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Foreword 

This paper is one of the series of 11 Working Papers presenting the software for interactive 
decision support and software tools for developing decision support systems. These products 
constitute the outcome of the contracted study agreement between the System and Decision 
Sciences Program at  IIASA and several Polish scientific institutions. The theoretical part of 
these results is presented in the IIASA Working Paper WP-88-071 entitled Theory, Software 
and Testing Ezamples i n  Decision Support Systems. This volume contains the theoretical 
and methodological bacgrounds of the software systems developed within the project. 

This paper constitutes a methodological guide and user's manual for NOA1, a package 
of Fortran subroutines designed to  locate the minimum of a locally Lipschitz continuous 
function subject to  locally Lipschitzian inequality and equality constraints, general linear 
constraints and simple upper and lower bounds. The user must provide a Fortran subroutine 
for evaluating the (possibly nondifferentiable and nonconvex) functions being minimized and 
their subgradients. The package implements several descent methods, and is intended for 
solving small-scale nondifferentiable minimization problems on a professional microcomputer. 
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Part I 

Theoretical Guide for NOAI: a Fortran 
Package of Nondifferent iable 
Optimization Algorithms 

1 Introduction 

NOAl is a collection of Fortran subroutines designed to  solve small-scale nondifferentiable 
optimization problems expressed in the following standard form 

minimize f ( z )  :=max{f , (z ) :  j= 1, ..., mo} , ( l a )  

subject to F , ( z ) s O  for j = l ,  . . . ,  m r ,  (lb) 

F j ( z ) = O  for j = m r + l ,  ..., m r + m ~ ,  ( 1 ~ )  

A z s b ,  ( Id)  

L zi < z , < z Y  for i = l ,  . . . ,  n ,  (14 
where the vector z = ( z l , .  . . , z , ) ~  has n components, f j  and Fj are locally Lipschitz con- 
tinuous functions, and where the m~ by n matrix A, the mA-vector b and the n-vectors zL 
and z u  are constant; A is treated as a dense matrix. 

The nonlinear functions f, and Fj need not be continuously differentiable (have continuous 
gradients, i.e. vectors of partial derivatives). In particular, they may be convex. The user 
has to  provide a Fortran subroutine for evaluating the problem functions and their single 
subgradients (called generalized gradients by Clarke (1983)) at  each z satisfying the linear 
constraints ( ld,e) .  For instance, if Fj is smooth then its subgradient gFj(z) equals the gradient 
V F,(z), whereas for the max function 

Fj (z) = max { Fj (z; Z) : z E Z } (2) 

which is a pointwise maximum of smooth functions Fj(., .) on a compact set 2,  gFj(z) may 
be calculated as the gradient V,F,(z; z(z))  (with respect to z ) ,  where z(z)  is an arbitrary 
solution to  the maximization problem in (2). (Surveys of subgradient calculus, which gen- 
eralizes rules like V(Fl  + F2)(z) = VFl(z)  + VF2(z),  may be found in Clarke (1983) and 
Kiwiel (1985a) .) 

NOAl implements the descent methods of Kiwiel (1985a-d,1986a, 1986c,1987), which stem 
from the works of Lemarechal (1978) and Mifflin (1982). 

A condensed form of problem (1) is to 

minimize f (z)  over all z in Rn ( 3 4  

satisfying F I ( ~ )  5 0, 

F E ( ~ )  = 0, 

Az 5 b, 

zL  5 z s  z U ,  



where f is the object ive  function, 

is the inequal i ty  c o n s t r a i n t  function, 

is the equa l i ty  c o n s t r a i n t  function, the r n ~  inequalities (3d) are called the genera l  l inea r  
cons t ra in t s ,  whereas the box cons t ra in t s  (3e) specify upper and lower s i m p l e  b o u n d s  
on all variables. 

The standard form (1) is more convenient to  the user than (3), since the user does not 
have to program additional operations for evaluating the max functions f ,  FI and FE and 
their subgradients. On the other hand, the condensed form facilitates the description of 
algorithms. 

The linear constraints are treated specially by the solution algorithms of N O A 1 ,  which are 
feasible with respect to  the linear constraints, i.e. they generate successive approximations 
to  a solution of (1) in the set 

SL = { z : A z <  b and zL 5 z <  zU) .  

The user must supply an initial estimate 2 of the solution that  satisfies the box constraints 
(zL 5 2 5 z u ) ,  and the orthogonal projection of 2 onto SL is taken as the algorithm's starting 
point. 

Two general techniques are used t o  handle the nonlinear constraints. In the first one, 
which minimizes over SL an exact penalty function for ( I ) ,  the initial point need not lie in 

SF = { z  : Fl(z)  < 0 and FE(z) = 0 )  

and the successive points converge to  a solution from outside of SF . The second one uses a 
feasible point method for the nonlinear inequality constraints, which starts  from a point in 

and keeps the successive iterates in SI . The choice between the two techniques is made 
by the user, who may thus influence the success of the calculations. For a given level of 
final accuracy, the exact penalty technique usually requires less work than the feasible point 
technique. On the other hand, the feasible point technique may be more reliable and is more 
widely applicable, since it does not in fact require the evaluation of f and FE outside of 
SL n SI. 

N O A l  is designed to  find solutions that  are locally optimal. If the nonlinear objective 
and inequality constraint functions are convex within the set SL, and the nonlinear equality 
constraints are absent, any optimal solution obtained will be a global minimum. Otherwise 
there may exist several local minima, and some of these may not be global. In such cases 
the chances of finding a global minimum are usually increased by restricting the search t o  a 
sufficiently small set SL and choosing a starting point that  is "sufficiently close" t o  a solution, 
but there is no general procedure for determining what "close" means, or for verifying that  
a given local minimum is indeed global. 

N O A l  stands for Nondif ferent iable  Opt imiza t ion  Algor i thms ,  version 1.0. 
In the following sections we introduce some of the terminology required, and give an 

overview of the algorithms used in NOA1. 



2 An overview of algorithms of N O A l  

The algorithms in NOAl are based on the following general concept of descent methods for 
nondifferentiable minimization. Starting from a given approximation to  a solution of ( I ) ,  
an iterative method of descent generates a sequence of points, which should converge to a 
solution. The property of descent means that  successive points have lower objective (or exact 
penalty) function values. To generate a descent direction from the current iterate, the method 
replaces the problem functions with their piecewise linear (polyhedral )  approximations. 
Each linear piece of such an approximation is a linearization of the given function, obtained 
by evaluating the function and its subgradient a t  a trial point of an earlier iteration. (This 
construction generalizes to  the nondifferentiable case the classical concept of using gradients 
to  linearize smooth functions.) The polyhedral approximations and quadratic regularization 
are used t o  derive a local approximation to  the original optimization problem, whose solution 
(found by quadratic programming) yields the search direction. Next, a line search along this 
direction produces the next approximation t o  a solution and the next trial point, detecting 
the possible gradient discontinuities. The successive approximations are formed to  ensure 
convergence to a solution without storing too many linearizations. To this end, subgradient 
selection and aggregation techniques are employed. 

2.1 Unconstrained convex minimization 

The unconstrained problem of minimizing a convex function f defined on Rn is a particular 
case of problem (1). In NOAl this problem may be solved by the method with subgradient 
selection (Kiwiel, 1985a). 

Let gf(y) denote the subgradient of f a t  y calculated by the user's subroutine. In the 
convex case 

f ( 4  2 f (Y)+(gf(Y) ,z-Y)  for all 2, (4) 

where (-, -) denotes the usual inner product. Thus at  each y we can construct the l ineariza- 
t ion  of f 

f(.; Y )  = f(Y) + ( S ~ ( Y ) , Z  - Y) for all z , (5) 

which is a lower approximation t o  f .  
Given a user-provided initial point z l ,  the algorithm generates a sequence of points z k ,  

k = 2,3,  . . . , that  is intended to  converge to  a minimum point of f .  At the k-th iteration the 
algorithm uses the following po lyhedra l  approximation t o  f 

P (z)  = max { f(z;  y j) : j E J! } (6) 

derived from the linearizations of f at  certain trial p o i n t s  yJ' of earlier iterations j, where 
the index set Jf c { 1 , .  . . , k }  typically has n + 2 elements. Note that  jk may be a tight 

approximation to f in the neighborhood of trial points yj, for j in J:, since f (yj) = jk (y j ) .  

The best direction of descent for f at  z k  is, of course, the solution ik to  the problem 

minimize f (zk  + d) over all d in Rn , 

since z k  + ik minimizes f .  The algorithm finds an approximate descent direction dk t o  

^k k minimize f ( z  + d) + ld12/2 over all d , (7) 



where the regularizing penalty term (d12/2 tends to  keep z k  + dk in the region where jk may 
be a good approximation to f (I - I denotes the Euclidean norm); without this term (7) need 
not have a bounded solution. 

The nonpositive quantity 
vk = j k ( z k  + dk) - f ( ~ ~ )  (8) 

is an optimality measure of z k ,  since 

The algorithm terminates if 

Ivkl 5 4 1  + If (zk)l),  

where s, is a positive final accuracy tolerance provided by the user. Thus for s, = 10-I 
and 1 2 4, we may hope to  achieve the relative accuracy of about (1 - 1) leading digits in the 
objective value (considering also zeros after the decimal point as significant), i.e. typically a t  
termination 

If (z') - f ( zk )  1 is about lo-('-') max { 1 f (z*) ) , I )  , (11) 

where z* is a minimum point of f .  (Of course, such estimates may be false for ill-conditioned 
problems.) In practice vk usually converges to  a negative number, small relative to 

max { f ( z k ) ,  1 ) .  
The stopping criterion (10) usually works with s, set to  or but it is not always 

reliable. For instance, if f is polyhedral and bounded from below then termination should 
occur a t  some iteration with vk = 0 (and optimal zk ) .  In practice computer rounding errors 
prevent the vanishing of vk. The search direction finding subproblem (7) is solved in NOAl 
by the subroutine QPDF4 for quadratic programming (Kiwiel, 1986b), which calculates the 
quantity 

ck = j k ( z k  + dk)  - f ( ~ ~ )  (12) 

and gives vk a nonpositive value according to some dual estimate; in theory G k  should equal 
vk. The smallness of Ick - vkl relative to  Ivkl indicates good accuracy of QPDF4. The accuracy 
usually deteriorates in the neighborhood of a minimum point of f (when too small accuracy 
tolerance s, prevents termination), or earlier for ill-conditioned problems. The case of Gk 2 0, 
i.e. inability to  find a descent direction, enforces abnormal termination. 

If the algorithm does not terminate, then the negative value of vk (see (8)) predicts the 
descent f (zk + dk)  - f irk) for the step from z k  to  z k  + dk. Usually vk over-estimates the 
descent because f (.) 2 f k ( - )  and jk need not agree with f a t  z k  + dk if its linearizations do 
not reflect discontinuities in the gradient of f around z k  (too few of them make up jk, or 
they were calculated a t  y j  far from z k ) .  Thus two cases are possible when a line search is 
made to  explore f along the segment joining z k  and z k  + dk. Either jk is a good model of 
f and it is possible to  make a serious step by finding a stepsize t i  > 0 such that  the next 
iterate 

zk+l - k k k - z + tLd  

has a lower objective value than z k ,  or a null step zk+' = z k  ( t i  = 0) combined with 
calculating the linearization f (-; yk+') a t  a new trial point 



with tk  E (O,l] may be used to  get the next improved model fk+' of f .  (Since 0 5 t i  < t k ,  
t i  and tk  are called left and r i g h t  stepsizes respectively, although they may coincide if 
t i  > 0.) More specifically, a serious step with t i  > 0 is made if 

where mL, mu and t are positive parameters less than 1, whereas 

is the linearization error off  (-; y) a t  z .  These conditions ensure a significant objective decrease 
(i.e. t i  and m L t i v k  cannot be too small). On the other hand, a null step with t i  = 0 and 
tk  E [f, 11 must ensure that  the new linearization satisfies 

for some fixed mR E (0, I ) ,  so that  its incorporation will make jk+' a better approximation 
to  f  along the direction d k  from zk+' = zk than f k  was, thus enhancing generation of a 
better next direction dk+' .  

