared recently dealing with the case
of mathematical programming problems in fuzzy environments (Fa
bian and Stoica, 1984; Zimmermann and Pollatschek, 1984), Al
though the fuzzification may occur at many stages in the formu
lation and through a number of elements of the problem, such as
the constants or the variables, it is mainly considered that
the objective function(s) and some or all the constraints are
fuzzy sets and in most cases both are treated as restrictions
to be satisfied simultaneously according to the principles dis
cussed in Bellman and Zadeh's (1970) paper. The suggested solu
tion methods are based on transforming the fuzzy models into
deterministic non-fuzzy equivalents which can be solved using
the standard algorithms.

The SPLP could be fuzzified to represent a real life prob
lem in a more pragmatic way than its non-fuzzy counterpart. For
instance

subject to:

Z1 ::: min Z

L d ..
~ Ij' jEJ

iEl ~J

kiYi - L d .. > 0, iEl
jEJ 1J ;;;;.

( 9)

( 10)

( 11 )

where "~,, may mean almost optimal, and "~" almost satisfied,
The actual constraints can be labelled as-, fur example, "the de
mand is almost satisfied", in the case of (10), and the fuzzifi
cation of (10) and (11) may imply that if the total amount pro
duced at i and delivered to j is very small, then the y. may be
allowed to be zero. In other words, the fixed cost may ~ot occur
because it is more beneficial to use some of the stock, or even
buy it from elsewhere just to maintain the customers.

Alternat~vely, if k i is defined as being a specific maximum

outflow from location i, then for Yi = 1, d ij may be allowed to
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go a little over that maximum, for policy reasons.

Several more logical constraints can be incorporated in
general into the SPLP, and these can be fuzzified if more ap
propriate. The fuzzy objectives and constraints, in most cases
considered interchangeable, are the course characterized by
their membership functions. The fuzzy mixed integer programming
formulations suggested so far by various researchers (Fabian
and Stoica, 1984; Zimmermann and Pollatschek, 1984) use speci
fic types of membership functions which lead to a non-fuzzy
equivalent problem.

In Fabian and Stoica's (1984) approach, for example, the
membership function of the objective function would be defined
as follows:

let Xo be the non-integer solution to the non-fuzzy prob

lem,then

if Z (X) < a

if Z(Xo ) ~ Z(X) > a

if Z(X) > Z(Xo )

(12)

where a is a minimum threshold defined by the decision maker(s)
and Po is a membership parameter.

A membership function for the constraints (10) may be

{ ~XP(-Pi
and similarily for (11)

=[

if

rd .. > 1.
1.] - 1.

rd ij < li

if kiYi -rdij > 0

if kiYi -rdij < 0

(13 )

( 14)

In the same paper, Fabian and Stoica (1984) also show that
assuming the membership functions (12) to (14) the problem (9)
to (11) is equivalent to a non-fuzzy one with non-linear objec
tive function and linear constraints which they solve using si
mulation methods.

Furthermore, Zimmermann and Pollatschek (1984) suggested
non-fuzzy equivalent formulations for the 0-1 integer problem
with fuzzy right hand side. Their approach could be applied to
discrete location problems where the set 5, class K and conse
quently the set of covers C are all crisp, but the restrictions
and goals are fuzzy, for example, consider (6) and (7), in
their fuzzy form they would be:

( 15)

( 16)
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respectively, where the "£" means that the constraints can be
violated up to a tolerance level d ij , and Zo may be a level

defined by the decision maker(s). One further assumption is
that the membership functions of the objective and constraints
are linear functions of d ij , in this case:

if -LaijYij < -1

if -1~LaijYij~dij-1

if -LaijYij ~ -1+dij

( 171

The membership function of the decision is the intersec
tion of the membership functions of the constraints and the
objective(sl using an intersection operator such as the mini
mum. To obtain the Yij which will yield that minimum, the

authors solve a crisp 0-1 problem.

The use of the above approaches to solve the discrete lo
cation problem a~plied in this paper would depend on:

a) the importance the decision maker attaches to the res
triction of the specific (decreasing) membership functions for
the constraints and the objectives,

b) his ability to define working tolerance levels, and

c) the assumption that the class K of the subsets of the
facility points in the case of the set covering approach can
be crisply defined.

4. AN ALTERNATIVE FUZZY APPROACH

The approach presented in this section is based on the
0-1 set covering, set partitioning type of formulations dis
cussed in the previous sections.

In a deterministic non-fuzzy problem the subsets (members
of K) can be either homogenous, which means that all a ij =1 in

(6), or they can have different values attached to them, for
example the location of fire stations or other emergency ser
vices where the objective is to reach their destination within
a maximum time period, the location of warehouses, etc. These
problems can be tackled by the formulation (6) to (8) present
ed in Section 2 subject to the problem size.

On the other hand, there are many location problems which
are associated with social policies, such as decentralisation
policies, where major funding is made available for locating
public services in certain areas in order to improve the stand
ards of living and to boost local economies, etc.

The decision makers' problem here is the identification
and evaluation of criteria on the basis of which an optimum
will be obtained. I", these caRes, one of the major tasks, as
suming that a set S of potential facility points can be crisp
ly defined, is the construction of t~e Cli'SS K of the subset~
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of S. The choice of specific location points and of the rest
of the points these should serve can only be based on ques
tions like:

How far should people travel to reach a service point?
How important are bad and good roads and public transport?
Is homogeneity of class and income within a subset impor
tant?
Is it very unfair to locate two major facilities in one
point?

It becomes apparent that in the way the above problem is
expressed, the labels which may be used to describe the aims
of a policy cannot always (if ever) be crisply defined,

The fuzzy nature of the problem can be accepted and intro
duced at various stages in the analysis. To begin with, the
members of K can be regarded as fuzzy sets, with the construc
tion of their membership functions being the major difficulty,
in other words, the evaluation of "nearness" or "accessibility"
of a service point i from the other points.

Let S' be the non-fuzzy set of xim(i.e. linked pairs mem

bers of S such that i serving m) gen8rated by S.

Consider a point i as a potential facility location, then
a fuzzy subset may be expressed as follows:

lim ={ x jm ' 111 (x im ) I x im E S', where m is served by cen-

tre i, iE S } ( 18 )

111 (x im ) measures the "serviceability" of i to m, and may

depend on how far m is from i, how many people m has, what is
the maximum number of people, approximately, that lim should

have (i.e. maximum number of people i should serve), whether i

is in competition with m in any way, etc.

Alternatively, the class K of subsets of S can be regard

ed as a fuzzy set

K ={lim Pk(1 im ) I lim is one of p subsets which

consist of points which are served by i, iES}(19)

where lim'S can be non-fuzzy subsets generated according to a

procedure, e.g., containing up to a maximum total population
or consisting of points m which are up to a maximum distance
away from i, etc. Also lim'S can be the fuzzy sets as defined

in (18) with Ilk(lim) being the intersection of the 11 1 (x im ) for

every m in lim.

The Ilk (lim) may measure the acceptableness of lim as a

member of K, i.e., how acceptable and useful lim would be as

a member of a cover, and can also be evaluated on the basis of

the same criteria used for the membership of (18).
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Nevertheless, the individual membership functions of lim's do

not necessarily represent the membership value of a cover. It

is very likely that a cover will "look" and be valued differ
ently than an aggregate value which is based on the membership
functions of the subsets (members of k) it consists of.

Thus one may prefer to accept the fuzziness of the problem
at the stage where the covers are examined

(20)

where C is the finite set of covers and PA(c n ) the membership

function of c n ' Possible labels for the evaluation of PA(cn )

are: "fair cover", "a cover within the policy lines", etc.

The next section discusses a solution method for this
case.

5. A METHOD FOR THE EVALUATION OF FUZZY COVERS

The following example is used to illustrate the approach:

Consider the road network shown in Fig. 1 which is part
of a real road network.

The points 1-4 represent villages whose populations are
given in Table 1a. The distances in kilometres between the vil
lages are given in Table 1b.

4

)

~3
-!

---
2

Fig. 1

Table 1a Table 1b

2 3 4

l 11 7 9
1.100

2 11 14
2 650 3 7
3 1.350 4 9 14
4 730
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A possible problem is to optimally locate three facilities
in order to serve (cover) each village by only one facility.
Thus this problem in its non-fuzzy form can be formulated as a
set partitioning problem.

Nevertheless, whatever the approach, the first major task
is the c~nstruction of the class K of subsets of the set S =
[1,2,3,41' The hypotheses and assumptions set out in Section 4
~ould be considered when making up K. However, for simplicity,
and without loss of generality, the assumption here is that
each member of K should not have more than 2.000 total popula
tion, and the distances between villages should not be more
than 15 km. This, of course, is a non-fuzzy restriction an al
ternative fuzzy label could be: Each member of K should not
have much more than 2.000 total population and the distances
between villages should not be much more than 15 km. In this
case, the support S(K) of K could be obtained according to a
membership function or empirically calculated membership values
of the members of K.

Table 2 gives the members of K for the example and, in ad
dition, all the information needed for the non-fuzzy formula
tion (6) - (8) presented in Section 2.

Table 2
members total total

of K 1. population distance y ij 6. ij =Ldi/Pj a .. )( 1000
J

Pj Ldij
~J

1 1 1, 100 0 <11 0 0

2 1 ,2 1,750 11 Y12 0.006 6

3 1 ,4 1,830 9 Y13 0.005 5

4 2 650 0 Y24 0 0

5 2, 1 1,750 11 Y25 0.006 6

6 2,4 1,380 14 Y26 0.010 10

7 3 1,350 0 Y37 0 0

8 4 730 0 Y48 0 0

9 4, 1 1,830 9 Y49 0.005 5

10 4,2 1,380 14 Y4 10
0.010 10

The crisp formulation is:

min Z = 6Y12 + 5Y13 + 6Y25 + 10Y26 + 5Y49 + 10Y4 10

Subject to:

(21 )
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Y11+ Y12+Y13+ Y2S +

Y12 + Y2 4+ Y2S+ Y26+

Y37

Y11+Y12+Y13+ Y24+Y2S+Y26+ Y37 + Y48+Y49+Y4 10 3

(22)

(23)

(24 )

(2S)

(26 )

To provide a solution to a fuzzy version of the example
according to the treatment presented in the previous section,
the set of covers (partitions) is needed assuming that either
a membership function or calibrated membership values of the
members of the set of covers (partitions) can be obtained.

A simple branch-and-bound based enumeration algorithm can
be used to obtain the covers. The particular nature of the set
partitioning problem provides a number of working bounds, hence
there are a number of special algorithims. In the case of the
example, the bounds are provided by the specific number of new
facilities on one hand and, of course, the equality constraints
on the other, which impose the restriction that each village
should only be covered once. Hence two bounds can be construc
ted: Let V = 3 be an upper bound for the number of villages,
and M = 0 if no village is covered more than once, and 1 other
wise.

As an example, see Fig. 2 which shows a part of the search
tree.

Y12=1

M=1

Y 49 = M=1

410=0

V< 2

Fig. 2
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The search for the example is from left to right in the
table of constraints (22) to (26). When Yij = 1, then row i

and column j are removed, the number of y .. 's f 0 in the j
lJ

column are however recorded for the benefit of M. Also for the
example the matrix can be reduced since Y37 should be 1, that

is because 3 can only be served by itself (the only non-zero
element in its column and row).

The enumeration gives the following feasible covers:

1) Y12' Y48 2) Y13' Y24 and 3) Y25' Y48

Fig. 3 gives the locations of the facilities and the villages
they serve (cover).

4 4

0 \
1

~l) C!) 3 0 3

~2 C!)2

4

C!)

~2

Fig. 3

According to the crisp formulation the optimum (minimizing
Z) is 5.

However, the fuzzy version of the problem can be tackled
on the basis of the membership values these covers take in re
lation to the fuzzy constraints and objectives treated here
symmetrically according to Bellman and Zadeh (1970).

For example, the problem may be structured as in Table 3
where c

1
,c 2 ,c 3 are the covers (feasible solutions). The nume-

rical values in the table are the membership values of each
cover in relation to each label (constraint). The membership
values of the decision are obtained as the intersection of the
corresponding values using the minimum as the operator.

This maximum approach, if the minimum operator is adopted,
is very sensitive to the extreme membership values. However,
other intersection operators which may take into consideration
"compensation" could be used (Thole, Zimmermann and Zysno,
1979) •

For our example, the membership values for the decision
are (0.9, 0.6, 0.5) and if a straight optimum is sought, then
the maximum of 0.9 is taken.
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Table 3

c
1

If possible,
separate 1 and 4:

It is preferable
not to locate at 2:

It is better
policy to locate
this type of
facility in villages
with high population:

l1embership values
of the decision:

6. DISCUSSION

0.9

0.9

0.9

0.9

0.6

0.9

0.8

0.6

0.9

0.5

0.7

0.5

The justification for suggesting, let alone adopting, the
fuzzy approaches to the discrete location problem should be
allocated the major effort in this section. Indeed, in the
previous sections, the fuzzy location problems Were described
in such a way that it is difficult to deny that they are real,
and in most cases the decisions are part of policies where
there are elements which go beyond the stochastic level, i.e.
the policy/decision makers cannot identify and define their
problems crisply. However, the argument may be that sensitivity
analysis applied to an array of crisp formulations will provide
equally good solutions if not better looking ones. The counter
argument is: why should one produce a good-looking solution to
a problem which is not recognizable? Nevertheless, it is beyond
the scope of this paper to justify the existence of fuzzy sets
theory. Experience has shown, though, that the "client" gives
more information about his problem and even understands it
better if he or she is not forced to quantify everything.

Looking back through the stages of the suggested approach,
possible drawbacks may be identified:

- The assumption about the membership functions for the objec
tive(s) and constraints in formulations (9) to (11) and (15)
to (17);

- The examination of possible covers in the approach presented
in Sections 4 and 5;

- The adoption of the appropriate intersection operator.

As for the specific membership functions, it is true they
may be restrictive but one could expect that in real life em
pirical membership functions can be described by decreasing
mathematical functions. If, however, one feels that the real
fuzzy nature of the problem could be overlooked by such assump-
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tions, the approach presented in Sections 4 and 5 may be more
appropriate.

In the context of a comparison between the non-fuzzy inte
ger programming formulation (6) to (8), and the fuzzy approach
suggested here, the restrictions imposed upon the size of the
problem by the algorithms used to solv~ the non-fuzzy one, is
at least as great as the restriction imposed by a total implicit
enumeration which is necessary in order to construct the fuzzy
set A and the membership of the constraints.

As to the intersection operator, several researchers have
suggested various operators (see, Thole, Zimmermann and Zysno
1979) and it should be acknowledged that each study should be
treated individually with an open mind towards the various
operators. Data availability on, say, preferences expressed by
users, would obviously help a great deal in testing the value
of the operator, but in addition to that a calibration of the
personal perception of the concept of "and" by the decision
and policy makers would certainly be a worthwhile exercise.
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Abstract. The transportation problems have a re
cognized importance. Their range of applications
can be enlarged when some fuzziness in its formu
lation is accepted. This paper is devoted to the
study of a resolution method for fuzzy transpor
tation problems. In order that this may be done,
in accordance with the decomposition theorem for
fuzzy sets, a formulation as the transshipment
problems cut by cut is done. Feasibility or un
feasibility of the former fuzzy problem is analy
zed on these cuts by means of four functions.
These are straightforwardly defined from the mem
bership functions of the fuzzy parameters involv
ed in the starting formulation. In order to find
a fuzzy solution using an auxiliary problem, a pa
rametric type algorithm is proposed. This one is
shown to be more efficient than others existing
in the current literature because of the lower
dimensionality of the mentioned auxiliary problem.

Keywords: fuzzy transportation problem, transpor
tation problem, fuzzy mathematical
programming.

1. INTRODUCTION

A great part of practical applications of linear program
ming falls into the field of network flow problem~. The trans
portation problem (TP) is of special interest. As is well known,
TP is formulated as follows: A product is to be transported
from each of m sources to any of n destinations. The sources
are production facilities (supply points) characterized by avail
able capacities a 1 , •.• ,am• The destinations are consumption fa-

cilities characterized by required levels of demand b
1

, •.• ,b
n

.

There is a cost c ij associated with transporting a unit of the

given product from the i-th source to the j-th destination. One
must determine the amounts x ij of the product to be transported

from all sources i to all destinations j so that the total ope
ration cost will be \"inimized.

342
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m
It is usual to impose I a.

i= 1 l

sumption TP can be formulated as the
ming problem:

n
I b. and with this as-

j .~ 1 J

following linear program-

s.t:

m n
I I

i=1 j=1
c ..

lJ
x ..

lJ
min
x ..
lJ

I x .. ai' HI =(1, ... ,m}1J
j

=( 1, ... ,n}I x .. b j , jEJ
i lJ

X .. > 0
lJ

This formulation has a clear economic interpretation from
which the great interest in this type of problems arises. On the
other hand, methods exist (the stepping stone or the Hungarian
one) which permit the problem to be solved more easily than by
the simplex algorithm (in fact the stepping stone method is a
version of the simplex method adjusted to the speciil features
of TP). These reasons justify, in part, extraordinary importance
TP has for operations research. Horeover, there are many prob
lems, not being exactly TP, which can be solved in the same way
because of their mathematical formulation. On the other hand,
general network flow problems contain TP as subproblems,

All these areas of interest in TP can be enlarged when it
is assumed that some parameters taking part in the formulation
of the problem are fuzzy. Thus, the attempt is to solve prob
lems, such as those mentioned above, assuming that some fuzzi
ness is present in them. In this case we deal with the so-called
fuzzy transportation problem (FTP).

FTP was first studied by Prade (1980); Oheigeartaigh
(1982), Verdegay (1983) and Delgado and Verdegay (1984) should
also be mentioned. Recently, a parametric approach to solve
FTP has been proposed by Chanas, Kolodziejczyk and Machaj (1984).

2. PROBLEM FORt1ULATION

Suppose we have an FTP with a fuzzy supply and demand,
and nonfuzzy objective function given as usually (see, e.g.,
Chanas, Kolodziejczyk and Machaj, 1984; Oheigeartaigh, 1982;
D0lgado and Verdegay, 1984), i.e.

m n
I I c. x ij

-> min
i=1 j=1 lj x.lj

s.t:

n
I x. a. , iEI

j=1 lj ~l
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m
l:

i=l
x, '

1J
b. ,
-J

jEJ ( 1 )

n
l: x,,) ,

j = 1 1J
(compa tibil ity)

X ij ~ 0, (i,j) IT xJ

where ~i and ~J denote nonnegative fuzzy numbers, iEI and

j&J. Some of them can be crisp numbers. However, we suppose there
exists at least one noncrisp number.

For any {Xij ' (i,j)EIXJ} the value of Pa .!
m -1

(jIb ( l: x. ,» is interpreted as a feasibility
_j i= 1 1J

degree of the sOlution{ x ij ' (i,j)EITxJ} with respect to the ith

(jth) constraint.

Thus, this model can also be used to describe the situa
tion in which the right-hand-sides of the constraints are crisp,
with the equality relation being fuzzy.

3. A PARAMETRIC APPROACH

According to the decomposition theorem (Negoita and Rales
cu, 1975) and using the parametric approach to solve fuzzy ma
thematical programming problems (Verdegay, 1982) (particularly
its application to FTP in Delgado and Verdegay, 1984; Verdegay,
19831 problem (1) can be changed into

m n
l: l: c .. X ij min

i=l j =1 1J x,
1j

s.t;

P.e.i
( l: X ij ) ~ a , iEI

j

Pb
( l: X

ij
) ~ a , jEJ ( 2)

-:J i

aE(O,l],x, , ~ 0, (i,j)ElxJ
1J

If ~i' iEI, ~, jEJ, are LR fuzzy numbers (Dubois and

Prade, 1980) or, more particularly, trapezoidal fuzzy numbers,
as in Chanas, Kolodziejczyk and Machaj (1984), problem (2) be
comes:

m n

i:l j:l c ij x ij ~

s.t:
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L X J.j E [a i (a) , Ai (a)] , .i.E I
j

L x .. E [b j (a) , Bj (a)] , jEJ
i 1J
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(3 )

c(E.(0,1), (i, j)E Ix J

where [a i (<<), Ai (a») ([b j (a), Bj (a»)) a E (0,1) is the a-cut

of level 0( of a. (b.), iEI (jEJ).
-~ -J

As each constraint in (3) can be stated by means of two
inequalities, it is obvious that (3) is a parametric linear
programming problem. Thus, from a theoretical point of view it
can be solved by using the simplex method, obtaining the family
{xij(a), aE(0,1), (i,j)EIXJ} of solutions, and, in accordance

with the applied approach (Verdegay, 1982), this family shall
be considered the fuzzy solution to the original fUzzy problem.

However, as in the case of classical TP, we ask about a
way to solve (3) so that, taking into account the special struc
ture of the problem, it allows us to obtain{x .. , aE(0,1),

}
1J

(i,j)ElxJ faster and more easily than the direct application
of the simplex method. The following sections are devoted to
this sUbject.

4. A FORMULATION AS A TRANSSHIP/.\ENT PROBLEM

In economic terms, for any aE(0,1), (3) may be inter
preted as a specific TP on a bipartite network as follows.
There exist n destinations (demand points) D

1
, ..• ,D

n
each of

them demanding an amount of a product. The special feature is
that the demand of jth destination must be between bj(a) and

Bj(a) (there is a minimal and a maximal demand), jEJ.

To supply that demand, there exist m sources (supply
points) each of them having an amount of the said product. As
before, the stock of 0i is between a i (a) and Ai (a) (Oi must sup-

ply at least ai(a) but not more than Ai(a), iEI.

The unit transportation cost from 0i to Dj is c ij
(c ij if such transportation is impossible). As is usual,

we will assume c ij ~ 0, V(i,j)EIxJ.

It is required to finJ a fIOw{xij(a), (i,j)EIxJ) (aE(O,l)),

having a minimal total transportation cost.

Following a usual method in network flow theory, this
problem can be changed into a new transshipment problem on a
network with a single source and a single destination obtained
as follows:

1) By adding a new source ° with infinite supply, joined
to each original source 0i by an arc (O,Oi) with null cost,
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aE (0,1]

lower capacity equal to ai(a) and upper capacity equal to

Ai(a), iEI.

2) By adding a new destination D, joined to each origi
nal destination Dj by an arc (Dj,D) with null cost, lower ca-

pacity equal to bj(a) and upper capacity equal to Bj(a), jEJ.

3) Original sources and destinations are considered as
transit points (null demand or supply points).

Now we look for a flow from 0 to D being compatible with
the capacity constraints of the arcs and having minimal total
cost of transportation.

This transshipment problem (which will be denoted T1 (a»)
can be solved for every aE(O,1] by using well known techniques
(see, e.g., Simmonard, 1973).

On the other hand, the dimensions of T1 (0) can be redu
ced by taking into account the values ai(a), Ai(a), bj(a)

Bj(a), iEI, jEJ, aE(0,1], and their relations. Define:

ala) " L a
l
. (a) b(a) = L b

J
. (a)

i j

A(a) B(a) = L Bj (a)
j

Obviously ala) < A(a) and b(o) < B(a) for any a in (0,1).

{
When th}re is some}nonunimodal fuzzy number in each of the sets
a.; iEI , {b,; jEJ ,then a(1)<A(1) and b(1)<B(1).
_1 -J

According to Hoffman's theorem, T1 (a) has no solution if

B(a) < ala) or A(a) < b(a)

In the original transportation problem (3), these conditions
have the following interpretation:

i) Hhen B (a) < a (a), the problem can not have a solution
because the constraints of lower supply and upper demand are
impossible to verify: the sources must send ala) at least, but
the destinations can receive B(a) at most, with B(a)<a(a).

ii) When A(a) < b(a), the constraints of lower demand and
upper supply can not be verified: we must satisfy a demand
equal or greater than b(~) but we have a maximal total supply
equal to A(a) with A(a) < b(a).

Since the transportation costs are nonnegative when
T1(a) is feasible,its optimal solution must be such that the
amount sent from 0 to D (from sources to destinations in the
original transportation problem) is the minimal one for which
the constraints are satisfied. Thus for every a we can distin
guish three cases:

A) ala) < b(a). In such a situation the minimal feasible
amount is b(a) and thus the optimal solution must satisfy

L LX, ,(a) = b (a)
i j lJ
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We can obtain it from the following modification of (3):
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m n
L L c. x. -> min

i~l j ~ 1 lj lj
X.lj

n
s.t.: L xijE [a i (a) , Ai (a) ]

j=l

m
L x. b j (a)

i=l lj

iEI

jEJ

(i,j)EIxJ

(4 )

This problem is equivalent to a transshipment problem obtained
from the original TP as follows:

A.l) By adding a new source a with supply b(a) and joined
to each a

i
by means of an arc (a,a

i
) with null cost, upper ca-

pacity equal to Ai(a) and lower capacity equal to ai(a), iEI.

A.2) By fixing the demand at destination Dj exactly equal

to b j (a), jEJ.

A.3l Original sources are considered as transit points
(null supply points) •

This problem will be denoted T2(a).

B) a(a»b(a). In such a case the minimal feasible flow
is a(a); thus the optimal solution must satisfy

m n
L LX .. (a) = a (a)

i=1 j=l lJ

and we can obtain it from the following modification of problem
(3) :

m n
L L

i= 1 j =1

s.t.:
n
L

j=1
X ..
lJ

c .. x ..
lJ lJ

-Jo min
x ..

lJ

iEI

(5)

x .. > a
lJ -

(i,j)EIxI

This version can be formulated as a transshipment problem
on the network obtained from the original as follows:

B.l) By adding a new destination D with demand ala) and
joined to each Dj by means of an arc (DjD) with null cost, upper

capacity equal to Bj(a) and lower capacity equal to bj(a), jEJ.
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B.2) By setting the supply of 0i exactly equal to a i (a)

B.3) Original destinations are considered transit points
(null demand points).

