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The classical delta theorem can be generalized in a mathematically satisfying way to 
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in distribution of the sequence of difference quotients from the perspectives of recent 
developments in convergence theory for random closed sets and new descriptions of first- 
order behaviour of multivalued mappings. Such a theory opens the way to applications of 
asymptotic techniques in many areas of mathematical optimization where randomness 
and uncertainty play a role. Of special importance is the asymptotic convergence of 
measurable selections of multifunctions when the limit multifunction is single-valued al- 
most surely. 
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Abstract.  The classical delta theorem can be generalized in a mathematically 
satisfying way to a broad class of multivalued and/or nonsmooth mappings, by 
examining the convergence in distribution of the sequence of difference quotients 
from the perspectives of recent developments in convergence theory for random 
closed sets and new descriptions of first-order behaviour of multivalued mappings. 
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1. Introduction 

Optimal decision problems must frequently model uncertainties that can be estimated from 

random samples; however, the possibly nonsmooth and multivalued nature of the mappings 

that express optimality conditions makes it difficult to apply asymptotic techniques from 

statistics. The influence of inequality constraints at the boundary of the feasible region 

and of points of non-differentiability of the objective function may complicate matters 

considerably. In this paper, we generalize the useful delta theorem of Mann and Wald [14] 

into a version for set-valued maps appropriate for applications in optimization. Examples 

are provided that illustrate (but not exhaustively) the potential of this theory to address 

asymptotic issues. 

We study sequences of random closed sets that have a special form, namely 

where {z,) is a sequence of random variables in a separable FrCchet space Z with known 

(or knowable) asymptotic behaviour, and F : Z =$ X is a closed-valued measurable multi- 

function. In many applications, as shown by the examples given below, the random closed 

sets of interest may be described by isolating the stochasticity in an object that can be 

understood as a random variable z, and then describing the random closed set as a multi- 

valued but deterministic mapping of this random variable. For systems with this property 

the asymptotic analysis falls naturally into two pieces: understanding the asymptotic be- 

haviour of the sequence {z,) and describing local properties of the multifunction F. When 

the sequence of random variables {z,) satisfies an asymptotic formula: 

for some sequence of positive numbers (7,) decreasing to 0, we prove in the main result of 

the paper that an analogous formula holds for the random closed sets: 

where F:.,,. is a "derivative" of F localized at a given point x* E F(r*). (The symbol 

2) under the arrow denotes convergence in distribution.) This is the delta theorem for 

multivalued mappings that we are after. 

To prove this theorem, we consider the convergence in distribution of the sequence 

of "difference quotients" and apply some basic results from the theory of convergence of 

probability measures. We follow Salinetti and Wets [17] in analyzing the distributions 



induced by the multifunctions regarded as a measurable function (random closed set) into 

the space of closed subsets of X, equipped with the compact, metrizable topology of Ku- 

ratowski set convergence. The crucial condition turns out to be "semi-differentiability", a 

concept introduced recently by Rockafellar [16] in his exploration of differentiability con- 

cepts for multifunctions. This theory is in its infancy; nevertheless, explicit computations 

are already possible in some situations as shown by the examples. These strong connec- 

tions between the delta theorem and the theory of semi-differentiability for multifunctions 

are a hopeful sign that we are on the threshold of some really useful results concerning the 

influence of data and statistical approximations in mathematical programming. 

Parts of the material in this paper appeared in two earlier working papers: [ll] and 

[121. 
A few examples will help to motivate the formulation of the fundamental problem 

treated in this paper. In what follows isk, k = 1,2,. . .) is a collection of independent and 

identically distributed random variables on IRd. 

Example 1.1. The set of feasible solutions to a system of smooth constraints depending 

smoothly on a parameter z E IRd may be modelled as a multifunction F : =t IRn, by 

where the functions f i  : IRd x IRn -t IR are jointly C'. Suppose that z could be known 

only through taking a finite sample from the collection {s k )  and forming the sample mean, 

as might be the case if our knowledge of z came from "noisy" measurements. For each 

finite sample of size v = 1,2,. . . we can form the estimated feasible set F (t EL=, sk) .  If 

the sequence i s k )  is well behaved then the sequence of sample means is asymptotically 

normal, i.e. the sample means satisfy (1.1) with T,, = f i  and the limit distribution 8 

turns out to be normal, or Gaussian. Under reasonable regularity conditions we can study 

the asymptotic behaviour (1.2) of the sequence of estimated feasibility sets. This will be 

developed further as Example 3.6. 