For technical reasons, the linesearch parameters must be positive and satisfy mL + mu < 
mR < 1 and f 5 1. By changing the standard values mL = 0.1, mR = 0.5, mu  = 0.01 and 
t = 0.01, the user may strongly influence the algorithm's efficiency on a given problem. Note 
that the total amount of work in solving a problem depends on the number of function and 
subgradient evaluations as well as on the number of iterations. The algorithm may require 
only one objective evaluation per iteration. This is justified if the cost of one objective 
evaluation dominates the effort of auxiliary operations (mainly a t  quadratic programming) 
per iteration. In the reverse case, one may wish to decrease the number of iterations a t  the 
cost of increasing the number of objective evaluations. 

More specifically, the line search checks if t r i a l  s teps izes  t in [f, 11, starting with t = 1, 
satisfy the sufficient descent criterion 

(are candidates for t i ) .  Hence if the threshold stepsize f is set to 1, only t = 1 need be tested, 
and a serious step with t i  = 1 will occur if 

(see (8) and (13a)), i.e. f k  must be very close to f  a t  zk + d k  if mL approaches 1. In 
practice mL > 0.5 may result in many null steps (the algorithm concentrates on improving its 
models f k  of f  between infrequent serious steps), whereas mL < 0.1 may produce (damped) 
oscillations of { z k }  around the solution (little descent is made a t  each serious step). For 
a smaller threshold t < 1, more stepsizes t are tested (typically two for f = 0.1, three for 
t = 0.01), and there are fewer null steps. In practice decreasing f from 1 t o  0.01 will usually 
decrease the number of iterations a t  the cost of more function evaluations. 

It is worth adding that  for a polyhedral f  one may frequently use the values mL = 0.9, 
m~ = 0.95, mu = 0.01 and f = 1, which are inefficient for general functions. 

To sum up, it is reasonable t o  set mL and f i n  the ranges [0.1,0.9] and [0.01,1.] respectively, 
and use mu = 0.001 and mR = (1 + mL)/2. 



The user may trade-off storage and work per iteration for speed of convergence by choos- 
ing the maximum number Mg of past subgradients (linearizations) involved in the approx- 
imations jk (more linearizations increase the model accuracy). To ensure convergence, the 
algorithm selects for keeping the linearizations active at  the solution to  subproblem (7) (their 
indices enter J:+' together with k + I ) ,  whereas inactive past linearizations may be dropped 
(i.e. overwritten in the memory by new ones, if necessary). More linearizations enhance faster 
convergence by producing more accurate f k ,  but the costs of solving subproblem (7) may 
become prohibitive. Using Mg greater than its minimal possible value n + 3, Mg = 2n say, 
frequently increases the overall efficiency. 

An additional increase of modelling accuracy may be possible when f is the pointwise 
maximum 

f ( z )  = m a x {  fi(z) : i =  1, ..., mo) 

of several convex functions fi with subgradients gf,. The user may choose a positive activity 
tolerance E ,  and the maximum number I ,  of additional linearizations of fi at  z k  that  will 
augment j k .  Then subproblem (7) employs 

jk (z)  = max { f (z ;  yj) : yj E J: ; j, (zk)  + (g fi (zk) ,  z - z k )  : i E Lk ), 

where Lk contains a t  most 1, indices of the &,-active functions f i (zk)  2 f ( z k )  - E, .  However, 
these additional linearizations may overwrite some past ones (if Mg is too small), and this 
may or may not increase the accuracy of jk at  points remote from zk .  

If space limitations prevent the algorithm from storing sufficiently many (Mg > n + 3) 
past subgradients, the algorithm may be run with Mg 2 3 by employing subgradient aggre- 
gation instead of selection. This will usually decrease the speed of convergence (sometimes 
drastically !). 

The algorithm described so far is rather sensitive to  the objective scaling, especially to  
the multiplication of f by a positive constant, mainly due t o  the presence of the arbitrary 
quadratic term in subproblem (7). For greater flexibility, the user may choose a positive 
weight u in the following version of (7) 

minimize f k  (zk  + d) + uld12/2 over all d. (16) 

The standard value u = 1 suffices for well-scaled problems. If f varies rapidly, increasing u 
will decrease Idkl, thus localizing the search for a better point to  the neighborhood of zk .  For 
instance, if the initial derivative v1 of f at  z1 in the direction dl is "large" (e.g. v-' < -lo5),  
one may try a larger u, u = 100 say, in the next algorithm's run on the same, or related 
problem. On the other hand, too "large" u will produce many serious, but short steps with 
very small (zk+' - zkl,  and convergence will be slow. We may add that  for piecewise linear 
objectives smaller values of u are less dangerous than too large. Moreover, large errors may 
arise in the solution of (16) by the subroutine QPDF4 if u is small (u < then i t  is better 
to  multiply f by a small number and set u = 1. 

In the general case of u > 0, the optimality estimate (9) becomes 

This suggests that  the accuracy tolerance E ,  should be decreased when a larger u is used; 
otherwise, "false" convergence will occur. 



2.2 Linearly constrained convex minimization 

The box constrained problem with a convex f 

minimize f (z)  
subjec t to  z f < z < z y  for i = 1 ,  . . . ,  n ,  

may be solved in NDAl  by a modification of the method described in the preceding section 
(Kiwiel, 1985c,1986~,1987). 

The presence of finite upper and lower bounds ensures the existence of a solution and 
prevents divergence of the algorithm, which must occur when there is no solution (then 
lzkl tends, in theory, to  infinity; in practice - until an arithmetic overflow terminates the 
calculation). It is always advisable to  place bounds of the form -1000 5 z, 5 1000, which 
should not be active when the solution lies inside the box. 

The objective f and i ts  subgradient g, will be evaluated only inside the box [zL,  zu ] .  This 

may be used to  eliminate regions where f is undefined. For example, if f (z)  = zii2 + exp(z2), 
it  is essential to  place bounds of the form z l  2 z2 5 20. 

If the user specifies an infeasible initial point z l ,  it is projected on the box (by replacing 
z: with max { z f ,  min (z,, z y  ))). Successive z k  remain in the box. 

At the k-th iteration, an approximate feasible descent direction dk is found to  

-k k minimize f ( z  + d) + uld12/2, 
subject to zf 5 zf + d, 5 zy  , for i = 1 , .  . . , n (19) 

This subproblem is a natural extension of (16). Consequently, the preceding remarks on the 
choice of parameters remain in force. 

We may add that  the introduction of box constraints only slightly increases the work a t  
the search direction finding. 

For the problem with general linear constraints 

minimize f (z) ,  subject to Az 5 b,  (Zo) 

the search direction finding subproblem becomes 

-k k minimize f ( z  + d) + uld12/2, 
subject to ~ ( z ~  + d) 5 b 

Due to  rounding errors, the calculated direction dk need not be "strictly" feasible. To measure 
the infeasibility of a direction d from z k ,  we use the c o n s t r a i n t  v io la t ion  func t ion  

defined in terms of 
h(z)  = max{A;z -  b' : i =  1, . . . ,  m ~ ) ,  

where A, denotes the i-th row of A. Subproblem (21) is equivalent to  the unconstrained 
problem 

minimize jk (zk + d) + uld12/2 + cvz(d) over all d (z3) 

when the p e n a l t y  parameter c is sufficiently large. Hence we may test increasing values 
of c until the solution of (23) is feasible, and hence solves (21). Starting from c = p ,  where 



p > 0 may be provided by the user, each successive c is multiplied by 10 until the solution 
dk of (23) passes the feasibility t es t  

where EF is a positive absolute feasibility tolerance.  If this test is failed by even "very large'' 
c, the calculation terminates. This occurs if c > where EM is the re la t ive  machine  
accuracy (the smallest positive E for which 1 + E > 1 in the computer's arithmetic). 

No computational difficulties should arise if the linear constraints are well-scaled and the 
feasibility tolerance E F  is large enough. In particular, it may be necessary to ensure that  the 
coefficients of A are of order 1 and EF > ~ ~ ~ 1 ' .  For instance, if the coefficients of A result 
from measurements corrupted by errors of magnitude one should set EF = 

If the initial point specified by the user is not feasible to within the tolerance E F ,  the 
algorithm tries to project it onto the feasible set (by using a version of (23)). If the projection 
is successful, each successive zk  satisfies the linear constraints to within E F .  Moreover, f (y) 
and gj(y) are calculated only at E F -  feasible points with h(y) 5 E F .  

A combination of the preceding techniques is used for the problem 

minimize f (z) over all z 

satisfying Az 5 b, zL 5 z 5 z U .  

In this case, all trial points satisfy the simple bounds exactly, and the general linear con- 
straints to within E F .  

2.3 E x a c t  p e n a l t y  methods for c o n v e x  c o n s t r a i n e d  problems 

The convex minimization problem 

minimize f (z) over all z 
satisfying Fj(z) < 0 for j=  1, . . . ,  mr, (25) 

F , (z )=O for j = m r + l ,  . . . ,  m r + m ~ ,  

where the functions f and Fj, j = 1 , .  . . , mr, are convex and the functions Fj, 
j = mr + 1, . . . , mr + m ~ ,  are affine (linear), may be solved in NOAl by the unconstrained 
minimization of the exac t  pena l ty  funct ion 

where p > 0 is a fixed pena l ty  coefficient, and the constraint violation is measured by 

F (z )  = m a x i  Fj(z) : j = 1 , .  . . , m ;  JF,(z)( : j = mr + 1,. . . , m r  + mE ). 

Each solution z, to  the problem 

minimize e(z; p) over all z in Rn (27) 

solves (25) if it  is feasible (F(zp)  5 0). This holds if p is sufficiently large, (25) has a solution 
and its constraints satisfy the generalized Slater constra int  qualification, i.e. for some z s  



The methods with a fixed penalty coefficient require the user to  specify a sufficiently large 
p. For well-scaled problems one may usually choose p in the interval [10,100]. If p is too 
small, (27) need not be equivalent to  (25), and the algorithm may diverge when the penalty 
function has no finite minimum. On the other hand, too large p hinders the minimization of 
the penalty function, which becomes ill-conditioned, (If p is large, the algorithm must hug 
the boundary of the feasible set.) 

The first method in NOAl solves (26) by one of the algorithms for unconstrained minimiza- 
tion. At the k-th iteration, a polyhedral approximation i k ( - ;  p) to e(.; p) is constructed from 
the past linearizations of e(.; p) (see (5) and (6)). (These linearizations are calculated as in 
(5) from subgradients of the functions of (25), which are evaluated by the user s subroutine.) 
The k-th search direction dk is chosen to 

minimize i k ( z k  + d; p) + u1dl2/2 over all d P8) 
(see (16)). Termination occurs if 

where ~s and € F  are positive final accuracy and feasibility tolerances, provided by the user, 
whereas vk is a dual estimate of the predicted descent i k ( z k  + dk; p) - e(zk; p), which satisfies 
the optimality estimate 

where z* is a solution to (25). This method does not exploit the specific structure of e(.; p). 
The second method exploits the additive structure of e(-; p) by constructing separate 

polyhedral approximations f k  and kk to  the objective f and constraint function F .  Thus 
the method may use a more accurate polyhedral approximation to  e(.; p) 

in the search direction finding subproblem (28), which usually enhances faster convergence. 
Both methods may be allowed to choose the penalty coefficient automatically during the 

calculations (Kiwiel, 1985d). Then a t  the k-th iteration we set p = pk in (28) and (31). The 
initial p1 may be specified by the user. The penalty coefficient is increased only if z k  is an 
approximate solution to (27) (i.e. z k  minimizes e(.; pk) to within some positive tolerance bk) ,  
but it is significantly infeasible (i.e. F ( z ~ )  is "large"). The specific rule for updating pk is 

if -uk > bk or F ( z ~ )  I -uk set pk+l = pk and bk+' = bk;  
otherwise set pk+l = cppk and bk+' = cubk, (32) 

where cp > 1 and c, E ( 0 , l )  are parameters that  increase the penalty and decrease the 
accuracy tolerance of unconstrained minimization bk; 6' = lull. Usually one may use p1 = 10, 
cp = 2 or cp = 10, and c, = 0.1. Larger values of cp and c, enable a faster growth of the 
penalty coefficient a t  earlier iterations, if the initial p1 was too small. On the other hand, 
very large values of penalty coefficients slow down convergence. 

