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Foreword 

This paper considers a single-machine scheduling problem in which the maximum 

tardiness and the total flowtime are two objectives to be minimized. Instead of enumerat- 

ing all efficient schedules, the author considers the problem of minimizing the maximum 

of the weighted values of these two objective functions, which arises in interactive mul- 

ticriteria decision making. The author proposes a strongly polynomial algorithm for this 

problem which runs in 0(n210g n)  time. 
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1. Introduction 

It was reported in Panwalkar e t  al. [ l o ]  that  in industrial scheduling managers do 

schedule according to  multiple objectives. A schedule which is optimum with respect to  

one criterion normally performs badly with respect to  other criteria. Therefore a schedule 

with satisfactory performance on all measures may be considered as a better alternative 

for the decision maker. This consideration leads to  the research on multicriteria schedul- 

ing which has recently been done by several researchers (see Chapter 6 of the book by 

Blazewicz et  al. [2] for the survey of this topic). 

This paper is concerned with a single-machine scheduling problem with two criteria, 

i.e., the maximum tardiness and the total flowtime. This problem is called a bicriteria 

single-machine scheduling problem and is formulated as follows. We are given n jobs that  

are to  be sequenced on a single machine. Jobs are numbered from 1 through n.  Each job 

j has processing time pi and due date d,. pi and d, are assumed to be nonnegative in- 

tegers. All jobs are assumed to  be available a t  time 0 .  Let 

U: the set of permutation schedules, 

n: a permutation schedule, 

C,(n): the completion time of job j for a given schedule n 

Ti(%) E max {O,C,(n) - d,):  the tardiness of job j for a given schedule n 

T,,(n) = max Ti(%): the maximum tardiness of a given schedule x. 
l < j < n  

n 
F(n)  r C C,(x) :  the total flowtime of a given schedule n. 



Then the problem is formulated as 

minimize { T,,,(.lr), F(.lr)) . 
r E n  

(1) 

Since both objectives cannot be minimized simultaneously in general, it is quite natural 

that  the decision maker chooses an efficient schedule as his decision. Here a schedule 

n * E II is said to  be eficient for the problem (1) if there exists no n E II such that  

hold and a t  least one relation holds with strict inequality. Hence i t  is important to  deter- 

mine all efficient schedules. This problem has been studied by Wassenhove and Gelders 

115) and Nelson, Sarin and Daniels [9]. (15) proposed a pseudo-polynomial algorithm with 
n 

~ ( n  log n. C pi) running time, and presented some computational results. 191 also did the 
j= 1 

similar work. In addition, [9] considered the other types of bicriteria single machine 

scheduling problems. 

Though it was shown by the computational experiments done in [9, 151 that  finding 

all efficient schedules for problem (1) can be done quite efficiently for problem instances 

with the number of jobs being up to  50, their approach has two drawbacks. One is that  

the running time required for the algorithm is not polynomially bounded and the second is 

that  it may zenerate so many efficient schedules and thus this may be confusing for the 

decision maker because he or she must choose one best schedule according to his or her 

preference from among a large number of efficient schedules. With this consideration, we 

shall take the following alternative approach, which has been used in interactive multicri- 

teria decision making. It solves the following problem P instead of enumerating all 

efficient schedules. 

P :  minimize Z ( X )  = max{alTrn,(n) + B1, a2F(.lr) + B2) , 
nEn 

( 2 )  

where a, and /3, are positive and real constants respectively, which are directly specified 

by the decision maker or are determined based on the information supplied by the deci- 

sion maker. 

a; and pi are typically determined in the following manner by the quasisatisficing 

method, which is one of the well known methods used in interactive multicriteria decision 

making (see Wierzbicki and Lewandowski [21] and Chapter 7 of the book by Sawaragi, 

Nakayama and Tanino (111). The method first requires the decision maker to  specify the 

aspiration level qi and the reservation level r, for i = 1,2. ql (resp. q2) is interpreted as 



the desirable value for the maximum tardiness (resp. the total flowtime ) that  the decision 

maker would like to  attain, and r l  (resp. r2) is the maximum allowable value for the max- 

imum tardiness (resp. the total flowtime). The degree of the achievement of a given 

n E fl for the objective of the maximum tardiness (resp. the total flowtime) is measured 

by 

The aggregated degree of the achievement for n is then measured by 

The method then solves the following problem: 

maximize s , 
UE n 

and provides its optimal solution n * to  the decision maker. If n * is not satisfactory for 

the decision maker, he or she is asked to  change the aspiration and/or reservation levels 

in order to  obtain a satisfactory alternative. The above process is repeated until a satis- 

factory schedule is obtained. At each round of this iteration, we need to  solve the prob- 

lem (6). Letting ai = l / ( r i  - qi) and pi = -ri/(ri - qi), the problem (6) is equivalent to 

Problem P. 

