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FOREWORD 

This paper deals with the approximation of solutions of general equality con- 
strained optimization problems and proposed an algorithm of the reduced type that 
locally may be an alternative to the Newton method. The algorithm has indeed the 
same rate of convergence as Newton method while only operators of reduced order are 
needed. 

Those types of methods may be particularly useful when the number of con- 

straints is large while the number of free parameters remains reasonable. 

A technique to globalize the local method is also proposed and studied. 

Alexander B. Kurzhanski 

Chairman 

System and Decision Sciences Program 



Abstract: Ln optimization in lUn with m nonlinear equality constraints, we study the 

local convergence of reduced quasi-Newton methods, in which the updated matrix is of 

order n-m. In particular, we give necessary and sufficient conditions for q-superlinear 

convergence (in one step). We introduce a device to globalize the local algorithm which 

consists in determining a step on an arc in order to decrease an exact penalty function. 
We give conditions so that asymptotically the step will be equal to  one. 

Abbreviated title: A reduced quasi-Newton method. 

Key words: Constrained Optimization, Successive Quadratic Programming, Reduced 
Quasi-Newton Method, Superlinear Convergence, Exact Penalty Function, Arc Search, 
Step-size Selection Procedure, Global Convergence. 

Subject classification AMS(M0S): 49D05, 49D30,65K05. 



Let w be an open convex set in R n ,  j be a real-valued function on w and c map w 

to  Rm, where m < n. We shall suppose that j and c are functions of class C[ with 

v 2 3, i.e. j and c are supposed to  be three times continuously differentiable with 
bounded derivatives on w. We shall endow Rn with its canonical basis. We are 
interested in algorithms for solving the following minimization problem with equality 
constraints: 

min { j(z) : z E Rn, c(z) = O ). (1-1) 

In addition t o  the smoothness of j and c, we shall assume that  c is a submersion 
on w, that is to say that the m x n Jacobian matrix 

of partial derivatives of c a t  z is supposed to be surjective for all z in w .  If w is "large" 

this is a very strong hypothesis, but it is usual to  suppose that the gradients of the con- 

straints are linearly independent a t  a solution of (1.1) and, therefore, this hypothesis is 

satisfied in a neighborhood of a solution. Then, if z t  is a local minimizer for problem 

(1.1), there exists a unique Lagrange multiplier A *  so that the first order optimality 

conditions are satisfied: 

where V j(z*) is the vector of partial derivatives of j a t  z* and A t := A (zt).  The quan- 

tity in the left hand side of the second equation is the first derivative with respect to z 

a t  (z*,X*) of the Lagrangian I(z,X) := j(z) + (X,c(z)). The second order sufficient con- 

dition will also be assumed: the n x n Hessian matrix L* of second derivatives with 

respect t o  z of I a t  (zt,X +) is supposed to  be positive definite in the null space N(A*) of 

A*. For further references, we gather those hypotheses under the name of 

assumption A: 
j, c are in C[(w) with v 2 3, 
c is a submersion, 

(zt,X *) satisfies (1.3), 

h T ~ t h > O f o r a l l h i n R n w i t h h # O a n d A t h = O .  

Quasi-Newton methods, also called variable metric or secant methods, are 

methods for solving a system of nonlinear equations on pN, say F(z t )  = 0, that  gen- 

erate a sequence of points (zk) and a sequence of nonsingular matrices (Jk) of order IV 



from the data of a point z l ,  and a nonsingular matrix J1 by the formula: 

where Jk is updated a t  each iteration according to the following scheme: 

The rule U is designed in order that Jk+l will satisfy the secant equation Jk+luk = 7 k  

and then will improve the approximation by Jk of the Jacobian matrix V F ( z * )  a t  the 

solution z* .  These methods are particularly attractive because second order derivatives 

need not be calculated and because a q-superlinear rate of convergence for ( z k )  can be 

obtained (see the review paper by Dennis and Mord (1977)) ,  i.e. 

Such a method could be used for solving system (1.3) ,  but matrices of order n+m 

should be updated. 

The aim of this paper is to introduce and study such quasi-Newton methods but 
with updated matrices of order n - m .  

The Successive Quadratic Programming (SQP) method proposed by Wilson (1963) 

and Han (1976) improves the method described above with regard to the order of the 

updated matrices. In this method Q + ~  is obtained from 3 by solving a quadratic pro- 

gram with linear constraints: 

1 min I f ' ( % )  - ( 2 - s )  + - ( z - z k l T  L~ ( z - q ) ]  , 
2 

z E IRn and c ( q )  + c ' ( q )  - ( z  - q) = 0 ,  (1.5) 

where we have used a dot to  separate the linear operators f ' ( q )  and c ' ( q )  from their 

argument ( z  - Q). The matrix Lk of order n is updated in order to approximate L*, 

the Hessian of the Lagrangian. Under assumption A, the solution of (1.5) can be writ- 

ten in the form (see Gabay (1982,b)): 

where A c  is any right inverse of Ak := A (q), ZF is any n x (n-rn)  matrix whose 

columns form a basis of the tangent space N(Ak)  to the manifold Mk := C - ' ( C ( ~ ) )  a t  

Q and g(zk) is the reduced gradient defined by 



The first part ( - A t c ( q ) )  of the displacement in (1.6) is a restoration step, i.e. a 

Newton-like step for solving c ( z r )  = 0. It belongs to R ( A c )  which is a complementary 

space to N ( A k )  in Rn. The second part of the displacement in (1.6) is a minimization 

step belonging to the tangent space R ( Z [ )  = N(Ak)  to Mk at  q. 
Let us consider for a while the case where the constraints are linear: 

where A is an m x n  surjective matrix and b is a vector in Rm. As in the nonlinear 

case, let us introduce Z- , an n  x ( n - m )  matrix whose columns generate 

N ( A )  : AZ- = 0. Suppose that the first iterate belongs to the plane of the constraints: 
c  ( z l )  = 0. Then, any point z  satisfying the constraints (1.8) can be expressed by using 

a reduced variable u  in Rn-'" (z = z l  + Z-u)  and the problem of minimizing f sub- 

ject to the constraints (1.8) is equivalent to the one of minimizing p ( u )  := f ( z l+Z-u )  

on { u  E Rn-"' : zl + Z-UE w): 

min { p ( u )  : u  E Rnam, zl  + Z-u E w). (1.9) 

By considering the optimality equation V p ( u r )  = Z - ~ V ~ ( Z ~  + Z-u*) = 0 ,  a quasi- 

Newton method for solving problem (1.9) generates a sequence (uk)  in Rn-"' and a 

sequence (Gk )  of nonsingular matrices of order n-m such that 

By setting zk := z l  + 2-uk,  we obtain 

where g ( q )  := Z - T ~ f ( y )  is the reduced gradient of f a t  y and Gk is updated as fol- 

lows: 

in order to approximate v 2 p ( u , ) ,  the Hessian of cp a t  u t ,  which is also the reduced Hes- 

sian of f at x t: 

The conditions so that the rate of convergence of the sequence (uk)  will be q-superlinear 

can be satisfied and because of the injectivity of Z-, the same conditions will assure the 
q-su per linear convergence of the sequence ( zk ) .  



The algorithm (1.10)-(1.11) is a reduced quasi-Newton method because the order of 

the updated matrices is n-m rather than n in the SQP. Our aim is to study such 
methods in the case of nonlinear constraints. They are particularly well adapted to 
problems with n large and n-m small. That situation appears for example in the 
parametric identification of nonlinear sources in elliptic partial differential equations. If 
a finite element method is used to discretize the state equations (the constraints), m is 

large, say of the order of 1000, whereas the number n-m of identifiable parameters is 
usually small: 2 or 3 in the example of Blum, Gilbert and Thooris (1985). In that case, 
a reduced quasi-Newton method is usable while the SQP method is not because of the 

order of the matrices that should be updated. Another advantage in developing 

reduced quasi-Newton methods comes from the fact that, under assumption A, the p r e  
jected Hessian of the Lagrangian is positive definite a t  the optimum. Therefore, posi- 
tive definite quasi-Newton approximations of that operator can be generated, in partic- 
ular by the BFGS formula which is a t  present widely believed to be the best update for- 

mula. We see that reduced quasi-Newton methods appears rather natural. So, it is 

important to generalize the algorithm (1.10)-(1.11) in case the constraints are non- 
linear. 

