
WORKING PAPER

AN E F F I C I E N T ALGORITHM FOR A B I C R I T E R I A
SINGLE-MACHINE SCHEDULING PROBLEII

N a o k i K a t o h

O c t o b e r 1 9 8 7
W P - 8 7 - 1 0 0

International lnst~tute
for Appl~ed Systems Analys~s

A-2361 LaxenburgIAustr~a CI IIASA

An Efficient Algorithm for a Bicriteria Single-Machine
Scheduling Problem

Naoki Katoh

October 1987
WP-87-100

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Foreword

This paper considers a single-machine scheduling problem in which the maximum

tardiness and the total flowtime are two objectives to be minimized. Instead of enumerat-

ing all efficient schedules, the author considers the problem of minimizing the maximum

of the weighted values of these two objective functions, which arises in interactive mul-

ticriteria decision making. The author proposes a strongly polynomial algorithm for this

problem which runs in 0(n210g n) time.

Alexander B. Kurzhanski

Chairman

System and Decision Sciences program

An Efficient Algorithm for a Bicriteria Single-Machine
Scheduling Problem

Naoki Katoh

1. Introduction

It was reported in Panwalkar e t al. [l o] that in industrial scheduling managers do

schedule according to multiple objectives. A schedule which is optimum with respect to

one criterion normally performs badly with respect to other criteria. Therefore a schedule

with satisfactory performance on all measures may be considered as a better alternative

for the decision maker. This consideration leads to the research on multicriteria schedul-

ing which has recently been done by several researchers (see Chapter 6 of the book by

Blazewicz et al. [2] for the survey of this topic).

This paper is concerned with a single-machine scheduling problem with two criteria,

i.e., the maximum tardiness and the total flowtime. This problem is called a bicriteria

single-machine scheduling problem and is formulated as follows. We are given n jobs that

are to be sequenced on a single machine. Jobs are numbered from 1 through n. Each job

j has processing time pi and due date d,. pi and d, are assumed to be nonnegative in-

tegers. All jobs are assumed to be available a t time 0 . Let

U: the set of permutation schedules,

n: a permutation schedule,

C,(n): the completion time of job j for a given schedule n

Ti(%) E max {O,C,(n) - d,): the tardiness of job j for a given schedule n

T,,(n) = max Ti(%): the maximum tardiness of a given schedule x.
l < j < n

n
F(n) r C C,(x) : the total flowtime of a given schedule n.

Then the problem is formulated as

minimize { T,,,(.lr), F(.lr)) .
r E n

(1)

Since both objectives cannot be minimized simultaneously in general, it is quite natural

that the decision maker chooses an efficient schedule as his decision. Here a schedule

n * E II is said to be eficient for the problem (1) if there exists no n E II such that

hold and a t least one relation holds with strict inequality. Hence i t is important to deter-

mine all efficient schedules. This problem has been studied by Wassenhove and Gelders

115) and Nelson, Sarin and Daniels [9]. (15) proposed a pseudo-polynomial algorithm with
n

~ (n log n. C pi) running time, and presented some computational results. 191 also did the
j= 1

similar work. In addition, [9] considered the other types of bicriteria single machine

scheduling problems.

Though it was shown by the computational experiments done in [9, 151 that finding

all efficient schedules for problem (1) can be done quite efficiently for problem instances

with the number of jobs being up to 50, their approach has two drawbacks. One is that

the running time required for the algorithm is not polynomially bounded and the second is

that it may zenerate so many efficient schedules and thus this may be confusing for the

decision maker because he or she must choose one best schedule according to his or her

preference from among a large number of efficient schedules. With this consideration, we

shall take the following alternative approach, which has been used in interactive multicri-

teria decision making. It solves the following problem P instead of enumerating all

efficient schedules.