When employing the exact penalty methods, the user should place sensible upper and 
lower bounds on all variables. If the box defined by such bounds is not too large, the penalty 
coefficient will quickly reach a suitable value and then will stay constant. Moreover, box 
constraints ensure the existence of a solution and prevent the algorithm from diverging. 



We may add that  the automatic choice of the penalty coefficient may produce a very large 
value of pk. The methods terminate a t  the k-th iteration if pk+' > where EM is the 
relative machine precision. Such abnormal termination may indicate that  the constraints are 
not regular (e.g. are inconsistent), or that  they are ill-scaled. 

In the current version of NOAl additional general linear constraints Az I b can be handled 
only by the first method tha t  does not exploit the structure of the penalty function. 

2.4 The constraint linearization method 

The convex constrained problem 

minimize f ( z ) ,  subject to F ( z )  I 0 (33) 

with a convex f and a convex F satisfying the Slater condition (F(zs)  < 0 for some zs) may 
be solved in NOAl by the constraint linearization method (Kiwiel, 1987), which is frequently 
more efficient than the algorithms of the preceding section. 

At the k-th iteration the algorithm uses polyhedral approximations f k  and kk to  f and 
F in the search direction finding subproblem 

minimize f k ( z k + d ) + u ~ d 1 * / 2  ( 3 4 4  

^ k  k subject to F ( z  + d) < 0, (34b) 

where u > 0 is the weight of the regularizing quadratic term. Its solution dk is an approximate 
descent direction for the exact penalty function (26), provided tha t  the penalty parameter 
p = pk is greater than the Lagrange multiplier bk of the constraint (34b). Hence the algorithm 
sets pk = pk-I if bk 5 pk-l ;  otherwise 

pk = max { bk, cppk-l 1, 

where C, > 1 is a user-specified parameter (usually c, = 2), and p0 = 0. With dk( . ;  pk) given 
by (31), the predicted descent 

satisfies the optimality estimate (30), which justifies the termination test (29). The line 
search from z k  along dk uses the rules of Section 2.1 applied to  e(.; pk). 

Subproblem (34) is solved by finding dk to  

^k k minimize f ( z  + d )  + u l d 1 * / 2 + c m a x { k k ( z k + d ) , O } ,  (36) 

where the penalty coefficient c is chosen as in Section 2.2 (cf. (23)). Abnormal termination 
with c > may indicate violation of the Slater constraint qualification, ill-scaling of the 
constraints, or tha t  the infeasibility tolerance EF is too tight. These factors also may enforce 
termination due to  pk > 

Additional linear constraints 

are handled by the techniques of Section 2.2. In this case the Slater constraint qualification 
reads: F (zs )  < 0, Azs 5 b and zL < z s  5 zu for some z s .  Once again, we stress tha t  the 
presence of box constraints may be crucial to  the algorithm's convergence. 



2.5 Feasible point methods for convex problems 

The convex constrained problem (33) may be solved in NOAl by the feasible point method 
(Kiwiel, 1985a), which uses polyhedral approximations f k  and Pk of f and F in the search 
direction finding subproblem 

minimize ~ ~ ( z ~  + d) + u(d12/2 over all d, (37) 

where u > 0 is a scaling parameter, whereas 

a k ( z )  = max { i k ( z )  - f ( z k ) ,  P k ( z )  ) 

is the k-th polyhedral approximation to the improvement function 

~ ( z ;  zk)  = max { f ( z )  - f ( z k ) ,  ~ ( z )  ) for all z. 

Thus, if F ( z k )  5 0, we wish to find a feasible ( P k ( z k  + dk) < 0) direction of descent 
^k k (f ( z  + dk) < f ( z k ) ) ,  whereas for F ( z k )  > 0, dk should be a descent direction for F at  z k  

( P k ( z k  + dk) < F ( z k ) ) ,  since then we would like to decrease the constraint violation. 
The algorithm runs in two phases. At phase I successive points z k  are infeasible, and 

the line search rules of Section 2.1 are applied to F .  Finding a feasible z k  starts phase 11, 
in which the line search rules are augmented to  ensure feasibility of successive iterates. Of 
course, phase I will be omitted if the initial point z1 is feasible. 

The algorithm requires the Slater constraint qualification (F(zs)  < 0 for some z s  ); 
otherwise, it may terminate a t  a point z k  that is an approximate minimizer of F .  

The algorithm is, in general, more reliable than the exact penalty methods of Sections 2.3 
and 2.4, because it does not need to choose penalty coefficients. Unfortunately, its convergence 
may be slower, since it cannot approach the boundary of the feasible set a t  a fast rate. 

Additional linear constraints are handled as in Section 2.2. 

2.6 Methods for nonconvex problems 

Minimization problems with nonconvex objectives and constraints are solved in NOAl by nat- 
ural extensions (Kiwiel, 1985a, 1985b, 1986a, 1986c) of the methods for convex minimization 
described in the preceding sections. Except for the constraint linearization method of Sec- 
tion 2.4, each method has two extensions, which differ in the treatment of nonconvexity. The 
methods use either subgradient locality measures, or subgradient deletion rules for localizing 
the past subgradient information. Advantages and drawbacks of the two approaches depend 
on specific properties of a given problem. 

For simplicity, let us consider the unconstrained problem of minimizing a locally Lipschitz 
continuous function f ,  for which we can calculate the linearization 

by evaluating f and its subgradient gf at  each y. At the k-th iteration, several such lineariza- 
tions computed at trial points y ~ ,  j E 53, are used in the following polyhedral approximation 

to  f around the current iterate z k  

where the subgradient locality measures 



with a parameter 7 ,  > 0 indicate how much the subgradient gj(yj)  differs from being a 
subgradient of f at zk .  Observe that in the convex case with 7 ,  = 0 the approximation (38) 
reduces to the previously used form (6) (cf. (4)). More generally, for 7 ,  > 0 the subgradients 
with relatively large locality measures cannot be active in jk in the neighborhood of zk .  Thus 
even in the nonconvex case jk may be a good local approximation to  f ,  provided that  it is 
based on sufficiently local subgradients. This justifies the use of jk in the search direction 
finding subproblems of the preceding sections (cf. (7), (16), (19), (21), (28), (37)). 

Ideally, the value of the locality parameter 7 ,  should reflect the degree of nonconvexity of 
f .  Of course, for convex f the best value is 7 ,  = 0. Larger values of 7 ,  decrease the influence of 
nonlocal subgradient information on the search direction finding. This, for instance, prevents 
the algorithm from concluding that  z k  is optimal because jk indicates that  f has no descent 
direction a t  zk .  On the other hand, a large value of 7 ,  may cause that  after a serious step 
all the past subgradients will be considered as nonlocal a t  the search direction finding. Then 
the algorithm will be forced t o  accumulate local subgradients by performing many null steps 
with expensive line searches. 

In the strategy described so far the influence of a subgradient on f k  decreases "smoothly" 
when this subgradient becomes less local. More drastic is the subgrad ien t  deletion s t r a t -  
egy,  which simply drops the nonlocal past subgradients from j k .  In this case, we set 7 ,  = 0 
in (39) and define the locali ty r a d i u s  

of the ball around zk  from which the past subgradients were collected. As before, the approx- 
imation jk is used to  generate a search direction dk.  A locali ty reset  of the approximation 
occurs if 

k 
Idkl F mas (41) 

where ma is a positive parameter. This involves dropping from J: an index j with the largest 

value of ( z k  - yjI, i.e. the most nonlocal subgradient is dropped so as t o  decrease the locality 
radius a k .  If the next dk satisfies (41), another reset is made, etc. Thus resets decrease the 
locality radius until it is comparable with the length of the search direction Idkl. 

Dropping the j-th subgradient corresponds to  replacing a j ( z k ,  y ~ )  in (38) by a large 
number. Moreover, the frequency of resets is proportional to  the value of ma in the test (41). 
Therefore, our preceding remarks on the choice of 7 ,  are relevant to the selection of ma. 

In practice one may use 7 ,  = 1 and ma = 0.1, increasing them to  7 ,  = 10 and ma = 0.5 
for strong nonconvexities. 

Both strategies use line searches similar to that of Section 2.1. Additionally, the subgradi- 
ent resetting strategy requires that  a null step (zk+' = z k )  should produce a trial point yk+' 
close to zk  in the sense that  l y k + '  - z k (  is of order ak .  Since l y k + '  - zkl = tkldkl, the right 
stepsize tk  should be sufficiently small. This can be ensured either by testing progressively 
smaller initial trial stepsizes, or by introducing the direct requirement 

where c d  E [0.1,0.5] is a parameter, e.g. c d  = ma. 



Part I1 

User's Guide for N O A l :  a Fortran Package 
of Nondifferent iable Optimization 
Algorithms 

3 Introduction 

NOAl is a collection of Fortran subroutines designed to  solve small-scale nondifferentiable 
optimization problems expressed in the following standard form 

minimize f ( z )  := max{ f j (z)  : j =  1, ..., mo)  , ( 4 2 4  

subject to Fj(z) 5 0 for j = 1 , .  . . , r n ~  , (42b) 

Fj(x) = 0 for j = m I  + 1, .  . . , m ~  + mE , (424 

A z < b ,  ( 4 2 4  

L xi < Z i < ~ y  for i = l ,  . . . ,  n ,  (424 

where the vector z = ( X I ,  . . . , z, )T has n components, f, and Fj are locally Lipschitz con- 
tinuous functions, and where the r n ~  by n matrix A, the m~-vec to r  b and the n-vectors zL  
and xu are constant; A is treated as a dense matrix. 

We assume that  the reader is familiar with the theoretical guide (Part 1 of this report), 
which describes the algorithms implemented in NOA1. Some additional information can be 
found in Kiwiel and Stachurski (1988). 

NOAl runs on IBM PC/XT or AT compatibles under the DOS operating system, version 
3.1 or higher. The computer should have a t  least 512 kB of memory, a hard disk and an 
8087 or 80287 mathematical coprocessor. The source code of NOAl is written in Fortran 77; 
however, the object files were created by the Lahey Fortran 77 Compiler F77L, version 2.21. 
The user's subroutines should be compiled by the same compiler. 

We wish to stress that  NDAl is still a t  an experimental stage, and we intend t o  increase 
both its efficiency and user friendliness. Any feedback from the users will be most welcome. 

4 User-written subroutines 

4.1 Input data flow 

Some or all of the following items are supplied by the user: 

Main program MAINOA 

Problem subroutine (called, e.g., USERS) 

Input da ta  file 

Data read by USERS on its first entry 

Data read by USERS on its last entry. 



The order of the files and data  is important if all are stored in the same input stream. 
The main program allocates the workspace for NOAl and the user's problem subroutines, 

opens the primary input and output files (called FORT1 and  FORT^), reads the algorithm's 
parameters and calls NOAl to  solve the problem. 

The user's problem subroutine defines the objective and constraint functions and their 
subgradients. 

The input data file defines various problem and run-time parameters (number of variables, 
iterations limit, etc.). Its name and unit number are defined a t  compile time (in the main 
program). It will normally be the first da ta  set in the system card input stream. 