This can be done by using the implicit function theorem in order to obtain a 

reduced objective function: 

where ( : u E V c + ((u) E w c DZn is a parametric representation of the reg- 
ular manifold C-'(O) around zt  := ( ( u t )  . We have c(((u)) = 0 for all u in the neigh- 

borhood V of u*. This is the basic idea of methods like the Generalized Reduced Gra- 

dient (GRG) method (Abadie and Carpentier (1969)). In fact, the parametric represen- 

tation ( (u )  is usually not known and this leads to several difficulties. Because the 

method asks the generated sequence (2)) to be feasible (c(zk) = 0 for all k) ,  and because 

this cannot be achieved exactly in practice, some criterion has to be introduced to 

decide when to stop the restoration steps, i.e. how well the equality zk+l = ( ( u ~ + ~ )  has 

to be realized (Mukai and Polak (1978)). Another difficulty appears when zk is far 

from z* and a stepsize has to be introduced in the u-space in order to globalize the 

method. Indeed, every time a stepsize is tried, an infinite number of restoration steps 
have to be done: see Gabay (1975), Gabay and Luenberger (1976), Mukai and Polak 

(1978) and Gabay (1982,a). 
On the other hand, some non-feasible reduced quasi-Newton methods have been 

developed recently . Gabay (1982,b) has studied the following algorithm: 



where A t  is any right inverse of Ak, Z c  is any n x (n-m) matrix whose columns form 

a basis of the tangent space N(Ak), Gk is a nonsingular matrix of order (n-m) and 

g ( q )  is the reduced gradient of f at zk. The tangent step t i  in (1.12), tangent to the 

manifold Mk, has the same structure &the displacement in (1.10) except for the basis 

Z c ,  which changes here at  each iteration. The restoration step r l  in (1.12) is intro- 

duced to improve the feasibility of the sequence. The displacement in (1.12) can also be 

deduced from the displacement (1.6) of the SQP method by dropping the last part of 

the minimization step and by considering Gk as an approximation of the projected Hes- 

sian Z c T ~ ( z k , x k ) Z c .  

For their part, Coleman and Conn (1982,a) have studied the following algorithm: 

where Z e  is an n x (n-m) matrix whose columns form an orthogonal basis of N(Ak) 

and A t  is the Penrose pseudo-inverse of Ak: Ac := A ~ T ( A ~ A ~ - .  A relevant 

difference with the algorithm of Gabay lies in the restoration step in which the con- 

straints are evaluated at  zk+t: , after the tangent step, rather than at  zk in the algo- 

rithm (1.12)-(1.14). 

The study of both algorithms (1.12)-(1.14) and (1.15)-(1.17) shows that when the 

matrices Gk are suitably chosen and the initial point zl is close to z t ,  the sequence (9) 

generated by any of those algorithms converges to z t  q-superlinearly in two steps, that 

is to say: 

This rate of convergence is not so good as the rate (1.4) obtained with reduced quasi- 

Newton methods when the constraints are linear or with the SQP method. On the 

other hand, counter-examples have been given by Byrd (1985) and Yuan (1985) for 

which both methods of Gabay and Coleman and Conn do not converge better than with 

a two step q-superlinear rate of convergence. Therefore, the question of the rate of con- 

vergence of reduced quasi-Newton methods seemed closed. However, Byrd (1984) and 

Gilbert (1986,a) have shown (independently) that the sequence (zk + t i )  of Coleman 

and Conn's algorithm converges q-superlinearly in one step. This fact makes this 

method competitive. Indeed, the quasi-Newton version of Coleman and Conn's algo- 

rithm (see Coleman and Conn (1984)) needs two linearizations of the constraints per 

iteration. Consequently, as mentioned by Byrd (1984), it was thought that a super- 
linear step was made in this algorithm for each four constraint linearizations. The 

result of convergence of Byrd (1984) and Gilbert (1986,a) shows however that one 



superlinear step is made for each two constraint linearizations. Furthermore, it can be 
shown (see Gilbert (1986,a)) that the use of an update criterion allows linearization of 

the constraints only once per iteration. Therefore, the method makes a superlinear step 

for each constraint linearization. 

In this paper, we first show how the algorithm (1.15)-(1.17) can be obtained from 

a very general principle. If unconstrained optimization problems are related to the 

solution of nonlinear equations (via the optimality condition f'(z#) = 0), we see from 

(1.3) that constrained optimization problems are closely related to the solution of two 

coupled nonlinear equations: 

The equation (1.19) expresses the vanishment of the reduced gradient defined in (1.7) 

and is obtained by projecting the second equation of (1.3) on the tangent space N(A*). 

A "decoupling" method for solving (1.18)-(1.19) is introduced in Section 2. At q, the 

first part of the step of the method consists in doing a Newton-like displacement for 

solving (1.18). This leads to a point yk. Then, q+l is obtained by doing a Newton-like 

displacement for solving (1.19) from the point yk : 

AT is a right inverse of Vc(z#) and B I  is a right inverse of Vg(z#). We shall show 

that only conditions on B y  have to be imposed in order to ensure the local q-quadratic 

convergence (in one step) of the process. In Section 4, we apply this algorithm to con- 

strained optimization, when g in (1.19) has the special structure (1.7), and it takes the 

form of a reduced method. Its extension to reduced quasi-Newton method is then easily 

done. This presentation gives, in our opinion, some insight into the method 

(1.15)-(1.17) and generalizes in some way the choice of the operators Ac in (1.16) and 

Zc in (1.17) made by Coleman, Conn and Byrd. On the one hand, Ac may be any 

right inverse of Ak (with a smoothness hypothesis of Ac = A(zk)- according to q) and 

not necessary the Penrose pseudo-inverse and on the other hand, the columns of ZF 
may form any basis of N(Ak) and not necessarily an orthogonol basis. This remark 

may be crucial in some applications like the one mentioned above where the "partioned 

framework" (see Section 3) occurs naturally. In Section 5, we give a necessary and 

sufficient condition of q-superlinear convergence of the method that is weaker than the 

sufficient condition given by Byrd (1984). 

The globalization of the local method could then be done as in the paper of Cole- 

man and Conn (1982,b). In Section 6, however, we examine another globalizing tech- 

nique essentially based on the ideas of Han (1977) for the SQP method (see also Danilin 



and Pschenichny (1965)). We introduce the following exact penalty function: 

where p is a large enough penalty parameter and ) ) . I  I is the ll norm on Rm. We 

look for z t  by minimizing ep on w. The idea is then to obtain a descent direction for 

ep a t  the current iterate from the displacement calculated by the local algorithm 

(1.20)-(1.21). Contrary to what happens with the SQP method, our total displacement 

is not a descent direction for ep any more. So, we shall introduce a descent arc, being 

inspired in that way by the work of Gabay (1982,b) for his algorithm and Mayne and 

Polak (1982) for the SQP method, although in those algorithms, the arc was introduced 

for other reasons. A search on the arc is done in order to decrease the penalty function 

ep with the help of an Armijelike criterion. This gives a theorem assuring the global 

convergence of the method. Furthermore, under natural conditions, the "Maratos 

effect" is avoided: the step-size is equal to one after a finite number of iterations. 

Therefore there is a smooth transition from the global to the local method that does not 

prevent the q-superlinear convergence from occurring. 

