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This paper deals with a measure of distance for cluster
analysis. The distance here is defined as a generalization of
similarity measures.of binary variables using fuzzy set theory.
It is proved that the distance introduced in this paper satis-
fies the triangular inequality. Two algorithms are developed

and their convergence is proved.
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A Measure of Distance for Cluster Analysis Based on Fuzzy Sets

S. Miyamoto

1. Introduction

Since cluster analysis is a convenient and flexible tool of
analysis for studying complex systems, it has been wused in
various fields of sysfems analysis. When we wish to perform
cluster analysis, we must consider carefully the following three
points:

1. how to define an appropriate similarity (or distance) measure
between a pair of elements to be clustered,

2. which of the algorithms to generate clﬁsters should be
selected,

3. how to interprete the generated clusters.

The present paper is concerned mainly with the first point,
with the emphasis on a new viewpoint of developing a family of
similarity measures based on fuzzy sets.

Up to now, major part of literature in cluster analysis has
been concentrated on development of.algorithms that is based on
the Euclid distance, i.e., the square distance on a finite
dimensional space, since we can use various good properties of
the Euclid geometry. This means, on the other hand, that

multivariate statistical data have been regarded as points in a



multidimensional Euclid space. This assumption is for the
purpose of convenience than appropriateness, in order to apply
many algorithms that has been developed on the Euclid spaces.

This assumption that an individual data wunit should be
regarded as a point in the Euclid space 1is inappropriate, in
particular, when the data is binary. Therefore special measures
for binary data have been studied <(Anderberg, 1973, Everitt,
1980). Frequently attributes of data are described by mixture of
variables such as binary, qualitative, and quantitative ones.
(cf. Gower, 1971) In some occasions city block distance is
prefered than the Euclid distance. (Carmichael and Sneath, 1969)
In this way, frequently we should assume a mathematical model
that 1is not based on the Euclid space. In the latter cases of
"non-Euclid" models for similarity measures, studies are much
more empirical and fewer number of algorithms have been
considered.

In a former study (Miyamoto and Nakayama, 1986) we proposed
a new type of set-theoretical model to define a family of
similarity measures based on the fuzzy set theory. It enables to
generalize the similarity measures of binary variables to
interval or ratio variables. For example, if we denote by (xik)
the score of the individual i on the variable k, then "fuzzy
Jaccard coefficient™ s(i,j) between individuals i and j can be

defined as

= K min(xik,xjk)

s(i,j) =
2.k max(xik,xjk)



Moreover the above consiéeration leads to a study of a new type
of algorithms.

The present paper is concerned with anotﬁer kind of
similarity (or distance) measures based on the framework of fuzzy
sets. We begin with the definition of a fuzzy relation defined
as a ratio of the intersection and the wunion of two fuzzy
subsets. The similarity measure is introduced as an integral of
this fuzzy relation. The new measure of similarity is
transformed into a distance measure that is equivalent to the
former for the purpose of clustering. The distance measure is a
generalization of the Russel and Rao's coefficient or the simple
matching coefficient. Moreover the distance measure satisfies
the triangular inequality. Two algorithms with their property of
convergence are described. These algorithms use two kinds of
representative points for a cluster that 1is called here as
centers, It is shown that the two centers can be obtained by
simple calculations. It should be noted that the whole argument
here suggests, not only the new specific measure of similarity
and 1its related algorithms, but also a new approach to build a
mathematical model for clustering based on a set theoretic
argument on binary measures. Therefore the present approach
implies possibility of developing various kinds of similarity

measures of fuzzy relations as future studies.

2. A distance measure based on the framework of fuzzy sets
Let X = {xl,xz,...,xm) be a set of individuals to be

clustered and Y = {yl,yz,...,yn) be a set of variables. A



function h : X~>[0, 1 ]Y

is assumed to be given that maps
each 1individual to its corresponding fuzzy subset in Y as the
set of scores that shows relevance of an individual for each
variable. Moreover let A and B be two fuzzy subsets in Y. We
begin with a definition of a fuzzy relation S(A,B) given as the

ratio of ANB and AUB that shows similarity between A and B.