This problem will be denoted T3(a).

C) ala) = b(a). In this situation the optimal solution
must satisfy

m n
L L x .. (a) = ala) b (a) ,

i=l j=l lJ

being possible to obtain it from:

m n
L L c .. x. min

i=l j=l lJ lj x.lj

n
s. t. : L x .. a

i
(a) iEI

j=l lJ

m
L x. b. (a) jEJ (6 )

il=l lj J

x .. > 0 (i,j)EIxJ
lJ -

which is a classical TP on the original bipartite network with
supply ai(a) in 0i' iEI, and demand b j (a) in Dj , jEJ.

Since the feasibility and the kind of problem associated
with each a (each a-cut of the fuzzy problem (1)) depend on the
relative position of ala), b(a), A(a), B(a), it is very import
ant to study behaviour of these functions in (0,1].

We shall suppose ai' b j iEI, jEJ, are convex fuzzy num

bers of L-R type, Le. (see Dubois and Prade, 1980):

i) their membership functions are continuous on R (on
their support).

ii) Land R are strictly increasing and decreasing, res
pectively. With these hypotheses we can assure that:

a) ai(a), Ai(a), b j (a), Bj(a), iEI, jEJ, are continuous

on aE(O,l]. So, ala), A(a), b(a), B(a) are continuous, too.

b) ai(a), bj(a), iEI, jEJ, are strictly increasing, and

so are ala), b(a).

c) Ai(a) , Bj(a) , iEI, jEJ, are strictly decreasing and

so are A(~) and B(~).

For any aE(O,l] the feasibility of the problem depends
upon the relative position of a(a),B(a) and b(a), A(a) as dis
cussed above. However,the relation between a(a) and B(a) is
not independent of the relation between b(a), A(a). For ins
tance, when B (a) <a (a) (there is no solution), b (a) <A (a) must be.
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On the other hand we can assure:

'"B(a) < ala) (A(a) ~ b(a», '1a > a

2) If B(~) ~ a(~) (A(~) ~ b(~» for some ~1:(0,1], then

349

B(a) ~ ala) (A(a) > b(a»
- I

'"Va <a.

Taking into account the above comments, we can analize the
feasibility (with a) as follows:

I. Consider the equation B(a) = ala) in (0,1].
1.1. If it has no solution, it may be:
I.1.1.a(a) > B(o), al:(0,1]. We can conclude the problem is un

feasible for any al:(0,1]. Hence, according to our
approach, we assert that the fuzzy problem has no solu
tion.

I.1.2.a(a) < B(a), al:(0,1]. In such a case the study of a re
lation between A(a) and b(a) is needed (see II below).

*1.2. If there is a solution a 1:(0,1] for ala) B(a), then it
must be

B (a) > a (a), a < *a ., B (a) < a (a), a > *a

*Thus (3) is infeasible for al: (a ,1].
*"hen a I: (0 , a ] I we ha ve

* *A(a) ~ A(a ) ~ ala ) * *B(a ) > b(a ) > b(a)

II. 2

*and thus we can assure (3) is feasible in (O,a ].

II. Solve the equation A(a)=b(a).

11.1. When it has no solution, then:

11.1.1 A(a) < b(a), al:(0,1]. Problem (3) is infeasible in (0.1].
Thus we assert that problem (1) has no solution.

11.1.2 A(a) > b(a), 01:(0,1] • In this case the problem is
feasible for every al:(0,1].

**The equation A(a) = b(a) has a solution a 1:(0,1]. He
can finally assure that problem (3) is feasible for

**every al:(O,a ].

In the following we shall consider (3) is feasible in
* **(O,aJ where a may be 0,1,a or a

For any al:(O,~] the type and structure of problem (3)
depend upon the relative position of ala) and b(a) just as we
have described in the previous sections.

Let us consider the sets:

A> ={ al: (O,~]/a(a) >

A ={ al:(o,~]/a(a)

A< ={ adO,a]/a(a) <

b(ol}

b(a)}

b(al}
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According to our assumptions about ai' iEI, and b
j

, jEJ, we

have:

i) A< and A> are the union of open or halfopen intervals,

ii) A is the union of closed intervals (some of them can be
a single point).

From a theoretical point of view, given o£(D,o], we have:

- For ocA< we must solve (4) or T2(a),

- For acA> we must solve (5) or T3(a),

- For acA we must solve (6).

simplification is specialy useful when A
isolated points.

In practice,
> > =A (A U A ). This

a finite union of

we may solve < = <(4) on A U A (A ) and (5) on

is

Remark 1. - In the classical TP, it is usually assumed that
the total supply (La i ) is equal to the global de-

mand (Lb
j
). In FTP one can think about a similar

condition, i.e. to impose that the fuzzy addition
of a

i
must be equal to the fuzzy addition of b j

(L~i = L ~). In this case, obviously:

a(a) = b(a), A(a) 8(a), VadD,l]

Thus, for any adD,l] (3) is feasible and it can
be solved by means of (6), i.e., a classical TP
satisfying the condition of equality between supply
and demand.

However, the condition L a~ = L b j seems to be

too strong in practice. In fact (due to the proper
ties of fuzzy addition), statements about ~i and

£j' iEI and jEJ, satisfying such equality, cannot

be established.

A condition weaker than the above one is
,..

L b.
j J

" ,..
with a i and b j being modes of ~i and £j' iEI and

jEJ. In this case it is easy to prove that

[ala) ,A(al ]n[b(a) ,8(a)] 'f aI VodD,l]

and thus it can be neither ala) > 8(a) nor b(a) >
A(a), for any adD,l]. Thus (3) is feasible for
all a in (0,1]. However, we can say nothing about
the relative position of ala) and b(a).

Remark 2. - When ~i' lEI, and ~j' jEJ, are trapezoidal fuzzy

numbers, it is obvious that ala) and b(a) are
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linear. Thus the equation ala) =_b(a) may have, at
most, a single solution, i.e., A- is empty or redu
ced to a single point.

If A = ~.then A> = (O,a) and A< = ~ or A>

A< = (0,S1. If A= = {a}.then A> = [0,0] and

(a,S) or A< = (0,&) and A> (0,0]

5. RESOLUTION METHODS FOR FUZZY TRAtlSPORTATION PROBLEM

According to our approach,{ xij(a), a£(O,~], iEI, jEJ}

shall be considered the fuzzy (optimal) solution to the FTP
('), with xij(a) being the optimal solution of a transship-

ment problem on a particular network such as we have previous
ly discussed.

In general we can solve these problems using a parametlic
technique. However, transshipment problems have a laborious
resolution (of course, much less so than the simplex method)
and thus, we ask for the existence of an easier way of resolu
tion.

A first idea may be to transform the transshipment prob
lems into TP though an increase of dimension arises. In Chanas,
Kolodziejczyk and Machaj ('984) this method is applied start
ing from (3) directly. Then, a TP is obtained as follows:

') If D" ••• ,Dn are the original destinations, then n new des

tinations D~, ••• ,D~ are added. It is assumed Di, .•• ,Dn ,

D 1,... ,D~ have demands b, (a) , ••• ,b (a), d, (a) = B, (a) -

b, (a) , ••• ,dnla) = Bn(a) - bn(a), respectively. Thus the to

tal demand is equal to B(a).

2) If O" ••• ,Om are the original sources, then m new sources

O~, •.• ,O~ are added. The supply of O" ••• ,Om' O~""'O~ i5

supposed to be equal to a,(a), ••• ,am(a), d 1(a) = A,la) -

a, (a), ••• ,d;(a) = Am(a) - am(a), respectively. Thus the to

tal supply is equal to A(a).

3) If c ij is the original unit transportation cost from 0i

to D
j

, then in the new network this value is assigned to

the arcs (Oi,D j ), (Oi,D j ), (Oi,Dj) and (0:,0;), iEI and jEJ.

4) A fictious source or with supply equal to B(a)-b(a) and a

fictious destination DF with demand A(a)-b(a) are introduced.

The unit cost of transportation from 0i to DF or from OF

to Dj is set to be equal to M, a large value. The unit

cost from O~· to DF or from OF to D':" is made equal to zero,
~ J

iEI, jEJ.
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In this way, the transportation table (Table 1) is obtained.

Table 1

D1 ••. D
n D1" • • •D~ DF

0 1
M a

1
(a)

i
· · ·

c ..
I

c .. · ·1J 1J

· I · ·
0 I M am(a)m

I

O~ I 0 d 1" (a)1
I

! · ·
· c .. c ..

1J 1J

· · ·
O~ 0 d~(a)

m m

OF M ... ~I 0 ... 0 B( ) -b (a)

b
1

(a) •• ob
n

(a) d 1 (a) ••• d n (a) A(a)-b(a)

The net flow from 0i to D
j

in the original problem is the

sum of the flows in the four entries with index (i,j) of this

table, (i,j)EIxJ.

The basic idea of the transformation is to satisfy the

lower demands

not possible,

usual, OF and

bj(a) with the lower supplies ai(a). If this is

the differences d~(a) or d.(a) are used. As
1 J

DF are to absorb the disarrangement between

supply and demand. The large cost M blocks the possibility of

a fictious flow involving lower supplies or demands.

Within the framework of our formulation it is easy to

prove that an optimal solution gives non null-flow from 0i to

DF (from OF to D
j

) for some i (for some j) when ala) > b(a)

(b(a) > A(a), Le., when (3) is infeasible for such a. If

not, the optimal solution must transport a flow equal to

Max (a (a) , b (a) ) ) •

Let us note that a fuzzy problem with 0 sources and n

destinations needs a parametric transportation table with
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(m+n+l) rows and (m+n+l) columns. On the basis of our analysis
from the last section, we propose a considerable reduction of
this table:

A) h"hen a(ex) < b(ex), the optimal solution of (3) may be obtained
from (4) or T2(ex), for any exE(O,ex]. In their turn these
problems may be solved by means of a TP obtained as follows:

A.l) D
l

, ••• ,D
n

are considered destinations with demands

b l (ex), ••• ,bn (ex), respectively.

A.2) If 0l, ••• ,Om are the original sources, m new sources

01""'0~ are added.

It is assumed 0i has supply equal to ai(ex) and 0i has

supply equal to d~(ex) = Ai(ex) - ai(ex), iEI. The transportation

cost from both 0. and O~ to D, is set to be equal to c;J" iEI,
~ ~ J ~

jEJ.

A.3) A fictious destination with demand A(ex)-b(ex) is added. The

transportation cost from 0i to DF is set to be equal to H,

a large value, and the cost from O~ to DF is set to be

equal to zero, iEI.

The justification of this transformation is the same as in

the above. The transportation table is now as given in Table 2.

Table 2

D
l

D DF I
I

n

°1
~I a

l
(ex)

·
· c .. · I · i

~J

I· · i ·
° M Iam (ex)m

0- ° I d 1 (ex)
1

· ·
· c, . · ·~J

· · ·
0- ° Id~(ex)m

b
l

(ex) , ••• ,bn (ex) A(ex)-b(ex)
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This table has 2m rows and n+1 columns. Thus, this is,

aproximately, one half of the preceding one.

Solving such a TP, the sum of the flow in the two entries

of index (i,j) gives the flow from 0i to Dj in (3), (i,j)E:IxJ.

Remark 3. In the feasibility of DF lies the feasibility of (3),

When A(a)<b(a), (3) has no solution;in its turn, DF is a desti

nation with negative demand.

B) When a(a»b(a), the optimal solution of (3) may be obtained

from (5) or from T3(a) for every aE:(O,a]. In their turn,

these problems may be changed into a TP with:

B.1) The m sources O" ••• ,Om with supplies a , (a), ••. ,am(a).

B.2) If D" ••• ,Dn are the original destinations, a new destina

tions D~, ••. ,D~ are added. We suppose Dj has demand equal

to b (a) and D: has demand equal to d, (a)=B. (a)-b.(a), jE:J.
)) ) ) )

The transportation cost from 0, to both D. and D: is set
1 ))

to be equal to c ij ' (i,j)E:lxJ.

B.3) A fictious source OF with supply B(~)-a(~) is added. The

transportation cost from OF to Dj is taken to be equal to

M, a large value, and the cost from OF to Dj is set to be

equal to zero, jE:J.

The justification of this transformation is the same as in

the former ones. The transportation table is as in Table 3.

Table 3

D~

n

I
0, a, (a) i

I· ·
I· c, . c, . ·1) 1)

· ·
° am (a)m

OF b, M ... M ° ... ° B (a) -a (a)

b, (a) ... b n (a) d, (a) .... d n (a)

Now the table has m+, rows and 2n columns, i.e. it is

again approximately a half of the one proposed in Chanas,
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Kolodziejczyk and Hachaj

The flow from O.
l

the two entries of index

(i,j)E:IxJ.

(1984) •

to D. in (3) is the sum of the flow in
]

(i,j) of the transformed problem,

Remark 4. - Again, the feasibility of (3) is equivalent to the

feasibility of OF. When B(o)<a(o) for some a, (3)

is infeasible for such 0 and OF is a source with

negative supply.

6. A PARAMETRIC ALGORITHM FOR FUZZY TRANSPORTATION PROBLEMS

Summarizing the above analysis, we propose the following
algorithm to solve fuzzy transportation problems:

~. By means of a(o), b(o), A(a), B(o), establish the in
terval (O,~] where (3) is feasible.

~. Determine A<, A-, A> according to their definition.

~. Solve (8) and (9) for any oE A<UA= and any OEA>, res
pectively.

jEJ),

solu-

res-> =oEA UA ,

Alternatively:

§!~~. Solve (8) and (9) for any oEA< and any
pectively.

For step 3 (3.°) we may use a parametric technique (see,
Gal, 1979). In this way the family {xij(O), iEI, jEJ, OE(o,o~

is obtained. According to our approach it will be considered
the fuzzy (optimal) solution of the FTP (1).

As proved in Verdegay (1982), when there exists a fuzzy
goal with membership function j.lG ( L L c .. x .. ), the optimal so-

i j l] l]

lution (with Bellman-Zadeh"s criterion) is {x .. (~), iEI,
A l]
r being a fixed point of g(o) = j.lG(LL CijXij(o», i.e. a

l]

tion to the equation g(o) = 0 •

According to remark 2, this algoLLchm is more efficient
than the one proposed in Chanas, Kolodziejczyk and Machaj (1984)
when ~i and£j :re trapezoidal fuzzy numbers Yi,Yj, or, in gene-

ral, when A<, A- and A> constitute a "regular" partition of
(0,0J.

7. EXAMPLE

Consider the FTP proposed in Chanas, Kolodziejczyk and
Machaj (1984). It has two sources and three destinations with
the unit transportations costs:



356 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

10

20

20

50

Supplies and demands are triangular (trapezoidal) fuzzy
numbers with membership functions (the value is given on their
support only) :

I1
b

(x)
1

if xE: [5, 10]

if xE: [ 10, 15][

(x-5) 15
P (x) ~

a 1 - (15-x)/5

~ [ (x-ll)/5

(21-x) 15

~ [ (x-5) 15

(15-x)/5

~[ (x-5)/4

(13-x)/4

~[ :-x
'fhuB:

if

if

if

if

if

if

if

if

xE:[11,16]

xE:[16,21]

xE:[5,10]

xE:[10,15]

xE:[5,9]

xE:[9,13]

xE: [0,1 ]

xE:[1,2]

5+5a

15-5a

~a2{a) - 11+5a

..... A2 {a) 21-5a

~ b
1

(a) 5+5a

=:::>B
1

(a) 15-5a

~ b 2 (a) 5+4a

==>B 2 (a) 13-4a

~ b
3

(a) a

==> B
3

(a) 2-a

ala) (5+5a)+{11+5a) ~ 16+10a

A{a) (15-5a)+(21-5a) 36-10a

b{a) (5+5a) + (5+4a) +a 10+10a

B(a) (15-5a)+{13-4a)+(2-a) ~ 30-10a.

From these values it is easy to prove that

ala) ;l B{a) if af{O,O.71,and a{a) > B{a) otherwise,

b(a) < A{a). for any a belonging to {O,1],

hence the parametric version of this FTP is feasible for any
af (O,O. 7].

On the other hand

ala) ~ 16+10a ~ 10+10a ~ b(a) Vaf(0,0.7]

and thus, for all a in (O,0.7],problem (3) may be changed into
(5) or T3(a). These problems, in their turn, can be solved by
means of a TP like (8). According to the above values, the
transportation table is:
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D
1

D~

1
D~

2
D~

3

I 10 20 30 ! 10 20 30 5+50
,

20 50 60 ! 20 50 60 11+50

M M M 0 0 0 14-200

5+50 5+40 0 10-100 0-80 2-20

Applying a parametric resolution method (see Gal, 1979),
we obtain the following optimal solution:

D
1

5+40

5+50

D
1

o

D~

2

6

4-100 8-80

D~

3

2-20 oE(0,0.4]

5+40

5+50

o

10-100 -4+100

12-180 2-20 oE[ 0.4,2/3]

D~

1
D~

3

5+50 5+40

o 17-140 -12+180

10-100-9+60

14-200 oE[2/3,0.7]

Hence, the optimal (fuzzy) solution for the original FTP,
may be represented by the following tables:

D
1

0
1

11+50

5+40 o

oE(0,0.4]
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D
1

D
2

D
3

0 1
5+40 0

O2 15-50 -4+100 oE[0.4,2/3]

D
1

u 2
D3

0 1
-17-140 -12+190

O2 15-50 -4+100 oE[2/3,0.7]

Let us note that as by means of the analysis of the rela
tions between a (0), A(o), b(o) and B(O), we can easily estab
lish the interval of feasibility for the problem and to use a
TP with a table being one half of (7).
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Abstract. Inequality relations between resources,
represented by fuzzy numbers, are investigated in
the first part of this paper. The concept of an R
relation and L-relation is introduced. An optimal
allocation problem with fuzzy parameters is then
stated and by the use of the e::tension principle
a fuzzy optimal solution is defined and investi
gated. For trapezoidal fuzzy numbers the problem
can be transformed into a linear programming one as
is demonstrated on a simple example.

Keywords: resource allocation, fuzzy optimization,
fuzzy number.

1. INTRODUCTION

When dealing with problems of resource allocation, two
types of resources may be encountered. The first one, the ex
pended resource (sometimes called used resource or consumption
source) will be denoted by "a", while the second one, the re
source at disposal (capacity resource or supply level),by "bOo
The following inequality should take place

a ~ b (1 )

In many cases a and b are not known precisely. To deal
quantitatively with such imprecision due to the observer (de
cision maker), one can use the concepts and techniques of fuzzy
sets theory. The imprecisely known resources a and b can be
expressed quantitatively by means of fuzzy numbers. By a fuzzy
number, a normalized convex fuzzy subset of the real line E1

is meant. A fuzzy set $ on E1 is said to be normalized if

its membership function ~ : E1 [0,1]attains its maximal
~

value 1. By the symbol [~]'t' 0 "- t( { 1, we denote the "r -level
set of a fuzzy number ~, namely

[~)'l: ={XEE
1

; ~a(x) ~'t'}. (2),..,
Let us recall that the convexity of a fuzzy number
that the set [~)'t is convex for each 'tE [0,1]. If

359

~ means
a is a
,..;
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fuzzy number expressing an imprecisely known resource, then
(2) is the set of all possible values of this resource whose
possibility of occurrence is not less than ~ • ~he set of all
(normal) fuzzy numbers will be denoted here by N(E1).

When modelling the resources by fuzzy numbers, a, bfN(E1),
the question arises immediately how to compare ~, ~.-It~seems
natural to consider a fuzzy preference relation between fuzzy

numbers, i.e. a relation j: N(E
1

).N(E 1)-. [0,1]. Then,

~ (~, R) = b means that the fuzzy number ~ is" less than or
equal to" the fuzzy number 9J with grade f) • The question is
what type of fuzzy preference relation should be adopted for!J •

The most direct way is the application of the extension
principle to the ordinary relation of inequality",". Denoting
for a,b £ E1

9, (a,b) 1

o
if a < b

otherwise
(3)

we obtain an ordinary relation on E 1 which can be extended to

a fuzzy relation on N(E 1 ) according to the extension principle
(see, e.g., Zadeh, 1985; or Orlovski, 1981) by

(4 )

Consider, for instance, the fuzzy numbers ~, ~, ~ 2, ~, t with
membership functions depicted in Fig. 1.

According to definition (4) we have

j,s (~, R) ~~ <.e, ~)

f~<5:;"2) ,~ (2' .s)
o (e,f) 1, o(f,e)=h<1J' - ,." J~ - -

It is evident that the partial ordering on the set of fuzzy
members introduced by relation (4) does not have the proper
ties one would believe it should. Thus, for instance, the fuzzy
number J<, should intuitively be less than ;;1.. Still, accord
ing to relation (4) .2. is "less than or equal to" j;(, with
grade 1. Such a definition of an inequality relation does not
seem to be convenient when comparing resources characterized
by fuzzy numbers. In the following we present a definition of
two different types of fuzzy preference relations which order
fuzzy numbers more delicately and which have a natural inter
pretation in the context of resource allocation.

2. FUZZY PREFERENCE RELA~IorIS

We shall start with the definition of a fuzzy preference
relation.
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1

h

Definition 1.

~---~---~,------

"" ed
,,~

"""

.---.- - -~...,----
.;' "

,/ "
\

\
\ ~b
,~

Fig. 1

1Let ~, ,SEN (E ). Then

1-inf{T; 0<1:" 1 , 'Y ~ ~ '"C

sup[,V'A " sup[.!2,),:\} otherwise

° if

( 5)

The fuzzy preference relation f R is called the right-hand

-inequality fuzzy relation (R-relation).

Further
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( 6)otherwise.

if inf(~]l > inf[!?.] 1

1 -inf{ 1:' O~'l'~ 1, If ~ ~ 't:

inf[~l~ "infl.!?],,}

o

The fuzzy preference relation f L is called the left-hand

-inequality fuzzy relation (L-relation).

To put it another way, a fuzzy number a is "right-hand
less or equal" than a fUzzy number b with grade (1-'t) (0,,'((1)

if for any UEE 1 with P (u) ~ ~ ther; is a V£E
1

, u ( v, such
.9

that the grade of possibility of v in 2 is at least as

great as the possibility of occurrence of u in~, i.e. P~(u) "
, Pb(v).

- There is a straightforward interpretation in the language
of resources. Whatever the value of an expended resource ~

with the possibility of occurrence (the grade of possibility)
at least 't: may be, there exists a sufficient value of the
resource at disposal, b, with at least as great a grade of
possibility, see Fig. 27 In such a case the number ~ may
serve as an acceptable level of risk or aspiration level on
which the decision maker makes his decisions. The above ap
proach can be suitable in practical situations in which the
consumed resource is not controllable at all, whereas the ca
pacity resource is partly controllable.

T

u

7""-....,~-, - ------
\
\

\
\

\
\ \l

\ !?.,

Fig. 2

On the other hand, a fuzzy number a is "left-hand-side
less or equal" than a fuzzy number R. with the grade of possi
bility (1-"), if for any Y·e.El with the grade of possibility
of Y- in ~ greater than or equal to f ,i.e. Pb(v-) ~ i ,

there exists a U-£E l with u·~ Y·, such that the grade of pos

sibility of u- in ~ is at least as high as that of Y· in £'
Le. p~(U-) ~ P!?.(Y-) (see Fig. 2).
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Hhatever the value of a resource at disposal b on the
aspiration level i should be, there exists a suff:Lc'iently
small value of consumption Z of this resource with at least
as great a possibility of occurrence. Such a relation of ine
quality could be adopted in the case of uncontrollable capacity
and partly controllable expenditure.

It is possible and it may even be reasonable to consider
a combination of the two previous fuzzy preference relations
S'R and f L' Such a combination could take, e.g" one of the

following two forms:

~ (~,t) min { h (~,~ ,

~ (~'.!2) = max { ~ L (~,!2J '

~ R (~'12)}

~ R (~'!2J}

(8)

( 9)

( 10)

The interpretation of these fuzzy preference relations is evi
dent. For another approach to fuzzy preference relations, see

Dubois and Prade (1983).

3. NONDOMINATED ELEMENTS

Considering a problem of optimal resource allocation we
also come across the necessity of modelling imprecise knowledge
about the outcome of a decision, e.g., a profit or a produc
tion expense. Expressing, for instance, the profit of two given
decisions by fuzzy numbers we encounter once more the problem
of comparing two fuzzy quantities.

Let ~ be a fuzzy preference relation on N(E 1), i.e.

~: N(E 1 ) x N(E 1) .... [0,1], and let ;iCN(E1 ) be a set of fuzzy

numbers. We shall investigate the problem of finding an element
of the set ~ (a fuzzy number), which, in a certain sense, pre
sents a rational choice with respect to the fuzzy relation S

First, we shall define the strong fuzzy preference rela-
S 1 'tion 9 : N(E ) x N(E') .... [0,1] by the formula

SS (~'!2,) = max { 0, j (~,.!2.) - ~ (.!2., ~)}

For any fixed fuzzy number b the function ~S (~,2) given by (10)

describes a fuzzy set of fuzzy numbers which are strongly domi
nated by £ (cf. Orlovski, 1985).