If (vk) is a sequence in a normed space (E, 1 I I I E) and (ak) is a sequence of posi- 

tive numbers, we shall say that (vk) is a big 0 of (ak) (we shall note vk = O ( a k ) )  if the 

sequence ( 1  1 vkl I E/ak) is bounded and we shall say that (vk) is a small o of (ak) (we 

shall note vk = o(ak)) if the sequence ( I  I vkl 1 E/ak) converges to zero. We shall say that 

two positive real sequences (ak) and (Pk) are equivalent (we shall note a k  - Pk) if 
at = O(&) and Pk = O(ak) .  We shall note vi, the i-th component of a vector v in E. If 

A is a linear operator from ( E , (  1. I I E )  to ( 1  1.1 I ) ,  we shall note 

) I A I (  = sup { I ( A v ~ ( ~ :  I ( v I ( ~  < 1 ). If A and B a r e  two square matricesof the same 

order, we shall note A 5 B when (B-A) is positive semi definite. 

This paper constitutes a revised version of a part of the report number RR-482 of 

INRIA in which some techniques for updating the reduced matrix have also been inves- 

tigated (see also Gilbert (1987)). A variant of the method is given in Gilbert (1986,b). 

2. A decoupling method for solving two nonlinear coupled equations 

Let us consider the following coupled system of nonlinear equations: 

where F and G are supposed smooth and map Rn to lRm and Rn-m (m< n) respec- 

tively. Let z t  be a solution of (2.1) and let us denote by A t the m x n Jacobian matrix 

of F a t  z t  and Bt  the (n-m) x n Jacobian matrix of G a t  z t .  We shall say that zt  is a 

regular solution of (2.1) if the Jacobian matrix of the system (2.1), 



is nonsingular. This will be the case if and only if N(A*) n N(B*) = (0). We would 
like to define a Newton-like method for solving (2.1) without having to inverse the Jaco- 
bian .I(%) of (2.1) at  zk. For that, let us suppose that z* is a regular solution. Then 
A* and B* are surjective and we can introduce a right inverse AT of A* and a right 

inverse BT of Be: 

A* A, = I,, B* BY = In-, . (2.3) 

Two algorithms using AT and BT can be considered and we introduce them with 

the help of the fked point maps el and c2. The first one is 

and the second one is 

These algorithms are somewhat "ideal". Indeed, the matrices A* and B* are not 

known and so neither are AT and B;. But they are simpler to study than their imple- 

mentable versions that will be introduced later. The relations (2.3) do not determine 

the right inverses AT and BT completely. Therefore, we can try to choose them so 

that the sequences generated by the algorithms (2.4)-(2.5) and (2.6)-(2.8) will have a 
good local behavior. The next two propositions show that this is possible: we can get 

conditions on AT and BT in order to have c;(z*) = 0 and ci(z*) = 0, which will ensure 

the q-quadratic rate of convergence for both algorithms. We shall say that an n row 

matrix is a basis of a given subspace of Rn if its columns form a basis of that subspace. 

Proposition 2.1. Suppose that F and G are differentiable at z,, a regular 
solution of (2.1). Then, the following statements are equivalent: 

( i )  c;(z*) = 0, 

(ii) R(A;) = N(B,) and R(B1) = N(A*), 
(iii) for any right inverse A F  of A* and any basis Z1 of N(A*), we have 



Prooj. First, we prove (i) e (ii). Statement (i) is equivalent to 

The right hand side of (2.11) is equal to [A r BY] J*. Then, (2.11) means that [A; B r ]  

is the inverse of J* and therefore is equivalent to I = J*[AT B l ] ,  i.e. A *  BT = 0 and 

B* A Y  = 0, which is equivalent to statement (ii) because the matrices A*, B*, A 1  and 

B 1  have full rank. Next, we prove (ii) (iii). Let Z 1  be any basis of N(A*): 

R(ZY) = N(A*). Because J* is nonsingular, B*Z1 is nonsingular. Indeed, if u in 
mn-m satisfies B*Z;u = 0, we have J*Z; u= 0 (because A*Z1 = 0), then ZT u = 0 

because J* is nonsingular and u= 0 because ZT is injective. Then, by multiplying 

(2.11) to the right by 2 1 ,  we get Z+ = B;(B*Z+) and therefore (2.10). (2.9) is 

obtained by multiplying (2.11) to the right by any right inverse A ?  of A *  and by using 

(2.10). It remains to prove (iii) (ii). If we take A F = A C in (2.9), we obtain 
B*Ar = 0 and so R ( A r )  = N(B*) because these spaces have the same dimension m. 

Because A*Z; = 0 , (2.10) gives A*BF = 0 and so R(Z1) = N(A *) because these 

spaces have the same dimension n- m. EI 

Proposition 2.2. Suppose t h a t  F a n d  G a r e  differentiable at x *, a regular 

solution of (2.1). Then, t h e  following statements a r e  equivalent: 

(i) e;(z*) = 0, 
(ii) R(B+) = N(Ar), 

(iii) for  a n y  basis 21 of N(A*), w e  have B+ = Z I  (Be z+)-'. 

Prooj. The equivalence (i)  e (ii) comes from the fact that 

(i(z*) = (I- BFB*) (I- A F A * )  and that the spaces N(A*) = R(I- A + A * )  and 

R(BF) = N(I- BF B*) have the same dimension n-m. To prove that (i) implies (iii), 

let Z r  be any basis of N(A*). By multiplying to the right both sides of 

by 2 1 ,  we get Z+ = B+(B+Z+) and therefore (iii) because B*Z+ is nonsingular (see 

the proof of proposition 2.1). From (iii), we get A *  B+ = 0 by multiplying to the left 

B+ = z;(B,z+)-' by A *  and AeBt  = 0 is equivalent to (ii) because R ( B t )  and 

N(A*) have the same dimension n-m. EI 

Ln the statement (iii) of proposition 2.1, we could equivalently have given to B* 

the role of A t .  We also see that the right inverses A; and B; are completely deter- 

mined by the condition (i) of proposition 2.1 and do not depend on the choice of A F 
and ZI in (iii). Similarly, the right inverse B; is completely determined by condition 

(i) of proposition 2.2 and does not depend on the choice of Z; in (iii). 



From proposition 2.1, we see that (;(z*) = 0 if and only if [ A T  BT] is the inverse 

of Jt. This means that the algorithm (2.4)-(2.5) is in fact the "ideal" (with J t l  rather 

than J(%)-') Newton method for solving (2.1) (see the displacement in (2.5)), the 

method we wanted to  avoid. On the other hand, proposition 2.2 shows that the a l g e  

rithm (2.6)-(2.8) needs fewer conditions to have a good local behavior than the a l g e  

rithm (2.4)-(2.5). The fact that no conditions are required on the right inverse AT 

means that any solver of the first equation in (2.1) can be used in (2.7), independently 

of the second equation of (2.1), whereas this is not true for the solver BT of the second 

equation of (2.1) that has to  be adapted to the first equation. 

The results of propositions 2.1 and 2.2 have a geometrical interpretation. In the 

ideal Newton method, (3) will converge q-quadratically if the displacements 

( -ATF(q ) )  and (-BIG(%)) belong to the tangent space a t  z* to  the manifolds 

defined respectively by the pre-image of 0 by F and G. In the method (2.6)-(2.8) only 

the second step (-BTG(yk)) has to belong to the tangent space N(A*); the first step is 

arbitrary (apart from the fact that AT has to  be a right inverse of A*).  

3. A change of coordinates 

Before applying the results of the previous section to  constrained optimization, let 

us give some examples of right inverses A, of A, and basis 2,- of N(A,). The formal- 

ism adopted here has been introduced by Gabay (1982,a). 

Once the injective matrices A, and 2,- have been chosen, the columns of 

[A, Z;] form a new basis of Rn. Indeed, R(A,) is a complementary space of 

N(A,) = R(2,-). To  make a change of coordinates in that new basis, it is convenient to 

introduce the additional (n-m) x n matrix 2, given in the following proposition. 

