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FOREWORD

ITASA has played a crucial role in the development of the “graphical ap-
proach” to the differential calculus of set-valued maps, around J.-P. Aubin,
H. Frankowska, R.T. Rockafellar and allowed to make contacts with So-
viet and eastern European mathematicians (C. Olech, B. Pschenichnyiy, E.
Polovinkin, V. Tihomirov, ...) who were following analogous approaches.
Since 1981, they and their collaborators developed this calculus and ap-
plied it to a variety of problems, in mathematical programming (Kuhn-
Tucker rules, sensitivity of solutions and Lagrange maultipliers), in nons-
mooth analysis (Inverse Functions Theorems, local uniqueness), in control
theory (controllability of systems with feedbacks, Pontryagin’s Maximum
Principle, Hamilton-Jacobi-Bellman equations, observability and other is-
sues), in viability theory (regulation of systems, heavy trajectories), ....

The first version of this survey appeared at IIASA in 1982, and consti-
tuted the seventh chapter of the book APPLIED NONLINEAR ANALYSIS
published in 1984 by I. Ekeland and the author. Since then, many other
results have been motivated by the successful applications of this calculus,
and, may be unfortunately, other concepts (such the concept of intermedi-
ate tangent cone and derivatives introduced and used by H. Frankowska).
Infinite-dimensional problems such as control problems or the more classical
problems of calculus of variations require the use of adequate adaptations
of the same main idea, as well as more technical assumptions.

The time and the place (IIASA) were ripe to update the exposition of
this differential calculus. The Russian translation of APPLIED NONLINEAR
ANALYSIS triggered this revised version.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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Introduction

There are few ideas in mathematics, but so many ways to implement
them .... At each stage of the development of a branch, when the technical
improvements require too much technical skill from the mathematicians, it
is time to return to basic ideas.

This is what happened with the basic idea of differential calculus, when,
despite a strong reluctance for using set-valued maps, the pressure of the
many contemporary problems arising in systems theory (optimization, reg-
ulation, viability and control of evolution systems) forced many applied
mathematicians to use set-valued maps as naturally as the familiar single-
valued maps.

Natural inertia (or is it conservatism ?) led most of us to consider set-
valued maps as . ..a maps, and not as a graphs (or representative curves), as
it should be!, and as it was at the very origin of analytical geometry, when
our ancestors used representative curves before the concept of function.

Fortunately, facts are there to force us to return to long forgotten tracks.
During the last decades, the “graphical” side of set-valued maps took some
preeminence among mathematicians using maximal monotone operators,
graphical and epigraphical convergence, and the graphical derivatives we
are about to describe. All the tool were there, though, but ignored. The
road was paved by French and Polish mathematicians, Baire, Bouligand,
Choquet, Kuratowski, Painlevé and many other, but abandoned for some
reasons.

There is no doubt that mathematical programming and control theory
provided in the sixties the motivation to study again set-valued maps. Let
us mention the pioneer roles of C. Berge, A.F. Filippov and T. Wazewski
during this crucial period. But at that time, the set-valued maps were
mostly regarded as maps.

The beginning of the eighties saw the emergence of the concept of
“graphical derivative”, which goes back to Pierre de Fermat?. The idea

lat least in the instances of interest for us.

2Fermat was one of the most important originator in the history of mathematics. Even
Newton did recognize explicitly that he received the hint of the differential calculus from
Fermat’s method of building tangents devised half a century earlier. Fermat was also



behind the construction of a differential calculus of set-valued maps is sim-
ple and is still the one to which all of us have been first acquainted during
our teens. It starts with the concept of tangent to the graph of a function:
the derivative is the slope of the tangent to the curve. We should say, now,
that the tangent space to the graph of the curve is the graph of the differ-
ential. This is this statement that we take as a basis for adapting to the
set-valued case the concept of derivative.

Consider a set-valued map F' : X ~» Y, which is charactenized by its
graph (the subset of pairs (z,y) such that y belongs to F(z)).

We need first an appropriate notion of tangent cone to a set in a Banach
space at a given point, which coincides with the tangent space when the
set is an embedded differentiable manifold and with the tangent cone of
convex analysis when the set is convex. At the time, experience shows that
three tangent cones seem to be useful:

1. Bouligand’s contingent cone®

2. Adjacent tangent cone*

3. Clarke’s tangent cone®

They correspond to different regularity requirements. The tangent cone
of Clarke is always convex. There already exists a sufficiently detailed
calculus of these cones, which is exposed below.

Once a concept of tangent cone is chosen, we can associate with it a
notion of derivative of a set-valued map F at a point (z,y) of its graph:

the one who discovered that the derivative of a (polynomial) function vanishes when it
reaches an extremum (Euler-Lagrange equations, Pontryagin’s maximum principle are just
implementations to infinite-dimensional problems of what should be called the FERMAT
RULE). He also was the first to discover the ®principle of least time” in optics, the
prototype of the variational principles governing so many physical and mechanical laws.
He shared with Descartes the independent invention of analytic geometry and with Pascal
the creation of the mathematical theory of probability. He was on top of that a poet, a
linguist, & lawyer and, if it has to be recalled, the author of the Fermat Theorems, ....
consequences of a revolutionary treatment of number theory

Sintroduced in the thirties

4used by H. Frankowska under the name of intermediate tangent cone

bintroduced in 1975



it is a set-valued map F'(z, y) the graph of which is equal
to the tangent cone to the graph of F at the point (z,y).

In this way, we associate with the contingent cone, the adjacent and the
Clarke tangent cones the following concepts of derivatives:

1. contingent derivative, corresponding to the Gateaux derivative,
2. adjacent derivative, corresponding to the Fréchet derivative,

3. circatangent derivative, corresponding to the continuous Fréchet deriva-
tive.

For instance, if dz is a direction in the space X, a direction dy in the
space Y belongs to the contingent derivative DF(z, y)(dz) of F' at the
point (z,y) in the direction dz if and only if the pair (dz,dy) belongs to
the contingent cone to the graph of F at (z,y).

These derivatives keep enough properties of the derivatives of smooth
functions to be quite efficient. They enjoy a pretty rich calculus, and such
basic theorems of analysis as the inverse function theorem can be extended
to the multivalued case.

Derivatives of set-valued maps (and also of nonsmooth single-valued
maps) are set-valued maps, which are positively homogeneous. They are
convex (in the sense that their graph is convex) when they depend in a
"continuous” way of (z,y). Such maps, , are the set-valued analogues of
continuous linear operators.

The chain rule is in particular an example of a property which remains
(almost) true.

But what about Newton and Leibnitz, who introduced the derivatives
as limits of differential quotients?

Our first duty is to characterize the various graphical limits as adequate
limits of differential quotients. Unfortunately, the formulas become very
often quite ugly, and nobody in a right frame of mind would have invented
them from scratch if they were not derived from the graphical approach.

But all these limits are pointwise limits, which classify all these gener-
alized derivatives in a class different from the class of distributional deriva-
tives introduced by L. Schwartz and S. Sobolev in the fifties, for solving
partial differential equations: Their objective was to keep the linearity of



the differential operators, by allowing convergence of the differential quo-
tients in weaker and weaker topologies, the price to be paid being that
derivatives may no longer be functions, but distributions.

This survey presents only the definitions, the main properties and the
calculus of the graphical derivatives of set-valued maps and epigraphical
derivatives of extended real-valued functions, useful whenever the order
relation of the real line plays a role, as in mathematical programming or
Lyapunov style stability theory of dynamical systems.

The applications to optimization, control theory and viability theory
are not described here.

We just provide a small bibliographical complement to the list of refer-
ences of APPLIED NONLINEAR ANALYSIS



1 Tangent Cones

We devote this section to the definitions of some (and may be, too many)
of the tangent cones which have been used in applications.

It is difficult to strike the right balance between simplicity (use only
the contingent cones) and the needs of more results motivated by further
studies.

We have chosen to postpone to the end of this presentation the dual
concepts (normal cones, codifferential, generalized gradients) since their
properties can be derived from the properties of the tangent cones.

We shall also provide the calculus in infinite-dimensional spaces, since
it is required in the framework of control problems and of the calculus of
variations, despite ugliness of the technical assumptions which, for the time,
have not been simplified.

Definition 1.1 (Tangent cones) Let K C X be a subset of a topological
vector space X and x € K belong to the closure of K. We denote by

(1) Sx(z) = UE=E

h>0 h

the cone spanned by K — .
We sntroduce the three followsng tangent cones

1. the contingent® cone Tk (z) := Th(x), defined by

(2) Tk(2) = {v | liminfdx(z+hv)/h =0 )
2. the adjacent” cone T%(x), defined by
(3) Ty(z) = {v]| Jim dg(z+hv)/h =0}
8. the Clarke® tangent cone Cg(z), defined by
(4) Cx(z) = {v] h_o+ﬁ’g‘,_‘dx(-‘t'+h")/h =0}

Sfrom Latin contingere, to touch on all sides, introduced by G. Bouligand

Tfrom Latin adjacere, to lie near, recently introduced and applied under the name In-
termediate cone by H. Frankowska and the name of derivable cone by R. T. Rockafellar

8from Canadian Frank H. Clarke; we shall use the adjective clrcatangent to men-
tion properties derived from this tangent cone, for instance, circatangent derivatives and
epiderivatives



We see at once that these three tangent cones are closed, that these
tangent cones to K and the closure K of K do coincide, that

(5) Cx (z) € Tk (2) € Tk (z) € Sk (2)
and that
(6) if z€ Int(K), then Ck(z) = X

It is very convenient to use the following characterization of these cones
in terms of sequences.

Proposition 1.1 Let z belong to K.

t) v €E€Tx(x) of and only sf I h, — 0+,
v, = v suchthat Vn, 2+ h,v, € K

) v €T} (z) sf and only sf ¥V h, — 0+,
v, —» v suchthat Vn, x+ h,v, € K

i15) v€Ck(z) ifandonlyif V b, — 0+, Vz, — 7,
(zn € K), 3v, — v suchthat Vn, z,+ hv, €K

Remark These tangent cones can be defined in terms of Kura-
towski upper and lower limits of %’—, as the following statement shows:

Proposition 1.2 Let z belong to K. The followsng equalities

i) Ti(z) = limsup,_o, 5=
#) Tk(r) = liminf,_o, 5=
i) Cglz) = liminfh—~0+,K3.:’——ox'K;_”

hold true. 0O

Let us begin by proving an astonishing fact: the Clarke tangent cone
Ck(z) is always a closed convex cone.

Proposition 1.8 The Clarke tangent cone Ci(z) is a closed convez cone
satisfying the following properties

{i) Cx(z) + Tx(z) € Tx(z)
i) Ck(z) + Tx(z) © Tx(=)



Proof

1. Let v, and v; belong to Cx(z). For proving that v, + v, belongs
to this cone, let us choose any sequence A, > 0 converging to 0
and any sequence of elements z, € K converging to x. There exists
a sequence of elements v,, converging to v; such that the elements
Zin := Zn + h,vy, do belong to K for all n. But since x,, does also
converge to z in K, there exists a sequence of elements v;, converging
to vy such that

Vns xln+hnvﬂn = xu+hn(vln+vln) € K

This implies that v, + vy belongs to Ck (z) because the sequence of
elements v,, 4+ v;, converges to v; + v;.

2. Now, let v, belong to T (z) and vy belong to Ck (z). There exists a
sequence of elements h, > 0 converging to 0 and v,, converging to
v, such that the elements z,, := z + h,v), do belong to K for all n.
But since z;, does also converge to x in K, there exists a sequence of
elements v;, converging to vy such that

Vn, zin+havsn = Tz+ha(vin+vam) € K
This implies that v, + v4 belongs to T (z)
3. The proof is analogous for the cone T (z). [

Remark We can interpret the above inclusions by saying that
the Clarke tangent cone is contained in the Minkowski difference (or the

asymptotic cone, the convex kernel) of the adjacent and contingent cones.
Let us recall that the Minkowski difference K © L of two subsets K and
L is the subset (¢, (K — z) of elements z such that

L+z ¢ K
When P is a closed cone, the Minkowski difference PS P is always a convex

cone. [

Unfortunately, the price to pay for enjoying this convexity property of
the Clarke tangent cones is that they may often be reduced to the trivial
cone {0}.



But we shall show in just a moment that the Clarke tangent cone and
that the contingent cone do coincide at those points x where the set-valued
map z ~» Tk () is lower semicontinuous.

Definition 1.2 (Sleek Subsets) We shall say that a subset K C X 1s
sleek at x € K if the set-valued map

K>z ~» Tx(z') is lower semicontinuous at
We shall say that st ss sleek sf and only sf st ss sleck at every point of K.

We shall prove later that smooth manifolds and convex subsets of finite
dimensional vector-spaces are sleek.

But for the time, we just deduce from Theorem 1.1 below this quite
important regularity property:

Theorem 1.1 (Tangent Cones of Sleek Subsets) Let K be a weakly
closed subset of a reflezsve Banach space. If K s sleck at x € K, then
the contingent and Clarke tangent cones do coincsde, and consequently, are
convez.

For that purpose, when X is a normed space, it is quite useful to intro-
duce the following notations:

i) Didg(x)(v)
:= liminf,_ o4 (dx(z + hv) — dx(2))/h
19 D)
:= limsup,_o, (dx(z+ hv) —dx(z))/h
i) Crd(z)(o)
= limsup,_ o4, »_.(dx (2’ + hv) — dx(2))/h

which will be justified later®.

We need the estimates we provide below to prove our theorem as well
as other consequences.

®they are the contingent, adjacent and circatangent epiderivatives of the distance func-
tions d.



Theorem 1.2 Let K be a weakly closed subset of a reflezsve Banach space
and #nx(y) be the set of projections of y onto K, s.c., the subset of 2 € K
such that ||y — 2|| = dx (y). Then we have the following inequalstics:

(8)

i) Didg(y)(v) < d(v,Tx(xx(y)))
#) Didk(y)(v) < d(v,Tk(x(y)))
<

i) Cidg(g)(v) < d(v,Cxlzx(y)))

Proof

1.