Def inition 2. A fu zzy number :I:.*C1!. c N (E l ) is said to be a

jI-nondominated element of Z ( S - ND element) if there is no

~ E;;t with the property

S *
~ (.!., J:..) > 0 ( 1 1 )

In the last part of this section we investigate the problem
of existence of ~ -ND elements, primarily in connection with the
fuzzy preference relations ~L and ~ R from Definition 1. The
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following proposition gives the necessary conditions
1
for the

existence of YR - and YL - rm elements of ;teN (E ).

1 *Proposition 1. Let ~eN(E), 1. E';l He have:

*(a) If 1. is a !R-ND element of ';l then

*
sup[~] l' sUP[1.]1 for each ..t E. % (12)

*Conversely, if z is a unique fuzzy number from ~ with pro-
perty (12), then it is a ~R-ND element of X

*(b) If .1. is a f L-NO element of ;t , then

*inf[1.] 1 " infC.s] 1 ' for each .1. E ~ ( 1 3)

*Conversely, if k ~s a unique fuzzy number from % with the
property (13), then ~ is a f L - NO element of :t

~. Part (a) of the proposition will be proven, the proof
of the rest is analogous.
Suppose the existence of a i ~~ with

According to (5)
S *we have JR(l,

Conversely, let
(12) holding for

S *
with ~ R (1. ' i.>

*and the assumption of convexity of 1. and z

kl > 0, a contradiction to (11).
*L be a unique element of Z with inequality

each 1. E. 2: • Suppose that there is a z E:t
> 0, i.e.

- *S' R (~, ~ ) ~ 0 ( 14 )

*Due to the uniqueness of 1.' it holds

* -Considering (5), ~e obtain ~R(~ ,~)

(14). Q.E.D.
0, which contradicts

4. FOR1lULATION OF OPTIMAL ALLOCATION PROBLEH ,lITH FUZZY
PARAMETERS

The problem we shall deal with is the maximization of the
payoff (objective I function

n
L f

J
, (c

J
" x

J
')

j=1

subject to the given constraints

( 15)
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i=l, .... ,IJj ( 16)

Here, f. (c.,x.) is the payoff in the j-th cell (independent
J 1J J

area in E ) for the employed strategy x j ' and gij (aij,x j )

is for each i=l, .•. ,M the amount of the i-th cell correspond
ind to the stragegy x j employed in this cell, c j ' a ij and b

i
being vector parameters.

Now, let £j' 2ij' ~i be fuzzy quantities (fuzzy vectors)

describing imprecision of the parameters due to the decision

maker, i,e. imperfect knowledge of c., a.· and b i , For an ar-
J lJNbitrary decision vector x = (x 1 ' ••• ,xN) E E the extension

principle allows the functions f j abd gij to be extended

for the fuzzy parameters £j' ~ij and £i. As a result We ob

tain fuzzy sets on both sides of the inequality (16) and in (15)

denoting the corresponding functions bY!j and ~ij.

Along with problems (15) and (16) with fuzzy parameters

we now consider two types of fuzzy preference relations:

fo: N(E
1

). x N(E 1 ) .... [0,1] is the payoff fuzzy preference

relation,

f i : N(E 1 ) x N(E 1 ) .... [0,1] is the i-th constraint fuzzy

preference relation, i=l, ••• ,M.

Using the payoff fuzzy preference relation So we compare

fuzzy goals, i.e. fuzzy payoffs or profits, whereas for compa

rison of fuzzy resources the constraint fuzzy preference rela

tions f i are used. In the part of fi' i=O,l, ••• ,a, either

f R or YL defined in Definition 1 may be used.

Denoting

( 17)

the membership function Pi

satisfying the constraint i

form

of the fuzzy set of alternatives

may be written in the following

(18 )

This membership function assigns to each decision xEEN the

degree to which this decision satisfies constraint i.
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Now it is natural to accept that x satisfies all the
constraints to degree

min Pi (x)
i= 1, ••. , M

or, using (17) and (18),

n
"'<2.(x) = min {o,( L g"(a,,,x,), b,)}.
._ i =1 , ••• ,M ) l j =1 .....l J -l J J _l

(19 )

To put it differently, the fuzzy set C of all feasible deci
sions may be defined as the intersecti~n of the fuzzy sets of
decisions satisfying the respective constraints.

In what follows, our approach to problems of fuzzy opti-
mization (see

utilized. For

the following

Ramik, 1983, 1985; Ramik and Rimanek,
Nx = (x 1"" ,xN) E E and a crisp set

notation is introduced

1985) is

X C EN,

,tlx)
N
L f, (c, ,x,)

j = 1 -J -:J J
(20 )

(21 )

Evidently, f(x)EN(E 1), f(X)CN(E 1). Define a multifunction

G : If>(EN) ~- If> (EN), Ii> 7EN) being a (strict) set of all

strict subsets of EN. Let X c EN, and

G(X) ={ xEX, !(x) is a fo - ND element of !(X)} (22)

Definition 3. Let Yo' respectively, 'i (i=1, ••. ,M) be a pay

off fuzzy preference relation, respectively, a constraint fuzzy

preference relations to problems (15) and (16). Then a~
optimal solution of problems (15) and (16) is a fuzzy set

xOPT defined by the membership function

(23)

where [£ly is the 'T -level set of fuzzy set C of all fea

sible solutions defined by (19).
* N OPT *If x E E, '" (x) N~' then*according to (20), (21),

and (22),thefuzzynumber L f,(c"x,) isa ~o-NDele-
j =1 -J -J J

ment of the set

{z;u = L L(c"x,), "'C(x) ~'r ,XEE
N

}
- j -J -:J J

(24 )
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*Choosing decision x , the decision maker knows that his deci-
sion is the "best" one on the aspiration level -r , i.e. it is
the most rational decision among all decisions with the grade
of feasibility higher than or equal to 'l:" • When solving the al
location problem, the decision maker chooses a suitable type
of fuzzy preference relation ~i' i~O,1, •.• ,M, for instance J L

or f R' then successively chooses aspiration levels'tE(O,1J

and solves a sequence of mathematical programming problems the
parameters of which are no longer fuzzy. Such a procedure will
be demonstrated in the following part of the paper for the case
of the so-called trapezoidal fuzzy numbers.

5. TRAPEZOIDAL FUZZY NUl1BERS

In this section a certain type of fuzzy numbers, called
trapezoidal fuzzy numbers, will be dealt with.

Definition 4. A fuzzy number ~EN(E1) is said to be a trape
zoidal fuzzy number if there are four real numbers m, n, a and

(3, m.f;; n, a ~ 0, (3 ~ 0, such that

Ila (t) for m .f;; t .f;; n,

0 for t < m - a or t > n+(3

n+(3-t for n ~ t .f;; n+(3 (3 > 0 (2 S)-(3--

l-m+a for - a ~
t "

a > 0m m,
a

Thus, any trapezoidal fuzzy number
by a quadruple of real numbers m, n, a
denoted by

a~(m,n,a,(3).

a is
.....and

fully determined
(3 • This will be

Different types of trapezoidal fuzzy numbers are depicted in
Fig. 3. The set of all trapezoidal fuzzy numbers, denoted by

symbol T(E 1), is a subset of the set of all (convex and normal)

fuzzy numbers N(E 1).

In problems of optimal allocation of resources, parameters
and preferences are often evaluated by the help of consulting
experts who frequently do not have a fUlly clear idea in res
pect to these values. Trapezoidal fuzzy numbers may serve as
a flexible and more adequate form of representation of infor
mation than traditional crisp numbers. On the other hand, the
trapezoidal fuzzy numbers have a comparatively simple structu
re acceptable to human reasoning. Experience indicates that a
more complex structure of fuzzy numbers is usually hardly ac
ceptable by experts. Moreover, the trapezoidal fuzzy numbers
include crisp numbers, interval numbers and triangular numbers
(see Fig. 3). Due to these facts, the trapezoidal fuzzy numbers
are of extreme importance when modelling reality by fuzzy quan
tities.
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a

b

1>0, .' "'0, m- n

c

m n

d

e'

1

T\l n

interval-nu:nber

------4-------
I
I
I
I
I
I

ITFJ1

crisp nUlrber

Fig. 3.

a=ll= 0, lTFn

0.>0, 6>0, ITFI1
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a = (rna' na' a a' Ba ) , .t.-.J

fR (2,,!:) 0 if
nb

- na
Ba

- Bb

In the case of the set of all trapezoidal fuzzy numbers,

T (E 1), the fuzzy preference relations YR and ~ L can be ex

pressed in a simple way as the following proposition shows.

Proposition 2. Let ~ and £ be trapezoidal fuzzy numbers,

(mb , nb , a b , Bb ). Then

(26 )

otherwise,

S' L (~'.!V 0 if

m
b

- ma
a b - a a

= 1 otherwise.

and

>

m - a >a a

( 27)

The proof follows directly from Definition 1 and is omitted
here.

6. OPTIMAL ALLOCATION PROBLEM WITH TRAPEZOIDAL FUZZY PARAMETERS

Problems (15) and (16) with trapezoidal fuzzy parameters
£j' ~ij and £i will be investigated. To be more specific, we

define the concept of a fuzzy vector and introduce some assum
ptions and notation.

Definition 5. A fuzzy k-vector a is an ordered k-tuple of
fuzzy numbers, i.e. a = (al"."";k) with a. E N(E 1). The

~ ~ - ~1

set of all fuzzy k-vectors will be denoted by N(Ek ). A fuzzy

vector A = (~l""'~k) is said to be trapezoidal if

2,i E T(E 1
), the set of all trapezoidal fuzzy k-vectors denoted

by T(Ek ).

and ~i = (m i ,

(m, n,a,ll), m, n,

m = (ml , ••• , mk ), n =
and B = (lll'0 .. ,llk)'

T(E
k

) c N(E
k
). If 2, = (.e.l""'~k)

then ~ will be denoted by ~ =

Evidently,

n
i

, a., ll.),
l. k l.

a,ll E E, with

a = (a I' ••• I a k )

From now on the following linear structure of problem (15)
and (16) will be considered

f . (c ., x.) = c· f· (x.)
.... J ....J J --'J J J

(28)
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(29 )

where c. and
-J

i= 1, •. o,H,,9.i

~ij are trapezoidal fuzzy k-vectors, and for

in (16) is a trapezoidal fuzzy number, i.e.

a ..
--1.J

b,
_1.

The vector functions

f, : E 1 .... Ek
J

and

are generally nonlinear.

Such a linear structure of the optimal allocation problem (15)
and (16) enables elements of fuzzy optimal solution with the
prescribed membership grade to be obtained. To prove our final
result the following two lemmas will be needed.

Lemma 1. For s=l, ••• ,p, P ~ 1, lr t ~s (m s ' n s ' as' (3s) be

trapezoidal fuzzy numbers, gs E E 0 Then

a = ~lgl + ~2g2 + ••• + ~gp--
is a trapezoidal fuzzy number such that ~

p p
m L m gs' n L n gs

s= 1 s s=l s

(30)

(m, n, 0.,(3) with

( 31 )

p
max({o,gs} - (3s min{o,gs)a L (a (32)

s=l s

P
(3 L ((3s max { O,gs}- a min{ 0 , g s}> (33)

s=l s

The proof of Lemma 1 can be obtained by a straight for

ward application of the extension principle. Therefore, it is

omitted here.

Lemma 2. Let ° <"'- < 1,

x E EN satisfies
~ R· Then
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N

Len, ,q, ,(x,)+ '"C[~" max{o,g, ,(x,)}-
j=l lJ lJ J lJ lJ J

- 0ijmin{o,gij(xj)}J} ~ nbi + T~bi (34)

and

N

[n qiJ' (x J,) " nbi ,
j =1 lJ

if and only if

i=l,.,.,M (35 )

Proof. Part 1. Let (34) and (35) be valid, Then

(36)

n bi - [J' n iJ, qiJ' (x J,) ~ T[ L p" max{o,g" (x)} -j lJ lJ J

°ij mineO, gij (Xj)}J - ~bi (37)

for i=l'."fM. Assume that for i=l, ••• ,M

[

j
L [~, ' max { 0, g, ' (x ' l} -
j lJ lJ J

- °ijmin{o,gij(xj)}J > nbi + ~bi

Applying (35) we obtain

~ [~ij max{o,gij(X j )} - °ijmin{o,gij(Xjl} ] 

- ~bi > 0, i=l, ••• ,M

Due to this fact, (37) implies

max{o,g, , (x, )}
lJ J

i = 1 , ••• , /1.

(38 )

(39)

(40 )

The last inequality along with Proposition 2 and Lemma give5
(36) •
If (38) does not hold for a certain i, then Proposition 2 indi
cates that

1
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i.e. inequalities (36) are satisfied too.

Part 2. Let (36) hold and suppose that (39) takes place. By
Proposition 2 and Lemma 1, we have (40), and consequently (34)
and (35) hold. On the other hand, if the inequality in (39) is
not valid for a certain i, then

L
j

and

Consequently, (34) and (35) are also satisfied. Q.E.D.

Our final result gives the possibility of computing ele
ments of the fuzzy optimal solution set with a prescribed mem
bership grade. Solving a parametric mathematical programming
problem, an approximation of the fuzzy optimal solution is ob
tained which can serve as a basis for a real (nonfuzzy) deci
sion.

(41 )maximize

Proposition 3. Let 0 < 't' ~ 1, fa = ~1 =... =JH = ~R'

Let x* = (x;, ••• ,x:) E E" be the unique optimal solution of

the following mathematical programming problem:

N

j:1 ncj fj(x j )

subject to (34) and (35). Then

l'-OPT (x *) ~ 1:' (42)

OPT
where ~ is the membership function of the fuzzy optimal
solution of the problem (15) and (16).

Proof. Using Lemma 2, the constraints (34) and (35) of the
optimization problem (41), can be expressed in the form (36).
The rest of the proof follows from Proposition 1, from the
observation that

*L c. f. (x.) J
j ....J J J 1

and from relations (23), (22), (20) and (21). Q.E.D.

An analogon of Proposition 3 can be formulated for the
fuzzy preference relation ~ L'
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7. ILLUSTRATIVE EXAl\PLE

In the last section we present a simple illustrative ex
ample which reflects some characteristic features of the real
application of optimal allocation of production of metal in a
metallurgical plant on two individual metal producing devices
with respect to their individual state. Profit of the overall
production is being maximized, parameters of the problem are
trapezoidal fuzzy numbers; for more details, see Rall1ik (1985).
The problem is formulated as follows:

(43)

subject to: ~lx1 + ~2x2 ~ £,
x. ~ 0, i= 1,2

1

where:

£11 (-0.3, -0.25, 0, o j

.£.12 ( 0.8, 1. 0, 0, 0)

£21 (-0.5, -0.44, 0, 0)

£22 ( 1 • 0, 1. 33, O. 0)

~1 (2.5, 3. 0, 0.3, 0.3)

~2 (0.8, 1 • a, a•3 , 3.0)

£. (2.0, 3. 0, 1 0 a, 0.3)

(44 )

0.45

lX.224t 1.0

I .5
0.8 I

I
I
I

0.1 I
I0.0 I

I I

~
I I
I I

1-__--1-__---1-1-------~""

0.45 0.59 X2Fig. 4

are trapezoidal fuzzy numbers.
Applying Proposition 3, fuzzy optimal solution of problem (43)
and (44) is calculated, see Fig. 4,and Table 1 for fuzzy pre
ference relation ~ R = ~ 0 = ~ l' The last column in Tab. 1 con-

tains the right mean values of the respective trapezoidal fuzzy
profits.
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Table 1

I

x 1 x 2 z
I
i

0.0 0.45 0.45 0.91

~-

0.1 0.43 0.50 0.94

0.3 0.39 0.63 1.02

0.5 0.38 0.78 1 . 11

0.8 0.45 1.05 1 ,31

1 .0 0.59 1. 24 1.47
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ANALYSIS OF WATER USE AND NEEDS IN AGRICULTURE THROUGH
A FUZZY PROGRAMMING MODEL

Jan W. Owsinski, Slawomir Zadrozny and Janusz Kacprzyk

Systems Research Institute, Polish Academy of Sciences
ul Newelska 6, 01-447 Warsaw, Foland

Abstract. A regional agricultural system is repre
sented and optimized via a two-level linear program
ming model of significant dimensions. One of its ma
jor purposes is to assess the role of water resources
in the system with special emphasis on the feasibili
ty of irrigation. Some of the model's data are assu
med fuzzy because of the specifics of the problem,
i.e. lack of precise knowledge and an appropriate
statistical basis, with a simultaneous clear interest
in attaining or not exceeding certain predefined le
vels. The paper presents the model and how fuzziness
is represented in it. Results of several runs are
shown and commented, related to the use of water,
to its significance for the system's overall per
formance, as well as to the interrelations of water
with other crucial resources such as, e.g., capital.
The conclusions refer mainly to the features of the
system and to the technical and interpretational as
pects of the ways fuzziness is represented and mani
pulated.

Keywords: fuzzy linear programming, fuzzy optimiza
tion, agriCUltural modeling, irrisation.

1. INTRODUCTION

This paper is a result of the authors' long involvement in
modeling agricultural (mainly regional) systems by using mathe
matical (mainly linear) programming tools (see e.g., Albegov,
Kacprzyk, Orchard-Hays, Owsinski and Straszak, 1982). Part of
these efforts (see, e.g., Kacprzyk, and Owsinski, 1984;
Kacprzyk, Owsinski and Zadrozny, 1985; Owsinski, Kacprzyk and
Zadrozny, 1986) is related to the introduction of fuzziness
into the above mentioned linear programming models to better
reflect the inherent imprecision of data and relations in agri
culture which cannot be adequately dealt with by probabilistic
and statistical means due to, e.g., lack of data or subjectivi
ty in the experts' assessments.

In this paper we consider the problem of how to assess the
role of water resources in the agricultural system under consi
deration with particular emphasis on the feasibility and econo
mic justification of irrigation. We assume fuzzy constraint
parameters and right hand sides (RHS's) in the capital and wa-
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ter related constraints. We use Hierzchon, Kindler and Tyszew
ski's (1986) model of linear program@ing with fuzzy coefficients
and RHS's that make it possible to obtain both a pessimistic
and optimistic optimal solution.

In Section 2 we present the model of the considered agri
cultural system with more rationale for introducing fuzziness,
In Section 3 we briefly sketch the approach to fuzzy linear
programming to be employed. In Section 4 we present a summary
of computational results with the main emphasis on interpreta
tion of the results. In Section 5 some indications are given
pertaining to the water use policy in the agricultural system
considered,

2. A TWO-LEVEL MODEL FOR PLANNING IRRIGATION EXPANSION

The model, whose runs are given as an illustration in this
paper, forms a part of a two-level structure of LP models,
called SEMORA - see, e,g., Owsinski and Zadrozny (1985),
Owsinski and Holubowicz (1985) - which is in turn a derivation
of a one-level LP model for regional agricultural planning,
called GRAM (Albegov, Kacprzyk, Orchard-Hays, Owsinski and
Straszak, 1982). The two-level structure contains on its lower
level a number of LP models which are meant to optimize the
production and trade structure in a subregional agriculture.
The upper level model coordinates a number of lower-level mo
dels, thereby representing a sort of a regional centre, see
Fig. 1. In the particular application, whose very partial re
suI ts are quoted here, the model system was builtin order to

Dimensions:

approx. 400xlOO

# ~
~~ff~~~~~cies

resource~~
.---__"""""'"""""':;....... allocations,.----'- ...

SUBREGIONAL

HODEL 1
SUBREGIONAL 1800x500 each

~\ODEL 7

Fig. 1. Structure of the two-level model
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assess the economic rationality, dimensions, and ways of utili
zation of the potential additional water supply obtained via
construction of a series of new water system components (reser
voirs, pumping stations, irrigation systems, etc.), because
the region suffered from inadequate water supply due to a large
industrial undertaking within its boundaries.

The large industrial undertaking which is influencing con
ditions of agricultural development is related to mining and
power generation (Owsinski and Holubowicz, 1985). Its main in
fluences are: diversion of the labour force from agriculture,
land use transformation (both of which are not taken up expli
citly in this paper), groundwater level decrease, disappearance
of certain surface water bodies, and finally, pollution. On the
other hand, due to proper regulations, regional agriculture is
capable of obtaining large damage compensations which can be
used mainly for capital investment purposes. Thus, in view of
agriculture under stress and additional financial resources,
the following questions arise: How to allocate additional in
vestments? and: Is it rational to replace disappearing water
with irrigation?

The present paper highlights a portion of the study meant
to answer these and more detailed questions.

The main objective function maximized on both levels is
the total net agricultural income. With the help of lower level
models, the optimal characteristics with regard to this objec
tive are formed as functions of the allocatable resources. On
the basis of these characteristics the upper level model per
forms a final allocation, thereby defining its rules.

The results given in the paper refer to one of the subre
gional, i.e. lower level, models. Each such model has approx.
1800 variables and 500 constraints, with an approx. 3% density.
These dimensions are related to the necessity of a fairly good
description of the system. Hence, a large quantity of items is
simultaneously distinguished in each model, e.g.,8 types of
crops, 7 types of animals, 5 soil qualities, or 5 farm types.
The last example is important for the runs quoted in which a
relation between water demand and use and the capital invest
ment availability was analysed. Hater used and capital consumed
are constrained by a series of constraints, each separately for
all farms belonging to a farm type. It is assumed that capital
investments shall come from both own resources and from state
given bank credit. The latter position is less certain than the
previous one. Besides that there is, albeit of different nature,
an uncertainty related to capital intensiveness of activities
resulting from moving costs and prices. Similarly, additional
water supply is subject to decision-bound uncertainty, while
unit water consumptions are climate-dependent.

Farm types (p) distinguished are: p=1; state farms, p=2;
cooperative farms, p=3: small private farms, p=4: medium size
private farms and p=5: biqger private farms.

The model distinguishes also three types of crop technolo
gies: s=1: traditional technologies with which the present
yields are obtained: s=2: intensive technologies: s=3: intensive
technologies with irrigation. Livestock breeding can be conduc-
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ted with two technolo~ies: s'=1: traditional, and s'=2: inten
sive, i.e. more resource consuming.

The analyses reported here refer primarily to capital for
for capital investments and water resource constraints, both
seen in their totals and for the 5 farm types distinguished.

In conditions of economic and resource-wise threat to re
gional agriculture, capital was deemed to be the crucial factor
in facilitating changes that could make this agriculture viable.
The changes envisaged were of a technological nature, also in
volving investments directed towards water availability for li
vestock and for irrisation,

The main reasons behind employment of the fuzzy-set-theore
tic approaches were as follows:

a, significant uncertainty as to possibly available out
side financing of local capital investments,

b. uncertainty as to possible water resources other than
resulting from precipitation,

none of which could be ade0.uately represented in probabilistic
or statistical terms, and:

c. cost and price changes which entail uncertainty as to
the capital investment requirements for particular
activities,

d. in conditions of disappearing rural water resources
(in-field ponds, small streams) an uncertainty emerges
as to the additional water necessary for particular
activities.

~hus, the analysis was performed in two directions:

I. With respect to capital RHS's and capital re0.uirement
parameters.

II. With respect to capital and water RHS's and respective
requirement parameters.

This division will also be followed in Section 4 which
presents the results obtained.

2.1. Contents of the lower-level models

The lower-level models are models of subregions defined
as contiguous clusters of basic administrative units. The clus
ters were determined so as to correspond as best as possible to
areas in which water resources and more generally - environment
- are subject to similar degrees of stress.

The upper-level, i.e. master model, and the coordination
procedure shall not be presented here since this paper addres
ses a different set of issues, methodological and substantial.
For more information on the two-level model and its working,
see Owsinski and Zadrozny (1986).

All the subregion models have an identical structure. With
approx. 3% density and dimensions of 1800 x 500, each such mo
del contains approx. 25000 - 30000 non-zero coefficients, of
which some 30% change from submodel to submodel, along with
the right hand side values.
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T~e variables distinguished in the subregion models can be clas
sified into the following groups:

* crop raising, i.e. areas under various crops,
* crop product sales,
* crop product consumption,
* crop use for forage,
* crop product purchase,
* livestock breeding, i.e. numbers of particular livestock

types,
* livestock product sales,
* livestock product consumption,
* livestock product purchase.

The values that variables contained in the above groups
can take are constrained by a number of balances which can be
classified into the following groups:

** land availability, total, according to soil qualities,
according to crop rotation requirements and second
crops,

** crop product balances,
** forage balances,
** consumption balances,
** herd balances,
** livestock product balances,
** resource balances, i.e. availability of:

- water, annual and for two peak ten-day periods,
- fertilizers,
- pulling power, and
- labour force,

** sales and purchase balances in kind,
** financial balances.

It is out of these groups of constraints that coordination
variables are taken to then be included in the coordination
procedure, leading to creation and solution of the upper-level
moQel. This aspect, however, shall not be discussed in the pre
sent paper.

Thus, it can easily be seen that water availability and
consumption questions appear in the model mainly through the
water balances and possibility of application of irrigated crop
technologies. Since the latter are connected with appropriate
parameter values of resource consumption, including current
costs and capital investments necessary, the influence and sig
nificance of water application spreads over the whole system,
thus tainting the solutions obtained.

As mentioned before, a number of fuzziness-generating cir
cumstances influence the water-capital relation. One of the
main goals of app~ication of the two-level model is, besides
identification of optimal and stable production structures, and
place of irrigation therein, also determination of an in-farm
capital investment program which would have to parallel the
water-system investments into reservoirs, dams, pumps etc. That
is why it was deemed important to assess the water-capital re
lation, with special emphasis on uncertainties which turn out
to be of a non-probabilistic and/or of a non-statistical nature,
and with distinction of differences among various farm types.
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3. LIClEAR PROGFAmn"Jl-; WITa FUZZY CONSTRAINT COEFFICIENTS A"D
RIGH'l HAND SIDES

In this section we will briefly present an approach to
dealing with fuzzy coefficients and right hand sides in linear
programs.

