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Preface

This report gives the results of some collaborative research on the design of
observing networks, undertaken by Valeri Fedorov of the IIASA Environment Pro-
gram and Mr. Werner Mueller, a graduate student in the Department of Statistics at
the University of Vienna. During the winter of 1986-87, Mr. Mueller was a guest
Research Aassistant at IIASA, working with Professor Fedorov on various aspects
of the optimal design of environmental monitoring networks.

I am particularly pleased with this example of collaboration between the IIASA
Environment Program and the academic community in Austria. It is the kind of ac-
tivity that should be strongly encouraged.

R.E. Munn
Head, Environment Program
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DESIGN OF AN OBSERVING NETWORK:
COMPARISON OF TWO APPROACHES.

V. Fedorov and W. Mueller

1. INTRODUCTION

In the last decade, the necessity to use mathematical methods for optimizing ob-
serving networks was discussed intensively in many publications related to en-
vironmental monitoring (see, for instance, Der Megreditchan, 1985; Modak and
Lohani, 1985; Munn, 1981). The methods described in these publications have a
mainly empirical character. They provide a practitioner with recommendations or
formulae for the sequential deleting or inclusion of stations. The corresponding
procedures are optimal at every step. The less (most) informative observing sta-
tion is deleted from (included in) the monitoring network. Their global optimality,
e.g., that the network is optimal was not investigated. All methods which the au-
thors found in environmental or methodological journals and publications are
based on the analysis of the covariance structure of an observed field, which is as-
sumed to be random. The estimation of the covariance structure is quite a difficult
problem, both from the theoretical and experimental points of view.

It appears that network optimization theory developed independently from the
optimal experimental design theory, which is a well elaborated sector of mathemat-
ical statistics. This theory can also be used for the optimization of observing net-
works (see for instance Fedorov et al, 1987).

The main objective of this paper is a comparison of the two above mentioned
approaches. As a testground for this comparison, the random fields generated by
the second-kind regression model were chosen. (These fields can be investigated
either within random fields theory or in the framework of regression analysis
theory).

Section II contains a short survey of the statistical theory related to the

analysis and design of experiments described by the second kind regression
models.

In Section III, the properties of the estimators and the network design pro-
cedure when applied to the fields generated by the second-kind regression models
are analyzed in detail.

The concluding section is devoted to a comparative analysis of the two ap-
proaches.

II. SECOND-KIND REGRESSION MODEL (ANALYSIS AND EXPERIMENTAL DESIGN)

In many experimental situations the following assumption seems to be reason-
able: at any given j-th time interval (say, season or decade) the observed values
are described by response functions that have the same structure differing only
by intrinsic parameters:
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Yy = (B.%y) + &y, i=1n, =1k (1)

Yyy are observed values, the vector z; € RL stands for the location of the i-th ob-
serving station, 191 is a vector of parameters at the j~th set of observations, 4y is
a random value (usually it is the error of an observation yu).

In this paper it will be assumed additionally that
- Yyy are scalar values;

- 7n(¥,z) is a linear function of parameters -Oj' i.e., n(ﬂj,z) = ﬂij(:c), where
'ﬂj €R™ and f(z) is a vector (m x1) of priori given functions;

- 191 is a random vector, E'(-Oj) =1, and E'[('l?j —'ﬂo)(ﬂj -¥,)1=D, ;
- E[etj/j] = OI NE[etjet’j'/jlj'l] = 026]']”: 6]‘]‘ = 1! 6]‘]" =0| j # j’ ’
Eleyeyy/4,41=0, i,i"=1n, 7.5 =1k.

Here E[{--- ] and E[.../...] are "mean’” and "conditional mean' values correspond-
ingly.

In what follows two other presentations of (1) will be useful:

v, =FT9, + ¢, @)

y; =FT9, +v, =FT9, + (FT(9;—9,) + &}, 3)
where v; = F‘T(-oj —3o) + &4, ij = WYygyr - -1 YUng) F = {f(xqy) .. .. I (xzy)l.

The most crucial assumption from the above set is that the fluctuation of
responses is modelled by the randomness of parameters 191 . In the majority of pub-
lications related to the optimization of an observing network the response Yy (z) is
assumed to be a random field. From (3) it is evident that second kind regression
models lead to finite dimension parameterization of this field with an average trend
F‘Tﬂo and a correlation structure defined by

E(y;=FT9)(y; —FT9,)T1 = 6?1 + FTD,F, (4)

where [ is the identity matrix.

The last remark hints that the estimation problem for (1) can be handled ei-
ther with the help of the traditional regression (or model fitting) approach or the
filtration theory approach.

The estimation theory for problem 1 is well developed (see, for instance, Rao,
1975 and Fedorov and Uspensky, 1977); therefore the essential results used in the
following section will be only briefly surveyed.