We begin by proving these inequalities when y belongs to K. Indeed,
for all w € X, inequality dx(y+hv) < dx(y+hw)+ k| v — w| implies
that

t) lminf,_.o dx(y+hv)/h < ||v — w|| when w € Tk (y)

i1) limsup,_q, dx(y+ hv)/h <|lv — w| when w € Tk (y)

Assume now that y ¢ K and choose 2 € 7x (y). Then

(dx (y + hv) — dg(y))/h
< (lly — 2}l + dx (2 + hv) — dx(y)) /R
= dK(Z + hv /h

Since z belongs to K, inequalities (8) with y = z imply that

)
{ i) Dydg(y)(v) < d(v,Tk(2))
i) Didg(y)(v) < d(v,Tk(2))

For proving inequality

Crdx (9)(v) < d{v,Cx(2)) = _ inf . )||v - wl|

we first observe that when y ¢ K,
Vzerk(y), Vz€K, [[z-2| < 2|y- 7

Hence
sup (dx(y+ hv) —dx(y))/h < sup dg(z + hw)/h + ||v — w||
h<a
lly—=li<A |1;-¢||<w

so that our claim is established. We end the proof by taking the
infimum when z ranges over zx(y). 0O

9



We shall need actually the following
Corollary 1.1 Let K be a weakly closed subsct of a reflezive Banach space.
Then .
dx(z +tv) — dg(z) < fo d(v, Tk (75 (z + 7)v))dr
Proof We set g(t) := dx (z + tv). Since g(-) is locally lipschitzean,

it is almost everywhere differentiable. Theorem 1.2 implies that ¢'(r) <
d(v,Tx(mx(z + 7)v)). We then integrate from0tot. O

Theorem 1.3 Let K be a weakly closed subset of a reflezive Banach space.
Let us consider a set-valued map F : K ~» X satisfying

(9) i) F ds lower semicontinuous
#1) Vze€ K, F(x) C Tx(x)

Then,

(10) Vze K, F(z)c Ck(x)

Proof Let us take £ € K and v € F(z). Since
Vieng(y+to), Vo €K, 2 -2l < 2y+to— 2l <2z~ gl +2llo]

we infer that, for all ¢ > 0, y € K close to  and 7 small enough, the lower
semicontinuity of F' at x implies that

{d(v,Tx(ﬂK(y+Tv))) < dg(v,F(ng(y + 1v))
< d(v,F(z))+e = ¢

because v belongs to F'(z) by assumption. Corollary 1.1 thus implies that,
for all y € K close to z and for all ¢t €]0, k| for some positive &,

dxly+to) < [ do,Talaxly+7o))dr < te

We have proved that v belongs to Cx(x). O

Remark In particular, we deduce the following characterization
of the tangent cones:
t) Tk(z) == {v | Didg(z)(v) <0}
(11) i) Ti(e) = {v | Didk(e)(v) <0}
i11) Ck(z) :== {v | Cidg(z)(v) <0}

10



These equalities (11) suggest to extend the definition of these tangent
cones to elements which are outside K.

Definition 1.3 Let K bc a subset of a normed space X and z belong to
X. We estend the notions of contingent and adjacent cones to K at points
outside K sn the following way:

l) TK(x) = {v | D dK x)(v) < 0 }
(12) i5) Tk(z) = {v | D'dx (z)(v) <0}
t1i) Ck(z) == {v | CTdK(::) v) <0}

We deduce at once from Theorem 1.2 the following corollary:

Corollary 1.2 The tangent cones at points outside K are related to the
tangent cones at thesr projections in the following way:

i) Vy€ng(z), Tely) € Tk(z)
W) Vyenx(z) Th(y) © Th(2)
i1t) Vy€E€ng(z), Ckly) € Ck(2) O

It will be convenient to name the points z of a subset K where two of
the above tangent cones do coincide.

Definition 1.4 We shall say that a subset K C X

1. ss pseudo-convex at z € K sf and only if esther one of the equsvalent

propertics

(13) a/ Tg(z) = SK{"; = Uh>0K—;£
b/ K Cc z+Tk(2)

holds true.

£. is derivable at z € K ¢f and only sf
(14) Ti(z) = Tkl(z)

Remark We shall justify later why we are led to introduce this
ménagerie of tangent cones. Each of them corresponds to a classical reg-
ularity requirement. We shall see that the contingent cone is related to

11



Gateaux derivatives, the adjacent cone to the Fréchet derivative and the

Clarke tangent cone to the continuous Fréchet derivative.
If L c K is a subset of K, Bouligand has also introduced the paratingent!®
cone P%(z) to K relative to L at z € L, defined by

(15) Pg(z) := {v| Lmsup dx(z'+hv)/h=0}

h—0+.L32 —~=

and we observe that

(16) Tk(z) -Tg(z) € Pf(z) O

We can also introduce open tangent cones. Let us mention the two
following ones:

Definition 1.5 Let x belong to K.
1. The cone Dk (z) defined by

(17) { v € Dy (z) if and only sf ¥V h, — 0+,

Vv, = v, we have Vn, 2+ h,v, €K
18 called the Dubovicki-Miliutin tangent cone
2. The cone Hi(z) defined by

(18) v € Hi(z) ifand only sf V h, — 0+, V2, — z,
(z. € L), Vv, > v, we have Vn, 2, +h,v, €K

ss called the hypertangent cone.

We see at once that

t) HK(:IS) C CK(Z)nDK(:t)
(19) i) Dk(z) € Th(z)

i1i) Hyx(z)+Ti(z) € Dg(z) O

108hi Shuzhong showed that when K is the closure of its interior, the contingent cones
and the paratingent cones (relative to the boundary) are generically equal (they coincide
on a G; dense of the boundary), a consequence of Choquet’s theorem.

12



2 Tangent Cones to Convex sets

For convex subsets K, the situation is dramatically simplified by the fact
that the Clarke tangent cones, the adjacent and the contingent cones coin-
cide with the closed cone spanned by K — z.

Proposition 2.1 (Tangent Cones to Convex Sets) Let us assume that
K s convez. Then the contingent cone Tx(z)to K at x is convez and

Ck(z) = Ty(z) = Tk(z) = Sk()
In partscular,

Ng(z) = Ni(z) = {p€X" | max<p,y>=<p,z>}

Remark We shall denote by Tk (z) the common value of these
cones, and call it the tangent cone to the convex subset K at xz. 0O

Proof We begin by stating the following consequence of convexity:
(20) VYveSk(z),Ih>0, such that Vte€[0,h], z2+tv € K

since we can write that

t ¢
z+tv = (1- ;)x-}- ;(:c-}-hv)
is a convex combination of elements of K.

It is enough to prove that Sk (z) is contained in the Clarke tangent cone.
Let v := (y — 2)/h belong to Sk(z) (where y € K and h > 0) and let us
consider sequences of elements h, > 0 and z, € K converging to 0 and z
respectively. We see that v, := (y — z,)/h converges to v and that

ho h,
Tpthova = (1~ —,:—):r,, + w7 € K
since it is a convex combination of elements of K. 0O
Actually, convex subsets of finite dimensional vector-spaces are sleek:

Theorem 3.1 Let K be a closed convez subset of a finite dimensional
vector-space X. Then K is sleck.

13



Proof It is equivalent to prove that the graph of the set-valued
map K 3 r ~ Ng(z) is closed™.

But this is obviously the case: let us consider sequences of elements z, €
K and p, € Ng(z,) converging to z and p respectively. Then inequalities

Vy€EK, <poy> £ <pn,zp >
implies by passing to the limit inequalities
VyeK, <py> £ <p,z>

which state that p belongs to Ny (z). Hence the graph is closed, so that
the set-valued map Tk (-) is lower semicontinuous, since the dimension of
X is finite. O

We observe easily that the normal cones are contained in the barner
cone of a convex subset K:

Proposition 2.2 Let K be convez. Then, forallz € K,

{;) Nx(z) c b(K)
i1) the asymptotic cone d{(K)~ < Tk (x)

It may be useful to characterize the interior of the tangent cone to a
convex subset.

Proposition 2.3 (Interior of a Tangent Cone) Assume that the inte-
rior of K C X i8 not empty. Then

Int(K) — z)

VzeK, Int(Tx(:c)) = U(T

A>0

Furthermore, the graph of the set-valued map K D z ~ Int(Tk (z)) 18 open.
Proof

1. The union of the interiors of (K — z)/h being open, it is contained
in the interior of the tangent cone. Since K is convex, so are the

Ngee [5, Proposition 8.1.18., p.117].

14



cones Sy (z), and thus, the closures of Sx(z) and of their interiors do
coincide. Then it is enough to prove that if v belongs to the interior
of Sk(z), it is interior to one of the (K — z)/h.

Let n > 0 such that v + B C Sk (z). If z + v belongs to the interior
of K, the proof is completed. If not, let us choose z, € Int(K) and
set vo := zo — z. Hence v — nvy/||ve|| belongs to Sk(z), and thus,
there exists some h > 0 such that x + h(v — nv,/||vs]|) belongs to K.
By setting

X := hn/(hn + [lool)

we deduce that

z+(1-A)kv = Azo+ (1= A) (= + k(v — noo/||vo]))

Since z, belongs to the interior of K, z + h(v — nuo/||vo||) belongs to
K and X is smaller than 1, we deduce from the convexity of K that
r + (1 — A)hv belongs to the interior of K, i.e., that v belongs to the
interior of (K — z)/(1 — A)A.

2. Let us take a pair (xg,v¢) in the interior of the graph of Tk (-). Then,
by the above statement, there exists h > 0 such that

vo € ( Int(K) — z)/h
Hence there exists g > 0 such that
o+ hvg+nB = zo+h(v+ %B) c Int(K)
Therefore
(zo + ga) x (vo + 2"—hB) c Graph(Tx()) O

Remark Convex subsets are star-shaped around each of their el-
ements and thus, share with them some properties.

Definition 2.1 (Star-Shaped Subsets) A subset K s sasd to be star-
shaped around z € K sf

VyeK, Vaie(0,l], 2+ A(y—=z)€ K

15



We observe the following

Lemma 2.1 If K C X 18 star-shaped around x € K, then it 13 pscudo-
consez and dersvable at thss point.

16



For the convenience of the reader, we list below some useful calculus of
tangent cones to convex subsets (see [5, Section 4.1.]). The subsets K, K|,
L, M, ...are assumed to be convex.

Properties of Tangent and Normal Cones (1)
1. If K C L, then
(21) Tx(x) c To(z) & No(z) € Nx(z)
2. IfK,c X, (¢=1,---,n), then

29 ') Tl_[:;l](i(xlv"'axn) = ]_[?=1TK.~(-’C{)
( ) ") an'zll(,-(zla"'sxn) = n?:lNK.'(x")

3. If K, and K, are contained in X, then

(23) {i) Tk, +k, (21 + x3) == Tk, (z1) + Tk, (x2)

“) NK1+K2 (Il +$3) NKl(xl) n ‘VKz (1";)

In particular, if P is a closed vector subspace, then

(24) {') Txip{z1+13) = Tk, (z1)+ P

H) NK1+P($1 +I;) = ‘N'Kl (171) NP+
4. If Be L(X,Y), then

i) Tpix)(z) = B(Tk(2))
(25) {ii) Npix)(x) = B*'Ng(a)

5. f L ¢ X and M C Y are closed convez subsets and A € L(X,Y)
is a continuous linear operator such that the qualification constrasnt

condstion

(26) 0 € Int(M — A(L))

holds true, then

(27) { t) TLnA“(M)) = TL(J?) nA_lTM(A:t)
ﬂ) NLﬁA"(N)) = NL x) +A'NM(A1')
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Properties of Tangent and Normal Cones (2)

6. f M C Y isa closed conves subset and if A € L(X,Y) is a continuous
linear operator such that

(28) 0 € Int(Im(4)—- M)

. ) Tymls) = A7V (42)
1 A~1(M) x) = M x

(29) { ll) NA—x(M) (1) = A*NM (AI)

7. If K, and K, are closed convex subsets contained in X and satisfy!?

(30) 0 € Int(K:- K)

then

(31) {i) Tx,nk,(x) = Tk, (2)NTk,(2)
1) Ngnki(2) = Nk, (2) + Ni,(2)

8. K,cX, (f=1,...,n), are closed and convex and if there exists
~ > 0 such that

22) Ve | llil <7, (10K —2) #9
Then,

1) Tne k(2) = N Tki(a)
(52) {.-,-) Ny x(@) = TL,Ni,(2)

12This property is false when assumption (80)is not satisfied. Take for instance two
balls K; and K tangent at a point z. The tangent cone to the intersection {z} is reduced
to {0}, whereas the intersection of the tangent cones is a hyperplane. This shows that we
cannot dispense of the constraint qualificatlon assumptions in the calculus of tangent
cones to inverse images and intersections
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3 Inverse Function Theorems

We derive from the basic Inverse stability Theorem'® a series of equivalent
results which extend in several ways the Liusternik Inverse Fuction The-
orem. We refer to [?] for more powerful results based on the concept of
“variations” of set-valued map defined on any metric space, and which are
related to images of the unit ball by derivatives of set-valued maps when
the definition space is normed.

13Gee [4, Theorem 3.1:

Theorem 8.1 (Inverse Stabllity Theorem) Let X and Y be two Banach spaces. We
sntroduce a sequence of continuous linear operators A, € L(X,Y ), a sequence of closed
subsets K, C X.

Let us consider elements z7, of the subsets K, such that both z, converges to zy and
Anz, converges to yo.