We consider a linear program is the form

{z ~ f (Xl}

subject to:

max
x

(1)
T m(b

1
, ... ,b

m
) ER and A is an nxm

Ax"b

x~o

T n
where x = (x

1
' •••• xn ) ER , b

real matrix.

Since in reality this general formulation may be too rigid,
its "softening" has been strongly recommended. As a promising
approach. the use of fuzzy sets has been advocated. The first
fuzzification, due to Zimmermann, consisted of a fuzzification
of strict requirements to "exactly" maximize the objective fun
ction and satisfy the constraints. Then some approach appeared
(e.g., due to Dubois and Prade) that tried, not always effi
ciently enough for practicaL purposes, to account for fuzzy
coefficients in the objective function and/or constraints, and
in the right hand sides. These latter approaches are more rele
vant here. For a survey and references, see Kacprzyk and Orlov
ski's paper earlier in this volume.

(2)

1 , ~ " • ,illi

In this paper we consider the following LP problem:

{

:::::Xto:

Aix" Rl

x ~ 0

where A
l

is a row vector of n fuzzy numbers (fuzzy coefficients)

corresponding to the particular variables in the i-th constra
int. R. is a fuzzy number representing the fuzzy right hand

l m

side of the i-th constraint, and x = (x
1

' .•• ,x I". Notice that• n
the objective function is nonfuzzy, and fuzziness is only in
the coefficients and right hand sides of the constraints.

We assume the fuzzy numbers to be triangular and use
Wierzchon, Kindler and Tyszewski's (1986) approach to solving
problem (2) 0 This approach defines two types of optimal solu
tions to problem (2), which are feasible to the degree not less
than t, namely:
- an optimistic optiI"al solution to (2) which is obtained by

solving

r cx ... max

subject to:
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L~iX + t(Ai-~i)X ~ Ri-t(Ei-£i)' i=1, .. o,m

x~O, tE[0,1]

- a pessimistic optimal solution to (2) which is obtained by
solving
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(3 )

(4 )i= 1 , ••• , ill

[

cx max

~ubject to:

Alx + t(Ai-Ai)X , Ri-t(Ri-Ri ),

x~O, tC[O,1J

where the triangular fuzzy numbers are given as Ai = (~i,Ai,Ai)

and Rl = (~l,Pl,Rl)' Details on this approach may be found in

Wierzchon, Kindler and Tyszewski (1986), while for so~e other
approaches that are close in spirit, see, e.g., Tanaka, Ichihashi
and Asai (1984) or Verdegay (1984),

The two equivalent problems (3) and (4) for determining the
solutions sought may be quite efficiently solved by using the
parametric programming option in any commercial LP package.
This is a serious advantage in view of the large size of our
models.

4. SUMMARY OF COMPUTATIONAL RESULTS

As indicated before, the results presented here pertain
primarily to interrelations between capital investment use and
availability on the one hand, and water use and water needs,
as, eog., expressed by dual values, on the other hand. First,
only the capital investment constraints are fuzzified, reflec
ting uncertainty as to both availability of capital (possible
credits, own resources) and capital intensity of activities (ca
pital costs of future activity changes). These results are re
latively easily interpretable. Besides, capital-related condi
tions influence not only water use and demand but also a number
of other aspects of the local agricultural system.

Thus, having these results facilitates the analysis per
formed for simultaneous fuzzification of capital and water con
straint groups,

In accordance with the methodology adopted, in order to
gain a better insight into the field of possible outcomes, runs
were carried out for "optimistic" and "pessimistic" formulations
of fuzzified constraints.

4.1. Fuzzy RHS's and parameters in capital investment constra
ints

4.1.1. Pessimistic case

Tables 1.A.1 to 1.h.J illustrate the results of parametri
zation runs of the model with respect to the constraint satis
faction index a ranging from 1.0, i.e. full satisfaction,
through 0.5, i.e. constraint at the limit of satisfaction, down
to 000, i.e. complete violation, where the constraints analysed
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were the sroup of capital investQcnt constraints for various
farm types, Tables 1.A.3 and 1.B.3 show how capital availabi
lity for and intensity of investments in regional agriculture
are relateG to water use and marginal water value~

Table 1.A.1. Objective function value and total capital
investments vs. satisfaction of constraints
(see Fig. 2.A.1). Pessimistic case,

Constraint
Objective function

! Total capital investmen~
satisfaction disbursements

I
index value

*
3.228.10

9 *
532.49.10 6 * I

1 • (Il zl/year zl/year

0,8 3.499.10
9 zl/year 453.61.10 6 zl/year

0.6 3 .581, 10 9 zl/year 477.27,10 6 zl/year

0.4 3.635.10
9

zl/year 475.02.10
6 zl/year

0.2 3.662.10
9 zl/year 479.26.10 6 zl/year

0.0 3.675.10 9 zl/year 4El1.98.10 6 zl/year
I

* infeasible solution

Table 1.A.2. Capital investments and their duals for particular
farm types vs. satisfaction of constraints index
(see Fig. 2.A.2). Pessimistic case.

Constraint Capital investments/duals for farm types !

satisfacticn

index
Farm tyPes

1 2 3 4 5

* * * * 188.98/1.35* ! 115.41/ .0*1.0 24.12/ . 19 74.95/-5.5 129.03/-.6
0.8 25.57/1.28 79.45/.22 136.77/2.33 200.32/2.33 11.50/.0
0.6 27.02/1. 25 83.95/.12 144.51/2.24 211.66/2.23 10.13/.0
0.4 28.46/.15 61.82/.0 152.25/1.41 223.00/0.94 9.94/.0
0.2 17.09/.0 59.21/.0 159.99/.61 234.34/.4 8.63/.0
0.0 12.08/.0 48.24/.0 167.73/.29 245.68/.08

I
8.25/.0

Capital investment disbursements in 10 6 zl/year

* infeasible solution
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Table 1.A.3. Annual water uses and their duals vs. satisfaction
of constraints index (see Fig. 2.A.3). Pessimistic
case

water uses in 103 cu. m. /duals
Ccnstraint

satisfaction Farm types
index 1 2 3 4 5 Tot.al

* * 184.5/.0" 479.7/.0
x

326.0/ .0"/427.5/-73.2
x

11450.71.0 33.0/.0
0.8 36.5/.0 211.9/77.6 211.0/.0 519.1/.0 62.9/.0 1101.4

0.6 60.4/.0 211.9/85.0 473.2/.0 679.0/.0 I 63.2/.0 11487.7
0.4 77.2/83.6 211.9/78.1 504.9/.0 712.5/.0 I 63.1/.0 \1569.6
0.2 77.2/60.0 211.9/65.0 548.4/.0 782.1/21.4; 63.4/.0 1683.0

I
0.0 77.2/60.0 211.9/59.3 571.5/26.3 782.1/44.71 63.4/.0 1706.1

* infeasible solution

4.1.2. Optimistic case

Tables 1.B.1. to 1.B.3 illustrate the results of parametri
zation runs of the model for the constraint satisfaction index
ranging from 1.0 to 0.0 but assuming the optimistic case

Table 1.B.1. Objective function value and total capital invest
ments vs. constraint satisfaction index (see Fig.
1 .B.1). Optimistic case

!constraint Objective function value, Total capital invest
'satisfaction

10 9 zl/year ment disbursements,
index

10 6 zl/year

100 3.674 370.75

0.8 3.678 355.50

0.6 3.679 335.50

0.4 3.679 312.63

0.2 3.679 289.75

0.0 3.679 266.89
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Table 1.B.2. Capital investments and their duals for particular

farm types vSo constraint satisfaction index.

optimistic case o

Capital invesbnents in 106
zl/year / duals

Constraint
satisfaction Farm tyPes

index
1 2 3 4 5

1.0 9.29/.0 37.11/.0 129.03/.38 188.98/.10 6.34/.0
0.8 8.37/.0 31.46/.0 136.77/.15 172.94/.0 5.96/.0
0.6 7.84/.0 29.44/.0 130.74/.0 161.90/.0 5.58/.0
0.4 ! 7.30/.0 27.44/.0 121.83/.0 150.86/.0 5.20/.0
0.2 16.77/.0 25.43/.0 112.91/.0 139.82/.0 4.82/.0
0.0 i 6.23/.0 23.43/.0 104.0/.0 128.79/.0 4.44/.0

i

Table 1.B.3. Annual water uses and their duals vs. satisfaction
of constraints index. Optimistic case

Constraint water uses in 10
3

cu. m. /duals

satisfacticr Farm types

index 1 2 3 4 5 total

1.0 77.2/60.0 211.9/59.3 571.5/26.3 782.1/44.7 63.4/0.0 1706.1
0.8 " / II " /56.1 " /36.9 " /45.6 "/ .. "
0.6 II / " " /55.6 " /46.2 " /44.5 "/" "
0.4 II / " " / " " / " " / " n / " "
0.2 II / It " / " " / " " / " " / II "
0.0 II / II " / " " / " " / " II / " "

It is important to see the differences of reactions to
changes in capital supply and use with respect to water for
various farm types" The importance stems from the fact that re
gional agricultural policies should be shaped differently for
those farm types. Data from the tables shown here are plotted
in Figs o 2.A o 1 (Tables LA.l and 1 o B.1), 2.A.2 (Table LA o2)
and 2 oA.3 (Table 1.A.3). Tables 1 0B.2 and 1.B.3 were not plot
ted because of their near-trivial contents. This is due to the
fact that the optimistic (B.) formulation yields conditions in
which one would have the constraints fully satisfied and simul
taneously have enough capital for utilizing efficiently all the
water Bvailable, in all farm types except for p=5. Note that
the passage from optimistic to pessimistic formulation changes
this image entirelyo Namely in the pessimistic case (A o ) only
for a nearing 000 does there occur full utilization of availab
le water resources in farm types p=l to 4. It is interesting
to see that for a~Oo5 (constraint satisfied) no farm type ex-
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cept p~2 can secure full utilization of available water resour
ces. Thus, some farms in the area may simply not encounter and/
or have economic conditions for using additional water.

Note that observation of Fig. 2.A.3 togegher with 2.A.1
conveys quite a significant indication of which way to take in
terms of water economy in agriculture in view of the uncertain
situation as to the availability and intensity of use of capi
tal. This information can be used in a sort of multiobjective
(3 objectives) micro-exercise, which, however, does not have to
be necessarily formalized. Indeed, the choice of a can be made
on an intuitive basis, with the help of some pre-given precepts,
mlen a certain a, and therefore water use, is chosen, then an
optimal production and exchange strur.ture corresponding to it
must be checked for conditions of increasing a in order to see
its margin of feasibility.

Besides the information as to a, information arises on the
marginal values of capital and water and their relations for
various farm types. This helps in establishing the water inves
tment programmes and in indicating the possible existence of
other factors limiting utilization of water. In the case consi
dered, the foremost example of that is given by farm type p=5
where, evidently, some other type of constraint severely limits
the use of water and the propensity to use water, From some
other considerations it can be concluded that the constraint
in question is labour force availability, as witnessed further
on by Figs. 4.1 and 4.2.

4.2. Fuzzy FRS's and parameters in capital investment and water
availability constraints

Having analysed the intuitively simpler case of fuzzy ca
pital investment constraints let us turn to the case of simul
taneous fuzzification of those and the water availability con
straints. The optimistic formulation was not looked at because
of the already indicated near-triviality of the results then
obtained.

Table 2.1. Objective function, total capital investments and
total water use vs, constraint satisfaction index
(see Fig. 3. 1 )

onstraint Objective Total capital Total water Total water
~atisfac- function investment use, annual use, peak

ion index value disbursements 10 6cu.m.
10 days

10 9zl/year 10 6 zl/year 10 3 cu.m.

0.5 3.595 466.86 1.979 146.49
0.6 3.566 471.31 1 .932 142.17
0.7 3.531 465.89 1 .825 132,38
0.8 3,489 453.61 1 .539 105.73
0.9

I
30448 443.51 1 .359 88.74

1 .0 3.403 445.33 1.264 01 .26
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Table 2.2 Capital i~vestments and t~eir duals for particular
farm types vs. constraint satisfaction idex (see
Fig. 3,2)

Ccnstraint *Capital investme1t disbursEme1ts /their duals for farm types:
satisfaction
.i.rrlex 1 2 3 4 5

0.5 27.74/0.20 63.72/0.0 148.38/1.39 217.33/0.98 9.69/0.0
0.6 27.02/0.58 78.23/0.0 144.51/1. 98 211.66/1.19 9.89/0.0
0.7 26.29/1.30 81.70/0.19 140.64/2.38 205.99/2.38 11.27/0.0
0.8 25.57/1. 31 79.45/0.22 136.77/2.36 200.32/2.36 11.50/0.0
0.9 24.85/1. 32 77.20/0.24 132.90/2.35 194.65/2.35 13.91/0.0
1.0 24.12/2.23 74.95/1.12 129.03/2.76 188.98/2.76 28.25/0.0

* in 10 6 zl/year

Table 2,3 Annual water uses, and their duals for particular
farm types vs, constraint satisfaction index (see
Fig. 3.3)

Ccnstraint Annual water uses, in 103 cu. m./their duals for farm types
satisfaction
index 1 2 3 4 5

0.5 88.0/58.3 243.6/59.8 657.2/54.9 899.4/85.6 91.5/0.0

I
0.6 86.5/44.0 237.3/43.9 640.1/22.7 876.0/80.6 93.4/0.0

I

0.7 71.4/0.0 230.9/112.9 576.2/0.0 852.5/0.0 95.0/0.0
0.8 56.2/0.0 224.6/127.7 419.7/0.0 741.2/0.0 96.9/0.0
0.9 67.6/0.0 218.2/126.5 339.4/0.0 635.6/0.0 98.0/0.0
l.0 59.8/0.0 211.8/90.2 258.7/0.0 518.7/0.0 213.7/0.0

In spite of all the differences between this and the pre
vious case, certain similarities of results can be observed
caused by the features of the system analysed, This concerns
primarily the behaviour of farm type 5.

Let us first note that the fuzziness of water availability
constraints is of a somewhat different nature than that of the
capital investment ones. In fact, water availability and use is
of a more probabilistic character than capital which is subject
to decisions being more often than not made outside of the
reach of agricultural producers. The water availability/use re
lations have their probabilistic (precipitation, temperature
etc.) and decision-bound (system construction and current con
trol of within this system) components. Since the latter iS,to
a large degree dependent on investments, it may seem that the
first case analysed could be sufficient for making appropriate
decisions. The second case, however, where both relations are
accounted for via fuzzy representations, is needed primarily
for corroboration of results of the first one. When 0 tends
from 1 to the limit of acceptability, i.e. 0=0.5, not only the
RHS's of both groups of constraints become more relaxed but
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also resource requirements diminish o Thus, more resources are
available while they are less needed. This race of the left and
right hand sides of resource constraints is not readily inter
pretable especially inasmuch as the two groups of constraints
are closely interrelated.

Thus, turning to the results obtained, Fig o 3 01, which

Objective function

109 zl/year

use

{Objective function

I investrrents

--------------.-.-0_.- -- -
'-0_.-._"_"_00_.._.._.. _-·-·_·_.L~~~~~~r

.. """'- ..--/-..- .. -
peak water use

2 20

100

400

300

Invest- Ilater use:
-rrents

106 zl/y
5'10 : annual :peak

3.0

3.3

3.1

3.4

3.6

3.2

3.5

o o o a 0.5 0.6 0.7 0.8 0.9 1.0

constraint satisfaction index

Fig. 3.1.

corresponds to Fig. 2.A.1 and partly to Fig o 2 o A.3, shows the
same sort of trends, deepened only by the addition of parallel
trends in water constraints. This is especially clear from the
curves of water use of Figs. 3.1 and 3.3 which are almost the
same as in Fig. 2.A.3. The race phenomenon mentioned can be ob
served on the curve of total investment volumes. The shape of
this curve indicated that it is reasonable to plan for 0 values
approximating 0.6 - 0.7. As previously pointed out, stable eco
nomic and water use structures obtained for oElO o 6,0.7J must
be checked for their feasibility when oE(007,1.0J.

A more detailed analysis can be performed using informa
tion contained in Figs. 3.2 and 3.3. ThUS, for instance, water
use in farm types 3 and 4 is highly dependent upon both invest
ment and water availability. Stronger influence is, obviously,
exerted by investment since beyond 0=0.7 water duals are zero.
This is, again, an indication of the strategy to be employed.
Note that the situation of farm type p=5 has somewhat changed
in that it now not only generates some water demand, but also
increases this demand for 0 approaching 1.0 which is, presuma
bly, a result of stricter conditions set on other farm types.
ThUS, it would be safe, if less paying, to anticipate produc-
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tion structures in which more water will be allocated to and
used by farm type p=5.

50 POLICY INDICATIONS

Analyses which were exemplified here, performed with the
regional agricultural model, are meant, in general, to yield:

* production and trade structures which, while being near
to global optimality, could secure robustness and ade
quate income for particular farm types,

* conditions (economic, resource-wise,etc.) under which
these structures could be realized, with special atten~
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tion paid to possible bottlenecks, threats or setbacks,
as revealed by sensitivity analyses,

* policies which would ensure attainment and maintenance
of the conditions advantageous for the appearance of ro
bust near-optimal structures, these policies being both
oriented at the inside of the regional agricultural sy
stem,e,g"allocations or allocation rules and at the
outside of it (points of negotiations with the central
authorities) ,

On these three levels of resolution water resources and their
use are given special consideration. The first of these levels
is, unfortunately, beyond the possibility of presentation in
this short paper, primarily because of the complexity of the
model. Only some aspects of the two other levels could be some
how illustrated.

Thus, it was found that in this particular regional case
investment availability and uncertainty with this respect is
decisive for introduction of water-consuming activities and
technologies - except for farm type p=2 where demand realized
seems to be limited solely by supply.

Secondly, the analysis performed with regard to uncertainty,
and illustrated here, indicates that it is suffi~ient to check
the robustness of optimal structures obtained for satisfaction
index a=0,7-0,8 since that is where the major structural
changes occur, To realize structures corresponding to a, say,
around 0,6 would not add much to the objective function but
would lead to an essentially different economic situation, with
a very low possibility and therefore fragility.

Having defined in this manner robust and rationally pos
sible production and trade structures (the runs of the model
given here as examples have led to structures with high lh'e
stock numbers, intensive grassland farming, irrigation of fora
ge crops, etc., in case of implemented additional water supply),
one is obliged to look for appropriate policy rules. For this
particular case and area of consideration it turns out, on the
basis of some additional data, that the rule could be: to al
locate equally capital investment per hectare. Note that this
rule is very simple but by no means obvious. In fact, there
are some other equally simple and often advocated rules: allo
cation according to manpower, to existing assets, to producti
vity or efficiency, The rule formulated is oriented primarily
at the economic rationality of water use. Hence, for instance,
it can change only indirectly the situation of the farm type
p=5 by attracting additional labour force. It is, on the other
hand, economically justified to attract labour force to farm
type p=5, even at a cost, but this question lies outside of
the scope of this paper.

For a hint, however, of the limiting role played by labour
force constraints, examine Figs. 4,' and 4.2, obtained in the
same formal setting as Figs. 3.1 - 3, but for significantly in
creased labour force RHS's in appropriate constraints for farm
types p=2,4 and 5. Obviously, the effect is striking with res
pect to farm type p=5, i,e. bigger farms, which now consume
much more capital, use 4 times as much water as in the previous
case. At the magnitudes of a above 0.8 very high values of
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water availability duals appear o Obviously, the structures ob
tained for p=5 are now entirely different and production is
much higher. Influence, although weaker, is also exerted on
other farm types.
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Thus, by representing some of the uncertainties in the
model via the fuzzy-theoretic constructs, additional insight
was gained into the potential conditions and courses of action.
Certainly, similar conclusions could also be drawn through some
other forms of the post-optimal analysis; in the case of fuzzy
representations, however, interpretation, though not always
straightforward, is deeper and information-richer o

6. CONCLUDING REMARKS

In this paper we have presented a summary of results ob
tained by using a linear programming model with fUzzy constra
int coefficients and RHS's for the analysis of some agricultu
ral water problems in a region. As it may be seen from the com
putational results obtained, and their thorough analysis presen
ted in the tables and figures and commented upon, the fuzzy mo
del assumed gives much insight into many issues of regional wa
ter problems in an agricultural context.

In general, the experience gained from this work, as well
as some of our previous studies related to it, suggests that
fuzzy mathematical programming may be a valuable tool for the
analysis and solution of many real world agricultural problems
in which there is a pervasive imprecision that cannot be dealt
with by using probabilistic/statistical means.
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Abstract. A multiobjective linear programming
(MOLP) problem with fuzzy parameters in the
constraints and objective functions in consi
dered. Assuming fuzzy aspiration levels for
the particular objectives and involving the
comparison of fUzzy numbers, the problem is
transformed into a multiobjective linear
fractional program. For its solution an inter
active method involving a linear programming
procedure is proposed. This method has been
developed for an application to long-term
development planning of a water supply system,
It has been first described in Slowinski (1986)
and in this paper it is outlined and shown in
the context of an updated review of recent
proposals for multiobjective fuzzy linear
programming.

Keywords: fuzzy multiobjective linear program
ming, fuzzy aspiration level, fuzzy
number, interactive solution, multi
objective linear fractional program
ming, water supply system.

1. INTRODUCTION

A multiobjective linear programming (HOLP) problem with
fuzzy parameters (HFLP) can be formulated as

( 2.)

( 1)

(3)

(4 )

[:~.:.:~.:] ~ min
~

s.t. : a. x ~ b. i 1 , .•• , m1-~ - ~

a. ~ >~ b. i m1+1, ••• ,m
2-~ ~

where x is a column vector of n decision variables, £l""'£k'
are row vectors of fuzzy cost coefficients correspond~ng to

396
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the objective functions f
1

, ••• ,fk ; ~i is the i-th line of the_ ,J

matrix of fuzzy coefficients A, and b, is its corresponding
fuzzy right-hand-side. (Remark: the equality constraints
a, x = b, are not included in the above formulation since they
c~n be oBviously represented by pairs of inequality constraints).
To complete this formulation we assume that for the particular
criteria the decision maker (DM) is in a position to define
fuzzy aspiration levels, thought of as goals, denoted by
g1' ···,gk· All fuzzy parameters (marked with a tilde) are given
as fuzzy numbers (normal and convex fuzzy subsets of the real
line) •

In Slowinski (1986) a survey of over 30 papers on multi
objective fuzzy linear programming published until 1983 is
given. However, in 1984 a couple of new proposals appeared
which we should like to mention below.

Most of the existing approaches follow Bellman and zadehPs
(1970) approach to decision making (see Kacprzyk and Orlovskirs
paper earlier in this volume) in which a fuzzy decision (solu
tion) can be defined as the intersection of fuzzy constraints
and fuzzy goals and the problem of finding a maximizing
(optimal) decision can be reduced to a nonfuzzy mathematical
programming problem. The classical approaches of this kind are
due to Negoita and Sularia (1976), and Zimmermann (1978).
Since then several extensions have been made. In particular,
Leberling (1981) considered hyperbolic, instead of linear,
membership functions; Sakawa (1983) considered five types of
nonlinear membership functions and proposed a man-machine in
teractive procedure; Luhandjula (1982) used operators which
allow some compensation between the aggregated membership
functions; Chanas (1983) and Verdegay (1982) proposed the use
of parametric programming for the identification of the comple
te fuzzy decision; finally, Nakamura (1984) considered piece
wise linear membership functions. Another kind of approaches,
but still in the framework of Bellman and Zadeh, is represented
by fuzzy goal programming proposed by Narasimhan (1980) and
then improved by Hannan (1981a, 1981b), Rubin and Narasimhan
(1984), etc.

However, in the former approaches, only the goals and the
right-hand-sides of the constraints, and in the latter ap
proaches only the goals and their priorities, have been assumed
fuzzy, The first approach dealing with fuzziness of parameters
in a set of linear constraints is due to Dubois and Prade (1980a);
they proposed an interpretation of fuzzy constraints as toleran
ce constraints involving the inclusion of fuzzy sets, or as
approximate equality constraints involving a comparison of fuzzy
numbers. By assuming the L-R representation of fuzzy numbers,
they reduce the set of fuzzy constraints to a set of linear
constraints. Then, Tanaka and Asai (1984), and Tanaka, Ichihashi
and Asai (1984) considered fuzzy linear programming with all
fuzzy parameters. Involving a comparison of fuzzy numbers, as
suming the triangular membership functions, and usiny Bellman
and Zadeh~s framework, they reduced the MFLP problem to the
conventional linear programming (LP) problem, Recently,
Orlovski (1984) presented two approaches to multiobjective
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programning "ith fuzzy parar.,eters vl:1ere solutions are based on
trade-offs between the greatest possible degree of nondominance
and greatest possible desree of feasibility.

