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FOREWORD

This is an introduction to graphical convergence of set-valued maps and
the epigraphical convergence of extended real-valued functions’.

It is now well established that maps, and more generally, set-valued
maps. should be regarded not only as maps from one space to another, but
should be characterized in an intrinsic and symmetric way by their graphs.

When dealing with limits of maps, either single-valued or set-valued, it
1s quite advantageous to overcome the natural reluctance to handle conver-
gence of subsets and to replace pointwise convergence by “graphical con-
vergence”: Instead of studying (more or less uniform) limits of the images,
one consider the limits of their graphs.

One of the main reasons is that doing so is that a map and its inverse
are treated on the same footing . This is quite important in approximation
theory and numerical analysis.

The concepts of graphical convergence of set-valued maps are related to
the concepts of epigraphical limits of functions, which had recently met an
important success to overcome the failure of pointwise convergence in many
problems of calculus of variations, optimization, stochastic programming,
etc.

Finally, this report provides a first study of the Kuratowski upper
and lower limits of tangent cones, which is needed to compute general-
ized derivatives and epi-derivatives of graphical and epigraphical limits of
maps and functions.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program

lin the development of which IIASA plaved an important role.



Introduction

Here are some basic notes on graphical limits of single-valued and/or
set-valued maps.

To deal with limits is the basis of analysis, or approximation theory,
where we have to approximate objects by richer and more familiar ones.
And numerical analysis is just taking up this issue for very practical pur-
poses. In particular, solving equations and approximating their solutions is
the ultimate task of many mathematicians. It can be regarded in this way:

We want to approximate a solution z, to an equation f(x¢) = yo. by
approximating both the data y, by a sequence of approximate data y,’s,
and the map f by a sequence of maps f,.

Knowing how to find solutions to the approximate problems f,{z,) =
¥n, the problem is how to derive the convergence of the approximate solu-
tions from the convergence of the data y, and f, and thus, to pay some
attention to the limits of maps.

It is now well established that maps, and more generally, set-valued
maps, should be regarded not only as maps from one space to another, but
should characterized in an intrinsic and symmetric way by their graphs.

This point of view, which goes back to the protohistory of analysis with
Fermat and Descartes dealing with curves rather than functions, has been
let aside since for a long time. In particular. as far as limits of functions
and maps go, generations of mathematicians have be accustomed to deal
with many concepts of convergence of functions, from pointwise to uniform,
but all based on the fact that a map is a map, and not a graph.

When dealing with limits of maps, either single-valued or set-valued, it
is quite advantageous to overcome the natural reluctance to handle conver-
gence of subsets and to replace pointwise convergence by “graphical con-
vergence”: Instead of studying (more or less uniform) limits of the images,
we consider the limits of their graphs?.

One of the main reasons is that doing so is that we treat on the same
footing a map and its inverse. This is quite important in approximation

*This point of view of regarding maps as graphs has already allewed to buiid a successful
differential calculus of set-valued maps based on “graphical derivatives”rather than set-
valued Jimits of differential quotients.




theoryv®, where the problem is to derive pointwise convergence of the in-
verses from the pointwise convergence of the maps.

Hence. a first problem is to study what are the relations between graph-
ical and pointwise convergence. The main tool for that is the Stability
Theorem?, an outgrowth of the Inverse Function Theorem for set-valued
maps®.

Since graphical imits are limit of graphs, which are subsets, we have to
rely on the now classical concepts of Kuratowski upper and lower limits.
Hence we begin by a short exposition of these concepts. With the Stability
Theorem on one hand. and the concept of proper maps on the other, we
are also able to complement the calculus of Kuratowski upper and lower
limits of sets. and in particular, to provide criteria for having the natural
formulas for direct and inverse images of Kuratowski limits.

After defining and providing the basic properties of graphical conver-
gence, we expose its applications to viability theory, where we show, for
instance that the Kuratowski upper limit of viability domains is a viability
domain of graphical upper limits.

Finally, we relate the concepts of graphical convergence of set-valued
maps to the concepts of epigraphical limits of functions, which has re-
cently met an important success to overcome the failure of pointwise conver-
gence in many problems of calculus of variations, optimization, stochastic
programming®, etc.

The use of this concept is mandatory whenever the order relation of
the real line comes into play, as in optimization or Lyvapunov stability for
instance. In such cases, a real-valued function is replaced by the set-valued
map obtained by adding to it the positive cone {for minimization}, whose
graph 1s thus the epigraph of the function. Therefore, the convergence of
the graphs of such set-valued maps is the convergence of the epigraphs of
the associated functions.

We present just a selection of 1ssues dealing with epi-convergence, among

Ssee |12, Stability Theorem 1.1}, which adapt to the general case of solving inclusions the
priuciple stating that stability, convergence of the data and “consistency”™ imply the con-
vergence of the solutions. Consistency is nothing other than graphical lower convergence.

4see [12, Proposition 1.1]

bsee |10, Chapter 7} and |11

8see for instance the book [8] and the bibliography of this book.




which some formulas dealing with the epi-limits of sum and products of
functions.

Finally, we relate these concepts of Kuratowski limits with the ones of
tangent cones’, which lay the foundations of the differential calculus of set-
valued maps, and which play such an important role in optimization and
viability theory.

The problem we begin to consider is to study the IKuratowski upper
and lower limits of the tangent cones to subsets K, in terms of Kuratowski
upper and lower limits of sets of the form (K, — z,,)/h, when K, > z, —
r and h, — 0+, which we call respectively asymptotic paratingent and
circatangent cone. One would like to relate them to the tangent cones to
the Kuratowski limits of a sequence of subsets A, but this seems rather
difficult outside the convex realm. Let us just point out that Clarke tangent
cones and Bouligand’s paratingent cones to a subset A can be regarded as
asymptotic circatangent and paratingent cones for constant sequences.

"By the way, the various definitions of tangent cones are Kuratowski upper and lower
limits of the sets {K — z)}/h when h — 0+

o
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1 Kuratowski Upper and Lower limits

We can also characterize closed set-valued maps and lower semicontinuous
set-valued maps through adequate concepts of limits. For that purpose.
we introduce the following notations: we associate with a set-valued map
F:X ~Y and € X the subsets

" {) limsup,_, F(z)
" = {y€Y | liminfy_.d(y, F(z')) = 0}
: 17) liminf._, F(x')

l = {y €Y I lim:r’—v:d(y3p(x,)) = 0}

They are obviously closed. We also see at once that

(2) li;lllian(x') c F(z) ¢ limsup F(z')
- Y —x

The other advantage of introducing these notions is that we can define
kinds of semicontinuity for "discrete” set-valued maps, i.e., "semi” limits
of sequences of subsets K, of a metric space X: we set

' 1) lLmsup,_ . A,
(3) [ = {ye€Y | bLminf. .o d(y,K,) =0}
11) liminf, . K,
l = {y€Y | bm,..d(y,K,)=0}

When K, is a sequence of subsets of a metric space X, we shall also use
the following notations:

| 9y K* := limsup,_ . K,
| #4) K* := liminf,_, K,

Definition 1.1 When F : X ~» Y 48 a set-valued map, we say that
lim sup F'(z')
r—zx
i8 the Kuratowski for Kuratowski-Painlevé ) upper limit of F(z') when

' — r and that
liminf F(2')

(2



18 the Kuratowski for Kuratowski-Painlevé ) lower limit of F(z') when
' —r.

When K, 13 a sequence of subsets of a metric space X, we say that

ﬁquololpK" and liﬂi;lfK,,
are the upper and lower Kuratowski limits of the sequence K, respec-
tively. A subset K i3 said to be the Kuratowsks limist of the sequence K,
if
K = hminfK, = lmsuph, =: lim Kk,
n—00 n— 00 n—oo

We observe at once that the Kuratowski upper limits and Kuratowski
lower limits of either F(x) or K, and of either F(r) or K, do coincide,
since d(y, K.) = d(yf;)

Any decreasing sequence of subsets K, has a limit, which is the inter-
section of their closure:

if K, ¢ K,, when n>m, then lLm K, = ﬂ K,
n—oo

n<0

Remark

The use of the concept of filter would avoid to duplicate these defini-
tions in the discrete and continuous cases. We have preferred this longer,
may be more pedagogical, solution. O

It is easy to observe that:

Proposition 1.1 A point (z,y) belongs to the closure of the graph of a
set-valued map F' : X ~ Y if and only if y € imsup,_,F(2') and F 13
lower semicontinuous at z if and only if F(z) C iminf,_., F(2)

If K, 18 a sequence of subsets of a metric space X, then liminf, . K,
i8¢ the set of limits of sequences z, € K, and limsup,_ K, 32 the
of cluster points of sequences z, € K, , s.e., of limits of subsequences
x, € K,» . It 12 also the subset of cluster points of "approzimate” sequences
satssfysng:

(4) Ve>0, AN(e) | Va> N(e), x, € B(K,,¢)




Then we can measure the lack of closedness (of the graph) or the lack
of lower semicontinuity by the discrepancy between the values at x of the
set-valued maps F'(x). liminf,_,F(2')and limsup,_  F(z').

Another useful and easy consequence of the Kuratowski limits is the
following diagonalization lemma.

Lemma 1.1 Let us consider a "double” sequence of elements z,,, of a
metric space X, such that lim,, . lim, . x,., does exist. Then there ezsst
sequences n — m(n) and m — n(m) such that

. lirn'm—»oo limn—»oo L
(5) = limm—’oo Tyn,n(m)

— limn—voo Tmin)n
Proof We set ¢ :=lim,, . lim, ., .,

1. Let us set x,, := lim, .o, 2, and K, := {&,, 1 }m>0. Therefore z,,
belongs to liminf, .., K, for all m. This implies that the limit x of
the elements x,, belongs also to liminf, ., K,, and therefore, is the
limit of a sequence of elements y, belonging to K,. Such elements
can be written ¥, = Tm(n)n.