We posit the following stabliity assumptlon: there ezsst constants ¢ > 0, a € [0,1]
and n > 0 such that

(34) { VI,.GK, nB(‘o,ﬂ),

A,SK'(I.) NBy C A, (TK'(Z,) NeByx)+ aBy

Let us set [ := ¢/(1 — a), p < n/8l and conssder elements y, and 2o, satisfying:

(35) {l) Zos € K.OB(-‘to,ﬂ/”, AnZoa € B(HOiP)
l'l') Ya € A.(K-)OB(HOM/”

Then, for anyl' > | and n > 0, there exist solutions Z, satssfying

(36) { ’) EE\E K, & A.i: = Yn
1) ”31—30.” < l'“yl—A.an”

80 that
(,7) { d(!o,K. nA:l(yl)) < l”y. _A.zOn”
< |izo — zoall + lllya — woll +!livo — Anzonll

converges lo 0 when zg, converges to 2o and both Apz¢, and y, € A K, converge to yo.

19



Theorem 3.2 (Criterion of Pseudo-Lipschitzeanity) Let K be a closed
subset of a Banach space X and A € L(X,Y) be a continuous linear op-
erator from X to another Banach space Y. Let us assume that for some
xo € K, there ezist constants ¢ > 0, a € [0,1] and n > 0 such that

Vz € KN B(xy,n),
ASk(z)NBy < A(Tk(x)NeBx)+ aBy

Then the set-valued map
(39) A(K) 3 y~A7'(y)NK

is pseudo-lipschitzean around (Axy,z,): For any z, close to z, and y €
K close to Ax,,

(38)

(40) d(z1, A (y)NK) < llly — Azl
Remark Assumption (4.3) can be written in the form
sup  sup livll

2€Bx (x0.) vESk (x) VETK (2),AvE Au+als||B ||u|

Observe that when a = 0, assumption (4.3) implies that A(K) is
pseudo-convex on a neighborhood of Az, € K since for all x in this
neighborhood,

SA(K)(A.’L’) = A(SK(I)) C A(TK(.’L‘)) C TA‘K)(A:!:)

Hence, we can regard stability assumption (4.3) as a weakened local
pseudo-convexity. 0O
In particular, we obtain the following inverse mapping theorem:

Theorem 3.3 (Linear Inverse Function Theorem) Let K be a closed
subset of a Banach space X and A € L(X,Y) be a continuous linear op-
erator from X to another Banach space Y. Let us assume that for some
zg € K, there ezist constants ¢ > 0, a € [0, 1] and n > O such that

(41) Vz € KNB(zy,n),
By C A(Tx(z)nch)‘i'aBy

Then Az, belongs to the snterior of A(K) and the set-valued map y ~
A™Y(y) N K is pseudo-lipschitzean around (Azo, z,).

It implies the following apparently more general statement:
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Theorem 3.4 (Set-Valued Inverse Function Theorem) Let us consider
a closed set-valued map F : X ~ Y| an element (xo, o) of sts graph and let
us assume that there ezist constants ¢ > 0, a € [0, 1] and n > 0 such that

v (zay) € Gmph(F) n B(("OsyO)a”)a
VveY, JueX, 3we€Y suchthat v € DF(z,y)(v)+w
and flu| < cfo] & [wl| < ofv

Then yo belongs to the interior of the smage of F and F~! is psecudo-
Ispschitzean around (zo,yo).

which, actually, is equivalent, because, by taking for F' the restriction
of A to K, or, even more generally, the restriction of a differentiable single-
valued map, we infer that

Theorem 3.5 (Constrained Inverse Function Theorem) Let X and
Y be two Banach spaces. We introduce a (single-valued) continuous map
f: XY, aclosed subset K C X and an element xy of K.
We assume that f ss dsfferentiable on a nesghborhood of 2, and we posst

the followsng stability assumption: there ezist constants ¢ > 0, a € [0, 1]
and n > 0 such that
(42) { Vz € KnB(xy,9),

By c f'(z)(Tk(z)NeBx)+ aBy

Then f(zo) belongs to the snterior of f(K) and the set-valued map y ~
J Y (y) N K is pseudo-lipschitzean around (f(z), xo).

We obtain as a consequence the Liusternik Inverse Function Theorem:
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Corollary 8.1 (Liusternik Theorem) Let X andY be two Banach spaces.
We introduce a (single-valued) continuous map f from X to Y. We assume
that f ss contsinuously differentiable on a nesghborhood of x, and we posit
the following surjectivity assumption

f'(z0) 10 suryective
Then the set-valued map y ~ f~(y) ss pseudo-lipschitzean around
(f(x0), x0).

Proof Since the continuous linear operator f'(z,) is surjective, we
deduce from the Banach Theorem that there exists a constant ¢ such that
VoeY, JueX | fllm)e = v & [u|| < e

Since z — f'(z) is continuous at zy, we infer that

VveY, Jue X such that
fl(@)u = v+w & |u|| < efol, |lw]| < [If'(z) = (]l

so that ||w|| < of|v|| when z is close to z,. DO
We can extend this theorem to the case of set-valued maps by introduc-
ing and adequate definition of strongly sleek map.

Definition 8.1 (Strongly Sleek Sets and Maps) We shall say that a
closed subset K ss strongly sleek at xy, € K if the cone-valued map K >
x ~ Tx(z) is strongly lower semicontinuous at z, sn the sense that

lim sup d(¢,Tx(z)) =0

F¥0 yeTx (s0)NBx
We shall say that F' is strongly sleek at a point (2o, yo) of sts graph sf its
graph ss strongly sleck at this point'*.

With this definition, we can state a natural set-valued version of Liusternik’s
Theorem

UNamely, if

‘up d((u,u),anh(DF(zly)))
(%,9)€Graph(D Fiso,50))imax;a, o <1

converges to 0 when (z,y) converges to (2o,y0).
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Theorem 8.6 (Set-Valued Liusternik Theorem) Let us consider re-
flezsve Banach epacee X and Y, a closed set-valued map F : X ~ Y and
an clement (zq,y0) of ste graph. Let us assume that F ss strongly sleck at

(20, %0)- If
DF(zo,y0) 3¢ surjectsve

then yo belongs to the snterior of the simage of F and F~' is psecudo-
lipschitzean around (zo,y0). If the dimension of Y is finite, it s sufficient
to assume that F ss sleck at (zy,y0).

Actually, this results follows (and thus, is equivalent) to its “constrained
linear” version.

Theorem 8.7 (Pointwise Inverse Function Theorem) Let X and Y
be reflexsve Banach spaces, K be a weakly closed subset of X and A €
L(X,Y) be a continuous linear operator. If K s strongly sleck at z, and if

ATK(xo) = Y

then Az, belongs to the snterior of A(K) and the set-valued map y ~
A Yy) N K is pseudo- lipschitzean around (Azy,x,). If the dimenssion
of Y te finite, st 18 sufficient to asume that K s sleck at x,.

Proof We have to prove that in both cases, the stability assump-
tion is satisfied. The proof of the first case is easy. There exists a constant
¢ > 0 such that, for all v in the unit sphere Sy, there exists a solution g to
the equation Au = v such that |Juy|| < ¢||v||||, thanks to Robinson-Ursescu’s
Theorem, because Tk (zo) is a closed convex cone, K being sleek at z,.

Since K is actually strongly sleek at xo, we can associate with any ¢ > 0
an n > 0 such that, for all vy € X and all £ € Bg(xy,n), there exists
# € Tk (z) such that ||u — wo|| < €]|uo]|.

Hence any v € Sy can be written v = Au + w where ||| < (14 €)¢||v||
and ]| < |[A]l%o - u]| < allo]| when ¢ < a/|lA].

When the dimension of Y is finite, the unit sphere Sy is compact. We
know that for any v; € Sy, there exits a solution %, to the equation Au = v,
such that ||uy;|| < ¢||v;||||. Hence for any ¢ > 0 and v;, there exist 5, > 0 such
that, for all z € Bx(xo, n), there exists v € Tx(x) such that |lu; — uo|| <

€fl=ocll/2] Al
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We can cover Sy by p balls B(v;,€/2) so that, by taking 5 := min,;_, __, 9,
we obtain that for any v € Sy and any € B (o, %), there exist v, € Tg ()
and w; €Y related by the equation v = Ax,; + w,; where |4 < ¢|lvi|| = ¢
and where [[w;|| < [lv — Awoi|| + [|All||lwo; — wi]| <e. O

We provide now theorems on local uniqueness and injectivity of set-
valued maps.

Definition 3.2 Let F : X ~» Y be a set-valued map. We shall say that st
engoys local inverse univocity around an element (z*,y*) of sts graph if
and only if there eziste a neighborhood N (z*) such that

{z | suchthat y"€ F(z)} N N(z*) = {«7}

If the nesghborhood N (z*) coincides with the domasn of F', F is said to have
(global) inverse univocity.

We shall say that st ss locally injective around x* sf and only sf there
ezists a nesghborhood N(z*) such that, for all 2, # 24 € N(2*), we have
F(z))NF(x3) = 0. It is said to be (globally) injective sf we can take for
neighborhood N (z*) the whole domasn of F.

Since 0 € DF(z*,y5*)(0), we observe that to say that the “linearized
system” DF(z*,y") enjoys the inverse univocity amounts to saying that
the inverse image DF (z*,5*) (0) contains only one element, i.e., that its
kernel KerDF (z*,y*) is equal to 0, where the kernel is naturally defined by

KerDF(z*,y*) := DF(z*,y")"'(0)

Theorem 3.8 Let F' be a set-valued map from a finite dimensional vector-
space X to @ Banach space Y and (z*,y*) belong to its graph.
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If the kernel of the contingent derivative DF(z*,y*) of F at (z*,y") is
equal to { 0 }, then there exists a neighborhood N (z*) such that
(43) {z suchthat 3 € F(z)} N N(z*) = {z"}

Let us assume that there exsts v > 0 such that F(z" + 4B) is relatsvely
compact and that F has a closed graph. If for all y € F(z*) the kernels
of the paratingent'® derivatives PF(z*,y) of F at (z*,y) are equal to {0},
then F s locally snjective around z*.

Proof

1. Assume that the conclusion (43) is false . Then there exists a sequence
of elements z, # z* converging to r* satisfying

Vn20, y° € F(z,)

Let us set h, := ||z, — z*||, which converges to 0, and

Uy = (xn — ") /hn
The elements u, do belong to the unit sphere, which is compact.
Hence a subsequence (again denoted) u, does converge to some u
different from 0. Since the above equation can be written

Vn2>20, y"+h,0 € F(z"+h,u,)

we deduce that

0 € DF(a",y")(v)
Hence we have proved the existence of a non zero element of the kernel
of DF(z*,y"), which is a contradiction.

2. Assume that F' is not locally injective. Then there exists a sequence of
elements z},23 € N(z*), z} # 22, converging to z* and y, satisfying
Vo220, g, € F(z})nF(2))
Let us set A, := ||z} — 23|, which converges to 0, and
n == (2, — z3)/hn
The elements ¥, do belong to the unit sphere, which is compact.

Hence a subsequence (again denoted) u, does converge to some
different from 0.

18by definition, the graph of the paratingent derivative PF(z.y) of F at (z,y) is the
paratingent cone to the graph of F' at (z,y).
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Then for all large n
yn EF(z))NF(2}) := F(2 + hyu,)NF(2}) ¢ F(z*++B)

we deduce that a subsequence (again denoted) y, converges to some
y € F(2*) (because Graph(F) is closed).

Since the above equation implies that

Vn>0, y,+h,0 € F(a? +h,u,)

and we deduce that
0 € PF(z",y)(u)

Hence we have proved the existence of a non zero element of the kernel
of PF(z*,y), which is a contradiction. O
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4 Calculus of Tangent Cones

We shall present now a calculus of tangent cones, from which we shall
deduce a calculus of derivatives of set-valued maps and a calculus of epi-
derivatives.

4.1 Subsets and Products

If K c L, then

(44) Tk(z) c Tp(z) & T,b((x) c T (x)
IfK,cX, (t=1,---,n), then

i) Ty kl2) = UL Tk ()

(45) { i) TtJL; k(@) = U Tk (2)

K cX, (i=1,--,n), then

i) T klxneo2) C TIL Trola)
(46) @) T g Enees@) = T Tk (@)
i11) GH?:; PACIIPRNN I, Ck, (=)

4.2 Inverse Images

Let us consider now two topological vector spaces X and Y, subsets L Cc X
and M C Y and a differentiable single-valued map f from X to Y. The
following statement is obvious:
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Proposition 4.1 For anyz € LN f (M), we always have

{") Tingray(2) € Ti(e) N f'(2) ' Tu(f(2))
i) Tlnprany(z) € Ti()N f'(2) 7' T3 (f(2))

We shall deduce from the Constrained Inverse Function Theorem!® con-
verse inclusions.

18] et us recall this statement

Theorem 4.1 (Constralned Inverse Function Theorem) Let X and Y be two Ba-
nach spaces. We introduce a (single-valued) continuous map f : X — Y , a closed subset
K C X and an element 29 of K.

We assume that f 18 differentiable on a nesghborhood of 2o and we posit the following
stabllity assumptlion: there exist constants ¢ > 0, @ €[0,1[ and n > 0 such that

{ Y ze KnB(z9.n),
By C f'(2)(Tk(z)NeBx)+aBy

Then f(z0) belongs to the interior of f(K) and the set-valued map y ~ f~1(y) N K 1a
pseudo-lipschitsean eround (f(z0),20).
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Theorem 4.2 Let X and Y be Banach spaces, L C X and M C Y be
closed subscts, f be a continuously differentiable map around an clement
zo € LN Y M). If X andY are finite dimensional vector-spaces, we posit
the posntwise transversality condstion

(47) f'(z)(CL(z0)) = Cun(f(z0)) = ¥
Then
i) T7(20) N f(20) ' Tai(f(20)) € Ting-s0a0 (£ (20))
{ i) T} (20) N f'(20) ' T3, (f(20)) = T} j-1 00 (£ (%0))
ii5)  CL(%o) N f'(20)'Cr(f(20)) € CLos-1(a(f(20))
Otherwsse, we have to replace the pointwise transversality condstion by

the local transversality condition condition : there ezist constants ¢ > 0,
a €[0,1] and n > 0 such that

{VzeLﬁB(xo,q), ¥y € MNB(f(z0),n)
By c f'(z)(T;(x) NeBx) —Tu(y) + By

As a consequence, we infer that LN f~1(M) is sleck (respectively dersv-
able) whenever L and M are sleck (respectively derivable).