Proposition 3.1. Let A, be an m x n (m < n) surjective matrix, A, be 
any right inverse of A, and 2,- be any basis of N(A,). Then, there exists a 
unique (n-m) x n matrix Z, such that 

Furthermore, we have 



Proof. Existence and unicity af the matrix 2, come from the nonsingularity of 

[A; Z;] and (3.3) comes from the fact that [A: 2JT is the inverse of [A; Z;]. 

The relation (3.1) shows that N(Z,) = R(A,) (the matrices A, and 2, have full 

rank) and (3.2) shows that 2; is a right inverse of 2,. The equality (3.3) can be used 

to introduce a change of coordinates. Indeed, by applying it to a vector ( of R n ,  we see 
that A,( are the coordinates of ( in R(A,) = N(2,) and Z,( are the coordinates of ( in 

A first choice of matrices A; and 2,-, which is frequently made in constrained 

optimization, defines what could be called the orthogonal framework A, is the Moore- 

Penrose pseud-inverse of A, (see Ben, Israel and Greville (1974)) and 2,- is an orthog- 
n 

onal basis of N(A,) for the scalar product ((,q) = C ('q'. We have: 
i= 1 

Then 2, = z ; ~  is the unique matrix satisfying (3.1) and (3.2). We see that R(A;) is 

orthogonal to N(A,). 

Another choice of matrices A,- and 2,- can be made when a separation of vari- 

ables occurs naturally, as in optimal control problems or in parameter identification 

problems. This is also the framework adopted to introduce the GRG method (Abadie 

and Carpentier (1969)) and could be called the partitioned framework A, is supposed 

to be partitioned in two submatrices 

where the m x m matrix C, is nonsingular and D, has dimension m x (n-m). The 

right inverse A; is then taken as 

and the basis of N(A,) is 

Then 2, = [0 In-,] is the unique matrix satisfying (3.1) and (3.2). 

In the following, we shali suppose that the choice of (A,,Z,-) is a smooth function 

of 2: 



assumption B: 
the function z + (A;,Z;,Z,) is bounded on w and is in c[-'(w) with v > 3. 

This assumption is satisfied for A; given by (3.4). With regard to 2,-, the ques- 

tion is trickier, although the assumption can be satisfied locally by projection on N(A,) 

of a basis Z 1  of N(A*) (see Gill, Murray, Saunders and Wright (1985) and Byrd and 

Schnabel (1986)). 

4. A reduced quasi-Newton method for constrained optimization 

In this section, we apply the results of Section 2 to constrained optimization. The 

first step consists in reducing the size of the optimality system (1.3). This can be done 

because the second optimality condition can be expressed by n-m equations rather 

than n, in fact, by the vanishment of the n-m coordinates of the orthogonal projection 

of V j(z*) on N(A *). If Z; is any basis of N(A *), the orthogonal projector on N(A t) is 

2; (2; T ~ ; ) - ' ~ ;  T. Then, the second equation of (1.3) is projected on N(A a) by mul- 

tiplying it by ZrT.  Using the definition (1.7) of the reduced gradient, the system (1.3) 

can be rewritten as follows: 

In order to apply the previous results, we need to calculate the first derivative of g at  

z*. This can be done as in Stoer (1984) and Nocedal and Overton (1985): 

Vg(z*) = v(z; T ( ~  j ( z ) + ~ ? ~ * ) ) ( z * )  = 21 L*. (4.2) 

The Jacobian matrix of (4.1), 

is nonsingular because of the surjectivity of A and the second order sufficient condition 

which is equivalent to the nonsingularity of 

We shall denote by H* := G+'. 
Now, let us apply algorithm (2.4)-(2.5) to the system (4.1). By using statement 

(iii) of proposition 2.1 and (4.2), we get the following q-quadratically convergent algo- 
rithm: 



where A; is any right inverse of A *  (playing the role of A ?  in (2.9)) and Z; is any 

basis of N(At). This is exactly the "ideal" SQP method (see (1.6)). So, we obtain a 

result of Goodman (1985) according to which the SQP method is a Newton method for 

solving (4.1). We shall not go further with that method. 

If we apply algorithm (2.6)-(2.8) to the system (4.1), we get, by using statement 

(iii) of proposition 2.2 and (4.2): 

= - z; c;' g(vk) , (4.6) 

where A l is any right inverse of A *  and Z 1  is any basis of N(A t ) .  The following 

lemma is a consequence of proposition 2.2. 

Lemma 4.1. Suppose that assumptions A and B are satisfied and let z* 

be a solution of (1.1). There exists a positive constant C that depends only 
on f and c such that if 9, F~ given by (4.5) and Ek+l given by (4.6) are in w ,  

we have 

From the q-quadratically convergent algorithm (4.5)-(4.6), a quasi-Newton 

method is easily introduced. In (4.6), G* is replaced by an approximation Gk and ZF is 

replaced by Z(yk)- which intervenes in the calculation of the reduced gradient g(yk). If 

A; in (4.5) is replaced by A(%)-, the constraints will have to be linearized twice per 

iteration: at  zk to calculate A(zk) and at  yk to calculate the basis Z(yk)-. Since the 

constraints have to be linearized at  yk to calculate the reduced gradient in (4.6), we 

avoid two linearizations of the constraints by replacing A; in (4.5) by A ( Y ~ - ~ ) - .  So 

we obtain the following local algorithm: 

We shall denote by rk the restoration step and tk the tangent step: 

We shall also use the total displacements 



Practically, the algorithm cannot start  with (4.8) froin a point z l  without knowing a 

point yo. So, we shall suppose in the following that the algorithm starts with (4.9) from 
a point yo in w. 

This is really the same type of algorithm as Coleman and Conn's method 
(1.15)-(1.17) if we exchange in (4.8)-(4.9) yk with zk and q+l with zk+tk. However, 

our point of view shows that  there is no reason to take a restoration step orthogonal to 

N ( A ( Y ~ - ~ ) )  in (4.10) or to calculate an orthogonal basis Z(yk)- of N(A(yk)) in (4.11). 

In particular, this validates the use of the partitioned framework (3.5)-(3.7) that occurs 

often in practice. We will see that  contrary to the sequence (yk) in (4.8)-(4.9), which 

does not usually converge q-superlinearly in one step (see the examples of Byrd (1985) 
and Yuan (1985)), the sequence (3) will converge q-superlinearly as expected from the 

behavior of the ideal algorithm (4.5)-(4.6). 

In fact, it is not essential to reduce the size of the optimality system before apply- 

ing algorithm (2.6)-(2.8). The same method (4.8)-(4.9) can be obtained when the 

method is applied to  the optimality conditions (1.3). In this case, BI = [LI AI) and 

where AT is any right inverse of A* and Z; is any basis of N(A#). Furthermore, that 

way gives an iteration scheme for the Lagrange multipliers (Ak):  

where Lk is an approximation of La. Therefore, if Lk in (4.14) is correctly updated, we 

shall have also - A I = o( 1 1%-z* 1 1); indeed, A k  does not intervene in the iteration. 

The formula (4.14) simplifies the one obtained when the quasi-Newton method is 

applied to  (1.3), which writes (see Gabay (1982,b)): 

The  algorithm (4.8)-(4.9) is a reduced quasi-Newton method because the only 

matrix to update is the approximation Ck of C* and it is of order n-m. Unfortunately, 

this is not the case any more when the sequence (Ak)  is generated by (4.14) since Lk 

intervenes in the formula and Lk is of order n. 

In the next two propositions, we study the local linear convergence of algorithm 

(4.8)-(4.9). 