2. Let us set L, := {0 }n>0. We observe that each z,, belongs to L,,.
Hence the limit x of the sequence z,, belongs to liminf,,_ ., L,, which
is equal to liminf,, .., L,,. Consequently, x is the limit of elements
2, € L, which can be written z,, = 2y n(m). O

We observe also the quite impressive following equalities:

1) limsup,_,, F(l") = nr;>0 U:'EBmf).,,) F(x')
= NeoMy>oUrepian BIEF (2, €)
11) lim sup, .. I{" = n[\'>0 U"Z!v Kn
(6) = ﬂoo nN>0 UnzN B(Kns 6)
117) liminf,_, F(z)
= ne>0 Ur; >0 n.‘r’GB(:r,n] B(F(‘tlb)s 6)
tv) liminf, . K,
- n¢>0 UN>0 nnzN B(Kns €)




By replacing the balls of a metric space by neighborhoods, we can extend
through these formulas the concepts of Kuratowski upper and lower limits
to subsets of a topological space.

Many properties of closed and/or lower semicontinuous set-valued maps
can be extended to the Kuratowski's limits. For instance,

Theorem 1.1 Let K C X satisfy the followsng property:
(7) for all neighborhood U of K, 3N | Va> N, K,clU

Then
(8) limsupK, < K

n—aoo
The converse statement 18 true for any neighborhood U whose complement
$8 compact.
In particular, sf the space X ss compact , then the upper limst K* enjoys
the above property (and thus, is the smallest closed subset satisfying ist).

Proof

The first statement is obvious. For proving the second, let y belong to
the complement M of U, which is compact by assumption in the first case
or because it is contained in the compact set X in the second case. Then
there exist ¢, > 0 and N, such that, for all n > N,, y does not belong to
B(K,,2¢,). Since M is compact, it can be covered by p balls B(y,,¢,,).
Our claim holds true for all n larger than N := max;—,_., N,,. O

We also remark the following obvious properties:



Proposition 1.2 Let K,. L, be sequences of subsets of a metric space X.

Then o
: ¢} limsup,_ (K,NL,)

c limsup,_. K, Nlimsup, .. L.
t7) lminf,_ . (K, NL,)

c bLminf,_ . K, Nliminf,_., L,
117) lmsup,_ . (K. UL,)

= limsup,_, A, Ulimsup, .. L,
tv) Bminf, (K, UL,)

> hminf, .o A, Uliminf, .o L,
v) lim 5P, o ?=l Kr's

- n:l:l hm supn—‘oo K:l
vi) liminf, .o [T/, K|

= [I_,liminf, . K,

(9)

We need also to relate direct and inverse images of Kuratowski upper
and lower limits to the Kuratowski upper and lower limits of their direct
and inverse images. We mention now the obvious relations and postpone
the proofs of criteria which transform the following inclusions to equalities.

Proposition 1.3 Let K, be a sequence of subsets of a metric space X,
M, be a sequence of subsets of a metric space Y and f : X —— Y be a

(single-valued) continuous map.
Then

‘ i) flimsup,_, K,) C limsup,_o f(K,)

o) ) i) lmsup,_o fNAM) [ (lmsupy_o, M)
i) f(liminf,_o K,) € liminf,_. f(Kn)
liv) liminf,_o 7' (M,) < f7'(liminf,_M,)

Kuratowski upper limits and Kuratowski lower limits can be exchanged
by duality:

Proposition 1.4 Let K, be a sequence of subsets of a Banach space 1.
Then
(11) Lminf K, < limsup K, )~

n—=00 n—o
The equality holds true when the dimension of X ie finite and when the
subsets K, are closed convez cones.




Proof

Let us choose « in liminf, ., K, and p in imsup,_. ., K, . Then there
exist a sequence of elements x, € K, converging to # and a subsequence of
elements g, of K, converging to p. Therefore

<p,x> = lim<gp.,2,> < 0
n—oc

Then property (11) is checked.

Conversely, let x belong to (limsup,_. ., A )~. We have to prove that
the projections z, := 7k, (x) converge to z. But we know that p, := = —p,
belongs to A, and satisfy < p,,z, >= 0. Since the dimension of Y is finite,
we deduce that subsequences (again denoted) p, and z, converge to p and
x — p respectively. Since < p,x—p >= 0, we deduce that ||p||* =< p,z >< 0
since p, a cluster point of the sequence p,, does belong to limsup, _, K .
a

2 Kuratowski Limits in Lebesgue Spaces

Let ({1, S, ) be a measure space and X be a finite dimensional vector-space.
Let us consider a sequence of measurable set-valued maps

K,:well~ K, (v)C X.
We associate to it the subsets K, of LP({}, X) defined by
K, = {«(-)€ LP(Q,X) | for almost all w € 2, z(w) € K,(v) }

The purpose of the next theorem is to compare the Kuratowski limits of
the sets K, and the sets of selections () of the Kuratowski limits of the
sets K, (w).

Theorem 2.1 Let us assume that the sct-valued maps K, are measurable
and that the subsets K, are not empty. Then

J {x(-) € L (Q,X) | for almost all w, x(«) € liminf,_o A,(w)}
C lminf, ., K, € limsup,_ K,
lv c {z() € LP(Q,X) | for almost allw, z(w) € limsup,_ . K,(«v)}

10



3

Proof

1. Let x(-) belong to the first subset. Then the functions a,(-) defined

by

a,(w) = dz(w) Kq(w))
are measurable and converge to 0 almost everywhere. Let us choose
some g, (-) in K,, which is not empty by assumption. Since

for almost all w, a,(w) ||z(w) — ya(w)]|

and since the right-hand side of this inequality belongs to L*({1), we
deduce from Lebesgue’s Theorem that the functions a,(-) do converge
to 0 in LF({)). Let us introduce now the subsets L,(w) defined by

Ly(w) = {:€K,(w) | [lo(w) - z|| = e ()}

It is clear that the set-valued map L, (-) is also measurable. The Mea-

surable Selection Theorem allows us to choose a measurable selection
za(-) of the set-valued map L, (-). It belongs to L?({}) since

for almost all w, ||z, (w)|| £ |lz(w)| + an(w)

Therefore z,(-) belongs to K, and converges to z(-) in LP(Q), i.e., z(-)
does belong to the Kuratowski lower limit of the subsets K,,.

. Let us choose some z(-) in the Kuratowski upper limit of the sub-

sets K,. Then there exists a subsequence of elements z,/(-) of K,
converging to z(-) in L?({}). Then a subsequence (again denoted)
zn(-) converges almost everywhere to z(-) and consequently, for al-
most all w, (w) belongs to the Kuratowski upper limit of the subsets
K,(«). O

Stability Theorem

We shall prove the following Inverse Stability Theorem which has many
useful consequences. Let us recall that when € K. we denote by

K-z
h

Sk(z) = |

h>0

11




the cone spanned by K — z and by

Tg(x) = limsup K-
h—0~+

the contingent cone to K at z.

Theorem 3.1 (Inverse Stability Theorem) Let X aend Y be two Ba-
nach spaces. We introduce a sequence of contsinuous linear operators A, €
L(X,Y), a sequence of closed subsets K, € X.

Let us conssder elements &, of the subsets K such that both x; converges
to x; and A,x, converges to yo.

We posit the followsing stability assumption: there ezist constants
¢ >0, a€0,1] end n > 0 such that

[ ¥, € K,NBlzo,7),

(12) l A,,SK” (x,.) NBy C A4, (T},’n (x,,) N CB);) + aBy

Let us set l :== c/(1 — a), p < /3l and consider elements y, and z,
satssfying:

(13) i) zm € KnNB(x0,n/3), Auzon € Blyo,p)
| i) gn € Au(En)NBlyo.n/3)

Then, for anyl' > and n > 0, there ezist solutions z, satisfying

1) ﬁGKn&Anﬁ = ¥Yn

14 SR g

(14) i) (17 = zonll < Pllge — Avzon]
so that N

(15) l d(xOsKnnAn—l(yn,” S l”yn—AnxOnH

| £ 2o = zonl + Ulyn — goll + Ullyo — Anzonl|

converges to 0 when z(, converges to x, and both A x¢, and y, € A K,
converge to Y.

Proof We choose ¢ > 0 such that
3p l1—a 1
16 — < < = -
(16) " € y ;

12




and we consider the elements x5, and yo, satisfying (13).
By Ekeland’s Variational Principle (see [23] } , we know that there exists
a solution 7, to

[i) llgn =Bl + €l T = zonll < lyn = Anzonll

(17) l u) Vl‘“ € I‘—na ”yn - -4"5:” S I|yn - Anxn” + E”l’,, - 5;”

We deduce from inequality (17)i) that

o~ 1
1£5 = 2ol < ;llyn — Az S p/e < /3

so that ||z, — xo|| £ 4/3 + [|xon — xo|| £ 29/3.
Since y, — A,Z, € A,(K,—Z,), assumption (12) implies that there exist
u, € Tg,(Z,) and w, €Y satisfying

]l) yn—Ana = Anun+wn
Lit) Jluall < cllyn - Audall & ]l < allvn — 4055

By definition of the contingent cone, there exist elements A > 0 and
e, € X converging to 0+ and 0 respectively such that

(18)

z, := Z,+ hu, +he, €K,

By taking in inequality (17)ii) such an «,, by observing that y,—4,z, =
(1 =h)yn — AnZ,) + hw, — he,, we deduce that
(19) hllyn — AnZall < hllwall + Rl Anenll + ehllun + enll
Dividing by k > 0 and letting & (and thus, ¢,) converge to 0, we get:
(20)  lgn — AnZall < lwall+ elluall < (o + ec)llyn — AnZa]

Since we have chosen ¢ such that a 4+ ¢c < 1, we infer that z, is a solution
to
xr, € Kn & Ana = Y

satisfying
- 1
”In - xOn” S z”yn - AnxO:n“ S l“yn - AnIOn” O

As a consequence, we obtain the following important statement.




Theorem 3.2 (Inverse Function Theorem) Let X and ¥ be two Ba-
nach spaces. We sntroduce a sequence of contsnuous linear operators A, €
L(X.Y), a sequence of closed subsets K, C X.

Let us consider elements x of the subsets K, such that both x; converges
to z;, and A,x, converges to yo.