Example 1.2. We can further ask about optimal solutions to a mathematical program- 

ming problem that depends on an estimated parameter. The Kuhn-Tucker conditions can 

be studied as an extension of the previous example. However, the conditions required to 

guarantee semi-differentiability are fairly strong. In Section 4, we apply a modified form 

of the delta theorem to describe the asymptotic behaviour of the solutions to a linearly 

constrained least squares problem. In Shapiro [I91 there are similar results for solutions 

to smoothly constrained mathematical programs. 



Example 1.3. This example comes from stochastic optimization. Let us suppose we wish 

to solve the problem 

minimize E f (x, sl ) over all x E C, 

but we can only form approximations to the integral by obtaining samples {sk). For each 

sample of size v we obtain a random solution set 

1 
J, = {x 1 x minimizes - v x f (x, s k )  over all x E c). 

k = l  

We can fit the pattern of the first two examples by observing that the function 

is an estimate of the true objective and if J is the solution multifunction 

J(g) = {x I x minimizes g(x) over x E C),  

then writing z,,(.) = C;=l f (., st) it follows that 

The pattern is completed if we can establish that the sequence of "sample means" {z,(.)) 

is asymptotically normal in some suitably generalized sense. This is the principle reason 

why we present our results for multivalued mappings defined in a general metric space 

2. Other approaches to the same problem have been explored in the maximum likelihood 

literature. Asymptotic results have been achieved using "von Mises functionals"; an early 

reference is Kallianpur [9], and some more recent references are Boos and Serfling [4] and 

Clarke [6]. The differentiablity notions explored in the present paper may be used in this 

setting as well, but we shall not consider this matter here. Aitchison and Silvey [I] proved 

asymptotic normality of constrained maximum likelihood estimates. A different view ap- 

peared in Huber [8], and these ideas have recently been applied to stochastic optimization 

in DupaEovd and Wets [7]. The asymptotic analysis of {J,) from the perspective of the 

present paper appears in King [13]. 

The link between convergence of multifunctions and convergence of selections is an 

important theme of this paper. This reflects the point of view of the practitioner who 

may have access only to a single selection of the multifunction and who wishes to draw 

conclusions based only on this limited knowledge. In some situations, the limit is best 



regarded as a multifunction that satisfies certain regularity properties-namely, single- 

valuedness. The nature of the single-valuedness assumption is explored in an appendix. 

The principal ideas of convergence in distribution for multifunctions needed in the 

paper are summarized and some new results concerning convergence of selections are given 

in Section 2. The main delta theorem appears in Section 3, and an application to feasibil- 

ity sets of a mathematical program is described. In Section 4, we derive a delta theorem 

for upper Lipschitzian mappings that are single-valued almost everywhere. This version 

has proven useful in establishing the asymptotic behaviour of estimates in linear-quadratic 

stochastic programming (King [lo]), but given the confines of the present paper, we must 

content ourselves with a brief derivation of the asymptotic distribution for linearly con- 

strained least squares problems. 

The reader of this paper is expected to be acquainted with the fundamentals of con- 

vergence of closed sets and weak*-convergence of probability measures; see, for example, 

Salinetti and Wets [17] and Billingsley [3], respectively. A sequence of subsets { A , }  of a 

locally compact topological space set-converges to a subset A  if 

where 

liminf A,  = { a  I a  = lima, where a ,  E A,  for all but finitely many v }  

lim sup A, = { a  I a  = lim a ,  where a ,  E A, for infinitely many v } .  

A sequence of probability measures { p , }  on a complete separable metric space Z weak*- 

converges to p  if 

for all bounded continuous functions f : Z -t IR. 