Lemma 4.2. Suppose that assumptions A and B are satisfied. There 
exist positive constants c, C1, C2 and C3 that depend only on f ,  c and w such 
that on the one hand, I 1 Ck- C t  1 1 5 5 implies that Gk is nonsingular with 



1 I GF' I 1 5 C3 and on the other hand, 

with 0 < 6 < 8 imply that yk and y+, are well defined by (4.8)-(4.9) and 
satisfy 

Prool. We shall denote by Ci (i= 1,2, ...) any positive constant that depends only 

on /,c and w. According to assumptions A and B, there exists a positive constant C1 

such that 

for all y in w and 

if yk-, and zk are in w and gk and yk are calcu.lated from zk by (4.5) and (4.8) respec- 

tively. Both inequalities in (4.21) are obtained from (4.5) and (4.8) by using Taylor's 

expansion on c ( q ) .  Let c, q and 8 be three fixed positive constants such that 

where B(zt,c) denotes the ball of radius c centred a t  z*. These constants c, rl and & 
depend only on 1, c and w. If Ck satisfies I I Ck-C#( ( 5 8 then, by (4.24) and (4.23), 

Ck is nonsingular and satisfies (see for example Schwartz (1981), chap. 11, theorem 62): 

1 Ilci-lll 5 ,  = : C,. 
- -b 

This proves the first part of the lemma. For the second part, let us suppose that 

(4.15)-(4.17) are satisfied with b in 10, 4. According to (4.15), (4.25) and (4.22), yk-1 

belongs to w and according to (4.16), (4.25) and (4.22), zk belongs to w .  Therefore yk is 



well defined by (4.8) and we have (4.21). This inequality and (4.16) show (4.18). Now, 

according to (4.21), (4.16), (4.25) and (4.22), yk and gk belong to w.  So, and q+' 
are well defined by (4.6) and (4.9) respectively. From (4.26), (4.23), (4.17) and 
G-'-GI' k = GL' (GI-G~)G;', we deduce: 

Let C5 be the constant given by lemma 4.1. Then, Taylor expansions give easily the 

following inequalities: 

By combining these inequalities with (4.7), (4.15), (4.16) and (4.21), we get (4.19) with 

c2 = c5 + c6 c g ( l + c l )  + c7(1+cl) '  + c 4 c 8 ( l + c l )  . 

Theorem 4.3. Suppose that assumptions A and B are satisfied. There 
exists a positive constant C that depends only on j, c and w such that if K is a 
real number in ]0,1[ and if 

( I Gk- G* I I 5 C K for all subscripts k , (4.28) 

then algorithm (4.8)-(4.9) generates from yo a sequence (zk) in w that con- 
verges q-linearly to z* and 

for all subscripts k. 

Proof. Let K, C1, C2 and C3 be the positive constants given by lemma 4.2. Then, 

if Gk-' satisfies I I GI-'- G* 1 1 5 &, we have I I GG'' 1 1 5 C3. By expanding g(yk- I )  

about z* (with (4.2)), (4.9) shows that for k 2 1, we have 

where C4 is a positive constant that depends only on f ,  c and w .  Then, the theorem 

can be proved with C := min ( & , I / C ~ ) / ( ~ + C ~ ) .  Indeed, if (4.27) and (4.28) are 

satisfied, we see, with the help of (4.30), that (4.15)-(4.17) are satisfied for k = 1 and 

6 :=(1+C4) CK. 5 6: 



We can then apply lemma 4.2 and because C2 6 5 n, (4.19) shows that  (4.29) is 

satisfied for k=l .  The fact that n is less than 1, (4.28) and (4.18) for k= l  show that 

(4.15)-(4.17) are still satisfied for k=2. So we can conclude by induction. 

The next proposition gives some useful estimates and equivalences. 

Proposition 4.4. Suppose that assumptions A and B are satisfied. Let 
(Gk) be a sequence of nonsingular matrices of order n-m. Let (2,) in w and 
(yk) in w be the sequences generated by algorithm (4.8)-(4.9) starting from a 
point yo in W .  If (zk) and (yk) converge to a solution z r  of (1.1), we have 

If moreover (Gk) and (GF') are bounded, we have 

Proof. From the definition (4.10) of rk, the expansion of e ( q )  about z* and the 

convergence of (yk), we get (4.31). Then, by using the identity (3.3) and (4.31) on 

yk = q + rk, we obtain (4.32). Next, by using the boundedness of (GL') and (4.2), we 

see that  tk = - Z F G [ ' Z T ~ L * ( ~ ~ - Z * )  + o(l 1 yk-zrl 1). Finally, with (4.12), (4.31) 

and (4.32), this gives 

This estimate shows that  dk = 0 ( )  1 q - z *  1 I). T o  prove the converse, we only have to 

show that  the operator in square brackets is nonsingular with bounded inverse. If this 

were not the case, there would exist a subsequence K of subscripts and a sequence 

(Ck: k E K )  in Rn such that  

l l C k l l  = 1 for k i n  K ,  (4.35) 

By multiplying (4.36) by A *  (resp. Z*), we should obtain A*Ck + 0 (resp. 

GL' G*Z*tk -+ 0, from which we should deduce Z*Ck + 0 because of the 



boundedness of (Ck) and the nonsingularity of C*). Finally, with (3.3), we should have 

Ck + 0,  which would contradict (4.35). So, (4.33) is proved. The proof of (4.34) is 
similar and is based on the estimate 

5. Conditions for q-superlinear convergence 

Theorem 4.3 has an immediate corollary which states that if in addition to  (4.28), 

the sequence (Gk) converges to G* then (zk) converges to z* q-superlinearly (see for 

example the argument in the proof of corollary 3.5 in Han (1976)). However, this 

assumption on (Gk) is usually not satisfied when these matrices are generated by quasi- 

Newton formulas. Assuming that (2,) converges to  z*, the next theorem gives neces- 

sary and sufficient conditions on (Gk) in order to  have the q-superlinear convergence of 

(2)). It is the analogue of theorem 2.2 of Denis and Mort5 (1974) valid for quasi-Newton 

methods in optimization without constraints. 

Theorem 5.1. Suppose that assumptions A and B are satisfied and that 
(yk) and (2,) are generated in w from a point yo by algorithm (4.8)-(4.9)  with 
a sequence (Gk) of nonsingular matrices. Suppose that (2,) and (yk) converge 
to z*. Then, the folIowing statements are equivalent: 
( i )  (2,) converges q-superlinearly, 

(ii)  q ( ~ k + l )  = 0 ( 1  lzk-z*l 11, 
(iii) (Gk-G*) Z(yk) tk = o(l lzk-z*( 1). 

Proof. The estimate (4.32) shows that 

It is then easy t o  get (we use A(yk)-A* = O(l lyk-z*l I), tk + 0 ,  (4.32) and 

A*ZF = 0): 

According t o  (3.3), it remains to  estimate Z*(zktl-z*). This will depend on the quality 

of the tangent step tk. 

Let us first prove the equivalence (i) (ii). With (4.2) and (4.32), we have 



= G* z* (zk+,-2*) + o(l I Z ~ + ~ - Z * ~  1 )  . 

Then, (ii) is clear from (i). If (ii) is satisfied, this estimate and the nonsingularity of Cz 

give 

This estimate, (5.2) and the identity (3.3) show (i). 

Now, let us show that in any of the situations (i) ,  (ii) or (iii), we have 

This estimate is clear when ( C c l )  is bounded, but we do not suppose this here. By 

writing tk = (Z)+~-Z*) - (yk-z*) and by using (5.1), we see that (5.3) is clearly 

satisfied when (i) is true and therefore when (ii) is true. When (iii) is satisfied, we have 

Then by expanding g(yk) about z* and by using (5.1) and the nonsingularity of G*, we 

get 

But tk = Z(yk)-Z(yk)tk, therefore (5.3) is still satisfied. Now, from (5.1) and (5.3), it 

follows that Q + ~ - Z *  = O() Jzk-z*( I ) ,  yk+l- yk = O(I Jzk-z*l 1 )  and, with (4.31) and 

(5.21, 

Let us now prove the equivalence (ii) e~ (iii). By expanding g ( ~ ~ + ~ )  about yk 

and by using (4.2), (5.3) and (5.4), we have 

But s ( Y ~ )  = - Gk Z( Yk) tk and tk = Z(yk)- Z(yk) tk = Zc Z ( ~ k )  tk + 
o ( 1  (Q-z* 1 I )  . So, we obtain 

The equivalence (ii) a (iii) follows. 

