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where

C = catch = R - S
t t t

6 = a discount rate

The discount rate is critical in adaptive control problems,

since without 0 = 0 we would put all management emphasis

on obtaining improved information for the distant future,

regardless of the cost in terms of lost yields in the near future.

It is known (Allen [1]; Walters [5]) that, for the objective

in equation (2) when a and a are not uncertain, the optimum

management policy is to' allow a fixed escapement each year:

choose

R >
t

where S is the optimum escapement, computed from a and a
(Ricker [15]).

Ordinarily, we would recomrnend that management actions

be based on estimates of S computed from regre3sio~ estimates

'" Aat and St. The Ricker model can be rewritten (after

Dahlberg, [3]) in the form:

l ..(~) = a - as
~St-l t-l

this is a linear regression for (y = a + Sx) with:

y = In(:t ) and x = -St-l. We would probably ignore some
t-l

useful information that comes from regression analysis,

(3 )

(4 )
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namely, the parameter covariance matrix:

(5)

that measures our uncertainty about the parameter estimates

given data to time t. Further, under the assumption that

the v
t

are normally distributed and independent of one another,

it can be shown that at' B
t

, and the elements of Pt , constitute a

set of "sufficient statistics'~ That is, there is no other function

or manipulation of data that can give adu~t~Gnnl information

about the underlying true Ricker parameters.

The objective of adaptive control analysis in this case

is to show how the choice of escapement St should be related

to P as well as to a and B. The analysis can be formulated

as a problem in stochastic dynamic optimization (~alters [5]):

given the system state at any time as measured by {Rt , ~t' 8t ,

Pt} , what choice of Ct will give the best expected combination

of present return and future returns, recognizing that a variety of

possible future states may occu~ because of random events?

To solve problems of this type, we must be able to formulate

a model that specifies how each of the state variables (R, a, etc.)

will change in relation to the variety of stochastic outcomes

that may occur between times t and t + 1. We must also be

able to assign probabilities to each of these stochastic out-

comes. Future recruitment states (Rt +l ) can be predicted

with the Ricker model, but analogous predictive
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formulae are required for the statistical parameters. The following

section shows how these formulae can be derived from a special form

of regression analysis.

A. Recursive or Adaptive Parameter Estimation

Suppose we begin at time t = 0 no data but with prior

estimates &0 and Bo ' We might wish to assign no confidence

to these estimates, which is equivalent to saying that we

2 2
recognize 0u and Os to be very large, or:

6
where L is some large number (e.g. 10 ).

(6)

In Bayesian statistical

terms, we are in effect assigning a "diffuse prior" distribution

for a and 3 (Raiffa and Schlaifer, [13]). With starting conditions

such as these, it can be shown that oridinary regression analysis can

be written in a special "recursive" format (Youn0 [22]). The general

format is presented here, since it may be of interest outside the

adaptive control context.

In general, linear regression equations are written in the

form:

where

y.
1

IT~

Y
j=1

a.x .. + e iJ 1J

y. = dependent observations;
1

x .. = inJependent variables; and
1J

e. = error terms.
1

This form can be written more compactly in vector notation.

That is:

T
y. = a x. + e.

1 1 1
(7 )
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where a and x. represent the vectors (a 1 ,a2 , ... ,a ) and
- -1 m

(x'1,x'2' ... 'x' ), respectively. Using this notation, we could
111m

write the common regression formulae in recursive form as:

'"p
n-1 x

(aT'" '" -n
Yn)a = ~n-1 - x -

-n 2 T '" -n-1 n
0 + x Pn-1 x-n -n

and

'" T '"Pn-1 x x Pn-1p p -n -n= -n n-1 2 T '"
0 + x Pn-1 x-n -n

( 8a)