2. Convergence in  Distribution for Measurable Multifunctions and  Selections 

Let X be a finite dimensional linear space equipped with a norm I - 1. A multivalued map 

F : 0 3 X defined on a probability space (0 ,  A, p) whose values are closed subsets of X 

is said to be a closed-valued measurable multifunction if for all closed subsets C c X the 

inverse image 

F-l(C) := {W I F(w) n C # 0) 

belongs to A. (In parallel with the measurable function/random variable dualism, when 

the probability space R is unspecified we shall call such a mapping a random closed set 

and use the boldface notation "F".) Following Salinetti and Wets [18], we observe that 

the mapping F may be identified with a Borel measurable function cp : R + 3 ( X )  from 

R into the hyperspace 3 ( X )  of all closed subsets of X equipped with the topology consis- 

tent with convergence of sets. This space 3 ( X )  so topologized is in particular compact, 

separable, and metrizable. Every closed-valued measurable multifunction thus induces a 

regular probability measure pcp-' on the Borel field of 3 ( X ) .  Convergence in distribu- 

tion of a sequence {F,) of such mappings, written F v d F ,  is then defined to be the 
2) 

weak*-convergence of the measures pcp,l to pcp-' induced on 3 (X) .  

An important feature of this definition is that it turns out to be equivalent to con- 

vergence of certain stochastic processes on X, in the sense of convergence in distribution 

of the finite-dimensional sections. Each subset C c X may be associated in a unique way 

with the distance function d(., C )  : X + R+ given by 

(2.1) d(x, C)  := inf (x - yl, 
y E C  

where R+ is the space of nonnegative reals made compact with the inclusion of the point 

at infinity. Relying on the fact that a sequence of closed sets converges in 3 ( X )  if and 

only if the sequence of distance functions converges pointwise, Salinetti and Wets [18; 

Theorem 2.51 demonstrate that a sequence of closed-valued measurable multifunctions 

{F,) converges in distribution if and only if the distance processes {d(., F,)) converge as 

stochastic processes on X.  By definition these stochastic processes d(., F,) converge to 

d(-, F) ,  in notation: 

d(z, F u ) 7 d ( x ,  F) ,  x E X, 

if and only if for all finite collections {x l , .  . . , xk) of points in X one has 

- (k )  as random variables in R+ . This characterization plays an important role in computa- 

tions. 



The reader should note that a sequence of measurable functions { f,), f, : 0 -t X 

converges in distribution to f if and only if one has weak*-convergence of the measures 

induced by the f, on the space X.  We may also regard these as closed-valued measurable 

multifunctions since points are closed in X.  But in this view the sequence { f,) converges 

in distribution if and only if one has weak*-convergence of the distributions induced on the 

hyperspace 3 ( X ) .  Clearly, the weak*-convergence of { f,) as functions into X implies that 

of the distributions induced on 3 (X) ;  however, a moment's reflection will convince the 

reader that the reverse implication does not hold without further assumptions. A related 

issue is the convergence of selections of a converging sequence {F,) of almost surely single- 

valued multifunctions-the study of which will occupy the rest of this section. 

We first make a few preliminary definitions. The domain of a closed-valued measurable 

multifunction F : 0 3 X ,  denoted by domF, is the measurable set 

A function f : fl -t X is called a measurable selection of F if f is measurable and 

f(w)  E F ( w )  for p-almost all w E domF. There always exists at least one measurable 

selection of a nonempty closed-valued measurable multifunction; see, for example, Castaing 

and Valadier [5]. It is important to note that p(dom F) may be less than one and in this 

case the measure p f -' induced on X by a measurable selection f of F is not a probability 

measure. This introduces a minor technical difficulty into the very definition of convergence 

in distribution for sequences { f, ) of measurable selections, which as the reader recalls 

is defined to be weak*-convergence of the sequence {p f;') of measures on X. A trivial 

modification to the proof of the Portmanteau Theorem, Billingsley [3; Theorem 2.11, yields 

the following. 

Lemma 2.1. A necessary condition for the weak*-convergence of a sequence of finite 

measures {P,) on a complete separable metric space Z is 

Furthermore, if (3.1) holds then dl the equivalences in the statement of the Portmanteau 

Theorem hold true for the sequence {P,). 

The significance of this lemma is that it allows us to apply all of the main results of 

weak*-convergence, in [3] for example, that depend on the equivalences in the Portmanteau 

Theorem but which do not specifically require the measures to be probabilities. 

The key concept that permits us to draw conclusions about convergence in distribution 

for selections is that of single-valuedness of the limit mapping. We first make the definition. 



