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IIASA has played a crucial role in the development of the "graphical a p  
proach" t o  the differential calculus of setvalued maps, around J.-P. Aubin, 
H. Frankowska, R.T. Rockafellar and allowed to make contacts with So- 
viet and esstern European mathematicians (C. Olech, B. Pschenichnyiy, E. 
Polavinkin, V. Tihomirav, . . .) who were following analogous approaches. 
Since 1981, they and their collaborators developed this calculus and ap- 
plied it t o  a variety of problems, in mathematical programming (Kuhn- 
Tacker rules, sensitivity of solutions and Lagrange multipliers), in nons- 
mooth analysis (Inverse Functions Theorems, local uniqueness), in control 
theory (controllability of systems with feedbacks, Pontryagin's Maximum 
Principle, Hamilton-Jacobi-Bellman equations, observability and other is- 
sues), in viability theory (regulation of systems, heavy trajectories), . . . . 

The fist version of this survey appeared a t  IIASA in 1982, and consti- 
tuted the swenth chapter of the book APPLIED NONLINEAR ANALYSIS 
published in 1984 by I. Ekeland and the author. Since then, many other 
results have been motivated by the successful applications of this calculus, 
and, may be unfortunately, other concepts (such the concept of intermedi- 
ate tangent cone and derivatives introduced and used by H. F'rankowska). 
Infinite-dimensional problems such as control problems or the more classical 
problems of calculns of variations require the use of adequate adaptations 
of the same main idea, as well as more technical assumptions. 

The time and the place (IIASA) were ripe t o  update the exposition of 
this differential c alculus. The Russian translation of APPLIED NONLINEAR 
ANALYSIS triggered this revised version. 

Alexander B. Kunhanski 
Chairman 

System and Decision Sciences Program 
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Introduction 

There are few ideas in mathematics, but so many ways to  implement 
them..  . . At each stage of the development of a branch, when the technical 
improvements require too much technical skill from the mathematicians, it 
is time to return to basic ideas. 

This is what happened with the basic idea of differential calculus, when, 
despite a strong reluctance for using set-valued maps, the pressure of the 
many contemporary problems arising in systems theory (optimization. reg- 
ulation, viability and control of evolution systems) forced many applied 
mathematicians t o  use set-valued maps as naturally as the familiar single- 
valned maps. 

Natural inertia (or is it conservatism ?) led most of us to consider set- 
valued maps as . . . a maps, and not as a graphs (or representative curves), as 
i t  should be1, and as it was a t  the very origin of analytical geometry, when 
our ancestors used representative curves before the concept of function. 

Fortunately, facts are there to force us t o  return to  long forgotten tracks. 
During the last decades, the "graphicaln side of set-valued maps took some 
preeminence among mathematicians using m&md monotone operators, 
graphical and epigraphical convergence, and the graphical derivatives we 
are about to describe. All the tool were there, though, but ignored. The 
road was paved by fiench and Polish mathematicians, Baire, Bouligand, 
Choquet, Kuratowski, Painlevd and many other, but abandoned for some 
reasons. 

There is no doubt that  mathematical programming and control theory 
provided in the sixties the motivation to study again set-valued maps. Let 
us mention the pioneer roles of C. Berge, A.F. Filippw and T. Waiewski 
during this crucial period. But a t  that time, the set-valued maps were 
mostly regarded as maps. 

The beginning of the eighties saw the emergence of the concept of 
'graphical derivativen, which goes back to  Pierre de Fermat'. The idea 

'at  leaet in the indances of interest for us. 
' ~ e r m a t  waa one of the most important originator in the history of mathematics. Even 

Newton did recognize explicitly that  he received the hint of the differential calculus from 
Fermat's method of building tangents devised half a century earlier. Fermat was also 



behind the construction of a differential cdculus of setvalned maps is sim- 
ple and is still the one t o  which all of us have been first acquainted during 
our teens. It starb with the concept of tangent t o  the graph of a function: 
the derivative is the slope of the tangent to the cnrve. We should say, now, 
that  the tangent space t o  the graph of the cnrve is the graph of the differ- 
entid. This is this statement that  we take as a basis for adapting t o  the 
setvalued case the concept of derivative. 

Consider a set-valued map F : X - Y, which is characterized by its 
graph (the subset of pairs (3, y) such that  y belongs to  F ( z ) ) .  

We need first an appropriate notion of tangent cone t o  a set in a Banach 
space a t  a given point, which coincides with the tangent space when the 
set is an embedded differentiable manifold and with the tangent cone of 
convex analysis when the set is convex. At the time, experience shows that  
three tangent cones seem to be useful: 

1. Bouligand's contingent cone' 

2. Adjacent tangent cone4 

3. Clarke's tangent cones 

They correspond to different regularity requirements. The tangent cone 
of Clarke is always convex. There already exists a sufficiently detailed 
cdculus of these cones, which is exposed below. 

Once a concept of tangent cone is chosen, we can associate with i t  a 
notion of derivative of a se tvdued map F a t  a point (3, g) of its graph: 

the one who dircovered that the derivative of a (polynomial) function vanishes when it 
reacher an extremum (Euler-Lagrange equations, Pontryagin'r maximum principle are just 
implementationr to infinite-dimensional problemr of what should be called the FEUAT 
RULE). He alro was the first to discover the 'principle of least time" in opticr, the 
prototype of the variational principles governing ro many phyricd and mechanical laws. 
He rhared with Dercarter the independent invention of analytic geometry and with Pascal 
the creation of the mathematical theory of probability. He war on top of that a poet, a 
linguiet, a lawyer and, if it hm to be recalled, the author of the Fermat Theorems, . . . . 
consequencer of a revolutionary treatment of number theory 

Sintroduced in the thirties 
'used by H. F'xankowrka under the name of intermediate tangent cone 
'introduced in 1076 



it in a set-valued map F'(z, g) the graph of which in equal 
to the tangent cone to the graph of F at the point (z,g). 

In this way, we associate with the contingent cone, the adjacent and the 
Clarke tangent cones the following concepts of derivatives: 

1. contingent derivative, corresponding t o  the Giteaux derivative, 

2. adjacent derivative, corresponding t o  the F'rdchet derivative, 

3. circatangent derivative, corresponding to  the continuous Fdchet deriva- 
tive. 

For instance, if d z  is a direction in the space X, a direction dy in the 
space Y belongs t o  the contingent derivative DF(z, g)(dz) of F a t  the 
point (2.8) in the direction dz if and only if the pair (dz, dy) belongs t o  
the contingent cone t o  the graph of F at (z, y). 

These derivatives keep enough properties of the derivatives of smooth 
functions t o  be quite efficient. They enjoy a pretty rich calculus, and such 
basic theorems of analysis as the inverse function theorem can be extended 
to  the multivalued case. 

Derivatives of set-valued maps (and also of nonsmooth single-dued 
maps) are set-valued maps, which are positively homogeneous. They are 
convex (in the sense that  their graph is convex) when they depend in a 
"continuous" way of (z, 8) .  Such maps, , are the setvalued analogues of 
continuous linear operators. 

The chain rule is in particular an example of a property which remains 
(almost) true. 

But what about Newton and Leibnitz, who introduced the derivatives 
as limits of differential qnotients? 

Our first duty is t o  characterize the various graphical limits as adequate 
limits of differential quotients. Unfortunately, the formulas become very 
often quite ugly, and nobody in a right frame of mind would have invented 
them from scratch if they were not derived from the graphical approach. 

But all these limits are pointwise limits, which classify all these gener- 
alized derivatives in a class different from the class of distributional deriva- 
tives introduced by L. Schwartz and S. Sobolev in the fifties, for solving 
partial differential equations: Their objective was t o  keep the linearity of 



the differential operators, by allowing convergence of the differential quo- 
tients in weaker and weaker topologies, the price t o  be paid being that  
derivatives may no longer be functions, but distributions. 

This survey presents only the definitions, the main properties and the 
calculus of the graphical derivatives of set-valued maps and epigraphical 
derivatives of extended real-valued functions, useful whenwer the order 
relation of the real line plays a role, as in mathematical programming or 
Lyapunav style stability theory of dynamic al systems. 

The applications to  optimization, control theory and viability theory 
are not described here. 

We just pruvide a s m d  bibliographical complement t o  the list of refer- 
ences of APPLIED NONLINEAR A N U Y S I S  



1 Tangent Cones 
We devote this section to the definitions of some (and may be, too many) 
of the tangent cones which have been used in applications. 

It is difficult t o  strike the right balance between simplicity (use only 
the contingent cones) and the needs of more results motivated by further 
studies. 

We have chosen t o  postpone to the end of this presentation the dual 
concepts (normal cones, codifferential, generalized gradients) since their 
properties can be derived from the properties of the tangent cones. 

We shall also provide the calculus in infinite-dimensional spaces, since 
it is required in the framework of control problems and of the calculus of 
variations, despite ugliness of the technical assumptions which, for the time, 
have not been simplified. 

Definition 1.1 (Tangent cones) Let K c X be a subset of a topological 
vector space X and z E K belong to the cloaure of K .  We denote by 

the cone spanned b y  K - x. 
We introduce the three following tangent cones 

1. the cont ingente cone TK (x) := T! (x), defined by 

2. the adjacent7 cone PK (z), defined by 

(3) P K ( ~ )  := { v 1 h+o+ lim dK(z + h v ) / h  = 0 ) 

3. the Clarke8 tangent cone OK(2), defined b g  

'hm Latin eontingere, to touch on all rider, introduced by G. Bouligand 
'from Latin adjacere, to lie near, recently introduced and applied under the name ln- 

tarmedlate cone by H. Frankoweka and the name of derivable cone by R. T. Rochfellar 
8from Canadian Frank H. Clarke; we nhall w e  the a4ective clrcatmgent to men- 

tion propertier derived from thir tangent cone, for inrtance, circatangent derivatives and 
epiderivatives 



We see a t  once that  these three tangent cones are closed, that  these 
tangent cones t o  K and the closure of K do coincide, that  

and tha t  

(6) if z E Int(K), then CK (z) = X 
It is very convenient t o  use the following characterization of these cones 

in terms of sequences. 

Proposition 1.1 Let z belong to K. 

i) v € T K ( z )  i f a n d o n l y i f 3 h n - 0 + ,  
3 v, + v sueh that V n, z + h,v, E K 

ii) v E Tk(z) i f  and only i f  V h, + 0+, 
3 on - v such that Vn, z +  h,v, E K 

iii) v E CK(z) if and only if V h, - 0+, V z, - 2, 

(z, E K), 3 on + v sueh that V n,  2, + h , ~ ,  E K 

Remark These tangent cones can be defined in terms of Kura- 
towski upper and lower Limits of 9, as the following statement shows: 

Proposition 1.2 Let z belong to K. The following equalitice 

K-.r i) TK (z) = lim  SUP,,-.^+ 7 
K - r  

ii) Z$ (r) = Lim infn+o+ 7 
K-a' iii) Cx(z) = l i m i n f h + 0 + , ~ 3 ~ - + ~ -  

hdd true. 

Let us begin by proving an astonishing fact: the Clarke tangent cone 
CK (z) is always a closed convex cone. 

Proporition 1.3 The Clarke tangent cone CK (z) i s  a clorcd eoncret cone 
ratirfYinfl the fdloring propertier 

C K ( ~ )  + T K ( ~ )  c T K ~ )  { ) ,(.) + . (z) c (z) 



Proof 

1. Let vl and va belong to C K ( X ) .  For proving that  vl + ua belongs 
t o  this cone, let us choose any sequence h, > 0 converging t o  0 
and any sequence of elements x, E K converging t o  x. There exists 
a sequence of elements vl,  converging to  v l  such that  the elements 
xln := x, + hnvln do belong to K for all n. But since zln does also 
converge to x in K, there exists a sequence of elements van converging 
t o  t~ such that  

This implies that  v l  + va belongs to C K ( X )  because the sequence of 
elements vln + van converges to  tll + tya. 

2. Now, let vl belong to T K ( x )  and tpa belong t o  CK ( 2 ) .  There exists a 
sequence of elements h ,  > 0 converging to  0 and vln converging t o  
v l  such that  the elements xln := x + hnvln do belong t o  K for all n. 
But since xln does also converge t o  z in K, there exists a sequence of 
elements van converging t o  va such that  

This implies that  vl + va belongs to  T K ( x )  

3. The proof is analogous for the cone Tk(x). 

Remark We can interpret the abwe  inclusions by saying that  
the Clarke tangent cone is contained in the Minkowski difference (or the 
asymptotic cone, the convex kernel) of the adjacent and contingent cones. 
Let us recall that  the Minkowski difference K 8 L of two subsets K and 
L is the subset kL (K - 2) of elements z such that  

When P is a closed cone, the Minkowski difference P8P is always a convex 
cone. 

Unfortunately, the price to pay for enjoying this convexity property of 
the Clarke tangent cones is that  they may often be reduced t o  the trivial 
cone (0). 



But we shall show in just a moment that  the Clarke tangent cone and 
that  the contingent cone do coincide at those points z where the set-valued 
map z - TK (2)  is lower semicontinuous. 

Definition 1.2 (Sleek Subeete) We rhdl rag that a rubset K c X i s  
rleek at z E K i f  the set-valued map 

K 3 z' - TK (2') i s  lower semicontinuous at z 

We shall sag that it i s  eleek if and only if it i s  sleek at every point of K. 

We shall prwe later that  smooth manifolds and convex subsets of finite 
dimensional vector-spaces are sleek. 