Modifications and generalizations of the achievement function s in (5) have been 

proposed by several authors, e.g., Wierzbicki 116, 17, 18, 19, 201, Nakayama [8], Steuer 

and Choo [13] (see also [21.] for general discussion about this subject). Many of those have 

the form similar to the one in (5). 

In view of this, i t  is important to  study the computational complexity for solving 

Problem P. The aim of this paper is to  present a strongly polynomial algorithm for Prob- 

lem P. An algorithm that  solves a problem whose input consists of m real numbers is 

strongly polynomial (see [7, 141) if 

(a) i t  performs only elementary arithmetic operations (additions, subtractions, com- 

parisons, multiplications and divisions), 

(b) the number of operations required to  solve the problem is polynomially bounded 

in m,  and 



(c) when applied to rational data,  the size of the numbers (i.e., the number of bits 

required to represent the numbers) that  the algorithm generates is polynomially bounded 

in m and the size of the input numbers. 

It is shown that  our algorithm requires 0(n210g n) time. This time bound is achieved 

by applying Megiddo's ingeneous work [6] which was originally developed for solving com- 

binatorial fractional programs. Gusfield 131 applied Megiddo's idea to  the other type of 

combinatorial optimization problems. However, the application of Mediddo's idea to our 

problem seems to  be new. 

This paper is organized as follows. Section 2 gives basic properties on which our al- 

gorithm is based. Section 3 describes the algorithm, proves its correctness and analyzes 

its running time. 

2. Basic  P r o p e r t i e s  

It is clear that  a schedule r t  optimal to  Problem P exists among all efficient 

schedules (see 111, 20, 211). It is shown in [15] that  the set of all efficient schedules is 

determined by solving the following parametric scheduling problem P(A) for all A with 
n 

tmin 5 A 5 C pi, where tmin is defined by 
j= 1 

tmin = min Tm,,(lr) . 
*En 

n 
P(A) : minimize F ( r )  = C C,(lr) 

*En j= 1 

subject to  C,(r) i d, + A, j E {1,2 ,..., n )  . (8) 

This problem is known as the single-machine scheduling problem for minimizing the total 

flowtime with deadlines, and Smith [12] proposed an O(n1og n) time algorithm for solving 

this problem. His algorithm is called a Smith's backward scheduling rule. It first deter- 

mines the job located in the last position in an optimal schedule r t ,  secondly the one in 

the second last position in r t ,  and so on. We shall describe his algorithm because i t  will 

be used later as a subroutine in the algorithm for Problem P proposed in Section 3. 

P r o c e d u r e  SOLVEDEAD(A) 

Input: The set of jobs {1,2, ..., n )  with processing times p, and due dates d,, and 
n 

parameter X with tmi, < X 5 C pi 
j= 1 



Output: An optimal schedule for Problem P(X). 

n 
Step 1: Let R := C p j , S  := {I  ,..., n) ,  k := n.  

j= 1 

Step 2: Find jf such tha t  

pi* = max {p,b ES, d j  + X 2 R )  . 

Ties are broken by choosing the one with the largest due date. Assign job jf t o  position 

k.  

Step 3: Let R := R - pi*, S := S - { j f ) ,  k := k - 1. If k = 0 ,  halt (the optimal 

schedule is obtained). Else return to  Step 2. 

Lemma 1 [IS] Procedure SOLVEDEAD(X) correctly solves Problem P(X) in 

O(nlog n) time and the obtained schedule is efficient. 

Let n(X) denote an optimal schedule for P(X) which is obtained by Procedure SOL- 

VEDEAD (A). 

Lemma 2. F(n(X)) is nonincreasing in X and T,,,(n(X)) is nondecreasing in X 

Proof. If F(n(X)) is not nonincreasing in A, there exist X and A'  with X < A'  such 

tha t  F(n(X)) < F((n(X')). By (8), any schedule feasible t o  P(X) is also feasible t o  P(X'). 

This contradicts the optimality of n(X') by F(n(X)) < F(n(X')). If Tm,,(a(X)) is not 

nondecreasing in A, there exist X and A '  with T,,,(n(A)) > T,,(a(X')). Since 

F(n(X)) > F(n(X')) holds as proved above, i t  follows tha t  n(X) is not efficient. This  con- 

tradicts Lemma 1. 