We poait the following stability assumption: there ezsst constants
¢>0,a€0,1] and 5 > 0 such that

21) { V 2, € K, N B(zo.1),

By C A( (:c )nCB\()'i‘OB)

Then for any sequence of elements x, of K, converging to x, and such that
A, (xon) converges to yoand any sequence of elements y, €Y converging to
Yo, we have

d(zon, Ko N 7 () < Ulgn — fa(zon) ]

The stability assumption (21) implies implicitly that x, belongs to the

lim inf of the subsets K,. We consider now the lim inf of the contingent
§
cones

T{zy) := hmmf Ty { = NuU N Tk, (z,) +¢B

Kn33n—30 €0 N.p n>N,zneKnn(z+n B)

and we address the following question: under which conditions does the
“pointwise surjectivity assumption”

.4T(:Co) =Y

imply the above stability assumption of the K,. The next result answers
this question when the dimension of Y is finite, unfortunately.

Proposition 3.1 (Pointwise Stability Criterion) Assume that T(x,)
is conver and that AT(xy) = Y. Then there ezists a constant ¢ > 0
such that, for all o €]0, 1], there ezist 7 > 0 and N > 1 with the following

S which is equal to the asymptotic circatangent cone when the dimension of X is finite.
See Propasition 11.2 below.
®This is the case when the dimension of X is finite thanks to Proposition 11.2 below.

14




property: Y v € Y, ¥ n 2 N Va, € K, N(x;+ nB). there ezsst solutions
u, € Tg, (x,) andw, €Y to

22)  Aw = et fulz Scllely, ey < allelly

Proof Let S denote the unit sphere of ¥, which is compact. Hence
there are p elements v; such that the balls v, + %BH cover S. Since T(xzo) is
convex and AT (zp) = Y, Robinson-Ursescu’s Theorem implies the existence
of a constant A > 0 such that we can associate with any v; € S an u; € T(xy)
satisfving ||ui||z < A. By the very definition of T'(z), we can associate with
a €)0. 1] integers N; and n; > 0 such thatV n > N,V z, € K,N(zo+eta,;B),
there exist «! € Ty, (z,) satisfying

: o
lwi —uflz < §||A||uz,y1

Let N = maxi<;<, N; and  := mini;<, 9. We take n > N and z, €
K, N(xz;+nB). Let v belong to Y. There exdsts v; € S such that

v o
- —y < —=
I o = 2

Set v, = ||v|lyul and w, = v — Av,. We see that v, € Tk, (za), that

[ loallz = llelylluaillz < [lolly (X + [lui = w1 2)
| < llelly X+ gllAllzizy) < elelly

(where ¢ := A + || 4]|z(2,y)/2) and that

wally = llo = Allellye)lly
= lelly Ol — o+ Al - w)lly
< lelly (5 +lAllzzplle =iz < o

This proves our claim. [

vl Y

4 Kuratowski Limits of Inverse Images
We have seen that inclusion

Lminf [ (M,) © f~! (hﬂiong,,')

n—oc

15




is always true. We can provide sufficient conditions for having the equal-
ity in the case of lower limits. For instance, the usual Liusternik’s Inverse
Function Theorem implies the following proposition:

Proposition 4.1 Let us assume that X and Y are Banach spaces, that the
map [ is continuously differentiable at some point

re ! (ngg}f M,,)
and that f'(x) is suryective. Then
(23) z belongs to li'ﬂioxcyff_l(l\l")

But, before extending this result to more general sitnations (when X is
replaced by a subset A, for instance), let us proceed with the simpler case
of convex subsets.

Proposition 4.2 Let us conssder two Banach spaces X and Y, a continu-
ous linear operator A € L(X,Y) and two sequences of subsets L, C X and
M, cY. We assume that

t) L, and M, are convex
(24) t1) L, are contasned sn a bounded set
1) 3y>0 | vB c A(L.) - M,

Then
(25) liﬂiox.}f(Ln NATYM,)) = liﬂiggfL,. N A’l(ﬁﬂglf‘Mn)
Proof The inclusion
Lminf(L, N A7 (M,)) < A™'(liminf L, Nliminf M,)
being obvious, let us prove the other one, by checking that any z in
Lminf L, N A™" (lim inf M,)

is the limit of a sequence of elements z, belonging to L, such that 4(z,)
belong to M,.

16



We know that x can be approximated by elements u, € L, and that
A(x) can be approximated by elements v, € M, . Then ¢, := ||4(u,) — v, ||
converges to 0 and #, := I~ converges to 1, belongs to 10, 1] and satisfies
6,6, = (1—10,)y. Therefore,

(26) l Hn(vn - A(un)) € 0nan = (1 - gn)A/B
C (1-6,)(A(L,) - M)

and consequently, there exist elements u, € L, and v, € M, such that

(27) Allnun + (1= 0,)u,) = buv, + (1 — 6.,

If we set x, = 6,u, + (1 — 6,)u,, we observe z, belongs to L, and that
A(z,) belongs to M, for these subsets are convex.

Furthermore, ||z, —u,|| = (1 —6,)|u, — v, || converges to 0 since «, and
u, remain in a bounded subset by assumption. O

Remark Assumption (24) implies obviously that

(28) 0 € Im(J N (AL, -M,)) c liminf(4(L,) — M,) O

N n>N

For non convex subsets L, and M,,, we obtain the following consequence
of the Inverse Stability Theorem 3.2:

Theorem 4.1 Let X andY be two Banach spaces. We introduce a contin-
uous linear operator A € L(X,Y) and sequences of closed subsets L, C X
and M, C Y. Let us assume that there ezist constants ¢ > 0, a € [0,1] and
n > 0 such that

l Vxn € Kn nB(x03q)$ Yn € B(Aﬂ?o«ﬂ)

(29) | By © A(T},(2xn)NeBx) — Th,(9n) + 0By

Then the Kuratowsks lower limit of L, N A™'(M,) is equal to the inter-

section of the Kuratowsks lower limst of L, and the inverse image by A of
the Kuratowsks lower lsmst of M, :

(30) Lminf(L, N ATHM,)) = liminf L, N Al liminf M,

17




Proof Since the inclusion

liminf(L, N A;'(M,)) € liminf L, N A™(iminf M,,)
n—oo n—oS S on—o
is obvious, let us take any z, := lim, _, z, belonging to liminf, . L, such
that
Yo := Azo = im Axo, = lim o,

belongs to iminf, . M.

We then apply Theorem 3.2 to the subsets L, x M, of X x Y and
the continuous linear operators 4 < 1 associating to any (z,y) the element
Axr — y, since we can write

K, = L,NnA'(M,) = (Ac1)"0)N(L, x M,)

The pair (zg,,Yon) € L, X M, converges 1o (29, o), and (A & 1){xgn, Yon)
converges to 0.

Furthermore, it is clear that assumption (29) implies the stability as-
sumption {21) of Theorem 3.2.

Therefore, by Theorem 3.2, there exits a solution (Z,,¥,) € L, X M, to
the equation (A S 1)(Z,,¥,) = 0 such that

|zon = Zall + llyon — ¥all < U||Azon — Yon — O]

This means that z, belongs to K,, converges to zo and that Az, converges
t0 ¥o.

Remark We can extend this theorem to the case of a sequence of
continuous linear operators 4, € L£(X,Y), where we take

(31) [ 1) xo:=lm, . x, € iminf, . L,
| ) o = Limy oo Ayoon = lim, oo gon € liminf, s M,

The same proof where A is replaced by A, implies that
dz, € K, such that

(32) (i) & — a0
i) As — w O
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5 Kuratowski Limits of Direct Images

We have seen that inclusion

f(imsup K,) C limsup f(K,)

n—od H— o0
is always true. We obtain equalities for the Kuratowski upper limits when
f is properi®
Proposition 5.1 Let us assume that [ 33 proper, then

(33) f(imsupK,) = limsup f(K,)

n—oc n—oc

and sf f i3 proper and suryective, then

(34) imsup f~}(M,) = f~* (limsup M,,)

n—oo S and e *l

We can adapt the Closed Range Theorem!' to obtain the following
equality: (We denote by

K = {peX"|VzeK, <px>< 1}
the polar set of K).

Theorem 5.1 Let X and Y be reflezive Banach spaces, K, € X be a
subsets and A € L(X,Y') be a continuous linear operator'? satisfysng

(35) 0 € Int (Im(A*)+ JnN A)

N>0n>N

10We recall that a continuous single-valued map from a metric space X to a metric space
Y is proper if and only if one of the equivalent statements

If f(zn)convergesin YV

then a subsequence of z, converges in .\
or ‘

1) f maps closed subsets to closed subsets

i) YyeV, f~}y) is compact

Hsee (10, Theorem 1.5.5, p28]

Banach’s Closed Graph Theorem allows to assume that A is surjective: It is sufficient
to decompose A as the product A o é of the canonical surjection ¢ from X onto its factor
space X/ ker(A) and the associated bijective map A, which is an isomerphism. Then the
properness of A is equivalent to the properness of ¢.
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Let K} denote the Kuratowski upper limst of the subsets I, when X is
supplied with the weak topology. Then

(36) limsup 4(K,) < A(K:)
Proof Let us consider a sequence z, € K, such that A(z,) con-

verges to some y in Y. We shall check that this sequence is weakly bounded,
and thus, weakly relatively compact. Let us take for that purpose any
p € X*,||pll« £ v, which can be written, by assumption ( 35)

(37) p=4A¢+r,q €Y, r € U ﬂ K,

N>0n>N
Therefore, there exists a N such that r € N, .y K and consequently,

J SuUp,.ny < P, Ty >=SUp, . N(< ¢, A2, > + < 1,25 >)

(38) , .
"1 < supn(llllll 4zall + 0k, () < sup,sn (lgllll 4zl + 1 < +o0

since the converging sequence Az, is bounded.
Then a subsequence (again denoted) converges weakly to some x which
belongs to K}, O

6 Graphical Limits

We shall use these concepts to define graphical convergence of set-valued
maps.

Definition 6.1 (Graphical Convergence) Let us consider a sequence of
set-valued maps F,, : X ~ Y. We shall say that the set-valued maps F*
and F* from X to Y defined by

[ i) GraphF* := limsup,_ . GraphF,

(39) | ¢4) GraphF’ := liminf,_. GraphF,

are the (graphical) upper and lower limits of the set-valued maps F,
respectively.

We provide a more explicit characterization of these graphical upper
and lower limits, which follows immediately from Proposition 1.1.