P : minimize Z (X) = max{alTrn,(n) + B1, a2F(.lr) + B2) ,
nEn

(2)

where a, and /3, are positive and real constants respectively, which are directly specified

by the decision maker or are determined based on the information supplied by the deci-

sion maker.

a; and pi are typically determined in the following manner by the quasisatisficing

method, which is one of the well known methods used in interactive multicriteria decision

making (see Wierzbicki and Lewandowski [21] and Chapter 7 of the book by Sawaragi,

Nakayama and Tanino (111). The method first requires the decision maker to specify the

aspiration level qi and the reservation level r, for i = 1,2. ql (resp. q2) is interpreted as

the desirable value for the maximum tardiness (resp. the total flowtime) that the decision

maker would like to attain, and r l (resp. r2) is the maximum allowable value for the max-

imum tardiness (resp. the total flowtime). The degree of the achievement of a given

n E fl for the objective of the maximum tardiness (resp. the total flowtime) is measured

by

The aggregated degree of the achievement for n is then measured by

The method then solves the following problem:

maximize s ,
UE n

and provides its optimal solution n * to the decision maker. If n * is not satisfactory for

the decision maker, he or she is asked to change the aspiration and/or reservation levels

in order to obtain a satisfactory alternative. The above process is repeated until a satis-

factory schedule is obtained. At each round of this iteration, we need to solve the prob-

lem (6). Letting ai = l / (r i - qi) and pi = -ri/(ri - qi), the problem (6) is equivalent to

Problem P.

Modifications and generalizations of the achievement function s in (5) have been

proposed by several authors, e.g., Wierzbicki 116, 17, 18, 19, 201, Nakayama [8], Steuer

and Choo [13] (see also [21.] for general discussion about this subject). Many of those have

the form similar to the one in (5).

In view of this, i t is important to study the computational complexity for solving

Problem P. The aim of this paper is to present a strongly polynomial algorithm for Prob-

lem P. An algorithm that solves a problem whose input consists of m real numbers is

strongly polynomial (see [7, 141) if

(a) i t performs only elementary arithmetic operations (additions, subtractions, com-

parisons, multiplications and divisions),

(b) the number of operations required to solve the problem is polynomially bounded

in m, and

(c) when applied to rational data, the size of the numbers (i.e., the number of bits

required to represent the numbers) that the algorithm generates is polynomially bounded

in m and the size of the input numbers.

It is shown that our algorithm requires 0(n210g n) time. This time bound is achieved

by applying Megiddo's ingeneous work [6] which was originally developed for solving com-

binatorial fractional programs. Gusfield 131 applied Megiddo's idea to the other type of

combinatorial optimization problems. However, the application of Mediddo's idea to our

problem seems to be new.

This paper is organized as follows. Section 2 gives basic properties on which our al-

gorithm is based. Section 3 describes the algorithm, proves its correctness and analyzes

its running time.

2. Basic P r o p e r t i e s

It is clear that a schedule r t optimal to Problem P exists among all efficient

schedules (see 111, 20, 211). It is shown in [15] that the set of all efficient schedules is

determined by solving the following parametric scheduling problem P(A) for all A with
n

tmin 5 A 5 C pi, where tmin is defined by
j= 1

tmin = min Tm,,(lr) .
*En

n
P(A) : minimize F (r) = C C,(lr)

*En j= 1

subject to C,(r) i d, + A, j E {1,2 ,..., n) . (8)

This problem is known as the single-machine scheduling problem for minimizing the total

flowtime with deadlines, and Smith [12] proposed an O(n1og n) time algorithm for solving

this problem. His algorithm is called a Smith's backward scheduling rule. It first deter-

mines the job located in the last position in an optimal schedule r t , secondly the one in

the second last position in r t , and so on. We shall describe his algorithm because i t will

be used later as a subroutine in the algorithm for Problem P proposed in Section 3.

P r o c e d u r e SOLVEDEAD(A)

Input: The set of jobs {1,2, ..., n) with processing times p, and due dates d,, and
n

parameter X with tmi, < X 5 C pi
j= 1

Output: An optimal schedule for Problem P(X).

n
Step 1: Let R := C p j , S := {I ,..., n) , k := n.

j= 1

Step 2: Find jf such tha t

pi* = max {p,b ES, d j + X 2 R) .

Ties are broken by choosing the one with the largest due date. Assign job jf t o position

k.

Step 3: Let R := R - pi*, S := S - { j f) , k := k - 1. If k = 0 , halt (the optimal

schedule is obtained). Else return to Step 2.

Lemma 1 [IS] Procedure SOLVEDEAD(X) correctly solves Problem P(X) in

O(nlog n) time and the obtained schedule is efficient.