In the statement (ii) of theorem 5.1, g ( ~ k + ~ )  could be replaced by g ( ~ ) + ~ ) ,  but the 

reduced gradient is not evaluated a t  q+l in the algorithm. The statement (iii) is 

equivalent to  

which is based on the gap between the inverse of the Hessians. The statement (iii) can 



also be replaced by many other equivalent estimates. For example, 

The advantage of (iii) is that it does not require the boundedness of the sequences (Gk) 

or (GL l). If this boundedness is assumed, proposition 4.4 shows that the estimates can 

be done in relation to ( I dk I ( rather than I I q - z *  I 1. 
Condition (4.28) and condition (iii) of theorem 5.1 show the advantage of the 

reduced quasi-Newton methods over the SQP method with regard to the approximation 

of the Hessian of the Lagrangian. Indeed, a necessary and sufficient condition for the 

SQP method to generate q-superlinearly convergent sequences is that 

where Lk is the updated approximation of La. This famous result can be found in 

Boggs, Tolle and Wang (1982) and Nocedal and Overton (1985). Therefore, in the SQP 

method, the (n-rn) x n matrix Z r T ~ *  has to be correctly approximated and not only 

the projected Hessian of the Lagrangian 21 T ~ * ~ ,  as in reduced methods. 

As a final remark, let us mention that, if we suppose that the equivalence (4.34) 

holds, the sufficient condition given by Byrd (1984) writes 

and is therefore stronger than condition (iii) of theorem 5.1. However, this estimate 
(5.5) is satisfied in practice with the update schemes currently proposed: Coleman and 

Conn (1984, theorem 3.6) proved it for their algorithm while it is proved in Gilbert 

(1986,a) that 

(which implies (5.5)) holds for both of the algorithms proposed. But those schemes are 

not completely satisfactory and condition (iii) of theorem 5.1 may become useful in 

other circumstances. We shall see in the next section that, for the globalizing technique 

proposed, the strongest condition (5.6) allows avoidance of the Maratos effect, i.e. 

allows a unit stepsize parameter to be accepted asymptotically. 

6. Globalication of the algorithm 

In order to globalize the local algorithm (4.8)-(4.9), we introduce a step-size 

parameter pk. For that, we consider the following ezact penalty function: 



where p is the positive penalty parameter and I 1. I I is the 11-norm on Rm. Other 
norms than the 11-norm can be used in (6.1): see Bonnans and Gabay (1984). If p is 
taken greater than I I X 1 1, (where I 1 ( 1, is the sup-norm on R m ) ,  feasible minimiz- 

ers of (1.1) and (6.1) are the same (see Fletcher (1981) for example). It is therefore 
natural to look for z* by minimizing ep. For this, we need to calculate descent direc- 

tions of this non-differentiable function. On that point, a crucial observation has been 

made by Han (1977): the displacement d p P  of the SQP method is a descent direction 

of Bp at zk (if some natural hypotheses are satisfied). Therefore a better approximation 

q+l of the solution z* will be obtained by taking 

where pk gives the stepsize and is obtained from some rule using Bp as a "merit" func- 

t ion. 

Let us try to use the same globalizing technique for our algorithm. Is there any 

descent direction of €Ip among the displacements rk, tk, dk, and ek given by 

(4.10)-(4.13)? The inconvenience of rk and therefore of dk and ek is that this displace- 

ment is calculated by using two different points yk-l and zk that can be far from each 

other when zk is far from z*. So, it is difficult to see when those directions are descent 

directions for Bp. On the other hand, tk uses only the point yk in its definition and if Gk 

is positive definite, it is certainly a descent direction of Bp at yk. Indeed, this displace- 

ment is tangent to ~ - ' ( c ( ~ ~ ) )  at  yk and f'(yk) - tk is negative. Therefore a t  the first 

order, the first term of the right hand side of (6.1) will decrease while the second term 

will remain constant. These remarks lead us to define a descent arc of ep at yk, 

tangent to tk: 

Let us note that search arcs have already been proposed by Mayne and Polak (1982) to 

cope with the Maratos effect of the SQP method (see further) and by Gabay (1982,b), 
also to avoid the Maratos effect for his algorithm. 

This globalizing technique based on the arc (6.2) gives priority to the minimizing 

step tk; and this is due to the asymmetry of the local method (4.8)-(4.9). This priority 

can be harmful in certain circumstances but it can be suppressed by adding a restora- 

tion step to the local method (see Gilbert (1986,b)). 
The point yk+l is then obtained from yk by selecting a particular value pk of p: 

The step-size pk will be determined here so that the following Armijo-like criterion will 

be satisfied: 



where lk is the smallest non-negative integer such that 

In this inequality, a is a real number chosen in ]0,1/2[ for reasons that will be clear at 
the end of this section. The exponent (dk) of /3 in the last term of (6.6) takes into 

account the curvature of the search path (6.2). The vector X ( y k )  is the approximation 

at yk of the Lagrange multiplier X t  defined by 

It is just the first term of (4.14). So, usually, ( X ( y k ) )  will not converge superlinearly. 

We shall define again 

Now, we have to examine in what conditions the inequality (6.6) can be realized 

with a large enough 1,. This is the subject of the following lemma. 

Lemma 6.1.  Suppose that assumptions A and B are satisfied and that a 

point yk is given in w such that q+l and Z , + ~ + T , + ~  will aIso be in w. Suppose 

that a is in ]0,1[ and that there exists positive constants - p, j j  and h such that 

Then the rule (6 .4)- (6 .6)  allows determination of a positive step-siee pk. If, 
moreover, M is a positive constant such that 

then, there exists a positive real - p  that depends only on f ,  c, - p, F, h, a, @ and 
M such that 

Proof. We shall denote by C ( i = l , ,  . any positive constant. Using 

c'(yk) tk = 0, Taylor's theorem gives 

I I c ( ~ k + i ) - c ( ~ k ) l 1 i  5 ci I l t k l  l 2  9 (6.11) 

where C 1  depends only on c .  Using (6.11) and 0 < p  < 1 and applying again Taylor's 



theorem, we get 

where C2, C, and C4 depend only on f and c. Supposing p in 10, I.], we get from (6.12) 

and (6.13): 

where C5 and C6 depend only on f ,  c and g.  From the definition (4.10) of rktl and 

(6.1 I), we have 

where C7 and C8 depend only on c. 

Now, let us suppose that (6.6) is not true for a given p = f l  in 10, 11. Then, with 

(6.9), (6.14) and (6.15), we get 

But - f ' (~k)  . tk = Y Y  2 h l lg(vk)I l 2  and I Itk! I 5 C9 I lg(vk)l 1 where 
Cg depends only on c and h. Then, with (6.15), the last inequality becomes 

where Clo and Cll depend only on f ,  c, - p, g ,  h and a. This inequality shows that p 

be arbitrarily small if 1 1 g(yk) 1 1 + 1 ( c(yk) 1 11 # 0 (if 1 1 g(yk) ( 1 + ( 1 c (yk) 1 1 1 = 0, 
p = @ = 1 clearly satisfies (6.6) because then tk = 0, rktl = 0 and therefore 

yk(p) = yk). Indeed, otherwise letting p converged to  0 in (6.16) previously divided by 

p, we should obtain g(yk) = 0 and then dividing (6.16) by pa and taking the limit on p 

would give c(yk) = 0. This proves the first part of the lemma. 

For the second part, let us suppose that the rule (6.4)-(6.6) gives a step-size pk 

smaller than 1. Then (6.6) is not satisfied with p = pk/P and the inequality (6.16) gives 

with (6.10): 



where b := min (1,a-1) and C12 depends only on f ,  c, - p, B, a ,  p, h and M. Because 

~k 1 1 g(yk) ( I + P; I 1 c (yk) I 11 # 0 (otherwise pk = 1) the last inequality proves the 
second part of the lemma with - p = CG~/). 