(48)

Proof Let us prove for instance the inclusion for the Clarke tangent
cones. Take any sequence of elements z, € LN f~'(M) which converges to
z. Let us take any v € Cy(z) such that f/(z)u € Cyp(f(z)). Hence for
any sequence h, > 0, there exist sequences u, and v, converging to v and
J'(20)u respectively such that, for all n > 0,

Zo+ hou, €L & f(x,)+hov, €M

We apply now the Constrained Inverse Function Theorem 3.5 to the subset
L x M of X x Y and the continuous map f S 1 associating to any (z,y)
the element f(z) — g, since we can write

K = Lnf'M) = (fe1) {(0)n (L x M)

It is obvious that the transversality condition (48) implies the stability
assumption of the Constrained Inverse Function Theorem. The pair (z, +
hptin, f(zn) + hava) belongs to L x M and

(f©1)(zn + hot,, f(z,) + hav,) converges to 0

because f is continuously differentiable at z,.
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Therefore, by the Constrained Inverse Function Theorem 3.5, there exits
a solution (Z,,¥:) € L x M to the equation (f © 1)(Z.,¥.) = 0 (i.e.,

—r——

#» = f(zn)) such that

"zn+hu"n-é:ll'*'llf(zn)'*'hn”n _ﬁ” < l"f(zn'*'hn“n)_f(xn)‘hn”n_ou

Hence &, := (za — %,)/hn converges to u, and for all n > 0, we know
that z, + h,u, belongs to L N f~!(M) because z, + h, &, = Z, belongs to
L and f(z, + hat;) = §, belongsto M. 0O

We list now three useful corollaries of this theorem:

Corollary 4.1 (Tangent Cones to Inverse Images) Assume that M C
Y 48 a closed subsct and that [ is a continuously differentiable map around
an clement x, € f~1(M).

When the dsmensson of X and Y ss finste, we suppose that

Im(f'(z0)) + Cum(f(z0)) = Y
Then
i) Tjoipg(20) = f(@0)  Thi(f(x0))
i11) C,-l(M)(Io) C f'(xo)_ICM(f(IO))

Otherwise, we assume that there ezist constants ¢ > 0, a € [0,1] andn > 0
such that

{l) T,—I(M](xo) = f'(zo)_lTM(f(xO))

{ Vz€B(zo,n), y€B(f(z0)yn)NM
By c Im(f'(z))NeBx)+ Tnly)+ aBy
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Corollary 4.2 (Tangent Cone to an Intersection) If K, and K, are
closed subsets contasned sn X. If X 18 a finite dimensional vector-space, we

assume that
Ck,(z) — Ck,(2) = X

Then
i) Tg, (2)NTh,(2) = Tg k(o)
iti) Ck, (9N Ck,(x) C Ckink,(2)

Otherwise, we suppose that there ezist constants ¢ > 0, a € [0,1] and
n > 0 such that

Ver{l nB(an")a yE B(an'I)nxi
By - AT}: (x) n CBxl - TK2 (y) + aBy

{") Ty, () NTx,(2) C Tknk,(2)

Finally, for a finite intersection, we can state:

Corollary 4.3 (Tangent Cone to a Finite Intersection) Let us con-
sider n closed subsets K; C X. When the dimension of X 1s finite, we

assume that
Yuvy,...,v0 € X, ﬂ(C’K..(a:o) -v) # 0
=1

Then _

i) =1 T;(;(-‘"O) = Th?:lK-(%)

i) N, Cx(z) © Gy x,(o)

If the dsmension of X ss snfinste, we assume that there ezist constants

¢>0,a€|0,1] and n > 0 such that

Vz, € K,NB(xp,9), Vv, € X,
Jw, e X ,Juwe N, (Tk,(z) - vi — wy)
such that ||| < cmax;—) . |v & |wi]| £ omaxi.,. . |v]

4.3 Direct Images

Let us consider now two topological vector spaces X and Y, a subset K C
X and a differentiable single-valued map f from X to Y. The following
statement is obvious:
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Proposition 4.3 For any y € f(K), we have

{i) Usekns-1(5) I'(#)(Tk(2)) © Tyixy(y)
#5) Usexns-1g F'(@)(Tk(z)) < T;lx)(y)

It is not that easy to find elegant sufficient conditions implying the
equality
(49) U 7@ @x@) = Timly)

reKnf—i(y)

Let us review some simple ones:

Proposition 4.8 If A € L(X,Y) is a continuous linear operator and if K
is pscudo-convez at some point x of K N A~ '(y), then

ATx(2) = Tax)(y)

In particular, when K 18 convez, we have

N ATk (@) = Tax(y)

EKNA—L(y)

The Criterion of Pseudo-Lipschitzeanity!” provides a more general suf-
ficient condition:

171, et us recall this statement

Theorem 4.8 (Criterion of Pseudo-Lipschitseanity) Let K be a closed subset of o
Banach space X and A € L(X,Y) be a conlinuous linear operator from X to aenother
Banach space Y. Let uvs assume that for some zq € K, there ezsst constants ¢ > 0,
a €[0,1{ andn > 0 such that

VY ze KN B(zo,n),
ASk(z)NBy C A(Tx(z) NeBx) + aBy

Then the act-valued map
AK) > y~A"Yy)NK

1s pseudo-lipschitsean around (Azp,20): For any z, close to 2o andy € K close to
Azp,
d(21, AT W) N K) < llly - Az
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Theorem 4.4 Let K be a closed subset of a reflessve Banach space X and
A € L(X,Y) be a continuous linear operator from X to another Banach
space Y . Let us assume that for some x, € KNA"Y(y,), there ezist constants
¢>0,a€[0,1] and n > 0 such that

Vze€ K NB(xy,n),
ASK(I) NBy C A(TK(I) nch) + aBy

Then, if X ss supplied with the weak topology, we obtasn the equality

(50) ATx(z0) = Tax)(wo)

Proof Let v belong to T4 x)(y0). Then there exist sequences of
elements k, > 0 and v, converging to 0 and v respectively such that

(51) Yo+ hov, = Az, € A(K)

The point is to choose solutions z, € K to the above equation (51) and
a solution 2y € K to the equation Axy = gy, such that

a subsequence of u, := (2, — zy)/h, converges to some u

Such an element u belongs to the contingent cone Tk (z,) and is a solution
to the equation Au = v.

Since the set-valued map A(K) 3 y ~ K € A~ !(y) is pseudo-lipschitzean
around (yo,z,) by the Criterion of Pseudo-Lipschitzeanity, there exist a
constant I’ and solutions z, € K to the equation (51) such that

"1'0 - Iu" < "30 = Yo — hn”n" = hn"”n”

Therefore, the sequence of elements u, is bounded, so that a subsequence
(again denoted) », converges (weakly when the dimension of X is infinite)
to some u. [

Remark Any sufficient condition implying that for some z, €
K N A '(y), the set-valued map A(K) 3 y ~ KN A7!(y) is pseudo-
lipschitzean will automatically imply the above equality (50) between the
contingent cone to the image and the closure of the image of the contingent
cone. O
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The sequence of elements «, := (z, — ) /h, satisfies

(52) {:) ¥, € Sk(zo)

it) Aw, = v,

Therefore, any properness criterion’® of the map A4 from the closed cone
Sk (z0) spanned by K — z, to Y implies equality (50).

In particular, the Closed Range Theorem provides such a simple cn-
terion. Since the barrier cone of Sk (z,) is its polar cone, which is the
subnormal cone N§(zo) to K at zg, we then obtain the following state-
ment:

Theorem 4.5 Let K be a closed subset of a reflexsve Banach space X and
A € L(X,Y) be a continuous linear operator from X to another Banach
space Y. Let us assume that for some xo € K N A (yo),

(53) Im(4*) + Nl(z) = X*

Then, if X 18 supplied with the weak topology, we obtasn the equality
(50).

Remark Criterion (53), which is easy to use, is much too strong,
since it requires implicitly that the inverse y ~» KNA~!(y) of the restriction
of A to K is actually locally single-valued. Indeed, by taking the polar cones
in equality (53), we obtain

ker(4) No(Sk (z0)) = {0}

Actually, when the dimension of X is finite, we have a stronger criterion:

18Banach’s Closed Graph Theorem allows to assume that A is surjective: It is sufficient
to decompose A as the product A o ¢ of the canonical surjection ¢ from X onto its factor
space X/ ker(A) and the associated bijective map A, which is an isomorphism. Then the
properness of A is equivalent to the properness of ¢.
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Proposition 4.4 If the dimension of X is finsite and if for some z, €
K N A~ Yyo), then condition

ker(A) N Tx(zo) = {0}
implies equality (50).

Proof We have to prove that the sequence of solutions u, to (51)
are bounded. If not, ||u,| will go to co. Hence a subsequence of elements
#, := #,/|u.| of the unit sphere, which is compact, converges to some
u # 0. Since the sequence A&, = v,/||u.|| converges to 0, we infer that u
belongs to the kernel of A. It belongs also to the contingent cone Tk (a0),
since we can write

zo+ hoflua s € K

and since h,||u,|| converges to 0. 0O
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5 Tangent Cones in Lebesgue Spaces

Let ({1, S, ) be a measure space and X be a Banach space. Let us consider
a sequence of measurable set-valued maps

K:well~ K(w)c X.
We associate to it the subsets K of LP({}, X) defined by
K = {z()eL!(Q,X) | for almost all we€ N, z(w) € K(w) }

We shall characterize the adjacent and contingent cones to such a subset
in termes of the tangent cones to the subsets K(w).

Theorem 5.1 Let us assume that the set-valued map K ss measurable and
that the subset K 18 not empty. Then

{v(-) € L*(Q, X) | for almost all w, v(w) € T, (z(w))}

C Te(=()) < Tx(=())

c {v(-) € L*(0, X) | for almost all w, v(w) € Tx(,)(x(w))}
Proof

1. Let v(-) belong to the first subset. We have to prove that that when
h > 0 goes to 0, there exists functions v,(-) € L?(Q}, X) converging to
v(-) such that

for almost all w € 0, z(w) + hop(w) € K(w)

Let us set:
ar(w) = d(v(w),(K(w) - 2(w))/h)

The function @, is measurable and converge to 0 almost everywhere
because for almost all w € (1, v(w) belongs to the adjacent cone to
K(w) at z(w).
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Since
for almost all w, a(w) < |v(w)]

and since the right-hand side of this inequality belongs to L*(Q}), we
deduce from Lebesgue’s Theorem that the functions a4 (-) do converge
to 0 in LP(Q}). Let us introduce now the subsets L, (w) defined by

Liw) = {z €K@ | do(w),(z - 2(w))/h) = a(«))

It is clear that the set-valued map L,(-) is also measurable. The Mea-
surable Selection Theorem allows us to choose a measurable selection

z5(-) of the set-valued map L,(-).
We define now the functions v,(-) by
vplw) = (2r(w) — x(w)})/h)
They are measurable, satisfy
[oa(w) —v(@)]| = ar(w)

and thus, converges to v(-) in LP(Q); X) since a,(-) converges to 0 in
L?(§)). We infer that v(-) belongs to T%(z(-)) because

for almost all 0 € O, z(w) + hvy(w) € K(w)
2. Let us choose now some v(-) in the contingent cone to the subset K.

Then there exist subsequences h, > 0 and v, (-) converging respec-
tively to 0 and to z(-) in L?(Q); X) and satisfying

for almost all w € 1, z(w) + hyva(w) € K(w)

Then a subsequence (again denoted) v,(-) converges almost every-
where to v(-) and consequently, for almost all w, v(w) belongs to the
contingent cone to the subset K(w) at z(w). O

Naturally, we infer that

Corollary 5.1 Let us assume that the set-valued map K ss measurable and
that the subset K 5o not empty. If the subsets K(w) are derivable, so 58 K
and

Te(z()) = {v(-) € LP(02,X) |for almost allw, v(w) € Tk .,)(z(w))}
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6 Derivatives of Set-Valued maps

We shall derive from each concept of tangent cone to a subset an associated
concept of graphical derivative of a set-valued map F from a topological
vector space X to another Y.

The idea is very simple, and goes back to the protohistory of the dif-
ferential calculus, when Pierre de Fermat introduced in the first half of the
seventeenth century the concept of a tangent to the graph of a function.

The tangent space to the graph of a function f at a point (z,y) of
its graph is the line of slope f'(z), i.e., the graph of the linear function
u — f'(z)u.

It is possible to implement this idea for any set-valued map F since
we have introduced (unfortunately, several) ways to implement the concept
of tangency for any subset of a topological vector space. Therefore, in
the framework of a given problem, we can choose the adequate concept
of tangent cone, and thus, regard this tangent cone to the graph of the
set-valued map F at some point (z,y) of its graph as the graph of the
associated “graphical” derivative of F at this point (z,y).

Since the tangent cones are at least ... cones, all these derivatives are at
least positively homogeneous set-valued maps (also called processes).
This is what remains of the familiar, but luxurious, requirement of linearity.

However, they are closed convex processes, i.e., set-valued analogues of
continuous linear operators, when the tangent cones happen to be closed
and convex (this is the case when we use the Clarke tangent cone or the
Minkowski differences of the contingent or adjacent cones).

Hence, we start with some definitions and notations.