Definition 2.2. A closed-valued measurable multifunction F : St =$ X is said to be 

p-almos t surely single-valued if 

(2.4) p{w E dom F I F(w) is not a singleton} = 0. 

In the Appendix we present a study of p-almost surely single-valued multifunctions. 

It is shown there that for such a multifunction one can interpret pF-' or a measure on the 

space X itself and, moreover, that any selection f of F gives rise to the same distribution, 

i.e. pF-I = p f-' on the Bore1 sets of X. We shall not make use of this interpretation, 

however, since we prefer to retain the distinction between measures on 3 ( X )  induced by 

multifunctions and those on X induced by selections. 

We now present a pair of results concerning the convergence in distribution of a 

sequence of measurable selections from a converging sequence of measurable multifunctions. 

The first theorem makes use of the concept of tightness: a sequence of measurable functions 

{ f,,} from the probability space (St, A, p) into X is tight if for all E: > 0 there is a compact 

set A of X such that p{ f,, E A} > 1 - e. The second theorem supposes that the converging 

multifunctions become more and more single-valued. 

Theorem 2.3. Let the closed-valued measurable multifunctions Fu : St =$ X converge in 

distribution to F. Suppose that F is p-almost surely single-valued and that 

If f,, : St + X and f : St t X are measurable selections of Fu and F, respectively, and if 

the sequence { f,,} is tight, then the f,, converge in distribution to f .  

Proof. First, note that p f;l(X) = p(dom Fu). Thus assumption (2.5) means p f ; ' ( ~ )  -+ 

p f -'(X), and so Lemma 2.1 applies. Let A be an arbitrary closed subset of X;  we plan 

to show that 

limsupp f ; ' (~)  5 p f-'(A). 
Y 

Fix e > 0 and let K c X be such that p f;'(K) 2 1 - E: for every V, then 

Identify with each Fu and F the maps cp, : St -+ 3 ( X )  and cp : St-+ 3 ( X ) ,  and define for 

any set D c X the collection 



Then, clearly, 

p f i ' ( ~  n A) 5 p(p,'(3KnA), 

and furthermore FKnA is closed in 3 ( X )  - since K fl A is compact - hence 

lim sup pep,' ( F K ~ A )  5 P V - ' ( ~ K ~ A  1- 
Y 

It follows that 

To complete the proof note that p(p-' (FA)  = p f (A), by the single-valuedness of F (cf. 

the appendix), and that e > 0 was arbitrary. 

Theorem 2.4. Suppose that the closed-valued measurable multifunctions F,, : R 3 X, 
v = 1,2,.  . ., converge in distribution to the closed-valued measurable multifunction F : 

R 3 X. Suppose, moreover, that F is p-almost surely single-valued, that (2.5) holds, and 

that 

(2.6) p{w E dom F,JF,,(w) is not single-valued) -+ 0. 

I f f  : R -t X and f, : R -t X are measurable selections of F and F,, respectively, then 

the sequence {f,) converges in distribution to f .  

Proof. For convenience denote by P and P,, the finite measures p f-' and pf;' on X. 
First note that P ( X )  = p f-'(X) = p(domF). Thus assumption (2.5) means P,,(X) -t 

P(X), and so Lemma 2.1 applies. Denote by B(x, E) the open sphere of radius E > 0 

centered at the point x E X, i.e. 

The collection of all sets that are finite intersections of open spheres is a convergence 

determining class; cf. the corollaries to [3; Theorem 2.21. Let A be a member of this class, 

We may suppose without loss of generality that the B(xi, ei) are P-continuity sets; this 
k implies that n,=, (-00, ei) is a continuity set for the random vector 



since 

which is zero. The convergence of the processes d(., F,(w)) to d(-, F(w)) - cf. equation 

(2.2) - and the Portmanteau Theorem imply 

k 

lim p{w E R I [d(xi, Fu(w)), . . . , d(xt, F,(w))] E n ( - - m ,  ci)) 
i=l 

k 

= p{w E I [d(xl, F(w)), - .  - 7  ~(xA-,  F(w))] E n ( - m , c i ) ,  
i= 1 

and this latter set is equal to P(A) since F is p-almost surely single-valued. Define the 

sets S,, v = 1,2,. . ., by 

S, = {w E dom F, I F,(w) is a singleton). 

