
PRIORITIES AND PAY FUNCTION ROUTING FOR
A PACKET SWITCHING NETWORK

A. Butrimenko

U. Sichra

September 1975 WP-75-117

Working Papers are not intended for distri
bution outside of IIASA, and are solely for
discussion and information purposes. The
views expressed are those of the authors, and
do not necessarily reflect those of IIASA.

Priorities and Pay Function Routing for

a Packet Switching Network

A. Butrimenko

U. Sichra

In every network there arises the problem of choosing a

path for a message so that it reaches its destination. If there

are many users requesting the same channel it could be occupied

and another would have to be chosen, provided that it would

also be a good path and free, otherwise the message would have

to queue up.

The choice of an objective function for the selection

procedure of a path is part of the decision process when

constructing the routing algorithm. The selection is carried

out with respect to an objective function which is maximized

(or minimized). There exist some useful objective functions

commonly used for routing in a computer network: minimization

of distance, minimization of delay or cumulative costs,

maximization of throughput or reliability, etc.

The cumulative delay along a path is very often taken as

an objective function for the routing algorithm, its value

being used as a performance criterion to be compared with that

of another network or routing strategy. But it is clear that

the average delay or average delivery time is not detailed

enough to be used when comparing different performances,

especially as other features of the system are disregarded.

A multidimensional optimization would probably give better

comparative parameters, but as the solution is of real-time

nature such a procedure would be too long and complicated.

Here again the problem would arise of which out of several

parameters should be taken as a comparative value.

One of the difficulties is that in every network there are

messages (or jobs) of varying importance. Usually this problem

is solved by assigning priorities to each class of messages

(jobs), mostly only a few priorities.

-2-

We will now describe a particular algorithm for handling

messages in a store and foreward network. This can be

described as a decentralized, adaptive, markovian algorithm [1].

Decentralized means that there is not a single node or

a set of nodes which are responsible for the routing in a

whole network, but that each node constructs its own routing

matrix on the basis of information gathered from neighbouring

nodes, and at the same time no node has information on all the

possible routes in the network.

The information at every node is regularly updated,

leading to a general adaptivity of the network. The messages

in each node are handled independently of the source, and this

is thus a markovian-type routing. We will work with this

method, which is almost an extension of the methods described

in some earlier publications [1,2] .and is now in use in the

ARPA network. We then extend this method of routing messages

for cases with a few priorities. It will be seen that the

simple method of handling messages of various priorities has

some awkward features and that the philosophy of fixed priorities

can be wrong in many cases. Even more so, it does not reflect

the proper interests of the users.

We will describe another method based on so called pay

functions [3]. It will be shown that the first method with

normal fixed priorities is an extreme case of the pay function

method. And what is more important, the accuracy of conventional

methods to actual requirements of the users can be evaluated

by comparing the results with those originated by the introduction

of pay functions.

Later on we will also discuss some results of the network

simulation with various types of pay functions.

We will limit our study to a store and forward network,

where all the messages have the same length and each one

propagates through the network as a whole.*

*These constraints can be taken off, but are introduced

here for the sake of simplicity.

-3-

Suppose that each message belongs to one of three priority

classes, and that the priority does not change with time. This

means that on every channel we have three queues and that the

queues of lower priority will be served only if the queues of

higher priority are empty. We assume that in each queue the

messages are served in first-in first-out order.

Updating

The routing information is stored in each node, in the form

of three matrices, one for each priority. In each of these

matrices the column numbers correspond to the number of outgoing

channels and the row numbers correspond to the number of

destination nodes. The element r~. (p) in the matrix M gives
1J

the estimated delivery time from node m to destination i

through channel j (internal numbers for nodes) for a new

message with priority p. Figure 1 which represents a very

small network shows the use of these matrices.

For every priority we have a separate routing matrix. The

matrix of a small priority is a function of higher priority

matrices.