The inequality (6.9) shows that the penalty parameter p has to be large enough to 

ensure the decrease of ep along the arc (6.2) and that its lower bound depends on the 

current point yk. So, sometimes it will be necessary to update the penalty parameter, 

which we shall denote by pk. We shall suppose that the adapting rule of pk will satisfy 

the following three conditions: 

there exists a subscript K such that for every k greater than K , 
( ~ k - 1  > I I X(yk) 1 1 + p) implies that pk = pk-~, (6.18) 

(pk) is bounded if and only if pk is modified finitely often. (6.19) 

In (6.17) and (6.18), - p is a given positive constant. The condition (6.18) means that 

finally (for k 2 K), pk is modified only if it is necessary in order to have (6.17). So 

(pk: k 2 K) is an increasing sequence. An example of an adapting rule satisfying these 

conditions is given by Mayne and Polak (1982): 

where 6 is a given constant greater than 1 in order to satisfy (6.19). 

We are now able to state the algorithm which globalizes the local method 

(4.8)-(4.9). 

Algorithm RQN: 

1. Choose a convergence tolerance c > 0, p in ]0,1[, a in ]0,1/2[ and a >  1. 

2. Choose yo in w and a symmetric positive definite matrix Go of order n-m. 

3. Let k := 0. 



4. Repeat: 

4.1. Linearize the constraints at yk: choose a right inverse A (yk)- of Vc( yk) 

and a basis Z(yk)- of N(Vc(yk)) according to assumption B. 

4.2. Evaluate A(yk) := - A ( ~ ~ ) - ~ V  f(yk) and g(yk) := z ( ~ ~ ) - ~ v  /(yk). 
4.3. If k > 1 then evaluate the symmetric positive definite matrix Gk by up- 

dating Gk-l. 

4.4. Tangent step: evaluate t k : = - z ( y k ) - ~ t 1 g ( y k )  and y+l:= 

yk + tk. 
4.5. Restoration step: evaluate c ( ~ + ~ )  and := - A ( ~ ~ ) - c ( q + ~ ) .  

4.6- If I l g ( ~ k ) l ( + l l c ( z ~ + ~ ) ( I  < €thenstop- 
4.7. Adapt pk according to (6.17)-(6.19). 

4.8. Search a point yk+l from yk along the arc (6.2) in order to decrease the 

penalty function (6.1) (with p = pk) with the help of the rule 

(6.3)-(6.6). 

4.9. Next iteration: set k := k + l .  

In the partitioned framework (see Section 3), only one linear system has to be 

solved at  the step 4.2. Indeed, if A(yk)  = [C(yk) D(yk)], A(yk) is obtained by solving 

where v/(yk)(l) is the vector formed by the first rn components of V/(yk). Then 

g(yk) = o ( y k )  TA(yk)  + ~ / ( y ~ ) ( ~ ) ,  where ~ / ( y ~ ) ( ~ )  is the vector formed by the last n- rn 

components of V/( yk) . 
The important question of the update of the matrices (G,), which is mentioned at  

step 4.3 of algorithm RQN, has been investigated by Coleman and Conn (1984) and by 

Gilbert (1986,a). Gk+l is obtained from Gk by the BFGS formula using two vectors r k  

and o k  in D F r n :  

Therefore, Gk+ satisfies the secant equation: 

The point now is to choose adequately the vectors -yk and ok so that Gk+l will approxi- 

mate G* := ZI *L*ZF. This form of G* and the formula (4.2) suggest taking r k  as the 

difference of two reduced gradients. A First possible choice consists in taking (see Cole- 

man and Conn (1984) and Gilbert (1986,a)): 



Then, if we suppose that  (yk) and (q) converge to z*, Taylor's theorem gives: 

This relation and (6.21) show that r k  and uk are correctly chosen. Unfortunately, this 

choice needs an additional linearization of the constraints a t  q+l in order to  calculate 

the reduced gradient a t  this point. This may be avoided by taking (see Gilbert 

(1986,a)): 

But in this case, (6.24) will not be necessarily satisfied anymore which means that 

updating Gk by formula (6.20) would deteriorate the matrix. Therefore, an update cri- 

terion of the form 

where (pk) is an appropriate sequence converging to  zero, has to  be introduced. When 

(6.27) is satisfied, it is not too difficult to show that the estimate (6.24) is still valid 

with rk and uk given by (6.25) and (6.26). The crucial point is now to  choose correctly 

the sequence (pk) so that  when (6.27) is not satisfied the superlinear rate of convergence 

of (2,) can be preserved. A good choice for pk is 

where p is a small enough constant and (k--) is the subscript of the last but  one 

iterate a t  which (6.27) was satisfied and therefore Gk-- updated by the formula (6.20). 

The update scheme a t  step 4.3 of algorithm RQN is expected to generate a 

sequence of nonsingular matrices Gk satisfying 

for some positive constant h. This property is really not easy to  obtain. However, by 

using the same type of arguments that  are used in unconstrained optimization, it can be 

proved either in a local framework (when (zo,Go) is supposed to  be close t o  (z*,G*) and 

pk = 1) or when it is assumed that  (2,) and (yk) converge to  zs with 

00 00 

C I Izk-z*I I < + oo and C I lyk-z*I 1 < + oo . 

See Gilbert (1986,a). 

The next theorem analyses the global convergence of the algorithm RQN under 

the hypothesis (6.28). 



Theorem 6.2. Suppose t h a t  assumptions  A a n d  B are satisfied a n d  t h a t  
f is bounded f rom below o n  w. Let (z,), (y,) a n d  (G,) be t h e  sequences gen- 
e ra ted  b y  a lgor i thm RQN w i t h  a in  ]0,1[. Suppose t h a t  (2,) a n d  (yk) are in  w 

a n d  t h a t  t h e  matr ices  G, are nonsingular a n d  satisfy (6.18) w i t h  a positive 

cons tan t  h independent  of k. Then,  e i ther  (pk) is unbounded  a n d  

(yk: pk # pk-J has  n o  accumulation point  in w, or (pk) is bounded a n d  

Proof. Suppose first that (p,) is unbounded and let K be the subsequence of the 

subscripts k 2 K (K given in (6.18)) for which p, # pk-l. By (6.18), 

for k in K. Because (pk : k 2 K) is an increasing sequence, we see from this inequality 

that ( IX(yk) I 1, ---, m for k ---, m in K. Therefore (yk: pk # pk-l) has no accumula- 

tion point in w (here, we use the continuity of y ---, X(y) and so, the surjectivity of 
V c ( y) and assumption B are strongly invoked). 

Now, let us suppose that (pk) is bounded. From (6.19), pk is constant when k is 

great enough. Let us say that pk = p for k 2 K1. So, at  each iteration the same 

penalty function Qp decreases. The function f being bounded from below, we get 

Therefore, ( I  Jc(yk)l Il) is bounded and we can apply lemma 6.1, which states the 

existence of a positive lower bound - p for the sequence (pk). From (6.28), we get 

(- fr(yk) - tk) t h I 1 g(yk)I l 2  and then, with (6.17), (6.6) writes 

But (ep (yk) )  converges (a decreasing bounded from below sequence). Therefore, taking 

the limit on k in this inequality shows that 1 (g(yk) ( ( and I ( c ( y,) 1 I converge to zero, 

which is the expected result. CI 

A last problem to  tackle concerns the question of the admissibility of the unit 
stepsize. When pk = 1 is accepted by (6.6), the algorithm RQN proceeds like the local 

method (4.8)-(4.9) and q-superlinear convergence of (zk) will occur when the reduced 

Hessian G* is correctly approached by Gk (see theorem 5.1, statement (iii)). It is 

known that this admissibility property is not satisfied when the SQP method is global- 

ized with the penalty function (6.1.) and the technique described at  the beginning of this 

section. This has been called the "Maratos effect" of the SQP method (see Maratos 