4.2 Problem subroutines 

Consider the following optimization problem 

minimize max{ F/ (x) : I = 1,. . . , M O B  ) ( 4 3 4  
s . t .  F / ( x ) < O  for I=1,  . . . ,  M O B + M I  (43b) 

F / (x )=O for I =  M O B +  M I +  1, ..., M O B +  M I +  ME (43c) 
F;(x) < 0 for I = M E P F S l , .  . . ,  M E P F S M F I  ( 4 3 4  
(AI ,  X )  < BI for I = 1 , .  . ., N L I N E Q  (434  
X; 5 XI < X: for I = l ,  . . . ,  N (43f 

where M O B L 1 ,  MILO,  M m ,  M E P F = M O B + M I + M E ,  M F I 2 0 ,  N L I N E Q ?  0, and 
X and AI are N-vectors. (The two groups of nonlinear inequality constraints are distin- 
guished because they are handled in NOAl by the exact penalty and feasible point techniques, 
respectively.) 

The user's problem subroutine evaluates the problem functions F;, I = 1 , .  . . , M E P F +  
MFI,  and their subgradients. Its name must be declared EXTERNAL in the main program. 
The name is arbitrary (but it must differ from the names of NOAl subroutines; see section 
7.1). (If you use the default segments MAINOA and USERS, your subroutine must be called by 
USERS; see appendix B). 

Specification: 

SUBROUTINE PROBLM(X,N,I,F,GRAD,IFLAG,IU,LIU,RU,LRU) 
IMPLICIT REAL*~(A-H.0-Z) 
DIMENSION X (N) ,GRAD (N) , IU(L1U) .RU(LRU) 
COMMON /NEWX/ NEWX 

Parameters: 

X ( * >  (Input) An array of dimension N containing the current values of variables z; if 
IFLAG>O . (If IFLAG=O , the  values of z; may be undefined if they have not been 
set by the main program. Then you must set them.) 
(Output) The current values of z;. 

(Input) The number of variables. 

(Input) The problem function number if IFLAG>O. 

(Output) The computed value of F! ( X )  if IFLAG=l; otherwise, do not change F 



GRAD (*) (Output) The computed subgradient vector of F: a t  z = X if IFLAG=2; otherwise, 
do not change GRAD. 

IFLAG (Input) If IFLAG=O, N O A l  is calling your subroutine for the first time. Some data  
may need to  be input or computed and saved in local or COMMON storage (or in 
arrays I U  and RU). In particular, you may set the initial point X. 
If IFLAG=1, set F to  F,?(x) without changing X ,  GRAD, and NEWX. 
If IFLAG=2, set GRAD to  the subgradient of F: a t  X without changing X ,  F ,  and 
NEWX. 
If IFLAG>3, N O A l  is calling your subroutine for the last time. You may wish 
to  perform some additional computation on the final solution X. In general, the 
last call is made with IFLAG=2+INFORM, where INFORM indicates the status of the 
final solution. In particular, if IFLAG=3, the current X is optimal; if IFLAG=4, the 
iterations limit was reached, etc. (see section 6.3). In some cases, the solution is 
nearly optimal if IFLAG=7; this value occurs if the QP subroutine was unable to 
find a descent direction. Do not change X,  F ,  GRAD and NEWX. 
(Output) If for some reason you wish to  terminate the solution of the current 
problem, set IFLAG to  a negative value, e.g. -1. This value will be given to  
INFORM on exit from NOA1. In particular, you must terminate the solution if the 
arrays I U  and RU are too small for your problem. 

IU(*) (Input/Output) An array of dimension L I U  declared in the main program. You 
may use it for storage; it is not accessed by NOA1. 

L I U  (Input) The declared dimension of I U .  

RU(*) (Input/Output) An array of dimension LRU declared in the main program. You 
may use it for storage; it is not accessed by NOA1. 

LRU (Input) The declared dimension of RU. 

NEWX (Input) If NEWX=O and IFLAG=1 or 2, X was not changed since the latest exit from 
PROBLM. Then you may save some work by exploiting some results of the preceding 
calculations (saved in I U  and RU) performed with the same X. NEWX=1 means X 
was changed. Do not change NEWX. 

4.3 Scaling and modifying the problem 

You may scale and modify your problem without changing the problem subroutine. 
Suppose that  we wish to replace in problem (43) the functions F: by 

~ / ( X ) = S ~ I * ( F Y ( X ) - S Z ~ - ~ ) ,  I=1,  ..., M T O T ,  

where SzI and SzI-l are the multiplier and shift for the I-th function, and 
M T O T  = M O B + M I + M E + M F I .  Tothisend,settheparameterNEEDSC (IWORK(14)) to  
1 and store in the WORK array, starting from position 100, the scaling factors SI, 
I = 1 , .  . . , 2  * M T O T ,  or simply use subroutine INPRMT for reading NEEDSC and SI (see 
section 5.3). Of course, N O A l  will scale the subgradients of k: automatically. 

For example, you may relax inequality constraints that  seem inconsistent by using SzI = 1 
and positive SzI-l for I = M O B  + 1, . . . , M O B  + M I .  On the other hand, SzI and SZI- 



for I = 1, .  . . , M O B  may be interpreted as weights and components of a reference point for 
a multiobjective problem with objectives F;, I = 1 , .  . . , M O B .  

The problem subroutine assumes the natural order of the problem functions of (43). On 
the other hand, this subroutine may be viewed as a black box for evaluating certain func- 
tions and their subgradients, which may define many optimization problems in the following 
way. First we choose the numbers M O B  2 1, M I  2 0, M E  2 0, M F I  2 0, and let 
M E P F  = M O B  + M I  + M E ,  M T O T  = M E P F  + M F I .  Next, for I = 1,. . ., M T O T  we 
choose indices I S ( I )  > 1 and form the problem 

U minimize max{ FIS(,)(X) : I = 1 , .  . . , M O B )  ( 4 4 4  

s.t .  F&(,)(x) 5 0 for I = M O B  + 1 , .  . . , M O B  + M I  (44w 

FYs(,)(x) = O  for I =  M O B +  M I + l ,  ..., M O B +  M I +  M E  (44c) 

F&(,)(x) 5 0 for I = M E P F  + 1 , .  . ., M E P F  + M F I  (44d.) 

(AI, X )  5 BI for I = 1 , .  . . , N L I N E Q  (444  
x:< X I ~ X Y  for 1=1,  . . . ,  N (44f 

The only restriction on the choice of IS is that  the problem subroutine should be able to  
evaluate F L ( ~ ) .  The vector IS can be read by subroutine INPRMT (see section 5.3). Additional 
scaling involves replacing the functions of (43) by 

~ ~ ( X ) = S ~ I * ( F & ( ~ ) ( X ) - S ~ ) ,  I=1 ,  . . . ,  M T O T .  

4.4 The main program 

The default main program MAINOA (see appendix A) should suffice for most applications. The 
advanced user may wish to modify i t ,  using the following guidelines. 

The segment which calls subroutine NOAl should contain the following elements: 

1. Type declaration 
IMPLICIT REAL * 8(A-H,O-Z) 

2. Declaration of NOAl workspace arrays IWORK(LIW0RK) and WORK(LW0RK). Their dimen- 
sions LIWORK and LWORK depend on the size of the problem (see section 5.1). 

3. Declaration of the user's workspace arrays IU(L1U) and RU(LRU) that  will be passed to 
the problem subroutine. Their dimensions LIU and LRU are arbitrary. 

4. Declaration of the array X for storing the solution. Its dimension must not be less than 
the number of variables. 

5. Common block with machine tolerances (see appendix A) 
COMMON /MCHTOL/ EPSMCH,RTMIN.RTMAX 

6. Declaration 
EXTERNAL USERS 

if the default subroutine USERS is used for linking several problem subroutines; oth- 
erwise, replace USERS by the name of your subroutine (also in the calling sequence to  
NOA 1 ; see below). 

7. Statement that  sets N to the number of variables. 



8. Statement that  store the algorithm's parameters in IWORK(1)' . . .,IWORK(30) and 
WORK(l),. . .,WORK(21) (see section 5.2). 

9. Calling sequence 
CALL NOAl(USERS,IU,LIU,RU,LRU,N,X, 

* IWORK,LIWORK,WORK,LWORK) 

Program MAINOA also contains the blocks 

COMMON /IEXAMP/ IEXAMP 
COMMON /NINOUT/ NIND.NOUTD 

If subroutine USERS (see appendix B) is used, it reads from the file number NIND (=1 by 
default) the parameters IEXAMP and NEEDX. IEXAMP contains the number of the problem 
whose subroutine will be called by USERS. NEEDX=l means that  subroutine USERS will read 
the initial point z from the file number NIND before the first call to  the problem subroutine. 
If NEEDX=O, the initial z must be set on the first entrance to the problem subroutine (with 
IFLAG=O; see section 4.2). 

5 Input 

5 . 1  Input parameters of N O A l  

Subroutine NOAl solves the optimization problem. 

Specification: 

SUBROUTINE NOAl(USERS.IU.LIU.RU,LRU.N,X, 
* IWORK,LIWORK,WORK,LWORK) 
IMPLICIT REAL*8(A-H,O-2) 
DIMENSION IU(L1U) ,RU(LRU) ,X(N), IWORK(LIWORK), WORK(LW0RK) 
EXTERNAL USERS 

Parameters: 

USERS The name of subroutine USERS (see appendix B and section 4.2)' or any other 
name of the user's problem subroutine. 

IU(*) An array of dimension LIU used by the user's subroutine. 

L IU The dimension of IU. 

RU(*) An array of dimension LRU used by the user's subroutine. 

LRU The dimension of RU. 

N The number of variables (the dimension of z). 

X(*> An array of dimension N for storing the variables z. It contains the initial point 
z, unless it will be read on the first entry to  subroutine USERS. 

IWORK (*) An array of dimension LIWORK used as workspace by NOA1. 

LIWORK The dimension of IWORK. 



WORK(*) An array of dimension LWORK used as workspace by N O A l  

LWORK The dimension of WORK. 

The  minimum values of LIWORK and LWORK depend on the problem size in a rather com- 
plicated way; on exit from N O A l  they are stored in IWORK(98) and IWORK(99) (and can be 
printed; see section 6.1). N O A l  will exit with INFORM=IWORK(1)=900 if the values of LIWORK 
and LWORK are too small. 

5.2 Input parameters in workspace arrays 

The first 30 elements of array IWORK and 21 elements of WORK store certain parameters in the 
following order: 

IWORK : 
1.MODE 7.MOB 13.NEEDIS 19.ISHOR 25.IMPLDI 
2.ITERMX 8.MI 14.NEEDSC 20.LENB 26.LBTDIL 
3.MAXFEV 9.ME 15.ICONVX 21.MODLSR 27.MSGFLS 
4.MSGFRq 10.MFI 16.IEXTCO 22.LSRCHV 28.MSGFqP 
5.NOUT 11 .NLINEq 17.IPENAL 23. ITqPST 29.MSGSUM 
6.MGRDMX 12.IBOX 18.LAUGMX 24.IDELqP 30.NSUM 

WORK : 

1 .EPSTOP 7.GAMSPR 12.DMRqP 17.BETD IL 
2.EPSFSB 8.TBARCF 13.DMVLS 18.DMBTDL 
3.RHO 9.TBARMX 14.EPSACT 19.RHOCF 
4.SHIFTX 10.DMLLS 15.EPSqPS 20.DLTVCF 
5 .UqP 11.DMRLS 16.EPSqPC 21 .DTDCF 
6.DMA 

These parameters are explained in section 5.4. 
If the list I S  is used (NEEDIS=l) t o  reorder the problem functions (see section 4.3),  i t  is 

stored in array IWORK as  follows 

I W O R K ( ~ ~  + I) = IS(I) for I = 1 , .  . . , M O B  + M I  + ME + MFI = M T O T .  