Noting that by the Appendix the sets S, are all measurable, we have 

- p{w E dam Fu \ S u  I d(xi, Fu(w)) < ~ i ,  i = I,  . . . ,  k) 

Hence by assumption (2.6) and the observation that 

we have P,(A) + P(A). Since A was an arbitrary member of a convergence determining 

class it follows that P, weak*-converges to P and the proof is complete. 

To assist in the verification of condition (2.5) in Theorem 2.3 we have the following 

proposition. 

Proposition 2.5. Suppose that the closed-valued measurable multifunctions F, : R 3 

X ,  v = 1,2,. . ., converge in distribution to the closed-valued measurable multifunction 

F :  R 3 X .  Ifp(domF) = 1, then 



Proof. Since the F, converge in distribution to F, the random variables w H d(0, F,(w)) 

must converge in distribution to the random variable w H d(0, F(w)); see equation (2.2). 

Now 

p(dom F") = P{W E I d(0, F,(w)) < m ) ,  

and thus by the Portmanteau Theorem p(dom F,) -t p(dom F) ,  provided Ik+ is a conti- 

nuity set for the random variable w H d(0, F(w)), i.e., provided 

which is indeed the case by our assumption that p(dom F )  = 1. 

3. Semi-differentiability a n d  t h e  Delta Theorem for Multi-valued Mappings 

The main result is presented in this section. Let Z be a separable complete metric vec- 

tor space (separable Fre'chet space) equipped with its Bore1 field 2, let X be a finite- 

dimensional Euclidean space, and let the map F : Z 3 X be closed-valued and measur- 

able. On the space Z define a sequence {z,) of random variables. Trivially, each F(z,) is 

a random closed set in X. Our interest here is in the possibility of describing the asymp- 

totic behaviour of this sequence of random closed sets, when the sequence {z,) of random 

variables satisfies a generalized central limit formula: there are a point z*, a sequence of 

positive numbers {T,,) monotonically decreasing to 0, and a limit distribution j such that 

as random variables in Z. 
A delta theorem for the sequence {F(z,)) inevitably rests upon an appropriate defini- 

tion of first-order behaviour for the multifunction F : Z 3 X. Fix a point z* and a point 

x* E F(z*), and define the collection {Dt : t > 0) of difference quotient multifunctions 

(3.2) Dt(z) := t - ' [ ~ ( z *  + tz) - x*], t > 0. 

The contingent derivative of F at the point (z*,x*), denoted F$,=*, is the mapping whose 

graph is the contingent cone to the graph of F at (z*, x*), given by the formula 

lim sup gph Dt = gph F$,=, 
t l 0  

This derivative was introduced by Aubin [2]. It always exists, but it may be very difficult 

to use unless more information is available. Further regularity conditions on the contingent 



derivative were introduced in Rockafellar [16]. If one actually has lim sup = lim inf in (3.3), 

i.e. 

lim gph Di = gph Fie ,,* 
i l 0  

then F is said to be protcdfferentiable, and the notation F' is used for the proto- 

derivative. The multifunction F is said to be semi-differentiable at z* relative to x* if 

there exists a multifunction D : Z 3 X such that for all z E Z, 

lim Di(z1 ) = D(z) 
t l 0  

2'-z  

taken as a limit of sets in X. If such a property holds then it can be shown that F is 

proto-differentiable at (z*, x*) and that the limit mapping D equals the proto-derivative 

F . (See the proof of [16; Theorem 3.21 which generalizes to this infinite dimensional 

setting.) 

The underlying philosophy of this differentiability notion is best considered from the 

geometric point of view. Take a point (z*,x*) in the graph of F and construct there a 

tangent cone to gphF;  this cone is then the graph of F:.l,.. The picture is the exact 

analogue of that for differentiable functions (going back to the original ideas of Fermat) 

viewing the graph of the derivative as the hyperplane in Z x X tangent to the graph 

of the function at (x* , z* ). Naturally, different choices of tangent cones - e.g. Clarke, 

intermediate, contingent, etc. - all lead to different derivatives. The choice made in 

(3.4) is that gph F$ ,,, should equal simultaneously the con tingent and intermediate cones 

(respectively lim sup and lim inf in (3.4)). 