An interactive method for the MFLP problem proposed by
slowinski (1986) is related, in a certain sense, to those in
Dubois and Prade (1980a), Orlovski (1984), Tanaka and Asai
(1984), and Tanaka, Ichihashi and Asai (1984) 0 Specifically,
it uses the L-R type fuzzy numbers whose reference functions
need not be linear; the transformation into a nonfuzzy
mathematical programming problem is based on the comparison
of fuzzy numbers in a different sense that in Dubois and Prade
(1980a), Tanaka and Asai (1984), and Tanaka, Ichihashi and Asai
(1984), and the solutions ensure thE' "best consistency" between
the goals and the objective functions, and satisfy the
constraints with a given "credibility" 0 The nonfuzzy mathema
tical programming problem is linear fractional - it is solved
using an interactive procedure involving linear programmingo
The method has been successfully applied to long-term develop
ment planning of a water supply system. In Section 2 we de
scribe this method, and then we present its application as
well as an example.

2. DESCRIPTION OF AN INTERACTIVE METHOD

We can easily see that the main question to be answered
in MFLP consists in the comparison of the left-hand- and
right-hand-sides of the objectives and constraints which are
fuzzy numbers. This may be done in different ways. Let us
notice first that inequality can be seen as the inclusion of
fuzzy sets. Then, various "inclusion grades" can be used as
comparison indices (see Dubois and Prade, 1980b; po II.1.E) 0

There are inclusion grades based on the intersection (or in
clusion) and cardinality, and on the inclusion only. Another
comparison index based on the cardinality is the relative
Hamming distance between two fuzzy sets. All these indices,
however, appear to be inefficient in fuzzy mathematical pro
gramming since they need the calculation of integrals or
infima of special membership functions which, in turn, are
functions of the decision variables. Instead, the comparison
index in the sense of Zadeh (1965) can be used,

Let ill and n be two fuzzy numbers. \'Ie want to evaluate the
degree of possibility for xER, fuzzily restricted to belong to
ffi, to be greater than yER, fuzzily restricted to belong to n,
where R is the real line. Using Zadeh~s extension principle,
we get

~(m>n) = sup min(fm(x)'fn(y))
x,y: x>-,y

Iwhere tm and tn are the respective membership functions of

ffi and n. i(m>n) is the truth value of "ffi is greater than ~"o

IIi tY,ere exists a pair (y.,y), such that x>-,y and t'r (x)=r;:ly)=l,
then ~ (m>n) - 1. m n
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xo

I
I
I
I
\

I I I

--~-+---+-----+---- ~--'--=---
n d m
Fig. 1

that
In the case shown in Fig. 1, it can be easily checked

~(m > n)

~(n > m) hgt(m n 11) = Y"m(d) = \"-n (d), ordinate of D

is the height of rn n n (see Dubois and Prade,where hgt (m n n)
1980a) •

It is shown in Dubois and Prade (1978) that a convenient
representation for a fuzzy number m is a triple of parameters
(m,o,6) of its membership function

t"'m (x)
=f L (m-x) 10)

lR( (x-m) 16)

if

if x~m

where m is the "mean" value, 0 and 6 are nonnegative left and
right "spreads" of ffi, respectively, and L,R are symmetric bell
shaped reference functions that are non-increasing in [O,~),

and L(O) = R(O) = 1; ffi is said to be of L-R type, written
~ = (m,o,6)LR' When the spreads are zero, m is a nonfuzzy

number, by convention.

For computational reasons we shall slightly change this
definition. Let Land R be non-increasing function in (-~,~)

and L(O) = R(O) = 1, L(l) = R(1) = 0, For the same reasons we
shall replace ~(n>m) and ~ (m>n) by comparison indices
6" (i'i>m) and /)(m>n), such that:

( i)

(ii)

b(i'l> iii) i('n>m) ~

b(n>m) >,.. ~(i1>m)

and bCm>n) ~ i (m>n)

and 6'(m>n) ~(m>n) ~

rn~n

n~m.

The closer o(m>n) is to 0, the less true is the assertion
"; is greater than nO. Assuming that ffi = (m,o,6)LR and

n = (n,o,6)LR obey the modified definition of the reference

functions, it can easily be checked that

= L((m-d
1
)/o)

b(n>m) =[ oR,-((d 1-n)/O)

otherwise

= w, if n+6>,..m-o
( 5)
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='i', if m+~>-n-y

(6 )

where d
1

and d
2

are abscissae or the intersection points of R

and L, and L- and R, respectively (see Fig. 2). This is
equivalent to

and

n+6R~-1 (w)

n-'(L-- 1 (If)

m-aL .. 1 (w)

ra+~F.-l ('I')

6R-- 1 (w) +aL -1 (w)

YL··- 1 ('1') +IlR- 1 ('1')

w

"'l
o n-,r

m-n

n-m

Fig. 2.

,...-..-....

)(

For F(w)

we have

m-n

n-m

which implies

w = F (m-n)

't' G (n-m)

(7)

(8)

If m=(m,a,Il)LR and n=(n,y,6)RL' then (7) and (8) take the form

w = L«(m-n)/(a+o»

't' R ( (n-m)j (Il+Y) )

(7a)

(8a)
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In order to comoare ffi and~, we need both &(ffi>~) and
b(~>ffi). If, e.g. b(m>n) ~ 1, we know that either m is greater
than n, or both are too close to be separated. Then, we may
choose a threshold ° -$"( ~ 1 and admit that ffi is greater than
nat level't' as soon as b(n>m) ~'t'. If min(,"(ffi>~),b(n>ffi) ~'l:,

we say that ffi and n are approximately equal.

In case of the weak inequality, n~ffi, we only need b(n>m) 0

Indeed, for '(n>m)~1 the inequality is satisfied for any
value of D(ffi>n). Then, we may choose a credibility constant
O~ '"1:,<:1 and admit that n>m at credibility level'? as soon as
b(n>m) ~ "C. \'Ie can see an important computational advantage
frolll tile use of (i instead of Y : since re: ~O, while calculating
b(i'i>ffi) we need not specify whether n>ffi or m>n, as in case of
i (n>m) •

The comparison index b(~>rn) can be seen, however, as opti
mistic since it is based on the most favourable case - the
intersection of the decreasing slope of m with the increasing
slope of n. To make the comparison more credible, we could use
conjointly a pessimistic index based on an analys~s of decrea
sing slopes of n and iii for n~m, and increasing for rn~n. For
example, we may choose O~ '1. ~ 1 and define a pessimistic index
as follows (see Fig. 2)

~-1
,,(Ii>'!. iii) n+6R ('l.)

-1
" (m>'/. n) m-cxL ('I.)

For '1. =0 we have

-1
m-I3R ('I.)

-1
- n+yL - ('1.1

(9)

( 10)

,,(11) Om)

" (m> On)

n+6-m-13

m-cx-n+y

Using the optimistic and the pessimistic index together,
we may admit that n~m at credibility levels ~ and 'l. iff

( 11 )

and

,,(n> m) ~ ° (12)
'1.

This result can be used directly to transform our MFLP
problem into a deterministic one. Let us separately analyse
the constraints (2) and (3) and the objective functions.

Fuzzy coefficients of the constraints are given as L-R
fuzzy numbers with the modified definition of the reference
functions:

a. (~i' ~i'~i)LR' b. (bi'0,6 i )LL' i=1,o • .,m1-1 1

a (~i' ~i'~i)i..R' b. (bi,y i'O) RR' i =m 1+1 , , •• , m2-1 1

where ~i' b i and ~i' ~i' Yi,6 i are the mean values and (non

negative) left and right spreads, respectively; the left
spread of hi for i=1, ••• ,m 1 , and its right spread for
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i=m 1+l, ••• ,m2 are zero because they are immaterial for the

evaluation of satisfaction of the corresponding constraints.
For clarity, we assume that the reference functions of all
fuzzy coefficients are of two kinds only, as indicated above.
It can be seen from the preceding considerations that this
assumption is not necessary for the calculation of b and IT
(ct. (7) and (8) and (9) and (10».

For any ~ ~ Q, ~i~ = (~i~' ~i~' £i~)LR' i=l, .•• ,m2 , For
a given ~ ~ 0 and some hypothetical data, the i-th constraint
of type (2) is shown in Fig, 3, and the i-th constraint of
type (3), in Fig. 1.

)<1
1 t--;.=.."""r'«;;;':--~~=-

Fig. 3

'Ii'

7;
o

-'--

'~-"'r-+

bi

f!i~'.@i!.

Fig. 4

It is easy to verify that for i=1, .•• ,m 1

b(b,>a,x) =
1 -l-

IT (b i >7 }i~)
1

and for i=m 1+l, ••• ,m2

b(a,x>b,) =
-1- 1

IT(a,x> IS,)
-1-'1. i 1

Then, the DM must select some credibility constants 'I. "
1:i E [0,11, i=1, ••• ,m2 , and the constraints (2) and (3) ma'i

be expressed as:

L «~i~-bi)/ (~i~+6i» ~ 1: i i=l,. •• ,m 1 (13)

R«bi-~i~)/(£i~+Yi» ~ 't i i=m 1+l, ••• ,m2 (14)

-1 -1
bi-~i~+6iL ('li)-£i~R ('I.i) ~ 0, i=1, ••• ,m 1 (15)

-1 -1
~i~-bi-~i~L ('l.i)+yiR ('I.i) ~ 0, i=m 1+1, ••• ,m2 (16)
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If Land R are strictly decreasing, we can transform (13) and
(14) into the following equivalents

b.
-1

( () . }~ "\), i=1, . o. ,m 1
( 17)a .}, - .$ L (?:i) +

-l- l -l-

b. - a.x ~ R- 1 (-l:.) (Q.i~ + Y i) , i=m 1+ 1, ..• , m
2

(18)
l -l l

In case of fuzzy objective functions, ~ and n can be used
to evaluate a degree of consistency between the fuzzy objec
tives and fuzzy goals. The fuzzy cost coefficients and goals
are assumed to be L-R fuzzy numbers with the modified defini
tion of reference functions:

(g 1 I 0, ~ 1 ) LL ' 1 =1 , ••• , k

where £1' gl and ~l' ~l' ~l are the mean values and (non

negative) left and right spreads, respectively; the left
spread of gl' 1=1, ••• ,k, is zero because it is immaterial for

the evaluation of consistency between the goals and objectives.
Here again, the equality of the reference functions is not
necessary.

For a given x~O and some hypothetical data, the I-th con
dition ~l~ ~ gl is shown in Fig. 5.

WI t------
(lr---- -

a I 9{

Fig. 5

It is easy to check that for 1=1, ••• ,k:

blgl>§:l~) = L((£l~-gl)/(~l~dl)) = WI

- -1-1
n(gl >~l £l~) = gl-£l~+ilL (~l)-!)~R (~l)

( 19)

(20 )

In order to ensure "the best consistency" between the goals
and objectives, both these indices should be maximized for
given '1.1' 1= 1, ••• , k. In consequence, we obta in the following
non-fuzzy mathematical programming problem equivalent to (1)
- (4):



404 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

Zk (~) =

zk+1 (~)

L ( (~k~-gk) I (E-k~+ i k ) )

-1 -1
= g1-~1~+1l1L ('l.1)-~1~R ('t1) max

x

s • t.: (1 5), (1 6), (1 7), (1 8), and (4).

As is known, solving a multicriteria mathematical program
ming problem consists of finding a "best compromise" solution.
The definition of the best compromise results from the OM-s
preferences concerning relationships among the criteria. Usual
ly, the best compromise solution is selected from among at least
weakly efficient solutions. If we reject an explicit comparison
of all efficient solutions, we can use one of two possible ap
proaches (Slowinski, 1984): either (i) to aggregate all the ob
jective functions into a single function defining an overall
utility and seek a compromise solution which maximizes this
utility, or (ii) to progressively define a compromise through
an exploration of the set of feasible solutions guided by the
OM which results in a cluster of efficient solutions convergent
to the best compromise.

The former has, however, some weak points. A traditionally
acknowledged difficulty concerns the process involved in quan
tifying a relative importance the OM places a priori upon the
different objectives. One of the ways to avoid the inherent dif
ficulties of these "static" methods is to use an interactive
method representing approach (ii). Our experience in multi
criteria project scheduling (Slowinski, 1981) also shows that
an interaction with the OM is very beneficial for the final
decision.

Let us assume that L is linear, i.e.

Then, we have to solve the following multicriteria linear frac
tional programming (MLFP) problem:

Zk (~) =

zk+ 1 (~)

-1 .\
= c x-g +X xR (n )-. (1-n)

-k- k -k- ~k k lk

min
x

s.t. ~ES.

To be sure that the denominators of z1 (~)"",zk(~) are positive
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for an'! ~,S, v:e may adI:1it that "1>0 .,.:hich is quite natural. To
solve this problem we use the interactive algorithm of Choo and
Atkins (1980). Let us describe informally its main idea.

In order to generate (weakly) efficient solutions, we ag
gregate the objective functions zl to z2 by the Chebyshev norm
which is the maximum weighted devlation ~rom some "ideal" point
u*:

*(jJl (2 1 (~) - u l )~ min max
xES 1

or y -+ min

s.t.: *y ? (jJ 1 (2 1 (~) -u1) 1 = 1 , ••• , 2k

xES

where (jJl > 0 are weights chosen a priori.
*"The point u is slightly smaller than the minimum of each

criterion individually ensuring that no u~ is in fact attaina-

ble. The isoquants for thi~ norm are the "corners" lying along
the line passing through ~ with direction (1/(jJ1, ••• ,1/(jJ2k)'

The minimiza,ion of the Chebyshev norm chooses a "corner"
closest to u and still in contact with the feasible region.
This ensures weak efficiency. To start the algorithm, from the
point ~* a search direction is chosen by selecting such a (jJ1
which keeps the vertex of the "corner" in the central area
of the feasible region. As is shown in Choo and Atkins (1980),
a slightly modified form of the Chebyshev norm minimization is
reduced in case of MLFP to a linear program with a single
parameter. Thus we use any convenient univariate search method
over this parameter to find a point as close to an efficient
one as we wish. The "closeness" here is not critical and even
a rough approximation is quite sufficient. This point is taken
as a starting point for the iterative part of the algorithm.
This crucially involves the DM. The search direction, and hence
the choice of (jJl' is that from the "ideal" point to the start-

ing point, which is then extended to include some more points.

"'2
I I
I I
I I

/~" J 1/f.?)r
I

• SmI
IS' ,.
I It

I SI
I
I
I ,
I , ,
I
I

I~"i----------------

'--'------------------ Z1

Fig. 6
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Thus, in Fig. 6, sO is the starting point and sh, with h=1 1O • Of

••• ,m are the extra points. dh is the distance between sO and

sh. Then, by subsequently taking each criterion, say z1 first,

we minimize z1 subject to all other criteria being at most equal
to their value at sO, then at s1, ••• , until sm. This gives a

sequence of (weakly) efficient pOints s10,s11, .•• ,s1m for cri

terion 1 and s20, s21, etc. for criterion 2, etc. The minimiza

tion of zl(~) for 1=1,.,.,2k is a linear fractional problem

with linear constraints, so the Charnes and Cooper (1962) trans
formation into a linear program can be used. Thus, at each step
a single-objective linear programming problem has to be solved.
These (weakly) efficient solutions are then presented to the
DM who is asked to select the one best fitting his needs.

This becomes the new starting point and the procedure is
repeated but with a substantially reduced choice of the dis
tance dm so that the search space may be focused on most in-

teresting efficient points. The iteration stops when the most
satisfactory efficient point is reached.

An important advantage of this algorithm is that the only
optimization procedure to be used is linear programming. More
over, it has a scheme very comprehensible to the DM, and allows
reconsideration of points found uninteresting in previous ite
rations.

Of course, interaction with the 011 can be extended to some
changes of the right spreads of the goals and the credibility
constants.

3. APPLICATION TO LONG-TERM DEVELOPMENT PLANNING OF A WATER
SUPPLY SYSTEM

The method presented in section 2 has been successfully
applied to long-term development planning of a jointly operated
urban water supply and wastewater treatment system. The planning
problem has been formulated first as a MOLP problem (Slowinski,
Urbaniak and W~glarz, 1983) with deterministic coefficients.
However, it turned out to be very difficult, if not impossible,
to precisely estimate many data over the twenty-year planning
horizon, Statistical estimation proved inefficient because of
high,subjectivity. Even if such statistical characteristics
were defined, the obtained multicriteria stochastic LP problem
would be too complicated to efficiently solve; anyway, precision
of the stochastic model is superfluous and even misleading here.
This compelled us to model imprecision by fuzzy sets.

The jointly operated urban water supply and wastewater
treatment system consists of the folloWing components: (i) wa
ter intakes, i.e. sources and water treatment plants with re
servoirs; Iii) recycling treatment plants with reservoirs, i.e.
wastewater treatment plants supplying reclaimed water; (iii) a
distribution network, i.e. an aggregated pipeline network with
pumps; (iv) water users, and (v) discharging treatment plants,
i.e. wastewater treatment plants discharging effluents. A twenty
-year planning horizon divided into T periods of equal length
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is assumed. We assume, moreover, that the characteristics of
system components may only change stepwise at the border
between two successive periods. This means that a new component
scheduled for period t can be utilized from the very beginning
of this period.

In Slowinski (1986) the following formulation of water
supply system development planning in a fuzzy environment has
been proposed. (Remark: The symbols used here have local mean
ings and should not be confused with similar ones in section 2).

r-linimize'
T PIt)

f = L L
1 t= 1 i= 1

T N(t)
L L

t=1 i=P(t) +1

_ +_ tI(t)

(C l· t Xl· t qt-1 + k'tL L s. 'tx , 'tq't)l j=1 lJ lJ l

T Q(t)
+f 3 L L (cltYltq t-1 + kltLYltqlt

z=1 1=1

T lIlt) II (t)
f 4

L L (B
jt L sijtaitaijtxijt)Yjt Lqt

t=1 j =1 i=1

T N(t) + N(t) _ + Q(t) + _ Q(t) +
f S = L ()i(i3t L x - L litXit - L Ylt) +x, L Ylt)

t=1 i=1 it i=P (t) +1 1=1 1=1

subject to:

M(t)

L siJ'tXiJ't ~ 'Oit '
j = 1

N (t)
L

i=1

i=1, •.• ,N(t), t=1, ••• ,T

L Xijt ~ Xkt , k=1, ••• ,V(t),
(i,j)£V

kt

N(t)
L

j = 1

t=1, ... ,T

o

i=1, ••• ,N(t), t=1, .•• ,T

1=1, •.• ,Q(t), t=1, ••• ,T

where:

f 1 - expansion and operating cost of water intakes,
f 2 - expansion and operating cost of recycling treatment plants,
f 3 - expansion and opeluting cost of discharging treatment

plants,
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existing and potential discharging treatment
period t,
of water flow between source i (i.e. water
recycling treatment plant) and user j in

L

f
S

T
P(t)
ll(t)
N(t)

- loss to users resulting from shortfalls in water supply
(reliability of supply),

- environmental quality,
- planning horizon divided into equal periods, t=l, ••• ,T,
- number of existing and potential intakes in period t,
- number of users in period t,
- P(t) - number of existing and potential recycling treat-

ment plants in period t,
N(t) - total number of existing and potential water sources in

period t,
Q(t) - number of

plants in
Xijt - intensity

intake or
+ _ period t,

x.t,X't - positive and negative capacity increment of source i
1 1 at the border of periods t and t-1,

y!t = amount of wastewater delivered to plant 1 in period t,

Ylt'Ylt - positive and negative capacity increment of discharg
~ ing treatment plant at the border of periods t and t-1,

cit,k it - expansion cost per unit capacity increment of source

i and its operating cost per unit capacit) in period t,

clt,klt - ex~ansion cost per unit capacity increment of dis
charg1ng treatment plant 1 and its operating cost per
unit capacity in period t,

- length of one period,

qt' qit' qlt - discount factor for expansion cost and operating

cost of source i and discharging treatment plant 1 in
period t, respectively,

s 'tE{O,l} - parameter indicating whether user j can be supplied
1J (= 1) from source i in period t, or not (= 0),

'Bjt - estimated demand of user j in period t,

0jt - minimum fraction of B jt which has to be supplied to user

j in period t in order to maintain his activity at a
tolerable level,

Yjt - unitary loss of user j resulting from a shortfall in
water supply by one unit of flow per day in period t,

.~

Dit
V( t)

- maximum capacity of source i in period t,

- number of existing and potential links of the aggregated
distribution network in period t,

set of pairs (i,j) such that Sijt=l and link k belongs

to the path connecting intake i and user j,

- maximum potential capacity of link k in period t,

~, 't - reliability coefficients of source i and potential
1J
connection of source i and user j in period t,

average wastewater discharge rate in period t,
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lit - ratio of the amount of wastewater entering recycling
treatment plant i to the amount of reclaimed water in
period t,

¥ (resp.)(.) - average index of environmental water pollution
following from a direct (resp. after treatment) dis
charge of a unit of wastewater per time unit.

It is asserted (Slowinski, Urbaniak and \vE;:glarz, 1983) that
for each feasible solution, positive and negative capacity in
crements are mutually exclusive. We assume that the cost and
reliability coefficients, maximum capacities, water pollution
indices, discount factors and the user~s demands are given as
fuzzy numbers.

4. EXAHPLE

Let us reconsider a simple urban setting from Slowinski,
Urbaniak and WE;:glarz (1983) presented schematically in Fig. 7,
with water supply and wastewater treatment installations to be
provided till the end of the planning horizon.

T=4, and the initial state of the system is as follows:
users U1 and U2 are supplied from water intake 1 1 with inten-

sity x 110 = 4 • 10 3 and x
120

= 3 • 10 3 , respectively. The

J - Intake
RT - reCljcling trealment

plant
lJT - dlscharqing

treatment plant
U - user

!!2- - network link

Fig. 7

characteristics of water sources, the distribution network and
the water users are listed in Tables 1 - 3, respectively. For
fuzzy parameters, only mean values are given in these tables.
The mean values for fuzzy reliability coefficients vary from
0.9 to 0.95 for all components of the system. For simplicity,
Tit=O' i=l, ••• ,P(t), and lit=l, i=P(t)+l,.,.,N(t), t=1, ••• ,4;

~jt = ~t = 1, for each j, t, and qit= qt' for each i, t, where

the mean values are: ql = 0.6, q2 = 0.3, q3 = 0.15, q4 = 0.07.
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As to the discharging treatment plant DT 1 , the mean values are:
2c

13
=c

14
=102.10 and k

13
=1.3, k

14
=1.4; '/=0.009 and lC-=0.001.

The obtained MrLP problem has 84 variables and 116 con
straints. All reference functions of fuzzy data are assumed
linear. All the left and right spreads range from 5 to 10 per
cent except for the goals. The mean values of goals are obtained
from the individual minimization of each criterion with non
fuzzy cost coefficients fixed on their mean values:

The maximum values of f l obtained for the optimal solutions

with respect to another criterion are:

6f 1=381.10 , f =84.10 6
4 '

f 5=2 59

Then, the right spreads of the goals are chosen to be 30%, 40%,
20%, and 20% of the respective difference fl-g l , 1=1'0 .. ,5,

The credibility constants 'r i and 'l..i are equal to 0,6 and 0.2,

respectively, for all the constraints. The objective functions
z6(x) , •.. ,z10(x) are transposed to the constraints with tl=O

and the least satisfactory value equal to the right spreads of
the corresponding goals.

The results of using the interactive solution method are
the following. The ideal solution to the I%FP problem is
u* = (0, 0, 0, 0) and the starting point s = (0.61, 0.52, 0.67,
0.7,0.72) which corresponds to f = (264, 171,24.6,25.5,47.4)
(here and on 10 6 standing beside-the first four criteria is
omitted). Assuming m=2 and dh =0.1, we get 10 (weakly) efficient

solutions as in matrix 51, and translated into the original
criteria in matrix F1.

0.45 0.6 0.73 0.76 0.8 257 100 26.8 26.3 51.5
0.67 o.41 0.73 0.76 0.8 266 160 26.8 26.3 51.5
0.67 0.6 0.47 0.76 0.8 266 180 17.3 26.3 51.5
0.67 0.6 0.73 0.52 0.8 266 180 26.8 23 51.5

51 0.67 0.6 0.73 0.76 0.43 p1 266 180 26.8 26.3 33.2

0.37 0.68 0.79 0.82 0.88 253 188 29 27.2 55.4
0.73 0.31 0.79 0.82 0.88 269 149 29 27.2 55.4
0.73 0.68 0.37 0.82 0.88 269 188 13 .6 27.2 55.4
0.73 0.68 0.79 0.4 0.88 269 188 29 21. 4 55 04
0.73 0.68 0.79 0.82 0.32 269 188 29 27.2 27 .8

The Dr! selects the underlined point which becomes the new start
ing point. Taking m=1 and dh =0.05, we get 5 (weakly) efficient

solutions presented in the matrices 52 and F 2



AN INTERACTIVE METHOD AND WATER SUPPLY PLANNING 413

[0.59 9.6) 0.76 0.79 0.45J ['''
163 28

26.734"J0.7 0.55 0.76 0.79 0.45 268 175 28 26.7 34.2
S2 = 0.7 0.63 0.62 0.79 0.45 F 2 268 183 22.8 26.7 34.2

0.7 0.63 0.76 0.67 0.45 268 183 28 25.1 34.2
0.7 0.63 0.76 0.79 0.37 268 183 L~ 26.7 30.3

In this illustrative example the DM finds the new underlined
solution to be the best compromise.
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fUZZY EVALUhTION OF PARETO POINTS AND ITS APPLICATION
TO HYDROCRACKING PROCESSES

Michael Wagenknecht and Klaus Hartmann

Technische Hochschule "Carl Schorlemmer"
Leuna-Merseburg, German Democratic Republic

Abstract. In this paper we deal with polyoptimal
decision making in chemical engineering. Using in
formation on the pairwise importance of the perfor
mance criteria we construct a global rank-ordering
which permits us to evaluate a given set of Pareto
points. A modification of Saaty's ratio scale me
thod is given. The case of fuzzy weights is dis
cussed. The developed method has been applied to
the investigation of hydrocracking processes as
well as to magnetic tape production.

