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FOREWORD

The continuity of the star-kernel of quasidifferentials of a quasidif-
ferentiable function with a star-equivalent bounded quasidifferential sub-
family are studied and parts of results are represented in this note. It also
has been pointed out that the directional subderivative and superderivative
of a function can be expressed as support functions of its star-kernel if the
star-kernel can be generated by a quasidifferential of the function.
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A NOTE ON THE ®-KERNEL FOR
QUASIDIFFERENTIABLE FUNCTIONS

Z @ Xia

In this short note the demonstrations of some propositions related to the upper
semicontinuity of the ®-kernel for quasidifferentiable functions and some examples
concerning the ®kernel will be given, [1], [2] and [3].

Suppose that f(z) is a quasidifferentiable function, defined on S CR™ where
S is an open set, with a ®-equivalent bounded quasidifferential subfamily. The
notations we will use can be found out in [3]. Their definitions will not be repeated
here.

LEMMA 1

(@ u€dpflz)<=>Hx u)xé.

b)) weWu)=pu@d)2<w ,d>, Vd €R".
() uedgfiz)<>u cWiz, u).

(d) u €d5f(z) <=

f(z;d)=s max <w ,d>
= w e, u)

=6(d | 3, 9(u ®°)(0)),
vd €R™.

For the sake of convenience, assume that } is a closed set.
LEMMA 2 If ¢(z , u ®ad) is upper semicontinuous in (z , u) €S X 8g f(z) for
each d €R™, then the mapping 85 f(¢) and W(-, ) are closed, i.e., u € 85 f(x)
and w € W(z ,u) (or 8, ¢ (u ®+)(0)) whenever z; »x ,u; 4 , wy >w , and
u; €08gf(zy), wy €W(xy ,uy),1 »> 00,
PROOF Suppose z; 2 ,u; »u ,w; »w and u; € §uf(x;), w; € W(z, , u;),
i » o, According to the LEM 1 (b), one has

oz ,u; @d) 2 <wy ,d>

for each d € R™. Since ¢(x , u ®d) is upper semicontinuous in (z , w) for each
d €R, one has

Pz, u@d)a2<w ,d>.

In other words, w € W(z , u) . It follows from the LEM 1 (a) that
u € 8 f(z).

The proof is completed. O

THEOREM 3. Suppose Dy f(x) is bounded uniformly in a neighborhood of
z , Ny (6), where § is a positive number. If ¢(z , u ® d) is upper semicontinuous in
(x ,u) €S % an(:c) for each d €R"™, then 8g J () is upper semicontinuous.

PROOF By contradiction, suppose dgf (¢) is not upper semicontinuous. Then there
exists an open set O, an & > 0, and there exists sequences {z; } and {u,; ] such that

zi—ox,‘i, - oo



{z;} <BQO, &),
g f(xz)CO,Vz €B(0, ¢)

fu,; § coO°.
Since U Dy f(z) is bounded, there exists a subsequence Euiki convergent
r €B(o, €)

to w. The u belongs to Of because of O being an open set. Obviously,
u € 8y f(z). However, in terms of the LEM. 2, we have

u € Juf(z),

since the mapping g f(+) is closed. This contradicts the fact that u € 85 f(z).
Therefore, 6® J(¢) is an upper semi-continuous mapping. The theorem is proved. O

LEMMA 4. Suppose f “(z ; d) is lower semi-continuous in z € S for each d eR"
and the mapping W(z , u) is upper semicontinuous in (z , u) € S X 85 f(x). Then
the mapping 8g f(¢) is closed.

PROOF Suppose that
z, »x ,i o
Uu; *uU ,i oo
u; € 3gf(zy) .
Since for any u € 85 f(z) and for each d €R™",

(z,d) = max <w ,d>,
I( ) weWiz,u)

one has that for {z; { and {u; ] there exists a sequence {w; | such that

S(zy ,dy) = max <w ,d>,
- weﬂ(zi'u)

=<w; ,d>.

According to the assumption of the upper semi-continuity of the mapping W, ¢)
there exists a subsequence, {wik {, convergent to w such that

weW(x,u).
On the other hand, we have
Sz, d)s<w,d>,
because of the lower semicontinuity of the function f“(+ ,d). From this, one has

(z ,d) = max <w ,d>.
I( ) w ez, u)

Hence,
u € agf(z) .

from LEM. 1 (d). The lemma has been proved. O

THEOREM 5. Suppose f’(z , d) is lower semi-continuous in z €S for each
d €R", and Dy f(x) is bounded uniformly in a neighbourhood of z , N (é), and

¥(z , u) is upper semicontinuous in (x , u) € S X 8g f(z). Then 8g f(*) is a upper



semicontinuous mapping.
THEOREM 6. If there exists a quasidifferential

(8, f(z). 8, f(x)] €Dy f(z)

such that
2, F(x)+ 3, f(z) = al @7 (z) +08rx))
@re),efx)l
€Dy f(z)
and
8, f(z) -8, f(z) = N (Br(z) -3 r(z)),
8 f(x), 8 f(x)]
€Dy f(x)
then

8gf(z) =8, f(z) + 3, f(z)

and
82 f(z) =3, f(z) -8, f(z),
and
J(z;d)= max <u,d>,Vd eR"
u € 8gf(x)
and
fz;d)= max <u ,d>, Vvd €R" .
ueff(x)

PROOF. Since V[8f(z), 8 f(z)] € Dy (=)

8 | 3f()+Bf(x)) 280 | G, flz) + B, £(z))
one has

Lz S 80 | 9, f(z) + B, f(z))

= L@f(:z;%fm]é(' 8 1(2) + 8, 7).
€Dy f(x)

In other words,

Sz =6( 18, f(z)+ 8, Flz)).
Therefore,

9, f(z) + B, f(x) C 85 f(x).
According to the definition of /,, [3], we have

U, () €@, f(z) +38, £(z),
i.e.,

dgf(z) @, fz)+ 8, fx).