(a) The vector of mean values ¥, and variance-covariance matriz D, are
known, parameters 191 have to be estimated.

In this paper we restrict ourselves to the class of linear estimators
By =Lyy; + LY, . (5)

The best linear unbiased estimator '@j is defined as a solution of the following
minimization problem:

'@j = Arg L"Ell:lg E [('51 —190)(51 —3,)77, (6)

subject to the unbiased-ness constraints E(ﬁj —3,) = 0.
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Problem (6) is multiobjective and the assertion that 1‘5, is a solution of it
means that the variance-covariance matrix D('Oj) of ‘l’j is the least one in the class
of linear unbiased estimators:

D(By) = E[(B; —8,)(B; —05)T] = E[(B, —80) (B, —90)T1 = D (3)) )

or D (-f?j) = D(;)'j) — 6 , where 6 is a nonnegatively defined matrix.

The straightforward calculations give

S, = (D¢t + M)DGLS, +a P Fyy) (8)
where
n
M=0FT =02 r(z,)rT(z,). (9)
i=1
and
D(B,) = (Dgt + M) (10)

It is evident that estimator (8) is better (in the sense of (7)) than the usual
least square estimator

which has a greater variance-covariance matrix

D@®;) =M1z Dgt+u)t, (12)

but it has to be emphasized that in 1-9j the information about ¥, and Dy is not used.

For better understanding of the interrelation between 13, and 5, it is useful to
note that

- n
Y, = Arg n:,ijn [tz—:1 U—Z(yq —19ij(-‘=¢))2 + (U —3)TDg? (9 —0)] ,
while

n
¥, =Arg nil’ijn 121 U_Z(yij -19ij(-‘=¢ Ne.

(b) Variance-covariance matriz D, is known, ¥, and ﬂj have to be estimat-
ed.

If '50 = Loy, where yT = (y{, e ,be) and

B, = Arg min E[(By—0o)(By—0,)T1, E(F,—8,) =0, (13)
0

then rather tedious but relatively simple calculations lead to

- ko _
Y=kt Y v, (14)
7=1



where 5, is defined by (11) and
D(By) =k (Do+M HL, (15)

The best linear unbiased estimator for 191 coincides with 51

(c) Neither ¥, or D, are known.

In this case it is impossible to construct estimators similar to (6) or (13) and
the general recommendation is (see, for instance, Fisk 1967; Rao, 1975) that one
can use the formulae from section (a) and (b) if 190 and D, are substituted by:

By = k1 121 3, and D, = (k—1)"1 ,Z (B —8o)(B; —Bp) T (16)

or any other consistent estimators. The consistency will guarantee the asymptoti-
cal fulfillment of (10) and (15), for instance.

In all three cases the prognosis for response funct.lon o7 f(z) at any given
point z based on formulae 7 (z) = 'OTf (z), where ? can coincide with any dis-
cussed estimator. The variance of 7 (z) equals

d(z) = rT(z)D(B)f (z), 17)

where D('TS‘) is the corresponding variance-covariance matrix.

As soon as one knows the dependence of the accuracy of the estimator of
parameters 191 and ¥, (see (9), (10), (12), or the accuracy of ¢/ (z) upon the loca-
tions of observing stations the problem of their optimal choice can be immediately
formulated:

E, =(zq, ... .2y),
¢, = Arg me,i." &[D(B,£,)]1, (18)

where D('@l{n) is defined by (10), (12) or (15), and ¢ is a criterion of optimality
(see, for instance, Fedorov 1972; Fedorov et al, 1987). In this paper for the sake
of simplicity only the D-criterion (or related criteria) will be considered:

D) =In|D]|.
In what follows we shall need three versions of the D-criterion:

¢, =—in|M|, 8 =—in|Dgl +M|, &3 =—In|Dy+ M1

In spite of their similarity the corresponding optimal locations are oriented
to different purposes. In the first case we are trying to increase the effectiveness
of estimation of 'Oj. i.e., the current situation ( say, on j-th day) is of prime in-
terest. In the third case the main objective is the estimation of an average situa-
tion ( ¥4 or 193' f(z) could be annual averages). The second case is similar to the
first one but the prior information ¥, and D, is taken into account.

From the optimal experimental design theory (see, for instance, Fedorov
1972) it follows that the locations of observing stations have to coincide with maxi-
ma of function ¢(z,{,) defined for the criteria considered in Table 1.



Table 1.
Criterion ¢ o(z &)
In|M(£&)| L Pl e r ()
In|Dgt+M(g )| 7t sl Dgt +M (£.)171 ()
In|Dy+M ()| P @MU E)D+M 1)1 e )P (=)

One of the simplest numerical procedures for finding an optimal location of
observing stations (optimal design in statistical publications) could be the follow-
ing one:

[1]1 Thereis §¢ = (ziks' NN R
Matrix M(¢,s) = Y f (x4 )fT(z,,,s) is computed.
i=1

s = A’ (X4 19

has to be found, X is the area where the stations can be located.