To clarify this, let us look at the first priority, i.e.

p = 1. In Figure 6 beside each node is shown the routing

matrix for p = 1, where the rows correspond to the destination

nodes to be reached from this particular node, and the columns

are the outgoing channels. In the example of Figure 1, the

channel number corresponds to the node number at the far end

of each channel. Each node also has a vector, and each element

of it is the smallest value ~ 0 per row, representing the time

needed to deliver a message from that node to the various

destination nodes omitting the channel number, which is not

important at this time.

When a sufficiently large queue forms at an outgoing channel

of a node or, if the sum of the changes in the outgoing queues

becomes more than a certain value the vector at that node adapts

~tself to the new situation.

-4-

After the adaptation, the new vector elements are again

the minimum of each row, but the rows are now the sum of the

old row's elements plus the queue of each channel. To every

element in the row there corresponds a different queue (as

queues and columns correspond to each other). The elements

of the new vector are not the sum of the old matrix element

plus queue length, but again only the old element, taking

into consideration what would be the minimal if the queue

lengths were added. This new vector is sent to the adjacent

nodes who adapt the routing matrix for p = 1 accordingly,

putting the new vector's element in the right place, and their

vectors possibly changing too.

For p = 2 the routing matrix and, at the same time the

vector are not only influenced by the queue of the packets

with priority 2, but also by the q~eue for p = 1. The matrices

for p = 2 relate always directly to the matrices with p = 1.

In each node the elements of the matrix for p = 2 are larger

or equal than the elements ofp = 1. The same is true for

p = 3. For the sake of simplicity the simulated algorithm

only allows the transmission of the vector of one priority at

a time, and starts to look for possible changes from p = 1

on (or from the last priority on, if one wants it), POROG(i),

i = 1, 3 is the variable which decides if the changes are large

enough to allow for an adaptation.*

An Example of a Simulation

The simulation is done on a 16 nodes and 60 channels

network (Figure 3). After having generated 17,500 packets in

a time of 1,592.39 simulation seconds with POROG(l) = 3,

POROG(2) = 6, POROG(3) = 9, the routing matrices should have

been updated 85,049 times, but 28,002 cases were collisions

with other updatings at the same node in the same time interval.

*POROG can be constructed as adaptive, changing with the

loading of the system in general, but here it is s?pposed to

stay the same throughout the whole run.

-5-

The updating frequencies per node, INFUB(i), varied

between 4,956 updatings at node 1 and 2,746 updatings at node

13, not counting collisions. As mentioned before only the

matrix of one priority is updated at a time, but the cases

of necessary updating for lower priorities are also counted.

The matrices of priority 1 were updated 21,259 times,

on all nodes together, the matrices for priority 2 were

updated 27,540 times and the matrices for priority 3 were

updated 36,258 times. The collisions occuring were included

in these figures. In the case where the matrices of priority

1 were updated, matrices of priority 2 should have been updated

7,013 times, and matrices for priority 3 should have been

updated 34,910 times.

The time needed to transmit an updated vector to a

neighboring node was 0.1 simulation seconds.* It was also

assumed that the updating is sent over special control channels

and does not disturb the transmission of messages in the data

communication system.

Priority Philosophy

fl10st batch processing or time sharing systems have

priority queues. The user can attach to his messages or

jobs a certain priority in order to show its importance. He

also thinks that jobs with highest priority will be run first

and finished first, so that the turn-around time is the lowest.

But due to the changing flow in a network it is impossible to

predict the completion time of a job being put into a network.

Therefore, the priorities do not always coincide with the

user's interests.

The following three reasons make the design of the

priority system extremely complicated:

1. There is no method, except simulation, to calculate

the delivery time for each priority even for a

relatively small net for an assumed loading;

*It is fixed constant in the program.

-6-

2. The assumptions for the expected loading are as

a rule different from reality and a network

mostly operates under other conditions than

those planned;

3. When using the priority system it is not possible

to compare different performances which originated

by different methods (order of updating, frequency

of updating, queueing strategy), thus it is

impossible to know which method gives the best

result.

The only guarantee a priority philosophy can give is

that on the same channel messages 'with higher priorities will

be sent earlier than the ones of lower priority, but that

does not say anything about the performance of the whole

network.