But for the time, we just deduce from Theorem 1.1 below this qnite 
important regularity propem: 

Theorem 1.1 (Tangent Conee of Sleek Subeete) Let K be a weakly 
closed subset of a reflezive Banach space. If K is sleek at z E K ,  then 
the contingent and Clarke tangent cones do coincide, and consequently, are 
convez. 

For that  purpose, when X is a normed space, it is qnite useful t.o intro- 
duce the following notations: 

) DtdK(X)(t7) 
:= lim infh,0+ ( d K  ( z  + hu) - dk- ( z ) ) / h  

i i )  Did (1) ( u )  
:= h s ~ p h , ~ +  ( d ~  ( Z  + hu) - dx ( z ) ) / h  

;;;) CTd ( x )  ( 0 )  

:= h s ~ p ~ , ~ + ,  d , t ( d ~  (2' + hv) - d~ ( d ) ) / h  

which will be justified later9. 

We need the estimates we provide below t o  prwe our theorem as well 
as other consequences. 

%hey are the contingent, acljacent and circatangent epiderivatives of the distance func- 
tiom d~ . 



Theorem 1.1 Let K be a weakly elored rubret of a refletive Banaeh rpaee 
and K K ( $ )  be the ret of prqaeetionr of g  onto K ,  i.e., the subset of z E  K 
rueh that I)y - zll = d K ( g ) .  Then we have the following inegwlitier: 

Proof 

1. We begin by praving these inequalities when g  belongs t o  K. Indeed, 
for all w  E X ,  inequality d K ( g  + h v )  < d K  ( g  + h w )  + h [It* - w  1 1  implies 
that  

liminfh,~+ dK ( y  + h a ) / h  5 (lu - wll when u? E  TK ( y )  { f / )  lim suph-,+ d K  ( y  + h v  ) /h  < I(u - loll when c E  f i  ( y )  

2. Assume now tha t  y  4 K and choose z E r ~ ( y ) .  Then 

Since z belongs to K ,  intqualities (8) with y  = z  imply that  

For prwing inequality 

C T ~ K ( Y ) ( ~ )  < d ( u , C K ( z ) )  = inf l ) f l -w( I  
WECK (4 

we first observe tha t  when g  # K,  

v Z E R K ( # ) ,  V Z E K ,  1 1 %  -21) 5 2 ) ) $ - 2 ) )  

Hence 

so that  our claim is established. We end the proof by taking the 
infimum when z  ranges w e r  n ~ ( g ) .  0 



We shall need actually the following 

Corollary 1.1 Let K be a weakly closed s d s c t  of a reflerive Banaeh space. 
Then  

t 

dK ( z  + t u )  - dK ( z )  5 1 d(u,TK (*K ( z  + 7)u ) )d r  

Proof We set g ( t )  := dK ( z  + t u ) .  Since g ( - )  is locally lipschitzean, 
it is almost everywhere differentiable. Theorem 1.2 implies that  g'(7) 5 
d ( u ,  TK ( x K  ( x  + 7 ) u ) ) .  We then integrate from 0 t o  t . 

Theorem 1.3 Let K be a weakly closed subset of a refictive Banach apace. 
Let us conrider a set-vdued map F : K - X satisfying 

(9) 
F i s  lower semicontinuous { j!) V X E  K F I T )  c TK(') 

Then ,  

( 10 )  V X E K ,  F ( x )  c C K ( X )  

Proof Let us take x E K and u E F ( x ) .  Since 

we infer that,  for all c > 0 ,  y E K close to  x and 7 small enough, the lower 
semicontinuity of F a t  x implies that  

because u belongs to F ( x )  by assumption. Corollary 1.1 thus implies that, 
for all d y  E K close t o  x and for all t €10, h] for some positive h, 

We have prwed that  v belongs to CK (x). 
Remark In particular, we deduce the following characterization 

of the tangent cones: 

i )  T K ( ~ )  := { u  1 D T ~ K ( x ) ( v )  5 0 )  
ii) G ( x )  := { v  I D l d x ( x ) ( u )  5 0 )  
ii;) cK ( z )  := { V I C T d K ( z )  ( u )  5 0 ) 



These equalities ( 1  1 )  suggest t o  extend the definition of these tangent 
cones t o  elements which are outside K. 

Definition 1.3 Let K be a rubret of a norrncd rpce  X and z belong to 
X .  We edend the notion8 of contingent and adjacent coner to K at point8 
outm& K i n  the following way: 

We deduce at once from Theorem 1.2 the following corollary: 

Corollary 1.3 The tangent concr at pointr outeide K are related to the 
tangent coner at their projection# i n  the following way: 

) v 3 f ~ ~ ~ ( z ) ,  C T K ( ~  
i i )  V g E RK ( z ) ,  T i  (9)  c TL- ( z )  
i;;) V ~ € R K ( Z ) ,  C K ( ~ )  c C K ( X )  

It will be convenient t o  name the points z of a subset K where two of 
the above tangent cones do coincide. 

Definition 1.4 We r h d l  ray that a rubret K c X 

1. i r  peeudolconvex at z E K if and only if either one of the eguivalent 
prope rtie r 

(13) 
a/  TK ( z )  = SK(O) =: uh,,, 
b/ K c ~ + T K ( z )  

holdr true. 

f .  i r  derivable at z E K if and only if 

Remark We shall justify later why we am led to introduce this 
mknagerie of tangent cones. Each of them corresponds to a classical reg- 
ularity requirement. We shall see that  the contingent cone is related t o  



Giteanx derivatives, the adjacent cone t o  the F'richet derivative and the 
Clarke tangent cone t o  the continuous W c h e t  derivative. 

If L c K is a subset of K, Bouligand has also introduced the paratingent lo 
cone Pk(z)  to K relative t o  L at z E L, defined by 

and we observe that  

We can also introduce open tangent cones. Let us mention the two 
following ones: 

Definition 1.5 Let z belong to K .  

1.  The cone DK (3 )  defined by 

(17) 
v E DK ( z )  if and only if V h, -) 0+, 
V v, + v, we have V n ,  z + h,v, E K 

is called the Dubovicki-Miliutin tangent cone 

2. The cone H K ( z )  defined by 

v E H K ( z )  if and only if V h, + 0+, V z,  + z, 

(2,  E L), V v, + v, we have V n, z, + h,v, E K 

i r  called the hypertangent cone. 

We see at once that  

) H K ( ~  c C K ( Z )  n D K ( ~ )  
(19) i i )  D K ( z )  c Tk(z )  

i i i )  HK(z) + G(z) c DK(z)  

'O~hi Shuzhong showed that when K is the closun of its interior, the contingent cones 
and the paratingent cones (relative to the boundary) are generically equal (they coincide 
on a Cs dense of the boundary), a consequence of Choquet's theorem. 



2 Tangent Cones to Convex sets 

For convex subsets K, the situation is dramatically simplified by the fact 
that  the Clarke tangent cones, the adjacent and the contingent cones coin- 
cide with the closed cone spanned by K - z.  

Proposition 3.1 (Tangent Cones to Convex Sets) Let w arrume that 
K ir convet. Then the contingent cone TK (%)to K at z i s  convet and 

I n  particular, 

Remark We shall denote by T K ( x )  the common value of these 
cones, and call it the tangent cone to the convex subset a t  z. 

Proof We begin by stating the following consequence of convelrity: 

(20) V v E S K ( x ) ,  3 h  > 0 ,  such that  V t  E [0,  h] ,  z + t o  E K 

since we can write that  

is a convex combination of elements of K. 
It is enough to prove that  SK ( x )  is contained in the Clarke tangent cone. 

Let v := (g - z ) / h  belong to S K ( x )  (where g  E K and h > 0 )  and let us 
consider sequences of elements hn > 0  and zn  E K converging t o  0  and x  
respectively. We see that  un := (g - z n ) / h  converges t o  v and that  

since it is a convex combination of elements of K. 
Actually, convex subsets of 6inite dimensional vector-spaces are sleek: 

Theorem 3.1 Let K be a clored convet rubret of a finite dimensional 
vector-rpaee X .  Then K ir rleek. 



Proof It is equivalent t o  prwe tha t  the graph of the  setvalued 
map K 3 z .u NK ( z )  is closed". 

But  this is obviously the case: let us consider sequences of elements zn E 
K and p, E NK (z,) converging to z and p respectively. Then inequalities 

implies by passing t o  the limit inequalities 

which state tha t  p belongs t o  Nx(z ) .  Hence the graph is closed, so tha t  
the setvalued map T K ( - )  is lower semicontinuous, since the dimension of 
Xisf in i te .  

We observe easily tha t  the normal cones are contained in the barrier 
cone of a convex subset K: 

Proposition 2.2 Let K be eonvez. Then, for dl z E K ,  

{ ) N x b )  c b(K) 
i i )  the asymptotic cone b(K)- c T K ( z )  

It may be useful t o  characterize the interior of the tangent cone t o  a 
convex subset. 

Proposition 2.3 (Interior of a Tangent Cone) Assume that the inte- 
rior of K c X i s  not emptg. Then 

Fwthcrmon, the gmph of thc set-rducd map K 3 z .u Int(TK ( z ) )  is  open. 

Proof 

1. The union of the interiors of ( K  - z ) / h  being open, it is contained 
in the  interior of the tangent cone. Since K is convex, so are the 

"ree 15, Proporition 1.1.18., p.1171. 



cones SK(z) ,  and thus, the closures of SK(z)  and of their interiors do 
coincide. Then i t  is enough to prove that  if v belongs t o  the interior 
of SK(z) ,  i t  is interior to  one of the ( K  - z)/h. 

Let q > 0 snch tha t  v + q B  c SK(z). If z + v belongs t o  the interior 
of K, the proof is completed. If not, let us choose zo E In t (K)  and 
set vo := zo - z. Hence v - qvo/llvoll belongs to SK(z) ,  and thus, 
there exists some h > 0 snch that  z + h(v - qvo/(lvoll) belongs t o  K. 
By setting 

A := hrl/(hrl+ Iltfoll) 

we deduce tha t  

z + (1 - A)hv = Azo + (1 - A)($ + h(v - qvo/llvoll)) 

Since zo belongs to  the interior of K, z + h(v - qvo/llvoll) belongs t o  
K and A is smdler than 1, we deduce from the convexity of K that  
z + (1 - A)hv belongs t o  the interior of K, i.e., tha t  v belongs t o  the 
interior of ( K  - z)/(l - A)h. 

2. Let us take a pair (so,  vo) in the interior of the graph of TK (.). Then, 
by the above statement, there exists h > 0 snch that  

Hence there exists q > 0 snch tha t  

Therefore 

Remark Convex subsets are -shaped around each of their el- 
ements and thus, share with them some properties. 

Definition 3.1 (Star-Shaped Subsets) A rubrct K ir  ruid to Qc star- 
shaped around z € K if 



We observe the following 

Lemma 9.1 If K c X is star-shaped around x E K ,  then it i s  pseudo- 
eonret and den'ra6k at this point. 



For the convenience of the reader, we list below some useful calculus of 
tangent cones to convex subsets (see 15, Section 4.1.1). The subsets K ,  K i ,  
L ,  M ,  ... are assumed t o  be convex. 

Propertiee of Tangent and Normal Conee (1) 

1. If K  c L ,  then 

2. If K i  c Xi,  ( i  = I ,  .., n), then 

3. If K 1  and K 2  are contained in X ,  then 

In particular, if P is a closed vector subspace, then 

(24) 
T K + P ( x ~  + $ a )  = TK1o+P 

i i )  N K l + p ( ~ l  + s f )  = L'VK,(xl) n Pi 

4. If B  E l ( X , Y ) ,  then 

(25) 
{ ) T B ( K ) ( ~ )  = B(T;i;lJ 

i i )  N B I X ) ( z )  = B * - ' N ~  ( 2 )  

5 .  If L  c X  and M c Y  are clorcd conrrct subsets and A  E l ( X ,  Y )  
is a continuous linear operator such that  the q d i f i a t i o n  constraint 
condition 

(26) 0 E Int (M - A ( L ) )  

holds true, then 



Properties of Tangent and Normal Cones (2) 

6. I f  M c Y is a closed conret subset and if A E 1 (X, Y )  is a continuous 
linear operator such that 

then 

(29) 
TA-I  ( 2 )  = A-'TM (Ax)  { 2) NA-lO,.f) ( x )  = A*NM ( A X )  

7. If K1 and K ,  are closed convex subsets contained in X and satisfyla 

then 

(31) T ~ l n ~ t  ( z )  = Txl (2 )  n TK? ( 2 )  { s N K . ~ K ~  ( x )  = Nx1 ( x )  + NK2 ( X I  
8 .  I f  Ki c X ,  (i = I , .  . . , n), are closed and convex and if there exists 
7 > 0 such that 

Then, 

(33) i xi (3 )  = T K ~  ( x )  9 Tni=,  
i i )  Nnn (x) = X:= Nxi ( x )  

i= l  

 his property is false when assumption (8O)is not oatisfied. Take for instance two 
balls K1 and Kt tangent a t  a point z. The tangent cone to the intemection {z) is reduced 
to {0), whereas the intemection of the tangent cones is a hyperplane. This shows that we 
cannot dispeme of the conrtraht quallfiutlon msumptions in the calculus of tangent 
cones to inverse images and intersections 



3 Inverse F'unction Theorems 
We derive from the basic Inverse stability Theorem" a series of equivalent 
results which extend in swerd ways the Liusternik Inverse F'uction The- 
orem. We refer to [?] for more powerful results based on the concept of 
'Gsriationsnof set-valued map defined on any metric space, and which are 
related to images of the unit ball by derivatives of set-valued maps when 
the definition space is normed. 

lSsee [4, Theorem 3.11: 

Theorem 8.1 (Inverse Stablllty Theorem) Let X and Y be two Banach rpacer. We 
introduce a requenee of eont inuow linear opcratorr A ,  E L(X,Y), a requenee of elored 
rubretr K ,  c X. 