Keywords: polyoptimization, Pareto point, rank or
dering, Saaty's ratio scale method, fuzzy
weight.

1. INTRODUCTION

The method of polyoptimization has found during recent
years increasing application for the solution of problems in
chemical engineering. This is because, besides the increasing
investment capital of the process systems and sales of feed
stock and energy, by quantities, as well as the necessity of
evaluation of various system properties as, e.g., the quality
of utilization of raw materials and energy, costs, reliability
and air and water pollution, of higher demands on technology
and products which are subjected to essential dynamics. The
changes of sales for raw materials, products, energy, equip
ments, new processes and automation systems influence the struc
ture and control of the process under consideration in such a
way that, for the determination of an optimal structure and
control, respectively, we have to take into account a set of
performance criteria. The demand for flexibility and global
optimality includes further uncertainties being present in mo
delling and evaluation because of unknown parameters as well as
necessary simplifications of the models.

The following two problems are typical for the optimiza
tion of process systems in chemical engineering:

1. Choice of an optimal structure of a process system (i.e.
elements and their connections). This problem may include the
design of a new process or the reconstruction of an existing
one.

2. Choice of an optimal production strategy (i.e. optimal

415
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planning and control) •

It often happens that we have a great number of favoured
variants in both cases. Nowadays we are able to get a certain
set of Fareto-optimal points for a large number of problems.
The user is faced with the problem of choosing some "best" va
riants. Since the Fareto-points are of equal "goodness" within
the given partial order, we need further information for making
this choice. Often, information is available on the importance
of performance criteria (e.g., quality may be of greater signi
ficance than energy costs, etc.). ~evertheless, we may have to
allow for difficulties when obtaining a global rank-ordering
in particular in the case of a greater number of criteria. On
the other hand, it often seems to be much easier to evaluate
pairwise importance of two criteria. This is very often done
verbally, e.g., in the form "the first criterion is much more
important than the second one". Saaty (1978) has developed a
ratio scale method to get a global rank-ordering from such in
formation·

In the second section we present this method in short with
a modification leading to numerical advantages. Moreover, we
consider the case of fuzzy weights and deduce a mathematical
apparatus. In the third section we show how to use these re
sults of the evaluation of a set of Pareto-points. The follow
ing two sections are devoted to concrete applications. ~e con
sider various structures for hydrocracking processes in crude
oil distillation whereby the questionned experts are evaluated
on their part by higher level authorities. In a second appli
cation we investigate performance criteria in the magnetic
tape production.

2. METHODS FOR GLOBAL RANK-ORDERING

Assume that n performance criteria Y1""'Yn and a set of

statements on the pairwise comparison of these criteria, e.g.,
in the form

"Y 1 is more important than Y2 "

"Y 1 is as important as Y3"

"Yn - 1 is much more important than Yn "

are given.

There are several possibilities of grasping these state
ments quantitatively and we are going to consider two of them.

On the one hand, we can construct a "scale of importance"
as has been done by Saaty (1978). The statement "Y

1
is related

to y," is evaluated by a positive number a i ],E(O,9] with the
folldwing graduation:

a ij =l - equal importance

a ij =3 - weakly more important

a ij =5 - more important
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a .. ~7
~J

a ij :9

while numbers

- demonstratively more important

- absolutely more important.

in-between denote intermediate cases.

This scale has been found the best in comparison with
other ones. From the a ij we determine the weights wi (with a

convenient normalization, e.g., L wi 1) expressing the rank

-ordering of the Yi • On the other hand, we can use fuzzy num

bers instead of crisp ones. The resulting weights are also
fuzzy then. This method is more convenient with fuzzy infor
mation of the decision maker but we are faced with an increa
sed numerical effort. In practical application we achieved re
sults using the first method which had been accepted by the
user...
2.1. The crisp case

Let a pairwise comparison matrix A : (aiJ·), with a .. as
~J

1), be given. Since we use a ra-descrited above (we set a ..
~~

tio scale, we are seeking wi > 0 with

a ..
n

i,j ~ 1, ... ,n (1)

For an arbitrary given a ij
fulfilling (1). Saaty proposed to determine the

there may not exist a wi

w. as the
~

components of the eigenvector corresponding to the greatest
eigen value of A which gives the exact wi in the case when

(1) is solvable. Chu et al. (1979) considered the following
problem:

{ L (aij
wi )2 min

i,j w.
(P 1)

J (2)

L w. 1 ; w. > 0;
i ~ ~

whereby (P1) is slightly modified for better numerical hand

ling.

We will modify IP1) into (P 2 ) aiming at an explicit so

lution, i.e.

L
i,j

(In a ..
~J

wi) 2- In w.
J

min

( 3)

11 10; . 1 • w. > 0
~

,
~i

where 11 is the product operator. w.
(P 2 ) be deduced from the idea that ~ iffmay a .. ""~J w.

J
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ln a ..
q '" ln

W.
.1

W.
J

(4 )
a ..

~]- [n
j;ii

Using the Lagrange multipliers we obtain
1

2n

In the reciprocal case, i.e. a ..
lJ a ..

Jl
we have

W.
l = [n a"J nj;ii lJ

(5 )

i.e. the i-th weight is equal to the geometric mean of the ele
ments of the i-th row of A. For a better interpretation and

i
comparability, we normalize the wi by L w.

l
= 1.

2.2. The fuzzy case

Now we assume the a ij to be positive fuzzy numbers of the

(L,R)-type discussed by, e.g., Dubois and Prade (1980). We de
note these numbers by 1:.. , the corresponding weights by tr..lJ l
The latter we also assume to be of (L,R)-type, and positive.

We replace relationship (1) by

(6)

W.
with C

l
. J' l (Le. fuzzy division) .Vi'.

J
There are different ways to express (6) mathematically.

We can use fuzzy intersection l\lJ ~ (;ij' and determine the

wi by several demands on this intersection.

On the other hand, it is well-known that each (L,R)-num
ber can be characterized by three parameters: the mean value,
left spread and right spread. We can write:

-A ..
lJ

C ij

(a ij , ~ij' aij )

(c ij ' £ij' Cij ) (7 )

Relationship (6) is ~rasped ~ the demand that the cor
responding parameters of Aij and Cij should be as close as

possible. Therefore we use the error sum:

n n 2 2 - - 2]
j:1 i~)(cij-aij) + (£ij-~ij) + (cij-aij ) -> min

iJj
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i
l: w.

~
1 ; w. > 0

~

(8)

When using the "supmin" - composition rule for Zadeh's ex
tension principle, we get (cf. Dubois and Frade, 1980)

w. w.w. + w.w. w.w. + w.w.
~; J ~ -1. ~ -] 1. 1. J ( 9)c. c. c.1.j W. -1.j 2 1.j 2

J w. w.
J J

The a .. and w. should not be confused with those from the
1.J 1.

previous section.

(F 3 ) represents a nonlinear optimization task with 3n un

knowns. There are good algorithms available for its solution.

3. THE EVALUATION OF PARETO-POINTS

Now we will deal with the problem how to use the weights

wi (or Wi) to evaluate the set of Fareto-points. Again we start

with the crisp case. The most simple way consists in the use of

the well-known linear objective function l: w.xY., and to as
i 1. 1.

sign this value to each point. Nevertheless, we have to deal

with the drawback that the Yi may be scalled in very different

manners making this method useless since the performance crite-

ria with small (absolute) values are discriminated. Therefore

we have to use a convenient normalization of the criteria ma

king them comparable. A normalization to [0,1] seems to be sui

table, since the wi are of the same order of magnitude.

using the denotation i for the range of the i-th criterion

and "( i for a seal ing function, we obtain T i : "Y i .... [0,1 J.
A widely used scaling method consists in the application of the

indiv~dual extrema, e.g.

(

_Y=i_-_ym=i_in---,-_ ) a i
= ymax _ ymin

1. 1.

( 10)

the maximum. We obviously have

~i > 0, y~in is the minimum of Y. over '\J. and y~ax is
1. J1. 1.

T. Iymin) = 0, T. (y~ax) = 1.
1. 1. 1.

There are several reasonable methods to evaluate a given

Y
Il) (1) (1))Pareto-point. Denoting = (Y1 , ••• ,y , we have, e.g.,

II) n
the following evaluations vI of Y :

with
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n
L

i=l
w,
~

( 11 )

(12)

min ( 13)

(14 )

w,
~

n
L

i=l

Each approach has its characteristic properties. The
choice depends on information and objectives of the decision
maker.

We took the compensatory approach (11) since the results
were sufficient. The methods (121 and (13) take into account
merely two and one value of y(l , respectively. This may be
disadvantageous in practice.

In the fuzzy case we have fuzzy weights ~i. Here we

construct a relation B of the possible weights wi (non-nor

malized) and the set {y(l)} of Pareto-points to be evaluated.

With PB for the membership function of B we define
n
L wi "Ci(Yi)

i=1

with
n

wi' 0; i:l wi> 0; Yi E'Y i

stand for y~l».
~

Denoting

W W
1

n ••• n W
n

(15)

("n" is the fuzzy intersection, e.g., the min operator), we
get the following fuzzy set of evaluations

,.. --
V = BOW (16 )

where "." means a convenient composition rule of the fuzzy re--lation B and the fuzzy set W. When using the sup-min compo-

sition we obtain

sup min[p~(wl,••• ,wn'Yl' ••• 'Yn)'·
w1,·~·,wn

( 17)
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Finally we get

(1) (1)
v 1 = 1lV-( Y 1 ' ••• , Yn )

which is the desired evaluation in the fuzzy case.

4. DESIGN OF A PROCESS FOR CRUDE OIL MANUFACTURING

421

( 18)

Due to increasing prices and decreasing availability of
crude oil, the production of gasoline and diesel fuel only by
distillation is not economic at the present time. On the other
hand, we have to a~ply conversion processes (i.e. chemical
reactions) to obtaln the desired products (fuels) from higher
boiling crude oil fractions. But this can be done only by
using the expensive hydrogen. Cracking of higher boiling dis
tillates is commonly realized catalytically with high tempe
ratures and pressures. Moreover, we have to apply hydroraffi
nation because of the presence of undesired sulfur, nitrogen
and oxygen compounds in the raw material. These two processes
can be carried out either in a reactor with a bifunctional
catalyst or in separated reactors with a mixed catalyst. That
is, the reactor system can be one-, two- or quasi-one-stage
type. Since conversion of the raw material is not complete,
we have to separate the non-converted raw material from the
products for recycling. Moreover, we have to split the final
products, i.e., the gasoline and diesel fuel, for removing
undesired by-products as, e.g., cracking gas products. Depend
ing on the separation of the reaction mixture, being realised
after the first or second reactor, we differentiate the inter
mediate and final fractionation. Both kinds may occur combined
in one stage as well. Now the problem consists in the deter
mination of a structure of a process system which guarantees
high conversion of raw material with low costs for the erect
ing and running of equipment. The analysis of alternate
process structures leads to six main variants:

1. A double-stage reactor system with common intermediate
and final fractionation (Fig. 1),

2. A quasi-one-stage reactor system with final fractio
nation (Fig. 2),

3. A double-stage reactor system without intermediate
fractionation (Fig. 3).

In the first reaction stage a refining catalyst is used,
in the second one. a cracking catalyst is taken. The remaining
three variants are analogous, only this time we use bifunctio
nal and cracking catalysts.

As the performance criteria, reflecting different proper
ties of the proGess system, we chose the following ones:

1• °1 - Fixed costs -+ min

2. °2 - Variable costs -+ min

3. °3 - Overall costs -+ min

4. °4 Need for hydrogen -+ min

5. °5 By-products (gas) -+ min
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Fresh H2

PARETO POINTS AND HYDROCRACKING PROCESSES

Stage 1 (quasi-one-stage)

423

Fig. 2. Quasl-one-stage cracking process.

Fresh H2

Stage 1 Stage 2

Fig. 3. Two-stage crackinq process without intermedlate fractloning.



1424 OPTIMIZATION MODELS, FUZZY SETS, AND POSSIBILITY THEORY

6. Q
6

- Yield of gasoline ~ max

7. Q
7

- Yield of diesel fuel ~ max

The last two criteria include demands on the flexibility
of the process system.

The control variables are the main dimensions of the
process elements, technological variables, composition of raw
material, etc.

The process of finding a compromise between the above cri
teria is difficult. We cannot construct a global overall ob
jective function in the usual way because of the heterogeneity
of the criteria. It was the complexity of the evaluations which
led us to question three experts for obtaining the pairwise
preference matrices. As a result we got:

1/5 1/3 1/5 1/7 1/7

5 1 3 1/7 1 1/3 1/3

3 1/3 1/3 1 1/5 1/5

A
1

5 7 3 1 5 1/5 1/5

1 1 1 1/5 1 1/5 1/5

7355511

7355511

1 2

1/2 1

1/2 1/3

1/3 2

3 5

4 5

5 5

2

1/2

5 5

3 3

4 4
5 5

5 5

2

3

1

4

4

4

4

1/5

1/5

1

3

4

5

5

3 1/3 1/4

1/2 1/5 1/5

1/4 1/4 1/4

1 1/3 1/4

3 1 3

4 1/3

5 1/3 2

1/3 1/4 1/5

1/3 1/4 1/5

1/3 1/4 1/5

1 1/2 1/2

219

2 1/9 1

2 1/9 1

1/5

1/5

1/5

1/5

1/2

1/2

1

1/5

1/5

1/5

1/2

9

The corresponding weights are, due to (5) :

w(1) (0.031,0.083,0.055,0.157,0.051,0,312,0.312)

w(2) (0.086,0.052,0.038,0.07,0.312,0.192,0.249)
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Table

,
lind 1 1 Ql Q2 Q3 Q4 Q5 Q6 Q7 vI vIIproc

1 5 .632 5.61 6.24 644 69.5 524 692 .444 .448
2 2 .642 5.44 6.08 616 62.0 507 604 .488 .491
3 4 .732 5.95 6.68 696 96.7 482 619 .321 .336
4 1 .904 5.90 6.80 631 64.9 513 620 .466 .471
5 6 .995 5.49 6.49 577 70.7 544 574 .438 .429
6 3 1.046 5.09 6.14 472 47.4 560 588 .616 .599

2 7 3 1.076 4.85 5.93 476 47.3 540 606 .636 .620
8 2 .643 5.41 6.06 613 64.1 495 607 .476 .479
9 6 1. 0 10 5.46 6.47 584 64.1 543 591 .485 .479

10 5 .635 5.54 6.18 640 75.9 501 599 .417 .423

--;111
4 .768 5.81 6.57 693 92.8 473 639 .346 .361

3 1.070 4.86 55.93 475 47.7 543 604 .635 .6193 12
i13 2 .644 5.41 6.05 613 64.4 494 607 .474 .477
I 14 5 .635 5.55 6.18 640 75.6 502 600 .421 .427

15 6 1.009 5.46 6.47 584 65.1 544 591 .484 .478
16 4 .750 5.81 6.66 694 92.8 474 628 .346 .361
17 1 .921 5.58 6.61 624 57.4 497 635 .509 .514

4 18 3 1.057 5.01 6.07 457 58.2 553 579 .571 .552
19 2 .786 5.72 6.51 553 61 .2 391 691 .520 .531
20 6 1 . 157 5.88 7.03 572 46.4 545 586 .494 .485

I 21 1 1.239 6.16 7.40 583 0.0 471 663 .649 .648
I 22 5 .799 6.08 6.88 607 14.9 400 670 .563 .572
1 23 4 1 .071 6.17 7.24 642 67.8 469 676 .481 .494
I

5
1

24 2 .831 5.88 6.71 572 0.0 451 677 .707 .712
25 1 1 .234 6.18 7.41 587 0.0 479 569 .648 .648

! 26 3 1 .427 6.67 8.09 501 0.0 520 607 .594 .578
in 4 1. 092 6.31 7.40 650 5.6 487 675 .651 .660
, 28 5 .789 6.21 6.99 622 9.1 458 656 .611 .619

6 29 6 1. 081 6,27 7.35 587 66.6 562 573 .415 .408
30 3 1 .212 5.62 6.83 484 87.4 561 584 .456 .441
31 2 .911 5.92 6.84 626 62.9 535 590 .439 .439
32 5 .686 5.84 6.53 647 71 .9 534 584 .415 .419
33 1 .966 6.43 7.39 638 60.4 529 609 .438 .442
34 4 .958 6.39 7.35 687 58.9 528 613 .428 .439

7 35 2 .823 5.75 6.57 555 5.5 389 692 .659 .666
36 5 .947 6.58 7.53 636 17.5 413 685 .549 .562
37 4 1 .001 6.07 7.07 652 7.0 488 680 .679 .690
38 1 1 • 164 6.02 7.18 594 .5 497 669 .702 .704
39 6 1.484 6.71 8.19 592 7.9 481 655 .589 .584
40 3 1.380 5.80 6.18 515 0.0 513 642 .725 .709

where: lind number of criterion the individual extremum of
which has been determined

1 - enumeration of Pareto-point
lP - number of the process whose best value is realized

Units
proc

costs, [Q4]=m3H2 /m3of measurement: [Ql]=[Q2]=[Q3 1= unity of

raw material, [Q5] = [Q6] = [Q7] = kilotons
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w(3) = (0,041,0.033,0,73,0,124,0.392,0.168,0.168)

For expert E1 the production of gasoline and diesel fuel is most

important, for expert E2 the minimization of by-products and

maximal gasoline output. Expert E3 thinks that the minimization

of by-product is very important. The questioned experts on

their part were evaluated by an authorized board with regard to

their knowledge,

We consider two cases:

a) The knowledge of the experts is of equal quality. That
is, we have E = (c ij ); i,j=1,2,3, and c ij =1 when E

denotes the preference matrix for the experts.

b) We consider the following preference matrix

[,;5

1/3

;]E 1

1/7

Let w(e) be the vector of weights for the evaluation of the

experts; then if w(e) (w(e) w(e) w(e)) we have
1 ' 2 ' 3 ,

w.
1.

3
L

j=1
w~ w~e)

1. J
i = 1, •• ,,7,

This means that we take the average over all the preference

matrices Aj • The numerical results are listed in Table 1. There,

vI is for case a) and vII for case b). The parameters OJ are

equal to 1. The results for vI and vII obtained by (11) do not

differ as much as one could expect. This is explained by the

situation that all the three experts consider the performance

criteria QS-Q7 very important. Therefore those Pareto-points

have a high evaluation which is near to the individual extrema

for QS-Q7' Three process systems are therefore favoured (i.e.

40,38,24).

S.MAGNETIC TAPE PRODUCTION

Magnetic tapes belong to those kinds of information car
riers which are being produced as audio, video and computer
tapes in an increasing volume and qualities for quite different
users.

A magnetic tape consists of a support and several layers
applied to the support, e.g., an intermediate layer improving
the adhesiveness of the magnetic film. The latter contains the
ferric or chromic oxide. Various kinds of special layers may



PARETO POINTS AND HYDROCRACKING PROCESSES 427

occur. In Fig. 4 the main production process stages are summa
rized. The production system consists of the following subsys
tems:

- production of support,
- production of intermediate layer,
- production of magnetic suspension,
- coating and drying,
- repulping and confectioning (cutting, testing, sizing,

packaging) •

The subsystem "production of magnetic suspension" and
"coating and drying" are subject to polyoptimal control because
of their special importance for the quality of the final pro
ducts.

Homogenization of the suspension is the crucial operation
of the first subsystem. In the second subsystem the crucial
operations are coating, magnetization, and drying, with a spe
cial profile of temperature, and calendering.

High requirements are put on the magnetic tape with regard
to its mechanic, magnetic and electro-acoustic properties. We
have, e.g., the thickness of the film, oscillation, tensile
strength, etc. as essential mechanic influence factors. The
electro-acoustic properties and factors are determined as rela
tive values to reference tapes. We can list, e.g., the limiting
current interval, nominal current interval, sensitivity, noise
voltage interval, etc. They may be different for different
types of tapes.

Not all properties and influence factors are non-correla
ted and of equal importance; some of them can be treated as
restrictions. The following performance criteria are of special
importance for the optimal control: sensitivity (D s )' high fre-

quency sensitivity (Dh ), distortion damping measure (Dd ), maxi

mal modulation for 10 kHz (D10max)' They are all electro-acous

tic factors.

The following significant influence factors turned out as
a result of statistical modelling (the list is not complete) :
specific polarisation of saturation, stability and bulk densi
ty of the pigment, total reflexion and orientation quotient of
the calendered web, coercive field intensity, etc. The models
have been set up in the form of polynomial functions with a
high significance level:

15 2
Q,(x 1 , ••• ,x 15 ) = L (a. ,x

J
' + bl.'J'X

J
'); i=1, ••• ,4

1. j=1 l.J

The diversity of the desired quality set of the products and
the pertinent production situation, involve flexible and quick
ly applicable decision aids. We are going to consider three
different decision making situations:

1. Magnetic tapes are desired with high quality proper
ties for the recording and reproducing of high frequencies. We
obtain the following preference matrix
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SUbsystem
"Preparation
of suspension"

SUbsystem
"Coating"

Solvent, binder, auxiliaries

.L
M~x~ng

. ~-~-.---.-"II
D~spers~ng P~gment

~
Mixing

•Coac,e I~'teCiog

Fine filtering Recirculation
~ f_i....\ter

_______F_i_n_e_s~t__lilteciog

Winding-off of sheet

!
Coating

1
Drying

~
calenrering

winding-on of web

Figure 4: Main stages of magnetic tape production
(Subsystem "Preparation of suspension" and
"Coating" )
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D Dh Dd D10maxs

D r 1/8 3/2 1/81s

A
Dh 8 5 2

Dd 2/3 1/5 1 1/5

D10max 8 1/2 5 1

2 • There are tapes to be produced with sensitivity and high
distortion damping measure. We use

[1;'
8 3/2 8

1 1/5 3/2
A

2/3 5 1 5

1/8 2/3 1/5
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3. We are faced with the demand to improve the high frequency
sensitivity without an essential deterioration of the relative
sensitivity Ds • We used

A
5

1/5

2/3

1/5

1

1/5

1/5

5

5

1/5

3/2

5

5

Applying formula (5), we obtain the following global weights

Table 2

case 1

0.066

0.508

0.068

0.358

case 2 case 3

0.526 0.200

0.074 0.590

0.340 0.050

0.060 0.160

We investigate 40 situations of production efficient with re
gard to the four criteria introduced above. In Table 3 we list

some of them to give an idea of the quantitative relation
ships
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No

2

3

4

5

6

7

8

9

Maximum

Minimum
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Table 3

° °h °d °10maxs

0.52 5.07 41. 91 5.75

1. 13 4.82 43.43 6.30

2.13 4.39 46.27 7.16

2.43 4.25 47.38 7.39

2.73 4. 12 48.56 7.56

2.92 3.75 52.56 7.47

2.78 3.82 51.85 7.44

2.35 4. 02 50.62 7.08

2.66 3.88 51.92 7.19

5.23 6.60 67.95 8.31

-9.38 -1.04 -77.33 -9.09

The units are in dB.

Table 4 contains the rank-ordering of the points, whereby
we changed the exponents OJ:

Table 4

Case Exponents 0. Global rank-ordering (five best points)

°1 - °4 1 1 2 3 4 5

°1 - °4 5 5 4 3 6 7

2 °1 - °4 6 7 9 5 8

°1 - °4 5 6 7 9 5 8

3 °1 - °4 1 2 3 4 5

°1 - °4 5 5 4 3 2

From these results we derived valuable parameters for op-
timal production regimes as well as necessary improvements of

quality. It is of great importance for the decision maker that
he is enabled (by a dialogue system) to respond much more flex
ibly and quickly to the customer's demands and to special ex
port conditions into areas with changeable requirements as to
quality properties.
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OPTUIAL CLASSIFIER DESIGN USING FUZZY k-NEAREST
NEIGHBOR RULES
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Abstract. A recently proposed classifier based
on the fuzzy k-nearest neighbor rule (NNR) which
is optimized over k with respect to predicted
error rate is implemented, Optimal fuzzy parti
tions of (labelled) training sets produced by
(i) Jozwik's method and (iiI Fuzzy c-Means (FCM)
are used as inputs to fuzzy k-NNR's for classi
fication of new objects. Performance of the re
sultant classifiers are compared to the ccnven
tional (hard) k-NNR. Numerical examples illus
trating comparative performance of the three
classifiers using samples from synthetic mixtu
res of normal densities and Anderson's Iris data
are given. Our results indicate that partition
ing labelled data with FCM, followed by selec
tion of an optimal k using iteration on k, yield
somewhat better fuzzy k-NNR performance on sub
sequent test sets than the method of Jozwik.
Moreover, the fuzzy k-NNR classifier based on
either method of fuzzy labelling seems superior
to the conventional hard k-NNR.

Keywords: classifier design, fuzzy c-means,
fuzzy k-NNR, nearest neighbor rules,
pattern recognition.