Similarly, the scaling vector S (if any; see section 4.3) is stored in WORK as 

wORK(99 + I) = SI for I = 1,. . . , 2  * MTOT 

if NEEDSC=l. 
When the box constraints zL < z < zu are present we have IBOX=l (otherwise IBOX=O). 

Let 
B o X ( I )  = zy and BOX(N + I) = zf for I = 1 , .  . . , N, 

KBOX = 100 if NEEDSC = 0,  KBOX = 100 + 2 * MTOT otherwise 

The  box d a t a  are stored in WORK after the scaling data:  

WORK(KBOX + I - 1) = BOX(I) for I = 1 , .  . . , 2 N .  



If NLINEq> 0, our problem has m =NLINEq general linear constraints of the form 
Cj ai jz j  5 b,, i = 1 , .  . . , rn. Then 

is stored in WORK, starting from position 

KBA = KBOX if I B O X  = 0, KBA = KBOX + 2 N  - 1 if I B O X  = 1 , 

i.e. after the box da ta  (if any), according to the scheme 

WORK(KBOX + I - 1) = BA(I) for I = 1 , .  . . , NLINEq * ( N  + 1) . 

5.3 Subroutine INPRMT 

Subroutine INPRMT reads certain parameters and data into the initial parts of arrays IWORK 
and WORK. 

SUBROUTINE INPRMT(MODE,IWORK,LIWORK,WORK.LWDRK, 
* NIN,NOUT,N,IFLAG) 

IMPLICIT REAL*~(A-H, O-Z) 
DIMENSION IWORK(LIWORK),WORK(LWORK) 

Parameters: 

MODE (Input) If MODE=1 or MODE=3, the values of all the 50 parameters (except NOUT) 
are read from the file number N I N  and are stored in IWORK and WORK as described 
in section 5.2. If MODE=1, the vectors IS, S, BOX and BA are read as well (see 
section 5.2). 
If MODE=2 only the parameters ITERMX , MAXFEV, MSGFRq , EPSTOP and EPSFSB 
are read into IWORK and WORK. 

IWORK(*) (Output) An integer workspace array of NOA1. 

LIWORK (Input) The dimension of IWORK (at least 100). 

WORK(*) (Output) A workspace array of NOA1. 

LWORK (Input) The dimension of WORK. 

N I N  (Input) The unit number for input. 

NOUT (Input) The unit number for output. 

N (Output) The number of variables. 

IFLAG (Output) IFLAG=O means no error occured. IFLAG>O means the input parameters 
were wrong (IFLAG=1 if NOUTCO; for other values of IFLAG some diagnostic will 
be printed on the file number NOUT). 

Subroutine INPRMT starts by printing a header (see appendix E).  Then it prints the 
algorithm's parameters in the following groups: 



1. MODE, 
2. ITERMX. MAXFEV, MSGFRq, 
3. EPSTOP, EPSFSB, 

4. N, MGRDMX, MOB, M I .  
5. ME, MFI, NLINEfJ, IBOX, 
6. RHO, SHIFTX, 
7. NEEDIS, NEEDSC. ICONVX, IEXTCO, 
8. IPENAL, LAUGMX, ISHOR, LENB, 
9. u q p ,  

10. DMA, GAMSPR, TBARCF, TBARMX, 
11. DMLLS , DMRLS , DMRQP , DMVLS , 
12. MODLSR. LSRCHV, 
13. EPSACT. 

14. ITqPST,  EPSqPS. EPSqPC, IDELUP, 
15. IMPLDI. BETDIL, LBTDIL, DMBTDL. 
16. MSGFLS, MSGFqP, MSGSUM, NSUM, 

17. RHOCF. DLTVCF. DLTDCF. 

The above groups of parameters correspond to consecutive records read in free format 
(see appendix D). In fact, the first record, i.e. the value of MODE, is read by the main program 
M A I N O A  (see appendix A), whereas subroutine INPRMT reads records 2 through 17. Each 
record is printed before the next one is read; this helps in localizing fatal read errors. 

Next, the following da ta  are read (if any): 

i. I S  if NEEDIS=l,  

ii. S if NEEDSC=l , 

iii. BOX if IBOX=l , 

iv. BA if NLINEq>O 

(see section 5.2). Each group of data  is read in free format, and then printed with headers 
ISCALE. SCALE, BOX, BLINEq and ALINEq, respectively. 

5.4 Parameter definitions 

The following is an alphabetical list of input parameters. In parentheses we give restrictions 
on their values, and typical values that  suffice for most problems. Further suggestions on the 
choice of parameters are given in Kiwiel and Stachurski (1987, 1988). 

Parameter list: 

BETDIL Not used in this version of NOA1. 

DLTDCF Coefficient cd for decreasing the locality radius a t  line searches for nonconvex 
problems (0 < cd < 1; usually cd = 0.1). 

DLTVCF Coefficient c,  for decreasing the unconstrained minimization tolerance a t  automatic 
penalty updating with IPENAL=2 (0 < c,  < 1; usually c, = 0.5), or for controlling 
linearized infeasibilities within the constraint linearization method with IPENAL=l 
(0 <_ c,  < 1; usually c, = 0). 



DMBTDL 

DMLLS 

DMRLS 

DMRQP 

DMVLS 

EPSACT 

EPSFSB 

EPSQPC 

EPSQPS 

EPSTOP 

GAMSPR 

I B O X  

ICONVX 

IDELQP 

IEXTCO 

IMPLD I 

IPENAL 

I SHOR 

I TERMX 

ITQPST 

LAUGMX 

LBTDIL 

LENB 

Coefficient ma  of the locality reset test for nonconvex problems (ma > 0; usually 
ma = 0.1). 

Not used. 

Line search parameter m~ (0 < m~ < 1; usually mL = 0.1). 

Line search parameter mR (0 < mR < 1; usually mR = 0.5). 

Coefficient m g p  for testing the QP accuracy (mR<mQp<l;  usually m g p  = 0.999). 

Line search parameter mu (0 < mu < 1; usually m, = 0.01). 

Activity tolerance E, for additional linearizations a t  direction finding (E, > 0; 
usually E, = 0). 

Final feasibility tolerance EF for linear and nonlinear constraints (sF > 0; usually 
EF = 

Use 2.23-16. 

Use 2.23-16. 

Final relative optimization accuracy tolerance ES ( E ~  > 0; usually ES = 

Subgradient locality measure parameter 7s for nonconvex problems (7s > 0; 
7s = 0 for convex problems; for nonconvex problems either use 7s = 1 or 10 or 
set 7s = 0 so that  the subgradient deletion strategy is employed). 

I B O X = 1  means there are box constraints; I B O X = O  otherwise. 

ICONVX=I means the problem is convex; ICONVX=O otherwise. 

Controls QP refactorizations (use 1DELQP=1000). 

IEXTCO=1 means a separate polyhedral model of the total constraint function will 
be used a t  direction finding (this is usually more efficient); IEXTCO=O otherwise. 

Not used. 

Indicates the penalty updating strategy (0 - no penalty updating, 1 - the con- 
straint linearization method, 2 - the exact penalty method). 

Not used 

The maximum number of iterations allowed (ITERMX> 1; usually 
ITERMX = max(lON, 30)). 

Use 1000. 

The maximum number of EPSACT-active linearizations that  will augment the search 
direction finding subproblem ( L A U G M X ~  0; usually LAUGMX=O). 

Not used. 

Not used. 



LSRCHV Not used. 

MAXFEV 

MGRDMX 

MOB 

MODE 

MODLSR 

MSGFLS 

MSGFRq 

MSGSUM 

N 

NEEDIS 

NEEDSC 

NLINEq 

NOUT 

The maximum number of problem function evaluations (MAXFEV> 1; usually 
MAXFEV= 4 * ITERMX). 

The maximum number of stored subgradients. For subgradient selection use 
MGRDMX not less than N + 3 (+2 if MFI > 0, +4 if M I  +ME > 0, +NLINEq+l if 
NLINEq > 0). If MGRDMX is too small, N O A l  will either switch to  the less efficient 
subgradient aggregation strategy or terminate with a message. 

The number of nonlinear equality constraints mE > 0. 

The number of nonlinear inequality constraints that  are handled by the feasible 
point technique. 

The number of nonlinear inequality constraints mr that  are handled by the exact 
penalty technique. 

The number of objectives mo 2 1. 

Indicates the mode of entrance to NOAl. The possible values of MODE are: 

1 Start  solving a new problem (subroutine INPRMT reads all the parameters, 
and then N O A l  calls the user's problem subroutine with IFLAG=O before the 
solution starts). 

2 Continue the solution with the new values of ITERMX, MAXFEV, MSGFRq, 
EPSTOP and EPSFSB which are read by subroutine INPRMT (this is useful for 
obtaining intermediate printouts). 

3 Continue the solution with new values of all the parameters. 

9999 Terminate the session. 

Not used. 

Message level for line search printouts to the file number NOUT (MsGFLSL 0; usually 
MSGFLS=O). 

Message level for UP printouts to  the file number NOUT (MSGF~P> 0;  use MSGFqP=2 
for useful warnings about ill-conditioning) . 

Message level for the iteration log (see section 6.2); MSGFRq> 0. 

Message level for summary output to the screen (see section 6.5); MSGSUM> 0. 

The number of variables n. 

NEEDIS=l means the list IS  is used for reordering the problem functions (see 
section 4.3); NEEDIS=O otherwise. 

NEEDSC=l means the problem functions are scaled (see section 4.3); NEEDSC=O 
otherwise. 

The number of general linear constraints ( N L I N E ~ ?  0). 

The unit number for primary output (NOUT > 0).  



NSUM The unit number for summary output (NSUM 2 0). 

RHO The initial penalty coefficient p ( e  > 0 ;  usually e = 10 or 100). 

RHOCF Coefficient c, for increasing the penalty coefficient (c, > 1; usually c, = 2). 

SHIFTX The length l y 2  - z'l of the first trial step, which should roughly estimate the 
distance from z' t o  the solution (SHIFTX > 0; usually SHIFTX = 1 - use smaller 
values for very rapidly varying functions). 

TBARCF Coefficient for diminishing trial stepsizes on nonconvex problems when GAMSPR = 0 
(TBARCF > 0; usually TBARCF = 0.8). 

TBARMX The threshold i? for serious stepsizes (0 < t 5 1; usually t = 1 or 0.1 for con- 
vex problems, t = 0.1 or 0.01 for nonconvex ones, with smaller values preferred 
when one wishes t o  decrease the number of iterations a t  the cost of more function 
evaluations). 

UQP The weight u of the quadratic term a t  direction finding (u > 0; usually u = 1). 

5.5 Parameter restrictions 

If the parameter restrictions given above are violated, NOAl will terminate with INFORM 
(IWORK(1) ) set to  904 through 910 and a suitable message. Moreover, the following combi- 
nations of parameter values are forbidden: 

1. ICONVX .EQ. 1 .AND. GAMSPR. GT. ZERO .OR. ICONVX .EQ. 0 .AND. GAMSPR 
.EQ. ZERO .AND. DMA. EQ. ZERO 

2. IEXTCO .EQ. 1 .AND. (MI+ME .EQ. 0 .OR. MFI .GT. 0) 

3. IPENAL .EQ. 1 .AND. (ICONVX .EQ. 0 .OR. IEXTCO .EQ. 0 .OR. DLTVCF .GE. 
ONE .OR. RHOCF .LE. ONE) 

4. IPENAL .Eq. 2 .AND. (MI+ME .EQ. 0 .OR. NLINEQ .GT. 0 .AND. IEXTCO .EQ. 
1 .OR. DLTVCF .EQ. ZERO .OR. DLTVCF .GE. ONE .OR. RHOCF .LE. ONE) 

5. DMLLS+DMVLS .GE. DMRLS .DR. DMRLS .GE. ONE 

6. ICONVX .EQ. 0 .AND. GAMSPR .EQ. ZERO .AND. (DLTDCF .LE. ZERO .OR. 
DLTDCF .GE. ONE) 

where ONE=l . OD+O , ZERO=O . OD+O . 
Violation of one of the above conditions will result in termination with INFORM=911 

through 916, respectively. 