Let

fAnB(y)/fAUB(y). y € supp(AU B)

f (y) =
S(A,B) 1 , y § supp(AU B)

be the membership function of S(A,B). Another relation S'(A,B)

which is closely related to the former is given by

fAnB(y)/fAUB(y), y £ supp(AU B)

fa. (y) =
ST(A. B { 0 , y £ supp(AU B)

The difference between S and S' depends on our consideration on a
variable y with fA(y) = fB(y) = 0. In the former definition of S
we assume that the value of similarity on this variable should be
unity because fA(y) and fB(y) take the same value zero. On the
other hand in the latter definition we consider that this
variable is not interesting and should be ignored.

In the sequel our discussion will be concentrated, not on S
and S', but their integrals. Let P be an additive and

nonnegative measure such that IY dP = 1. We will consider

s(A,B) = f P

Sy fsca,md

and



s'(A,B) = SY f dP

S'(A,B)
Remark In a former study (Miyamoto and Nakayama, 1986) we

discussed a measure

§ fynp(yaP

§ fALJB(y)dP
as a generalization of the Jaccard coefficient. On the other
hand, the present relations S and S° themselves show
similarities between A and B on each variable y. Moreover it
will be shown that the integrals s and s' are generalizations of

standard binary measures.

It is straightforward to see some properties of s and s°'.

Prop.1
s(A,B) =1 iff A =B
S'(A,B) =1 iff A =B =Y
s(A,B) =0 iff B = A® and also A and B are crisp
S'(A,B) = 0 iff ANB = ¢
s(A,B) > s'(A,B) and the equality holds

iff supp(AUB) = Y.

(Proof) The above relations immediately follow from

fS(A,B) =1 iff A =B
fS'(A,B)E 1 iff A =B =Y

= - _ .C .
fS(A,B) =0 iff B = A and A and B are crisp
fS'(A,B)E 0 iff ANB = ¢ . (1]

In the following we write s(xi,xj), s'(xi,xj) instead of



s(h(xi),h(xj)), s'(h(xi),h(xj)) for simplicity.
Now, let us assume that fh(xi)(yk) = xik > 0, 1<i<m, 1<k<n.
If we use the standard sup-min definition for the fuzzy set

operation, we have

min(xik,xjk)

( ) , max(xik,xjk))o
max xik’xjk

fsx.,x.) Tk’ =
1)
1 s xik=xjk=0
min(x.,,X..)
ik’"ik , max(x., ,X.,)>0
ik’“jk
max(x., ,X:..)
£ (y.) tk*ik
s'(x.,x.) Yk
1]
0 , X k=X ;=0

if we define nij= (number of elements in supp(h(xi)LJh(xj)) and

if we assume that P(yk) = 1/n for all k, then we have
1 n mind(x..,,X.,)
s(xi,xj) = - [ 2" ik'"jk + (n - nij) )|
n k max(xik,xjk)
1 n min(x,,,X..)
s'"(X,,x.) =~ 2" 1k'" ik ]
! J K max(x X..)
ik’ ik
where the summation IR is taken over all k such that

max(xik,xjk) > 0.

Remark We defined X, as individuals to be clustered and Xik @s a
value of membership of h(xi). Therefore X5 is not a vector whose
coordinates are (xil"“’xin)‘ The reason why we use this
notation which appears somewhat confusing 1is that in later

sections an individual xi to be clustered can be identified with

the vector (xil"“’xin) for simplicity and without confusion. []



Prop.2 [f we assume that the function h(xi) is a binary mapping,
that is, Xik= 1 or XK= O for all i and k, then the measure s is
equal to the simple matching coefficient (SMC) and the measure s'

is equal to the Russel and Rao's coefficient.

Remark We give here the definition of the above two measures of
binary variables for the ease of reference. (cf. Anderberg, 1973
or Everitt, 1980) As in the 2 x 2 table below (Table 1), we
define the number a as the number of variables that both xi and

xj have the same value of unity (Xik=xjk= 1), b as the number of

variables such that X, = 1 and xj = 0, ¢ as the number of
variables such that X, = 0 and xj = 1, and d as the number of
variables such that X; = xj = 0.
Table 1
J ! 1 0
i '
1 H a b
!
0 H c d
[]

Then the simple matching coefficient is given by <(a+d)/(a+b+c+d)
and the Russel and Rao's coefficient is given by a/(a+b+c+d).[]

In the sequel the difference between s and s' is not
important. Therefore we will consider only the measure s but the
argument below can be applied to s’ without essential

modification. Moreover we use a simplified notation



1 n min(x.,,X.,)

s(X.,x.) = - [ % ik’ ik
1 kK max(x X..)
ik’“jk

]
In the above expression a term min(xik,xjk)/max(xik,xjk) with
max(xik,xjk) = 0 should be interpreted as unity. We define a
measure of dissimilarity (distance)

d(xi,xj) =1 - s(xi,xj)

It is immediate to see that 0 < d(xi,xj) < 1.