(8b)

where a and P refer to the parameter and parameter error covari-
-n n

ance estimators, respectively, after the n~~ data point is

acquired, ando
2

is the regression error variance. These formulae

allow new data points to be added to a regression analysis with-

out tedious computations involving matrix inversion. Estimation

for the Ricker model can be written in the recursive form with:

y = In(~)
n St-1

(9)

similar transformations can be developed for a variety of

other fisheries models.
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Equations (8a) and (8b) are critical for the adaptive

control formulation developed in Section III. Note that

the change in parameter uncertainty from any observation or

time step to the next, as measured by P - P l' dependsn n-
2on a ,P l' and on the choice of x , i.e. on the choicen- -n

of St-1 for the Ricker model. Changes in the parameter

estimates as measured by ~n - ~n-1 depend on:
A 2

a) the level of uncertainty as measured by Pn-1 and a ;

b) the choice of x . and-n'

c) the a priori prediction error, D :::: (aT x - y n) .- n -n-1 -n

The ~ priori prediction error D is the difference between the
n

observed y and its predicted value using the latest x datan -n

and the older or prior parameter estimates, ~n-1. This pre-

diction error (that is the only uncontrolled or stochastic

input into the ~ and P changes for any time step), can be

rewritten as two error components:

D
n

( 10)

The first component is the deviation of y from the true
n

model, while the second component represents deviation of the

parameter estimates from the true value. If the regression

errors vt are normally distributed, both of these error components

are normally distributed; thus D should have a normal
n

distribution with mean zero and variance. That is:

x
-n

( 11 )
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With data available up to any time step, we can compute proba-

bilities for different values of 0 , and thus have different
n

parameter estimates at the next time step. This is known

as preposterior analysis in statistical decision theory

(Raiffa [12]). For the Ricker model, 0 is interpreted as:
n

D
n

(12)

Having chosen a value for D , with its associated probability,
n

we can predict Rt by solving equation (12) as:

R
t

(given

(13)

This is the original Ricker model, with an error component

that reflects not only the noise vt but also the uncertainty

about a and 8.

The adaptive regression equations (8) can be modified to

"forget" older data. There are two simple types of modifi-

cations: a) exponential past weighting of data, based on

the assumption that all.data become progressively less reliable

as they become older; and b) parameter variance incrementation,

based on the more specific assumption that the parameters

do vary in some random or unspecifiable systematic

way over time. For exponential past weighting, we define a

discount factor V
d

that represents the value of any obser

vation relative to the next one that is obtained; for example,

if we want to assume that an observation at time t - 1 is
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worth 90% as much as an observation at time t, then Vd = 0.9.

Using this discount factor,

by changing the denominator

equations (8) are simply modified

2 T"
terms a + x P IX to :n n- -n

(14)

When there is reason to believe that one or more parameters

are changing over time, the estimation is modified by intro-

ducing a parameter variation matrix Q, where the elements of

the matrix are chosen to reflect the expected rate of change

in the parameters. For example, if we believe that the Ricker

S parameter may change about 10% per year from an average value

of about 10- 6 (while the a parameter is stable), we could set:

In statistical terms, the elements of Q are interpreted as

(15)

variances on a random walk process; thus a 10% change from a

-6 -7base of 10 represents a standard deviation of 10 , or a

-7 2
variance of (10 ) . The Q matrix is introduced into equations

"
(8) simply by replacing every P t - l with P~-l where

The choice of Vd or Q is not particularly critical; the major

effect in both cases is to prevent Pt from going to zero over

time, so that new observations can continue to effect changes

in a.

(16)
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B. Adaptive Decision Structure and Optimization

The problem of adaptive control and optimization for

the Ricker model can be visualized in terms of the decision

tree shown in Figure 1. At any point in time, the manager is

faced with a recruitment R
t

, a summary of past data in terms

of at and St' and with uncertainties in terms of 0
2 and the

A

elements of Pt. He must choose a harvest Ct ; there are

many possible choices, but the optimization problem Cdn be

approximated by looking at a reduced, discrete set of pos-

sibilities (e.g. C
t

= 0, C
t

= O.lRt , C
t

= O.2Rt )·

Given any choice of Ct , there are many possible random

outcomes; these can be summarized in terms of discrete

deviations D from the regression predictors of y = In(R IS)
t t+ 1 t·

The reasoning is as follows:

a) Given Ct , St is calculated as Rt - St i

A A .

b) a, Bt , and St are used to make a regression prediction

Yt+l [equations (7) and (9)] ;

c) Probabilities for different outcomes Yt+l = Yt+l + Dt

are computed from the probability distribution for D
t

,

that is normal with mean zero and variance given by

equation (11);

d) Each outcome Yt+l is inserted, along with Ct , into the

recursive regression equations (8) to obtain new
A A A

estimates a t + l , 6t + l , P t + l ; and

e) Since Yt + l = In(Rt+lIS t ), Rt + l for each outcome Yt+l

Yt+l
is given as Ste [equivalent to equation (13)].
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If we know the total future value for being in any next

state {Rt + l , ;t+l' St+l' Pt+1} , we can calculate the ex

pected value for making a Ct decision. This expected value

is the sum of products of probabilities of next states, times

the values associated with these next states, plus the value of

Ct itself. The difficulty is that we cannot immediately

assign a value for each of the next states, since that state is

itself a starting point for another decision tree similar to Figure 1.