5.6 Practicalities 

Use a copy of the standard input file (see appendix D) to  create your own file. The parameters 
you will have to  think about are EPSFSB, EPSTOP, ICONVX, IPENAL, ITERMX, MAXFEV, 
MGRDMX , RHO and UQP. 

We now list typical parameter values for some methods. 

1. The exact penalty method 



(a) without exploiting the penalty function structure IEXTCO=O, 
MGRDMX=N+G+NLINEQ, IPENAL=Oor 2,RHO=10. RHOCF=2, DLTVCF=0.5 

(b) exploiting the penalty function structure (only for NLINEQ=O) 
IEXTCO=l. MGRDMX=N+7, IPENAL=O or 2,RHO=10. RHOCF=2. DLTVCF=0.5 

2. The constraint linearization method (only for I C O N V X = ~ )  IEXTCO=1, 
MGRDMX=N+7+NLINEQ. IPENAL=1, RHO=10, RHOCF=2, DLTVCF=0.5 

For nonconvex problems, the version with subgradient locality measures has 
ICONVX=O. GAMSPR=lor 10 ,  DMA=O. 

whereas the version with subgradient deletion rules may use 
ICONVX=O, GAMSPR=O, DMA-0.1, DLTDCF=O.l 

6 Output 

The following information is output to  the print file number NOUT during the solution of 
each problem referred t o  in the input file. 

A listing of the parameters that  were set in the input file. 
A listing of the scaling parameters. 
A listing of the box and general linear constraints. 
An estimate of the amount of working storage needed, compared to  how much is avail- 
able. 
Some diagnostics about wrong parameter values. 
The initial solution and function values. 
The iteration log. 
Some information about penalty increases. 
The exit condition and some statistics about the solution obtained. 
The final solution and function values. 

Further brief output may be directed to the summary file (the screen) as discussed in 
section 6.5. 

6.1 Initial output 

The output of subroutine INPRMT which reads the problem data  was described in section 5.3. 
If the printout parameter MSGFRQ is positive, N O A l  prints the following information: 

a)  The minimum number of stored subgradients required for the subgradient selection 
strategy; if this number is greater than the input parameter MGRDMX, N O A l  prints the 
minimum number of subgradients required by the aggregation strategy. 

b) The declared dimensions of workspace arrays IWORK and WORK, compared to  those 
needed. 

Next, some output may be directed to the print file if the user's subroutine uses the unit 
number NOUT during its first call with IFLAG=O (see section 4.2). 



6 .2  Iteration log 

The amount of intermediate printout to the file number NOUT is controlled by the value of 
the printout parameter MSGFRq in the following way: 

MSGFRQ=O No printout. 

MSGFRQL 1 The initial 5 lines (see section 6.1) and the final 10 lines (see section 6.4). 

MSGFRQL 2 The initial and final solutions. 

MSGFRQ? 3 The final nonlinear problem function values. 

MSGFRQL 4 The final values of the linear constraint functions. 

MSGFRQE [lo,  191 One line with function values every tenth iteration, and a heading every 
100th iteration. 

MSGFR~E [20,29] One line with function values on each iteration, and a heading every tenth 
iteration. 

MSGFRQE [30,39] As for MSGFRQE [20,29] together with a one line message for each increase 
of the exact penalty parameter RHO and the QP penalty parameter CQP. 

MSGFRQ? 40 A heading and function values on each iteration, and messages about pe- 
nalty increases. 

MSGFRQ? 60 Debug printout. 

Additionally, when MSGFRqL 20, one may trace the changes in the solution, all the problem 
function values and the linear constraint function values. They are printed according to the 
scheme 

rnod(MS~FR9 , lo)  2 2 - the solution, 

mod(MSGF~q,10)> 3 - the problem functions, 

m o d ( ~ ~ ~ F R q , 1 0 )  2 4 - the linear constraint functions 

after each change, i.e. they are not printed after a null step. For example, MSGFRQz42 will 
print each solution. 

The printed labels refer to the following items. 

I TER The current iteration number k. 
OBJECTIVE The objective value. 
NFEV The number of function evaluations. 
DNORM The norm of the search direction dk . 
KQP The number of subgradients active at  direction finding. 

VLIN The predicted descent (optimality estimate) vk . 
NRS The number of locality resets. 
ADIST The locality radius of subgradient information ak . 
EXACT PENALTY The exact penalty function value. 
CONSTR The total constraint function value. 
RHO The penalty coefficient e .  



FCOVAL The value of max{F,(z)  : j = 1 , . . . ,  mr ; (Fj(z)l : j = mr + l , . .  . , m r  + 
mE ). 

F INVAL The value of max{ Fj(z)  : j = mr + m~ + 1 , .  . . , m ~  + m~ + m a ) ,  where 
m a  =MFI (see (44)). 

FLIVAL The maximum linear constraint function value. 

CqP The qP penalty parameter. 
FCPRED The predicted constraint function value F k ( z k  + dk).  
DELTAV The unconstrained minimization tolerance bk for penalty increases. 
VTILqP The primal predicted descent Ck (which should agree with VLIN). 

6.3 Exit conditions 

On exit N O A l  sets IWORK(1) to  the value of INFORME [I, 9191, or to  INFORM=IFLAG if the user's 
subroutine requested termination with IFLAGCO (see section 4.2). If MSGFRq>O, a message is 
printed to  summarize the final result. Here we describe each message preceded with its 
INFORM value and suggest possible courses of action. 

1 .  O P T I M A L  S O L U T I O N  F O U N D  
If the problem is convex, the predicted descent (VLIN=V~)  and the constraint violation are 
small, then the solution found is probably optimal. It could be improved if VLIN is not too 
small; roughly speaking, if for an unconstrained problem J v k J / ( l  + If (zk)l ) lo-' then one 
would expect the 1-th digit of f ( zk )  to  change if the run were continued. 

2 .  T O O  M A N Y  I T E R A T I O N S  
The ITERMX limit was exceeded before the required solution could be found. If the iteration 
log shows that  progress was being made, restart the run from the current solution. 

3 .  T O O  M A N Y  F U N C T I O N  E V A L U A T I O N S  
The MAXFEV limit was exceeded - proceed as for INFORM=2. 

4 .  P R O B L E M  S U B R O U T I N E  S E E M S  T O  B E  G I V I N G  I N C O R R E C T  
S U B G R A D I E N T S  
The line search discovered significant discrepancies between the directional derivatives of 
the problem functions and their finite difference quotients. The functions could be non- 
semismooth or, most probably, there are mistakes in the subgradient calculation. Check the 
function and subgradient computation very carefully. 

5. C A N N O T  F I N D  A D E S C E N T  D I R E C T I O N  
The rounding errors prevented the qP subroutine from finding a descent direction. For well- 
scaled problems this occurs only near the solution. Check if the qP weight UqP is not too 
small, and the penalty parameter RHO and CQP are not too large (if they are, consider scaling 
the problem). 

6. T H E  L I N E A R  C O N S T R A I N T S  A R E  T O O  T I G H T  ( O R  B A D L Y  S C A -  
L E D )  
The QP subroutine was unable to  find a direction feasible for the linear constraints. Consider 
increasing the feasibility tolerance EPSFSB and scaling the problem. 



7 .  T H E  C O N S T R A I N T S  A R E  T O O  T I G H T  ( O R  B A D L Y  S C A L E D )  
The Slater constraint qualification is violated or the problem is ill-scaled. Relax the con- 
straints and/or increase the feasibility tolerance EPSFSB. 

8.  T H E  C O N S T R A I N T S  A R E  T O O  T I G H T  O R  B A D L Y  S C A L E D  
A too large penalty coefficient was generated. The constraints may be irregular (e.g. incon- 
sistent) or ill-scaled. To check consistency, one may minimize the constraint violation (use 
NEEDIS=l and a list IS t o  treat the constraints as objectives; see section 4.3), and then use 
a feasible starting point for another run. 

9 .  T H E  B O X  C O N S T R A I N T S  A R E  I N C O N S I S T E N T  
The box data  are wrong (zf > z y  for some i ) .  

1 0 .  T H E  S T A R T I N G  P O I N T  I S  I N F E A S I B L E  F O R  T H E  B O X  A N D  T H E  
L I N E A R  C O N S T R A I N T S  
Check the data ,  and consider increasing the feasibility tolerance EPSFSB. 

1 1 .  T O O  M A N Y  L I N E S E A R C H  I T E R A T I O N S  
The linesearch failed after 30 trial stepsizes. See under INFORM=4. One may decrease the line 
search parameter DMLLS. 

1 2 .  N U M E R I C A L  E R R O R S  - C A N N O T  D R O P  O L D  L I N E A R I Z A T I O N S  
This message should never appear. If it does, increase GAMSPR. 

9 0 0 .  N O T  E N O U G H  W O R K S P A C E  T O  S T A R T  S O L V I N G  T H E  P R O B -  
L E M  
The declared dimensions of workspace arrays IWORK and WORK are too small. 

901-919 .  I N V A L I D  I N P U T  P A R A M E T E R S  
A message will indicate wrong parameters (referring, e.g., t o  groups of parameters from the 
input records). 

6.4 Solution output 

At the end of a run, the solution is stored in the array X ,  whereas some additional information 
is stored a t  certain locations in the workspace arrays as follows: 

IWORK( l)=INFORM The exit condition (see section 6.3). 
IWORK (50) =ITER The number of iterations. 
IWORK(51) =NFEV The number of function evaluations. 
IWORK(52) =NOGREV The number of objective subgradient evaluations. 
IWORK(53) =NCGREV The number of constraint subgradient evaluations. 
IWORK(55) =KF The pointer to  the function values stored in WORK 

WORK(KF+I-1)= j y ( z )  for I = 1,. . ., MTOT 
(note the scaling!). 

IWORK(56) =MTOT The total number of problem functions. 
IWORK(57)=KA The pointer to  the linear constraint function values stored in WORK 

WORK(KA+I-1)= (AI ,X)  - BI for I = 1,. ..,NLINEq. 
IWORK(Q8)=LIWORl The minimum dimension of IWORK required. 
IWORK(Q9) =LWORKl The minimum dimension of WORK required. 



WORK(50)=EPFVAL 
WORK(5l)=FOBVAL 
WORK (52) =FOCVAL 

WORK (54) =FLIVAL 
WORK(55)=VLIN 
WORK(56)=DNORM 
WORK(57)=ADIST 
WORK ( 58) =RHO 
WORK (SQ) =CQP 

The exact penalty function value. 
The objective value. 
Theva lueofmax{Fj (z ) :  j =  1 , . . . ,  mr;  (Fj(z)l  : j = m I + l  , . . . ,  m r +  

mE ). 
Theva lueofmax{Fj (z ) :  j = m r + m ~ + l ,  . . . ,  m I + m E + m d ) , w h e r e  
md =MFI (see (44)). 
The value of max { (AI, X) - BI : I = 1 , .  . . , NLINEQ). 
The optimality estimate ok. 
The norm of the search direction. 
The locality radius ak. 
The penalty coefficient. 
The QP penalty parameter. 

Some of the items listed above are undefined on exit with INFORM2 900. They can be 
printed by selecting a suitable value of MSGFRQ (see section 6.2). The final printout includes 
10 lines, followed by the solution, nonlinear and linear function values (see appendix E). 

6.5 Summary output 

If the summary output level MSGSUM is positive and the unit number NSUM=O, certain brief 
information will be output to the screen. (If NSUM is neither 0 nor NOUT, then a suitable file 
should be opened in the main program.) 

The values of MSGSUM between 0 and 29 have the same meaning as those of MSGLVL (see 
section 6.2), except that  the solution and function values are not printed. 

