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FOREWORD 

In line with the increasing attention tha t  various researchers - including the authors 
- have recently devoted t o  the study of stochastic dynamical systems with piecewise 
linear coefficients, this paper deals with a stochastic control problem relative to  a model 
of this type. In particular, i t  is shown tha t ,  for vanishing noise, such control problems 
can be approximated by suitably chosen linear adaptive control problems. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



ABSTRACT 

A discrete-time stochastic control problem is considered for a dynamical model with 
piecewise linear coefficients and not necessarily Gaussian disturbances. The cost criteria 
and the class of admissible controls include piecewise polynomial costs and piecewise 
linear controls respectively. It is shown that  relevant asymptotic (for vanishing noise) 
properties of this problem coincide with the corresponding properties of a suitably chosen 
adaptive control problem with linear dynamics. In particular, it turns out that  the op- 
timal values of the two problems tend to coincide and that  almost optimal controls for 
one problem are almost optimal also for the other. 
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SMALL NOISE ANALYSIS FOR PIECEWISE 
LINEAR STOCHASTIC CONTROL PROBLEMS 

Giovanni B. Di Masi and Wolfgang J. Runggaldier 

1. INTRODUCTION 

This paper is concerned with an asymptotic analysis (for vanishing noise) of a 

discrete-time, nonlinear stochastic control problem (P) described as follows: 

The state zt ,  which for convenience of notation and without loss of generality we as- 

sume to be scalar, evolves according to 

where a t (z)  is piecewise linear in z ,  namely 

with ., N a finite partition of R;  furthermore, ai(z) is assumed to be contii~uous 

so that it is Lipschitz and of linear growth, more precisely, defining 

A : = max {IAi(i)l) 
i < N , i <  T 

B : =  max {IBi(i) /)  
i < N , i <  T 

we have 

The initial condition zo and the disturbances Pt are assumed to be distributed according 

to finite mixtures of normal densities; more precisely, we have (- means "is distributed 

according to" and g(z; p,  a2) denotes the normal density with mean p and variance a2) 



with u$ > 0; uz > 0. A possible representation for these random variables can be ob- 

tained in the following way. Consider a discrete random variable do which takes the finite 

number of values poi(i = 1,.  . ., No) with probabilities P{Oo = poi) = ao i  and define the 

mapping Qo {poi) + R by 

Assuming vo -- g(z;  0, I ) ,  we have that  the random variable 

satisfies (5.a). With an analogous procedure we can obtain representations for Pi of the 

form 

where { v ~ ) ~  = ...,T is a standard Gaussian white noise, independent of vo, Of are discrete 

random variables taking values in {pii) with probabilities P{Ot = pii) = aii and Qt(-)  

satisfies 

With such representations for zo and {Pi), the mutual dependence of zo, P I , .  . ., PT 
will be related to  the joint a-priori probability p(Oo, e l , .  . . , OT) and a suitable choice of the 

latter allows a considerable flexibility as far as the possible dependence patterns are con- 

cerned. In what follows we let 

6 :  = max {Qt(Bt)) 
0 5 t 5 T,B, 

Furthermore, we shall denote by E: integration with respect to the measure induced by 

model (I), (7) for given tio, u l , .  . . , uT and given p(9) = p(Oo, O,, . . . , O T). 

The class of admissible controls consists of feedback controls ut = ut(zi) such that  

there exist positive constants K1, K2, K3 (independent of u) for which 



In the following, when convenient, we shall denote by u an admissible strategy 

( ~ 0 ,  ~ l r  ... r U T -  1) -  

As objective function to be minimized we consider 

where ft satisfies the relation 

with Pt a polynomial independent of u and 8 ;  furthermore, ft is bounded from below. No- 

tice that, because of (l l) ,  any ft which is a polynomial in zt and ut(zt) satisfies (13) so 

that the given objective function generalizes the commonly used quadratic cost criterion. 

In analogy to a previous paper on piecewise linear filtering [I]  the aim here is to  

show that, asymptotically when 6 in (10) tends to zero, the optimal value (and the S 

optimal controls) of our nonlinear problem ( P )  coincides with the optimal value (and the 

Soptimal controls) of an adaptive linear stochastic control problem (P). For these reasons 

such adaptive problem (P) can be considered as an approximation to the original non- 

linear problem (P ) .  