Definition 6.1 Let FF : X ~ Y be a set-valued map from a topological
vector space X to another Y.
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We introduce the three following graphscal dersvatives

1. the contingent derivative DF (z,y) := D'F(z,y), defined by
(54) Graph(DF(2,3)) = TGraphyr)(@9)

2. the adjacent derivative D'F(z,y) defined by
(5) Graph(D'F(2,3)) = Tgpraphr)(2:9)

3. the circatangent derivative CF(xz,y) defined by
(56) Graph(CF (z,y)) := CGraph(F)(“” y)

We shall say that F is sleek at (z,y) € Graph(F) sf and only if

(z',y") ~ Graph(DF)(«',y') ss lower semicontinuous at (z,y)

and st 18 sleek if 5t 52 sleck at every point of sts graph.
We shall say that F ss derivable at (x,y) € Graph(F) sf and only if
the contingent and adjacent dersvatives cosnesde:

DF(z,y) = D'F(z,y)

and that st s» derivable sf st 58 dersvable at every posnt of sts graph.
Finally, we shall say that F is pseudo-convex at (x,y) € Graph(F) if
and only if

VY2 € Dom(F), F(z') c DF(z,y)(z' —z)+y

We see at once that these three graphical derivatives are closed processes
and that

(57) Vu, CF(z,y)(x) C D'F(z,y)(s) C DF (z,y)(u)

Naturally, the circatangent derivative is always a closed convex process, and
the contingent derivative is a closed convex process whenever F is sleek at

(z,3).
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When F := f is single-valued, we set

Df(z) := Df(=,f(2)), D'f(2):=D"f(,f(2)), Cf(z):=Cf(= f(z))
We see easily from Propositions 6.2 and 6.3 below that

t) Df(z))(v) = f'(z)u if fis Gateaux differentiable
(58) { §5) D'f(z) = f'(=)u if f is Fréchet differentiable
t111) Cf(z)(¥¢) = f'(z)w if f is continuously differentiable

Restrictions F' := f|x of single-valued maps f to subsets K C X provide
a wide class of set-valued maps defined by

{ flz) f r€ K

fIK(x) 0 1f:c¢K

for which we obtain the following formulas: if f is continuously differen-
tiable around a point z € K, then the derivative of the restriction
is the restriction of the derivative to the corresponding tangent
cone:

1) D(flx)(=) = D(fl)(= f(x)) = f(@)lrew
(59) i) Dfl)(x) = D(flx)=.f(2) = [l
i) C(flx)(2) = C(flx)(=,f(2)) F'(®)lex @

Actually, this follows from the useful

Proposition 8.1 Let X and Y be normed spaces, f a continuously differ-
entiable operator from an open subset 0 C X toY, LCc X and M C Y
closed subsets. Let F: X ~+ Y be the set-valued map defined by:

f(x)— M when z€L
{0 when z¢ L

Let (z,y) belong to the graph of F'. Then sts adjacent dersvative s» equal to

Tu(f(z) —y) when weT;(z)
when u ¢ T} ()

The same formula holds true for the cireatangent derivative and the Clarke
tangent conces.

Proof

F(z) =

Pren = {0
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Let v belong to DF(z,y)(x) and let us prove that it belongs to f'(x)u—
Tn(f(z) —y). We know that for all k, > 0 converging to 0, there exist
sequences u, and v, converging to u and v respectively such that =+ k, 4,
belongs to L and y + h,v, belongs to f(x + h,u) — M for all n. This
implies that ¥ belongs to to T} (z) and, since we can write f(z + h,u,) =
f(z) + ko (f'(z)u + o(Rk,)), that f(z) — y + k. (f'(z)e — v, + o(k,)) belongs
to M. Hence f'(z)u — v does belongs to T}, (f(z) — y).

Conversely, assume that « belongs to T? (z) and that f'(z)u — v belongs
to T}, (f(z) —y)- Hence, for all sequence h, > 0 converging to 0, there exist
sequence 4, amd w, converging to ¥ and f'(z)u — v such that z + h,u, and
f(z) —y+ h,w, belongs to L and M respectively. Then v, := f'(z)u +
o(h,) — w, converges to v and satisfies y + h,v, € f(z) + kv, — M. O

Remark For contingent derivatives, we can only prove that

DF(z,y)(x) {f (#)% = Tulf(z) = 3) when ::LT(:;L |

and that

f'(@)u—T}(f(x) —y) when u€ (z)
DF(z,y)(u) > {0 M when u¢LTL(I) .

Another familiar instance of set-valued maps is the inverse of a set-
valued map F (or even of a non injective single-valued map). We can easily
compute any of their graphical derivative because a graphical derivative
of the inverse of a set-valued map F is the inverse of the derivative:

i) D(F)'(y,2) = DF(z,y)"’
(60) ii) D'F)'y,z) = D'F(z,3)"!
111) C(F)—l(”z) = CF(I’ y)—l

The first task is to characterize these derivatives by adequate limits of
difference quotients. We begin with the case of contingent derivatives.
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Proposition 6.2 Let (z,y) € Graph(F) belong to the graph of a set-valued
mapF : X ~ Y from a normed space X to another Y. Then

(61) { v belongs to DF(z,y)(u) if and only if

limmfh—‘O'hl'—‘l d (U, ﬂL:.’l:l) =0

If F is lipschstzean around an element zy € Int(Dom(F)), then

{ v belongs to DF(z,y)(u) if and only sf

Liminf, .., d (v, Z=trel=r) = g

(62)

Furthermore, sf the dimension of Y s finste, or sf Y 45 a reflezive Banach
space supplied with the weak topology, then

(63) Dom(DF(z,y)) = X

Proof The first two statements being obvious, let us check the last
one. Let u belong to X. Then, for all 2 > 0 small enough and y € F(z),

y € F(z) C F(z+hu)+ Ik|u|B

Hence there exits y» € F(x + hu) such that v, := (yx» — y)/h belongs
to I||u||B, which is compact. Hence a subsequence (again denoted) of v,
converges (weakly if the dimension of Y is infinite) to some v, which belongs
to DF (z,y)(u).

In order to characterize adjacent and circatangent derivatives in terms
of limits of difference quotients, we need to introduce the concept of “lim
sup inf” of functions of two variables.

Definition 6.3 (Lim sup inf) Let L and M be two metric spaces and
¢:LxMwrs R be a function. We set

lim sup,_,, inf"_.,¢(2', ﬂ') =su ¢(:t', y')

Finf sup inf
>0 920 peB(zy) YEB(y:e)

Hence, by translating the definition of the adjacent and the Clarke tangent

cones, we obtain the following characterizations:
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Proposition 6.3 Let (z,y) € Graph(F') belong to the graph of a set-valued
mapF : X ~ Y from a normed space X to another Y. Then

64 v belongs to D'F(z,y)(u) if and only if
(64) Lim sup,_,q, infy_,d (v, ﬂ”—:"u) =0
and ’
(65) { v belongs to CF(z,y)(x) if and only if
lim SUPL0+,( ')~ (=.9) inf, .. d (v, ﬂﬂ—:'u) =0

If F is lipschitzean around an element z € Int(Dom(F)), then the formulas
become much simpler:

(66) { v belongs to D'F(‘.t_,y)(u) if and only if
limy o, d (v, Fthel=t) = ¢

and

(67) { v belongs to CF(z,y)(u) a'j“ frtd only sf
im0 (#,y7)~(e) (0, FEHLL) =0

Let us mention the following property:

Proposition 6.4 Let us assume that the smages of F are convez and that
F is lipschstzean around z. Then the smages of the adyacent dersvative
DF*(z,y) are conves.

Proof Let v! and v? belong to DF (z,y)(u). Then, for any sequence
k, > 0, there exist sequences u! and u3 converging to » and sequences v}
and v2 converging to v! and v? respectively such that

Vn, y+h,v! € F(z+h,u)) (1=1,2)
Since F is lipschitzean around z,
y+h,v)l € F(z+hyul)+lh,|u -}
so that there exists another sequence v3 converging to v? such that
y+h,ol C F(z+h,el)
Now, F(z + h,u]) being convex, we deduce that for all A € [0, 1],
¥+ ha(Av} + (1 = A)vd) € F(z + houl)

Since Av! + (1 — A)vT converges to Av! + (1 — A)v?, we deduce that this
element belongs to DF*(z,y)(v). O
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Remark: Kernel of the Derivative The kernels of the various
derivatives characterize the associated tangent cones to the inverse image.

Proposition 6.5 Let F: X ~ Y be a set-valued map and (z,y) belong to
ste graph. Then

{i) Tp-145)(¢) € kerDF(z,y) := DF(z,y)""(0)
i1) 1}_1(,)(:) C kerD'F(z,y)

If F~! 45 pseudo-lipschstzean around (y, x), we have

i) kerDF(a:, y) = Tp-l(,) (1‘)
1) kerD'F(z,y) = T;._,(,)(a')
i11) kerCF(z,y) C Cp-1yy(2)

Proof The first inclusions are obvious. To prove the converse in-
clusions, let « belong to the kernel of CF(z,y) for instance: for all sequence
z, € F~!(y) converging to z and sequence h, > 0 converging to 0, there
exist sequences u, and v, converging respectively to v and 0 satisfying

Vo, y+h,v, € F(z,+ h,u,)

Since F~! is pseudo-lipschitzean around (y, z), there exists an element
x) € F~1(y) such that

"z: - (2. + hn“n)” < l”!’n ~ (¥n + hava)|l

Hence, by setting u} := (2} — z,)/h,, we see that z, + h,u} = =z}
belongs to F~!(y) and that ¢} converges to u because |[ul — u,| < I||vn||
and because v, converges to 0.

Therefore we have proved that u belongs to the Clarke tangent cone to
F~1(y) at z. The proofs for the other tangent cones are the same. [
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Example: Derivatives of monotone operators Let X be a
Hilbert space (identified with its dual). We recall that a set-valued map
F : X ~» X is monotone if and only if

(68) V(-’C,P),(FaQ) € Graph(F), <p-¢q,rz—-y>2 0

Subdifferentials of convex functions are monotone'® maps. We also recall
that when F is monotone, its resolvent J := (1+ A4)™ ! is single-valued and
lipschitzean (with constant equal to 1) on its domain. Therefore, we can
easily compute derivatives of F in terms of the derivatives of its resolvent.

Proposition 6.6 Let X be a Hilbert space. We sdentsfy its dual with X
and we supply it with the weak toplogy. If F is a monotone set-valued map,
then sts adjacent derivative D'F(x,p) at some pasr (x,p) of its graph is
sems posstive-definste in the sense that

V (u,r) € Graph(D'F(z,p)), <r,u>> 0

The same s true for the circatangent dersvative. Furthermore, the following
statements are equivalent:

{a) r € DF(z,p)(u)
b) r € DJ(x+p)(r+u)

Thss last statement remasns true for the adjacent and circatangent dersva-
tives.

Proof The first statement is obvious, since < r,u > is the limit
of the sequence < r,.z, > (because ®, converges to u strongly and r,
converges to v weakly) and since

<rp,%,> = <z+hu,—x,pt+hr,—p>2 0

For proving the second statement, we observe that p belongs to F(z) if
and only if # = J(z + p). Since J is the inverse of (1 + A), we deduce that

19

we refer to [5, Sections 6.6 & 6.7] for an introduction to monotone and maximal
monotone maps.
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e€D(1+ A)(z,q)(v) < uw€ DJ(q)(s)

Hence, by setting ¢ := z + p and s := r + 4, we obtain the formula we
were looking for. 0O

Since the cone-valued map N associating with any z € K the normal
cone Nk (z) to a closed convex subset is maximal monotone (because the
normal cone is the subdifferential of the indicator of K), and since its

resolvaent is the best approximation projector, we deduce the following
corollary:

Corollary 6.1 Let K be a closed convez subset of a Hslbert space, and let
p belong to the normal cone Ny (x) to K at some x € K. Let ny denote the
best approzsmation projector onto K. Then, the two following satatements
are equivalent:

{i) ¢ € D'Ng(z,p)(v)
i) v € Drg(z+p)(u+q)
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7 Calculus of Derivatives

We derive from the calculus of tangent cones the associated calculus of
derivatives of set-valued maps. We begin naturally by the chain rule for
computing the composition product of a set-valued map G : X ~ Y and a
set-valued map H : Y ~ Z.

One can conceive two dual ways for defining composition products of
set-valued maps (which coincide when G is single-valued):

Definition 7.1 Let X, Y, Z be Banach spaces and G: X ~ Y, H:Y ~»
Z be set-valued maps:

1. the usual compoestion product (called simply the product) Ho G :
X~ Z of H and G at x is defined by

(HoG)(z) := U Hy)
y=G(x)
2. the square product? HOG : X ~ Z of H and G at x ss defined

by
(EOG)(z) = [ H(y

yEG(x)

200Observe that square products are implicitely involved in the factorization of maps. Let
X be a subset, R be an equivalence relation on X and ¢ denote the canonical surjection
from X onto the factor space X/R. If f is a single-valued map from X to Y, its factorization
J:X/R —Y is defined by

fl&) = (SO )§)

It is non trivial if and only if f is consistent with the equivalence relation R, i.e., if and
only if f(2) = f(y) whenever ¢(z) = ¢(y). When F : X ~ ¥ is a set-valued map, we can
define its factorization F : X/R ~» ¥ by

F(§) = (Foe')¢) O
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Let us recall that there are two manners to define the inverse image?' by a
set-valued map G of a subset M:

a) G (M) :
b) G*(M) :

{z| Ga)nM +#8}
{z | Gl&) c M}

We deduce the following formulas

(69) { t) Graph(F o G) ': (G x 1)~ Graph(H)

i) Graph(FOG) = (G x 1)*Graph(H)

as well as the formulas which state that the inverse of a product is the
product of the inverses (in reverse order):

[§) (HeoG) Yy

) = G (H'(3)
| %) (EOG)™'(y)

GT(H™Y(y)

We also point aout the following relation:
(70) Graph(H o G) = (1 x H)Graph(G)
We shall need the following result:

Proposition 7.1 Let F' be a set-valued map from X toY and K be a
subset of X. Assume that F §s lipschitzean around some r € K. Then, for
any y € F(z), we have

(71) D'F(z,y)Tx(z) € Trxly)
As a consequence, we deduce that sf M ss a subset of Y, then

(72) Trea)(z) © D'(z,9) Tn(y)

Proof

31We recall also that a set-valued map G is upper semicontinuous if and only if the
inverse images G~ of open subsets are open and that it is lower semicontinuous if and
only if the inverse images Gt of open subsets are open.
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Take u in Tx(z) and v € D*F(z,y)(u). Then there exist sequences
k., > 0 converging to 0, 4} and u? conveging to u and v, conveging to v
such that
z,+hul € K & y+ h,v, € F(x + h,ul)

Since F is lipschitzean around z, we deduce that
¥+ hav, € F(z + houl) + lh,|[ul — o3|
so that there exists another sequence v, converging to v such that
y+ hov, € F(z + h,u;) C F(K)

This implies that v belongs to the contingent cone to F(K) at y.
Consider now K := F*(M). Since F(F*(M)) is contained in M, we
deduce that

D'F(2,3)Tr+an(x) € Trp+a)) () € Tae(y)

from which formula (72) follows. O
Remark Naturally, the formula

DF(z,4)Tx(x) < Tru)ly)

is also true. O
We begin by this simple result:

Theorem 7.1 Let us consider a set-valued map G : X ~ Y and a set-
valued map H :Y ~ Z.