7 System information 

7.1 Distribution diskette 

The object code, some source code and data for NOAl are distributed on a floppy disk con- 
taining 28 files. 

The following is a list of the files and a summary of their contents. 

File name 
AGGREG.OBJ 
ALGEBR.OBJ 

ALPVAL.OBJ 
AUGMNT.OBJ 
BOXPRJ.OBJ 
BUNDLE.OBJ 
EVALPF.OBJ 
GETDAT.OBJ 
GETTIM.OBJ 
INPRMT. OBJ 
LNOA1. BAT 
MAINOA.FOR 
MAINOA.OBJ 
NOA1. LNK 

Description 
Subroutine AGGREG 
Subroutines COPYVC , ICOPVC , IZERVC . SUBST, TLOWER, VCNORM, 
VCPROD, VZNORM, ZEROVC 
Subroutine ALPVAL 
Subroutines AUGMNT , SORTAL . SORTA1. SORTA2 
Subroutines BOXPRJ , PREPQP , UPDALP 
Subroutines BUNDLE. INSGRD , JFREE 
Subroutines EVALFI , EVALF1, EVALPF , EVALPl 
Subroutine GETDAT 
Subroutine GETTIM 
Subroutine INPRMT 
Batch file for linking NOAl 
Source file for the main program 
Main program MAINOA 
A response file for the linker 



NOA1. OBJ 
NOA1A.OBJ 
NOAOUT.OBJ 
0UTLOG.OBJ 
qPDF4.0B J 
qUADR . FOR 
qUADR. OB J 
qUADR3. DAT 
STBNDL.OBJ 
STORCP.OBJ 
TIMEPF.OBJ 
UPDRHO. OBJ 
USERS. FOR 
USERS. OBJ 

Subroutine NOAl 
Subroutine NOAlA 
Subroutine NOAOUT 
Subroutines OUTLOG and OUTGRG 
Subroutines qPDF4, qPDF4A and SOLRTR 
Source code for subroutine qUADR 
Subroutine QUADR 
Data for QUADR 
Subroutine STBNDL 
Subroutine STORCP 
Subroutine TIMEPF 
Subroutines UPDGRD and UPDRHO 
Source code for subroutine USERS 
Subroutine USERS 

Note that the names of your subroutines must differ from those used by NOA1, and that  
NOAl uses the following COMMON blocks 

EXAMPL 
Nl AUGM 
NlDILl 
N 1 EPV 
NlKBLI 
NlLSIO 
NlLSRT 
qPDF4A 

MCHTOL 
NlBNDL 
N'lDIL2 
NlEVAL 
N 1 KFVA 
NlLSRI 
N'lNOAI 
qPDF4B 

NEWX 
NlCMOB 
NlELOG 
NlKALA 
NlKGRE 
NlLSRO 
NlNOAR 
qPLoGA 

NINOUT 
NlCRHO 
NlEPFC 
Nl KB 
NlKlAU 
NlLSRP 
N1 WRIT 
qPLoGB 

It does not use the blank COMMON. 

7.2 Problem-dependent subroutines 

Some of the routines may require modification to  suit a particular problem or a non-standard 
application. We discuss each of them in turn. 

The main program 
You can decrease the size of the executable program by decreasing the dimensions of the 
arrays IU, IWORK, RU and WORK declared in the main program MAINOA (see section 4.4 and 
appendix A). On the other hand, none of these arrays may exceed the limit of 64 kB of 
storage (the object files cannot handle larger arrays). 

If you wish to  create your own version of subroutine INPRMT for reading the problem 
parameters, follow the guidelines of sections 5.2 and 5.3. 

Subroutine USERS 
For each problem, you may insert a calling sequence to  your subroutine in subroutine USERS. 
Then a t  run-time the problems will be distinguished by the value of the parameter IEXAMP 
(see appendix B). 

Of course, you must append the names of your object files to  the list of linked files 
contained in file NOA1. LNK. 



7.3 A testing example 

The files q U A D R .  FOR and qUADR3. DAT (see appendices C and D) contain the source code and 
data for a simple minimax problem which may be used for testing NOA1. In what follows we 
suggest how to  organize the hard disk directories for NOA1. An experienced user will organize 
them differently. 

Installation procedure 

1. Create directories F77L and N O A l  in the root directory. 
2. Copy the contents of the distribution diskette to  the N O A l  directory. 
3. Copy the Lahey F77L compiler and the linker (IBM linker, version 2.30 or higher) to  

the F77L directory. 
4. Make sure the F77L directory is included in the path for DOS. 
5. Connect to  the N O A l  directory. 
6. Create an executable file N O A l  .EXE by executing the batch file LNOA1 .BAT. This file 

contains one line 
. . . \F77L\link Q NOA1. LNK 
It refers to  the automatic response file NOA1. LNK (see the DOS manual for information 
about the stack and segment extensions). 

7. Copy the file qUADR3. DAT to  the file FORT1. 
8. Run N O A l  by executing the command N O A l  (or N O A l  .EXE). Check the output against 

that shown in appendix E. 
9. You may now manipulate the data in the FORT1 file to  run different versions of the 

QUADR problem (constrained, nonconvex, etc.) and to  check the influence of certain 
parameters (EPSTOP , EPSFSB, etc.). 
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A The main program MAINOA 

PROGRAM MAINOA 
C 
C This is the default main program for NOA1. 
C 
C Written by Krzysztof C. Kiwiel, Systems Research Institute, 
C Polish Academy of Sciences, Newelska 6, 01-447 Warsaw. 
C Date last modified: October 7, 1988. 
C 
C*****Parameters of program MAINOA: 
C 
C EPSMCH is the relative floating-point machine precision. 
C IDATIM(*) is used by subroutine TIMEPF for storing the 
C current date, time and elapsed time. 
C IEXAMP is the problem number read by the default subroutine 
C USERS. It enables you to solve several problems 
C without changing the main program. 
C IFLAG indicates the exit condition of the subroutine 
C INPRMT . 
C Iu(*) is the user's integer array (not accessed by NOA1). 
C IWORK(*) is an integer work array used by NOA1. 
C JOB indicates the job to be performed by TIMEPF. 
C LIU is the length of the user's integer array IU. 
C LIWORK is the length of the integer work array IWORK. 
C LRU is the length of the user's array RU. 
C LWORK is the length of the WORK array. 
C MODE is the mode of entrance to NOA1. 
C MSGSUM indicates the amount of summary output desired. 
C N is the number of variables. 
C NIN is the unit number for input to subroutine INPRMT. 
C NIND is the unit number for input to subroutine INQUAD 
C and the user's problem subroutines. 
C NOUT is the unit number for output from the main program 
C and the subroutines INPRMT, USERS, NOAl and TIMEPF. 
C NOUTD is the unit number for output from the subroutine 
C INPRMT and the user's problem subroutines. 
C NSUM is the summary output unit number for output to the 
C summary file from the main program and the 
C subroutines NOAl and TIMEPF. 
C NX is the length of the X array. 
C RU(*) is the user's array (not accessed by NOA1). 
C RTM AX is a large number (smaller than the square root of 
C the greatest positive number in the machine 
C arithmetic). 
C RTMIN is a small number (greater than the square root of 
C the smallest positive number in the machine 
C arithmetic . 



C WORK(*) is the work array used by NOA1. 
C 
C 

INTEGER IEXAMP, IFLAG , JOB , LIU , 
* LIWORK, LRU , LWORK , MODE . 
* MSGSUM, N , NIN , NIND , 
* NOUT , NOUTD , NX , NSUM 
DOUBLE PRECISION EPSMCH, RTMAX , RTMIN 
INTEGER IDATIM(9) 

C The following array lengths should suffice for problems 
C with up to 50 variables. 

PARAMETER (LIU=100, LIWORK=2500, LRU=2500. 
* LWORK=8160, NX=50) 
INTEGER IU(L1U) , IWORK(LIW0RK) 
DOUBLE PRECISION RU(LRU) , WORK(LW0RK) , X (NX) 

C 
C*****COMMON blocks: 

COMMON /EXAMPL/ IEXAMP 
COMMON /MCHTOL/ EPSMCH, RTMIN, RTMAX 
COMMON /NINOUT/ NIND , NOUTD 

C 
C*****Subprograms called: INPRMT, NOA1, TIMEPF. 
C 
C USERS is the default user's problem subroutine. 

EXTERNAL USERS 
C 
C*****Body of program MAINOA: 
C Open the primary input and output files. 

NIN =1 
NOUT =2 
OPEN ( UNIT=NIN , FILE= 'FORT1 ' , STATUS= 'OLD') 
OPEN ( UNIT=NOUT, FILE='FORTZ1, STATUS='UNKNOWN') 
NIND =NIN 
NOUTD=NOUT 

C Set the machine tolerances. 
EPSMCH=2.2D-16 
RTMAX =l.OD+60 
RTMIN =2.OD-20 

C MODE is the mode of the current entrance to NOA1. 
C The possible values of MODE are 
C 1 - Start solving a new problem; 
C 2 - Continue solving the current problem with new values 
C of the algoritm's termination perameters; 
C 3 - Continue solving the current problem with new values 
C of all the algoritm's perameters; 
C 9999 - Terminate the session. 
100 READ(NIN.*) MODE 

C Print the current date and time, reinitializing the elapsed 



C time counter at the start of a new problem. 
JOB=O 
IF ( MODE.GT.l) JOB=l 
CALL TIMEPF( JOB, NOUT, IDATIM) 

C Test for termination. 
IF(MODE.EQ.9999) STOP 

C Read the algoritm's parameters into arrays IWORK AND WORK. 
CALL INPRMT (MODE. IWORK , LIWORK ,WORK, LWORK . NIN . NOUT, N , IFLAG) 

C Test for an error condition. 
IF(IFLAG.NE.0) STOP 

C Print the date and time on the summary file NSUM, if any. 
MSGSUM=IWORK(29) 
NSUM =IWORK(30) 
IF ( MSGSUM.GT.0 .AND. NSUM.GE.0 ) 

* CALL TIMEPF( 1, NSUM, IDATIM) 
C Solve the problem. 

CALL NOAl(USERS.IU,LIU,RU,LRU,N,X. 
* IWORK,LIWORK,WORK,LWORK) 

C Print the current date and time. 
CALL TIMEPF( 1, NOUT, IDATIM) 
IF ( MSGSUM.GT.0 .AND. NSUM.GE.0 ) 

* CALL TIMEPF ( 1, NSUM, IDATIM) 
GO TO 100 

C*****Last card of program MAINOA********************************** 
END 



B Subroutine USERS 

C THIS IS THE DEFAULT SUBROUTINE USERS. 
SUBROUTINE USERS(X.N.I,F,GRAD,IFLAG,IU,LIU,RU,LRU) 
IMPLICIT REAL*B(A-H ,0-Z) 
DIMENSION X(N) . GRAD(N) , IU(LIU) ,RU(LRU) 

C IEXAMP=PROBLEM NUMBER. 
C NEEDX =1 IF THE INITIAL X IS READ BY SUBROUTINE USERS. 
C =O IF THE INITIAL X IS READ BY THE PROBLEM SUBROUTINE 
C OF EXAMPLE NUMBER IEXAMP. 
C NIND =UNIT NUMBER FOR INPUT. 
C NOUTD =UNIT NUMBER FOR OUTPUT. 