In order to provide a more precise definition of (P) we introduce further random 

processes related to the linear behaviors of at(z) in ( I ) ,  (2). To this end, given an admissi- 

ble control sequence u, define the processes (;J and T , I ~  by 

Consider now a process {Pt) satisfying the following model 

where At( . ) ,  Bt(.) are the quantities appearing in (2); the initial condition and the distur- 

bances are as in (7). 

Notice that, for a given admissible control u and asymptotically for c 1 O),  the pro- 

cess "tracks" the linear behavior of al(zt) in the sense that a.s. 



Taking into account that q r  depends only on u and 8, At(qt)  and Bt(qt)  can be rewritten, 

with obvious abuse of notation, as At(8, u) and Bt(8, u) respectively so that ,  writing ex- 

plicitly Pt + as in (7.b), model (16) becomes 

where 

In this case, corresponding to (17) we have a.s 

lim {ht( i t ;  8, U )  - at(z t ) )  = 0 
€ 1 0  

so that ,  for given u, besides (14) we also have 

Notice that h t ( f t ,  8, u) satisfy condition (4) uniformly in u and 8, namely 

We can now describe problem (f') as the discrete-time stochastic control problem 

with state evolving according to (18)) with initial condition as in (7) and with the same 

a-priori p(0) = p(Bo,. . . , dT) (let E: denote integration with respect to the measure thus 

induced). The class of admissible controls remains the same as for (P), while the objective 

function QE(u), which is to be minimized, is given by relation (12) with E: replacing E:. 

The main result of this paper is Theorem 2.1 below, whose immediate consequence 

(Corollary 2.1) is that ,  for vanishing 6 ,  I VE(u) - ?(ti)( converges to zero uniformly in u. 

This in turn implies (Corollary 2.2) that  the optimal values V' and ? of problems (P) 

and (P) respectively, defined as 

V' : = inf VE(u) (23.a) 
U 

P : = inf QE(u) 
U 

coincide for vanishing c and, furthermore, that  almost optimal controls for one problem 

are almost optimal also for the other. 



2. ASYMPTOTIC ANALYSIS 

Given any admissible strategy u,  let p:(zo,. . . , zi; 0) and P:(zo,. . . , zi; 0) denote the 

joint distributions of 20,. . ., zi and 0 corresponding to model (1) and (18) respectively. 

From ( I ) ,  (7), (18) we have for p: and p'h the following recursive relations 

with initial condition 

LEMMA 2.1 For  any co > 0 and positive integer q there ezists an M > 0 such that for 

all admissible u, a11 0 and a11 c with 0 < c < co we have 

PROOF We shall first prove (25.a) proceeding by induction. For t = 0 we have 

Since the expression on the right is a polynomial in Oo and Q;(Oo), and recalling tha t  0 

takes only a finite number of possible values, we have (25.a) for t = 0. 

Assuming (25.a) t rue for t - 1 and using (24.a) we have 

where P is a polynomial. The  induction hypothesis and the fact t ha t  0 takes only a finite 

number of values then provides (25.a). 



By similar arguments it is possible to prove (25.b). 

LEMMA 2.2 For f t(zt ;  8, u) satisfying (13) we have 

lim sup I I p:(zol.. ., zt - 8) dz  o...dzt - 
€10 u 

[ I  ft(zt; 8, u)g(zt; at - l ( Z t  - 1) + ut - 1(zt - 1) + et, Q?(et)) dzt - 

- f t b t  - l("t - 1) + "t-  1(zt - 1) + et; 0, 411 = 0 

lim sup 1 p :̂(zo,. . . , zt - 8) dzo. .. dzt - . 
€10 u 

- I I ft(zt ;  0, u)g(zt; ht  - l (zt  8, u) + ut - ~ ( z ~  - I )  + Q B ( ~ ~ ) )  dzt - 

- f t ( h t  - 1(zt - 1; 8, u) + ut- 1(zt - 1) + 4 ;  8, u)ll = 0 (26. b) 

where the "sup" is over all admissible controls. 

PROOF We shall first prove (26.a). From (13) we have that  an upper bound for the ab- 

solute value in (26.a) is given by 

Using (4.a), ( l l . a ) ,  the fact that  8 takes a finite number of values and Lemma 2.1, it is 

easily seen that  the integral in the rightmost member of (27) is bounded uniformly in u so 

that  (26.a) holds. The proof of (26.b) proceeds in an analogous way. 