(1)

(2)

3

(4)

6))

(6)
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So the equality (3) holds. Similarly, (4) can be proved in the same way. In this
case where the conditions (1) and (2) are satisfied one has that for any
u € 8g f(z) and for any d € R" the relations

u ®®d) = max <u,d>
2( ) u € 0gf(z)
and
o(u ®d) = max <u,d>
u €8®f@)

are true. Hence, the equalities (6) and (6) are true. The theorem has been
proved. O

EXAMPLE 7 Let f € C1®R™). Then
8pf(x) = (VL (x)} . 8®r(z) = {0).
EXAMPLE 8 Let f be a convex function defined in R". Suppose
D, f(x) =18, f(z), {0{]
=[3f(z). {0}].
Df(z) =[3f(z) . 3r ()],

where 8 f(zx) is the subdifferential of f at x in the convex sense.

Since

df(x)—df(z)=38s(z),
one has

Bf@E)+3f(x)=8S(z)+ (Bf(x) =8 f(x)) (6)

=@, f(z) + 8, f(x)) +(Bf(z) -8 f(x))
and

3f(x) —8f(z)=(8, f(z) =3, fz) + (Bf(x) -3 Sf(z)). (7)
So

81(z) =, F(z)+ 8, f(x) = N @r& +arx)

er), afl
€Dy f(x)

and

{0 =8, f(z) =8, f(z)= N Brx)-3arx).

Br@), 8f@)]
€Dy f(z)

From Th. 6, one has
8ef(x) =8 f(z), 8% r(z) =10},
EXAMPLE 8. Let f be a concave function defined in R™ and
D, f(z) =110}, , £ ()]
=[{01 ., —8(=s)(=)]



and
Df(z)=[af(x),8r(=)].
Then
8 f(z) =8, f(z)
= ~3(~r)(z)
and

®ri)=3,r(x) -8, fz).

EXAMPLE 10. Let f; be a convex function and f, be a concave function defined in
R",and f =f; + f,. Then

D, () =18, f(x). 8, 7(z)]
= [811(z) . =8 (=Fp)(x)]
=[8, f1(x) . 8, f2 (2)].
Forany [8f(x), 5_)’(2:)] € Dy f(x) one has from (6) and Ex.9 that
7 (@) +3f(x) = @1 (z) + 3 F1(z)) + (D fp(x) + B folx)) (8)
= 871(z) + (8 f4(z) — 87 (z))
+ (B Fa(x) — 87 5(x)) — (=) (z)
= (871(z) — 8F1(z)) + (B 2(z) — 8f 5(2))
+(8fy(z) — 8(~12) (@),
where
Df(z) = [8f1(z) , 87 4(z)]
and
Dfy(x) = [8F o(x) . 8fp(z)] .
It follows from (8) that
B (z) +3f () D Bef1(x) + Bpfp(x) = 8F 3(x) — A(—S2)(z) . (9)

On the other hand, since

3f(z) —8f(z) = (8f1(z) — 8f 1(x)) + (Bf2(x) — 8f (),

Bf(z) = Bf (x) = (8pf 1(x) — Bpf 1(2)) + (Bf () — B8f(z))
and
8fo(z) = 8f 2(x) = (Bpf 2(x) — 8F p(z)) — (Bof 2(x) = Bof 2(2))

one has

Bf (x) —8f (x) = (8 1(x) =8f 1(z)) + (Af 2(x) =8 () + (BoSf 2(Z) = 8yS 2(2)).



Hence
8f(z) — 8f (z) D 8pfp(z) — Byf 2(2)) . (10)
From (9), (10) and Th. 6 we now have
dgf(z) = 8f4(x) — 8f (z)
= 3of1(2) + Bpf ()
and
8% (z) = 8pf 2(z) — Bpf 2(2)) .
EXAMPLE 11 Let f, and f, be convex, and f =f,; = f».

Then we have
8gf(z) =8f1(z) — dfy(x)

and

8% (z) = 8f 5(z) — B8f5(z) .

ACKNOWLEDGEMENT
The author is deeply indebted to Mrs. Adolfine Egleston for her great help.

REFERENCES

{1] Demyanov, V.F. and Rubinov, A.M. (1980). On @uasidifferentiable Function-
als Soviet Math. Dokl. Vol. 2, No.1, pp. 14-17.

[2] Demyanov, V.F. and Rubinov, A.M. (1985/1986). Quasidifferential Calculus
IIASA, Laxenburg Austria/ Springer-Verlag.

[3] Xia, 2.Q. (1988). The ®-Kernel for a Quasidifferentiable Function. Report,
SDS, IIASA, Laxenburg, Austria.