Prop.3 The distance measure d(xi,xj) satisfies the conditions of

metric:
(i) d(xi,xj) > 0, d(xi,xj) = 0 iff h(xi) = h(xj)
(ii) d(xi,xj) = d(xj,xi)

(iii)d d(xi,xk) + d(xj,xk) 2 d(xi,xj)
(Proof) It is easy to prove the first two properties. For the

triangular inequality (iii), note that the following equation

holds.
1 n 1x. - X.. 1
d(xi,xj) = - Z 1k iK
n k=1 max(xik,xjk)
In this equation the term Ixik-xjkllmax(xik,xjk) with
max(xik,xjk) = 0 should be considered as zero. Then the

triangular inequality follows from the following lemma.



Lemma 1 Let a,b, and ¢ be nonnegative numbers. Then,

la - ¢l {b - ¢! la - bl
+ 2
max(a,c) max(b,c) max(a,b)
where it is assumed that when max(a,b) = O, the corresponding

term should be considered as zero, and so on.
(Proof of Lemma 1) The above inequality can be proved by simple
calculations. Let us assume a > b > ¢ > 0. Then,

la - ¢l b = ¢l Ja - bl a-c¢ b-c¢ a-b (b-c) (a+b)

max(a,c) max(b,c) max(a,b) a b a ab
In case a > ¢ > b > 0, we have

la - cli Ib - ci la - bl a-¢ c-b a-b (c~b) (a-c)

max(a,c) max(b,c) max(a,b) a c a ac
If ¢ >a2>b > 0, then

la - cli ib - ¢l la - bl c-a c-b a-b (c-a) (a+b)

max(a,c) max(b,c) max(a,b) é c a ac

and so on. (]

3. Algorithms using centers based on d(xi,xj)

Although the measure defined in the previous section is
directly applicable to standard method of hierarchical
agglomerative clustering, we consider 1in this section some
algorithms of nonhierarchical clustering (cf. Anderberg, 1973).
Major part of nonhierarchical algorithms use some representative
points for clusters, for example, the centroid in case of the
Euclid space. Therefore we consider some '"centers”™ of clusters
as the representatives of the clusters based on the above

d(xi,xj).



Let XPC:X be a crisp subset (cluster) of X. Without loss of

generality we assume that {x,,x,,...,X_ )} = X . Let us define =z
1'42 nP p

as a vector whose coordinates are (21""’Zn)' Since z is not
an element of X, it is impossible to consider the distance
d(xi,z). However, as was noted earlier, it will be more
convenient from now to identify xi with a vector
xi=(xil,...,xin) to consider d(xi,z) for simplicity.
Now, we define a center Ep for Xp to be a minimizing element

of a problem

min = a(x.,2)

z x.¢€¢X !
I (1)
subject to 0 < zk <1, k=1,2,...,n

where

1
d(xi,z) = -
n

We note that the following lemma holds. The latter half of the

lemma will be used later.

Lemma 2 Let 0 vy < Wo oo £ Woo- Then,
1) the minimizing element X of
n Iwk - x|
min Jl(x) = min 2
x>0 x>0 k=1 max(wk.x)
is equal to one of wk’s such that

J.(X) = min J,(w.)
1 1<k<n 17k

2) The minimizing element x of

10



Iwk - x|

min Jz(x) = min max _—
x>0 x>0 Wiseos W max(wk,x)
is given by X =fw1wn
(Proof) Assume X > W then Jl(x) = n - Zlk wk/x
Therefore min J,(x) = J,(w_ ).
1 1 n
XOW
n
In the same way, min J,(x) = J,(w,)
171
nggwl
Let wi< X < Wielo then
i X - w nw, - X
I =3 —F 4+ 3 -k
k=1 X k=i+l Wi
1 i n 1
=n--( Z Wy ) - (2 -~ ) x
X k=1 k=i+l Wi
It is easy to see that the second derivative of Jl(x) is minus.

Hence we have

min Jl(x)

WiLXLW; 4
Therefore min
x>0

2) Assume X >

min
xzwn

Therefore

<

Assume that O

Jz(x) = max (wk

k
Let wy £ x < Wy
:wk - X
max
wk max(wk,x

min( J(wi),J(w )

i+l

Jy(X) = min J,(w,)

1 lgkinl k
L then Jz(x) = m;x (x - wk)/x = (x - wl)/x.
Jz(x) = Jz(wn).