The  following lemma is important for constructing our algorithm. Define 

Lemma 3. (i) If n(tmin) satisfies 

u(tmin) is optimal t o  P. 

(ii) If u(psum) satisfies 

.~r(p,,,) is optimal t o  P .  



(iii) If neither the condition of (i) nor (ii) holds, let 

and let A * be one of Amin  and Amin-  1 such that  

where z(.) is defined in (2). Then A(A *) is optimal to P .  

Proof. (i) If (10) holds, we have from Lemma 2 that  

and 

hold. It implies that  z(7r(tmin)) = min { z ( ~ ( A ) ) l t ~ ~ , ,  5 A 5 psum) holds by definition of 

4.). 
(ii) If (11) holds, we have from Lemma 2 that  

and 

hold. It implies that  z(.lr(pSum)) = min {z(~(A))lt,~, 5 A < psum) holds by definition of 

4.1. 

(iii) We shall first show that  Amin  defined in (12) always exists if neither the condi- 

tion of (i) nor (ii) holds. Let A E Il be defined by 

Tmax(f) = =in {T,,,(A) ( A  is efficient and al Tmax(s) + pl 

f always exists since ~(p,,,) satisfies the condition of the right-hand side of (14) by as- 

sumption and Il is a finite set. We shall show that  Amin = Tmax(f) holds. Note that  A is 

optimal t o  ~ ( i )  with i = Tma,(f) since f is efficient. Then, =(A) for any A < satisfies 

alTmax(lr(A)) + p1 < a, F(lr(A)) + Dz, since otherwise there exists A'  with A '  < with 

alTm,(lr(A')) + Dl 1 a2F(lr(A')) + Dz. This contradicts the definition of A since 

Tm,(*(A')) 5 Ae(<i )  holds by (8). Therefore Amin = Tma(f) follows. 



We shall then show that z(r(Amin)) < z(r(A)) holds for all A with A 2 Amin. Since 

Tmax(r(A)) is nondecreasing in A by Lemma 2 and al Tmax(r(A)) + PI 2 a2F(r(A)) + P2 
holds for all A with A 2 Amin  by (12), z(r(Amin)) < z(r(A)) follows. Note that  Tmax(r) 

takes only integer values since all p, and d, are assumed to  be integers. Together with 

Lemma 2, this implies 

F(r(Amin - I))  = min {F(r(A)) 1 tmin 5 A < Amin} . ( 16) 

Since a, T,,(n(A)) + Pl < a2F(n(A)) + P2 holds for all A with tmin 5 A < A m i n  by (12), 

it follows from (16) that  z(r(Amin - 1)) 5 z(r(A)) holds for all A with A < Amin. There- 

fore Lemma 3 (iii) follows. o 

3. A St rong ly  P o l y n o m i a l  A l g o r i t h m  for  P 

We shall first explain the outline of the algorithm. It first solves P( tmin)  and 

P(p,,,) t o  test whether the condition of Lemma 3 (i) or Lemma 3 (ii) holds. If the condi- 

tion of Lemma 3 ( i )  (resp. Lemma 3 (ii)) holds, a schedule r ( tmin)  (resp. ~(p,,,)) is out- 

put as an optimal schedule to  Problem P .  We assume in the following discussion that  

neither the condition of Lemma 3 (i) nor Lemma 3 (ii) holds, i.e., the condition of Lemma 

3 (iii) holds. In this case, we need to  compute Amin in (12). First notice that  A m i n  can be 

found by applying the binary search over the interval [ tmin,  p,,,]. We first try the value 

o f A = [  '!min + Psum 
2 

1 to  test whether al Tmax(r(A)) + PI 2 a2F(r(A))  + p2 holds or not. 

Here lz] denotes the integer part of z. If it holds, Amin  is contained in the interval 

[A, psumJ. Otherwise i t  is contained in ( A m i n ,  A]. In any case, we can halve the interval. 

After k trial values the length of the remaining interval can be no greater than 

(psum - tmin)/2k. We continue the interval-halving procedure until the remaining interval 

has the length smaller than one , since P(A) and P(A') for A and A' with A # A' and 

[A] = [A'] have the same set of optimal schedules by the integrality of pi and d,. Therefore 

Amin can be found in O(n1og n .logp,,,) time and as a result of Lemma 3 (iii) an optimal 

schedule of Problem P can be found in O(n1og n . log paurn) time. This algorithm is, how- 

ever, not strongly polynomial because of the term log p,,,. 

In order to  achieve a strongly polynomial algorithm for P ,  we employ Megiddo's 

idea [6] which was originally developed for solving cornbinatorial fractional programs. 