[38] For modified design &g 495 = (Zy5, ..., Tgs.Zs) matrix M(€ 44, 5) is computed
and point
zg =Arg min (T, €4 5) (20)
) TE€G41,
is deleted.

Stages 1-3 are repeated with £ (4 coinciding with £, ,, ; except the deleted
pointz,. =z .

The properties of iterative procedure [11-[3] and its more sophisticated ver-
sions were frequently discussed in the statistical literature (see, for instance, the
survey paper by Fedorov, 1986). The forward procedure [2] and the backward one
[3] can have a variable number of steps (length of excursion). For instance, one
can add on every s-th step several points z%, - - ,zq‘; and then delete the same
number of points. In extreme cases either forward or backward procedures can
be used to find the best locations of new stations or to delete the least informative
of existing stations. For more accurate and more detailed information about the
numerical procedures of type [1]-[3] see Fedorov et al, 1987.

III. ESTIMATION AND DESIGN BASED ON THE ANALYSIS OF THE
COVARIANCE STRUCTURE OF AN OBSERVED RANDOM FIELD.

In this section we shall discuss the heuristic approaches related to statistical
analysis of the variance-covariance characteristics of an observed field. These
approaches are all based on the assumption that this field can be described (or
modelled) by some stationary random field. To make the results compatible and
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comparable with the previous section we assume that the random field is generated
by (1) - (3), i.e., (compare with (4)):

C =Ely;—e)Xy;—9)T1= %I + FIDF , ¢ =E[y;], (21)
or
R =Ely,uf1=04 +FTDF + FTogofF ., j=1J. (22)

It has to be noted that the approaches to be discussed are not using the
presentation (21) or (22) and they are assumed to be model free.

Similar to Section II, let the response y be observed at points z,, ... ,z,,. To
prognose ¥ . at the given point z, the linear estimators
Tor =Ny, (23)
or
Vor = o + ATy, (24)
for instance, where T <could be equal to jF+1, for instance, and
yr =(Yyp---+Yny are usually used (see Der Megreditchan, 1985; Katkovnik,

1985).

If the quadratic risk (i.e., E[(¥ —'yt)z], where ¥ is the estimator and vy, is the
true value) of the prognosis has to be minimized, then in the case of (23):

A= Arg m)i\nE[()\Ty.,.—yo.r)z] =R1_11R10 ,

vh =EI(Ry ,~yon))? = Roo—Ro1R {1 R 10 . (25)
and
Yor = RsR 1Y,
where R, = E(y g.,). Ry, =E(y .,yz) corresponds to explanatory points z4, ...,z

and Rgl =R, = E(y,¥Yo,) describes the correlation between explanatory points
and point z,, where the prognosis has to be provided.

For (24) the minimum quadratic risk estimator is defined by
$ = -1 $ =1
Ao =99 —C117C10,A=C13Cyp.
v%, = E[(A+AY Y 0)?] = Co—C1C1i*C 10 » (286)

and
Tor =2 + C1C1y (¥,

where qo =E(¥¢,), ¢ =E(y,), Cyyand Cyy = CJ; are centered versions of R,,
and R, correspondingly:

Ry, =Cqy + qu and Ryg = Cqyp + qho .

There exist several similar methods from which to choose the most informa-
tive points from the random stationary field described by its correlation function
(see Der-Megreditchan, 1985, Ch.VI). We consider a method which is closely relat-
ed to the field interpolation or prognosis problem, see (25), (26). The idea is clear
and simple. ’
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[1] There are k+1 points where observations can be made. The point which is
best explained by all other observations, i.e., with the smallest quadratic risk
v (or v%), has to be deleted. The subscript "i" means now that the value of the
field at the i-th point is interpolated by (25) or by (26).

[2] The procedure is repeated until the total number of observation points is
small enough or v¥ (or v%) will not increase drastically.

The described procedure is based on the very restrictive assumptions that
the correlation mairix and the means for k+1 poinis are priori known.

To some extent the procedure is similar to the deletion stage of procedure
[1]-[3] from section II.

Simple matrix calculations show that if C corresponds to k+1 observation
points and c ™1 is its inverse matrix then (see for instance, Seber, 1975; Der-
Megreditchan, 1985):

Cil=1/vy (27)

and therefore at every step of the above formulated procedure one has to find:
i~ = Arg m?x Cﬁ“l (28)

and to delete point z;, from the givenset x4, ...,z 4 .

To include a new point (or station) one has to solve the continuous optimiza-
tion problem.