(1978)) and several remedies have been proposed to overcome this drawback (see 

Gabay (1982,b), Chamberlain, Lemarkhal, Pedersen and Powell (1982), Mayne and 

Polak (1982) and Bonnans (1984)). This inconvenience is not shared with our algo- 
rithm. In fact, when c(yk)=O (a favorable situation for the appearance of the Maratos 

effect), the total displacement q = tk + r k + ~  is exactly the same as the one of the SQP 

method with the Mayne and Polak's correction. This may explain that fact. 
Let (3) in w, (yk) in w and (Gk) be the sequences generated by the algorithm 

RQN and suppose that ( yk) converges to a solution z* of (1 .I). Let K be a subsequence 

of subscripts. We are interested in finding conditions under which pk will be equal to 1 

for all but finitely many subscripts k in the subsequence considered. The following four 

properties will be meaningful: 

(Gk- G*) Z* tk = o(l I tk 1 I )  for k in K , (6.31) 

tk = O(I Irk+1([)  for k in K ,  (6.32) 

pk < 1 and tk = o(( l rkl  1 )  for k in K .  (6.33) 

The properties (6.30) and (6.31) concern the approximation of the reduced Hessian G* 

by Gk. The property (6.30) is very strong when M is small and is usually not satisfied 

when second order derivatives are not calculated. The property (6.31) recalls condition 

(iii) of theorem 5.1, which writes when (Gk) and (GL') are bounded: 

Therefore, (6.31) is usually stronger than (6.34) and, in fact, is satisfied by some subse- 

quences of subscripts when (Gk) is updated by the BFGS formula (see Gilbert (1986,a) 

and the discussion following the proof of theorem 5.1). The property (6.32) concerns 

the comparison of the tangent step and the restoration step. 

The next theorem shows that for the subsequences K for which (6.30) with M 
small enough or (6.31) or (6.32) is satisfied, the rule (6.3)-(6.6) will give pk = 1 for all 

but finitely many k in K .  Therefore, the unit stepsize will be admissible either when 

G* is correctly approximated by Gk (properties (6.30) and (6.31)) or when tk is of the 

same order of magnitude as rk+l (property (6.32)). 

Property (6.33) is more particular. In concrete algorithms using the update 

scheme (6.20), (6.25) and (6.26) with the update criterion (6.27), neither of the proper- 

ties (6.31)-(6.33) is satisfied for the entire sequence. These properties are satisfied only 

for subsequences K. The result obtained in theorem 6.3 with property (6.33) is then 

used to prove that only properties (6.31) or (6.32) (and not (6.33)) may occur in the 

considered algorithm (see Gilbert (1986,a)). 



Theorem 6.3. Suppose that assumptions A and B are satisfied. Let (zl;), 

(vt) and (Gk) be the sequences generated by algorithm RQN with a in 

10, 1/2[. Suppose that (4) and (N) are in w,  that (yk) converges to  t, and 
that the matrices Gk are nonsingular and satisfy (6.28) with a positive con- 

stant h independent of k. Let IK be a subsequence of subscripts. Then, 

(i) there exists a positive conetant fi that depends only on c, a and h such 
that if (6.30) is satisfied with M < M then pt = 1 for all but finitely many 

k in lK, 

(ii) if (6.31) or (6.32) is satisfied then pt = 1 for all but finitely many k in lK, 

(iii) if (6.33) is satisfied, then rttl = o(I Irk 1 I 1 I tkl 1) for k in lK. 

Proof. Since (vk) converges, proposition 6.2 shows that (pk) is bounded and by 

(6.19), pk is modified finitely often. So we can suppose that pk = p for all k. By 

Taylor's theorem, we expand Bp(vk + tk + rk+l) at  the second order in tk and the first 

order in rk+l. First, note that (yk) converging to z* and (CL') being bounded, (zk) 

converges to z*. Then, we have 

We also have 

and using the estimate (6.35), we get 

On the other hand, expanding c (yk+ ek) about yk we obtain 

and using again (6.35), we get 

Let us define 

Ak: = f'(yk) ' tk - (P - 1 IX(yk) 1 1,) 1 Ic(yk) I 11, 

which is negative by (6.28) and (6.17). Finally, (6.36) and (6.37) give 



But tk = ZTZ*tk + o(l 1 tk 1 1 )  and the boundedness of (Gk) allows us to write 

g(yk) = - GkZ*tk + o ( J  1 tk 1 I ) .  Therefore, using j'(yk) - tk = - ( G C ' ~ ( ~ ~ ) ,  
g(yk)) = - (GkZ*tk,Z*tk) + o(l I tk 1 1 2), we obtain 

Using this inequality we now prove the theorem. Suppose that  the stepsize pk is 

different from 1 for k in a subsequence IK. Then, according to  Armijo's rule (6.4)-(6.6), 

the left hand side of (6.38) is positive and we have: 

Using the inequality C1 1 1 tk I I < ( I g( yk) 1 I (where C1 is a positive constant that  depends 

only on c and h),  the property (6.28), the inequality (6.17), the definition (4.10) of rk+l 

and (6.35), we can obtain a lower bound for the left hand side: 

Now, if one of the properties (6.30) with M < M := (l-2a)hC:/ ( 12.1 1 or (6.31) or 

(6.32) is verified, this inequality leads to  

which shows that  IK must be finite. This proves statements (i) and (ii) of the theorem. 

It remains to prove (iii). With (6.33), inequality (6.39) is valid for k in IK and 

tk = o ( (  1 rk (  1 )  implies for k in K:  

from which we deduce 

Then, this estimate, the definition of r k + ~  and (6.35) give 

which is the estimate in (iii). 



7. Conclusion 

We have studied in this paper the local and global convergence of a variable 

metric algorithm for equality constrained optimization in which the order of the 

updated matrices is n-m. This reduced method can be seen as making a link between 
GRG-like methods which are feasible methods (c(zk) = 0 for all k)  with reduced 

matrices (of order n-m) and the SQP method which is an unfeasible method with full 

matrices (of order n): the studied algorithm is indeed an unfeasible method with 

reduced matrices. The algorithm inherits also the good properties of both methods 

(reduced metrics, superlinear convergence and unfeasibility) and shows, in particular, 

that locally only one restoration step is necessary to obtain the superlinear convergence 

of GRG-like methods when the reduced matrices are correctly approximated. 

The global convergence is obtained by Han's technique to globalize the SQP 

method. The ll penalty function is used as merit function and is decreased along an 

arc-shaped search path. Conditions for the asymptotic admissibility of the unity step- 
size are given that turn out to be satisfied in practice. 

An important facet of the method has not been tackled here and is reported else- 

where (Gilbert (1987)). This concerns the update of the reduced matrices Gk. This one 

is based on a secant equation using the change in the reduced gradient g. The fact that 

the gradient of g at  z* (see (4.2)) is not equal to G* (and cannot be equal because 

Vg(z*) is an (n-m) x n matrix while C, is of order n-m) leads to an alternative. 

Either the reduced gradient is evaluated twice per iteration, a t  yk and ~ k + ~ ,  or it is 

evaluated only once per iteration, a t  yk. In the first case, the change g(q+l)-g(yk) is 

used in the secant equation and the matrices Ck are updated at  each iteration but with 

the inconvenience of having to linearize the constraints twice per iteration: see Cole- 

man and Conn (1984) and Gilbert (1986,a). In the second case, the change 

g ( ~ ~ + ~ ) - g ( y k )  is used in the secant equation but usually the matrices Gk cannot 

anymore be updated a t  each iteration. An update criterion has to be introduced in 

order to decide when an update is appropriate. Despite this, the superlinear conver- 

gence can be achieved either in a local framework (see Nocedal and Overton (1985) for 

the algorithm (1.12)-(1.14)) or in a global framework (see Gilbert (1986,a) for the algo- 

rithm RQN of Section 6). 
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