Pay Functions

We will now introduce the so called pay functions [3].

The main idea arises from the assumption that between the

authorities responsible for running the network and the users

of it, an agreement on charges per time unit can be achieved

for the user, depending on the performance of each particular

user's job.

For example, the authorities running the commercial CDC 6600

System in Frankfurt, which is one of the systems used by IIASA

scientists, have an agreement that the user can choose between

5 priorities, and the charge for each system second used will

depend on the priority given to his job and not on the delivery

or turn-around time. What we are looking for is a pay function

depending on the delivery time, and the charge for the user

will then depend on this too.

It is possible to think of various kinds of pay

functions:

a) The pay function is a constant with time:

p(t) = C

-7-

Such functions are used at CDC 6600 as mentioned

above.

t1\
p(t)

C

t

b) The pay function is a constant not equal to 0, up to

a certain value of t, then it becomes 0 for all other

values greater than that T.

P (t) =
C

o

t < T

T > t

This function can apply to cases where a message is

important until a certain time, when it becomes

useless to the user.

1\ P (t)

C 1---------------.,

L-..- L..- ~.... t
T

T

c) The pay function is linear:

p(t) = d - k • t

In this case the queueing strategy is independent of

the age of the messages to be queued (which will be

shown later).

t

-8-

d) The value of a message decreases very slowly at first

but rapidly at a later stage, i.e.:

A pay function of this kind could be:

p(t) = c - a •

P (t)

b • t
e

L.- ~ ~ t

e) The value of the messages decreases very rapidly at

first, and later less, not losing the importance

completely, i.e.:

A pay function with this second deviate could be:

p(t) = a • -b • t
e

-- t

-9-

The reader can, of course, think of many more pay functions

which coincide with his specific interests. In some cases the

pay functions can be considered as "isointerest" functions of

a user, since it is possible to establish a performance criterion

for the network--the amount of its income--and in this case with

the non-increasing pay functions the user's and the system's

interests coincide. The maximization of this system's income

is then an advantage to the user.

Let us point out two features of the pay functions:

1. If we assume that the storage of a message in its

destination node does not require any network

resources, then we can consider only non-increasing

functions with time;

2. The function cannot fall indefinitely low. It means

that there is an asymptotic value which can be

considered as being "0" in a new system of coordinates.

Therefore we will only consider positive non-increasing pay

functions.

Let us now look at the relationship between pay functions

and fixed priorities. We want to determine what kind of pay

functions can correspond to fixed priorities. No matter which

function we take, it must allow for first-in first-out discipline

in every priority class. As shown below linear pay functions

are the only one's where the queueing strategy has no influence

and therefore can be taken to compare the priority philosophy

with the pay function idea.

As mentioned above the non-increasing pay functions allow

for coincidence between the user's and the system's interests

and we will therefore concentrate our interests now on non

increasing linear pay functions.

The proof follows that linear pay functions are the only

one's where the queueing strategy has no influence.

Formulation of the problem:

t. age of a packet when arriving at the queue;
1

f(z): pay function.

-10-

and

X ..
lJ

package of age i on place j in queue

else

l: X .. = 1
i lJ

l: X .. < 1
j lJ

The queueing strategy has no influence, i.e.

n m
7T (l: l: X.. f [t

i
+ (j - 1)]) = C

i=l j=l lJ

and

V7TE: P. X P.
1 J

P.
1

= (~l'i~' ... 'in.)
1 1,1 2,···,1V v vn

permutations of the il, ... ,in , the same

of the jl, ... ,j. P. X P. is the cross
m 1 J

It must be shown that:

for P., the permutations
J

product of them.

or

f (z) = kz + d ~ 7T (l:
i,j

X .. f[t.+j-l])=C
lJ 1

V7TE: P. X P.
1 J

f(z) = kz + d ~ f(x + a) + f(y) = f(y + a) + f(x)

Vx,y,a

1. f(z) = kz + d ~

f(x + a) + f(y) = d + kx + ka + d + ky

= f(x) + fey + a)

and the right hand side is true.

2.