20




Proposition 6.1 Let us consider a sequence of set-valued maps F,, : X ~~
Y. Then y belongs to F*{x) sf and only sf st 18 the limst of a subsequence
of elements y, € F(x,/) where x,, converges to x. It belongs to F’(x) if
and only if st 39 the limst of a sequence of elements y, € F(x,) where z,
converges to x.

Let us point out these useful formulas:

Proposition 6.2 Let us consider a sequence of set-valued maps F,, : X ~-

Y. Then o
| F'(x) € Neoliminfy o Fu(B(x,¢))
I Fﬁ(x) 2 n¢>01imsupn—voo F,,(B(:B,E))

These formulas can be regarded as relating graphical convergence with
some kind of “ almost pointwise convergence”. But can we compare the
graphical convergence of F, and the ”pointwise convergence ™ of F,, i.e., the
upper and lower Kuratowski’s limits of the subsets F,(z)? The following
statement provides the easy answers.

Proposition 6.3 Let us conssder a sequence of set-valued maps F, : X ~»
Y. Then the followsng relations hold true:

| i) lLmsup, .. . Fa(z.) = F(a)
| #) liminfa—c—sFu(z,) < F'(2)

The missing equality holds true under more assumptions.

Theorem 6.1 Let X and} be two Banach spaces. We consider a sequence
of set-valued mape F, : X ~~ Y and sts upper graph limst F’ defined by

Graph(F’) = liﬂg}fGraph(Fn)

Let us consider yo € F’(x,) and let us assume that there ezist constants
¢>0,a€l0,1] and n > 0 such that

| V (%n,yn) € Graph(F,) N B{{z0,¥0). 1),
| |DFul@n,9a)ll := sup, cxinfuepr, (rnymj 1]/ [lull < ¢

Hence, for any sequence z, converging to xo, we have

(40)

Yo € H’Eig}f Fn(xu)
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Proof We apply the Inverse Stability Theorem 3.2 to the case
when the subsets A, are the graphs of the set-valued maps F,, when M,
are the singletons {z,} and when the continuous linear operator A is the
projection 7y from X x Y onto X, since

I N

Fo.(z,) =ny [Graph(Fn) ﬂw}l(x,.))

The uniform boundedness of the contingent derivatives on a neighbor-
hood of (x¢,y0) implies obviously the stability property (21) with a = 0.
a

We can translate the Inverse Stability Theorem 3.2 into the following
useful statement:

Theorem 6.2 Let us consider a sequence of sct-valued mape F, : X ~ Y,
an element (xo,y0) of the graph of sts graphscal lower limst and let us assume
that there ezist constants ¢ > 0, o € [0,1] and § > 0 such that

I V (zn,yu) € Graph(F,) N B((xo,y0),7),
VeeY, Ju, €X, 3w, €Y such that v € DF,(z,,y,) () + @,
| and unl < ellel & fwall < alle]

Then, for any sequence (Zon, Yon) converging to (zo,yo), for any y, converg-
ing to yo, we have

d(IOH’R:l(yrs)) S l”:’/On - yn”

Proof We apply the Inverse Function Theorem 3.2 with X replaced
by XtimesY , K, y Graph(F,), A by the projection ITy- from X x Y onto }".
We have to prove that assumption {21) of Theorem 3.2is satisfied, i.e., that
for all v €Y', there exist (u,,v,) in the contingent cone T30}, PRLCITEZY.
and w, € Y such that v = v, + w,, max(||u,]|, |Jv.]]) < ¢||v|| and ||w.|| <
a||r||. These informations are provided by our assumption since the contin-
gent cone to the graph is the graph of the contingent derivative and since
|ltn = v — w,|| is smaller then or equal to {1+ o)|l¢|. O

An important consequence is the Inverse Function Theorem for nonlin-
ear constrained (single-value)d maps.

Theorem 6.3 (Inverse Function Theorem) Let X and Y be two Ba-
nach spaces. We introduce a sequence of continuous single-valued maps f,

22




from X toY a sequence of closed subsets K, C X and an element (x.y,
sn the graphscal lower lsmst of the retrictsons of f, to the subsets K, .

We assume that the functsons f, are dsfferentsable on a nesghborhood of
xg and we posst the followsng stability assumption: there ezsst constants
¢>0,a€[0,1] and § > 0 such that

| Vz, € K,N B(xg,n),

) | By © fi@)(Tx. (2.) N eBy) + aBy

Then for any sequence of elements xy, of K, converging to x, such that
falxon) converges to yo and any sequence of elements y, €Y converging to
Yo, we have

d(IOn’Kn N fn—l(yn)) S I“yn - fn(xOn)”

Proof It is sufficient to recall that the contingent derivative of the
restriction F, = f, i of f, to K, is the restiction of the derivative f; ()
to the contingent cone Tk, (z,) to K, at z,. O

Remark Since the above theorem implies obviously Theorem 3.2,
we infer that all these statements are equivalent. O

Monotone and Maximal Monotone Maps do enjoy interesting properties.
For instance, it is sufficient to know that the graphical lower limit of a
sequence of monotone maps is maximal monotone for deducing that it is
actually the graphical limit:

Proposition 6.4 (Graphical Convegence of Monotone Operators)
Let X be a Hilbert space. We suppose that the set-valued maps F, : X ~» X~
are monotone and that F' : X ~» X* s mazimal monotone.

If F 45 contasned in the graphical lower limit F* of the F, s, then F s
actually the graphical limst of the F, ’s.

Proof

We have to prove that the graphical upper limit F* of the set-valued
maps F, is contained in F.

Let p belongs to F*(z). Hence the pair (z,p) is the limit of a subsequence
of elements (z,/,p,) of the graph of F}.

Take now any pair (y,¢) in the graph of F'. Since F' is contained in the
graphical Kuratowski lower limit F* by assumption, we know that there
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exists a sequence of elements (y,,¢,) of the graph of F, converging to
(y.9). The monoticity of the set-valued maps F;, implies the inequalities

<pn—Qnamn_yn> > 0

Going to the limit, we deduce that

V{(y,q) € Graph(F), <p—g,z2-y> 2 0

Therefore p belongs to F'{x) because of the maximality of the graph of F
among monotone graphs. O

7 Stability of Viability Domains and Solu-
tion Maps

Let us consider now a sequence of closed viability domains of a set-valued
map F'*,

Does the Kuratowski upper limit (see Definition 1.1) of these closed
viability domains is still a closed viability domain? The answer is positive.

Theorem 7.1 (Stability of Viability Domains) Let us consider a non-
trivial upper semicontinuous set-valued map F : X ~» X with compact
convex images and linear growth . Let K, be a sequence of closed vsabslsty
domains of F. Then the Kuratowsks upper limst

(42) K= UB(K,.e

SONSOR>N

18 also a closed viabslity domasn of F.

¥gee [13]. A subset K C Dom(F) is a viability domain if and only if
Yze K, Fla2)NnTxg(z) # 0

The Viability Theorem states that for upper semicontinuous set-valued map with
nonempty compact convex images and with linear growth, K is a viability domain if and
only if A enjoys the viability property: Foe all initial state in K, there exists a solution
z(-) to the differential inchision z' € F(z) which is viable in K.
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Proof We shall prove that A" enjoys the viability property. The
necessary condition of the Viability Theorem!* implies that this subset is
a viability domain.

Let x belong to A*. It is the limit of a subsequence z,» € A,:. Since
the subsets A, are viability domains. there exist viable solutions y,(-) to
the differential inclusion z' € F(x) starting at . The upper semicontinu-
ity of the solution map implies that a subsequence (again denoted) y,(-)
converges uniformly on compact intervals to a solution y(-) to differential
inclusion #' € F(z) starting at z. Since y,/(t) belongs to K,/ for all n’, we
deduce that y(t) does belong to K¥ forallt > 0. 0O

Since we are dealing with Kuratowski upper limits, the question arises
whether the Kuratowski upper limit K* of a sequence of closed viability
domains /i, of set-valued maps F), is a closed viability domain of the closed
convex hull of the upper limit T6F* of the set-valued maps F,, defined by

Vee X, (@0F")(x) := co(F(x))

Theorem 7.2 (Stability of Solution Maps) Let us consider a sequence
of nontrivsial set-valued maps F, : X ~ X satisfying:

(43) 3e>0 | Vn>0,Vz€Dom(F,), |Fulz)| <el||=]l+ 1)
Then

1. The Kuratowsks upper lsmit of the solution maps Sp, 18 contained in
the solution map S.,p: of the co-upper limit of the set-valued maps F,

2. If the subsets K, C Dom(F,) are closed viabslity domains of the set-
valued maps F,, then the Kuratowsks upper limit K¥ §a a closed via-
bslsty domasn of coF*.

8. The Kuratowsks upper limst of the viabslity kernels X, of the set-valued
maps F, is contained sn the viabslity kernel of coF".

It follows from the adaptation of the Convergence Theorem to limits of
set-valued maps.

l45ee [2, Theorem 4.2.1].
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Theorem 7.3 (Convergence Theorem) Let X be a topological vector
space. Y be a finste dimenssonal vector-space and F,, be a sequence of non-
trivial set-valued maps from X to Y.

Let us assume that the set-valued maps F, are uniformly bounded.

Let I be an snterval of R and let us conssder measurable functions «x,,
and y,, fromI to X andY respectively, satisfysng:

for almost allt € I and for all nesighborhood U of 0 sn the product space
X x Y, there ezssts M := M(t,V) such that

(44) Vim > M, (2m(t), ym(()) € Graph(F) + U
If we assume that

i) x,(-) converges almost everywhere to a functionz(-)
(45) ¢ 41) ym(-) € L'(1.Y;a) and converges weakly in L'(I,Y;q)
to a function y € L'(I,Y;q)

then
(46) for almost allt € I, y(t) € co(F*(x(t))
Proof The proof is a straightforward extension of the Convergence

Theorem and of the following Lemma:

Lemma 7.1 Let us conssder a sequence of subsets K, contained sn a bounded
subset of a finste dimenssonal vector-space X. Then

(47) co(imsup K,,) = () (| K,)
nooe N>0  n>N
Proof The closed convex hull of the Kuratowski upper limit is

obviously contained in the closed convex subset
A = ﬂ ¢o U R,
N>0 n>N

We have to prove that it is equal to it when the dimension of X is finite
and the subsets A, are contained in a bounded set.