Let us assume that H s lipschitzean around y where y belongs to G(z).
Then, for any z € H(y), we have

(73) D'H(y,z) o DG(z,y) C D(HoG)(s,2)

Let us assume that G is lipschitzean around x. Then, for all y € G(x)
and z € (HOG)(z), we have

(74) D(HOG)(r,z) ¢ DH(y,z)0D'G(z,y)
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In particular, if G := g is single-valued and lipschstzean around z, we
obtain

D(Hg)(z,2)(s) < DH(g(z),z)(¢(z)w)
and the equality holds truec when H is lipschitzean around g(z).

Proof We apply Proposition 7.1 to formulas (70) and (69)ii) re-
spectively for proving the two first formulas. When G := ¢ is single-valued,
we use the fact that both composition products coincide. I

We state now a more powerful result:

Theorem 7.2 Let us consider a set-valued map G : X ~ Y and a set-
valued map H : Y ~ Z.
If the dimension of Y ie finite, we supose that

Im(CG(Jto, yo)) - Dom(CH(yo, Zo)) =Y

Then

i) D'H(yo.20) o DG(z0.y0) € D(H oG)(x0,20)
il) DbH(yo, 20) [« DbG(J.'g, yo) = .L)h (H © G)(Io, Zo)
ii.i') CH(yo, Zo) (o] CG(xo, yo) C C(H =] G) (Io, Zo)

If Y is any Banach space, we assume that there ezist constants ¢ > 0,
a €0,1] and n > 0 such that

V (z,31) € Graph(G) N B((xo, y0),7),
v (yh Z) € Graph(E) N B((yOs zO)ﬁ"L
(15){ i) By < Im(D'G(z,y1))NeBx — Dom(DH(y;.2)) + aBy
i) || DGz, ]| < ¢
i) |[DH'(z,9)|| <

Proof If we denote by w the continuous linear operator from X x
Y xY x Z to Y associating to (z, ¥;,¥3,2) the element g, —y; and by 7y, 2
the canonical projection from X xY xY X Z onto X x Z, we observe that

(76)  Graph(H o G) = xx, z((Graph(G) x Graph(H)) Nw~1(0))

Therefore, we apply Theorem 4.2 with A = w, L = Graph(G) x
Graph(H) and M = {0}.
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Assumption (75) implies the transversality condition. Indeed, for any
v €Y, we can find v; € Im(D'G(z,3:)),v2 € Dom(DH(y3,z)) and w €Y
such that v = vy — v; + ¢ with ||v;|| < ¢|v]| and ||¢|| < e||v||. Hence ||v;|| <
(¢+ 1+ a)||v|| and there exist ¥ € DG*(z,y,)"'(v,) and w € DH(y;, z)(v3)
such that ||z] < ¢||v:1|| and ||w]|| < ¢||vs]|-

Therefore, v = w(u, v;,v,,w) + ¢ where (u,v;,v,,w) belongs to the con-
tingent cone to the product of the graphs of G and H and ¢ € aBy.

Consequently, we deduce that, for instance,

(Graph(D‘G(qu ¥0)) X Graph(D' H(yo.20))) Nw1(0)
- (pGraPh{G)(zo’yo) X Téra.phm) ¥o. 20)) Nw™'(0)

TGl'&ph(G) «Graph x) (20, Yo, Yo, 20) Nw™1(0)
TGl'&ph(G)xGraph(y)nu—x(o) (170, Yo, Yo, 20)

By applying the projection mx.z to both sides of these equalities, we
deduce that

Graph (D’ H (yo, 20) © D*G(z0, y0))

7x . z({Graph(D"G (2o, ¥0)) x Graph(D"H(yo, 20))) Nw™1(0))
“XxZ(Téraphta)xGraph(H)mu_l(o)(307yO-. Yo: %0))

T:x, z(Graph(G)xGraph(#)nw- 1(0))("0’ 20)

= TGraph(Hoc)(xO’-W)
Graph(D'(H o G)(z0,2)) O

N

We provide now some examples of situations where we have equality in

chain rule formulas.
We denote by F the set-valued map whose graph is the closure of the
graph of F.
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Proposition 7.3 Let us conssder a set-valued map G : X ~ Y and a
set-valued map H : Y ~» Z. The following inclusion

D(H o G)(x0,20) € DH{(y0,20) 0o DG (0, %0)
holds true under one of the following assumptions:

1. G is pscudo-convez at (xp,y0) € Graph(G) and H is pseudo-convez
at (yo, 20) € Graph(H), fand in particular, G and H are convez),

2. The dimension of X and Y s finste and
(77) ker(DH (zo,30)) N DG(zo,%0)(0) = {0}

Proof We deduce these statements from the criteria implying that
the contingent cones of the images by 7y, ; are the closures of the images
of the contingent cones:

Graph(D(H o G)(zo, 20))
= TGraph(Hoc)(%a!lo) |
= Tlxxz(Gl‘aph{G)xGraph(l{)m—l(o))(:’oa 20)

= pixx2(TGraph(c)- Graph(s)-.-: (g {%0: ¥0: Yo 20))
C 7x-2((Graph(DG(zy, 30)) x Graph(DH (30, 20))) N w-1(0))

= Graph(DH (yo, 20) ©¢ DG(z0, y0))

When the graph of G is pseudo-convex at (z,y) and the graph of H is
pseudo-convex at (y, z), we derive the above property from Proposition 4.3.

The second case follows from Proposition 4.4 because condition (77)
implies obviously that

ker #xxz N TGraph(a)xGrapha)rw-:(0) (%0 ¥0s Yo, 2))=0 O

Remark It is quite useful to relate the tangent cones to the domain
(or the image) of a set-valued map to the domain (or the image) of its
derivative.
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Proposition 7.3 Let us consider two topological vector spaces X and Y,
a set-valued map F : X ~ Y from X toY and a point (z,y0) of sts graph.
We always have

(78) Dom(DF (zy,y)) C TDom(F)(zO)
Equalsty
(79) om Zo,¥)) = TDom(p) (20)

holds true under one of the following assumptions:

1. F 45 pseudo-convez at (xo,y,) € Graph(F), (and in particular, F 1s
convez),

2. X and are reflezive Banach spaces and the cosubdifferential of F at
(%o, ¥o) §8 suryectsve:

(80) Im(DF (2o, %)) = Y~
S. The dimension of X and Y s finste and
(81) ker(DF(zo,%)) = {0}
Proof We deduce these statements from the criteria (Proposi-

tion 4.3, Proposition 4.5 and Proposition 4.4) implying that the contingent
cones of the images are the closures of the images of the contingent cones,
since

(82) Dom(F) = =xGraph(F)

where 7x is the projection from X x Y onto X. We thus deduce that

Dom(DF((2o, 0))) = #xGraph(DF)((o,30))

(83) = ”XTGraphm((“O’yo)) c Txx(Graph(F))(“’O)
= TDom(f’) (zo) O
Remark By using the paratingent derivatives??, we obtain upper

estimates of the usual composition product.

Bby definition, the graph of the paratingent derivative PF(z.y) of F at (z,y) is the
paratingent cone to the graph of F at (z,y).

We can also define the lop-sided paratingent derivatives P,F(z,y) and P,F(z,y) in the
following way:

Graph(PiF(z,)) = Popntr) (2,5) & Graph(PF(z,3)) = Pamenh e )(®:8)
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Theorem 7.3 Assume that G is lipschitzean around 2. Then
1. Y is a finste dimensional vector-space and G(x) is bounded, then

D(H o G)(z,z) C U P\H(y, z) o P;G(z,y)

y€G ()
L. and
PHOG)(z,2) ¢ ()| PH(y,2)OCG(z,y)
yEG(x)
Proof Let w belong to D(H o G)(z, z)(u): there exist sequences

h, > 0, u, and v, converging to 0, « and v such that
Vn, 2+ h,v, € H(y,) where y, € G(x + h,u,)
Since G is lipschitzean around r, there exist elements y? € G(z) such that

Yn — yg
hn
Furthermore, G(z) being relatively compact, a subsequence (again denoted)
¥? converges to some y. We can also extract a subsequence (again denoted)
v, which converges to some v, since this sequence is bounded and the
dimension of Y is finite.

Since

satisfies ||v,]| < ||u.]|

v, =

yg +h,v, €G(x+hou,) & 2+ h,w, € H(yg + h,v,)

we infer that w belongs to PH(y, z)(v) and v belongs 1o PG(z, y)(u)

Let w € Dom CG(z,y) and w belong to P(HOG)(z, z)(x). Hence there
exist a sequence h, > 0 converging to 0 and sequences of elements (z,, 2,) €
Graph(H OG), #, and w, converging to (z,z), v and w respectively such
that

Va>0, 2, +h,w, € N H(y)

YEG (zn+hnun)

The set-valued map G being lipschitzean, there exists a sequence of
elements y, € G(z,) converging to y. By definition of the square product,
we know that z, € H(y,) (because z, € (HOG)(z,)).
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Take now any v in CG(z,y)(«). Since G is lipschitzean around z, there
exists a sequence of elements v, converging to v such that

Vn2>0, yo+hov, € Gz, + hou,)
Therefore,
Van20, z,+h,w, € H(y,+hnv,)
so that we infer that
w € PH(y,z)(v)
Since this is true for every element v of CG(z,y)(u), we deduce that

w € (| PH(y,z)(v) = PH(y,2)0CG(z,3)(x) O

veCG (x,y)(u)
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8 Epiderivatives

Let us consider an extended real-valued function V : X — RU {400} whose
domain
Dom(V) := {z€ X | V(z) < +o0}
is not empty. (Such a function is said to be proper in convex and non
smooth analysis. We shall rather say that it is nontrivial for avoiding
confusion with proper maps).
We can naturally regard it as the set-valued map V : X ~ R defined

> Viz) if Dom(V')
"(2) if x € Dom(V
Viz) = { ¢ if z¢ Dom(V)
so that we can define in the usual way contingent, adjacent and cir-
catangent derivatives of V at z € Dom(V'). We shall set:
i) DV(x)(x) := DV(z,V(z))(n)
= {r|biminf, o, oy ||V (z + he') — V(2) — hv||/h = 0}
i) D'V(z)(u) = D'V(z,V(2))(u)
= {ollim sup_.o, infy_ |V (2 + k') — V (z) — hell/h = 0}
i11) CV(z)(u) = CV(z,V(z))(u)
= {v|lim sup, ¢, o, infu_.||V (2 + k') = V() = ho| /h = 0}
However, minimization problems and Lyapunov functions involve obwvi-
ously the order relation of R. Hence, when dealing with such problems,
we associate with the extended real-valued function V two new set-valued
maps V; and V| defined in the following way:

[ V(z)+ R, if z€Dom(V)

84 VoV ¢ if ¢ Dom(V)
(84) V. o= V(z) - R, if z€Dom(V)
W oV, = ¢ if z¢ Dom(V)

We see at once that

1) Graph(V;) = Hp(V)
Therefore, we are led naturally to associate with these two set-valued

maps V; and V| their contingent, adjacent and circatangent derivatives at
points (z,V (z)) and thus, unfortunately, to introduce still new definitions.
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Definition 8.1 (Epiderivatives) LetV : X — RU{+o0} be a nontrivial
egtended real-valued function and x belong to sts domasn. We shall say that
the functions D{(V)(z), D}(V)(z) and C;(V)(z) from X to RU {+oo} U
{—o0} defined respectively by
i) Dy(V)@)(w)

= liminfy o4 v—o(V(z+ he') =V (2))/h
] i) D)@

:= limsup,_,, infy_,(V(z + hu') = V(z))/h
i) C(V)(2)(u)
_ = lim SUPL 1 0+,# =2V (#) <N -V (1) infyu_ (V(z+ k') - '\')/h
are the contingent, adjacent and circatangent epiderivatives of V
at z sn the dsrection u.

We define sn a symmetric way the contingent, adjacent and cir-

catangent hypoderivatives D (V)(z), D}(V)(z) and C,(V)(x) from X
to RU {400} U {—o00}

i) Di(V)(@)(w) = —(Di(=V)=o)(u))

= Limsup, g, ui_. (V (2 + ha') — V(2))/h
| #) Di(V)(@)(u) = —(DH=V)(zo)(u))

:= lim infy_,o4 sup,_ (V(z+ hu') - V(z))/h
i) C(V)(z)(x) = —(Cr(-V)(zo)(v))

= lim inf;._.o.,.’g_.,’v(g,zy_.v(,) sup,.__,,(V (1‘ + hu’) - 4\')/’1
Such an eps or hypo dersvative ss sasd to be nontrivial sf and only if st
never takes the value +00 and has at least one finste value.

Naturally, they coincide with the directional derivatives < V'(z),u >
when V is respectively Gateaux, Fréchet and continuously differentiable.