-11-

f (x + a) + f (y) = f (x) + f (y + a)

= C

f (x + a) - f (x)

Vx

Then

or

f(z) is piecewise continuous differentiable in any

part interval of the whole interval.

af (x + a) - f (x) = f (x) + IT (1 - 0) f' LX + 0a) - f (x) =

Cf'(x + oa) = aU - 0)

From there it follows that f(z) = zk + d per part interval.

As f(x) is piecewise differentiable it means that there exists

a x :o

x < x o

x > x o

Having 0 < a < E, x:

then

x < x + a < x + E, y:o 0
y + a < x ,o

that is

-12-

~E part interval ~ k
2

= k
l

is the solution and therefore

d
l

= d
2

and the function is the same in two adjacent part

intervals.

This can be done for all pairs of intervals and therefore

the function must be a continuous differentiable in the whole

interval and be of the form:

f(z) = kz + d

Simulation with Pure Pr~orities

The general idea is to compare the performances of a

network under both, pure priority handling and pay functions

routing. If it should be possible to compare it, the use of a

linear non-increasing pay function is necessary.

Some simulation runs have been done with three different

pay functions for each priority with different slopes, the

highest priority having the steepest slope (see Figure 2).

The choice of the outgoing channel at a node depended only

on the routing matrix elements and the queue length in front

of the new packet at a channel. This implies that not only

the sum of packets of the same priority as the new packet

influences the length, but also the sum of packets of higher

priority.

A first run has been done with a creation rate of 16.0115

packets per simulation time unit (ang = 262), and with no

updating at all. The choice of a channel has only been done

taking into consideration the minimal distance of actual node

and destination, and the queues at a channel, but not passing

this information to the adjacent nodes. After having created

19,518 packets, 17,513 had arrived, 2,000 were still in the

system, and the queue lengths at certain channels increased

tremendously.

A maximal number of 2,000 packets are allowed to be in the

system at one time, when there are more the simulation stops.

-13-

Because of the very large queues at certain channels the time

delay of the packets, especially of the third priority, is

remarkable. Table 1 gives some values of that run.

If regular updating is allowed, dependent on POROG{i),

i = 1, 3, which is the maximum number of changes allowed at

the queues of a node before the vector changes to a new

configuration, the performance is much better. The network

contains a reasonable amount of packets and the time delay of

the arrived packets seems to be also reasonable. The creation

rate is again 16.0115 p/t.u., the values of POROG(i) are 8,

16, and 32, the simulation is carried out until 20,000 packets

have been created, leaving 108 in the system. Table 2 shows

some figures of that run.*

The values listed on Tables 1 -6 are:

k j
• tid. the income which

1

delay

confidence interval:

largest queue

income

ideal income

loss

mean time taken by a packet to travel

from source to destination;

an interval with 95% probability of

covering the true mean delay;

lengths are only measured at a few

discrete moments;
nj. .
L d J - k J • t. the income given to

. 1 11=

the system by all packets of priority

j ;
nj
L d j

i=l

the system could have had if the

packets were not delayed at all;
nj .
L - k J • t.;

. 1 11=

*The run is so short at first in order to allow for an

exact comparison with the run on Table 1.

ideal loss

diff of losses

% of ideal loss

i loss/r loss

-14-

nj .
l: - k J • tid. both are a similar

. 1 11=

calculation as the income, but

independent of the initial value

(intersection of the function with

the y-axis);

(loss - ideal loss) what the system

actually loses;

(diff of losses/ideal loss} • 100

the relative percentage of actual loss

of the system;

a quotient which tells something

about the quality of the system.

If it i~ 1, the quality cannot be

better. If it is ¢ the system is

the worst.

All these figures are tabulated for each priority and for

all packets together.

From the results of Table 1 and Table 2 it can be deduced

that routing without updating causes a too unstable behaviour

of the network and unnecessary delays which can be avoided by

not routing along the shortest distances only, but also by

taking care of the different queues to be met on the way.