If we look ahead a few time steps, the number of branching

possibilities becomes essentially infinite. There

is a partial way out of this problem using the "backward

recursion" procedure of dynamic programming. A simplified

discussion of this procedure is given in Walters [5]; the

basic idea is that we begin the optimization calculations

at some time point far enough in the future that the dis-

counted values after that point can be neglected. We then

move backwards towards the present, evaluating decisions at

each of the time steps in terms of future values that have just

been computed for the next time steps forward.

Unfortunately, even dynamic programming involves formidable

computation problems. If at each of the time steps we examine only

ten discrete values for each of the six state variables
A A 2 2

(Rt , at' Bt , 0a' oS' 0aS)' 10 catch levels and 10 values

of 0t' we mu~t compute about 10
8

solutions for equations (8)

and (13). The problem can be reduced somewhat by using

special computation procedures (Larson [8]), but there is

a clear need for different ways of looking at the problem.

The optimization need only be carried out for a few representative
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values of the environmental variance 0
2 and the discount rate 0

in order to get a complete adaptive picture for the Ricker model.

Given 0
2 and 0, the optimization automatically arrives at best

harvest rates for all stock size-parameter value-parameter uncer

tainty combinations, in the form of a multidiQensional "control

law." (Allen [1] and Walters [5] have referred to one dimen-

sional versions of this control law as "strategy curves.")

A further point worth noting is the size of adaptive

optimization problems. Let us suppose that instead of the Ricker

model we wish to analyze some wodel with three parameters

(say, aI' a 2 , and a 3 ). Even if we can put this model into

the linear regression form with normally distributed errors,

the number of state variables for the dynamic optimization

This is too large a problem for even the best modern computers

to handle.

C. Solutions for Special Cases

Instead of carrying out the tedious and expensive com-

putations for the full adaptive optimization, we elected to

examine two special cases that appear to be of management

interest and that should reveal the general flavor of the

full solution. These cases are shown in Figure 2, and reflect

two extreme situations:

Case 1: The fishery is just beginning, and the stock

is near natural equilibrium; S can be treated as known

and the wain uncertainty is about a.
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Case 2: The fishery has been holding spawning stocks

at low levels for many years; a is well known and the

main uncertainty is about B. Many Pacific salmon

fisheries seem to fit this case; environmental carrying

capacities may have changed conisderably in recent

years.

In either of the cases the size of dynamic optimization problem

is reduced considerably by treating one parameter as known. In

Case 1, the stock and recruitment data can be expressed in

stock units relative to the natural equilibrium: the Ricker

model can be written in the form:

where the system state vector for optimization becomes

{Rt , at' a;}, and the variables in the adaptive regression

equations become:

Yt = In ~R
t

)
t-1

x t
= (1 - St-1) ( 17)

'" ",2
P

t
= a

a

In Case 2, the Ricker model is assumed to maintain its usual

form, the optimization state vector becomes {Rt ' Bt , a~} ,
and the adaptive regression variables become:
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Yt = In (SRt
) - a

t-l

x t = -St-l (18)

~
~2

Pt = aS

where a is the reasonably certain estimate of a.

Several dynamic programming solutions for the simplified

cases were carried out on a PDP 11/45 computer system. Each of

the solutions required about five hours of computer time, which is

not excessive considering the broad range of stock-parameter-

uncertainty combinations that must be evaluated. By trial and

error, we discovered that it was necessary to use 10 discrete levels
~ ~ ~2 ~2

for each of the variables (Rt , at or Bt , 0a or oS), and to ~ove

backwards in time around 20 steps (generations); finer state in-

tervals and more time steps did not change the solutions.