Since an element x of A is the limit of a subsequence of convex com-
binations vx of elements of |, n A, and since the dimension of X is an
integer p, Carathéodory’s Theorem allows to write that

/-

UN = ) (l_’,-\'

a:.\rj

il
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where N; > N and where x5, belongs to Iy,. The vector a” of p+
1 components a,A contains a converging subsequence (again denoted) a*
which converges to some non negative vector a of p+ 1 components a; such
that =%_ a; = 1.

The subsets i, being contained in a given compact subset, we can ex-
tract successively subsequences {again denoted) x, converging to elements
x;, which belong to the Kuratowski upper limit of the subsets K,. Hence
x 1s equal to the convex combination E;zoa?':rj and the lemma is proved.
a

Remark ¢ If we dont assume that the set-valued maps F, are uni-
formly bounded, then we cannot use the above lemma. However. we can

conclude that

| for almost allt € I,
l y“) € m'l>0;N>0 wun>N,1,.EB(.r,n]ﬂD0mF,, F"(I”) O

8 Epigraphical Limits
Let us consider a sequence of extended real-valued functions
Vo: X~ RU{+o0}
whose domains
Dom(V,) := {z€X | V.(z) < +oc}

are not empty.

For taking into account the order relation of R, we associate with each
extended real-valued function V, two new set-valued maps Vy; and Vp.
defined in the following way:

[ NoVe. [ Va(z) + R if z€Dom(l})
(48) DT if ¢ Dom(l})
T | Vi(e) =R if « €Dom(l})

]\ W) Ve =) if ¢ Dom(l},)

We see at once that

[ 4) Graph(Vy:) = Ep(V,)
| 7)) Graph(Vy,,) = Hp(1})
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Therefore. by using the concept of graphical upper and lower limit with
these two associated set-valued maps. we come up with the concepts of
epl and hypo convergence. which are thus obtained by taking Kuratowski
upper and lower limits of their epigraphs and hyvpographs.

Definition 8.1 (Epi-limits) Let us consider a sequence of eztended real-
valued functions V,, : X — R U {+oc} whose domasns are not empty. We
shall say that

1. the function V! whose epigraph is the Kuratowsks lower lsmst of the
epigraphs of the functions V',

(49) Ep(V?) := lminfEp(}})

i1s the upper epi-limit of the functions V),

£. the function V) whose epigraph is the Kuratowski upper limit of the
epsgraphs of the functions V,
(50) Ep(V}) := limsupEp(V},)

13 the lower epi-limit of the functions V),
3. the function Vf whose hypograph is the Kuratowsks lower lsmit of the
hypographs of the functions V,

(51) Hp(Vf) := lminfHp(1})

Hn—o0
13 the lower hypo-limit of the functions 1/,
{. the function Vf whose hypograph s the Kuratowsks upper lsmit of the
hypographe of the functions V,

(52) Hp(Vf) := limsupHp(1})

t8 the upper hypo-limit of the functions 1},

If the upper and lower epi-limits coinesde, we shall say that the common

value
(53) Vo= Vo= 07

18 the epi-limit of the sequence of functions V), and we define the hypo-
limit V' sn the same way.
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The terminology concerning the epi-limits seems at odds with the choice
of the Kuratowski semi limits: the upper epi-limit is associated with the
Kuratowski lower limit. However. they are consistent in the case of hypo-
limits. This is due to the analytical definitions of these epi-limits. involving
the concepts of I'-convergence and lim sup inf, defined in the following way:

Definition 8.2 (Lim sup inf) Let L and M be two metric spaces and
¢: L x M+ R be a function. We set

(54) limsup,_,infy_,0(2',y') :=supinf sup inf o(z'.y")

. e>0 ’l)ox'eB(x_,,J!/'EBl.V-f.'
The concept of lim inf sup is defined in a symetric way. and the adaptation
to sequences (or filters) is straightforward.

Proposition 8.1 Let us consider a sequence of esxtended real-valued func-
tions V, : X — R U {400} whose domains are not empty. We obtain the
following formulas:

-,
—
-—

,'Tb (1:0)
= limsup,_,, inf,_, V,(x)

|
= lminf, e rz Val)

55 o A
(5 i) Vi) = —(-V)i(x)
= liminf, . sup,_, Va(z)
i) Vi) = —(=V)i(e)
= limsup,_, ;. Va(x)
Proof We shall check these formulas for epigraphical convergence
only.

1. For computing the value of V;’ at ry, we use the fact that for every
A 2 V7 (xp), there exist sequences of elements x, converging to x and
A, to A such that X\, >V, (zx.).

Therefore, for all ¢ > 0 and 5 > 0, there exasts N such that, for all
n 2> N, we have

inf Ty(z) <Vilen) < Ay £ A+te

flx—xgii<y
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(]

and thus
sup inf V,(z) < A+

n>N liz—x0}i<n

from which we deduce that
VA2V (x0), limsup inf Vi (x) < A
‘ n—oc FT¥0

and thus, that
limsup inf Vi{z) < V/{xo)
n—oc FTIO

Conversely, for proving the other inequality, we have to show that
the pair (@, Ao) where Ay := limsup, _, . inf,—_, V,(z) belongs to the
epigraph of VTb, i.e., to the Kuratowski lower limit of the epigraphs
of the functions V,,. But, by the very definition of the infimum, we
deduce that for all ¢ > 0 and 5 > 0, there exist N such that, for all
n > N, there exist elements z, such that

Valzn) £ inf Vi(z)+e<sup inf V,(x)+e< Ao+ 2¢

jla—ao]i<y n>N lla—a0li<y

By taking ¢ = y = 1/n and setting A, := Ay + 2/n, we have proved
that x, converges to zq, A, to Ao and that V, (z,) < A, for all n.

Let us estimate now any A > Vf(mo). We know that for any ¢ > 0,
n > 0 and N > 0, there exist (z,,A,) in the epigraph of V,, satisfying

n > N, A < Ate Jan—xzf € 9 & Vi(z,) < A,
We deduce that
Valz) € Vilz,) < A, £ A+

1
n2N,jiz—zoli<n

Hence

(56) liminf Vi (z) < V7(z0)

n—oc,r—Io
We conclude by observing that the pair (z(,A;) where
Ar:= liminf V) (x)

n—00,r—Ip

belongs to the epigraph of VT:, because, by the very definition of the
lim inf, we can construct a subsequence of elements (again denoted)
(x,.A,) of the epigraph of V), converging to (x.;).
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It may be useful to store these inequalities:

Il

(67)  Vix) £ Vi) € Vi) & Vi) £ V7{x) < Vi)
Remark We have defined the concepts of epi-limits from the IKu-

ratowski limits of the epigraphs. Conversely, we can recover the Kuratowski
limits of subsets from the epi-limits of their indicators.

Proposition 8.2 Let us consider a sequence of subseta K, C X and thesr

indicators vg,. Let R* and R’ denote the Kuratowsks upper and lower
lsmits of the K, 's. Then

(58) [ i) 4 is the lower eps-limit of v,
1) Ugy 18 the upper epi-limst of ¢, O

Naturally, we can introduce the same definitions for “continuous”™ pa-
rameters v € U, where U is a topological space.

In such a framework, we consider a family of extended real-valued func-
tion

Viu): X — RU {+oc}

depending upon the parameter u, to which associate the set-valued maps

: .| Viwz)+ R, if (z,u) € Dom(V)
J i) Vi = | @ if x¢ Dom(})
i) V), = [ V(u,x) =R, if (x,u)€ Dom(V)
R if ¢ Dom(V)

(59)

There is a subtle, but important, difference between the extended real-
valued function V : (u,2) € U x X — R U {+oc}, for which the variables
v and x are on the same footing, and the set-valued maps V(-); : v €
U ~» V{u);, for which the variable play a different role: u, the role of a
parameter, whereas the order relation on R involves the variable x, when
we minimize the function with respect to z, for instance.

To emphasize this difference, the set-valued map V() is called a vari-
ational system.




Definition 8.3 (Variational system) Let us consider a variational sys-
tem V(-); defined on U x X. We shall say that V(-.-) for V(-}:), to be

precise, 8

1. upper epi-continuous at u if the set-valued map v’ ~ V(u'); is
lower semscontinuous, i.c., if and only sf
(60) Viu,z) := Lmsup Jilnf V(u', z")

u—y -

£. lower epi-continuous at u sf the graph of the set-valued map v’ ~
V{u'); 8 closed , s.e., if and only if
(61) Vi{u,x) = ,].imi,nf Viu,x)

3. epi-continuous at u if the set-valued map v’ ~ V(u'); 8 lower
semicontinuous and has a closed graph, s.e., if and only if

(62) V(u,z) =limsup inf V(v',2') = liminf V(u,z)

I
g —u —x v —ya—

The definition for hypo-continuity and semicontinuity are naturally sym-
metric. O

We expect that the infimum of an epi-limit is closely related to the limit
of the infima. This is detailed in the following statement:

Proposition 8.3 (Limits of Infima) Let us consider a sequence of ez-
tended real-valued functions V, : X —» R U {400} whose domains are not
empty. Then |

hmsup(}leli,‘r,,(af)) < ;151/{,1-.‘

n—oc
If we assume that the functions V, are lower semscontinuous and unsformly
inf-compact, then

. - .. . -

ipf V! < Lminf(inf Vi (=)
Consequently, sf V ss the eps-limst of a sequence of lower semscontinuous
uniformly snf-compact functions V,, then

J' t) infrex Viz) = lm, .o (infrex Vi(2))
(63) it) limsup, .. {z.|Vi(2n) = infcx V. (x)}
l C {zo|V(zp) = infrex Viz)}

32




Proof

1. Let A > inf,ex V) (2) be fixed and zo be chosen such that V{“(a:o) < A
We know that for all > 0, there exists N > 0 such that
sup inf V,(x) < V(=)
n>N TEB(x0.) ’
Therefore,

sup inf V() < su inf V), («
n21€’€£' ) < nzfl\)lréleom) (7]

so that sup,.yinf:cx V,(x) < A. Hence it is enough to let N go to
oo and A to V' (xo).