In the listed tables the ideal loss or ideal income is one

which would have appeared if all the packets had had no delay

other than the one caused by the minimal distance necessary to

reach their destinations. The closer the achieved loss is to

the ideal (the smaller 11% of ideal loss"), and the nearer i loss/

r loss is to 1, the better the performance of the network.

The size of POROG(i) has a big influence on the updating

frequency. The smaller POROG(i) the more often the vectors

are updated and at the same time the more the updating intervals

-15-

overlap. There were two runs with equal parameters except

for POROG(i) which in one case was 3, 6, and 9, and in the

other 8, 16 and 32. The creation rate was in both cases

14.98 p/t.u. and the runs were only carried out until 5,000

packets had been generated. With POROG(i) = 3, 6, 9 there

had been 15,639 updatings, and 8,232 collisions which resulted

in an omission of the updating procedure. With pOROG(i) = 8, 16,

32 there had been 5,668 updatings and 650 collisions.

It can be seen that the number of updatings decrease in

the same proportion as POROG(i} increase, whereas the number

of collisions are much fewer with larger POROG(i). For

POROG(i) = 3, 6, 9, 34.49% of the actual updatings are collisions,

for POROG(i) = 8, 16, 32 only 10.29%.

A further statistic exists about necessary updatings

of other priority classes which have not been done because

the procedure only provides for the updating of one priority

at one node. For POROGli) = 3, 6, 9 between 19.3% and 11.8%

of the actual updatings should have been made on other priorities.

With POROG(i} = 8, 16, 32 it would only have been between 10.5%

and 6.8%.

Table 3 shows again a network with updating of the routing

tables with POROG(il = 8, 16, 32, but with a slightly smaller

creation rate (15.83 p/t.u.).

The updating procedure first asks the highest priority

if updating would be necessary, then the second one etc. If

the matrix of one priority needs to be updated, the next

priorities are not allowed to. On Table 4 all the values are

the same, except that the updating questions start from the

lowest priority. But there is no significant difference in

terms of delay or "% of ideal loss". The quotient measuring

the quality is the same for both methods. The first one will

then be preferred because it is simpler.

-16-

Simulation with Pay Functions

Our aim is to compare the simple priority handling with

the pay function philosophy. It was shown that only with

linear pay functions the queueing has no influence. We therefore

use those simple pay functions with the parameters listed on

Figure 2.

The routing algorithm is such that when choosing the

channel for a new packet, it selects the one where the income

to the system is the highest. The delay suffered by the

packet is then the smallest possible.

The income to the system depends not only on what the new

packet is going to give, considering its possible delay, but

also on disturbances caused to other packets which will have to

wait till the new one has been sent. Those packets waiting

are called "rest" and the simulation with pay functions gets

the name "priorities with rest."

Table 5 shows some results of a routing with rest. The

parameters are the same as for the run of Table 6 (without

restl.*

It can be seen that with such a light loading (approx.

16 packets per time unit creation rate) the differences between

priority and pay function routing are very slight. The values

for the first priority hardly change, in this case the pay

function idea has no advantage.

For the 2nd and 3rd priority an improvement can be seen in

terms of the quality quotient (losses ideal/loss real) as well

as in the time delay. The 95% confidence intervals of the mean

time delays do not overlap. At first it seems as if the loading

is distributed more evenly over the channels when routing

with pay functions. The mean loading over all channels is

~l = 0.691326 when routing with pay functions, the correspondent

deviation 01 = 0.192581. The routing without pay functions has

values ~2 = 0.689277 and 02 = 0.203352. There is a difference

*The run in Table 6 is the same as in Table 2, only longer.

-17-

between 01 and 02' but a test of the level 0.95 shows that

the difference is not relevant:

c = 1.48 for the 0.95 level, therefore the hypothesis 01 = 02

can be accepted.

Table 9 and 10 again show 2 runs with pay functions (rest)

and without them. With a creation rate of 16.6 packets per

time unit the system is reasonably loaded. After having

created 120,000 packets statistics were made concerning income,

loss, difference, quality quotient etc. In this case, it can

be seen much better that the introduction of pay functions

improves the behaviour of priority packets 2 and 3, than at

a rate of 16.01. Packets of priority 1 are more delayed and

therefore cause a greater loss to the system when the rest is

considered. The lower priorities have more influence and thus

the overall quality quotient is better when routing with

pay functions.