Let ur eonrider elementr z z  of the rubretr K ,  ruch that both z: converfles to z s  and 
A,z ,  eonverger t o  yo. 

We porit the following etablllty assumptton: there u i r t  eonrtantr e > 0 ,  cr E [O, 11 
and q > O rueh that 

Let ur  ret I := e / ( l  - a), p < q / a l  and eonrider elementr y, and zo, r a t i r f ~ i n g :  

Then, for any I' > I and n > 0,  there ezirt rolut ionr r a t i h i n g  

r o  that 

(87) 

eonve r lu  to 0 when zo,  eonve r lu  t o  ro and both A,ro, and y, E A,  K ,  converge to  M. 



Theorem 3.3 (Criterion of Peendo-Lipechitaeanity) Let K be a clored 
r d r e t  of a Banaeh rpcree X and A E &(X, Y) Be a continuow linear op- 
erator from X to  another Banaeh rpaee Y. Let w arrumc that for romc 
zo E K, therc ed r t  conutantr c > 0, a E [0, 1[ and r) > 0 ruch that 

(38) 
V 2 E K n B(zo,r)), 
A S K ( ~ ) ~ B Y  c A ( T x ( x ) n c B x ) + a B y  

Then the ret-valued map 

i r  pseudo-lipechitcean amund (Axo, xo): For any zl clore to  zo and y E 
K clore to Axo, 

Remark Assumption (4.3) can be written in the form 

sup sup inf 
t ~ B ~ ( ~ , q )  #ESK(t) vET~(t),AvEAr+allrI!B I I u  11 

Observe that when a = 0, assumption (4.3) implies that A(K) is 
pseudo-convex on a neighborhood of Azo E K since for all r in this 
neighborhood, 

Hence, we can regard stability assumption (4.3) as a weakened local 
pseudo-convexity. 

In particular, we obtain the following inverse mapping theorem: 

Theorem 3.3 (Linear Inveree Function Theorem) Let K be a clored 
r d r e t  of a Banaeh rpaee X and A E &(X, Y) be a continuow linear op- 
erator from X t o  another Banaeh rpcree Y. Let w arrume that for romc 
zo E K, therc ed r t  conutantr c > 0, a E [0, I.[ and r) > 0 ruch thut 

(41) 
V z  E KnB(zo , r ) ) ,  
BY c A(TK (z) n c Bx) +  BY 

Then Azo bclongr t o  the inten'or of A(K) and the ret-sdued map y .L, 

A-' (g) n K i r  peendo-lipechit cean around (Axo, 20). 

It implies the following apparently more general statement: 



Theorem 3.4 (Set-Valued Inverse h n c t  ion Theorem) Let ur conmde r 
a clored ret-valued map F : X - Y, an element (zo, go) of it8 gmph and let 
us arrume that there eu'rt conrtantr c > 0, cr E [ O , 1 [  and q > 0 ouch that 

v (z, dl) E Graph(F) n BCCzo, dlo), 4, 
V V E Y ,  ~ u E X ,  3 w E Y  ruchthat v E D F ( X , ~ ) ( U ) + W  
and llsll 5 cllvll k llwll 5 ~ l l ~ l l  

Then yo belong8 to the inten'or of the image of F and F-' ir  preudo- 
lipschitzean around (zo, yo). 

which, actually, is equivalent, because, by taking for F the restriction 
of A t o  K, or, even more generally, the restriction of a differentiable single- 
valued map, we infer that  

Theorem 3.5 (Constrained Inverse Function Theorem) Let X and 
Y be two Banaeh rpacer. We introduce a (mngle-valued) continuous map 
f : X I+ Y , a elored rubret K c X and an element zo of K. 

We assume that f is  &ffenntiable on a neighborhood o j z o  and we posit 
the following ~tability amumption: them etirt conrtantr c > 0, o E [ O , 1 [  
and q > 0 ouch that 

Then f (zo) belongs to the in te~or  of f (K)  and the act-valued map 3 - 
f -'(dl) n K ir  peeudo-lipechit mean around (f (zO), zO) . 

We obtain as a consequence the Liusternik Inverse Fhnction Theorem: 



Corollary 3.1 (Liarternik Theorem) Let X and Y Qe two Banach rpacer. 
We introduce a fn'ngle-vducd) continuow map f from X to Y .  We arrume 
thd f i r  contr'nuowlg diflenntiable on a neighborhood of zo and we posit 
the following rnrjectivity arrnmption 

f l(zo) i r  rurjective 

Then .the act-valued map y .u f-l(y) i r  peendolliprchitsean around 

(f (zo)r 20). 

Proof Since the continuous linear operator f l(zo) is surjective, we 
deduce from the Banach Theorem that  there exids a constant c such that  

Since z H j l (z)  is continuous a t  zo, we infer that  

V v E Y ,  3 u E X such that  
fl(z)u = f7 + w & l l ~ l l  5 cllvll7 l l ~ l l  5 llf1(4 - fl(zo) Illlull 

so that  llwll 5 crllvll when z is close t o  zo. 
We can extend this theorem t o  the case of set-valued maps by introduc- 

ing and adequate definition of strongly sleek map. 

Definition 3.1 (Strongly Sleek Sete and Mape) We rhdl eag that a 
clored rubret K i r  rtrongly sleek at zo E K i f  the cone-vdued map K 3 
z .u TK (2) i r  rtrongly lower remicont inuoue at zo in the eenre that 

lim sup d(u,TK(z)) = 0 
+-a WETK ( a ) n B x  

We rhdl rag thd F i r  rtrongly eleek d a point (so, yo) of itr graph if itr 
graph i r  rtronglg rleek d thir point". 

With this definition, we can state a natwal set-valued version of Liusternik's 
Theorem 

converges to 0 when ( t ,y )  converges to   to,^). 



Theorem 3.6 (Set-Valued Liusternik Theorem) Let w conrider re- 
f l e d v e  Banah  rpaer X and Y ,  a elored ret-vdued map F : X - Y and 
an element (zO,gO) of it8 9raph. Let w mrume that F ir sttongig rleek at 

(so, Yo) If 
DF(z0, go) i s  surjective 

than go toelongr to the interior of the image of F and F-' i r  preudo- 
liprchitzean around (so, 310). If the dimenoion of Y ir finite, i t  i s  sufieient 
to arrume that F ir rleek at (20, 90). 

Actually, this results follows (and thus, is equivalent) to  its "constrained 
linear" version. 

Theorem 3.7 (Pointwise Inverse hnction Theorem) Let X and Y 
be refletive B a n a h  rpaeer, K be a weakly elored rubset of X and A E 
l (X ,  Y )  be a continuour linear operator. If A- ir rtmngly rleek at zo and if 

then Azo belongs to the interior of A(K)  and the set-vdued map y .u 
A-'(y) n K ir pseudo- lipschitaean around (Azo,zo). If the dimensoion 
of Y ir finite, i t  ir ruficient to asume that K ir rleek at zo. 

Proof We have to  prwe that  in both cases, the stability assump- 
tion is sat ided.  The proof of the first case is easy. There exists a constant 
e > 0 snch that ,  for all v in the nnit sphere Sy, there exists a solution uo t o  
the equation Au = v such that  lluoll 5 ellvllll, thanks t o  Robinson-Ursescu's 
Theorem, because TK (20)  is a closed convex cone, K being sleek at 20. 

Since K is actually strongly sleek a t  zo, we can associate with any t > 0 
an q > 0 snch that, for all tio E X and all z E BK(zo,q) ,  there exists 
ti E TK(z) such that  llu - uOll I clluoll. 

Hence any v E Sy can be written v = Aa + w where llall 5 (1 + c)cIIvII 
and llwll 5 llAllll.0 - till 5 aIIvll when r L a/llAll. 

When the dimension of Y is finite, the nnit sphere Sy is compact. We 
know that  for any vi E Sy, there exits a solution tioi to the equation Au = v, 
snch that  1 1 ~ ~ ~ 1 1  cllvi 11 11. Hence for any t > 0 and vi, there exist q; > 0 such 
that ,  for all z E B K ( z ~ ,  q), there exists u E Tx(z) such that  IJui - tloill I 
~11~~11/211A11. 



We can ewer Sy by p balls B(vi, €12) so that,  by taking q := q,, 
we obtain that  for any v E Sy and any z E BK(XO, q), there elrist tti E TK(x) 
and wi E Y related by the equation v = Au; + W i  where (Jarill I cllv;ll = c 
and where Ilwill I 1 1 ~  - Auoill + IIAll lluo; - %ill I 6. 

We provide now theorems on local uniqueness and i n j e c t ~ t y  of set- 
valued maps. 

Definition 3.2 Let F : X .u Y be a ref-rdued map. We ahdl say that it 
enjoga local inverse nnivocity around an element (T* ,  y*) of ita graph i f  
and only i f  there etirtr a neighborhood N(z*) ruch that 

{ z ( such that  y* E F(x )  ) n N(z*) = { re )  

If the neighborhood N(ze) coincide8 with the domain of F, F is raid to  have 
(global) inverse nnivocity . 

We ahdl ray that it ir locally injective around z* if and only if there 
c t ia ta  a neighborhood N(z*) ruch that, for all zl # xy E N(x*), we have 
F (zl) n F (zr) = 0. It  is raid to be (globally) injective i f  we can take for 
neighborhood N (z*) the whole domain of F. 

Since 0 E DF(z*,y*)(O), we observe that  t o  say that  the "linearized 
system" DF(z*,gk) enjoys the inverse univocity amounts t o  saying that 
the inverse image DF(z*,y*)-'(0) contains only one element, i.e., tha t  its 
kernel KerDF(z*, g*) is equal to  0, where the kernel is naturally defined by 

Theorem 3.8 Let F be a ret-ralucd map from a finite dimensiond rector- 
rpace X to  a Banach rpace Y and (z*,g*) klong to  itr graph. 



If the kernel of the contingent derirative DF(z*, g*) of F at (z* ,  g*) is  
equal to { 0 ), then there etists a neighborhood N(z*)  such that 

(43) { z  such that  g* E F ( z )  ) n N ( z * )  = { z * )  
Let w aosume that there e i t s  y > 0 such that F(z* + yB)  ir relatisely 
compact and that F has a closed gmph. If for dl g E F ( z * )  the kernel8 
of the paratingent's den'coticer PF(z* ,  y) of F at (z* ,  g )  are equd to { 0 ) ,  
then F is  locdlg injective around z*. 

Proof 

1. Assume that  the conclusion (43) is false . Then there exists a sequence 
of elements z ,  # z* converging to  z* satisfying 

V n 1 0, y* E F(z,)  

Let us set h, := llzn - z*ll, which converges t o  0, and 

The elements u ,  do belong to the unit sphere, which is compact. 
Hence a subsequence (again denoted) a, does converge t o  some u 
different from 0. Since the abwe equation can be written 

we deduce that  
0 E DF(z*, g*)(u) 

Hence we have prwed the existence of a non zero element of the kernel 
of DF(z*,  g*),  which is a contradiction. 

2. Assume that  F is not locally injective. Then there exists a sequence of 
elements z:, x i  E N ( z * ) ,  zj; # x i ,  converging to z* and g, satisfying 

V n 2 0, I,, E F ( z ; )  n F ( x ~ )  

Let us set h, := llz: - zX11, which converges to 0,  and 

an := (2: - z i ) / h n  

The elements u ,  do belong to the unit sphere, which is compact. 
Hence a subsequence (again denoted) u,  does converge t o  some tt 

different from 0. 
Isby definition, the graph of the pantingent derivative P F ( 2 . y )  of F at ( 2 ,  y) is the 

pantingent cone to the grsph of F at ( 2 ,  y ) .  



Then for a l l  large n 

we deduce that a subsequence (again denoted) gr, converges to some 
g E F(x') (because Graph(F) is closed). 

Since the abwe equation implies that 

and we deduce that 

0 E PF(x*,  Y)(u) 

Hence we have proved the existence of a non zero element of the kernel 
ofPF(x*,gr),whichisacontradiction. 



4 Calculus of Tangent Cones 

We shall present now a calculus of tangent cones, from which we shall 
deduce a calculus of derivatives of set-valued maps and a calculns of epi- 
derivatives. 

4.1 Subsets and Products 

If K c L, then 

( 44) TK (2) c TL (x) k T; (z) c T; ( r )  

I f K i C X ,  ( i = l , . . . , n ) , t h e n  

If K; C Xi, (i = 1, - a ., n), then 

4.2 Inverse Images 

Let us consider now two topological vector spaces X and Y, subsets L c X 
and M c Y and a differentiable single-valued map f from X to  Y. The 
following statement is obvious: 



Proporition 4.1 For any z E L  n f- ' (M),  we dways have 

We shall deduce from the Constrained Inverse hnct ion  Theorem1' con- 
verse inclusions. 

1 6 ~ e t  us recall t h i s  statement 

Theorem 4.1 (Constrained Inverse hnctlon Theorem) Let  X and 2' be two B a -  
naeh rpaeer. We  introduce a (ringle-valued) eontinuour map j : X r+ Y , a elored rubret 
K c X and an element t o  o J K .  

We arrume that j i r  di f lerentiabk on a neighborhood o j z o  and we posit the fol lowing 
stablllty assumption: there u r b t  eonrtantr c > 0, o E [O,] [ and I) > 0 ruch that 

Then j ( z o )  belonor t o  the inter ior  o j  j ( K )  and the ret-valued map y --+ j - ' ( y )  n K is  
pseudo-llpschltsean around ( j ( z o  ), 20) .  