In Section 4 we explore properties of the contingent derivative when F is single-valued 

at I*; in this case one writes F$ . In all cases, the contingent derivative has closed graph, 

since the sets in (3.3) and (3.4) are closed in Z x X and are therefore closed-valued and 

measurable. 

Semi-differentiability is a stronger property than proto-differentiability. When Z is 

finite-dimensional it can be shown that proto-differentiability plus a certain Lipschitz 

property (pseudo-Lipschitzian) imply semi-differentiability [16; 4.31. We shall explore 

other connections between Lipschitz properties and semi-differentiability in Section 4. 

The crucial property in our present undertaking is a slightly modified definition of semi- 

differentiability. 

Definition 3.1. Given a measure p on (Z,B(Z)), the multifunction F : Z 3 X is said 

to be almost surely semi-differentiable at z* relative to x* with respect to p if there exists 



a multifunction D : Z 3 X such that (3.5) holds for all points z except possibly those 

in a set of p-measure zero. Abusing the notation slightly, we still write D = q.,,. even 

though the limit (3.5) and not (3.4) is understood here. Note also that F:. ,=, in this less 

restrictive definition is closed-valued and measurable, since it is the pointwise limit of a 

sequence of closed-valued and measurable multifunctions. 

This differentiability notion turns out to be exactly what is needed, as we see in the 

following delta theorem for multivalued mappings. This theorem, the main result of the 

paper, opens the way to applications of asymptotic theory to situations in optimization 

theory that must be modelled by nonsmooth, multivalued mappings. Following the theo- 

rem, we explore its implications in several directions. First, we interpret the meaning of 

the asymptotic distribution as a statement concerning errors due to sampling. Second, we 

present an example that illustrates, although in a rather artificial way, the necessity of the 

semi-differentiability property. Finally, we develop an immediate application of the theo- 

rem to the asymptotic properties of feasibility sets in mathematical programming, when 

some parameters must be estimated from samples. 

Theorem 3.2. Let Z be a separable Fre'chet space and X a finite dimensional normed 

linear space, and suppose F : Z 2 X is closed-valued and measurable. If the sequence 

of random variables {z,) satisfies a generalized central limit formula, with limit z* and 

limit distribution j, and if F is almost surely semi-differentiable at z* relative to a point 

x* E F(z*) with respect to the measure induced by j, then {F(z,)) satisfies the generalized 

cen tral limit formula: 

as random closed sets in X or, equivalently, 

as stochastic processes on X .  

Proof. Denote by p, the measures induced on the space Z by the random variables 

T,-'[z,, - z*] and by p that induced by j. The meaning of the generalized central limit 

formula (3.1) is precisely that p, weak*-converges to p. Employing the difference quotient 

notation (3.2), the measures induced on the complete separable metric space 3 ( X )  by the 

random closed sets on the left side of (3.6) may be represented as pub;:, where 6,, : Z -+ 

3 ( X )  is the function identified with D,, . By Billingsley [3 ; Theorem 5.5) the sequence 

{ p , 6 ~ ~ )  weak*-converges to p6-I if the set of points z for which lim6,(zU) = 6(r) fails 



to hold for some sequence {z,)  approaching z has p-measure zero. This is precisely what 

is meant by almost sure semi-differentiability with respect to p; hence the condition is 

satisfied if 6 ( z )  = F:.,,*(Z) for p-almost all z. This establishes (3.6). That (3.7) is 

equivalent to (3.6) was shown by Salinetti and Wets [18; Theorem 2.51. 

Evaluating these distance processes (3.7) at x = 0 gives a converging sequence of 

random variables in Ik+; and, noting that for any subset C c X the linearity of the norm 

implies 

d(0, t-' [C - x*] )  = t- 'd(x, c), t > 0 ,  

we obtain the following corollary. 

Corollary 3.3. Under the conditions of  Theorem 3.2, 

as random variables in Ik+ . . 

Remark 3.4. This corollary leads to an important interpretation of the meaning of the 

asymptotic distribution q*,,,(a). It represents the residual uncertainty in the estimate 

F ( z U )  relative to x* E F(z* ). If x u  E F(z,)  is a measurable selection then clearly 

so the asymptotic behaviour of 7;' (x* - xu  ( cannot be better than that described in (3.8). 