A further run has been done with a very strong loading

(30 packets per time unit creation rate). In this case both

routing strategies with and without rest, did not permit a

settling down of the system. After approximately 6,000

generated packets the system was overloaded, with 2,000 packets

in it and the results were meaningless.

The two runs (with and without rest) with a creation rate

of 21 packets per time unit again finished after approximately

20,000 generated packets. As it can be seen from Table 7 and

8 the values to compare do not differ greatly. This is mainly

due to the fact that the system was unable to settle down after

so few packets had been generated.

-18-

Conclusions

1. The relations between linear pay functions and pure

priority systems have been studied in a particular.

example.

2. It was shown that at low loading (for this particular

network l6.0packets per time unit creation rate) there

was hardly any difference between the priority system

and linear pay functions. That is actually the case

when the queues are almost empty. With heavier

loading the difference increases up to congestion.

3. The difference increases with the priority. There is

no difference for the highest priority and messages

with the highest decreasing pay function. It allows

one to omit the pay function philosophy for

messages with highest decreasing function and to

consider them as messages with the highest priority,

while messages with lower decreasing functions have

to be dealt with taking into account the functions.

4 . The performance of the network depends

on the selected POROG(i) (thresholds).

study of the network behaviour with an

POROG(i) is planned.

considerably

A further

adapting

-19-

Simulation with no updating

Creation rate 16.01 packets per time unit

Overall PI P2 P3

.
Delay 22.55 3.7 9.39 67.03

Confidence 3.65 9.03 63.74
interval
certainty 95 %

3.75 9.76 70.32

Largest queue 144 2 1 141

Income 2 128.36 3 417.09 1 448.06

Ideal income 10 100.27 4 848.8 3 757.0

Loss 10 481.29 3 165.91 2 950.74 4 364.64

Ideal loss 2 509.38 1 734.2 641.8 133.38

Diff.of losses 7 971.91 1 431.71 2 308.94 4 231.26

% of ideal loss 317.7 82.56 359.76 3 172.84

i.loss/r.loss 0.24 0.55 0.22 0.03

NUmber of created packets 19 518

NUmber of packets in the system 2 000

Porog(i) = 8, 16 , 32

TABLE 1

-20-

Simulation with updating of routing matrices

Creation rate 16.01 packets per time unit

Overall PI P2 P3

Delay 6.43 3.24 4.49 11.57

Confidence 3.2 4.41 10.94interval 3.28 4.56 12.19certainty 95 %

Largest queue 15 1 2 12

Income 8 245.74 3 908.12 3 086.36 1 251.26

Ideal income 10 988.49 4 972.47 3 879.2 2 136.82

Loss 5 375.41 2 842.88 1 455.24 1 077.29

Ideal loss 2 632.66 1 778.53 662.4 191. 73

Diff.of losses 2 742.75 1 064.35 792.84 885.56

% of ideal loss 104.18 59.84 119.69 461.88

i.loss/r.loss 0.49 0.63 -0.46 0.18

NUmber of created packets 20 000

Number of packets in the system 108

Porog (i) =

TABLE 2

8 , 16 , 32

-21-

Simulation with updating from the first priority on

Creation rate 15.38 packets per time unit

Overall PI P2 P3

Delay 6.39 3.27 4.36 11.49

Confidence 3.25 4.32· 11.18
interval 3.29 4.39 11.79
certainty 95 %

Largest queue 11 2 1 8

Income 39 370.4 18 264.63 15 072.41 6 033.36

Ideal income 52 239.72 23 294.02 18 700.3 10 245.94

Loss 25 422.7 13 472.37 6 819.39 5 130.94

Ideal loss 12 553.38 8 442.98 3 191.5 918.9

Diff.of losses 12 869.32 5 029.39 3 627.89 4 212.04

% of ideal loss 102.52 59.57 113.67 458.38

i.1oss/r.1oss 0.49 0.63 . 0.47 0.18

Nlmber of created packets 95 000

Number of packets in the system 91

Porog (i)