The algorithm applies Procedure SOLVEDEAD(Amin). The computation path of 



SOLVEDEAD(Amin) may contain conditional jump operations, each of which selects 

proper computation path depending upon the outcome of comparing two numbers. Notice 

that  SOLVEDEAD(Amin) contains arithmetic operations of only additions and subtrac- 

tions, and comparisons of the numbers generated from the given problem data.  Thus, 

when applying SOLVEDEAD(A) to solve P(A) with A treated as unknown parameter, the 

numbers generated in the algorithm are all linear functions of A or constants. Note that  

comparisons are necessary a t  conditional jumps. If a comparison for a conditional jump 

operation is made between two linear functions of A m i n ,  the condition can be written in 

the form of 

for an appropriate critical value i, which can be determined by solving the linear equa- 

tion in A m i n  constructed from the compared two linear functions. 

An important observation here is that  the condition (17) can be tested without 

knowing the value of A m i n .  This is carried out as follows. The algorithm starts  with the 
- 

interval ( A , q ,  where A = tmin and A = p,,,. If i < A (resp. i > I), it is concluded that  

i < A m i n  (resp. i > Amin) holds. Otherwise (i.e., A <_ i 5 I), ~ ( i )  and ~ ( i  - I )  are 

solved by calling procedures SOLVE DEAD(^) and SOLVEDEAD(); - 1) respectively. If 

holds, ); > Amin is concluded since Lemma 2 implies 

al TmaX(s( i ) )  + Dl 2 a2 F ( T ( ~ ) )  + P2, and the algorithm follows the corresponding prop- 

er computation path. If 

and al T m a x ( ~ ( i  - 1)) + P1 < a2F(" ( i  - 1)) + P2 , 
(19) 

A = Amin is concluded since A is an integer as discussed above and Amin is also an integer 

as seen from the proof of Lemma 3. Then the algorithm outputs T *  which is chosen from 

"(Amin) and x(Ami, - 1) by (13) and halts. Finally if 

holds, i < Amin is concluded and the algorithm follows the corresponding computation 

path. We shall show later that  Amin is found among critical values generated during the 

course of the algorithm. 



Since SOLVEDEAD(A) requires O(n1og n)  number of jump operations as shown in 

[IS], and SOLVEDEAD();) and SOLVE DEAD()^^ - 1) need be solved for a critical value ); 

a t  each jump operation, our algorithm requires 0(n210g2n) time in total. 

This time bound is further improved to 0(n210gn) by showing that  the above algo- 

rithm can be implemented so that  the number of comparisons in which a t  least one of 

compared two numbers contains Amin can be bounded by O(n). Notice that  the critical 

values are generated only when Step 2 tests whether d, + Amin >_ R holds or not for each 

job j E S (i.e., compared two numbers are constants in other comparisons), and that  the 

critical value for job j  is R - d,. By the way of updating R and the integrality of pi and 

d,, R - d, takes only integers. If (20) holds for ); = R - d,, j  is added t o  the set over 

which the maximum is taken in Step 2, since X^ = R - d, < Amin holds. If (18) holds, j  is 

not added to  the set. If (19) holds, the algorithm outputs 7~ * as explained before and 

halts. Letting 

J(S,R) = { j  E s(); = R - d, satisfies (20)) (21) 

the position in schedule %(Amin) of job j* is determined, i.e., j *  is placed so that  its com- 

pletion time Cj*(lr(Amin)) is equal to  R .  After this, R and S are updated as R '  = R - p,* 

and S' = S - { i f ) .  Then J(S',R') and pi* are recomputed. An important observation 

here is that  once a job j  is added to  J(S,R) ,  it is again added to  J(S',R') a t  the next 

round unless j  is chosen as j *  in (22), since, if (20) is satisfied for X^ = R - d,, i t  is again 

satisfied for the new critical value I' = R' - d,(< R - d,) by Lemma 2. This reduces the 

number of times to  test the condition of (20) to  O(n). The following is the description of 

the algorithm for solving Problem P. In the algorithm, J and s serve as the set J ,(S,R) 

of (21) and the suffix of %(Amin) currently obtained, respectively. 

Procedure SOLVEP 

Input: Job processing times pi, j = 1 ,..., n ,  due dates d,, j  = 1 ,..., n, and the weights 

a ,(>O) and B,, j  = 1 ,..., n. 

Output: An optimal schedule of Problem P. 

n 
Step 0: Let R := p,,, := p,. Solve the problem of minimizing the maximum 

j= 1 

tardiness and let tmin be its optimal objective value. 