2. Let us consider a subsequence (again denoted) V), such that

Lminf(ipf Va(z)) = lim (inf V2 (=)
On the other hand, since the functions V), are inf-compact, the min-
ima are achieved: there exist z,’s such that inf.: V,(z) = V,(z,).
They remain in a relatively compact subset since the functions V,, are
uniformly inf-compact. So a subsequence (again denoted) z, does

converge to some xo. Therefore,

inf.ex Vi(z) < Vizo)
= liminf, Lozmm Va(2) < inf,_ o Vi(z,)
= liminf,_ o infrex Vo(2)

3. If we set
Fu(z) = Va(z)
we see that the level sets of V, are the inverse images F'(\) of F,.

Since we know that

FF'(A\) = Lmsup F7'(\,)

n-—0C,An—A

we deduce that the level sets of the lower epi-limit are the Kuratowski
upper limits of the level sets:

{z |Vi(z) <A} = limsup {=|V,(z) < A,}

n—00,A, —+A




By taking A :=inf,-x V() and A, := inf,-x V), (z), which converges
to A by the two first statements of the Proposition, we infer the third
one. [J

Unfortunately. there are counter-examples for the property that the set of
minimizers of the upper epi-limit is the Kuratowski lower limit of the sets of
minimizers of the functions V,,. However, the Stability Theorem provides
some results about the Kuratowski lower limits of level sets, but which
exclude the case when the level sets are set of minimizers.

Proposition 8.4 Let us consider a sequence of eztended real-valued func-
tions V,, : X — RU {+oc} whose domains are not empty.

Let us assume that there ezist xo, N > 0 and constants ¢ > 0, 5 > 0
such that | for alln > N, x € B(z9,n),

= -1

+1

)(u

(=)(u)
(64) (=) ()

[ i) 3u, € cBx such that D{(V,)
| ) 3u} €eBx such that Di(V,)

Then there ezist a constant | such that, for any sequence of elements xo,
converging to xo and such that V, (x0,) converges to V(x,), end for any A,
converging to T/"T”(:co‘), there ezist solutions T, satisfying

i) V(@) < A,
65 . —~ .
(62) {n) 1 - 2oull € 1hn = V(a0)]

Proof We apply the Stability Theorem 6.1 to the inverses of the
set-valued maps F,(z) := V,:(z). We have to check that

DG, (A, x = su inf u

” n{An, )(ﬂ)” y=ipl=€DGn['\m-Tlel ” II
is bounded by c. It is enough to choose v = v when g = +1 and v = u
when g = —1. Hence assumption (40) of Theorem 6.1 is satisfied, and its
conclusions imply the conclusions of the above theorem. O

Remark Observe that these stability assumptions (64) imply that
for all n > N and all z, € B(xq,n),
(66) inf V, (x) < Vi(xn)




since the Fermat rule is violated. O
We can also derive from the Inverse Stability Theorem 6.1 criteria which
imply some equalities in formulas (57).

Proposition 8.5 Let us consider a sequence of eztended real-valued func-
tions V', : X — R U {400} whose domains are not empty.

Let us assume that there ezist xy and constants ¢ >0, N >0 andy > 0
such that , for alln > N, ¢ € B(zy,n), the domasns of the contingent

epiderivatives D.(V,)(z) are equal to the whole space and

(67) sup [D1(Va)(z)(u)| < e
(=
Then )
(68) Vi) = Vi)
Proof

We apply Theorem 6.1 to the set-valued maps F, defined by
F, (z) = V,:i(z)

It is easy to check that assumption (67) implies Theorem 3.2’s stability
assumption {21). This is straightforward when A, = V(z,), since

DF,(z,A,}|| ;== su inf < sup |D:(V)(z)(u)| < ¢
IDFa(zAn)ll = sup inf | lul< sup [D:(Va)(z)(u)]

When A, > V(z,), we know that
Dom(D(V,)(z)) x R C Graph(DF,(z,A,))
so that
| DFa(z, An)|| := ||EI|T£1I‘€D11"I:(f=w\n) lu| =0
Hence, there exists a constant ¢ such that, for all n > N | # € Dom(V))

close to zp and A, > ¥ (z) close to V' (x,), we have

|DF.(x,As)] :== sup _inf |u| < ¢

[|w]i=1 #EDFn(z,2n)

Now, to say that V,.b(:co) belongs to the Kuratowski lower limit of the V()
when n — oo and x — z, implies that

limsup V,(x) < VTb(‘:co) O

n—00,T—Io
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9 Epigraphical limits of Sums of Functions

Let us consider two Banach spaces X and Y, a continuous linear operator
A € L(X)Y), and two sequences of extended real-valued functions ¥, :
X—RU{+oc}and W, : ¥ — RU {+oc}. We shall compute the upper
epi-limit of the functions

U, = V,+W,04d
in terms of the upper and lower epi-limits of the functions V), and W,.

Theorem 9.1 Let us conssder two Banach spaces X and Y, a continuous
linear operator A € L{X.Y), and two sequences of eztended real-valued
functions V, and W, form X and Y to RU {400} respectively.

1. The followsng snequalsty
(69) Vim) + Widee) < Ul(wo)

holds true.
2.

We posit the following stability assumption: there ezist constants ¢ > 0,
o €[0,1] end n > 0 such that, for all n,

¢} Vze€Dom(V,)N B(xp,5), ¥y €Dom(W,)NB(Axo,5)
By < A(Dom(D}(V.)(x ))ncB\) Dom(D (")) + aBy
l 11) SUP, cDom(D! (Va)(z)) | D5 (Va) (=) (u)|/]lu]] <
1) SUP,Domip, (s [Pt (W) y)(v)I/HvH < e

Then, the upper eps-limst U7 of the sequence of functions U, :=V, +W, 04
satssfies the estimate:

(70) Vo) < V7(xo) + W (Aao)

Consequently, sf the sequences of functions V,, and W, have eps-limits V
and VW respectively, so does the sequence of functions U, .=V, + W, 0 A
and sts eps- limst U satssfies

U(xg) = Vixe) +W(Ax)
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Proof

1. Since inequality (69) holds true when one of the values T"'f(;vo) and
P’F’.f(AxO) is equal to —oo, or Ui(x,) is equal to 400, we have to check
the formula when the two first values are larger than —oc and the
last one smaller than +oc. Then, there are finite number p, integer
N and positive number 5 such that, by definition of the lim inf,

Vn> N, Va € B(xg,n), Vi(x) and W, (4z) > p

By definition of the lower epi-limit, the pair (g, Uf(:r.o)) is the limit
of a subsequence (z,,c,) satisfying

Vilza) + Wa(dza) < e

The two above inequalities imply that the sequences of real numbers
a, := V,(x,) and b, := ¢, — a, are bounded. Hence, subsequences
(again denoted) @, and b, do converge to a and b satisfying

Ulzo) = a+b, a2 Vi{xo), b2 W(Ax)

2. We begin by observing that if we set

i) K = Ep(V)xEp(W)xR c XxRxYxRxR
i) G(x,a.y,b,¢) = (Adx~—y,a+b-¢c)

iti) H(z,a,y.b,¢) = (x.¢)

we can write

(71) Ep(U) = H(KNGT'(0,0))

Therefore, it is sufficient to show that the Kuratowski lower limit of
the subsets A, NG~1(0,0) contains the intersection of the Kuratowski
lower limit of the subsets K, with G7!(0,0). For that purpose, we
shall use Theorem 3.2.

Let us consider any sequence of elements zy,, ag,, Yon, and by, con-
verging respectively to xq, V' (x), 4xo and W)(Azo) and let us set
Con = @on + bon-




We observe that the elements (2,, @Gony Yon, dons Con) belong to K, and
that G(Zon, @on, Yon s bon, Con) = (AZon — Yon,0) converges to (0,0).

We begin by checking that the assumptions of our Theorem imply
the stability assumption (21) of Theorem 3.2, i.e., that there exists a
constant ¢ > 0 such that, for all n, for all

(‘.’t, avyabvc) € K, close to (xOv "?(-L‘o,)-,yoqub (yO)sO)
for all {z,A) € X x R, there exist (u, u,v,v,§) and e such that

1) z = Au—v+e & A = p+v—6
(1) i) e < a(lel+A)
1#i) lull + [loll + o] + [v] + 8] < o

=1l + A1)

Assumptions (9.1)i) & ii) imply right away that

(i) z = Au—v+te,
(73) {*’i) llell < alll=ll + [A])

i) el + o)+ < ellzf] < ezl + [AD

Let us take now g := ¢lju||, v := ¢||v|| and 8 := o(||u]| + ||v]|) — A. We
deduce from (9.1)iii) that (u, u) belongs to Ep(D-.V,)(x), that (v,v)
belongs to Ep(D+W,}(y)

D+(Va)(z)(x) + D1(Wo)(w)(v) < elllefl+v]l) £ w+v = A+4
and that |§] < (|A[ + e([lu]] +|2])) < &'(|]z]] 4 [A])-

The conclusion of Theorem 3.2 being available, we then know that
there exist elements (Z,,an, ¥, b0, %, ) € K, satisfying

i) G(Fn,@n,FnybaEr) =0
(74) { #) (122 = Zonll + [i7n — youl
+|6: - aOnI + |bn - bOn”E; - '—'Onl S l”“‘{IOn - yOn”
Therefore, we infer that

(75) Un($) € @n+ba < Vi(xo) + Wi(Azo) + e

since both ao, and a, converge to V7 (xy) and both by, and I;; converge
to W}(Axy). Such fact implies the inequality (70) we were looking for.

O
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10 Attouch’s Theorem

Theorem 10.1 (Attouch’s Theorem) Let us consider a sequence of ez-
tended real-valued lower semicontinuous convez functions V,, : X — R U
{+00} where X ss a Hilbert space. We supply the dual X~ with the weak
topology.

We suppose that the sequence V), has an eps-lsmst V7.