X £ Wl, then

- x)/wk = 1 - x/wn , therefore min Jz(x) = Jz(wl).
nggwl

+1° then

=X

max ( max

1<k<i

max
i+1<kg&n

) w

X

11



= max (1 = wl/x , 1 =~ x/wn )

Therefore min J,(x) = min max ( 1 - w,/x, 1 - x/w_ ). Now, it
2 1 n
x20 x>0
is easy to see that J2( wlwn ) = min Jz(x)
x20
[1

The following proposition is a direct consequence of the

above lemma.

Prop.4 Let

n lz - x..1
(z) = 5P — 1K
i=1 max(z,xik)

k

I

Then the solution 2z = (21,22,...,2n) of (1) 1is given by

k k k

Jy7(Zy) = min J,0(x) = min J,(X.,.) (2)
1 k x>0 1 1<i<n ik
p
k=1,2,...,n . - L]

It is sometimes useful to note the following.

Cor.1 If a group consists of two members, i.e., Xp = {xi.xj},

then the coordinates Ekp of Zp can take any of the two values Xk

and xjk’ the coordinates of X, and xj, k=1,2,..,n.

Remark The proof of the above corollary 1is immediate from
Prop.4. At the same time it should be noted that a weaker

p

property: 32 i

= x. or zP = X follows from the triangular
inequality. [1]

The solution of (1) in Prop.4 is considered to be a
representative point of a cluster. Although this center can be

used 1in agglomerative hierarchical algorithms (cf. Miyamoto and

Nakayama, 1986), we show here an algorithm based on an iteration

12



as a method of nonhierarchical clustering. Since a major part of
nonhieararchical clustering deals with optimization problems, we

consider here a minimization problem:

min EQ T dx.P,zP) (3)
p=1 xipsxp !
with respect to xl’XZ""’XQ that is a partition of X and 3P s
the center given by (2) in Prop.4.
The following algorithm is an analogy of Forgy's algorithm
on the Euclid space (Anderberg, 1973). It is assumed that the
number of clusters are denoted as Q that is given beforehand and

is fixed throughout the procedure.

Algorithm 1

1. Begin with initial Q partition.

2. Calculate centers zP for each cluster for all p=1,2,...,Q.

3. Allocate each individgal X, to the cluster with the nearest
center. (The nearest center means the center with min d(xi,’p).)
4. TIf no individuals change their cluster membership, stop the

iteration and output the result. Otherwise go to step 2.

Prop.5 Algorithm 1 converges after a finite number of iteration.
(Proof) It is clear that each iteration of step 2 and step 3 in

Algorithm 1 decreases monotonically the value

p) zp d(xip,ip)
p=1 x.1 sXp

therefore the algorithm is convergent after a finite number of

13



iteration. [1

Another consideration on nonhierarchical clustering is based
on an idea to deal with each coordinate independently in the

calculation of a center. We define another criteria

P _ )%
. Q n sz Xk |
mlg > > m%x D > (4)
Oizk <1 p=1 k=1 X, £:xp max(zk Xk )
2?
= min JL (X))
0<z, P<1 p=1 3°7p
where
P _ p
Jo (X ) = nZ ma lzk xik '
3 %p”7 T X

- )% )% )%
k=1 xi £:Xp max(zk Xk )

From lemma 2 we have

Prop.6 The solution (219,22P,...,2np) of (4) is given by

z. P = ( min x..P)C max x..P) (5)
k . < ik
lilinp lilinp

Remark If we consider a geometrical interpretation of the
problem (4), a cluster of points might be expressed as the
smallest cube which includes all the points inside it and whose
center is given by (5). However, it sometimes leads to
misunderstanding to consider a geometrical interpretation of this
measure, since absolute value (or norm) of X based on the above
distance does not have any meaning. It is clear that d(0,x) = 1

for any x with nontrivial coordinates. Since each coordinate can

14



be dealt with independently, it appears that methods 1in one-
dimensional clustering might be applicable. We must be careful,
however, about the above point. For example, the method of
histogram can not be applied directly, since the distance of an

element from the origin is always unity. [1]

Thus, we consider another criterion for clustering:
Q n 1z, P - x. Py
min > > mgx L > 1k - (6)
p=1 k=1 X, e:xp max(zk »Xix )

with respect to the partition xl.xz,...,xQ of X. We have an
algorithm that is based on a consideration of boundary point. A

data wunit x1p=(xiip-”"xinp) is called a boundary of X, if for

P . P P

; P
some K, X, = min X, or X., = max X,
Wi ¥ Hoacien T

most 2nQ boundary points when we consider Q clusters.