TABLE 3

= 8 , 16 , 32

-22-

Simulation with updating from the last priority on

Creation rate 15.83 packets per time unit

Overall pI P2 P3

Delay 6.34 3.27 4.37 11. 33

Confidence 3.25 4.33 11.04interval
certainty 95 %

3.29 4.4 11.61

Largest queue 10 0 1 9

Income 39 411.85 18 244.63 15 062.08 6 105.14

Ideal income 52 234.51 23 294.02 18 696.7 10 243.79

Loss 25 375.3 13 492.37 6 825.52 5 057.41

Ideal loss 12 552.64 8 442.98 3 190.9 918.76

Diff.of losses 12 822.66 5 049.39 3 634.62 4 138.65

% of ideal loss 102.15 59.81 113.91 450.46

L1oss/r.1oss 0.49 0.63 0.47 0.18

NUmber of created packets 95 000

Number of packets in the system 102

Porog(i) = 8, 16 , 32

TABLE 4

-23-

Simulation with updating and rest of the queues

Creation rate 16.01 packets per time unit

Overall PI P2 P3

-
Delay 6.52 3.28 4.29 11.94

Confidence
3.26 4.26 11.68interval

certainty 95 % 3.29 4.32 12.21

Largest queue 23 1 4 18

Income 49 553.87 22 967.69 119 229.85 7 356.33

Ideal income 65 982.27 29 367.41 ~3 687.85 12 927.01

Loss 32 284.48 17 052.31 8 506.95 6 725.22

Ideal loss 15 856.08 10 652.59 4 048.95 1 154.54

Diff.of losses 16 428.40 6 399.72 4 458.0 5 570.68

% of ideal loss 103.61 60.08 110.10 482.50

i.10ss/r.10ss 0.49 0.62 0.48 0.17

NJ.mber of created packets 120 000

Number of packets in the system 123

Porog(i) = 8, 16 , 32

TABLE 5

-24-

Simulation with updating of routing matrices

Creation rate 16.01 packets per time unit

Overall PI P2 P3

Delay 7.04 3.29 4.46 13.3

Confidence
3.27 4.43 12.99interval

certainty 95 % 3.31 4.49 13.62

Largest queue 26 1 4 21

Income 48 391.71 22 910.99 18 891.04 6 589.67

Ideal income 65 981.11 29 365.93 23 687.1 1 292.08

Loss 33 445.34 17 107.0 8 845.06 7 493.28

Ideal loss 15 855.94 10 652.07 4 049.0 1 154.87

Diff.of losses 17 589.4 6 454.93 4 796.06 6 338.41

% of ideal loss 110.93 60.60 118.45 548.84

i.loss/r.loss 0.47 0.62 0.46 0.15

NUmber of created packets 120 000

Number of packets in the system 122

Porog(i)

TABLE 6

= 8 , 16 , 32

-25-

Simulation with updating of routing matrices

Creation rate 20.95 packets per time unit

Overall PI P2 P3

..

Delay 22.78 3.61 6.46 70.33

Confidence 3.56 6.33 67.13
interval 3.65 6.59 73.54
certainty 95 %

Largest queue 284 0 0 284

Income 3 114.08 3 864.23 2 633.28

Ideal income 11 257.86 5 359.89 4 176.7

Loss 10 917.57 3 412.77 2 255.52 5 249.28

Ideal loss 2 773.78 1 917.11 712.1 144.58

Diff.of losses 8 143.78 1 495.66 1 543.42 5 104.7

% of ideal loss 293.6 78.02 216.74 3 530.71

i.loss/r.loss 0.25 0.56 0.32 0.03

N.1mber of created packets 21 592

Number of packets in the system 2 000

Porog (i)