Theorem 4.3 Let  X and Y k Banach  rpaeer, L  c X and M c Y be 
closed rubretr, f Be a cont inuowlg diflerentiaBle m a p  around a n  element 
zo E L n  f- ' (M).  If X and Y are finite d i m e n n o n d  vector-rpucer, we porit 
t he  pointwise trrrnsversditg condition 

Otherwise, we have t o  replace the pointwise transversality condition by  
the  local transversality condition condition : there ecist constants c > 0 ,  
CY E [O, 1[ and q  > 0 such that  

(48) 
v z  E L n B(z0, r l ) ,  Y E M n B ( f  (so), r l )  
BY c f ' ( z ) ( ~ ; ( t )  n c B x )  - T M ( Y )  +QBY 

As a consequence, we in fer  that  L  n f- ' (M) i s  sleek (respectively den'v- 
able) whenever L  and M are sleek (rclspectivelg derivable). 

Proof Let us prove for instance the inclusion for the Clarke tangent 
cones. Take any sequence of elements z, E L n f - ' (M)  which converges t o  
2. Let us take any u E C L ( z )  such that  f '(zO)u E C M ( f ( z ) ) .  Hence for 
any sequence h, > 0, there exist sequences u, and v ,  converging t o  u and 
f ' (zo)u respectively such that,  for all n 1 0, 

We apply now the Constrained Inverse F'unction Theorem 3.5 t o  the subset 
L x M of X x Y and the continuous map f 8 1 associating t o  any (2,  y) 
the element f ( z )  - I, since we can write 

It is obvious that  the transversality condition (48) implies the stability 
assumption of the Constrained Inverse Function Theorem. The pair ( z ,  + 
hnrn, f ( z n )  + h,vn)  belongs t o  L x M and 

because f is continuously differentiable at zo. 



Therefore, by the Constrained Inverse F'unction Theorem 3.5, there exits 
a solution (6, s) E L x M to the equation ( j  8 1 )  ( 6 ,  s) = 0 (i.e., 

h ,-;; = f (zn))  such that 

Hence := (2 ,  - z^,)/hn converges to a,  and for all n 2 0, we know 
that zn + hnu, belongs to L n f - I  ( M )  because z,  + h, = z';; belongs to 
L and f(zn + hnu";;) = g';; belongs to M .  

We list now three useful corollaries of this theorem: 

Corollary 4.1 (Tangent Conee to Inveree Images) Assume that M c 
Y is a elosed subset and that f is a eontinuowlg diferentiable map around 
an element zo E f -' ( M ) .  

When the dimenoion of X and Y is finite, we suppose that 

Then 
) T j - l ( ~ )  (30)  = ! ' (~o)-~Tnr(f  (50 ) )  

ii) T O )  = j ' ( s ~ ) - ~ T L ( f ( s ~ ) )  
;i;) Gj-1(M) ( 3 0 )  C ~ ' ( Z O ) - ~ G M  ( f  ( ~ 0 ) )  

Otherwise, we  assume that there etist eonstants c > 0, cr E [0, I.[ and q > 0 
such that 



Corollary 4.3 (Tangent Cone to an Intersection) If Kl and K, are 
closed subsets contained i n  X .  If X i s  a finite dimenmond vector-space, we 
arrume that 

CKI (2 )  - CK2 (2 )  = x 
Then 

GI (2 )  n TKZ (2 )  c T K l n K 2  (2 )  

i i )  GI (2 )  n Tk2 (4 = Tk1,K2 (4 
i;;) CK I (2 )  n CK2 (2)  C CK1 n K z  (2 )  

Otherwise, we suppose that there etist conrtants c > 0, cr E [O,1.[ and 
q > 0 such that 

Finally, for a finite intersection, we can state: 

Corollary 4.3 (Tangent Cone to a Finite Intersection) Let us con- 
sider n clored subsets Ki c X .  When the dimension of X i s  finite, we 

assume that 

The n 

If the dimension of X i s  infinite, we asrume that there edst constante 
c > O , a ~ [ O , l [ a n d q > O s u c h t h a t  

4 Direct Images 

Let us consider now two topological vector spaces X and Y, a subset K c 
X and a differentiable single-valued map f from X to Y. The following 
statement is obvious: 



Propoeition 4.3 For ang y E f (K), we huve 

It is not that easy to  find elegant sufficient conditions implying the 
equality 

(49) U / ' (~) (TK(x)~  = T ~ ( ~ ) ( ~ )  
t€KnJ-l(y) 

Let us review some simple ones: 

Propoeition 4.3 If A E t ( X ,  Y )  is a continuous linear operator and if K 
is pseudo-convez at some point z ofK n A-l(y),  then 

In particular, when K is convez, we have 

The Criterion of Pseudo-Lipschitzeanity17 provides a more general suf- 
ficient condition: 

1 7 ~ e t  us recall this statement 

Theorem 4.8 (Crfterlon of Pseudo-Llpshltreadty) Let K be a closed subset of a 
Banaeh rpaee X and A E L(X,Y)  be a continuous linear operator from X to another 
Banmh rpaee Y .  Let w arrume that for rome 20 E K ,  there exist eomtants e > 0 ,  
a E [O, 11 and q > 0 ruch that 

Then the ret-valued map 
A(K) 3 y .u ~ - l ( y ) n  K 

u pseudo-Ilprchjtwm around (Azo,to): For an# z l  clore to zo and y E K elore to 
Az0, 

d ( t l , ~ - l ( y )  n K)  I 1 1 1 ~  - A ~ I I I  



Theorem 4.4 Let K be a elored rdret  of a reflea'ee Banaeh rpaee X and 
A E t (X,  Y) be a eontinuour linear operator from X to another Banaeh 
rpaee Y. Let ur curume that for rome zo E KnA-'(yo), there en'& eonutantr 
e > 0, a~ [ O , l [  and q > 0 rueh thut 

Then, if X ir rupplied with the weak topology, we obtain the equality 

Proof Let v belong t o  T A ( ~ )  (yo). Then there exist sequences of 
elements h, > 0 and v, converging t o  0 and v respectively such that 

(51) go + h,t?, = Ax, E A(K)  

The point is t o  choose solutions z, E K to the above equation (51) and 
a solution zo E to the equation Axo = yo such that  

a subsequence of u, := (2, - zo)/hn converges to some u 

Such an element u belongs t o  the contingent cone TK (zo) and is a solution 
t o  the equation Au = v. 

Since the set-valued map A(K) 3 y .u K E A-'(y) is pseudo-lipschitzean 
around (yo,zo) by the Criterion of Pseudo-Lipschitzeanity, there exist a 
constant I' and solutions x, E K to the equation (51) such that  

Therefore, the sequence of elements u, is bounded, so that  a subsequence 
(again denoted) a, converges (weakly when the dimension of X is infinite) 
t o  some u. 

Remark Any sufficient condition implying that  for some zo E 
K n A-'(go), the set-valued map A(K)  3 g - K n A-'(3) is pseudo- 
lipschitzean will automatically imply the abwe  equality (50) between the 
contingent cone t o  the image and the closure of the image of the contingent 
cone. 



The sequence of elements a, := (z, - zo)/hn sa t ides  

i i )  Au, = v, { SK(zo) 

Therefore, any properness ~ r i t e r i on '~  of the map A from the closed cone 
spanned by K - 2 0  to Y implies equality (50). 

In  particular, the Closed Range Theorem provides such a simple cri- 
terion. Since the barrier cone of SK(zO) is its polar cone, which is the 
eubnormal cone N i ( z o )  t o  K at zo, we then obtain the following state- 
me nt : 

Theorem 4.5 Let K be a elored rubret of a reflerive Banlreh epaee X and 
A E L(X, Y) be a eontinuoue linear opemtor from X to another Banach 
e p e e  Y .  Let w arrume that for rome zo E K n A-'(yo), 

Then, if X ir rupplied with the weak topology, we obtcun the equulity 
(50). 

Remark Criterion (53), which is easy to use, is much too strong, 
since it requires implicitly tha t  the inverse y .u KnA-'(y) of the restriction 
of A t o  K is actually locally single-valued. Indeed, by taking the polar cones 
in equality (53), we obtain 

Actually, when the dimension of X is finite, we have a stronger criterion: 

'*Banach'r Clored Graph Theorem allowr to arrume that A t surjective: It is rufficient 
to decompore A ar the product i o  4 of the canonical rurjection 4 &om X onto its factor 
rpace X /  ker(A) and the aesociated bijective map A, which is an iromorphism. Then the 
propernerr of A ir equivalent to the propernesr of 4. 



Proposition 4.4 If the dimen8ion of X i8 finite and if jot 8ome zo E 
K n A-'(go), then condition 

Proof We have t o  prove that  the sequence of solutions u,  to (51) 
are bounded. If not, Ilu, 1 1  will go to  00. Hence a subsequence of elements 

:= un/llun(l of the unit sphere, which is compact, converges to  some 
u # 0. Since the sequence A G  = vn/llunll converges to  0, we infer dhat u 
belongs to  the kernel of A. It belongs also to  the contingent cone TK (zO), 
since we can write 

zo + hnllun 11% E K 

and since h,lla,ll converges t o  0. 



5 Tangent Cones in Lebesgue Spaces 

Let (n,  S, p)  be a measure space and X be a Banach space. Let us consider 
a sequence of measurable setvalued maps 

We associate to it the subsets K of P(n,  X )  defined by 

K := { z(.) E LP(0,X) 1 for almost all w E 0,  x(w) E K(u;) ) 

We shall characterize the adjacent and contingent cones to such a subset 
in termes of the tangent cones t o  the snbsets K(w). 

Theorem 5.1 Let us cusume that the set-valued map K is measurable and 
that the subset K is not emptg. Then 

{v( . )  E P(n ,  X )  I for almost all w ,  v ( w )  E Tk(u, ( ~ ( w ) ) }  

c T k ( 4 . ) )  c TK ( 4 . ) )  
c {v( . )  E P(0, X )  ( for a l m ~ s t  all u,  v ( u )  E TA-(u) ( ~ ( u ) ) }  

Proof 

1. Let v( . )  belong to the  first subset. We have t o  prove that  that  when 
h > 0 goes t o  0, there exists functions v h ( - )  E LP(0, X )  converging t o  
v ( - )  such that  

for almost all o E 0, z (u )  + hvr(w) E K(G)  

Let us set: 
an (u) := d(v(w), (K(Q)  - z (o ) ) /h )  

The function ah is measurable and converge to 0 almost werywhere 
because for almost all w E n, a ( w )  belongs to the adjacent cone t o  
K ( o )  a t  z(w). 



Since 
for almost all w, a(w) 5 Ilv(w)II 

and since the right-hand side of this inequality belongs t o  LP(n), we 
deduce from Lebesgue's Theorem that the hnctions ah (.) do converge 
t o  0 in LP(n). Let us introduce now the subsets Lh (w) defined by 

I t  is clear that  the s e t -dued  map Lh(e) is also measurable. The Mea- 
surable Selection Theorem allows ns to  choose a measurable selection 
ah ( - )  of the set-valued map Lh(-) .  

We define now the functions vh(.) by 

They are measurable, satisfy 

Ilvh (w) - v(w)ll =  ah(^) 

and thus, converges t o  v(-) in LP(n;X) since ah ( - )  converges to  0 in 
LP(n). We infer that  t r ( . )  belongs to Ti(x(.))  because 

for almost all n E n, z(w) + htth(u) E K(G)  

2. Let us choose now some v(.) in the contingent cone to the subset K.  
Then there exist subsequences h, > 0 and v,(.) converging respec- 
tively t o  0 and to z(.) in LP(n; X) and satisfying 

for almost all w E n, z (w)  + h,v, (o) E K(w) 

Then a subsequence (again denoted) on(-) converges almost every- 
where to v(-) and consequently, for almost all o, v(w)  belongs to the 
contingent cone t o  the subset K(w) at z(w). 

Naturally, we infer that  

Corollary 5.1 Let w arrumc thut the rct-vducd map K i r  rncauurablc and 
that the rubrct K i r  not cmptv. If the rubrctr K(w) arc dcn'vdlc, ro i r  K 
and 

T~(Z( . ) )  = {o(.) E Lp(fl,X) I for almost allw, v(w) E TK(~) ( z (w) ) )  



6 Derivatives of Set-Valued maps 

We shall derive from each concept of tangent cone t o  a subset an associated 
concept of g raph ica l  derivative of a set-valued map F from a topological 
vector space X to  another Y. 

The idea is very simple, and goes back to the protohistory of the dif- 
ferential calculus, when Pierre de Fermat introduced in the first half of the 
swenteenth century the concept of a tangent t o  the graph of a function. 

The tangent space to the graph of a function f a t  a point (x,g) of 
its graph is the line of slope fl(x), i.e., the graph of the linear function 
u I-+ fl(z)u. 

It is possible to  implement this idea for any set-valued map F since 
we have introduced (unfortunately, several) ways to implement the concept 
of tangency for any subset of a topological vector space. Therefore, in 
the framework of a given problem, we can choose the adequate concept 
of tangent cone, and thus, regard this tangent cone to the graph of the 
set-valued map F a t  some point (z,y) of its graph as the graph of the 
associated "graphical" derivative of F a t  this point (z, y). 

Since the fangent cones are a t  least ... cones, all these derivatives are a t  
least positively homogeneous  set-valued maps (also called proceeses). 
This is what remains of the familiar, but luxurious, requirement of linearity. 