COMMON /EXAMPL/ IEXAMP 
COMMON /NINOUT/ NIND,NOUTD 
IF ( IFLAG. NE.0 ) GO TO 100 

READ(NIND,*) IEXAMP,NEEDX 
IF(IEXAMP.Eq. 1) WRITE(NOUTD.1) 

1 FORMAT(20H ***PROBLEM qUADR***) 
C IF(IEXAMP.Eq.2) WRITE(NOUTD,2) 
C 2 FORMAT(2lH ***PROBLEM MAXLEM***) 

IF(NEEDX.Eq.1) READ(NIND,*) X 
100 CONTINUE 

C CALL PROBLEM NUMBER IEXAMP. 
IF(IEXAMP.Eq.1) CALL qUADR(X.N,I.F.GRAD,IFLAG,IU.LIU,RU,LRU) 

C IF(IEXAMP.Eq.2) CALL MAXLEM(X,N,I,F,GRAD,IFLAG,IU,LIU,RU,LRU) 
999 RETURN 

END 



C Subroutine QUADR 

SUBROUTINE qUADR(X,N,I,F,GRAD,IFLAG,IU,LIU,C,LRU) 
IMPLICIT REAL*8(A-H.0-Z) 
DIMENSION X(2) ,GRAD(2) ,C(7,10) 
DATA TWO 

* /2DO/ 
C INITIALIZE THE PROBLEM ON THE FIRST OPTIMIZER CALL. 

IF(IFLAG.E~.O) CALL IN~UAD(X,N,IU.LIU,C,LRU.IFLAG) 
C EXIT IF THIS IS THE FIRST OR THE LAST CALL. 

IF(IFLAG.NE.l.AND.IFLAG.NE.2) GO TO 999 
IF(IFLAG.Eq.2) GO TO 1 

C COMPUTE THE I-TH FUNCTION VALUE. 
F=C(l. I)*(X(l)-C(2,1))**2+C(3,I)*(X(2)-C(4.1))**2 

* +c(s,I)*x(l)+c(6,I)*X(2~+C(7,I) 

GO TO 999 
C COMPUTE THE I-TH FUNCTION'S GRADIENT: 

1 CONTINUE 
GRAD(l)=TWO*C(l .I)*(X(l)-C(2,I))+C(5,I) 
GRAD(2)=TWO*C(3, I) * (X(2) -C(4. I))+C(6, I) 

999 RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE INqUAD(X,N,IU,LIU,C,LRU,IFLAG) 
IMPLICIT REAL*8(A-H.0-Z) 

c UP TO 10 ~UADRATICS (EACH GIVEN BY 7 PARAMETRS) CAN BE READ 
C INTO ARRAY C. 

DIMENSION X(2),C(7,10) 
COMMON /NINOUT/ NIND.NOUTD 

C NqUADR=NUMBER OF qUADRATIC FUNCTIONS OF THE PROBLEM. 
READ (NIND . *) NqUADR 

C OUTPUT THE DATA FOR FUTURE CHECKS. 
WRITE(NOUTD.1001) NqUADR,NqUADR 

1001 FORMAT(8H NqUADR=,I2, 
* 31H QUADRATICS GIVEN BY MATRIX C(,I3,4H,7):) 

C FORCE TERMINATION IF THE DATA SPACE IS TOO SMALL. 
IFLAG=- 1 
IF(LRU.LT.7*NqUADR) GO TO 999 
IFLAG=O 

C INPUT THE PROBLEM DATA. 
DO 10 I=l,NqUADR 

10 READ(NIND,*) (C(J.11, J=1,7) 
WRITE(NOUTD,1002) ((C(J,I),J=1,7),1=l,NqUADR) 

1002 FORMAT(1H ,1P7E10.3) 
999 RETURN 

END 



D Data for QUADR 

1 
30 2 0 0  2 0  
1E-10  1E-8  
2 5 3 

0 0 0 

1EO 1 . 0  
0 0 1 
0 0 0 
1 
.1 0 .  .5 
.1 .5 . 888 
0 1 
0 
100 2 . 2 E - 1 4  2 . 2 E -  
1 0 0 

00 2 2 0  
2 . 1  . 1  
1 1 
- 1 - 1 
3 

1 1 1 1 4 3  
1 1 1 1 0 3  
1 1 1 1 1 0  
8999 

qUADR3 DATA 

MODE 
ITERMX, MAXFEV, MSGFRq 
EPSTOP , EPSFSB 
N , MGRDMX, MOB , M I  
ME , MFI , NLINEq. IBOX 
RHO . SHIFTX 
NEEDIS, NEEDSC. ICONVX, IEXTCO 
IPENAL, LAUGMX, ISHOR , LENB 

u q p  
DMA , GAMSPR, TBARCF. TBARMX 
DMLLS , DMRLS . DMRqP . DMVLS 
MODLSR, LSRCHV 
EPSACT 
ITqPST,  EPSqPS, EPSqPC, IDELqP 
IMPLDI, BETDIL, LBTDIL, DMBTDL 
MSGFLS, MSGFQP, MSGSUM, NSUM 
RHOCF , DLTVCF, DLTDCF 
IEXAMP , NEEDX 
X 
qUADR 

C ( * ,  1 )  
C(* - 2 )  
C(* , 3 )  
MODE 



E Results for QUADR 

DATE..1988-10-06 TIME..20:50:06 ELAPSED TIME.. 0:00:00 

NOAl STARTING PARAMETERS: 
MODE= 1 

ITERMX= 30 MAXFEV= 200 
EPSTOP= 1.00E-10 EPSFSB= 1.00E-08 

N = 2 MGRDMX= 5 
ME= 0 MFI= 0 
RHO= 1.00E+00 SHIFTX= 1.00E+00 

NEED IS= 0 NEEDSC= 0 
IPENAL= 0 LAUGMX= 0 

UQP= 1.00E+00 
DMA= 1.00E-01 GAMSPR= 0.00E+00 

DMLLS= 1.00E-01 DMRLS= 5.00E-01 
MODLSR= 0 LSRCHV= 1 
EPSACT= 0.00E+00 
ITQPST= 100 EPSqPS= 2.20E-16 
IMPLDI= 1 BETDIL= 0.00E+00 
MSGFLS= 0 MSGFqP= 2 
RHOCF= 2.00E+00 DLTVCF= 1.00E-01 

NOAl - - -  VERSION 1.0 OCT 1988 
REqUIRED MINIMUM NUMBER OF STORED SUBGRADIENTS= 5 FOR SELECTION 
WORKSPACE PROVIDED IS IWORK( 2500), WORK( 8160). 
TO SOLVE PROBLEM WE NEED IWORK( 289), WORK( 321). 
***PROBLEM QUADR*** 
NQUADR= 3 QUADRATICS GIVEN BY MATRIX C( 3,7): 
1.000E+00 1.000E+00 1.000E+00 1.000E+00 4.000E+00 3.000E+00-2.000E+00 
1.000E+00 1.000E+00 1.000E+00 1.000E+00 0.000E+00 3.000E+00-2.000E+00 
1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 0.000E+00-2.000E+00 
INITIAL X= -1.00000E+00 -1.00000E+00 
INITIAL EPFVAL= 5.000000000E+00 FOBVAL= 5.000000000E+00 

FCOVAL= 0.000000000E+00 FINVAL= 0.000000000E+00 
FLIVAL= 0.000000000E+00 

I TER OBJECTIVE NFEV DNORM KQP VLIN 
1 5.000000000E+00 1 5.00E+00 1 -2.50E+01 
2 1.000000000E+00 2 3.00E+00 1 -9.00E+00 
3 1.000000000E+00 3 1.07E+00 2 -3.20E+00 
4 1.000000000E+00 4 4.97E-01 2 -1.42E+00 
5 1.000000000E+00 5 5.26E-01 3 -1.35E+00 
6 1.793428520E-01 6 1.18E-01 3 -2.72E-01 
7 7.651168715E-02 7 4.99E-02 3 -1.07E-01 
8 7.651168715E-02 8 3.83E-02 3 -8.04E-02 
9 3.537131622E-03 9 1.93E-03 3 -4.28E-03 

I TER OBJECTIVE NFEV DNORM KQP VLIN 
10 5.881631781E-04 10 4.38E-04 3 -8.81E-04 



EXIT NOA1: OPTIMAL SOLUTION FOUND 

NO. OF ITERATIONS . . .  15 EXACT PENALTY VALUE 2.40236650017600E-13 
FUNCTION EVALUATIONS 15 OBJECTIVE VALUE . . . .  2.40236650017600E-13 
CALLS FOR EPF GRAD.. 15 EXTERNAL CONSTRAINT 0.00000000000000E+00 
CALLS FOR CON GRAD.. 0 INTERNAL CONSTRAINT 0.00000000000000E+00 
PENALTY COEFFICIENT. 1.000E+00 LINEAR CONSTRAINT.. 0.00000000000000E+00 
QP PENALTY COEF . . . . .  1.000E+00 PREDICTED DESCENT.. -2.411E-13 
LOCALITY RADIUS . . . . .  9.656E-08 NORM OF DIRECTION.. 1.088E-13 
FINAL X 
1.03031E-13 3.42252E-14 
FINAL NONLINEAR FUNCTION VALUES 
2.40237E-13 -1.71887E-13 -1.71532E-13 
USER'S SUBROUTINE CALLED WITH IFLAG= 3 

DATE..1988-10-06 TIME..20:50:09 ELAPSED TIME.. 0:00:03 



F Summarized results for QUADR 

DATE..1988-10-06 TIME..20:50:06 ELAPSED TIME.. 0:00:00 

NOAl - - -  VERSION 1.0 OCT 1988 
INITIAL EPFVAL= 5.000000000E+00 FOBVAL= 5.000000000E+00 

FCOVAL= 0.000000000E+00 FINVAL= 0.000000000E+00 
FLIVAL= 0.000000000E+00 

ITER OBJECTIVE NFEV DNORM KqP VLIN 

1 5.000000000E+00 1 5.00E+00 1 -2.50E+01 

2 1.000000000E+00 2 3.00E+00 1 -9.00E+00 
3 1.000000000E+00 3 1.07E+00 2 -3.20E+00 

4 1.000000000E+00 4 4.97E-01 2 -1.42E+00 
5 1.000000000E+00 5 5.26E-01 3 -1.35E+00 

6 1.793428520E-01 6 1.18E-01 3 -2.72E-01 
7 7.651168715E-02 7 4.99E-02 3 -1.07E-01 
8 7.651168715E-02 8 3.83E-02 3 -8.04E-02 

9 3.537131622E-03 9 1.93E-03 3 -4.28E-03 
I TER OBJECTIVE NFEV DNORM KqP VLIN 

10 5.881631781E-04 10 4.38E-04 3 -8.81E-04 
11 5.881631781E-04 11 3.31E-04 3 -5.89E-04 
12 1.428306300E-06 12 6.81E-07 3 -1.51E-06 

13 9.117102838E-08 13 6.01E-08 3 -1.28E-07 
14 7.282480522E-08 14 3.64E-08 3 -7.28E-08 
15 2.402366500E-13 15 1.09E-13 3 -2.41E-13 

EXIT NOA1: OPTIMAL SOLUTION FOUND 

NO. OF ITERATIONS . . .  15 EXACT PENALTY VALUE 2.40236650017600E-13 
FUNCTION EVALUATIONS 15 OBJECTIVE VALUE . . . .  2.40236650017600E-13 

CALLS FOR EPF GRAD.. 15 EXTERNAL CONSTRAINT 0.00000000000000E+00 
CALLS FOR CON GRAD.. 0 INTERNAL CONSTRAINT 0.00000000000000E+00 

PENALTY COEFFICIENT. 1.000E+00 LINEAR CONSTRAINT.. 0.00000000000000E+00 

qP PENALTY COEF . . . . .  1.000E+00 PREDICTED DESCENT.. -2.411E-13 
LOCALITY RADIUS . . . . .  9.656E-08 NORM OF DIRECTION.. 1.088E-13 

FINAL X 
1.03031E-13 3.42252E-14 

FINAL NONLINEAR FUNCTION VALUES 

2.40237E-13 -1.71887E-13 -1.71532E-13 

USER'S SUBROUTINE CALLED WITH IFLAG= 3 

DATE..lQ88-10-06 TIME..20:50:09 ELAPSED TIME.. 0:00:03 