+ s -1
" = Arg min C , 29
g min Czy (29)

where
c C;

CE)=1er ¢
= of s o of

C, =E[(y,—g)w(x)—g@)], Cp =El(¥(z)—a(x))?,

C.7' is the element of matrix C ~}(z) with the same position as C,, and

C:;1 =1/vy , Vpr = E[(x0+xy7_y;f)2] .

Let C be defined by (22). Then
Cr=(PI+FTDF) =07 ~ o F Ty +o 2 FT)F
=072 — o T DgY + M(& )17 (30)

where

k+1
M(€k+1) = o %FT = ¢72 Zf(zi)fT(zi)~
it=1

In (30) the following formula was used:
U+ETBEY =41 -AET(EAET+8 HETA L.
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From (28) and (30) it immediately follows that
i” = Arg min £ T(z)[Dgt +M (& 41)1 717 (z)- (31)

and point Z = z,. has to be deleted from £ ,,.

The inclusion procedure is defined (see (29) and (30)) by the following optimi-
zation problem:

zt = Arg max rT@ Dyt +M (£ (2) (32)

The substitution of D, by Do+190190T in (31) and (32) leads to the iterative pro-
cedure for estimator (25).

IV. COMPARISON OF TWO APPROACHES

The comparison of (30) and (31) with (19),(20) and the second line of Table 1
shows that the generalized version of (28) coincides with the simplest iterative
procedure for numerical construction of the D-optimal design (see Fedorov, 1986;
Fedorov et al., 1987) when the criterion of optimality is based on a variance-
covariance matrix of estimator (8).

Thus the complete similarity between the approaches given in Sections Il and
Il is established.

However, here we have to remind the reader that in Section III it was assumed
that the correlation structure of the random field is known, i.e., matrix C (or R,
for the sake of simplicity only problem (26) will be considered) for any prescribed
set £4,...,%, is known. Unfortunately, in practice this matrix has to be estimat-

ed. The necessary data are available from stations already in operation. There-
fore, if one does not apply additional assumptions, only the deletion procedure (28)
can be used with the natural substitution of C by some estimate C. Usually (see
also (21)):

~ J R
C=uty -9 -7,
j=1

It is worthwhile to emphasize that
- maximization problem (28) is very unstable under variation of C (or 5);

- the inverse matrix ¢! can be calculated only in the case when the length of
the available time series (yu) is greater than the initial number of observing
stations;

- the intention to delete some stations implicitly assumes that matrix ¢ is ill-
conditioned; this fact leads to significant computational difficulties;

- the initial observing network can contain a large number of stations and it
causes additional computational problems in (28);

- the real quadratic risk '3120 and 5220 (compare with (25) and (26)) after substi-
tution of C by C will be greater than 'ulzo and 'uzzo ;
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- formulae (26) with ¢ instead of C provide the approximate solutions of qua-
dratic risk minimization problems, the approximation can be quite poor when
the volume of the learning sample (J) has the same order as the number of ob-
serving stations (n).

Should one wish to expand the observing network, it is necessary to apply

some interpolation procedure to get C including any prescribed location x.

This is the most sensitive stage (at least in theory) of the whole approach.
One must invent some physically reasonable assumptions on the random field struc-
ture considered.

Usually these are assumptions on stationarity and space homogeneity of this
field and assumptions on the analytical form of the covariance function C(z,z’),
(see for instance, Der Megreditchan, 1985).

In the applied papers (most of which concern only data analysis) this set of as-
sumptions is shadowed by technical experimental details and by discussions about
the nicety of (23), (24) or similar prognoses (see for instance, Endlich et al, 1986;
Clark et al, 1986, Der Megreditchan, 1985) which gives readers the hope that
model free approaches are used.

In the approach considered in Section II, a practitioner faces a similar prob-
lem at the very beginning. More explicitly, he must choose the vector of basic
functions f(x) ( or n(x,¥) in the more general case). After overcoming this prob-
lem, rather routine and effective numerical algorithms can be used to construct an
optimal observing network.

In the previous case experimental data are used to restore matrix €. In the
latter case they can be used to verify (or to test) hypothesis (1).

Summarizing the discussions in this section, one comes to the following conclu-
sions:

1. From a computational point of view, the approach from Section Il is more reli-
able. At least in the case of linear parameterization, it provides a deter-
ministic optimal solution.

2. The approach of Section II explicitly uses the assumption on physical models
forcing a practitioner to be more accurate in his physical considerations and
hypothesis.

Of course, these conclusions do not cancel the usefulness of the approach dis-
cussed in Section III. Some experimental situations can be effectively described
only by models based on the variance-covariance structure of an observed field.
The most ideal instance (rarely realized) is when a practitioner deals with a field
which is really homogeneous in space and stationary in time.
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