However, they are closed convex processes, i.e., set-valued analogues of 
continuous linear operators, when the tangent cones happen to  be closed 
and corrvex (this is the case when we use the Clarke tangent cone or the 
Minkowski differences of the contingent or adjacent cones). 

Hence, we start  with some definitions and notations. 

Definition 6.1 Let F : X - Y be a set-valued m a p  from a topological 
vector rpaee X to  another Y .  



W e  introduce t he  three following graphical den'oatives 

1. the  contingent derivative DF(x,  g) := DgF(x,  g),  def ined b y  

(54) Gn~h(DF(z,If ) )  := T G ~ ~ ~ ~ ~ F ~  (z, Y) 

e. t he  adjacent derivative DbF(z,  ~ f )  def ined by  

(55) G ~ ~ P ~ ( ~ ' ~ ( ~ ,  11) := T&raph(p) (z, I )  

3. the  circatangent derivative CF(z ,  y) def ined b y  

(56) G n ~ h ( C F ( z 7  Y 1) := C ~ ~ ~ ~ h ( p ~  ('7 Y) 

W e  s h d l  sag that F i s  eleek a t  (z, y) E G n p h ( F )  i f  a n d  on l y  i f  

(z', I') 'U Graph(DF)(xl, I') i s  lower  s emicon t inuous  a t  (2, y) 

a n d  it i s  eleek if it i s  sleek at every  point of i t s  graph. 
W e  shall sag t h a t  F i s  derivable a t  (x,g) E Graph(F) if a n d  on l y  i f  

t h e  cont ingent  a n d  adjaee nt derivat ives  coincide:  

a n d  that it i s  derivable if it i s  den'vable at every  point of i t s  graph. 
Final lg,  we shall  sag t ha t  F i s  peendo-convex at (x, y) E Graph(F) i f  

and  onlg i f  

V z' E Dom(F) , F (2') c D F(z ,  g) (z' - z)  + y 

We see a t  once that  these three graphical derivatives are closed processes 
and that  

Naturally, the circatangent derivative is always a closed convex process, and 
the contingent derivative is a closed convex process whenever F is sleek a t  
(2, dl). 



When F := f is single-valued, we set 

We see easily from Propositions 6.2 and 6.3 below that  

D  f ( 2 ) )  (u )  = f'(z)u if f is Gateaux differentiable 
i i )  DL f ( z )  = f ' ( z )u  if f is R iche t  differentiable (58) { " 
ii i) C f ( 2 )  ( a )  = f ' ( z ) u  if f is continuously differentiable 

Restrictions F  := f l K  of single-valued maps f to subsets K c X provide 
a wide class of set-valued maps defined by 

f ( z )  if 2 E K f l ~ ( ~ )  := { fl if z.~ 
for which we obtain the following formulas: if f is continuously differen- 
tiable around a point z E K, then the derivative of the restriction 
is the restriction of the derivative to the corresponding tangent 
cone: 

Actually, this follows from the useful 

Proposition 6.1 Let X and Y be normed epaeee, f a eontinuouely differ- 
entiable opemtor from an open subeet f l  c X to Y ,  L c X and M c Y 
elored rubeete. Let F  : X - Y be the ret-odued map &fined by: 

F ( 2 )  := ( { ( z )  - M  when . E L  
when 2 4  L  

Let ( 2 , g )  belong to the gmph of F .  Then i tr  4 a e e n t  deriratire i r  equal to 

D ~ F ( z , ~ ) ( u )  := { f ( 2 ) a - ~ ( f ( 2 ) - 9 )  u ~ ~ t ( 2 )  8 when u 4  TL(z)  

The rame formula holdr true for the eircdangent dcn'edire and the Clarke 
tangent eoner. 

Proof 



Let v  belong t o  DF(z ,# ) (u )  and let us prcwe that  it belongs t o  f ' (z)u-  
TM(f  ( z )  - J ) .  We know that for all h, > 0 converging t o  0, there e i s t  
sequences a,  and v, converging to u and v  respectively such that  x  + h, r ,  
belongs to L and J + h,v, belongs to f ( x  + h,a) - M for all n. This 
implies that  r belongs t o  t o  ( x )  and, mnce we can write f ( z  + h,u,) = 
f ( x )  + h , ( f l ( z )a  + ~ ( h n ) ) ,  that  f ( z )  - g  + hn( f ' ( z )a-vn  +o(hn)) belongs 
t o  M. Hence f'(x)a - v  does belongs to Th(f ( x )  - Y). 

Conversely, assume that  a belongs t o  c ( x )  and that f l ( z )u  - v  belongs 
to  TL ( f ( z )  - y). Hence, for all sequence h,  > 0 converging t o  0, there exist 
sequence u, amd w, converging to r and f ' (x)u - v  such that  x  + hnun and 
f ( z )  - y  + h,w, belongs to L and M respectively. Then v, := f ' (x)u + 
o(h,) - w, converges t o  v and satisfies y  + h,v, E  f ( x )  + h,u, - M .  

Remark For contingent derivatives, we can only prcwe that  

j ' (z)u - TM ( f ( ~ )  - Y )  when a EL (2)  

when ti 4 T L ( z )  

and that  

f ' ( x )u  - Tb( f ( x )  - y) when EL ( z )  
when u 4 T L ( ~ )  

Another familiar instance of set-valued maps is the inverse of a set- 
valued map F (or wen of a non injective single-valued map). We can easily 
compute any of their graphical derivative because a graphical derivative 
of the inverse of a ret-valued map F in the inveree of the derivative: 

The first task is to characterize these derivatives by adequate limits of 
difference quotients. We begin with the case of contingent derivatives. 



Propoeition 6.2 Let (z, g) E Graph(F) belong to the graph of a set-vdued 
mapF : X .u Y from a normed space X to another Y .  Then 

(61) 
v belongs to DF(z,g)(u)  if and only i f  

F t+h r f ) -g  
liminfh+o+,m'+m d (v, ( h ) = o  

If F i s  lipsehitzean around an element zo E Int (Dom(F)), then 

v belongs to DF(z ,  g) (u) i f  and only if 
(62) P *ha)-# liminfh+O+, (', ( h ) = o  
Furthermore, i f  the dimension of 1' i s  finite, or if 1' i s  a t e f l e t i v e  Banaeh 
space supplied with the weak topologg, then 

Proof The first two statements being obvious, let us check the last 
one. Let u belong t o  X. Then, for all h > 0 small enough and y E F ( x ) ,  

Hence there exits yh E F ( z  + hu) such that  v h  := (yh - g)/h belongs 
to  IIIuII B, which is compact. Hence a snbseqnence (again denoted) of oh 

converges (weakly if the dimension of Y is infinite) to  some v, which belongs 

t o  DF(z, Y)(u). 
In  order to characterize adjacent and circatangent derivatives in terms 

of limits of difference quotients, we need t o  introduce the concept of "lim 
eup inf"' of functions of two variables. 

Definition 6.2 (Lim sup inf) Let L and M be two metric spaces and 
$ : L x M H R be a function. We ret 

lim sup9,, inf,l+,$(z', 0') := sn inf sup inf $(st, y') .>r VO..Bl,,, flEB(,.') 

Hence, by translating the definition of the adjacent and the Clarke tangent 
cones, we obtain the following characterizations: 



Proposition 6.3 Let (z, y) E Graph(F) belong to the paph of a set-valued 
mapF : X - Y from a nonned space X to another Y .  Then 

v belongs to DbF (z, y) (a) if and onljt if 
(64) ~m s.ph+o+ inh~+.d (a, F ( *ha1)-y ) = o  
and 

v belongs to CF (z, y) (8) i f  and only i f  
F(f +ha8)-y8 

lim suph+0+,($,,)+[xd) inf.8+md (u, h ) = o  
If F i s  lipschitrean around an element z E Int(Dom(F)), then the formulas 
become much simpler: 

(66) 
v belongs to D'F(X ) (u) i f  and only if 
lim*+o+ d (v,  F(x+ha811:) h = o 

and 
tl belong8 to CF(x, g) (u) if and only i f  

P7) F(r'+ha8)-y1 ~mh+o+,,~.y',+,r,yI d (v,  h ) = O  

Let us mention the following property: 

Proposition 6.4 Let us assume that the images of F are convex and that 
F i s  lipachitzean around r .  Then the image8 of the adjacent derivative 
DFb(x ,  g) are convex. 

Proof Let v1 and v' belong to  D F  (x, g) (u) . Then, for any sequence 
h,  > 0, there exist sequences u: and u: converging to u and sequences t?: 

and v: converging to v1 and v' respectively such that 

Since F is lipschitzean around z, 

so that  there exists another sequence converging to  v' such that  

y + h n z  c F ( z + h , ~ f )  

Now, F ( z  + hnuA) being convex, we deduce that  for all A E [ O , l ] ,  

y + h.(Avi + (I  - A ) 3  E F ( x  + hnu:) 

Since Av: + (1 - A ) z  converges t o  Avl + (1 - A)vS, we deduce that this 
element belongs to  DFb(z, y)(u). 



Remark: Kernel of the Derivative The kernels of the various 
derivatives characterize the associated tangent cones to  the inverse image. 

Proposition 6.5 Let F  : X - Y be a ret-cducd map and ( z ,  y) belong to 
itr graph. Then 

TF-1(,)(z)  C ker D F ( z , g )  := D F ( z ,  ~ ) - ' ( 0 )  { i!) c-, ,,, ( 3 )  c ker D'F ( z ,  y )  

If F-' ir preudo-liprehitscan around (1, z ) ,  we h o e  

) kerDF(z ,y )  = TF-1(,)(x) 
i i )  kerD'F(z ,y)  = Tk- lb , (x )  
i i i )  ker CF ( z ,  y) c CF- I iY) (2) 

Proof The first inclusions are obvious. To prove the converse in- 
clusions, let u belong t o  the kernel of C F ( z ,  y )  for instance: for all sequence 
z ,  E F-'(y)  converging t o  z and sequence h, > 0  converging to 0, there 
e i s t  sequences a, and v ,  converging respectively t o  u  and 0 satisfying 

V n ,  y + h n v n  E F(zn+hnun) 

Since F-' is pseudo-lipschitzean around ( y ,  r ) !  there exists an element 
zf,  E F-'(y)  such that  

1 Hence, by setting ut := (zf, - z , ) /h , ,  we see that  r,  + h,u; = r ,  
belongs to  F-'(8) and that  u; converges t o  u because lluf - un 11 I ll(t?n 11 
and because u, converges to 0. 

Therefore we have prwed that  u belongs t o  the Clarke tangent cone t o  
F - l ( g )  at z .  The proofs for the other tangent cones are the same. 



Example: Derivativefi of monotone operators Let X be a 
Hilbert space (identified with its dual). We recall that  a set-valued map 
F : X .u X is monotone if and only if 

Subdifferentials of convex functions are r nono t~ne '~  maps. We also recall 
tha t  when F is monotone, its resohent J := ( l+A)- '  is single-valued and 
lipschitzean (with constant equal to 1) on its domain. Therefore, we can 
easily compute derivatives of F in terms of the derivatives of its resohent. 

Proposition 6.6 Let X be a Hilbert space. We identify its dud  with X 
and r e  supply it with the weak toplogg. If F is a monotone set-valued map, 
then its adjacent den'vative DbF(z ,  p )  at some pair (z, p) of its graph i s  
semi positive-definite in  the sense that 

V (u, r )  E ~ r a ~ h ( ~ ~ ~ ( z , ~ ) ) ,  < r , u > 2 0 

The same is true for the circatangent derivative. Furthermore, the following 
statements a n  equivalent: 

This last statement remaim true for the adjacent and circatangent den'va- 
lives. 

Proof The first statement is obvious, since < r, u > is the limit 
of the sequence < r,.a, > (because a ,  converges to  u strongly and r, 
converges t o  v weakly) and since 

For proving the  second statement, we observe that  p belongs t o  F ( z )  if 
and only if z = J ( z  + p). Since J is the inverse of (I + A), we deduce that  

''we refer t o  [6, Sections 6.6 dc 6.71 for an introduction to monotone a n d  maximal 
monotone maps. 



Hence, by setting q := z + p and s := r + u, we obtain the formula we 
were looking for. 

Since the cone-valued map NK associating with any z E K the normal 
cone NK(z) to a closed convex subset is maximal monotone (because the 
normal cone is the subdifferential of the indicator of K), and since its 
resolvaent is the best approximation projector, we deduce the following 
corollary : 

Corollary 6.1 Let K be a closed eonvez subset of a Hilbert spuce, and let 
p belong to the normal cone NK (x) to K at some x E K. Let ~rl; denote the 
best approtimation pmjector onto K .  Then, the two following satatements 
a n  equivalent: { i) q E D b N r  (z. PI(%) 

) u E D b ~ ~ ( z + p ) ( ~ + q )  



7 Calculus of Derivatives 

We derive from the calculus of tangent cones the associated calculus of 
derivatives of set-valued maps. We begin naturally by the chain rule for 
computing the composition product of a setvalued map G : .u Y and a 
set-valued map H  : Y .u Z. 