Therefore we have at

Algorithm 2

1. Begin with an initial partition.

2. Calculate ikp, p=1,...,Q, k=1,...,n by (5) that minimizes

P _ P
|zk xik |

mgx P P
xi £:Xp max(zk ,xik )

3. For each boundary point xip, if there is another cluster Xp,

such that

L

3 3 3

J (X - (x.Py) + 13
P 1 3

(X_,U(x.P}) ¢ J_ (X)) + J_(X_ )
p i p p

move X P from the cluster X to X .
i P p'

4. If no boundary points change their cluster membership, stop

the iteration and print the result. Otherwise go to step 2. [l

15



The following proposition is obvious, since algorithm 2 decreases

monotonically the criterion (6).

Prop.7 Algorithm 2 converges after a finite number of iteration.

The above algorithm 2 has an advantage that it is sufficient to

examine 2nQ boundary points instead of the whole m data units.

4, A simple example

We show a simple example that shows a characteristic of the
present measure of distance. Consider three individuals
x1=(0,1,1), x2=(1,1,0), and x3=(4,4,0), then it is clear by the
definition of the distance that d(xl,x2)=2/3, d(x2,x3)=1/2,
d(x3,x1)=11/12. On the other hand if we denote the Euclid
distance as dp we have dp(x;,X,)={2, dp(X,,%4)= |18,
dE(x3,x1)=J§§ . That is, by the present distance x2 is nearer to
x3 than to xl, whereas by the Euclid distance x2 would be nearer
to Xy than to Xq-

Assume that we wish to divide the above individuals into two
clusters, Note that when we consider a group with +two elements
(xi,xj), it is clear that the center z for this group is given by

z =x; or z =xj, as we noted earlier. Therefore by the first
method based on the present measure of distance we have X1={x1),
Xy={Xy,X3},
whereas by the Euclid distance X1={x1,x2), X2=(x3}.

Next, let us consider the second method in the present
framework. Let the coordinates of the centers for the groups for

= 1,2
the groups (xl,xz}, {x2,x3}, (x3,x1} calculated by (5) be Zy ,

16



zk . Ek , respectively. Then from Prop.6 we have z1 =z 0,
= 1,2 = 1,2_ ~. = 2,3_ = 2,3_ = 2,3_ A. = 3,1_

Z, =1, Zq = 0; 2 = 2, Z, = 2, Zq = 0; 2, = 0,
223’1= 2, 233’1= o . Hence it is easy to see that

J3({x1,x2)) = 2, J3({x2,x3)) =1, J3({x3,x1)) = 5/2. Therefore
if we divide the individuals into two groups, we have X1 ={x1),
X2 ={x2,x3}.

Moreover let us consider x4=(0,0,1) together with xl, x2,
and Xq, and assume that we wish to divide {xl,xz,xa,x4} into two
clusters Xl, X2. Then by a simple <calculation it is
straightforward to see that X1={x1,x4), X2={x2,x3) both by the
first method and the second method in the present framework,

whereas by the Euclid distance we have X1={x1,x2,x4}, X2={x3).

5. Conclusion

Many years ago when digital computers were not well
developed, major part of statistical tools that were available
for multivariate statistical data were based on the Euclid
geometry. Therefore until now multivariate statistical data have
been considered to be points in a multidimensional Euclid space.
With the development of digital computers we have now other type
of mathematical tools such as the hierarchical cluster analysis
that is more algorithmic than geometrical. These new tools to
deal with statistical data implies various possibilities to work
with new types of mathematical models. Nevertheless, as noted
earlier, major part of the studies on cluster analysis have been
devoted to the processing of data in the' Euclid space for
convenience's sake.

In this paper we have shown another approach of fuzzy set-

17



theoretic mathematical model. We discussed several properties of
the measures derived from the model and also showed algorithms
based on the measures. The present approach of fuzzy set
framework together with our former result on the fuzzy Jaccard
coefficient (Miyamoto and Nakayama, 1986) is applicable to other
area of studies than the cluster analysis. For example, we can
suggest the use of these measures to multidimensional scaling and

information retrieval.
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