Representative results for Case 1 (a uncertain) are

shown in Figure 3. Each of the isopleth diagrams show optimal

harvest rates for a cross section through the Rt - at plane at one

uncertainty (0 2
) level. The most striking feature of thesea

results is that optimal harvest rates are nearly independent of

~ 2
a: for large 0a. What we' expected to see was some indication that

spawning populations should be reduced (high exploitation)

when a is uncertain; by equations (8) and (17), we would ex-

pect the greatest reduction in uncertainty by conducting such

an "experiment. " As the cross section for high uncertainty

2
(oa = 4.0) in Figure 3 shows, experiments involving high exploita-

tion rates are optimal only if &t is also large; indeed it appears

that the best strategy is to avoid high harvest experiments
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when a is low and the stock size is large. The optimization

also takes into account the possiblity that low spawning

stocks will reveal a to be small; thus a period of recovery

without harvest will be necessary. Examining the low un

certainty {02 < 0.1) diagram in Figure 3, it is apparenta

that the optimal harvest rate for any stock size is insen-

sitive to a, no matter what the environmental noise 0
2 (Walters

[5] obtained a similar result). We should not expect the

optimal harvest strategy to depend greatly on 0
2 if this strategya

is nearly independent of a in the first place.

The results for Case 2 (S uncertain) indicate a similar pat-
~

tern; the optimum harvest strategy is quite insensitive to 8 when

a~ is high (Figure 4). Examing equations (8) and (18), we would

expect high spawning stocks to produce the greatest reduction in

uncertainty about 8; yet the optimization balances the value of

low exploitation (high St) experiments against the loss in immed

iate yields that such experiments would entail. Low harvest ex-

periments are called for only when there is intermediate uncer-

tainty about S.

III. Selection Among Alternative Models.

The analysis in Section II took two sources of

uncertainty into account: random environmental variation, and

uncertainty about production parameters. Section III explores

a third type of problem: uncertainty about the basic functional

form of the stock recruitment relationship. As an example, con-

sider the data in Figure 5 on "off-cycle" runs of sockeye salmon

(Oncorhynchus nerka) in the Fraser River. Several subpopulations

of sockeye in this river system exhibit cyclic dominance (Ward

and Larkin, [20]), with very large "cycle" runs every four years
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(1962, 1966, •... ) that apparently follow a different stock-

recruitment relationship from the off-cycle runs. Escapement

levels in the off-cycle years have apparently been chosen under

the assumption that high spawning populations may result in lowered

recruitnent because of overutilization (space, oxygen, etc.) of

spawning areas; Figure 5 does not support this assumption, at

least when the whole river system is treated as a single population

unit. Also, the overspawning phenomenon should have resulted in

damping or destruction of higher cycle years during the early

development of the fishery. However, there is no evidence of this

(Ward and Larkin [20]); the off-cycle years sustained annual catches

of around 4 million fish until the destructive Hell's Gate Slides

of 1911. The best fitting Ricker curve for the data (curve nl

in Figure 5; a = 1.9, B = 0.44) does predict that production would

decline for spawning stock above 2 million, but it seems equally

reasonable to assume that the correct relationship is a saturating

curve of the "Beverton Holt" type (Ricker [15]). That is:

(19)

where
a = l/(maximum recruits per spawner);

s = l/(maximQ~ recruits ever possible);

V
te = random environmental survival factor as in equation (1).

A visual fit to this relationship is shown in Figure 5 as curve n
2

;

the parameters (a = 0.1237, S = 0.1025) were chosen so as to:

la) closely match the Ricker curve through the av~ilable

data; and

(b) predict an equilibrium stock (8.5 million) that seems

reasonable considering early catch records.

Whatever the fitting precedure and even allowing for decrease In

production for high spawning stocks (dotted lines off curve n2 in
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Figure 5), significant improvements in yield could be obtained if

the n
2

curve is correct. The question is: should an experiment

(reduced harvests for one or more years) be conducted to test

this possiblity?

In principle this question could be addressed with the

optimization approach introduced in Section II. The stock-

recruitment relationship can be written in the form:

(20)

where 8. represents model selection parameters that take only the
1

values 0 or 1 and are constrained as E8. ~ 1 (so that all but one
1

of the 8. must equal 0), and the f. are alternative models such
1 1

as the Ricker [equation (1)] and the Beverton-Holt [equation (19)].