Remark Definition (8.1) provide another interpretation of the
epiderivatives in terms of epilimits of the difference quotients

VaV(z) =w = (V(z+ hu) =V (z))/h

1. the contingent epiderivative is the epi-lower limit of the difference
quotients V,V(z) when A — 0+ 2. the adjacent epiderivative is the epi-
upper limit of the difference quotients V,V(z) when A — 0+ 3. the cir-
catangent epiderivative is the epi-upper limit of the difference quotients
v — (V(z'+ hu) — X')/h when h — 0+ and (2',)’) € Ep(V) — (2,V(z))
0

57



If V is continuously differentiable around a point x € K, then the epi-
derivative of the restriction is the restriction of the epiderivative
to the corresponding tangent cone:

i)  Di(Vix)(z)(e) := :::(z)’"> :; ;:of"(x)
’ . u b

Vi) DivIn@) ={ 5o @e> i LT

i) Ci(V|g)(a)(w) := jro‘:(x)»w g ;iofx(f)

The formulas become much more simpler when V' is lipschitzean.

Proposition 8.1 Let us assume that V : X — R U {+o00} is lipschitzean
around a point x of ste domain. Then

i) Di(V)(2)(v)

:= liminfy_o.(V(x+ he') =V (2))/h and
i) DYV)(e)(w)

:= limsup,_q, (V(z+ he') - V(x))/h

(86) are Dins dersvatives
i) Cr(V)(z)(u) =: Vi(z,u)
= limsup,_ g, 0. (V{z+ho') = V(') /R
18 the Clarke dsrectional dersvatsve.
Furthermore,

i) (.:t,u) € X x .Int(Dom(V)) — GV {(x)(u)
8 upper semseontinuous

i1) w = C,V(z)(u) ss lipschitzean

i) C(-V)@)w) = CV(z)(-v)
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Proposition 8.2 When the function V s convez, all these epidersvatives
are cqual and the formula becomes:

D;(V)(z)(x) = liminf

-y

inf h

( V(:c+hu')—V(.t))
Furthermore, when x belonge to the intersor of the domain of V, i.c., when
V ss lspschstzean around z, we obtain

. L Vit hy')-V(a)
D)@ = jugVEHE

We first observe that

Proposition 8.3 Let V : X — RU {+o0} be a nontrivial estended real-
valued function and = belong to sts domasn.

Then the tangent cones to the epigraph of V' at (z,V (z)) are epigraphs
of the corresponding epsdersvatives of V at x:

i) EpDiV(z) = Tgpy,la,V(2))
ii) EpDIV(z) = Tp, . (¢.V(x))
iti) EpC:V(z) = Cppy(,V(2))

Then the csreatangent epidersvative ss always lower semicontinuous conves
and posstively homogeneous.

Proof We shall check this fact only for the contingent case, the
proof being similar for the adjacent and circatangent cases.
Actually, we shall prove that for all w > V(z), we have

(87) EpD;V(z) = TEP(V](x,V(z)) C Tgp () w)

Let v > D;V(z)(u) where u belongs to the domain of the contingent
epiderivative of V at z. Then there exist sequences %,, v, and h, > 0
converging to u, v and 0 such that h,v, > V(z + h,u,) — V(x). Since

w—V(z) 2 0, we deduce that w —V(z) + kv, > V(z+h,u,) - V(z),i.e.,
that the pair (u,v) belongs to TEp[V) (=, w).
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Let us assume that (u,v) belongs to TEPM(:, w). We infer that there
exists sequences 4,, v, and A, > 0 converging to u, v and 0 such that

(88) w+hv, 2 V(z+h,u,)

If w =V(z), we deduce that v > D:(V)(z)(u). Hence the equality
between the contingent cone to the epigraph of V at (z,V(z)) and the
epigraph of the contingent epiderivative holds true. 0O

This result leads us to introduce the following definitions.

Definition 8.2 We shall say that an eztended function V s pseudo-
convex at r sf
VyeX, DiV(z)(y—x) < V(y)-Via)

We shall say that st is epi-derivable at x if the contingent and adjacent
epiderivatives do cosncide and that st 18 epi-sleek at x if the epigraph of V
18 sleck at (z,V2).

Proposition 8.4 Let V' : X — RU {+oc} be a nontrivial cztended real-
valued function and x belong to sts domain. Then
Dom(D4(V)(z)) x R C TEP(V](x,w) CTpomy, (@) x R
If the restriction of V to sts domasn ss upper semscontinuous, then, for all
w > V(z),
TEp(V)("”w) = TDom(V)(x) xR

Proof If u belongs to the domain of the contingent epiderivative
of V at z,if w 2 V(z) and if  is any real number, we check that (u,v)
belongs to the epigraph of D;(V)(z).

Indeed, there exist sequences of elements h, > 0, u, and v, converging
to 0, u, and D;(V)(z) respectively such that

(£+h,,u,.,V(z)+h,,v,.) € EP(V)
But we can write
(z4+ hpttn,w+ hov) = (2 + ko, V(z)+ hav,) + (0,0 -V (2) + h,(v—v,))

Since w — V(z) + ha(v — va) is strictly positive when w > V(z) and A, is
small enough, we deduce that (z + hpu,,w + h,v) belongs to the epigraph
of V, i.e.,that (x,v) belongs to the epigraph of D;(V')(x).
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If (u,v) belongs to T (V)(.’l,‘ w), we deduce from (88) that z + h,u,
belongs to the domain of l})for all n, i.e., that ¥ belongs to the contingent
cone to the domain of V' at z.

Let w be strictly larger than z and % belong to TDom(V)(I)° Then
there exists sequences #, and h, > 0 converging to ¥ and 0 such that
V(z + h,u,) < +oo for all n.

Since V is upper semicontinuous on its domain, for all ¢ €]0, %‘-ﬂ[,
there exists n > 0 such that, for all A, ||u,|| < 5, we obtain

Viz+ haun) € V(g)+e < w—e

Let v given arbitrarily in R. Then, for any A, > 0 when v > 0 or for
any h, €0, %[ when v < 0, inequality w — ¢ < w + h,v implies that
V(z +hau,) < w+ h,v, ie., that the pair (u,v) belongs to TEp(V)(I’ w).
O

Proposition 8.5 Let V :—» R U {+oc} be an estended function and z
belong to itse domain. Then

{D;V(2)(u),D,V(2)(u)}
c DV (z)(u)
C [D1V(z)(u), D,V (z)(u)]

These subscts are equal when the smages of the contingent dersvative are
connected.

Proof Since
Graph(V) c Ep(V) nHp(V)
we deduce that the inclusions
TGraph(V) (z,V(z)) c TEp(V) (z,V(2)) N THp(V)(x’ V(z))
can be translated in the following inclusions:
Graph(DV (z)) c EpD;V(z) N HpD V(z)
from which inclusion DV (z)(u) € [D;V (z)(x), D,V (z)(u)] follows.
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Since the contingent epiderivative of V' at z in the direction u is equal

to
e Viz+he')-V(x)
DiV()() =  Lminf A
we see that DV (z)(#) is the limit of a subsequence of HLA':)'—VM, and
thus, the pair (z,D,V (z)(2)) belongs to the contingent cone to the graph
of V at (z,V(x)). The same is true with the contingent hypoderivative.
O

Remark There is another intimate connection between tangent
cones and their corresponding epiderivatives than Proposition 11 linking
the tangent cones to the lower sections of the corresponding epiderivatives
of the function dx (-) and Proposition 8.3 linking the tangent cone to the
epigraph to the epigraph of the epiderivative.

Let ¥x be the indicator of a subset K, defined by

0 i K
Ykla) = {o j ;:Ix

It is easy to observe that

i) Di(¥x)(x) = ¥rew
(89) i) Di(¥x)(x) = ¥ny
iii) CTW)K)(-T) = Yog(x)

Hence we can either derive properties of the epiderivatives from proper-
ties of the tangent cones or take the opposite approach by using the above
formulas. O
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9 Calculus of Epiderivatives
We present below some useful formulas concerning the epiderivatives.

Theorem 9.1 Let us consider two Banach spaces X and Y, a continuous
single-valued map f : X — Y, and two eztended real-valued functions V
and W from X and Y to R U {+oc} respectively. Let z, belong to the
Kuratowsk lower limst of the domasns of the functions U :=V + W o f.
We asume that [ is continuously differentsable around z,. 1. We always
have:

D1V (xzo)(2) + D1W (£ (z0)) (f'(z0)u) < D1(V + W o f)(20)(u)
2. IfX and Y are finite dimensional, we suppose that
Dom(CW (f(x0))) — f'(zo)Dom(C;V (f(x0))) =Y
Then, the cpiderivatives of the function U := V+Wof satisfy the cstimates:

i) Dy(U)(zo)() < D(V)(zo)(w) + D1 (W)(f(20))(f(x0)u)
(90)0 i) DU)(o)(x) < DH(V)(zo)(x) + D4 (W)(flzo}}(f(zo)u)
i) Ci(U)(z0)(@) < Ci(V)(o)(w) + C1(W)(f(20))(f (xo)u)

3. If X orY is a Banach space, we posst the following stability
assumption: there ezist constants ¢ > 0, a € [0,1] and n > 0 such that,
for all n,

i) Vze&Dom(V)N B(zo,n), Vy€Dom(W)NB(f(z0),n)
By < f'(x) (Dom(D}(V)(z)) NeBx)

(91) —Dom(D((W)(y)) + aBy

i) SUPyeDom (D} (v)i=) ID;(V)("‘)(“)V"""

< ¢
#1) 89D, Domp,w)y) IP1 V)@ @)I/llv]l < ¢

Proof We shall prove the formula only in the case of circatangent
epiderivatives.
If we set
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i) G(z,a,9,b,¢) = (f(z)—9,a+d—¢)

i) K :=Ep(V)xEp(W)xR c XxRxYxRxR
i1s) H(z,a,y,b,¢) = (z,¢)

we can write
Ep(U) = H(KNnG7'(0,0))

Therefore, we shall us Theorem 4.2 for estimating tangent comes to
K N G71(0,0). We first observe that the transversality conditions of our
theorem imply the corresponding stability assumptions of Theorem 4.2.

This is obvious when X and Y are finite dimensional spaces. Otherwise,
we have to check that there exists a constant ¢/ > 0 such that, for all n, for
all

(x»av ¥, ba C) € K close to (‘tOsVT(zo)a Yo, YT (f(xO))vO)
for all (2,)) € X x R, there exist (u, y,v,v,6) and e such that
{i) z = fllr)Ju—v+e & A = p+v-—-6

i) el < el +A)
i) loll + ol + s + w1 + 18] < (=] + |A)

Assumptions (91)i) & ii) imply right away that
{i) z = fl(x)u—v+e,

i) el < al=ll & lul < ez
1) o[+ < < (@+a+eff @)
Let us take now g := ¢||u||, v := ¢||v|| and & := ¢(||u] + [|v]]) — A. We
deduce from (91)iii) that (=, #) belongs to Ep(D}V)(z), that (v,») belongs
to Ep(D;W)(y) and that

Di(V)(#)(s) + Di(W)(5)(v) < elllsll +[el) < m+v = A+6

and that |6 < (|A| + e([le]l + lIv]D) < (|=]] + [A])-
Let us set 2y = (zg, Vi(0), f(20), W1(f(20)), U (20)) Hence, we deduce
that
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Ck (20) N G'(20)71(0,0) €  Crxng-1(0)(20)

It remains to show that this inclusion implies inequality (90).

Let usset A = C;(V)(x0)(x), g = C;(W)(f(20))(f'(x0)n) and v := A+p.

Hence the element (u, A, f'(zo)u, #,v) belongs to Ck (20) NG'(20)1(0,0)
and thus, to the Clarke tangent cone to the subset K N G~1(0,0) at z,.
Then, for all sequence h, > 0, there exist elements (u,,A,, #,) converging
to (u,A, ) such that, for all n > N,

(Zn + hnttn, 8n + hodn, f(Tn) + Ro f'(T0)Un,bn + hnpin,@n + 0o + hovn) € K

Therefore, the pairs (z, + hotn,a, + b, + h, (A, + p,,)) belong to the
epigraph of U. Since (u,,A, + f,) converges to (u,r), we deduce that

CiU)(xo)(w) < v = C{V)(zo)(u) + C1(W)(f(20))(f'(xo)) O

Let us state explicitely useful formulas of the epiderivatives of the re-
striction of a fanction V' to a closed subset, in the finite-dimensional case
for sinmplicity.

Corollary 9.1 Let X be a finite-dimenssonal space, V' be an esztended
function defined on X and K be a closed subset of X. Let x, belong to
K NDom(V).