Let n(X) denote an optimal schedule for P(X) which is obtained by Procedure SOL-

VEDEAD (A).

Lemma 2. F(n(X)) is nonincreasing in X and T,,,(n(X)) is nondecreasing in X

Proof. If F(n(X)) is not nonincreasing in A, there exist X and A' with X < A' such

tha t F(n(X)) < F((n(X')). By (8), any schedule feasible t o P(X) is also feasible t o P(X').

This contradicts the optimality of n(X') by F(n(X)) < F(n(X')). If Tm,,(a(X)) is not

nondecreasing in A, there exist X and A ' with T,,,(n(A)) > T,,(a(X')). Since

F(n(X)) > F(n(X')) holds as proved above, i t follows tha t n(X) is not efficient. This con-

tradicts Lemma 1.

The following lemma is important for constructing our algorithm. Define

Lemma 3. (i) If n(tmin) satisfies

u(tmin) is optimal t o P.

(ii) If u(psum) satisfies

.~r(p,,,) is optimal t o P .

(iii) If neither the condition of (i) nor (ii) holds, let

and let A * be one of Amin and Amin- 1 such that

where z(.) is defined in (2). Then A(A *) is optimal to P .

Proof. (i) If (10) holds, we have from Lemma 2 that

and

hold. It implies that z(7r(tmin)) = min { z (~ (A)) l t ~ ~ , , 5 A 5 psum) holds by definition of

4.).
(ii) If (11) holds, we have from Lemma 2 that

and

hold. It implies that z(.lr(pSum)) = min {z(~(A))lt,~, 5 A < psum) holds by definition of

4.1.

(iii) We shall first show that Amin defined in (12) always exists if neither the condi-

tion of (i) nor (ii) holds. Let A E Il be defined by

Tmax(f) = =in {T,,,(A) (A is efficient and al Tmax(s) + pl

f always exists since ~(p,,,) satisfies the condition of the right-hand side of (14) by as-

sumption and Il is a finite set. We shall show that Amin = Tmax(f) holds. Note that A is

optimal t o ~ (i) with i = Tma,(f) since f is efficient. Then, =(A) for any A < satisfies

alTmax(lr(A)) + p1 < a, F(lr(A)) + Dz, since otherwise there exists A' with A ' < with

alTm,(lr(A')) + Dl 1 a2F(lr(A')) + Dz. This contradicts the definition of A since

Tm,(*(A')) 5 Ae(<i) holds by (8). Therefore Amin = Tma(f) follows.

We shall then show that z(r(Amin)) < z(r(A)) holds for all A with A 2 Amin. Since

Tmax(r(A)) is nondecreasing in A by Lemma 2 and al Tmax(r(A)) + PI 2 a2F(r(A)) + P2
holds for all A with A 2 Amin by (12), z(r(Amin)) < z(r(A)) follows. Note that Tmax(r)

takes only integer values since all p, and d, are assumed to be integers. Together with

Lemma 2, this implies

F(r(Amin - I)) = min {F(r(A)) 1 tmin 5 A < Amin} . (16)

Since a, T,,(n(A)) + Pl < a2F(n(A)) + P2 holds for all A with tmin 5 A < A m i n by (12),

it follows from (16) that z(r(Amin - 1)) 5 z(r(A)) holds for all A with A < Amin. There-

fore Lemma 3 (iii) follows. o

3. A St rong ly P o l y n o m i a l A l g o r i t h m for P

We shall first explain the outline of the algorithm. It first solves P(tmin) and

P(p,,,) t o test whether the condition of Lemma 3 (i) or Lemma 3 (ii) holds. If the condi-

tion of Lemma 3 (i) (resp. Lemma 3 (ii)) holds, a schedule r (tmin) (resp. ~(p,,,)) is out-

put as an optimal schedule to Problem P . We assume in the following discussion that

neither the condition of Lemma 3 (i) nor Lemma 3 (ii) holds, i.e., the condition of Lemma

3 (iii) holds. In this case, we need to compute Amin in (12). First notice that A m i n can be

found by applying the binary search over the interval [tmin, p,,,]. We first try the value

o f A = ['!min + Psum
2

1 to test whether al Tmax(r(A)) + PI 2 a2F(r(A)) + p2 holds or not.