Wood [21], Smallwood [17] and others have shown that it is possible

to calculate the probability that each e. ~ 1 (model i is correct),
1

given that the true model is among the alternatives represented. These

probabilities along with parameter estimates and measures of un-

certainty for each of the alternative models can be formed into an ex-

tended vector of state variables. Unfortunately, the number of vari-

abIes involved makes dynamic programming optimization imprac-

tical. Thus some drastic simplifications and approximations are

necessary in order to trace the most likely statistical outcomes and

the most promising decision possibilites.

Since full adaptive control analysis is not feasible, the

remainder of this section attempts to develop a simplified pro-

cedure for designing and evaluating experimental harvesting re-

gimes intended to discriminate between alternative production models.

The procedure is modified from a general approach suggested by

Bard [2], and involves the following five basic steps.

(a) Identification of a series of models, or of alternative
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"states of nature" n
l

, n2 , ... nm that are to be compared.

Alternative n l might be the Ricker model, n 2 might be the

Beverton-Holt model, n3 might be a simple free hand curve

extrapolating from existing data, and so forth.

(b) Assignment of prior or judgemental probabilities

p*(n
l
), P*(D

2
) ... to each of the alternative states of nature.

These probabilities might be derived through some statistical

procedure, or they may represent simple intuition. Reflect-

ing on the Fraser River data, we might for example assign p*

(Ricker model) = 0.7, and p*(Bevertnn-Holt model) = 0.3. Though

both models fit the data about equally well, this probability

assignment would give some weight to the common arguments about

overspawning.

(c) Identification of a series of alternative harvesting

experiments ~'~2' .... '~' each of which would be reasonably

certain to discriminate between the alternative models but would

require different lengths of time to complete. For the Frazer

River example, some reasonable alternatives are

~1 - Continue the present escapement policy (St around 1.0

million/yr.) indefinitly. That is, do not experiment and

hope that luck will eventually provide the necessary data.

~ - Allow escapements intermediate between the optima

for the alternative models; considering all en-

vironmental variability, this experiment would

probably not give definite results for at least

20 years.

~3 - Allow the optimum escapement (St = 2.0 million) for the

Beverton-Holt mocel. At this escape~ent level, any ten

dency for overspawning should be apparent within five
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years while it is unlikely that environmental circurn-

stances would combine for that long to give consistently

low recruitments if the saturating model was true.

In general, the experiments should reflect tradeoff

between small harvest manipulations that require a long time

to yield definitive results and large harvest manipulations

that yield results quickly. The length of experiment required

at any escapement or stock level can be assessed by examining

expected variability around the alternative stock-recruitment

models at that escapement level.

(d) Calculations of expected long-term returns for each of

the combinations of experiment and state of nature. The elements

of Table 1 below must be evaluated:

Table 1

• • • • • • • • • • • • V
mn

J 1

n1 V11
TRUE V21STATE n2

nm Vm1

EXPERIMENT

.d
2

••••• -ei
n

Here V.. represents the expected total value of all future
1J

harvests, given that experimental strategy ~. is applied and
J

the true state of nature is n.. Let us suppose that strategy ~.
1 J

involves allowing a certain escapement E. for T. years. If
J J

T. is chosen carefully, we should be reasonably certain of
J

detecting that n. is the true state of nature after the T.
1 J

years; we should be unwilling to accept n. as the true
1

state until the T. years have elapsed. (Any experiment not
J
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meeting these qualifications should not be included).

can be calculated as the expected value ofThus, v ..
1J

two discounted sums: (a) the sum of catches during the

T. experiment years, given that excapement
J

E. is applied
J

and (b) the sum of catches afterand model n. is correct;
1

the T. 'th year, given that the optimum escapement for model
J

n. is followed thereafter. The first component reflects the
1

short-term impacts of the experiment, while the second compon-

ent reflects long term benefits. The simplest way to cal-

culate V.. is to do a whole series of simulation trials, each
1J

using model ni and a different sequence of random environmental

inputs. For each of the trials we calculate:

I
V ..

1J

where (CtIE j ) is defined as the catch in year t using experi-

as the catch in year tmental escapement Ej , and- (CtIE i )

'"given the optimum escapement Ei for model n·
~

(0

the discount rate). It should not be necessary to perform

more than about 20 trials of length T ~ 50 generations for

V~ .
1J

strategy-experi-

reasonable discount rates. V .. is found as the average of
1J

across these trials. To develop the entire

ment table, it is necessary to do about m x n x 20 simulation

trials. This is a trivial conputing exercise.