One can conceive two dual ways for defining composition products of 
set-valued maps (which coincide when G is single-valued): 

Definition 7.1 Let X, Y, Z be Banaeh spaces and G : X .u E', H  : Y .u 
Z be act-valued maps: 

1.  the usual composition product (called eimply the product) H o G  : 
X .u Z of H  and G at x is defined b y  

2. the equare productz0 H O G  : X .u Z of H  and G  at z ie defined 
b y  

  HOG)(^) := n 
Y EG (4 

200bserve that  square products are implicitely involved in the factorization of maps. Let 
.Y be a subset, R be an equivalence relation on X and 4 denote the canonical surjection 
from X onto the factor space X/R. If j is a single-valued map from X to Y, its factorizativn 
j : X j R  H Y is defined by 

I t  is non trivial if and only if j is consistent with the equivalence relation R, i.e., if and 
only if j ( s )  = j ( p )  whenever 4 ( z )  = #(y) .  When F : X u Y is a set-valued map, we can 
define its factorization F : X/R - Y by 



Let us recall that  there are two manners t o  define the inverse image" by a 
set-valued map G  of a subset M :  

a )  G - ( M )  := { z  ( G ( z ) n M  # a )  
b)  G+ ( M )  := { z 1 G ( z )  c M )  

We deduce the following formulas 

as well as the formulas which state that  the inverse of a product is the 
product of the inverses (in reverse order): 

i )  (H o G ) - ' ( y )  = G - ( H - ' ( y ) )  
1 i i )  (H ~ G ) - l ( y )  = G+(H- l (y ) )  

We also point aout the following relation: 

We shall need the following result: 

Propoeition 7.1 Let F  be a set-valued map from X' to Y and K be a 
rubret of X .  Arrume that F  ir lipschitzean around some 2. E K. Then, for 
any y E F ( z ) ,  we have 

As a eonseguenee, we deduce that if M  is a rubret of Y ,  then 

Proof 
2 1 ~ e  recall also that a set-valued map C ie upper semicontinuous if and only if the 

inverse imsges C -  of open subeets are open and that it is lower eemicontinuous if and 
only if the inverse images C+ of open subsets are open. 



Take r in TK ( x )  and v E DbF(z,  Then there exist sequences 
hn > 0 converging t o  0, at: and u: coweging to  u and vn conveging t o  v 
such that  

xn +hnuf, E K C g+hnvn E F(x+hnu:)  

Since F is lipschitzean around x, we deduce that  

so that  there exists another sequence a," converging t o  t~ such tha t  

This implies that  v belongs to the contingent cone to F ( K )  a t  y. 
Consider now K := F+(M) .  Since F ( F + ( M ) )  is contained in M ,  we 

deduce that  

from which formula (72) follows. 
Remark Naturally, the formula 

is also true. 
We begin by this simple result: 

Theorem 7.1 Let w consider a set-valued map G : X - 1- and a set- 
valued map H : Y - 2. 

Let us annume that H i s  lipschitzean amund g where g Belongs to G ( r ) .  
Then, for ang x t. H(g) ,  we have 

Let ur anrum that G ir liprchitzcan around x. Then, for all g E G(x )  
and x E ( H n G ) ( z ) ,  r e  huve 



In particular, i f  G := g i r  mngle-valued and liprehitzean around z, we 
obtain 

D(Hg)(z, Z)(U) C DH(g(z), 4 ( b ( ~ ) % )  

and the equality holdr truc when H ir  liprehitzean around g(z) . 
Proof We apply Proposition 7.1 to formulas (70) and (69)ii) re- 

spectively for proving the two first formulas. When G := g is single-valued, 
we use the fact that  both composition products coincide. 

We state now a more powerful result: 

Theorem 7.3 Let ue eonrider a ret-valued map G : X - Y and a eet- 
valued map H : E' - 2. 

If the dimeneion of Y ir finite, we  rupoee that 

Then 

i )  DbH(yoq ZO) 0 DG(z0, YO)  c D ( H  0 G)(zo, zo) 
i i )  D b H  (yo, zo) 0 D b ~ ( r 9 .  yo) = D b ( H  0 G)(xo, ao) 

CH(y0, ~ 0 )  0 CGbo,  yo) c C ( H  0 G)(xo, t o )  

If 2' i r  any Banuch rpuce, we areume that there etiet conetantr c > 0, 
a E [ O , l [  and q > 0 rueh that 

v (2,  ~ 1 )  E Graph(G) n B((z0, yo), q), 
'4 ( ~ 2 ,  2 )  E Graph(H) n B((y0, .to), q) ,  

i )  BY c Im(DbG(z, yl)) n CBX - Dom(DH(y2, z ) )  + aBl- 
) IIDGC (2, y1)lI l c 
iii) 11 DH- l ( t ,  y2) 11 5 e 

Proof If we denote by w the continuous linear operator from X x 
Y x Y x Z to Y associating to (z, yl, 3 2 ,  z )  the element 31 - g2 and by RX, z 
the canonical projection from X x Y x Y x Z onto X x Z, we observe that 

(76) Graph(H o G) = rxXa((Graph(G) x Graph(H)) n w-'(0)) 

Therefore, we apply Theorem 4.2 with A = w, L = Graph(G) x 
Graph(H) and M = (0). 



Assumption (75) implies the transversality condition. Indeed. for any 
v E Y, we can find vl E Im(D'G(z, gl)), vl E Dom(DH(g1,z)) and lo E Y 
such that  v = vl - v, + c with llvlll cllvll and (Ic(J 5 crIJv((. Hence JJvtll I 
( c+  1 + cr)IIvJJ and there exist u E DGb(z, $1)-'(vl) and w E DH(y,, z)(tf1) 
such that  IIuIl I cllv111 a d  11wll I cllvtll. 

Therefore, v = w(u, vl ,  v,, w) + c where (u, v,, us, w )  belongs to  the con- 
tingent cone to the product of the graphs of G and H and e € aBy .  

Consequently, we deduce that,  for instance, 

By applying the projection R X , ~  to  both sides of these equalities, we 
deduce that 

We provide now some examples of situations where we have equality in 
chain rule formulas. 

We denote by F the set-valued map whose graph is the closure of the 
graph of F. 

' Graph(DbH(yo, 20) 0 DbG(zo, YO)) 

' 

= xxX z((Graph(D'G(z~,  yo)) x G r a p h ( ~ ~ H ( g ( o ,  to))) n w-'(0)) 
- - Rxxz(Tbraph(c) x ~ r a p h ( ~ ) n ~ - l ( o )  ( ~ O ? Y O :  YO: zo)) 

T ~ x , z ( ~ r a p h ( c )  ~ ~ r a p h ( ~ ) n w - 1 ( 0 ) )  (20, 20) - 
- Thraph(Hoc) (Zo' 3') 

, = Graph(Db(H 0 G)(zo, 20)) 



Proposition 7.3 Let ua eonrider a ret-edued map G : X - Y and a 
ret-rducd map H : Y .u 2. The following inelun'on 

hol& true under one of the following arrumptionr: 

1. G ir preudo-eonret at (so, yo) E Graph(G) and H is preudo-convet 
at (yo, ro)  E Graph(H), (and in  pariieular, G and H are convet), 

2. The dimenrion of X and Y is finite and 

Proof We deduce these statements from the criteria implying that  
the contingent cones of the images by nx,z are the closures of the images 
of the contingent cones: 

When the graph of G is pseudo-convex at (z, y) and the graph of H is 
pseudo-convex a t  (p, r ) ,  we derive the above property from Proposition 4.3. 

The second case follows from Proposition 4.4 because condition (77) 
implies obviously that  

Ramark It is quite useful t o  relate the tangent cones to  the domain 
(or the image) of a setvalued map to  the domain (or the image) of its 
derivative. 



Proporition 7.3 Let w conmder two topological vector spaces X and E', 
a set-vducd map F : X .LI Y from X t o  Y and a point (30, yo) of i ts  graph. 
W e  dwags have 

EQwlitg 
(79) Dam D F ( y ,  l ) )  = T D ~ ~ ( ~ )  (xo) 
holds true under one of the following assumptions: 

1. F i s  pseudo-convcz at (XO, 310) E Graph(F), (and i n  particular, F i s  
convez), 

&. X and are reflczivc Banach spaces and the cosubdiflerential of F at 
(xo, yo) is  surjective: 

(80) I ~ ( D F ( X ~ , ~ O ) O * )  = Y* 
3. The dimension of X and E' ae finite and 

Proof We deduce these statements from the criteria (Proposi- 
tion 4.3, Proposition 4.5 and Proposition 4.4) implying that the contingent 
cones of the images are the closures of the images of the contingent cones, 
since 

(82) Dom(F) = rXGraph(F) 
where KX is the projection from X x Y onto X. We thus deduce that  

Remark By using the paratingent derivatives", we obtain upper 
estimates of the usual composition product. 

22by definition, the graph of the paratingent derivative PF(2.y)  of F at (z ,y )  is the 
paratingent cone to the graph of F at (z ,  y). 

We can also define the lopsided paratingent derivatives P,F(z,y) and P,F(z,y) in the 
following way: 

Graph(P1F(z, y)) := pm(F) (z,  y) k G n p h ( P d ' ( ~ , y ) )  := 4 : 3 , F , ( z ,  Y) 
Graph (PI 



Theorem 7.3 Arrume that G is liprehitzean around x. Then 

1. Y ir a finite dimenriond weetor-rpaee and G(x)  ir bounded, then 

2. and 
P(HOG)(X,Z) C n P H ( ~ , Z ) D C G ( ~ , Y )  

YEC(4 

Proof Let w belong to  D(H o G)(z,  z)  (u): there exist sequences 
hn > 0, un and vn converging to  0, u and a snch that  

Since G is lipschitzean around t ,  there exist elements y: E G ( r )  snch that  

0 

v, := yn - In satisfies llvn (1 5 lllu, 11 
hn 

Furthermore, G(z) being relatively compact, a subsequence (again denoted) 
y: converges t o  some y. We can also extract a subsequence (again denoted) 
on which converges t o  some v, since this sequence is bounded and the 
dimension of Y is finite. 

Since 

we infer tha t  w belongs t o  PH (y, x )  (v) and v belongs to  PG(z ,  y) (u) 
Let a E Dom CG(z,  gt) and w belong to  P(H oG)(x, 2 )  (u). Hence there 

exist a seqnence h,  > 0 converging to  0 and sequences of elements (z,, 2,) E 
Graph(H n G ) ,  a, and w, converging to (z, x ) ,  a and w respectively such 
tha t  

The s e b d u e d  map G being lipschitzean, there exists a sequence of 
elements y, E G(z,) converging to y. By definition of the square product, 
we know tha t  a, E H(yn)  (because z, E ( H  oG)(z,)).  



Take now any v in CG(x, g)(a). Since G is lipschitzean around z ,  there 
exists a sequence of elements vn converging to  v such that 

Therefore, 

so that we infer that 

Since this is true for every element v of CG(x, y)(u), we deduce that 



8 Epiderivatives 

Let us consider an extended real-valued function V : X I+ RU {+m)  whose 
domain 

Dom(V) := { z E X I V(z) < + m )  

is not empty. (Such a function is said t o  be proper in convex and non 
smooth analysis. We shall rather say that  it is nontrivial for avoiding 
confusion with proper maps). 

We can naturally regard it as the set-valued map V : X - R defined 

by 
Cr(z) if z E Dom(V) 

V(z)  := { 0 if z $  Dom(V) 
so that  we can define in the usual way contingent, adjacent and cir- 

catangent derivatives of V a t  z E Dom(V). We shall set: 

' i )  DV(z)(u) := DV(z,  V( r ) ) (u )  
= {ti1 liminfh-O+,r~+u I(V(z + hu') - V(z) - ht?ll/h = 0)  

ii) D ~ V  (z) (u) := ~ ' l ;  ( r ,  v (z)) (u) 
= { ~ ( l i m  infur,, 1(Ir(x + hu') - V ( P )  - ht.ll/h = 0)  

iii) CV(2) (u)  := CV(x, V(z))(u) 

= {vllirn SUPh+O+,r'-r L 
infw~+,IlI7(r + hut) - V ( r )  - ht~ll/h = 0) 

However, minimization problems and Lyapunov functions involve obvi- 
ously the order relation of R. Hence, when dealing with such problems, 
we associate with the extended real-valued function V two new set-valued 
maps V and V1 defined in the following way: 

I i i)  v1 := { V(2) - R+ if z ~ D o m ( V )  
0 if z $ Dom(V) 

We see at once that  

Therefore, we are led n a t u r e  t o  associate with these two set-valued 
maps VT and V1 their contingent, adjacent and circatangent derivatives at 
points (z, V(z)) and thus, unfortunately, t o  introduce still new definitions. 



Definition 8.1 (Epiderivatives) Let V : X c, RU {+w) be a nontrivial 

eztended real-sdued function and z belong to its domain. We shall nag that 

the functionn Dl ( V )  ( I ) ,  D: ( V )  ( z )  and C, ( V )  (2 )  from X to R U {+m) U 
( - 0 0 )  defined renpectiaely by 

' 1 Dr ( V )  ( Z ) ( U )  

:= liminf~-~+,,~,, ( V ( z  + ha') - V ( z ) ) / h  
1 D\(V)(z)(u) 

:= lim suph,,+ inf,,,, (V ( z  + hu') - V ( z ) ) / h  
i i i )  C, ( V )  (2)  (u ) 

I := lim s"P~+o+.f +~ ,v( r ' )~x~-+v[ t )  in&,+, (V ( z  + hu') - A')/h 
ate the contingent, adjacent and circatangent epiderivative~ of 1' 
at z i n  the direction u. 

We define in a symmetric way the contingent, adjacent and cir- 
catangent hypoderivativea Dl ( V )  ( z ) ,  D:(v) (x) and CI ( V ) ( x )  from .X 
to R U {+oo) U { - C Q )  

, 

' 1 D,(V)(z)(u)  = -(D,(-V)(zo)(u)) 
:= lim~~ph-rO+,u'--ru ( V ( X  + hu') - l ' ( ~ ) ) / h  

i i )  D\(V)(+)(u) = - (D;(-v)(zo)(u))  
:= lirninfh,,,+ sup,,+,(I7(z+ hu') - V ( z ) ) / h  

i;;) C,(V)(x)(u)  = -(C,(-IP)(z0)(u)) 

1 := lim infh+o+.~+z,v(r')>A~+v(t) supul-ru ( V ( z  + hu') - A')/h 
Such an e p i  or hypo derivative i n  said to be nontrivial if and only if it 
never taken the value +oo and ha8  at least one finite adue. 