Let us consider a subgradsent p € 0V (x) and let us choose sequences of
elements x,, and p,, converging to x and p respectively and salisfying

(76) [ ') limsupn—voo 1‘.rl(a’lf)n) S V(l‘)
| #) Lmsup, . Vy(pon) < V*(p)

{Such sequences do ezsst by definition). We introduce the lack of consistency

6!&

77 . . , : .
( ) "",,(1"0,;‘) - ‘ (1-) + vn'(p()n) - p *(pOn)"l' < P-.l' >—-< Dons Ton >

Then p belongs to the graphical lower limst 3V := (8V')’ of the subdiffer-
ential 3V, and we have the estimate

(78) d((on. pon), Graph(8V,)) < max(0,\/6,)
Therefore, OV 38 the graphical limst of the subdifferentsals 8V;,.

Proof We apply Ekeland’s Theorem to the lower semicontinuous
function V, (y)— < pon,y > for
_ | Ve if 6, > 0
" | is any positive number if §, < 0
Since hminf, .oV, (pon) is finite, there exit a constant ¢ and N large
enough such that

Vi(pw) < ¢ Y2 N

This implies that the functions y — V,(y)— < pon,¥y > are bounded below
by —e thanks to the Fenchel inequality.




Hence, we can apply Ekeland’s Theorem: there exists a solution =z,
satishing ,
' 1) Vilx.)— < ponsx, > e |@) — 20,
(79) < Vil@on)— < pous Ton >
l i) VyeX, Vilza)= < pousTn >
, < Vil¥)— <pony > +ex. — 9|
Inequality (79)ii) tells us that x, minimizes y — V,{y)— < pon,y >
+¢||x, — y||.- Hence the Fermat Rule implies that 0 belongs to its subdiffer-
ential at x,, which is equal to 8V, (x,) — pon + €B.. This implies that there
exists p, in 0V, (x,) satisfying

lpon — Pl < €

On the other hand, inequality (79)i) yields
| S ,
”T' - :1‘,,” S ;(I"n(a:On) - 1/n(,a"n)'f' < Pony Xy, > —-< Dy Ton >)

Taking into account that < p,z >= V' (z) 4+ V"*(p) because p € 9V (z) and
that < po,. 2, >< V, (2,) + V.*(pon), We obtain

Iz = zall < 2HValzon) = V(2) + V¥ (Pon) = V*(Pon)
+ <Ppr>~ < Pon,Tow >) = b/

If the right hand-side of this inequality is non positive, we infer that xg, =
x,, and, ¢ being arbitrarely small, that d{py,,3V,(2¢,)) = 0. If not, we
deduce that ||z — z.|| £ €’/¢ = e. Hence the first part of the Theorem is
proved.

Since V' is the epi-limit of the sequence V), we deduce that each pair
(z,p) in the graph of OV is the limit of sequences (xo,, pon) satisfving con-
ditions (76). Hence it is also the limit of the sequences (z,,p,) of the graph
of 9V, we have just constructed.

This means that the subdifferential map 3V of the epi-limit of the func-
tions V), is contained in the graphical lower limit of the subdifferential maps
av,.

Since 0V is a maximal monotone set-valued map when X is a Hilbert
space, then the second part of the Theorem follows from Proposition 77.
a
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In particular, we deduce that under the assumptions of Theorem 10.1,
the graphical convergence of the subdifferential 8V, to 9V implies

OV (x) = limsupdV,(z,)

However, we need some stability assumptions on the contingent second
derivatives of the functions V), for stating that some p € 8V (z} belongs to
the Kuratowski lower limit of 8V, (z,).

Naturally, the contingent second derivative 3V (z, p) of VV at some point
(x,p) in the graph of 8V is defined as the contingent derivative of the set-
valued map 3V at (z,p).

Proposition 10.1 Let X be a Hslbert space. Let us conssder a sequence of
extended real-valued convez functions V, : X — R U {400} and V whose
domasns are not empty and sequences xy, and py, converging to x and p
and satisfying propertyies (76)

Let p belong to OV (x). We posit the followsng stabslsty assumption:
There ezist constants ¢ > 0, a € [0, 1] and 5 > 0 such that

[ ¥ (2a,pn) € Graph(6V,) N B((z,p),n),

(80) , -
| 18V (@n, pa)| 3= sUPyex infreorvizg,pmyio |7 ]I/ 1ull < €
Then
p € liminf 3V, (z,)
Remark The same proof yields the following result in the non

convex case. Recall that the Clarke generalized gradient 8V (z) of V at «
is defined by

pEdV(r) =VeeX, <prv><L CV(ix)(v)
and that the subdifferential 8°V {x) is defined by
pEFV(z) =VyeX, V{iz)-V(y) £ <px—y>
Theorem 10.2 Let us consider a sequence of eztended real-valued lower

semicontinuous functions V,, : X — R U {+oo} and V whose domains
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are not empty. Let us consider a subgradient p € 0°V (x). If there ezist
sequences xo, and Po, converging to x and p respectsvely which satisfy

[ 4) lLmsup,_  Vil(zon) < Viz)

| i) limsup, . Vi(pe) < V7(p)

then p belongs to the graphical lower limst &'V := (0V) of the Clarke
generalized gradients 3V, and we have the estsimate (78);

(81)

11 Asymptotic Paratingent and Circatangent
Cones

Let X be a topological vector space. We consider a sequence of subsets
K, ¢ X of X and their Kuratowski upper and lower limits A* and K”.

Definition 11.1 (Asymptotic Paratingent and Circatangent cones)
If r € K", we shall say that

K — &n
(82) Piy(a) = lim sup Zn " In
n—00,A n3xpn—2 hn
is the asymptotic paratingent cone to the Kuratowsks upper limit K*
at x. We shall say that the asymptotic circatangent cone to the Kura-
towski lower limit K* at x € K" is the set C%,(x) defined by

; K, —=z
b — s : n n
(83) Cpr(x) = lminf v
Remark When we consider a constant sequence K, := K, we

see that the asymptotic paratingent and asymptotic circatangent cones PI’:‘-,
and C}, coincide with the paratingent PX{(z) and the Clarke tangent cone
Cg (z) respectively. O

It is easy to observe that the Kuratowski upper limit of the contingent
cones to a sequence of K, is contained in the asymptotic paratingent cone
to the Kuratowski upper limit of the K, 's:

Proposition 11.1 Let us consider a sequence of subsets K, C X of X and
their Kuratowski upper limst K*. Then

(84) limsup Tk, (2,) C Pi:(x)

In—X
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The asvmptotic circatangent cone to a Kuratowski lower limit is always
a closed convex cone, and is actually equal to the Kuratowski lower limit
of the contingent cones:

Proposition 11.2 Let us consider a sequence of subsets K, C X of X and
thesr Kuratowsks lower limit R,

1. The asymptotic csrcatangent cone C;{. () 13 always a closed convez
cone

2. If X is reflexsve and 15 supplied with the weak topology, and if the
subsets K, are weakly closed, then

(85) kg =  lminf Ty (=)

n—oo,Andan—
Proof

1. Let vy and v, belong to C’;{; (z). For proving that v, + v, belongs
to this cone, let us choose any sequence h, > 0 converging to 0 and
any sequence of elements z, € K, converging to x. There exists
a sequence of elements vy, converging to v; such that the elements
Tin := 2, + h, v}, do belong to K, for all n. But since x4, does also
converge to x, there exists a sequence of elements v,, converging to
vy such that

Vn, rln'*'hnUZn = xn+hn(ﬁln+t’2n) € Kn

This implies that vy + v, belongs to C’;(.(x) because the sequence of
elements v, + v;, converges to v; + v,.

2. Let us take € K® and v € liminf,, _,Tg, (z,). We infer that, for
all € > 0, z, € K, close to r and ¢t small enough, inequalities

Vz, €Exg.(x, +tr), ||z — 2| £ 2z, +tr — 2|

imply that z, remains close to z, that there exists v, € T, (z,) in a
neighborhood of v, so that

[ d(v,Tx(ng, (@ +70))) < [lv = v

| €



for large enough n's. Let us set ¢, (t) := dg, (z, + tr). Since g(-) is
locally lipschitzean, it is almost everywhere differentiable. It implies'®
implies that ¢, (r) < d(v,Tx, (7x, (2, + 7)v)) < e. We then integrate
from 0 to t and get that, for all z, € K, close to  and for all t €]0, k]
for some small enough positive h,

rt
da(an +te) < [ d(e, Tx,(mx, (@ + 7e))dr < te

We have proved that v belongs to C}, (x).

3. Let v belong to C%, (). Then, for all ¢ > 0, there exist > 0, N and
B8 > 0 such that, forall R < 8, n > N and z, € K, N B(z, ),

dg, (2. + hv) < he

Then we can associate with such z, elements y,'l' € k, such that
|zn — y" + he|| < 2he

We set v? := (y* ~ z,)/h. Since ||v* — v|| < 2¢ and since the space is
reflexive, a subsequence (again denoted) v? converges weakly to some
v, € v+2¢B. Such a v, belongs to the contingent cone Tk, (z,) (when
X is supplied with the weak topology) and converges to v. O

When the subsets K, are convex, we obtain the following telations:

Proposition 11.3 Let us consider a sequence of convez subsets K, C X
and its Kuratowski convez upper and lower limits K* and K*. Then:

(86) [ i) Tg(z) < lminf,, .,Tx,(2.)
| it) Txila) € Hmsup, _, Tk, ()
Proof

1. Let us take # € K* and v € Sy (x), the cone spanned by A* — .
Hence there exists A > 0 such that  + hv € R”

Yisee |7, Proposition 4.1.3]
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Let us consider any sequence of elements z, belonging to K, and
converging to r and let y, denote the projection of x + hv onto the
closure of K, . Since y, converges to x + hv, the sequence of elements
v, := (¥, — ,)/h converges to v. Since

hn hn
Ty + hl*n - (1 - —]'L_)In + Tyn

belongs to i, we infer that v,, belongs to the contingent cone Ty, (x,,).

Hence v, the limit of the v,’s, belongs to the Kuratowski lower limit
of the tangent cones Ty (z,

2. Let = belong to A* and v be chosen arbitrarily in the cone spanned
by K — z. By denoting by z, and y, the projections onto A, of «
and r + hv respectively, we infer that v, := (y, — x,)/h belongs to
the tangent cone Ty (x,) and converges to v. O

Remark We deduce from Attouch’s Theorem 10.1 that if the se-
quence of convex subsets K, has a limit K, then
(87) Nig(z) = limsup Ng, (zx,)

n—00,xn—I

(We take for function V), the indicators 'y, of the K, , which epi-converges
to the indicator of A. We use then the fact that the subdifferential of an
indicator is the normal cone.)