Here lz] denotes the integer part of z. If it holds, Amin is contained in the interval

[A, psumJ. Otherwise i t is contained in (A m i n , A]. In any case, we can halve the interval.

After k trial values the length of the remaining interval can be no greater than

(psum - tmin)/2k. We continue the interval-halving procedure until the remaining interval

has the length smaller than one , since P(A) and P(A') for A and A' with A # A' and

[A] = [A'] have the same set of optimal schedules by the integrality of pi and d,. Therefore

Amin can be found in O(n1og n .logp,,,) time and as a result of Lemma 3 (iii) an optimal

schedule of Problem P can be found in O(n1og n . log paurn) time. This algorithm is, how-

ever, not strongly polynomial because of the term log p,,,.

In order to achieve a strongly polynomial algorithm for P , we employ Megiddo's

idea [6] which was originally developed for solving cornbinatorial fractional programs.

The algorithm applies Procedure SOLVEDEAD(Amin). The computation path of

SOLVEDEAD(Amin) may contain conditional jump operations, each of which selects

proper computation path depending upon the outcome of comparing two numbers. Notice

that SOLVEDEAD(Amin) contains arithmetic operations of only additions and subtrac-

tions, and comparisons of the numbers generated from the given problem data. Thus,

when applying SOLVEDEAD(A) to solve P(A) with A treated as unknown parameter, the

numbers generated in the algorithm are all linear functions of A or constants. Note that

comparisons are necessary a t conditional jumps. If a comparison for a conditional jump

operation is made between two linear functions of A m i n , the condition can be written in

the form of

for an appropriate critical value i, which can be determined by solving the linear equa-

tion in A m i n constructed from the compared two linear functions.

An important observation here is that the condition (17) can be tested without

knowing the value of A m i n . This is carried out as follows. The algorithm starts with the
-

interval (A , q , where A = tmin and A = p,,,. If i < A (resp. i > I), it is concluded that

i < A m i n (resp. i > Amin) holds. Otherwise (i.e., A <_ i 5 I), ~ (i) and ~ (i - I) are

solved by calling procedures SOLVE DEAD(^) and SOLVEDEAD(); - 1) respectively. If

holds,); > Amin is concluded since Lemma 2 implies

al TmaX(s(i)) + Dl 2 a2 F (T (~)) + P2, and the algorithm follows the corresponding prop-

er computation path. If

and al T m a x (~ (i - 1)) + P1 < a2F(" (i - 1)) + P2 ,
(19)

A = Amin is concluded since A is an integer as discussed above and Amin is also an integer

as seen from the proof of Lemma 3. Then the algorithm outputs T * which is chosen from

"(Amin) and x(Ami, - 1) by (13) and halts. Finally if

holds, i < Amin is concluded and the algorithm follows the corresponding computation

path. We shall show later that Amin is found among critical values generated during the

course of the algorithm.

Since SOLVEDEAD(A) requires O(n1og n) number of jump operations as shown in

[IS], and SOLVEDEAD();) and SOLVE DEAD()^^ - 1) need be solved for a critical value);

a t each jump operation, our algorithm requires 0(n210g2n) time in total.

This time bound is further improved to 0(n210gn) by showing that the above algo-

rithm can be implemented so that the number of comparisons in which a t least one of

compared two numbers contains Amin can be bounded by O(n). Notice that the critical

values are generated only when Step 2 tests whether d, + Amin >_ R holds or not for each

job j E S (i.e., compared two numbers are constants in other comparisons), and that the

critical value for job j is R - d,. By the way of updating R and the integrality of pi and

d,, R - d, takes only integers. If (20) holds for); = R - d,, j is added t o the set over

which the maximum is taken in Step 2, since X^ = R - d, < Amin holds. If (18) holds, j is

not added to the set. If (19) holds, the algorithm outputs 7~ * as explained before and

halts. Letting

J(S,R) = { j E s(); = R - d, satisfies (20)) (21)

the position in schedule %(Amin) of job j* is determined, i.e., j * is placed so that its com-

pletion time Cj*(lr(Amin)) is equal to R . After this, R and S are updated as R ' = R - p,*

and S' = S - { i f) . Then J(S',R') and pi* are recomputed. An important observation

here is that once a job j is added to J(S,R) , it is again added to J(S',R') a t the next

round unless j is chosen as j * in (22), since, if (20) is satisfied for X^ = R - d,, i t is again

satisfied for the new critical value I' = R' - d,(< R - d,) by Lemma 2. This reduces the

number of times to test the condition of (20) to O(n). The following is the description of

the algorithm for solving Problem P. In the algorithm, J and s serve as the set J ,(S,R)

of (21) and the suffix of %(Amin) currently obtained, respectively.