Naturally, they coincide with the directional derivatives < IT'($), u > 
when V is respectively Gateaux, F'rCchet and continuously differentiable. 

Remark Definition (8.1) p ra ide  another interpretation of the 
epiderintims in terms of epilimits of the difference qnotients 

V h V ( z )  := a w ( V ( z +  hr)  - V ( z ) ) / h  

1. the contingent epiderivative is the epi-lower limit of the difference 
qnotients V h V ( z )  when h --, 0+ 2. the adjacent epiderivative is the epi- 
upper limit of the difference qnotients V h V ( z )  when h --, 0+ 3. the cir- 
catangent epiderivative is the epi-upper limit of the difference quotients 
r I-+ (V(z' + ha) - A')/h when h --, 0+ and (z', A') E Ep(V) -, ( z ,  V ( z ) )  



If V is continnonsly differentiable m u n d  a point z E K, then the epi- 
derivative of the restriction ia the restriction of the epiderivative 
to the corresponding tangent cone: 

The formulas become much more simpler when V is lipschitzean. 

/ 

) D t ( V l ~ ) ( z ) ( u )  := ' 

D;(vlK)(z)(u) := { 

i;;) c t ( V I K ) ( z ) ( ~ )  := C 

1 

Proposition 8.1 Let us assume that V : X I+ R U {+m) is lipschitzean 
around a point z of its domain. Then 

' < Vt(x),u > if u E TK(z)  
+oo if if not 

' < Vt(x),u > if u E Tk(z) 
+oo if if not 
< Vt (z) , u > if u E Cx ( r )  
+m if if not 

Furthermore , 

' 4 Dt(V)(z)(u) 
:= liminfh,o+(V(x + hut) - V(z))/h and 

i i )  DI (V) ( 4  (4 
:= lim sup,,,, (Tr(z + hut) - V(x))/h 
are Dini den'uatiues 

i;;) ~ , ( V ) ( Z ) ( U )  =: CT3(x, U )  

:= l i m s ~ p ~ , ~ + , ~ , , ( V ( r  + hut) - V(rt)) /h 
is the Clarke directional den'uatiae. 

i )  (z, u) E X x Int (Dom(V)) I+ Ct V (z) (u) 
is uppc r re micontinuous 

i )  u w C t V ( z ) ( u )  isliprchitzean 
i i i )  c, (-V) (2) (u) := CtV (z) (-u) 



Proposition 8.2 When the function V i s  eonvez, all these epiden'vatives 
a n  equal and the formula beeomes: 

V ( x  + hai) - V ( z )  
DT(V)(.) (a)  = liminf (inf 

m u  h>O h 

Furthermore, when z belongs to the interior of the domain of V ,  i.e., when 
V i s  lipselritrean around z ,  we  obtcu'n 

V ( z  + hui) - V ( r )  
DT ( V )  ( z ) (u )  = inf 

h>O h 

We first observe that, 

Proposition 8.3 Let V : X I+ R U {+a) be a nontrivial eztended real- 
valued function and r belong to its domcu'n. 

Then the tangent cones to the epigraph of V at ( z ,  V ( t)) are epigraph8 
of the corresponding epiderivatives of I.' at r: 

i )  E P D T V ( ~  = T E ~ , ~ ~  ( l , l * ( r ) )  

ii) EpD:V(z) = Tbp,,,,, ( x ,  I r ( z ) )  
iii) Ep4I7 ( r )  = CEp(v) ( x ,  V (z)) 

Then the cireatangent epiden'vative i s  always lower semicontinuous eonvez 
and positively homogeneous. 

Proof We shall check this fact only for the contingent case, the 
proof being similar for the adjacent and circatangent cases. 

Actually, we s h d  p rwe  that  for all w > V ( z ) ,  we have 

Let u 2 DTV(z)(a)  where u belongs to the domain of the contingent 
epiderivative of V at x. Then there exist sequences u,, u,  and h, > 0 
converging to u, u and 0 such that  hnun 2 V ( z  + hnun) - V ( z ) .  Since 
w - V ( x )  2 0, we deduce tha t  w - V ( z )  + h,u, 2 V ( z  + h,a,) - V ( z ) ,  i.e., 
t ha t  the pair (a, u )  belongs to TEp(,)(z, w) .  



Let us assume that  (u,v) belongs t o  TE z, w). We infer that  there 
P(VI ( 

exists seqnences a,, v, and h, > 0 converging to u, v and 0 such that  

(88) w +hnvn 3 V(z+hnun) 

If w = V(z), we dednce that  v 3 Dr(V)(z)(u). Hence the equality 
between the contingent cone to the epigraph of V a t  (z, V (3)) and the 
epigraph of the contingent epiderivative holds true. 

This result leads us t o  introduce the following definitions. 

Definition 8.3 We shall sag that an eztended function V i s  pseudo- 
convex at r i f  

We ahall sag that it i s  epi-derivable at x i f  the contingent and adjacent 
cpiderivatives do coincide and that it i s  epi-sleek at r i f  the epigraph of 1' 
i s  sleek at (z, Vt ) .  

P ropos i t ion  8.4 Let V : X I+ R U (+m) be a nontrivial ettended real- 
valued function and z belong to its domain. Then 

If the restriction of 1,' to its domain i a  upper semicontinuow, then, for all 
t@ > V(Z)? 

T E p ( v I ( z , ~ )  = X 

Proo f  If u belongs to the domain of the contingent epiderivative 
of V at  x ,  if ZL, 3 V(r )  and if u is any real number, we check that (u. t 7 )  

belongs to the epigraph of D,(V)(z). 
Indeed, there exist seqnences of elements h, > 0, un and cn converging 

to  0, u, and Dr(V)(z) respectively such that  

But we can write 

Since w - V(z) + h, (v - v,) is strictly positive when w > V (z) and h, is 
s m d  enough, we dednce that  (z + h,u,, w + h,u) belongs t o  the epigraph 
of V, i.e.,that (a, a) belongs t o  the epigraph of Dl (V) (3). 



If ( a ,  v )  belongs to  TE (,,(x, w ) ,  we deduce from (88) that  x + hn un 
belong to the domain of Qfor all n,  i.e., that  r belongs to the contingent 
cone t o  the domain of V at x. 

Let w be strictly larger than x and r belong to TDom(v)(~) .  Then 
there exists sequences un and h, > 0 converging t o  u and 0 such that  
V ( z  + hnun)  < +oo for all n. 

Since V is upper semicontinuous on its domain, for all r €10, -[, 
there exists q > 0 such that ,  for all hnIlunII < q ,  we obtain 

Let u given arbitrarily in R. Then, for any h, > 0 when t1 2 0 or for 
any h,  €10, k[ when t7 < 0, inequality w - 6 5 u7 + h,,u implies that  
I.'(+ + hnun )  5 w + hns ,  i.e., tha t  the pair ( a ,  tr) belongs to  TEp(v,(z, w ) .  

Proposition 8.5 Let V :+ R U {+XI) be an ettended function and x 
belong to its domain. Then 

These subaets are equal when the images of the contingent derivative are 
connected. 

Proof Since 

we deduce that  the inclusions 

can be translated in the following inclusions: 

from which inclusion DV (x)(u) c [DTV(x)(u), DIV (x)(u)] follows. 



Since the contingent epiderivative of l' at  z in the direction u is equal 

V  ( z  + hut) - V  ( z )  
D l v ( z ) ( u )  := h 

we see that  D I V ( z )  ( a )  is the limit of a subsequence of V ( t + h r ' ) - V ( t 1  
L , and 

thus, the pair (u ,  D I V ( z ) ( u ) )  belongs to  the contingent cone to  the graph 
of V  a t  (z ,  V ( z ) ) .  The same is true with the contingent hypoderivative. 

Remark There is another intimate connection between tangent 
cones and their corresponding epiderivatives than Proposition 11 linking 
the tangent cones t o  the lower sections of the corresponding epiderivatives 
of the function d K ( . )  and Proposition 8.3 linking the tangent cone t o  the 
epigraph t o  the epigraph of the epiderivative. 

Let $K be the indicator of a subset K, defined by 

It is easy to observe that  

' 1  D ~ ( $ ~ ) ( x )  = $ T K ( ~ )  

(89) Dl ($K) ( x )  = 
GT (4 K )  ( 2 )  = $CK (t) 

Hence we can either derive properties of the epiderivatives from proper- 
ties of the tangent cones or take the opposite approach by using t,he above 
formulas. 



9 Calculus of Epiderivatives 

We present below some useful formulas concerning the epiderivatives. 

Theorem 9.1 Let us consider two Banach spaces X and Y ,  a continuous 
single-edued map f : X I+ Y ,  and two ettended red-vdued functions V 
and W from X and Y to R U {+oo) rcspectieely. Let zo belong to the 
Kuratowski lower limit of the domains of the functions U := V + W o f .  
We auume that f i s  continuously diflerentiable amund zo. 1. We always 
have: 

2. If X and Y are finite dimensiond, we suppose that 

Then, the epiderivatives of the function U := V+Wo f satisfy the estimates: 

3. If X or Y i s  a Banaeh space, we  posit the foZlowing stability 
assumption: thew etist constants c > 0, o E [0, I[ and q > 0 such that, 
for dl n, 

i )  V x ~ D o m ( V ) n B ( x o , q ) ,  V y ~ D o m ( W ) n B ( f ( z o ) , q )  
BY c ~ ( x o )  ( D O ~ ( D ~  (v) (z)) n C B ~ )  
-Dom(Dr (W)  ( 8 ) )  +  BY 

ii) s " p . ~ ~ ~ m ( ~ ;  (~ ) ( r ) )  ID\ (V) ( 4  (4 I/IIuII 5 
iii) s n p , ~  om(D1 (W ) (Y) )  l o t  (W) (sf) (u)l/llull 5 

Proof We s h d  prwe the formula only in the case of circatangent 
epiderivstives. 

If we set 



i) K := Ep(V) xEp(W)  x R c X X  R X  Y x R X  R 
ii) G(z ,a ,g ,  b,c) := (f (z) - g ,a  + b - c) 
i i i )  H ( z , ~ , ~ ,  b , ~ )  := (2, C) 

we can write 

Therefore, we shall us Theorem 4.2 for estimating tangent cones t o  
K n G-'(0,O). We first observe that  the transversality conditions of our 
theorem imply the corresponding stability assumptions of Theorem 4.2. 

This is obvious when X and Y are finite dimensional spaces. Otherwise, 
we have to check that  there exists a constant c' > 0 such that ,  for all n, for 
all 

(2, a,  y,b, c) E K close t o  ( ~ 0 ,  V~(ZO), yo,W,(f (xo)),O) 

for all ( z ,  A )  E X x R, there egs t  (u, p, v ,  v, 6) and e such that  

Assumptions (91)i) & ii) imply right away that  

Let us take now p := c11ull, v := cllvll and 6 := c(llaII + 11~11) - A. We 
deduce from (9l)iii) tha t  (a, p) belongs to Ep(D:V)(z), that  (v,v) belongs 
to  Ep(DtW)(g) and that  

a d  tha t  161 5 (1x1 + c(llall+ Iltfll)) I ~'(lltll + 1A1). 
Let set t o  = (ZO, vT (zo), f (20) , Wt (f (zo)) , UT (zo)) Hence, we deduce 

tha t  



It remains to  show that  this inclusion implies inequality (90). 
Let us set A = Ct (V)(zO)(u), p = CT(W)( f (zo) ) (  f t(zo)u) and v := A+p. 
Hence the element (u, A,  j'(zo)u, p, v) belongs t o  CK (20) n G ' ( ~ ~ ) - ~ ( o ,  0) 

and thus, t o  the Clarke tangent cone to the subset K n G-'(0,O) a t  20. 

Then, for all sequence h, > 0, there exist elements (a,, A,, p,) converging 
t o  (u, A, p )  such that,  for all n 2 N ,  

Therefore, the pairs (z, + h,u,, a ,  + b, + hn (A, + pn ) )  belong to  the 
epigraph of U. Since (u,, A, + p,) converges to (u, v), we deduce that  

Let us state explicitely useful formulas of the epiderivatives of the re- 
striction of a function V to a closed subset, in the finite-dimensional case 
for sinmplicity. 

Corollary 9.1 Let X be a finite-dimensional space, \' be an ettended 
function defined on X and K be a closed subset of X. Let xo belong to 
K n Dom(V). 

We always have: 

If we assume that 

then 
) v a E Tk(zo), Dt(Vlx)(zo) 5 DtV(zo)(a) 
ii) V a E T k ( z o ) ,  D \ ( V I K ) ( ~ O ) ~ D \ V ( ~ O ) ( U )  
iii) v a E CK (SO) Ct (V 1 K ) (20) 3 c t v  (z0) (u) 

Let us consider now a family of functions : X ++ R U {+oo), (i E I) 
and let us associate with it the function U defined by 



We set I(z) := { i  E I 1 K(z)  = U(z)). The following estimate is 
obvious: 

(92) v E X, WP DtK.(z)(u) I DtU(z)(u) 
i E  I ( r )  

because, for all i E I (z ) ,  

Conversely, we can obtain the following result: 

Proposition 9.1 Let ue consider n ettended real-valued junction8 V ,  : 
X c-. R U {+oo) and the function U defined b y  

U(z) := max Jr(z)  
i= l,...,n 

If the dimenrion o j X  ie finite and if we porit the tranrvereafitg a8eump- 
tion 

n 

V u; E X, ~ ( D O ~ ( C ~ J : ( Z ~ ) )  - ui) # 8 
i= 1 

then 

Proof Since the epigraph of U is the intersection of the epigraphs of 
the n functions K., we s h d  us Corollary 4.3, stating that  under convenient 
assumptions we shall check in a moment, 

The left-hand side of this formula is the  epigraph of the adjacent epi- 
derivative of U a t  zo. For the right-hand side, either i belongs to I(ro), and 
thns the adjacent tangent cone t o  the epigraph of V;. a t  U(zo) is equal t o  
the  epigraph of the adjacent derivative of K a t  20, or K(zO) < U(zo), and 
we deduce from Proposition 8.4 that  the adjacent tangent cone contains 
Dom(D~l(.(zO)) x R. 