1. INTRODUCTION

A statisr.ical pattern recognition system is a decision rule
that assigns test samples to one of c classes. The performance
of such a system is measured by estimating the predicted proba
bility of error of misclassification. The theoretically minimum
error for all statistical decision rules is the Bayes error
(which is called Bayes risk for non 0-1 loss matrices), PB'

given by PB = 1 - Jmax{Pig(~/i)}dX, where g(~/i) and Pi are
l

respectively the class-conditional probability density function
and the a priori probability of the i-th class. The mixture from

which training and testing data are drawn is thus f(x) = ~
- l

Pig(~/i), with feature vectors ~ERq. The "true" Bayes error PB

is in practice unknown since it is a function of the prior pro-

432
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babilities and probability density functions of the classes,
which in applications are themselves unknown. One of the most
widely used approaches for classifier design when labelled sam
ples are available is the k-NNR. This method is called "non-pa
rametric" because it functions without knowledge of the unknown
parameters of the g(x/i). k-NNR's can be used to produce estima
tes of bounds of PB which are asymptotically correct. lIoreover,

k-NNR's can also be used as the classifier of record for on line
decision making. In this latter instance an estimate of PB is

obtained by counting the number of samples misclassified by the
k-NNR. In this paper a scheme for a fuzzy k-NNR developed by
Jozwik (1983) will be implemented. In Jozwik's scheme, a "best"
reference set (training set), along with an optimal k and opti
mal fuzzy partition for the training set, will be used to clas
sify test sets. The results will be compared to those obtained
when a fuzzy partition produced by the fuzzy c-means method
described in Bezdek (1981) is used instead. Our numerical exam
ples will show that fuzzy partitions derived from either method
result in lower misclassification errors than hard partitions
do.

In subsequent sections the following notation will be used.
Let X ={~1'~2"'.'~n}be a sample of n observations ~k,"Rq; xk
is the k-th feature vector; xkj the j-th feature of ~k' A con

ventional hard c-partition of X can be represented by a cxn ma

trix W = [!i.(1)~(2) ••• !!(n)] which satisfies three conditions:

( 1a)

( 1c)

( 1b)

W ik E{O,l}, 1.0"c, l"k"n

c
L wik 1 , l"k<n

i=l

n

° < L wOk < n, l"i"c
k= 1 l

It is useful in the sequel to regard the i-th column \I(i) of H

as a label vector attached to ~i; e.g., (~(i»T = (0,;,1,0) E

R
4 ~ ~i E class 3. When the wik's can take on values in the

unit interval [0,1] in (la), \I becomes a fuzzy c-partition of X,

In this case the values wik can be interpreted as grades of

membership of the ~k's in c fuzzy subsets of X. We shall denote

the set of all fuzzy c-partitions of X by Mfc ' We partition X

into a training (or design) set Xd with n d elements; a test set

Xt with n t elements; and a third set Xc with nc elements for

testing the performance of the k-NNR classifier: (n d + n t + nc )=

= n. The samples corresponding to (n t + n c ) are ordinarily pool

ed as a "test set". We shall reserve nc of the n samples for
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"final" testing, because Jozwik's method sometimes chooses an

optimal k to be used with all (nd + n t ) samples, Kittler and

Devijver (1981) suggest dividing Xd~Xt with a partition ratio

(nd:n t ) = (1:2). Our examples use nc = (n/l0) and other parti

tion ratios, namely: (1:1), (2:1), (1:9), and (9:1).

The traditional hard k-NNR, the fuzzy c-means method, and

Jozwik's schemes are briefly described in sections 2, 3 and 4,

respectively. Numerical results of the performance of all three

methods are discussed in section 5.

2. HARD k-NNR

The 1-NNR decision rule assigns a test sample to the class
of the nearest neighbor in a set of labelled points according
to some distance metric. In the k-NNR case, the test sample is
assigned to the class which has the highest representation
amongst the k nearest neighbors. Ties are broken arbitrarily.
This decision rule is well discussed in, e.g., Kittler and
Devijver (1982).

3. FUZZY C-MEANS (FCM)

The fuzzy c-means algorithms can be used to obtain fuzzy
partitions for the training set to be used in the fuzzy k-NNR.
Optimal fuzzy partitions are found by minimizing the objective
function (c.t. Bezdek, 1981)

n c
J

m
(\l,~) = L L

k=1 i=1
(2 )

where 1 " m < =, II * II is any inner product norm on Rq , HOlfc and

~ = (~1'~2'''''~c) is a vector of centers, :£iERq, 1 ~ i ( c.

The exponent (m) controls the relative weights placed on each

of the squared errors" ~k - ~iIl2. As m approaches 1, partitions

that minimize J m become increasingly hard. (i.e., wik ~ 0 or 1

as m : 1). Briefly, we summarize the

FUZZY c-lIEANS (FCM) ALGORITHM:

Step 1: Fix c,m, and II * II. Choose an initial WoEMfc ; then at

step j, j = 1,2, ••• J!1AX (some maximum number of itera

tions) :

Step 2. Compute means (:£i)j' i = 1,2, ••• ,c,by

n n
(z,). E (W'k)m

J
, ~k/ L (w k)m

-1. J k=1 1. k=1 1.
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Step 3. Compute an updated membership array Il j +
1

by

c 2/(m-1) -1
( L (d·k/d k) )
s~ 1 1 S

435

Step 40 Compare Wj + 1 to Wj • If IIll j + 1 - Wjll< E; Stop, and at

termination call I'I j +1. ~ Wfcm ; Otherwise, set Il j + 1 Wand

return to step 2.

Further details of the FCM algorithms are available in Bezdek

(1981) •

4. JOZWIK'S FUZZY k-NNR

In order to describe Jozwik's method, we digress to define

the "standard" fuzzy k-NNR (it is, of course, non-unique - there

are other ways to fuzzify the conventional k-NN decision strate

gy). Let W be a fuzzy c-partition of Xd ~{~1 '~2".' ,l5.nd}' and

let x be a test vector to be classified. (~may or may not be

in Xd !). Find the k-NN's to ~' in Xd , and let K(x') denote in

dices of the columns in W corresponding to the k-NN's of x'.

Form the fuzzy label vector

.Y(~') ~ L!l(j)/k; jEK(x')
j

The vector .Y(~') has components between 0 and 1 that represent

the membership of ~' in each of the c classes as determined by

the k-NN's to ~'. If the columns of Ware all hard, ~(~') redu

ces to an estimate of ~(*/~'), i.e.

p(1/K' )

p(2/K' )
(4 )

p(c/~')

a non-parametric estimate of the posterior probabilities that,

given ~', it came from the various classes. Thus, a strategy

that is formally analogous to Bayesian decision theory is to

assign~' to the class in which it achieves maximum membership.

This is the fuzzy k-NNR alluded to below. Note that when all of
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fuzzy decision

~j to the class

the W(j),s in (3) are hard, labelling~' by maximum membership

is exactly the k-NN strategy: assign ~' to the class receiving

the maximum number of votes from neighbors in K(~'). Now we

describe Jozwik's implementation of this fuzzy decision strate

gy. Jozwik's scheme involves two stages:

Stage 1: Start with a labelled training data set Xd • The class

labels of the nd points in Xd correspond to a unique hard c-par

tition of X
d

(say W
o
)' Estimate the probability of error using

the "leave one out" idea introduced by Lachenbruch (1965) as

follows. Let k be the number of neighbors nearest to ~. Then:

(1.1): For k = 1,2, ••• ,n
d
-l; for j = 1,2, ••• ,nd :

Take x. from Xd • Classify ~. by forming the
-J ( J

vector ~(~j) = L lio s) / k; SEK(~j)' Then assign
s

associated with its largest membership. If ~j is wrongly classi-

fied, then set e jk = 1, otherwise set e jk = O. (e jk is an error

counter); next k.

(1.2) For nach k = 1,2, , •• ,nd-l, estimate the Bayes error as
d

qk = (.L e'k)/nd •
J =1 J

(1.3) The k which minimizes qk is the optimal number of initial

nearest neighbors. Set ko = the index which minimizes qk

and Po = qk • Now we have (Wo ' ko ' po)' where here the

initial Wo °is the supplied hard c-partition of Xd (cf.

Step 1 of FCM, where wo might be fuzzy; the return from

Step 2.1 below also has Wo fuzzy).

(1.4) For h = 0,1,2, ••• : define !t~~; (kh:.i:(iii) + H~i»)/(kh+1),

l
' Ii)

= 1,2, .•• ,nd • ~h+l is the i-th column of a (new) fuzzy

c-partition Wh +1 of Xd ' and Y(~i) is calculated as in (1.1)

but with 'Vh •

(1.5) Repeat (1.1) - (1.4) to obtain a sequence (Wo,ko'po)'

(W 1 ,k 1 ,Pl) , ••• , (Wh,kh,Ph)' Iteration on h is terminated at

the smallest index h such that Ph ~ Ph+l' At this h set

(W 1*,k 1*,Pl*) = ("h,kh,Ph)' where ''1 1* is the "optimal"

fuzzy partition of Xd ' k 1* is the optimal number of near-
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est neighbors, and P1* is the optimal estimate of the em

pirical error. We emphasize that in this process Ho is

hard (the initial labels for Xd ) and W1 ,W2 , ••• ,Hh +1 is a

sequence of h fuzzy c-partitions of Xd •

Stage 2:

(2.1) With W1* use the fuzzy k 1* labels at (3) to produce,

with Xt ={ ~1"" '~nt} the "test" set, n t fuzzy column

vectors Y(li
1

) , ••• ,Y(lin ). Let V1 * denote the (c x n t ) mat-
t

rix of these column vectors. Append v 1* to W1*, and call

the c x (nd + n t ) matrix lw 1*,v
1

*J = Won This Wo is a

fuzzy c-partition of Xd U Xt • Repeat (1.1) - (1.5) by ite

ration on h until from (1.5) we obtain:

(2.2) (W2 *, k 2*, P2*) corresponding to the smallest index h

such that Ph~Ph+1.

(2.3) Let (Xdf , Wf , k f , Pf) denote the final reference (design)

set, fuzzy c-partition, number of nearest neighbors, and

estimate for PB' The "optimal" choice for this 4-tuple is

selected by minimizing Pk*:

If P1* ~ P2*: (Xdf , Wf , k f , Pf) (Xd , W1*, k 1*, P1*)

(Sa)

If P1* > P2*: (X df , Wf , k f , Pf) = (Xd U Xt ,\"12 *,k 2 *,P2*)

(Sb)

(2.4) Apply (Xdf , Wf , k f , Pf) to Xc as a check against the pre

dicted performance Pf' This results in a second estimate

(say pc) of PB.

Jozwik's algorithm is admittedly complex. However, the ex

amples below seem to justify it in terms of better performance

than the hard k-NNR. Several theoretical and computational ques

tions concerning the method invite attention. For example, the

termination scheme for (1.5) stops at the first h where

Ph+1 ~ Ph' One wonders: (i) is Ph monotone decreasing with h

until this point? (ii) is there a pair (h+m, h+m+1) with m >

so that Ph+m ~ Ph+m+1 and Ph+m < Ph? (i.e. does it stop too

soon?). Finally, one wonders whether the "computations of both

stages could be circumvented by starting with an optimal Wf ob

tained by a different fuzzy partitioning scheme. The experiments
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described below are designed with these questions in mind.

5. NUI-IERICAL RESULTS

The Euclidean norm was used in all calculations involving

nearest neighbors for the data sets A,B,C,C' described below.

In Jozwik's scheme, classification is tried with k nearest

neighbors for k ~ 1 to n
d
-1. Our first observation is that at

each h, there is a threshold value for k beyond which the pro

bability of error Ph never decreased for larger values of k.

Consequently, we limited k to kmax ~ floor (lind)' the limit sug

gested by Kittler and Devijver (1981). Jozwik's method picks a

"best" reference set Xdf ~ X
d

or (X
d

U Xt ) to be used to clas

sify new data. However, empirical evidence suggests that stage 2

of the algorithm is often unnecessary. Table 1 exhibits the re

sults of processing the 100 samples Xc from data set C using

stage 1 and then stage 2 of Jozwik's method: Pc is the observed

error rate achieved by applying, respectively, (;'1
1
*, k

1
*) from

Xd ' and (W2 *, k 2 *1 from Xd U Xt ' to Xc. The mean absolute dif

ference in observed errors is exactly 1%, with Stage 1 achieving

the smaller average error rate. From this one may infer that 

for this sample at least - the stage 2 calculations added nothing

to future classifier performance. Secondly, stage of Jozwik's

method was (for data sets A and B) executed for h 50 itera-

tions to investigate the stopping criterion for (1.5). Once the

h so that Ph ~ Ph+l was found, no smaller error could be found

for larger h.

Table 1. Effect of stage 2 calculations on Pc for Xc from data
set C*

( 1 : 2) )
( 1 : 1 )
( 2 : 1 )
( 1 : 9 I
(9 : 1 )

Pc using W1*,k 1 *

X
R

~ X
d

.26

.28

.32

.28

.29

Pc using W2*,k 2 *

X
R

~ X
d

U X
t

.30

.29

.31

.28

.30

*PB 0.23 for data set C
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This argues well for the proposed rule in (1.5). The three data
sets used to illustrate our results are:

A: Anderson's Iris data (c.f. Fisher, 1936)
c=3 classes; q = 4 features;
50 samples from each class: (nd+n t +n c ) 150

B: Artifically generated univariate normal mixtures
c=2 classes; q = 1 feature;

class 1: N(1,1)} ~ P = 0 31 ~ True (optimal) error rate
class 2: N(2,1) B •

500 samples from each class; (nd+nt+nc ) = 1000.

error
rate

0.24 - True

c: Artifically generated bivariate normal mixtures
c=2 classes; q=2 features; I = [6"J the 2-2 identity

T 1J
class 1: N(1l 1 ,I); 11 1 = (1,1)}~

T PB
class 2: N(1l2,I); 112 = (2,2)

500 samples from each class; (nd+nt+nc ) = 1000.

matrix

For each of the three data sets and each partition ratio

(nd:n t ) Jozwik's scheme was executed for k = 1 to Ynd , and the

optimal outputs (Xdf , Wf , k f , Pf) were used to classify Xc.

Observed probabilities of error using the fuzzy kf-NNR on Xc

are called Pc' Using fuzzy c-means (for m=2) a fuzzy c-parti

tion was obtained on Xdf and was also used to classify Xc with

the fuzzy kf-NRR. Different values of m did not produce signi

ficantly different results so the outputs shown below are based

on m = 2. Similarly, the hard k-NNR was implemented for k=1 to

vnd and an optimal knn to minimize observed Pnn was obtained.

Finally, all three methods were used to classify a new data set

from mixture C to see which method's observed probability of

error appeared least sensitive to sample variations. For the

Iris data P1* was first obtained at the 2nd iteration, and no

smaller P1* could be found for larger values of h. Similarly,

for the univariate mixture, P1* was obtained at h=2 and remain

ed constant for all h>2. From these results we infer that

Jozwik's stopping rule (1.5) is probably "optimal" in the sense

that P1* achieves a global minimum at the first h such that P1*

is found.

IRIS Data: A

Table 2 shows the results obtained using all three methods
on the Iris data. In general, there is not much difference in
the probability of error obtained using ~ozwik's method and the
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Table 2. Iris data set A

a) Jozwik

!Partition
Stage 1 Stage 2 Pc (Using!Ratio n d n

t
n

k
l * P * k 2* *c P 2 Wf,kfl(nd :n

t
) 1

( 1 : 2) 36 78 36 1 .056 1 .044 .028
( 1 : 1 ) 57 57 36 1 .053 1 .018 .028 I

(2: 1 ) 78 36 36 8 .026 10 .018 .028 I
( 1 : 9) 12 102 36 , 1 .000 5 .070 .000 i
(9: 1) 102 12 36 8 .019 10 .017 .056

1

I

b) fuzzy c-means

/
lPartition
!ratio
(nd:n t )

Ik pc(Usinc
Pfcm' f

Wf ,kfll
em I

(1 : 2)
( 1 : 1)
(2: 1)
( 1 : 9 I
(9 : 1 )

6
1
1
1
1

.333

.056

.056

.389

.056

1
1
8
1

10

.361
.056
• 1 11
.389
.083

.056: 1
0.56 "10
.056;10
• 056/1
.056 10

. 056 I~

.056

.083 I

.056 I

.083

c) hard k-NNR

/ X
R

= X
d

X = Xd
X

tR

artition
Pc (using Pc (usin~atio k nn Pnn k f

k Pnn
k

f
(n

d
:n

t
) WR,k f ) nn WR,k f )

(1: 2) 1 .028 1 .028 1 .028 1 .028
( 1 : 1 ) 3 .000 1 .056 1 .028 1 .028
(2: 1 ) 4 .000 10 .028 1 .028 10 .056
( 1 : 9) 1 .000 1 .000 1 .028 1 .028
(9 : 1 ) 1 .028 10 .056 1 .028 10 .056

Notes 1. k f optimal number of NN's using W
f

from J6zwik's
Method

2. k
fcm

optimal number of NN's using W
fcm

from FCM

3. Pfcm minimal error rate achieved using (Wfcm,kfcm)
on XR•

4. k optimal number of NN's using the hard NN rulenn with W
5. Pnn minimaf error rate achieved using (WR,knn )

on X
6. WR given~ard c-partition of XR
7. Pc observed error rate attained on Xc using 1 of

3 rules.
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hard k-NNR. The error ranges from 0.028 to 0.056. The optimal

knn's using the hard k-NNR alone are in general smaller than

Jozwik's kf , and resulted in lower probabilities of observed

error on Xc' Using Jozwik's optimal k f with the hard k-NNR re

sults in higher error only in the (1:1) case. This example also

shows that fuzzy c-means does not perform well with small train

ing data sets. Note, e,g., that Pfcm for Xd at (1:9) is 38.9%,

as opposed to 5.6% at (9:1). The probability of error increases

as the size of the training set decreases. Due to the small

number of samples in the Iris data, all of these results must

be interpreted with some caution.

Univariate normal mixtures: B

As seen in Table 3, the hard k-NNR using Jozwik's optimal

k f with the smaller reference set yields an observed probabili

ty of err0r greater than that obtained by Jozwik's method in

all cases except for the (2:1) partition ratio. Using the en

larged reference set, the error is smaller in 2 out of the 5

cases for the hard kf-NNR, but the optimal Pnn achieved by the

hard k-NNR is smaller than Jozwik's in all cases except for the

(1:9) partition ratio when using the smaller reference set.

With the larger reference set, the optimal Pnn attained by the

hard k-NNR is 0.29, which is smaller than that of Jozwik's, al

though this is achieved at very high k values. Finally, fuzzy

c-means performs better than either of the others overall, with

errors between 0,29 and 0,30. FCM-NNR errors seem more stable,

since they are not affected greatly by the number of nearest

neighbors or different partition ratios. The "true" Bayes error

rate for data set B is 0.3085; the FCM-NNR method gives very

close estimates to this Bayes error.

Bivariate normal mixtures: C

Basically, the same conclusions can be derived here as for

the univariate case. In Table 4 it can be seen that the hard

k-NNR using the optimal k f found by Jozwik's method resulted

in a greater error than in Jozwik's method in all cases except

the (1:9) partition ratio. As in the univariate case, the mini

mum error Pnn achieved by the hard k-NNR is slightly smaller
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Table 3. Univariate normal mixture data set B*

a) Jozwik

Partition Stage 1 Stage 2 , P (using
ratio n d

n
t n k 1

* P1 * k 2 * P 2
* c

(nd :n
t

) c Wf,kfl

( 1 : 2) 300 600 100 9 .28 21 .32 .32
( 1 : 1) 450 450 100 8 .28 5 .32 .36
(2: 1 ) 600 300 100 ; 3 .28 2 .30 .42
( 1 : 9 ) 90 810 100 1 .25 3 .32 .32
(9: 1) 810 90 100 5 .29 5 .29 .31

b) fuzzy c-means

/ X
R

~ Xd ! XR
~ Xd U X

t

lPartition
Pc (using Pc (usingratio k fcm Pfcm k f

Ik Pfcm k f
(nd:n t ) Wfcm,k f )

I fern
Wfcm,k f )

( 1 : 2) 2 .29 9 .30 1 1 .29 9 .30
( 1 : 1 ) 1 .29 8 .30 11 .29 8 .30
(2: 1) 1 .29 3 .29 11 .29 3 .30
( 1 : 9) 8 .3 1 1 .33 1 1 .29 1 .30
(9: 1) 1 .29 5 .29 11 .29 5 .30

c) hard k-NNR

/ XR
~ Xd XR

~ X
d

U X
t

Partition Pc (using pc(usin~

ratio k Pnn k f WR,kf )
k fcm Pfcm k f WR,kf )(nd :n t ) nn

( 1 : 2) 15 .29 9 .38 25 .29 9 .32
( 1 : 1) 15 .34 8 .40 25 .29 8 .33
(2: 1) 18 .34 3 .39 25 .29 3 .36
( 1 : 9) 9 .40 1 .52 25 .29 1 .41
(9: 1) 16 .27 5 .38 25 .29 5 .35

*PB 0.31 for data set B
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*Table 4. Bivariate normal mixture data set C

a) Jozwik

Partition Stage 1 Stage 2 (usingatio n d n t n k * P1 * k * P 2 * Pc
(n

d
:n

t
) c 1 2

Wf,k f }

( 1: 2) 300 600 100 1 .160 2 .221 .26
(1: 1) 450 450 100 1 .191 1 .219 .28
(2: 1)

1

600 300 100 2

•

158

1

4 .210 .32
( 1 : 9) 90 810 100 3 .20 4 .261 .28
(9: 1) 810 90 100 5 .199 7 .207 .29

b) fuzzy c-means

/ XR
= Xd

X
R

= Xd U X
t

Partition Pc (using Pc (using
ratio k

fcm Pfcm k f Wfcm,k f )
k fcm P fcm k f Wfcm,k f )(n

d
:n

t
)

(1: 2) 9 .25 1 .27 7 .26 1 .27
( 1: 1) 13 .25 1 .27 7 .26 1 .27
(2: 1) 22 .25 2 .27 7 .26 2 .27
(1: 9) 7 .23 3 .24 7 .26 3 .27
(9: 1) 2 .26 5 .27 7 .26 5 .27

c) hard k-NNR

/ X
R

= X
d

X
R

= X
d U X

t

lPartition Pc (using Pc (using
ratio k Pnn k f WR,k f )

k PPnn k f WR,k f }
(nd:nt )

nn nn

(1: 2) 8 .24 1 .33 12 .27 1 .34
(1: 1) 16 .27 1 .33 12 .27 1 .34
(2: 1) 17 .27 2 .33 12 .27 2 .35
(1: 9) 6 .24 3 .25 12 .27 3 .32
(9: 1) 11 .27 5 .34 12 .27 5 .34

*PB 0.23 for data set C
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than Jozwik's, but this is achieved at a high value of k. Fuzzy
c-means again resulted in an even smaller probability of error
in all cases, with an average error of about 0.27. The "true"
Bayes error for mixture C is 0.2398.

Fresh bivariate normal mixture: C'

Table 5 lists the results of processing a new sample C' from

bivariate mixture C of size n = 1000 (500 vectors each from

n(~1,I),n(~2,I». The entire data set C' is regarded as a "final"

test set (in our previous notation, C' = X~). For each of the

five partition ratios of the previous examples, the nd design

samples (with (n
d

/2) from each class), together with their al

gorithmic outputs, were used to test classify data set C'. For

Jozwik's method, P~ using (Wf , k f ) is the error achieved on C'

using k f from processing C as in Table 4; Wf is from Stage 1 of

Table 4 processing. The desire in Table 5 is to see whether the

performance of rules (W,k) predicted by Pc in Table 4 on Xc

holds up on a new sample X • Comparing corresponding columns
c "

shows fairly good agreement between Pc and P~. The values k 1

shown at the right, however, are the optimal numbers of Stage

neighbors in Xd with lif fixed found by applying (Wf ' k) to C'

for k from 1 to V;d' Evidently one can secure a somewhat better

performance from (Xd , Wf , k f ") than is realized by (X
d

, Wf , k f ).

Note, however, that the average decrease in error rate is only

1.6%, achieved at the expense of a greatly increased computing

burden (average k f = 2.4 neighbors; average kf " = 17.4 neigh

bors). This result supports Jozwik's assertion that (Wf ' k i , Pf)

is the "best" combination to use for classification on fresh

data from the same process.

Part 2 of Table 5 reports the same comparison for the

FCM/k-NNR. The average difference between Pfcm for Xc using

(W fcm ' k fcm ) and Pc for C' using the same classifier is negli

gible. Note again that k fcm ' the optimal number of neighbors

with Wfcm found by direct calculation on C', is generally high

er than k fcm - and that a slight reduction in error rates again

results.

Finally, we may compare Pnn and P~ for the hard (HR, knn )

NNR on Xd and C': the result is again that Pnn and P~ are quite

close, but that k " can be found that improves the (WR, k )nn nn
performance.
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*Table 5. Observed error rate P~ on data set c'

a) Jozwik

445

"Xd c C X' = C' P' (using Pc (usingc c
"

n d n k f
Wf,k f ) Wf,k~) k

fc

I
300 1000 1 .27 .25 11I !
450 1000 1 .27 .25 21
600 1000 2 .28 .25 23
90 1000 3 .27 .27 6
810 1000 5 .26 .25 27

b) FCM!k-NNR

Ixd
"c C X' = C' k fcm P' (using Pc (usingc c

"n d n Wfcm ' k fcm ) Wfcm,k;cm) k fcmc

300 1000 9 .25 .25 7
450 1000 13 .25 .25 20
600 1000 22 .26 .25 12
90 1000 7 .27 .27 2
810 1000 2 .26 .25 27

c) hard k-NNR

!