Step 1:  (i) Call Procedure SOLVEDEAD(tmin) to  find x(tmin). If x(tmin) satisfies 

(lo), output x(tmin) is an optimal schedule to  P and halt (Lemma 3 (i)). 

(ii) Call Procedure SOLVEDEAD(p,,,) t o  find ~(p,,,) . If =(p,,,) satisfies (1 I ) ,  

output ~ ( p ~ , , )  as an optimal schedule to  P and halt (Lemma 3 (ii)). 
- 

Step 2: Let A := tmin and A := p,,,. Rearrange the indices of jobs so that  

dl 2 d2 > . .2 d, holds. Let J := g, s  := A and k  := 1. 

Step 3: If k  = n + 1, go t o  Step 5. Else go to  Step 4. 

Step 4: Let i := R - dk. 

(i) 1f i < A, let J := J u { k )  and k  := k  + 1. Return to  Step 3. 

(ii) If i > 1, go to  Step 5. 

(iii) If A 5 /C 5 X, call Procedures SOLVEDEAD ( i )  and SOLVEDEAD ( i  - 1) to  

compute ~ ( i )  and ~ ( i  - 1) respectively. 

(iii-a) If (20) holds, let 1 := i, J := J LJ { k )  and k  := k  + 1 .  Return to  Step 3. 

(iii-b) If (19) holds, Let A * be one of ~ ( i )  and ~ ( i  - 1) satisfying 

Output A * as an optimal schedule to  P (Lemma 3 (iii)) and halt. 

(iii-c) If (18) holds, let I:= /C. S o  t o  Step 5. 

Step 5: 

(i) If J = g, halt. 

(ii) Else find j* E J such that  

holds. Ties are broken by choosing the one with largest due date. Let 

R : =  R - p . t ,  s : = j t s  (i.e., j* is appended to  the beginning of s )  and I 

J := J - {j*). Return to  Step 3. 

Theorem 1 .  Procedure SOLVEP correctly computes an optimal schedule of Problem 

P in 0(n210g n) time. In addition, Procedure SOLVEP is strongly polynomial. 

Proof: In order t o  prove the correctness of SOLVEP, we only have to  show that  

Amin is found in Step 4 (iii-b), unless (10) or (11) holds. Suppose otherwise. Then Pro- 

cedure SOLVEP halts in Step 5 (i) with the interval (A',X'], where 2' < X' holds. Notice 

that  SOLVEP has computed n(Amin) when i t  halts since SOLVEP follows the same com- 

putation path as SOLVEDEAD( Amin) takes. Note that  A clearly satisfies 



A '  < A m i n  5 X'. The fact that  SOLVEP ends with an interval (A',X'] implies that  S O L  - 

VEDEAD(A) for all A E ( J ' , r ]  follows the same computation path. Thus, x(Ami,) is o p  

timal to  P(A) for all A E ( J ' , r ] .  x ( i )  for i with 4' < < Amin, however, does not satis- 

fy al T,,(X'(~)) + B1 2 a 2 ~ ( x ( i ) )  + B2 by definition of Amin in (12). This is a contrad- 

iction. 

We shall then analyze the running time. Since minimizing the maximum tardiness 

can be done by rearranging jobs in nondecreasing order of their due dates (see Jackson 

[4 ] ) ,  Step 0 requires O(n log n )  time. Step 1 also requires O(n log n) time since Procedure 

SOLVEDEAD(A) requires O(n log n) time by Lemma 1. Step 2 also requires O(n log n) 

time to  arrange jobs in nondecreasing order of their due dates. Step 3 requires constant 

time. If we use a 2-3 tree to  keep the set J (see the books by Aho, Hopcroft and Ullman 

111 and Knuth [5], adding an element to  J ,  deleting an element from J and taking the 

maximum of pi over J are all done in O(log n) time. Therefore Step 4 (i) and (ii) can be 

done in O(1og n) time. Step 4 (iii) requires O(nlog n) time since SOLVE DEAD(^) and 

SOLVE DEAD(^ - 1) require O(n log n) time. Hence, each application of Step 4 requires 

O(n log n )  time. Step 5 requires O(log n) time. Since the loop of Steps 3, 4 and 5 is re- 

peated O(n) times, 0(n210g n )  time is required in total. 

It is obvious that  Procedure SOLVEP is strongly polynomial, since the running time 

depends only on the number of input da ta  (i.e., O(n)), and the size of the numbers gen- 

erated during the algorithm is clearly polynomially bounded. 
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