When the dimension of X is finite, we deduce by transposition from
Proposition 1.3 that if the sequence of convex subsets K, has a limit K,
then

Lminf Ty (2,) = Txlz) O

n—00,3p—3F

We shall deduce from the Stability Theorem a formula for the asymp-
totic circatangent cone of an inverse image.

Theorem 11.1 Let X and Y be two Banach spaces. We sntroduce a
continuous linear operator A € L(X,Y) and sequences of closed subsets
L, Cc X and M, C Y. Let us assume that there ezist constants ¢ > 0,
a € [0,1] and 5 > 0 such that

[v Vaz,€ R, NB(xy,n). ¥y € M, N B(Axy,n)

(88) l By < A(T; (zn)NeBx)—Th,(y.) +aBy
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Let « belong to the Kuratowsks lower limit of the sequence L, N AT (M,)
[which §s equal to the intersection of the Kuratowsks lower limit of L, and
the inverse smage by A of the Kuratowsks lower limst of M, ). Then

(89) L@) N ATIC, (Ax) € Clryiape (2)

Proof Take any sequence of elements z, € L, N A~'M, which
converges to . {We already know that a is the limit of such a sequence).
Let us take any u € C’z,(:c) such that Au € C,,(Az). Hence for any
sequence h, > 0, there exist sequences u, and v, converging to v and Au

respectively such that, for all n > 0,
x, + hnun € Ln & A:l’,‘,‘ + hnt’n € *Mn

We apply now Theorem 3.2 to the subsets L, x M, of X x ¥ and the
continuous linear operators A & 1 associating to any (z,y) the element
Az — y, since we can write

K, = L,NAYM,) = (A51)7H0)n(L, x M,)

The stability assumptions of this Theorem are obviously satisfied. The pair
(x, + hpu,, 4z, + h,v,) belongs to L, x M, and

(A& 1)(zy + hou,, Az, + h,v,) converges to 0

Therefore, by Theorem 3.2, there exits a solution (Z,,¥,) € L, x M, to the
equation (4 & 1)(%,,¥,) = 0 such that

Hxn + hnun - 5;” + || Az, + hnvn - jl:” S lhn“Aun - Uy, — 0”

Hence u, := {x, — Z,)/h, converges to u, and we oobserve that for all
n <0, &, + hyu, belongs to L, N A7!(M,) because z, + h, &, = Z, belongs
to L, and Az, + hnta) = ¥n belongs to M. [

We consider now the asymptotic paratingent cones to direct images.

Theorem 11.2 Let X and Y be two Banach spaces. We introduce a con-
tinuous linear operator A € L(X.Y), a sequence of closed subsets K, C
L ¢ X and an element 1, sn the Kuratowsks upper limst K' of the K, s.
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We assume that the restrictson of A to L 18 proper from L to Y, so that
A(K®) = (4(K)).

We posst the following stability assumption: for all zo € KNA (y,).
there ezist constants ¢ > 0, a € (0,1 and n > 0 such that

| V&, € H,NB(xo,n),

(90] l ASKn(xn) NBy C A (TK,. (17,,) NeBy) + aBy

Then, if X 13 reflezsve and supplied with the weak topology, we have:

(91) U  APL(2) = P (4a)
reRNA™(y)
Proof We always have the inclusion
(92) VanE'NA™ Nyo, A(Pi(2)) C P (wo)

Conversely, let us take v € Pﬁ(b(yo_). Then there exist sequences of
elements h, > 0, y, € A(K,) and v, € Y converging to 0, y, and v
respectively such that

(93) Va>0, y,+h,v, € A(K,)

We can write y, := Az, where, A being proper, a subsequence (again
denoted) xy, converges to some x; € K N A~ (y,).

By Theorem 3.1, there exist a constant I’ and solutions z, € K to the
equation Az, =y, + h,v, such that

(94) zon = zull < [|A%Zon = n = kuvall = haflvall

Therefore, the sequence of elements u, is bounded, so that a subsequence
(again denoted) u, converges (weakly when the dimension of X is infinite)
to some u. [

Remark We can adapt the properness criterion given by Theo-
rem 5.1 for obtaining the following result:

Proposition 11.4 Let X and Y be two Banach spaces. We sniroduce a
continuous linear operator A € L(X.Y), a sequence of closed subsets K, C
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X and an element x, in the Kuratowsks lower limit K* of the K, 5. We
posit the following assumption:

(95) 0 € Int| Im(4")+ | N K:NNY (z,)

N>0n>0 n>N.ax, Eﬁ'nﬁ{ro-é—nB]

Then, sf X 18 reflezive and supplied with the weak topology, we have:

(96) U 4P, = P/-';(K,)(Aa-.)
TEKNA~(y)
Proof let us take v € P;\,,(yo). Then there exist sequences of

elements h, > 0, y, € A(K,) and v, € Y converging to 0, yo and r
respectively such that

(97) Va2>0, y,+hov, = Az,) € A(K,)
Let us consider solutions z,, € K, to the equation Az, = ¥, and
set 4, = (z, — Zon)/hn. We shall prove that the sequences xy, and u,

are pointwise bounded. Since the space X is reflexive, this will imply that
subsequences {again denoted) x;, and u, converge to some 2o € KNA™(y,)
and u respectively, so that « is an element of PI”‘.,, (o).
For proving our claim, we associate with any p € X an element ¢ € Y *,
an integer N such that, for all n > N, there exist r, € K N N}}n(m,,)
satisfving p = A*¢+ r.
Then
') < Pr%on >=< ¢, Yn > + < Tny Ton > < ||Q||“y"“ +1
because r, € K;
1) <pun >=<q.v,> + <1y, BT > < lgfl||val + 0
because r, € N} (x,)

(98)

Therefore, our sequences x,, and u, are bounded. 0O

12 Asymptotic Paratingent and Circatangent
Epiderivatives

We are now able to define asymptotic epi-derivatives of a sequence of func-
tions V)., by taking the asymptotic tangent cones to their epigraphs.
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Definition 12.1 (Asymptotic Epiderivatives) Let us consider a sequence
of estended real-valued functione V, : X — R U {+oc} whose domasns are

not empty and an ¢clement x, in the Kuratowsks lower lsmist of the domasns
of the functions V,,. We shall say that the function C2V (x,) defined by

(99) CV{(zo)(u) := lim sup (Vale + ha') = X) /R

' n—00,2—ap,Va (T} <A— V] (z0),h—0+
13 the asymptotic circatangent epi-derivative of the sequence of func-
tions V,, at xo in the direction u.

We see at once that the epigraph of G#V(:co) is the asymptotic cir-
catangent cone to the epigraphs of the functions V, at (xo, V7(z¢)), or,
equivalently, that C:V (x,) is the upper epi-limit of the difference quotients

v o~ (Vi(z+hu')=A)/R
when
n—oc & (2,A,h) €Ep(V,) x R: converges to (:co,VTi’(xO),O)

We deduce that the asymptotic circatangent epiderivative is a positively
homogeneous, lower semicontinuous and convex function form X to R U
{~o0c} U {+00}.

We shall estimate the asvmptotic circatangent epiderivative of a family
of functions U, :=V, + W, o A.

Theorem 12.1 Let us consider two Banach spaces X andY, a continuous
linear operator A € L(X,Y), and two sequences of extended real-valued
functions V,, and W, form X and Y to R U {+oo} respectively. Let z,
belong to the Kuratowsks lower limst of the domasns of the functions U, :=
Ve, + W, 0 A.

We posit the following stability assumption: there ezist constants
¢ >0, a€[0,1] and 5 > 0 such that, for all n,

i) Vze€Dom(V,)N B(ze,n), Vy€Dom(W,)N B(Azo,n)
By ¢ 4 (Dom(D(V,)(z)) N ¢Bx)

(100)- —Dom(D:(W.)(y)) + By

i) suP,Domp} o)) 103 (Va) () @)/ ]|

< e
ii) SUPweDom(D, (W,)(y)) 1 D+(Wa) (9)(0)|/lo]] < e
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Then, the asymptotsc csrcatangent epsdersvative of the sequence of functsons
U, : =V, 4+ W, o A satisfies the estimate:

(101) Ci(U)(zo)(u) < Ci(V)(xo)(u) + CH{W)(Azo)(Au)

Proof We apply Theorem 3.2 since we have seen that if we set

it1) G(z,a,y,b,¢) := (Az—g,a+b—¢)

i) K =Ep(V)XxEpW)xR c XxRxYxRxR
(102) =
1i) H(z,a,y,.b,¢) := (z,¢)

we can write

(103) Ep(U) = H(KNG™'(0,0))

The stability assumption of Theorem 3.2 being the same that the ones
of Theorem 70, we already know that they can be derived from assumptions
(21).

Hence. we deduce that

ch, (<o, V7 (o), Azo, W} (Axo), U;(;o)) NG~1(0,0)
€ Chang-iio) 0,V (2o}, Azo, W (420), U (20))

NG —1{0)

It remains to show that this inclusion implies inequality (101).
Let us set A = CX{(V)(xo)(u), p = C}{(W)(Azo)(Au) and v := A + p.
Hence the element (u, A, Au, g, ) belongs to

Cios (20, V7 (20), Azo, W} (Az0), U3 (20)) N G71(0,0)

By Theorem 70, it then belongs to the asymptotic circatangent cone to the
subsets K, N G7'(0,0). Then, for all sequence h, > 0, there exist elements
(%nyAn, ftn) converging to (u, A, p) such that, for all n > N,

(xn + hnun’an + hn’\nann + hnAun!bn + hn"rnan + bﬂ + hnun) e Kﬂ

Therefore, the pairs (z, + h,u,,a, + b, + h, (A, + p£,)) belong to the
epigraph of U,. Since (u,.A, + gn) converges to (u.v), we deduce that

CiU)(zo)(u) < v = CHV)(zo)(u) + CHW)(Azo)(4u) O
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