Given ft(z; 8, u) satisfying (13) let 



We have 

LEMMA 2.3 The functions pt - l (zt  - l ;  8, u) and dt  - l (zt  - l ;  8, u) defined in (28) 

satisfy condition (1.9). 

PROOF Using the fact that  f t(zt ;  u, 8) satisfies (13), we have for pt-  

Ipt - '1 U )  - - l (y;  8, u ) \  = 

- 
- Ift(at-l(z) + ui- 1 ( ~ )  + et ;  0, U) - f i (a i - l (y)  + u t P l ( ~ )  + ei;  8, U ) I  I 

5 Pt(Iat-l(z)  + ui- l (z)  + 41, lai- l(y) + U ~ - ~ ( Y )  + etl) . 

-[Iai- l(z)  - at-l(y)l  + Iut-l(z) - ui- l (y)( ]  I 

5 Pi- 1(IzI, l~1>12 - Y I  

where Pi - is a suitable polynomial and where for the last inequality (4) and (11) have 

been used. 

The proof for dt - proceeds in an analogous way. 0 

THEOREM 2.1 For f t(zt ;  8, u) satisfying (1.9) we have 

lim sup I 1 fi(zt; 8, u)p:(zO,. . ., zi; 8) dz0.. . dzi - 
€10 u 

- ft(Ei"; 0, u)p(e)I = 0 

lim sup ( 1 fi(zt; 8, u)p :̂(z0, . . . , zt; 8) dz,. . . dz, - 
t 1 0  u 

where the "sup" is over all admissible controls. 

PROOF We shall first prove (29.a) proceeding by induction. For t  = 0 the statement 

reduces to  

lim sup I 5 fo(zo; 8, ~ ) 9 ( z o ;  80, Q; ( e o ) ) ~ ( e )  dzo - fo(8o; 81 u ) P ( ~ )  I = 
€10 u 

whose proof is analogous to  that  of Lemma 2.2. Assume now (29.a) true for t  - 1, then, 

using (28.a) we have 



By Lemma 2.2,  the induction hypothesis and Lemma 2.3,  the right hand side of ( 3 0 )  is 

infinitesimal with c, uniformly in u ,  thereby completing the proof of (29 .a ) .  The proof of 

(29 .b )  proceeds in an analogous way, noticing that the process (; satisfies not only ( 1 4 )  

but also ( 2 1 ) .  

As an immediate consequence of Theorem 2.1 we have the following 

COROLLARY 2.1 For the  objective function V E ( u )  and ? ( u )  relative to  problem ( P )  

and ( P )  respectively we have 

lim sup ( V E ( u )  - P ( u )  I  = O 
€ 1 0  u 

As mentioned in the Introduction, a consequence of Corollary 2.1 is that ,  asymptoti- 

cally, the optimal values of problems ( P )  and ( P )  coincide and that almost optimal con- 

trols for (p) are almost optimal also for ( P )  and vice versa. This will be shown in the fol- 

lowing Corollary 2.2. 

COROLLARY 2.2 For the  optimal values V E  and vE defined i n  (23) we have 

lim ( V E  - Q t I  = O 
10 

( 3 1 )  

Furthermore,  let u and C be 7 -op t imal  controls for ( P )  and ( P )  respectively; then ,  for 

6 > 0 given, there ezists  co > 0 such that for all 0 < c < co we have that u and C are 

( 2 7  + 26)-optimal for (P) and ( P )  respectively. 

PROOF From Corollary 2.1,  for fixed 6 > 0 there exists co > 0 such that  for 0 < c < co 

and all u we have I  V E ( u )  - p ( u ) (  < 6. For given 7 > 0 let now u and C be such that 



then 

vE v(a) 5 V(a) + 6 5 V + 7 + 6 

pE 5 V ( u )  5 VE(u) + 6 5 VE + 7 + 6 

Therefore 

IVE- VE1 < 7 + 6  

which proves (31). Furthermore 

V'(a) 5 + 7 + 6 5 V + 27 + 26 

ri'(u) < VC + 7 + 6 L + 27 + 26 

which proves the second assertion of the Corollary. 
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