"Xd c C X' = C' P' (using Pc (usingc c
" "n d n k WR,knn ) WR,k nn ) kc nn nn

300 I 1000 8 .26 .26 16
450 1000 16 .26 .26 21
600 1000 17 .26 .26 20

90 1000 6 .32 .28 7
810 1000 11 .27 .25 27

*PB 0.23 for data set C'
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Table 5 seems to support two conclusions: first, predicted

error rates using "optimal" pairs (W, k) from all three rules

to be rather dependable, but (not unexpectedlyl) slightly bet

ter performance can be realized by "retraining" on new data;

and secondly, the FCM/k-NNR seems to yield slightly better per

formance than either of the other two rules.

6. CONCLUSIONS

The results obtained by the FCII/k-UNR appear to produce the
best observed classifier performance among the three k-NNR's
studied. Depending on the data set and partition ratio, each of
the three methods result in fairly realistic estimates of the
Bayes error PB' In all three methods, Kittler and Devijver's

partition ratio of (1:2) does provide a good rule of thumb for
data division since the error associated with this ratio is
usually comparable to that achieved for other partition ratioso
Finally, it appears that fuzzy k-NNR's in general perform slight
ly better than the conventional hard k-NNR. It may be, however,
that a hard (k,li)-NNR is in some sense equivalent to fuzzy

k-NNR's: this will be the target of a future investigation.
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GREY DECISION MAKING AND ITS USE FOR THE
DETERMINATION OF IRRIGATION STRATEGIES

Deng Julong

Department of Automation
Huazhong University of Science and Technology

Wuhan, People's Republic of China

Abstract. Using the concepts of a topological
space and state, an approach to multitarget
decision making - called grey decision making
- has been developed. Some definitions and pro
perties are given in this paper. As a success
ful example of grey decision making, the deri
vation of an irrigation strategy for the Peo
ple's Victory Channel is outlined. Experience
of recent years proves that the effectiveness
of this strategy is satisfactory.

Keywords: grey decision making, grey systems,
systems theory, decision making.

1. OUTLINE OF GREY DECISION MAKING

Open sets of a topological space play an important role in
the topology of space. An open set means that its bounds are
uncertain. A number whose real value cannot be determined for
lack of information, but when an open interval where this num
ber is located is known, is called a grey number. Thus we say
that an open set is a grey number. In the topology of space, a
neighborhood of a point is the set of points which lie "close"
enough to that point. Usually, a neighborhood contains some
open set, thus the neighborhood is an extension of a grey num
ber, or, in other words, neighborhoods imply that some close
elements are located around a key element. According to the
theory of grey systems, a key element is one of a pointed
whitening value of a grey number.

A state (situation) composed of an event and a game (a co
unter-measure) is an essential concept of ~rey systems, while
a pair consisting of an event(s) and a game(s) is an essential
element of decision making.

As a general rule, the effects of a state dealt with by
different games for the same event are different. The ultimate
aim of decision making is to obtain a class of satisfactory
states according to the effects: in this class a key state has
to be included. In addition to the key state, all of the satis
factory states abut on the key state according to the given
targets. To accept the key state as a kernel, a neighborhood
of the satisfactory states should be composed; we call that
neighborhood a grey butt of decision making. For irrigation
decision making we have to arrange an irrigation procedure

447
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each U(a) E U
-a

for some U(a) , then V E U-a
E !:!.a' then U n V E U-a

then there exists a V E U such that
-a

month by month or day by day. Thus the irrigation time inter
vals are events, and different manners of irrigation - such as
no irrigation, channel irrigation and well irrigation - are
games.

We know that the season of wheat sowing starts on about
October 15 and that a great quantity of water is necessary,
hence

(October 15, channel irrigation)

is a key state. About December 15 there is the season of wheat
sowing to keep a full stand of seed, and warm water is necessa
ry, thus

(December 15, well irrigation)

is a key state.

The targets (criteria) to make out a butt of irrigation
are as follows:

1. to control the underground water below a critical level
in order to prevent the soil from alkalisalination;

2. to rationally irrigate the plants;
3. to obtain maximum benefits.

The key state can provide the plants with good growing
conditions because it is obtained from the agricultural requi
rements. Channel irrigation can decrease the level of under
ground water and well irrigation can icrease it, thus the under
ground water can be controlled.

2. STATE TOPOLOGICAL SPACES

Definition 1. Let a be a qualified event, b be a qualified game,
A be a set of qualified events, and B be a set of qualified ga
mes. Let for each a E A, !:!.a = {u(a)} be a non-empty family of

subsets of A associated with a, such that:

1 0 a E U(a), for

2 0 If V 2 U(a)

3 0 If U and V

4
0

If U E !:!.a'

if 0 E V, then U E !:!'o.

Then, !:!.a is called a system of neighborhood at event a and

a neighborhood U(a) is called a grey number of event, denoted
by ~(a) and a is its whitening value. Similarly, we have a
grey number ~ (b), with b being its whitening value.

We call

the topological space of event and game, respectively. Usually,
we call A and B the topological spaces.



Sij is not a state;

b ~p) is not an effect;
1J
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Remark 1. For an irrigation strategy, the irrigation time in
terval is a qualified event, the ratio of irrigation area be
tween channel and well irrigation is a qualified game.

Definition 2. Let Xi' i=1,2, be topological spaces and 8 i be

the associated families of open sets for each i,

2

X = i~1 Xi

be the Cartesian product of X1 and X2 and let

s
S ={ sis = X Yi , when Yi=x i , for all ih,

i=1 }and Yj=uh E 8 j , j=1,2

Then S is a subbase for the usual topological space for X.

The topology so defined is called the state topology. And
we call

® (a) = ® (a,b), or ® (s) = (® (a) , ® (b)

the grey state or the neighborhood of S; we call x (s)=s=(a,b)
the whitening state associated with a whitening event a and
a whitening game b; we call Sij = (ai,b j ) the whitening sub-

-state associated with a subevent a i and a subgame b j •

Definition 3. Let o~~) be an effect measure of a whitening
1J

state for the p-th target; thus

b : { Sij} -+ {6" g) }
is a mapping from the states to the effects of the p-th target.

3. AXIOMS OF DECISION MAKING FOR THE STATE

We have the following four basic axioms:

1) If r~~) E ~, then
1J

2) If Sij E~, then

3) Let b~~), 6"~~), c-I~~ be effects of the states Sij'

Skj' Sik of the p-th target, let I be an index set of the

events, K be an index set of the games, for i E I, j,k E K, and

there exist b ~~) = 6" ~kP), b ~p) = bk(~);
1J 1 1J J

4) Let 0ik' bkj , bij be effect sets for all targets, i.e.

b ik ''If) p=1,2, ••• ,m

'kj .~~) p=1,2, ••• ,m

r ij ol~) p=1,2, ••• ,m
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If P is sufficiently large, then

0, ,
1J

cannot occur.

Definition 4. 1) If 0 (p) = 0 (P
k
), then we say that games

1J 1
and bk are equivalent with respect to an associated event

in the p-th target. We call the set

{ (i ~p) } ={ 6"' ~p) I 6' (p) = b1~Pk)'
1J 1J 1J

the equivalence classes of effects

kEK, K is the index set of
games}

associated with an event a i •

2) If 6' (p) = (ik(P), then we say that a, and
1J J 1

valent with respects to an associated game b j •

a k are equi-

We call

{Ii ~~)} ={ 6" ~~) I Ii ~3) = 6'g), iEI, I is the index set
of events}

the equivalence classes of effects associated with a game b j •

3) We call

{Sij} ={ Sij l6'(Sij) = 013) , \/lig) E{G'"g)}}

the equivalence set. Similarly, {Skj} can be defined.

4) We call

the equivalent family of states.

Remark 2. The power of {Sij} in S may be 1 or more.

Prop-osition 1. Let S be an equivalent family of states and

E(P) be an effect set of the p-th target. Thus the mapping

6'(p) : S .... E(P)

is 1 - to -1 and onto.

Prop-osition 2. Let E be a p-dimensional effect space such
that

e
1
'J' E E, e

1
'J' = (b(P), b ~~) , ••• , () ~~», e .. E Rn

1J 1J 1J 1J

Let S be a state set such that b- 1 : E .... .§.. Then 1)'-1 is
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1- to -1 and onto if and only if n is suffciently large.

Definition 5. Let X be a topological state space

X ={Ux(@l,Uy(@I), Ux(@l E a, Uy(@l E b,

or X ~ (@ (a,b) I

where a is a set of events and b is a set of games,

a whitening event, and a i E a; let

451

is

for each

Y = { (ail, Uy ( @ )} ~ X

Y E Y, Vy = Y n ~y where Vy is a neighborhood

r E R

system. Then, for

V E Vy ' U E ~y' V = Y n U

we have a topology J' ={VyIY E Y}WhiCh is said to be indu

ced on Y by the topology J of X.

Usually, we call J' the topology associated with a white
ning event a i • Similarly, the topology associated with a game

b i can be obtained.

Definition 6. Let X be a partially ordered set under some or-

dering
"" II ,

i.e.

1) x ~ y and y ~ y imply
x "

y ,
2)

x "
x, for all x E X,

3)
x "

y and y " x imply x = y,

If we define

Pr(xl ={Ylxr " y}

~x ={ UIU ;;; Pr(X)}

then ~x is a grey number or a neighborhood and J={~xlx E X}

is called the right order topology for X.

Definition 7. Let{ (X,J)} be a right order topology of states'

effects, {Sn1n=1,2, ••• }be a state sequence, and{Aklk=1,2, ••• ,ry
be a sequence of states' effects such that

Ai ={oi ll , ri
2

) , ••• , oiP)} Ai E{Ak }

Ui S X, and {Dolo E r} be families of subsets of X. Then,

{Do} is called a cover or covering for Ui provided
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compact cover, and we have

a~I Da ~ Ui'

wecall{D)aaJ

Ai

when uaEI

Then, Ui is called a grey neighborhood system of Ai.

For a sequence {Ak}, a sequence of neighborhoods

exists. If there is a right order topology J, a neighborhood

of Uo is

and Uo belongs to a compact subspace, then Uo is said to be

a grey butt associated with a state sequence { Sn}' if and only

if for each UnE{ Uo } there exists an integer N such that n~

implies Uo 2 Un.

Definition 8. A state Sn

suboptimal state. If Sn

a suboptimal game.

associated with Un is called a

(ai,b.*), then a game b,* is called
J J

Theorem 2. Let X be a partially ordered set of multitarget ef
fects and let each simply ordered subset of X have an upper
bound in X. Then, X has a maximal element, i.e. if for each
y ~ X such that Y is simply ordered, there exists z E X
such that y E Y implies y < z, then there exists m E X
such that for each x E X either x or m are incomparable,
i.e. neither x {m nor m, x is true. The proof proceeds
according to Zorn's lemma.

Definition 9. A maximal element of a partially ordering set of
multitarget effects is a whitening optimal state.

3. EXAMPLE

The People's Victory Channel of He Nan Province is a huge
irrigating system. Its planning has been done by grey decisinn
making.

In order to simplify the calculations, let us assume that
all states during a month are equal. Then a neighborhood degene
rates to one point. To calculate the effect, some measures such
as: a synthesis measure for the target preventing the soil from
alkalisalination,a centre measure for the target of rational ir
rigation, and a bound measure for the target of benefits, are
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used.

Let Uij be effect samples of states Sij = (ai,b j ),

where a i in the i-th month and b j is the j-th irrigation

procedure, Let b", be a centre measure and b" be a
1) 0 l),m

measure such that:

453

min(Uij,uO )

max(Uij,Uo )
'v'j

~ ~ 'v')'
D ij,m = Urn

where Uo is a pointed effect and Urn is

U = max U, ,
m j 1)

Based on statistics and an effect function, a synthesis
measure can be obtained. First, some grey numbers have to be
listed:

1. for rain intensity:

heavy rain(a),

medium rain(b),

low rain(c),

® (a) > 80 rnrn

20 ~ 0 (b) ~ 80 rnrn

x (c) < 20 rnrn

2. for burying depth of underground water (in m):

high burying depth(a), ® (a) > 2.2

medium burying depth(I3), 1.8 ~ ® (13) ~ 2.2

shallow burying depth(y), x (y) < 1.8

Let us denote:

Hn +1 ,Hn - burying depth of underground water at time n+1

and n, respectively;

- increment of burying depth due to evaporation;

increment of burying depth due to rain

i=1,2,1 - increments of burying depth resulting from

different irrigation procedures:

- no irrigation,

- channel irrigation,

- well irrigation;

- total increment of burying depth;

i=a,l3,y - probability of burying depth:

Pa - probability of high burying depth,
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P
13

- probability of medium burying depth,

Py - probabil ity of shallow burying depth:

Pi' i=a,b,c, - probability of rain:

Pa - probability of heavy rain,

Pb - probability of medium rain,

P - probabil itY of low rain;c:

ai' i=1,2, ••• ,12 - intervals of irrigation time

a 1
- January,

a 2 - February,

a 12 - December.

b i , i=1,2,3, - irrigation procedure:

b 1 - no irrigation,

b 2 - channel irrigation,

b 3 - well irrigation;

Hi' i=a,13,y - burying depth of underground water:

Ha - high,

H
13

- medium

Hy - shallow.

To calculate the synthesis measure, the data are given in
Tables 1-4.

Table 1. Rain intensities

rain

heavy(a)

medium(b)

low (c)

H (m/month)

~ 0.6

[0.3 - 0.6)

[0 - 0.3)
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Table 2. Burying depth of underground water
(monthly distribution)

H H
'" Hr; H y

month He (m/month) He (m/month) He (m/month)

January-April o•1 0.36 0.45

May-August,
November, 0.2 0.45 0.55
December

September, 0.3 0.54 0.65October

Table 3. Increments of burying depth for different
irrigation procedures

b i H.
1-

b 1 H1 (k) 0

b 2 H2 (k) -0.4

b 3 H3 (k) 0.3

Table 4. Probabilities of burying depths and rain
for the consecutive months

Month Pol p~ Py Pa Pb Pc

1 0.46 0.54 0 0 0

2 0.54 0.37 0.09 0 0.08 0.92

3 0.28 0.72 0 0 0.23 0.77

4 0.18 0.82 0 0 0.85 O. 15

5 0.46 0.54 0 0.08 0.38 0.54

6 0.28 0.72 0 0.31 0.54 0.15

7 0.18 0.54 0.28 0.85 o•15 0

8 0.18 0.18 0.64 0.54 0.46 0

9 0.22 0.33 0.45 0.38 0.54 0.08

10 0.22 0.67 0.11 0.08 0.69 0.23

11 0.44 0.45 0.11 0 o.31 0.69

12 0.45 0.44 O. 11 I 0 o•15 0.85
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By using the mentioned data, the synthesis measure of Oc
tober can be obtained. Denote the total increment of burying
depth in October by 6H L (10). Then:
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from table 2, when it is a high depth, we have
l>He ( 10,0) = 0.3;

from table 1, when it is a heavy rain, we have
l>Hy (10,O) = -0.6;

- from table 3, when the channel irrigation is used, we
have l>H 2 (10,b2 ) = -0.4.

Thus, the total increment of burying depth, l>H
L

, for October,

a high burying depth(o), a heavy rain(a), the channel irriga
tion(b2 ), is

l>H
L

( 10,0, a, b 2 )

Similarly, we have:

l>He (10,O)+l>Hy (10,a)+l>H 2 (10,b2 )

0.3 + (-0.6) + (-0.4) =

-0.7

l>He (10,O)+l>Hy (10,b)+l>H 2 (10,b 2 )

0.3 + (-0.3) + (-0.4) = -0.4

l>He (10,O)+l>H
y

(10,C)+l>H 2 (10,b 2 )

0.3 + 0 + (-0.4) =

-0.1

Then, the burying depths in October for the different cases
are:

H(10,a) 2.4+l>HL (10,o,a,b2 ) 2.4 - 0.7 1.7

H(10,b) 2.4+l>HL (10,o,b,b 2 ) 2.4 - 0.4 2

H (10 ,c) 2.4+l>H
L

(10,O,c,b2 ) 2.4 o•1 2.3

Let the effect function of H be given as shown in Fig. 1 •

I.(H)

H
0.5 1 1.5 2 2.5 3

Fig. 1
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Therefore, from Fig. 1 the effect values are:

~ 'A(H) ='A(1.7) 0.75a
'A b

-;\ (H) = ';\ (2) 0.95

~c
? (H) = ';\ (2.3) 1
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The synthesis measure of a high burying depth is therefore as
follows

b (1)
10,2

~ P
c c

Similarly, we have:

0.75·0.08 + 0.95· 0.69+1· 0 0 23 0 0 94

b ( 1) (13) 0 • 82
10,2

(1)
010 2(Y) = 0.33,

Thus the synthesis measure for October is

b (1)
10,2 Pa b~6~2(a) + P 13 .~6~2(13) + Py O~~~2(Y)

0.22 • 0.94+0.67 • 0.82+0.11 • 0.33 = 0.8

and the effect of state

5 10 ,2 = (October, channel)

is 0.8 for the first target.

A partially ordered set of multitarget effects can be ob
tained by using Theorem 2, and the following satisfactory sta
tes are obtained:

The satisfactory irrigation strategies are:

January: no

February: well

March: no or well

April: channel

May: no

June: channel

July: no

August: well

September: no

October: channel

November: no

December: .,.;ell
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4. CONCLUDING REMARKS

The experience of recent years has proved that the effec
tiveness of the irrigation strategy developed using the method
presented is satisfactory. Mainly the expected level of under
ground water has been controlled and harvests have taken place
in the channel valley.
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Ct- cut, 16, 56, 63, 79, 162, 261,
316, 359

Ct·· level set, see Q- cut

alternative (see also solution) ,
best, 206

rraxilml, 205
minilml, 206, 212
w::>rst, 206

arrbiguity, 13

aspiration level, 53, 274, 363
fuzzy, 397

0elief structure, 123
Dempster - Shafer, 123
evidential, 123

certainty, expected, 150

choice, 150, 165
function, fuzzy, 96
rule, fuzzy, 106, 208

Pa:ceto, 101
theory, 92, 99

classif ier, 433

cornnonsense knowledge, 66

carparisan,index, 399
matrix, pairwise, 417

compatibility, degree of, 344

composition, rrax-min, 18
operator,. 279
sup-min, 419

compositional rule of inference, 22,
143

compromise solution, 232, 247, 404

concordance, 141, 146

conditional statement, fuzzy, 22,
142

confidence, degree of, 146

consistency, priociple of, 24

constraint, 51, 217
fuzzy, 53, 218
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contradictoriness, degree of, 110

control, optilml, 66

convolution, effective, 204, 208

credibility, 116, 398, 401

crispness, S-, 114

decision, attitude, 126, 280
equivalent, 21

lexicCXJraphically, 210
attitude, Hurwicz, 126

least regret, 126
optimistic, 126
pessimistic, 126

fuzzy, 54, 119, 307
optilml, 160

decision analysis, 31
ordinal, commensurate, 32, 38
statistical, fuzzy, 39, 40

decision making, 50, 124
multiattribute, 167, 293
ITRllticriteria, 3£, 204, 226
multistage, 35
statistical, 39
under uncertainty, 28, 124, 128
under ignorance, 128
with Dempster-Shafer granules,

129

decision support systems,293, 297

decomposition theoran, 344

Danpster - Shafer, approach, 123
granule, 123

dichotomousness, 161

disposition, 66

disutility, 31

dominance, 31,82, 227, 238

dynamic prCXJramming, fuzzy, 65

event, fuzzy, 176
necessity of, 176
possibility of, 176

evidence, 142
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theory of, 126

expert system, 3, 66
rule-based, 5, 293, 297

extension , cylindrical, 11 3
principle, 19, 34, 190, 360, 398

feasibility, degree of, 59, 275, 344

feasible set, 52, 218
fuzzy, 218

active, 222

fuzzy functirn, 191
linear, 191

possibilistic, 191

fuzzy number, 20, 33, 34, 175, 260
comparison of, 360
L-R type, 21, 64, 418

convex, 348
mean value of, 399, 418
reference function of, 21, 191,

399
spread of, 21, 399, 418
symnetric, 191
trapezoidal, 367
triangular, 64, 382

fUzzy relation, 18
binary, 19, 92, 154

antisymnetric, 78
crisply, 78
weakly, 78

antisymnetrized, 80
complete, 78

weakly, 78
dual, 79
irreflexive , 78
prObabilistic, 78
reflexive, 92
transitive, 93

T-, 93
llEX-min, 94
max-pnxluct, 94
negatively, 78

inequality, 361, 362
less or equal, 362

linear, 86
preference, see preference relatirn,

fuzzy
similarity, 94, 96
outranking, 87

fuzzy set, 3, 1J, 15
complement of, 17
containment, 16

degree of, 16
cut of, see C1- cut
equality, 15

degree of, 16
height, 16
inclusion, 16

fuzzy, 156
degree (grade) of, 398

intersection, 16, 341
L-, 30
level set of, see C1- cut
support, 15
unirn, 16

aenerality, 13

goal, 53
fuzzy, 53, 91

granule, conditional, 142
Dempster - Shafer, 123

0raph, fuzzy, 86
search, 171

grey ,number, 447
system, 447

hedge, fuzzy, 22

imprecision, 13

incompatibility, principle of, 21

incompleteness, degree of, 145

indifference, threshold of, 87

interpolation, linear, fuzzy, 144

k - nearest neighbor rule (k-NNR) ,
433

fuzzy, 433, 435

knowledge, base, 294

representatirn, rule-based, 293

Tagrange, function, 264
multiplier, 268

level, reference, 262

linear pro::Jranrning, 60
fuzzy, 60, 63

lCXJic, multivalued, 5

rojorityaxiCI11, fuzzy, 164

rnan-machine interactirn, 294

llEX-flaw problem, fuzzy, 313
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ruximization, see optimization

naximizing set, 91

membership, grade of, 14
function, 14

minimax loss, 30
proolen, augmentErl, 262
regret, 30

network planning, fuzzy, 315, 319

nondaninance degree, 59, 82

nondanina tErl alternative, see solu-
tion, nondaninatErl

nondanination degree, 82

normalization (normalizer), 103

objective, function, 51, 212
weightErl, 246

o~ration, arithmetic, extendErl, 20

optimwn, see solution, optimal

optimization (see also progranrning) ,
51, 216
data-basErl, 66
fuzzy, 52, 100
gldlal, 272, 280
hierarchical, 246
interactive, 265, 398
knowlErlge-basErl, 66
linear, fuzzy, 240
multioojective, 216, 273

fuzzy, 275
multiple facet, 38
sequential, 247
"soft", 52

order(ing) , canplete, 84
Pareto, see Pareto order
partial, 84

fuzzy, 82
quasi-linear, 204
rank-, 416

Pareto, choice rule, 101
danination relation, 204, 207
orderi.n:j, extendErl, 167
1XJint, 419
set, 207

solution, 227, 229, 259, 274,416
subset, fuzzy, 101

partition, 111
c-, 133
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fuzzy, 433
crisp, 111
fuzzy, 112

pattern recognition, 432

payoff expectErl, 124

polyoptimization, 415

possibility, 23, 127, 307
distribution, 127, 187, 306
measure, 23
ordinal, 33
theory, 23

preference, 29
relation, 204

fuzzy, 80
core of, 206
nonstrict, 58, 322
payoff, 365
strict, 58, 80, 322

lexicographic, 211
strong, 363
transitive, 83

vector, 204
structure, 83
threshold, strict, 87

prooability assignment function,
basic, 127

S-, relative, 113

programming (see also optimization) ,
dynamic, 64

integer, fuzzy, 61
linear, 66

fractional, multicriteria, 404
fuzzy, 60, 63, 216, 227, 382,

395
optimal solution to, 218
parametric approach to, 344

mathenatical, 51, 60
nonlinear, multioojective, 259

fuzzy, 260
o - 1, fuzzy, 64

quantifier, linguistic, 66
questionnaire, 110

ranki.n:j, 82

rErlundance, degree of, 150

regression analysis, linear, 186
fuzzy, 187
possibilistic, 187, 193

regret, 29
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~eI'resentatior, ooncordant, 212
theorem, 95

resoluteness, 167

right-hand side, fuzzy, 382

risk minimization, L-fuzzy, 32, 39

satisfaction, function, 246

scale, ratio, 417

score, 83
relation, 85

sharpness, S-, 120

solution, ccnpromise, 247, 404
efficient, 219, 222, 404

M-, 275
""eak, 219, 222

nondcminated, 59, 151, 227
fuzzily, 85, 205

set of, 201, 205
nonfuzzily, 85, 207
o -, 363
r -, 213

nondominating, 85
fuzzily, 85
nonfuzzily, 85

noninferior, 259, 274
optina1 , fuzzy, 218, 366, 372

optilnistic, 382
pessimistic, 383

to fuzzy programming, 218
Pareto optinal, 259, 274, 416

(). -, 261

strategy, decision making, Hurwicz,
125

maximax, 125
maximin, 125
regret, least, 125

Szpilrajn-s theorem, 84

threshold, indifference, 37

t-norm, 93, 307

tradeoff, 246
coefficient, 248
function, 250
rate, 264

transitivity, see fuzzy relation,
transitive

transportation probleIT., fuzzy, 343,
355

trianqular norm, see t-norm

INDEX

uncertainty, 14, 25
fuzzy, 129
possibilistic, 123
probabilistic, 123

universe of discourse, 22

urrer bound, fuzzy, 92

utility, 29
crisp, 32
function, 82, 274

ordinal, 238
fuzzy, 32
ordinal, 30

vagueness, 13

\3riable, linguistic, 21

vector, criterion, 91
fuzzy, 369
trarezoidal, 369
undaninated, 227

whitening, state, 449
value, 448
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