(e) Selection of the experiment with maximum expected

benefits. Each of the columns of the strategy-experiment Table 1

gives the returns to be expected from one experiment for eacnof the

possible states of nature. The overall value for the experi-
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ment is simply the sum of these returns weighted by the prior

probabilities for the ni' That is:

expected value of experiment j
m

= I p*(n.)V ..
i=l 1 1J

(21 )

The best experiment is that which has the maximum expected

value. The key point about this selection procedure is that

it takes into account all possible states of nature in

evaluating each of the proposed experioents.

The five steps outlined above lend themselves well to

a gaming situation in which the resource manager is asked to de-

vise alternative recruitment models, to asses their probabilities,

and to evaluate alternative experimental schemes. The most critical

point in the analysis is the identification of appropriate

durations for alternative experiments. If the manager is overly

pessimistic (e.g. if he assumes that some experinent will require

T. years to be certain which model is correct when in fact
J

fewer years are required), perfectly good experiments may appear

poor in relation to those states of nature for which the

experimental escapement E. is far from optimal. On the other
. J

hand, the manager may be overconfident, and may suggest a short

experiment that in reality would simply result in loss of yield

with no improvement in understanding about the system. In a

gaming
-situation, the best T. for any proposed E. can be

J J

evaluated quickly by facing the oanager with several stochastic

simulations from each of the possible true models while noting

how long it takes to be sure which model is being used in each
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of the simulations. More precisely, the analyst sets up a series of

trials. For each of the trials the manager chooses an escapement E.,
J

and the analyst secretly chooses a model ni • A stochastic simu-

lation with n
i

is then initiated and carried forward in time until

the manager positively identifies the results as coming from ni •

The number of simulation steps required for the various trials

-can be plotted in relation to the choices of E.. This plot will
J

reflect the manager's subjective definition of IIpositivell results,

analogous to his choice· of confidence limit probabilities (e.g.

90% vs. 95%) in ordinary statistical problems. The degree of ran-

dom variation introduced in each of the trials should reflect uncer-

tainty about the model parameters as well as expected environmental

variation by using the variance relationship in equation (11) or

its subjective equivalent.

To test the procedure, we carried out a gaming analysis on

the Fraser River problem with one of the authors acting as manager

and the other as analyst. Two alternative models were considered:

nl = Ricker curve from Figure 5;

n2 = Beverton-Holt curve from Figure 5.

By examining the data and following the trial procedure for T.
J

outlined in the previous paragraph, we arrived at the following

set of experiments:

~ - allow an escapement of 1.0 million indefinitly. (Thus do
1

not experiment);

.r6 - allow an escapement of 1.5 million for 15 years;
2

A 3 - allow an escapement of 2.0 million for 5 years

d - allow an escapement of 3.0 million for 3 years
4

Simulation trials to evaluate the V .. were performed,
1)
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assuming a discount rate of 4% per generation (i.e. 1% per

year for Fraser sockeye). The results are given below in

Table 2.

Table 2

Expected Future Values for Alternative Harvesting
Experiments on Off-Cycle Fraser River Sockeye.*

Experiment

.d-1 ~2 ..J
3 .d.4

TRUE n 1 77.2 77.8 75.4 71.7

STATE 92.4 108.2 110 . 9 110.6n2

*Elements of the table are discounted sums of catches,

in millions of fish.

When only two or three alternative states of nature are

to be compared (as in the Fraser example), the analysis can be

presented in an elegant form that simplifies the problem of

assigning subjective probabilities to the alternative models.

Suppose we make a graph where the abscissa is V1j (expected value

of experiment j given that n1 is true) and the ordinate is V2j

(expected value of experiment j given that n2 is true). Each of

the experiments can be plotted as a point on this graph (Figure 6).