TABLE 7

= 8 , 16 , 32

-26-

Simulation with updating and rest of the queues

Creation rate 20.95 packets per time unit

Ov.erall PI P2 P3

Delay 21.73 4.0 6.56 67.04

Confidence 3.94 6.42 64.10
interval 4.06 6.7 69.98
certainty 95 %

Largest queue 256 1 2 253

Income 2 763.98 3 181.96 2 357.86

Ideal income 10 196.97 4 884.45 3 790.5

Loss 9 956.32 3 449.04 2 080.84 4 426.44

Ideal loss 2 523.32 1 746.55 648.2 128.57

Diff.of losses 7 433.0 1 702.49 1 432.64 4 297.87

% of ideal loss 294.57 97.48 221.02 3 342.82

i.10ss/r.10ss 0.25 0.51 . 0.31 0.03

NUmber of created packets 19 688

Number of packets in the system

Porog(i) = 8, 16 , 32

TABLE 8

2 000· .

-27-

Simulation with updating of routing matrices

Creation rate 16.6 packets per time unit

Overall PI P2 p3

.

Delay 25.27 3.33 4.65 68.14

Confidence 3.31 4.61 66.38
interval 3.34 4.68 69.91
certainty 95 %

Largest queue 233 2 0 231

Income 17 359.22 22 716.51 18 526.85

Ideal income 65 759.32 29 366.06 23 685.4

Loss 64 232.48 17 301.49 9 207.15 37 723.84

Ideal loss 15 832.38 10 651.94 4 048.6 1 131.84

Diff.of losses 48 400.1 6 649.55 5 158.55 36 592.0

% of ideal loss 305.70 62.43 127.42 3 232.97

i.10ss/r.10ss 0.25 0.62 0.44 0.03

NUmber of created packets 120 000

Number of packets in the system 820

Porog (i)

TABLE 9

= 8 , 16 , 32

-28-

Simulation with updating and rest of the queues

Creation rate 16.6 packets per time unit

Overall Pl P2 P3

"

Delay 20.81 3.47 4.57 54.41

Confidence 3.45 4.54 53.13
interval
certainty 95 %

3.49 4.60 55.7

Largest queue 107 2 4 101

Income 24 261. 31 21 977.49 18 677.35

Ideal income 65 841. 48 29 362.84 2 366.25

Loss 57 420.89 18 036.51 9 057.35 30 327.04

Ideal loss 15 840.72 10 651.16 4 048.45 1 141.11

Diff.of losses 41 580.17 7 385".35 5 008.9 29 185.93

% of ideal loss 262.49 69.34 123.72 2 557.68

i.loss/r.loss 0.28 0.59 0.45 0.04

Number of created packets 120 000

Number of packets in the system 555

Porog(i) =

TABLE 10

8 , 16 , 32

I I
1 + 1.
l. _I

1 2 2

2 1 3

0 0 0
2 3 1

. J +3

ABO
A 1
B 1

C 0
o 2

B C D -29- A C
A a 0 a A 1 2
B 1 2 3 B 1 2

C 2 -1 2 C 2 1
0 3 2 1 0 0 0

A C
1 A 1 2

o BOO
1 C 2 1
2 0 2 2

A C
A 1 2
8 1 2
C 2 1

o 0 0

A C 0
A 0 0 0
B 1 2 3
C 2 1 2

033 1

A C A B 0
1 A 1 2 A 1 3 2
0 8 a a B 2 1 3
1 C 2 1 C 0 0 0
2 0 2 3 0 2 3 1

FIGURE 1

Yl = 1 - 0.13t

Y2 = 0.7 - 0.05t

Y3 = 0.35 - 0.014t

pay(t)

-30-

FIGURE 2

t

~ g ~ w

I W I-
' I

-32-

References

[l] McQuillan, J.M. "Adaptive Routing Algorithms for
Distributed Computer Networks," Bolt, Beranek
and Newman, 1974.

[2] Frank, H. and Chuo, W. "Routing in Computer Networks,"
Networks, Vol. No. ~, 1971.

[3] Butrimenko, A. "Routing Technique for Message Switching
Networks with Message Outdating," Symposium on
Computer Communications Networks and Teletraffic,
Brooklyn, 1972.