Procedure SOLVEP

Input: Job processing times pi, j = 1 ,..., n , due dates d,, j = 1 ,..., n, and the weights

a ,(>O) and B,, j = 1 ,..., n.

Output: An optimal schedule of Problem P.

n
Step 0: Let R := p,,, := p,. Solve the problem of minimizing the maximum

j= 1

tardiness and let tmin be its optimal objective value.

Step 1: (i) Call Procedure SOLVEDEAD(tmin) to find x(tmin). If x(tmin) satisfies

(lo), output x(tmin) is an optimal schedule to P and halt (Lemma 3 (i)).

(ii) Call Procedure SOLVEDEAD(p,,,) t o find ~(p,,,) . If =(p,,,) satisfies (1 I) ,

output ~ (p ~ , ,) as an optimal schedule to P and halt (Lemma 3 (ii)).
-

Step 2: Let A := tmin and A := p,,,. Rearrange the indices of jobs so that

dl 2 d2 > . .2 d, holds. Let J := g, s := A and k := 1.

Step 3: If k = n + 1, go t o Step 5. Else go to Step 4.

Step 4: Let i := R - dk.

(i) 1f i < A, let J := J u { k) and k := k + 1. Return to Step 3.

(ii) If i > 1, go to Step 5.

(iii) If A 5 /C 5 X, call Procedures SOLVEDEAD (i) and SOLVEDEAD (i - 1) to

compute ~ (i) and ~ (i - 1) respectively.

(iii-a) If (20) holds, let 1 := i, J := J LJ { k) and k := k + 1 . Return to Step 3.

(iii-b) If (19) holds, Let A * be one of ~ (i) and ~ (i - 1) satisfying

Output A * as an optimal schedule to P (Lemma 3 (iii)) and halt.

(iii-c) If (18) holds, let I:= /C. S o t o Step 5.

Step 5:

(i) If J = g, halt.

(ii) Else find j* E J such that

holds. Ties are broken by choosing the one with largest due date. Let

R : = R - p . t , s : = j t s (i.e., j* is appended to the beginning of s) and I

J := J - {j*). Return to Step 3.

Theorem 1 . Procedure SOLVEP correctly computes an optimal schedule of Problem

P in 0(n210g n) time. In addition, Procedure SOLVEP is strongly polynomial.

Proof: In order t o prove the correctness of SOLVEP, we only have to show that

Amin is found in Step 4 (iii-b), unless (10) or (11) holds. Suppose otherwise. Then Pro-

cedure SOLVEP halts in Step 5 (i) with the interval (A',X'], where 2' < X' holds. Notice

that SOLVEP has computed n(Amin) when i t halts since SOLVEP follows the same com-

putation path as SOLVEDEAD(Amin) takes. Note that A clearly satisfies

A ' < A m i n 5 X'. The fact that SOLVEP ends with an interval (A',X'] implies that S O L -

VEDEAD(A) for all A E (J ' , r] follows the same computation path. Thus, x(Ami,) is o p

timal to P(A) for all A E (J ' , r] . x (i) for i with 4' < < Amin, however, does not satis-

fy al T,,(X'(~)) + B1 2 a 2 ~ (x (i)) + B2 by definition of Amin in (12). This is a contrad-

iction.