Points that are close to the ordinate represent experiments or

policies that are good if n 2 is true, and poor if n1 is

true; points near the abscissa represent policies that are

good if n l is true, and poor if n
2

is true. If we designate

those experiments that can distinguish between the n. as
1

"effective experiments," then the graphical representation

allows us to sort out a smaller subset of "efficient experiments"

that are best for at least some values of p*(n.). In Figure
1

6, experiments -d.2 and.d3 are efficient, while experiments ~1 and

~4 are inefficient since~ and~ have better expected values for
2 3
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all assignments of p*(n.). We are trying to find that experi
1

ment d. which maximizes the "objective function":
J

This objective function can be represented as a series of straight

lines on Figure 6, with higher lines representing larger y values

and greater slopes representing larger values of p*(n 1). To find

the optimum experiment, we move the lines downward (choose lower y

values) until it first touches a "feasible point" representing

some ~ .. They key point is that we can identify ranges of
J

for which any efficient ~.
J

so as to steepen or flatten

is optimal, simply by changing

the objective function line. The

results of the process on the Fraser River example are given in

Table 3 below.

Experimen t 6
1

..ed2

.td3

-'!!!4

Table 3

Range of p*(Ricker) For Which

A. is Best
J

none

0.4 - 1.0

0.0 - 0.4

none

Thus, the manager does not need to precisely specify his judge-

ment about p*(n1) as a single number.

The Fraser River test results suggest the following con-

elusions:

(a) Present management policy for off-cycle year is not

optimal for either of the models shown in Figure 5;

some alternative (and perhaps unclearly specified)
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model is in use, or the real management objectives

are unrelated to maximization of discounted long

term catches.

(b) A modest experiment involving increased escapements

(1.5 million) should cause no serious problems if

the Ricker model is correct; it may, in fact, result

in considerably higher yields over the long run.

(c) A more drastic experimental policy involving

escapements of 2.0 million for several years would

be more advisable if there is considerable confidence

that the true stock-recruit relationship is similar

to the curve n2 in Figure 5.

To test the effect of discounting rate on these conclusions,

we reevaluated Table 2 for 0 = 1%, 0 = 10%, 0 = 20%, and

o = 30% per generation. For 0 greater than 20%, the tests

suggested that the modest e-xperiment is the best unless p* (Ricker)

is less than 0.2. For 0 = 1%, the drastic experiment becomes

the best alternative unless p*(Ricker) is greater than 0.6.

IV. Extensions and Generalizations.

Previous sections have dealt mostly with uncertainty

about stock recrutiment relationships. Two major assumptions

have been the discussion: a) stock size is directly measurable

without error; and b) fishing effort is fully controllable

to conform with biological recommendations. Since these

assumptions are often not justified, Section IV attempts to

show how the concepts and methods introduced previously could

be extended to include these additional sources of uncertainty.
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A. Schaeffer Production Model

The idea of using logistic population growth assumptions

as a basis for production modelling was first made popular by

Schaeffer [16] in his studies of Pacific tunas. In its

simplest form, the "Schaeffer. Model" can be written as:

(22)

where

Nt = stock size, usually in biomass units;

a,B= production parameters with similar definitions as

in the Ricker Model;

c = total catch.
t

Noting that equation (22) is not directly usable (since

Nt is not observable for most populations), Schaeffer and others

have assumed a simple "observation model" to accompany the

dynamic model:

where

-c = (23)

qt = catch per unit effort;

Et = some effort measure having units (boats) x (time

fishing per
boat) ;

c = catchability coefficient·
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SUbstituting the observation model (23) for (22), we obtain

an expression containing only observable quantities and

parameters:

= - C
t

this can be simplified to give:

For parameter estimation and adaptive control analysis, this

version of the Schaeffer Model can be cast into the recursive

regression format with:

(24)

qt-1
2

~t = qt-1

Ct - 1

(25)

~t =
A

~t =

Though there is no reason here to expect such statistical

properties as normally distributed errors, the regression

format at least provides a unified framework for evaluating param-

eter uncertainties. Also, the format automatically provides a
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~

simple state estimator, Nt = qt/Ct. More complicated,

statistically nonlinear versions of equation (24) can be

devised using more realistic observation models than

equation (23). Recursive nonlinear estimation techniques

are beginning to appear in the literature under the general

heading "extended Kalman filters" (Young, [22]).

The Schaeffer Model gives a remarkably good fit to histor-

ical data for many large fisheries, as shown in Figure 7. In

fitting these data, we ·used the linear regression scheme in

equations (24) to obtain estimates of a,S, and c. In all

cases the data had already been corrected for changing vessel

efficiency (changing c); thus it was not necessary to introduce

discounting of old data or a parameter variation matrix Q

(see Section II) into the regression equations. It is clear

that further adaptive control work for the Schaeffer Model is

justified, and we intend to develop more complete analyses in

a future paper.