Then, we deduce from the above relation that  

Since the dimension of X is finite, we have to  check that  for all pairs 

(ui 7 Ai)  3 
n 

n ( c~ppq (zo ,  ~ ( z o ) )  - (ui, A, ) )  # 0 
i = l  

It is clear that  this property follows from 

Let us consider two topological vector spaces X and E' and an extended 
real-valued function U : X x Y I+ R U {+ oo). 

We associate with it the marginal function V : X I+ R U {+m) defined 

by 
( z )  := in$U(z,y) 

I E 

Let n denote the projection from X x 1' x R to  X x R. 
We observe that: 

The first inclusion is obvious. The very definition of the infimum implies 
tha t  for every c > 0 and ewry (z,A) E Ep(V), there eAsts y, E Y such 
tha t  (2, g, , A + c) belongs to  Ep(U) . 
Proposition 9.2 Let uo consider two topological vector spacer, X and E', 
an ettended nal-valued funetion U : X x Y I+ RU {+ oo), and its marginal 
function V . Suppose that there cdats yo E Y which -hie ves the minimum 
of U(zo,-) on Y :  

The inelun'on 

i r  always true. 



Equality 

holds true under one of the following arrumptionr: 

1. U ir preudo-eonvet at (zo,yo) E Dom(U), (and in  particular, U i r  
eonvet), 

t. X and Y are refletive Banaeh qaee and the rubdifferential of U at 
(zo, yo) satisfies 

(93)d(~, 9)  E X* x Y*, 3po E X' such that ( p  - pot q)  E ~ O U  (z, y) 

3. The dimenion of X and 2-' i s  finite and 

Proof We deduce these statements from the criteria implying that  
the contingent cones of the images are the closures of the images of the 
contingent cones since 

which can be easily translated into the first inequality. 
The equality is obtained when U is pseudo-convex becanse its epigraph 

is then pseudo-convex, (see Proposition 4.3), when condition (93) holds 
true because it implies that, 

(see Proposition 4.5), and when condition (94) is satisfied becanse it is 
tquhden t  t o  

thanks to Proposition 4.4. 



Normal Cones and Generalized Gradi- 
ents 

We dwote  this section to dual concepts of tangent cones, derivatives of set- 
valued maps and epiderintives of extended real-valued functions. There 
are three reasons to  do so. The first one is familiarity with more classi- 
cal concepts. For usual functions on Hilbert spaces, there is a canonical 
identification between, say, a derivative of a differentiable function and its 
gradient, and it became traditional t o  formulate many results in terms of 
gradients, transposes of derivatives and normal cones. The second reason is 
that  the first attempts to  generalize the concept of gradients was by limiting 
procedures. Since it seems easier to  take limits of elements (the gradients. 
for instance) than functionals (the associated directional derivatives. for ex- 
ample), many generalizations of concept of gradient dealt with set of limits 
of cluster points taken in a variety of ways. The third, and, from our view 
point, the most important justification for dealing with dual concepts, is the 
availability of the one to  one correspondences between closed convex cones 
and their polar cones, continuous linear operators and their transposes, 
lower semicontinuous convex functions and their conjugates. This is why 
we should use only those concepts which can be 'dualizedn. Unfortunately, 
this is just a paradisiac wish, since many problems which are not smooth by 
nature, force us to use n a t u r d y  concepts as contingent cones, contingent 
derivatives and contingent epiderivatives. The price t o  pay in terms of loss 
of information for playing with duality just to be able to conserve some 
familiar classical formulation is indeed too high in many situations. There- 
fore, the dual concepts we are about to  present are recommended only in 
convex, or more generally, sleek situations. 



Since the Clarke tangent cone is convex, it can be characterized by its 
polar cone, which, by analogy with the case of smooth manifolds, will be 
regarded as the normal cone. On the other hand, we wish to adapt t o  the 
nonsmooth case the concept of a normal to a set a t  a given point, which is 
orthogonal to all vectors starting from this point and pointing into this set. 
Except the convex and (more generally), the sleek case, these two concepts 
are different. 

Definition 10.1 Let z Qelongr to K c X .  We rhdl  rag that the (negufive) 
polar eo ne 

ir the normal cone to K at Z .  We ale0 ray that the polar eone 

to the cone rpanned by K - x ir the subno rma l  cone t o  K at x. 

The normal cone is pretty big since it contains the polar cones of the 
adjacent and contingent cones and the subnormal cone: 

and is equd  to the whole space whenever the Clarke tangent cone is reduced 
t o  0. 

Let us point out the following property: 

P ropos i t ion  10.1 Let K be a r d r e t  of a Hilbert rpaee. Then 

P r o o f  Let u belong to  the contingent cone TK(z): there exists a 
seqnence h, > 0 converging t o  0 and a seqnence u, converging to  u such 
that  z + h,v, belongs to K for a l l  n. Since Ily - zll 5 lly - z - h,v. 11,  we 
d e d u c e t h a t c z - g , u > 2 O f o r a l l v ~ T ~ ( z ) .  



R e m a r k  When X is a Banach space, we may consider the subd- 
iferential J ( z )  of its norm a t  z. then the above proposition can be extended 
t o  

(98) 0 E J ( ~ - 9 )  + NK(z) 

The transpose of the derivatives of differentiable maps are often used, 
in writing chain rule formulas, just to  quote an instance. The circatangent 
derivative being a closed convex process can be transposed. This brings us 
t o  introduce the following definitions 

Definition 10.3 Let  F : X .u I' be a set-valued m a p  from a t o p o l o ~ c a l  
eector space X t o  another Y. T h e  tmnspose C F ( r ,  g)* of the  circatangent 
derivative CF(z, y) of F at a (z, g) E Graph(F) defined by 

p E CF(z,g)*(q) i f  and only i f  
V U E X ,  V V E C F ( X , ~ ) ( U ) ,  < p , a >  5 < p , v >  

i s  the codtfferential of F at  (z, y). W e  r h d l  r a y  that  the closed convet  
process from Y *  t o  X* defined by  

p ~ D F ( z , y ) " ' ( q )  i f a n d o n l g i f  
V(z1,y')€Graph(F), < p , x ' - r >  5 < q , y 1 - y  > 

i s  the  cosubdifferential  of F at (z, y). 

When a real-valued function V is continuously differentiable a t  r ,  its 
gradient V1(z) being a continuous linear functional, is therefore an element 
V1(z) E X* of the dual of X. 

Since the circatangent epiderivative of a nontrivial extended real-valued 
function V : X I+ R U {+w) a t  a point z of its domain is always lower 
semicontinuous convex and poaitiwly homogeneous, it is the support func- 
tion of a closed convex subset, which is the generalized gradient of V a t  
z. In the same time, we shall deal with the subdifferentials introduced by 
Moreau and Rockafellar for convex functions. 

Definition 10.3 Let  V : X I+ R U {+w) be a non t r i v id  e t tended real- 
e d u c d  function and  z belong t o  i t r  domcu'n. W e  r h d l  rag that  the 

i r  the  g e n e r a b e d  gradient  of V at z. 



We rhall rag that the elored eonoet rubset of the dual X* of X &fined 

b1 
(102) a0V(z) := {p E x* I v E x ,  < p, J - Z >5 V(Y) - V(Z)) 

i e  the eubdiferential of V at z .  

Naturally, when V is continnonsly differentiable a t  x, the circatangent 
epiderivative coincides with the gradient Vt(z), so that  the generalized gra- 
dient is reduced t o  the only gradient: 

aV(x) = {Vt(x)) when is continuously differentiable a t  x 

We obsewe that  
a 0 v ( ~ )  c a v ( ~ )  

When F' is convex, both the generalized gradient and the subdiferential are 
equal: 

aV(z)  = a°F'((r) when V is convex 

More generally, this also happens when 1' is sleek and pseudc+convex a t  r .  
If V is continuously differentiable around a point x E K, then the 

generalited gradient of the reetriction is the sum of the gradient 
and the normal cone: 

We also note that  the generalized gradient of the indicator of a subset 
is the normal cone: 

~ $ ' K ( Z )  = NK(z) 

Remark When a real-valued function V is continnously differen- 
tiable at z ,  its gradient Vt(z) being a continuous linear functional, it is 
both an element Vt(z) E X* of the dual and the image Vt(x)*(+l) of +I 
by the transpose Vt* of Vt(z), a linear operator from R t o  X*. 



When V is no longer continuously differentiable, the generalized gra- 
dient remains intimately connected with the transpose of the circatan- 
gent derivative CVT(x,V(x)) ,  (which, shall we recall, is the codifferential 
CVT(x, V (x))*) of the set-valued map VT at (r, V (3)). 

the generalhed gradient is the value at 1 of the codif- 
ferential of Vt at (x,V(x)). 

Indeed, the codifferential is a closed convex process from R to  X* which, 
being positively homogeneous, needs t o  be defined only at the points -1, 
0 and +I. 

We obtain: 

i )  CVt(x,V(x))*(-1) = 0 
i )  CVt (x, V (x))*(O) = (Dom(CyV) (2 ) ) -  

iii) CVT(x,V(x))*(+l) = dV(x) 

The table of formulas on support functions allows t o  translate the prop- 
erties of the circatangent epiderivatives into corresponding properties of the 
generalized gradient and vice-versa. 

For instance, Proposition 8.1 can be restated in the following form. 

Proposition 10.3 When V is locally lipschitzean on the interior of it8 
domain, then the genedized gmdient satisfies: 

i) (2, u )  E X x Int(Dom(V)) H u(dV(x),  u)  
is  upper se micontinuous, 
and thw, dV(.) is upper hemicontinuous 

ii) dV(x) are nonemptg Bounded closed convet 
i i i )  e v ( ~ )  = -~( -v (x) )  

In the same way, the Fermat and Ekeland rules can be presented in the 
following fashion: 

Theorem 10.1 (Fermat and Ekeland Rules) Let V : X H R U  {+oo) 
be a nontn'oid ettended red-valued function. 

1. Let x E Dom(V) achiere the minimum of V on X. 



Then x i r  a rolution to the inelwion: 

the eoneerre being true when V i s  eonret or. mort generally, peeudo- 
eonret at x. 

&. Let X be a Banueh space, V : X I+ I&+ U {+oo) be a nontn'rid non- 
negative eztended red-rdued function and xo E Dom(V) be a given 
point of ite domain. Then, for any c > 0, thert etiete a rolution 
x, E Dom(V) to: 

Remark 
When the functions are not sleek, the use of generalized gradients and 

normal cones involves some loss of information since we have to replace the 
contingent epiderivative by the larger, but convex, circatangent epideriva- 
tive . 

We could save part of the information using subsets of the form 

and the polar of the contingent cones. 
This will lead us t o  increase the population of our minagerie with species 

doomed to disappear through Darwinian evolution, since, their use do not 
allow to recwer the original information for lack of duality. The use of 
generalized gradients for functions is then recommended for functions or 
cones which are sleek. 



For the convenience of the reader, we list below a summary of some 
formulas dealing with the adjacents8 and normal cones t o  snbsets. The 
snbsets K, Ki, L, M, . . .are assumed to be nonempty. 

Properties of Adjacent and Normal Cones (1) 

1. If K c L, then 
TZ,(.) c TL (4 

2. If h;. c Xi, (i = 1,- , n ) ,  then 

3. If Kl and Ks are contained in X ,  then 

4. If j : X :I-+ Y, is differentiable a t  z ,  then 

T , ( K ) ( ~  3 r(z)o) 

5. If X and Y are finite dimensional vector-spaces, if L c X and M c k' 
are closed snbsets, if j : X w Y is continuously differentiable at z 
and satisfy the transocrrdity condition 

then 
b ;) n -  = Tt (z) n A - ' ~ M  (Ax) 

lSwe chose the sdjacent cone rather than the contingent or the Clarke tangent cones 
because they eqjoy more often equalities in the formulas. Formulas for the  Clarke tangent 
cones can be deduced from polarity from the formulas on normal cones. 



Properties of Adjacent and Normal Cones (3) 

6. If X amd Y are finite dimensional vector-spaces, if M c Y is a elored 
subset amd if f : X I+ Y is continnonsly differentiable at r such that 
the tmnrre rralitly condition 

holds true, then 

7. If X is a finite dimensional vector-space, if K1 and K2 are closed 
subsets contained in X and satisfy 

c ( I )  - c ( I )  = X 

then 
(4  = Ti l  ( I ?  n Ti&) { ) ( c NKl ( I )  + NK, ( T I  

8. If X is a finite dimensional vector-space, if K ,  c X ,  (i = I , .  . . ,n), 
are closed and if 

then, 

1 T 1  K j  (4 = n:=, 4.14 
i i )  Nnl r= 1 K i ( ~ )  c Er=I N K ~ ( + )  
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