We shall then analyze the running time. Since minimizing the maximum tardiness

can be done by rearranging jobs in nondecreasing order of their due dates (see Jackson

[4]) , Step 0 requires O(n log n) time. Step 1 also requires O(n log n) time since Procedure

SOLVEDEAD(A) requires O(n log n) time by Lemma 1. Step 2 also requires O(n log n)

time to arrange jobs in nondecreasing order of their due dates. Step 3 requires constant

time. If we use a 2-3 tree to keep the set J (see the books by Aho, Hopcroft and Ullman

111 and Knuth [5], adding an element to J , deleting an element from J and taking the

maximum of pi over J are all done in O(log n) time. Therefore Step 4 (i) and (ii) can be

done in O(1og n) time. Step 4 (iii) requires O(nlog n) time since SOLVE DEAD(^) and

SOLVE DEAD(^ - 1) require O(n log n) time. Hence, each application of Step 4 requires

O(n log n) time. Step 5 requires O(log n) time. Since the loop of Steps 3, 4 and 5 is re-

peated O(n) times, 0(n210g n) time is required in total.

It is obvious that Procedure SOLVEP is strongly polynomial, since the running time

depends only on the number of input da ta (i.e., O(n)), and the size of the numbers gen-

erated during the algorithm is clearly polynomially bounded.

References

[I] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer

Algorithms, Reading Mass: Addison- Wesley, 1974.

121 J . Blazewicz, W. Cellary, R. Slowinski and J . Weglarz, Scheduling under resource

constraints-deterministic models, Annals of Operations Research, 7(1986).

[3] D. Gusfield, Parametric combinatorial computing and a problem of program module

distribution, J. ACM, 30 (1983), 551-563.

[4] J .R. Jackson, Scheduling a production line to minimize maximum lateness, Research

Report 43, Management Science Research Project, Univ. of California, Los Angeles,

1955.

[5] D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching,

Addison- Wesley, 1973.

N. Megiddo, Combinatorial optimization with rational objective functions, Math.

Oper. Res., 4(1979), 414-424.

N. Megiddo, Towards a genuinely polynomial algorithm for linear programming,

SIAM J. Computing, 12 (1983), 347-353.

H. Nakayama, On the components in interactive multiobjective programming

methods (in M. Grauer, M. Thompson, A.P. Wierzbicki, editors: Plural Rationality

and Interactive Decision Processes, Proceedings, 1984), Springer-Verlag, Berlin,

1985.

R.T. Nelson, R.K. Sarin and R.L. Daniels, Scheduling with multiple performance

measures: the one-machine case, management Science, 32 (1986), 464-479.

S.S. Panwalkar, R.A. Dudek and M.L. Smith, Sequencing research and the industrial

scheduling problem, in: S.E. Elmaghraby (ed.), Symposium on the Theory of

Scheduling and its Applications, Springer-Verlag, Berlin, 1973.

Y. Sawaragi, H. Nakayama and T . Tanino, Theory of Multiobjective Optimization,

Academic Press, New York, 1985.

W.E. Smith, Various optimizers for single-stage production, Naval Res. Logist.

Quart., 3 (1956), 59-66.

R.E Steuer and E.V. Choo, An interactive weighted Chebyshev procedure for multi-

ple objective programming, Mathematical Programming, 26 (1983), 326-344.

E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs,

Operations Research, 34 (1986), 250-256.

L.N. Van Wassenhove and L.F. Gelders, Solving a bicriterion scheduling problem,

European J. Opl. Res., 4 (1980), 42-48.

A.P. Wierzbicki, Penalty methods in solving optimization problems with vector per-

formance criteria, Proceedings of the 6th IFAC World Congress, Cambridge-Boston,

1975.

A.P. Wierzbicki, Basic properties of scalarizing functionals for multiobjective optim-

ization, Mathematische Informationsforschung und Statistik. Optimization, 8

(1977), 55-60.

A.P. Wierzbicki, On the use of penalty functions in multiobjective optimization, In

W. Oettli, F. Steffens, e t al., editors: Proceedings of the 3rd Symposium on Opera-

tional Research, Universitat Mannheim, Athenaum, 1978.

1191 A.P. Wierzbicki, A mathematical basis for satisficing decision making, Mathematical

Modelling, 3 (1982), 391-405.

[20] A.P. Wierzbicki, On the completeness and constructiveness of parametric characteri-

zations t o vector optimization problems, OR Spektrum, 8 (1986), 73-87.

(2J] A.P. Wierzbicki and A. Lewandowski, Dynamic Interactive Decision Analysis and

Support, Working Paper, IIASA, Laxenburg, Austria, 1987.