B. Incomplete Control of Fishing Effort

The fisheries iiterature abounds with biological models

and equilibrium yield analyses; almost no attention has

been paid to the dynamics' of the predator-prey system that

results from incomplete control of economic investment. Fishery

fleets have basic "reproductive" (investment) and "mortality"

(d{sinvestment) relationships that in principle make them similar

to any predator population (Snith [18]; Gatto, et ale [5]).

In the absence of investnent control, many fishing fleets

have developed to the point where pressure for short-term eco-

nomic and social welfare benefits has made it virtually im-
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possible to implement biologically sound long-term policies;

the current state of the International Whaling Commission is

a good example.

To pursue the predator-prey analogy, we may find it useful to

think of management controls directed at fishing effort as

generating a "reachable region" of stock size and investment

combinations (Figure 8) around the "nominal trajectory" of develop

ment that would occur without management. Investment control may

occur as subsidies to increase the rate of investment,

or as taxes and direct regulations to reduce it. If

the fishery fleet can operate economically at very low stock

sizes, and if only small control decreases in effort are

possible each year, it may be impossible to move the fishery

to a state where maximum sustained yield is possible. This

problem may become serious if the first incremental

controls are not applied until the fishery is well developed.

One is reminded of the adage about ounces of protection and

pounds of cure.

Limitations on control changes from one time step to

the next may be represented in dynamic optimization by including

the control level (effort, harvest rate, etc.) as an additional

state variable. For example, if the system state without effort

limitation was represented as (R , a , 0
2 ), the state

t t a

with limitation would be {U l' R , a , 0
2 ) where U 1 ist- t t a t-

the exploitation rate fro9 the previous time step. Instead of

looking at all possible harvest rates at each of the time steps for

each of the (Rt, &t' O~) combinations, the optimization would only
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examine harvest rates Ut over an interval:

where

k
l = maximum permissable annual decrease in exploitation

rate;

k 2 = maximum permissable annual increase in exploitation

rate.

Similar constraints can be applied in generating experimental

harvest regimes for the analyses mentioned in Section III.

A series of interesting issues arise concerning the

selection of appropriate values for the control limits k l and

k 2 . The maximum rate of increase in harvest, k 2 , will depend

on private and public willingness to invest in the fishery

and on the availability of fishing gear to be transferred

from alternative fisheries. The maximum rate of decrease, k
l

,

will depend on the regulatory power vested in the management

agency, on the willingness of the agency to accept responsibility

for immediate economic and social hardships, and on the expected

profitability of the fishery. Fisheries agencies are begin

ning to face these political and economic issues, and optim

ization formulations may provide a useful focus for formal

debate even if no quantitative solutions are attempted.

v. Summary.

This paper moved from formal optimization analysis of

trivial models to broader approaches for experimental

management. The formal analysis was conducted in order
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to discover simple principles that might be applied in

more complex and realistic fisheries situations where un

certainty is a key factor. The principles that emerged are

intuitively reasonable: (a) when production parameters are

uncertain, the harvest rates used should be lower than would be

supposed if only the available parameter estimates were con

sidered; and (b) when the equilibrium stock size is uncertain

but production rates are well understood, the harvest

rates should be lowered. When the general form of the

production relationship is uncertain and when manageme~t con

trol is limited, formal optimization becomes impossible:

however, a gaming procedure may help to devise and to

evaluate alternative management strategies. The gaming pro

~edure involves defining a series of possible models, selecting

a series of effective experiments, and calculating the

optimum experiment under subjective prior probabilities for

all models. This technique is an immediately useable solution

for complex fisheries problems. Future work is continuing

to overcome the computational obstacles encountered in

formal optimization of complex models.
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CASE 1: DEVELOPING FISIII:RY, 8 KNOWN AND
Ct UNCERTAIN .

..
4f).-
:::>
0::
u
uJ
a:

?
•

..

CASE 2: OLDER FISHERY WITH UNRELIABLE DATA
ON NATURAL STOCKS, a KNOWN AND B UNKNOvW.

-(/)
.....-::>
0::
U
UJ
a:

Fi~ure 2. Management situations that permit
simplified adaptive optimization.
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about a (O~) assuming the Ricker model form is

correct and equilibrium stock is known (see case 1,
Figure 2).
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n2 in Figure 5 are correct.
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