We always have:

Vu € Tk(zo), D1V(zo)(u) < D(V|k)(20)(n)
If we assume that
Dom(C1(V (20))) — Cx(z0) = X
then

i) VaueTk(x), DYV |k)(z0) < DLV (z0)(u)

{.-) Vu € Th(20), Dy(V|x)(zo) < DyV (20)(a)
i#) V€ Cxlzo), C(V]x)(zo) < GV (zo)(v)

Let us consider now a family of functions V; : X — RU {+o0}, (s € I)
and let us associate with it the function U defined by
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U(z) := maxV(z)

el
We set I(z) := {s € I | V() = U(z)}. The following estimate is
obvious:
(92) Ve€ X, sap D,Vi(z)(v) < DU(z)(u)
)

iel{x
because, for all ¢ € I(z),

(Vi(z +hu) = Vi(2))/h < (U(z+hu) = U(@))/h
Conversely, we can obtain the following result:

Proposition 9.1 Let us consider n eztended real-valued functions V; :
X — RU {+o0} and the function U defined by

Uz) := .ma.an.-(':c)

If the dsimensson of X is finste and sf we posst the transversalsty assump-
tion
Vu, € X, [((Dom(C;V;(x0)) — u;) # @

=1
then
{ i) Vu€N,Dom(DiVi(o)), D'U(zo)(u) < maxicrim) D Vifxo)(u)
i%) ¥ u €N, Dom(C1Vi(sc)), CU (o) (s) < maxieriam) C1Vi(o)(u)
Proof Since the epigraph of U is the intersection of the epigraphs of
the n functions V;, we shall us Corollary 4.3, stating that under convenient
assumptions we shall check in a moment,

Thpw) (%0, U@0)) 2 Q TEpvy (%0, U20))

The left-hand side of this formula is the epigraph of the adjacent epi-
derivative of U at xy. For the right-hand side, either s belongs to I(z,), and
thus the adjacent tangent cone to the epigraph of V; at U(z,) is equal to
the epigraph of the adjacent derivative of V; at z,, or V;(z¢) < U{(x,), and
we deduce from Proposition 8.4 that the adjacent tangent cone contains
Dom(D}Vi(xo)) x R.
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Then, we deduce from the above relation that

V « € [ Dom(D}Vi(xo)), D'U(xo)(x) < max DYVi(xo) (u)
i=1 teflro
Since the dimension of X is finite, we have to check that for all pairs
(uis A0),

N (Cipy (@0, Ulao)) = (i, A)) # 8

=1

It is clear that this property follows from
(1(Dom(CV;(x)) —u;) #9 O
=1

Let us consider two topological vector spaces X and Y and an extended
real-valued function U : X x Y — R U {+00}.
We associate with it the marginal function V : X — RU {+o00} defined

by
V(z) = infUle,y)

Let 7 denote the projection from X x Y x R to X x R.
We observe that:

7Ep(U) < Ep(V) c #Ep(U)

The first inclusion is obvious. The very definition of the infimum implies
that for every ¢ > 0 and every (z,A) € Ep(V'), there exists y. € Y such
that (z, y.,A + ¢) belongs to Ep(U).

Proposition 9.2 Let us consider two topological vector spaces X and Y,
an estended real-valued function U : X x Y — RU {400}, and its margindl

function V. Suppose that there esists yo € Y which achseves the minsmum
of U(xg,-) on Y

V(zo) =Ul(xo,¥0)
The snclusion
Ve X, Di(V)(x)(n) < h'xp_}?f('l;g, D(U)(xo, g0)(x',v))

$s always true.
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Equality
Vu€X, Di(V)(z)(u) =Lminf(inf D(U)(zo, ) (¥', v))

holds true under one of the following assumptions:

1. U ss pseudo-convesz at (29,y,) € Dom(U), (and in particular, U s

convez),

2. X andY are reflezive Banach space and the subdifferential of U at
(z0,y0) satisfics

(93W(p,q) € X* x Y*, Ipo € X* such that (p — po.q) € 3°U(z,y)
8. The dimension of X and Y is finite and
(94) {v | Di(U)(20,90)(0,v) < 0}:= {0}

Proof We deduce these statements from the criteria implying that
the contingent cones of the images are the closures of the images of the
contingent cones since

(”EpDT(U)(an yO)) = (”TEp(br)(an yO*U(xO* yo)n
C T’r(EpU) ("’0’ V(-TO)) = TEp(v) (xo, V(-’to))
=Ep(D:(V)(z0))

which can be easily translated into the first inequality.

The equality is obtained when U is pseudo-convex because its epigraph
is then pseudo-convex, (see Proposition 4.3), when condition (93) holds
true because it implies that

Im(ﬂ'*) + Nﬁp(U) (.To, Yo, U(fo, yo)) = X"xY"xR

(see Proposition 4.5), and when condition (94) is satisfied because it is
equivalent to

ker(:r)nTEp(U)(:to,yoaU(xo,VO)) = {0}

thanks to Proposition 4.4.
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10 Normal Cones and Generalized Gradi-
ents

We devote this section to dual concepts of tangent cones, derivatives of set-
valued maps and epiderivatives of extended real-valued functions. There
are three reasons to do so. The first one is familiarity with more classi-
cal concepts. For usual functions on Hilbert spaces, there is a canonical
identification between, say, a derivative of a differentiable function and its
gradient, and it became traditional to formulate many results in terms of
gradients, transposes of derivatives and normal cones. The second reason is
that the first attempts to generalize the concept of gradients was by limiting
procedures. Since it seems easier to take limits of elements (the gradients,
for instance) than functionals (the associated directional derivatives, for ex-
ample), many generalizations of concept of gradient dealt with set of limits
of cluster points taken in a variety of ways. The third, and, from our view
point, the most important justification for dealing with dual concepts, is the
availability of the one to one correspondences between closed convex cones
and their polar cones, continuous linear operators and their transposes,
lower semicontinuous convex functions and their conjugates. This is why
we should use only those concepts which can be “dualized”. Unfortunately,
this is just a paradisiac wish, since many problems which are not smooth by
nature, force us to use naturally concepts as contingent cones, contingent
derivatives and contingent epiderivatives. The price to pay in terms of loss
of information for playing with duality just to be able to conserve some
familiar classical formulation is indeed too high in many situations. There-
fore, the dual concepts we are about to present are recommended only in
convex, or more generally, sleek situations.
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Since the Clarke tangent cone is convex, it can be characterized by its
polar cone, which, by analogy with the case of smooth manifolds, will be
regarded as the normal cone. On the other hand, we wish to adapt to the
nonsmooth case the concept of a normal to a set at a given point, which is
orthogonal to all vectors starting from this point and pointing into this set.
Except the convex and (more generally), the sleek case, these two concepts
are different.

Definition 10.1 Let x belongs to K C X. We shall say that the (negative)
polar cone

(95) Ng(z):=Ck(z) " ={p€e X" | Vv € Tx(z), <p,v ><L 0}
18 the normal cone to K at x. We also say that the polar cone

(96) Ni(z) = Sk(z)” = {p€X" | max<py>=<pz>}
to the cone spanned by K — x is the subnormal cone to K at r.

The normal cone is pretty big since it contains the polar cones of the
adjacent and contingent cones and the subnormal cone:

(97) Ni(z) € Tx(z)™ © Th(z)~ € Ng(e)

and is equal to the whole space whenever the Clarke tangent cone is reduced
to 0.
Let us point out the following property:

Proposition 10.1 Let K be a subset of a Hilbert space. Then
Vy¢ K, Vz€xrg(y), y—z € Tx(z)~ € Ng(z)

Proof Let v belong to the contingent cone Tx(z): there exists a
sequence h, > 0 converging to 0 and a sequence v, converging to v such
that z + h,v, belongs to K for all n. Since ||y — z|| < ||ly — 2 — Rava]|, we
deduce that <z —y,v >> 0 for all v € T (z). O
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Remark When X is a Banach space, we may consider the subd-
iferential J(z) of its norm at z. then the above proposition can be extended
to
(98) 0 €eJ(z—y) + Ng(=) O

The transpose of the derivatives of differentiable maps are often used,
in writing chain rule formulas, just to quote an instance. The circatangent
derivative being a closed convex process can be transposed. This brings us
to introduce the following definitions

Definition 10.2 Let F : X ~» Y be a set-valued map from a topological
vector space X to another Y. The transpose CF(x,y)* of the circatangent
dersvative CF(z,y) of F at a (x,y) € Graph(F) defined by

(99) ' p€CF(z,y)"(q) if and only if
VueX, VveCF(z,y)(v), <p,u> < <p,v>

is the codifferential of F at (z,y). We shall say that the closed convez
process from Y™ to X defined by

(100) p € DF(z,y)°*(q) sf and only sf
V(z',y) € Graph(F), <p, @ —2> < <¢qy -y>

is the cosubdifferential of F' at (z,y).

When a real-valued function V is continuously differentiable at x, its
gradient V'(z) being a continuous linear functional, is therefore an element
V'(xz) € X* of the dual of X.

Since the circatangent epiderivative of a nontrivial extended real-valued
function V : X — R U {+o00} at a point z of its domain is always lower
semicontinuous convex and positively homogeneous, it is the support func-
tion of a closed convex subset, which is the generalized gradient of V at
z. In the same time, we shall deal with the subdifferentials introduced by
Moreau and Rockafellar for convex functions.

Definition 10.3 Let V : X — RU {400} be a nontrivial estended real-

valued function and x belong to sts domain. We shall say that the
(101) 8V(z) == {peX"|Vs€eX, <p,u> < CiV(z)(u)}

ss the generalived gradient of V' at z.
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We shall say that the closed conves subset of the dual X* of X defined
by
(102) 8V(z) == {peX*|Vy€eX, <py—z><V(y)-V(z)}

is the subdiferential of V at z.

Naturally, when V is continuously differentiable at x, the circatangent
epiderivative coincides with the gradient V'(z), so that the generalized gra-
dient is reduced to the only gradient:

8V (z) = {V'(z)} when V is continuously differentiable at «

We observe that
3%V (xr) c o8V(x)
When V" is convex, both the generalized gradient and the subdiferential are
equal:
8V (z) = 8°V (z) when V is convex

More generally, this also happens when V is sleek and pseudo-convex at «.

If V is continuously differentiable around a point * € K, then the
generalized gradient of the restriction is the sum of the gradient
and the normal cone:

o(Vix)(z) = V'(z) + Nkla)

We also note that the generalized gradient of the indicator of a subset
is the normal cone:

Yk (z) = Nk(2)

Remark When a real-valued function V is continuously differen-
tiable at z, its gradient V’(z) being a continuous linear functional, it is
both an element V'(z) € X* of the dual and the image V'(z)*(+1) of +1
by the transpose V'* of V’(z), a linear operator from R to X*.
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When V is no longer continuously differentiable, the generalized gra-
dient remains intimately connected with the transpose of the circatan-
gent derivative CV;(z,V (z)), (which, shall we recall, is the codifferential
CVi(z,V (z))*) of the set-valued map V; at (x,V (z)).

the generalired gradient is the value at 1 of the codif-
ferential of V, at (z,V(z)).

Indeed, the codifferential is a closed convex process from R to X which,
being positively homogeneous, needs to be defined only at the points —1,
0 and +1.

We obtain:

{i) CVi(z,V(z))*(-1) = 0

(
i) OVi(z,V(2))*(0) = (Dom(CV)(2))"
111) CVi(z,V(2))*(+1) = 8V(z) O

(103)

The table of formulas on support functions allows to translate the prop-
erties of the circatangent epiderivatives into corresponding properties of the
generalized gradient and vice-versa.

For instance, Proposition 8.1 can be restated in the following form.

Proposition 10.2 When V s locally lipschstzean on the intersor of sts
domain, then the generalszed gradient satsisfics:

t) (z,4) € X x Int(Dom(V)) — o(3V(z),u)
s upper semicontsnuous,
and thus, 3V (-) is upper hemicontinuous
#1) OV (z) are nonempty bounded closed convez

ss) OV(z) = —-9(-V(z))

In the same way, the Fermat and Ekeland rules can be presented in the
following fashion:

Theorem 10.1 (Fermat and Ekeland Rules) Let V : X — RU {+o0}
be a nontrivial estended real-valued funetion.

1. Let z € Dom(V') achseve the minimum of V on X.
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Then x 58 a solution to the snclusson:
0 € 8V(ax)

the converse being true when V s convez or. more generally, pseudo-
conver at x.

2. Let X be a Banach space, V : X — R, U {400} be a nontrivial non-
negative eztended real-valued function and x, € Dom(V) be a given
point of sts domasn. Then, for any ¢ > 0, there ezists a solution
z. € Dom(V) to:

A [ ) Vizg)+e|lz.— x| <Vix)
(104) i) VEEX, 0 €8V(z)+eB

Remark

When the functions are not sleek, the use of generalized gradients and
normal cones involves some loss of information since we have to replace the
contingent epiderivative by the larger, but convex, circatangent epideriva-
tive.

We could save part of the information using subsets of the form

{peX*|VveX, <p,u><D,V(x)(u)}

and the polar of the contingent cones.

This will lead us to increase the population of our ménagerie with species
doomed to disappear through Darwinian evolution, since, their use do not
allow to recover the original information for lack of duality. The use of
generalized gradients for functions is then recommended for functions or
cones which are sleek. 0O
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For the convenience of the reader, we list below a summary of some
formulas dealing with the adjacent?® and normal cones to subsets. The
subsets K, K;, L, M, ...are assumed to be nonempty.

Properties of Adjacent and Normal Cones (1)

1. If K c L, then
Ti(x) c To(a)

2. IfK,cX,;,, (1=1,---,n), then

{') Tb" K.(Il""’xn) = ?=1T1vf.'(1'")

=1 5

#) N k(=) = IS, Neg(=i)

3. If K, and K, are contained in X, then

TK1+K2(1'1+373) > TKx(xl)+TKz(x3)

4. If f: X :— Y, is differentiable at z, then
Tk (z) 2 () (Tk(2))

5. If X and Y are finite dimensional vector-spaces,if LC X and M Cc Y
are closed subsets, if f: X v Y is continuously differentiable at «
and satisfy the transversality condstion

f'(@)CL(z) - Ou(f(2) = Y

then ) X
{ i) Tioa-yny = Ti(z)NA™'Ti(A2)
ﬂ) NLnA-—l(N)) C NL(.’B) + A*NM(AI)

33we chose the adjacent cone rather than the contingent or the Clarke tangent cones

because they enjoy more often equalities in the formulas. Formulas for the Clarke tangent
cones can be deduced from polarity from the formulas on normal cones.
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Properties of Adjacent and Normal Cones (2)

. If X and Y are finite dimensional vector-spaces, if M C Y 1is a closed
subset and if f : X — Y is continuously differentiable at x such that
the transversality condstion

Im(f'(z)) - Cnlz) = Y
holds true, then

(3 Tt

. If X is a finite dimensional vector-space, if K, and K, are closed
subsets contained in X and satisfy

CKI(I)_CKQ(I) = X
then

{") Tk, rk,(2) = Ti, (2) T, (2)
‘ ") 'NKN'\Kz('t) = NK1(1)+NK2(1)

. If X is a finite dimensional vector-space, if K; € X, (1 = 1,...,n),
are closed and if

Vv € X, ﬁ(Cxi(.r)—v,-) £ 0
then,

) T @) = MTh)

i) Nﬂ?=1ffs(") C YL, Ng (=)
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