If F is convex-valued and z* E int dom F then it can be shown that there exists a selection 

x u  E F(z,)  such that 

I X *  - xu  I = +*, F ( Z ~  I), 

i.e. { x u )  in norm converges in distribution to x*. To say more than this about selections 

seems to require F and F:.,=. to be almost surely single-valued. 

Example 3.5. A simple example illustrates the necessity of the semi-differentiability con- 

dition. Let Z = X = IR and let F : Z 3 JR be the subgradient of the absolute value 

function, 

Choose (z* , x*) = (0,O) E gph F .  It is easy to see that FiSo exists in the sense of formula 

(3.4) with 
J R  i f z=O,  

F'.O(z) = { 0 otherwise, 



and that the semi-differentiability condition (3.5) holds for every point r # 0 but fails at 

r = 0. For each Y = 1,2, . .  . let z, be the "random variable" taking the value Y - ~  with 

probability one, then the sequence { ~ [ z ,  - 01) converges in distribution to the random 

variable 3 taking the value 0 with probability one. All the conditions of Theorem 3.2 are 

satisfied except that 3 places nonzero mass on the point at which semi-differentiability fails. 

Denote by h,(.) the distance function d(0, Y [F(.) - 01) and by h(-) the function d(0, F,'.,(.)). 

If Corollary 3.3 holds then h, ( z , ) d h ( j ) .  For any closed interval [b, +a] in lk+ we have 
I) 

h,(z,) E [b, +oo] with probability one for all sufficiently large u,  but h(3) E [b, +a] 

with probability zero. This contradicts the Portmanteau Theorem [3; Theorem 2.11, thus 

Theorem 3.2 fails for this example. 

Example 3.6. An immediate application reveals the computational potential of the the- 

orem in mathematical programming. Let Z = IRd and X = IRn, and define F(z) to be the 

set of all x E IRn satisfying 

where f i  : IRd x IRn -, IR is continuously differentiable for i = 1, .  . . , m. Suppose that 

the parameter z is known only in a statistical sense by making repeated observations 

{s l , .  . . , s,) and averaging them to form an estimate z,, i.e. 

Under easily satisfied conditions the z, obey a central limit formula 

where j has a centered Gaussian distribution. If (r*,x*) is a point where the system 

(3.9) satisfies the Mangasarian-Fromowitz constraint qualification, then (cf. Rockafellar 

[3; Example 5.51) the mapping F is semi-differentiable at r* relative to x* and, moreover, 

an explicit formula is obtained for the proto-derivative Fie,,., namely for all r the set 

Fi.,,.(r) consists of the points x satisfying the linearized system 

V* fi(rL, x*) r + Vt f,(rL, x*) - x 5 0 for all i E I(r*,x*),  
= O  for i = s + l ,  ..., m, 

with I(z* , x* ) denoting the inequality constraints of (3.9) active at (r* , x* ). From Theorem 

3.2, 

f i [ F ( z u )  - x * ] ~ F i *  ,,* (3). 



The limit distribution F:,,z.(l) is a Gaussian random polyhedron: letting bi denote the 

(Gaussian) random variable -V, fi(z*, x*) - a for i = 1,. . . , m, we have 

Vz fi(t*,  x*) . x 5 bi i E I(z*, x*) 
V, fi(z*,z*).  x = bi i = s + l ,  . . . ,  m 

a set defined by a set of linear constraints with random right hand sides that indicates how 

the random closed set F(z,) approximates the limit set F(z*) near the point x*. 

4. Delta Theorem under Single-valuedness Assumptions 

The assumption of single-valuedness of a limit mapping is a kind of regularity condition 

that allows other conditions to be simplified. In this section we explore the concept of 

semi-differentiability for a specialized class of mappings. An application to constrained 

least squares estimation shows the potential of this theory. 

The space Z ,  in this section only, will be assumed to be a Banach space with norm 

11 . 11. As usual, X is finite-dimensional and Euclidean with norm I . I. Following Robinson 

[15], we say that a multifunction F : Z =t X is locally upper Lipschitzian at r* if there is 

a modulus X 2 0 and a neighborhood U of z* such that 

where B is a unit ball in X. 

Proposition 4.1. Let F : Z =t X be locally upper Lipschitzian and single-valued at a 

point z* E int(domF), with F(z*) = {x*}. If the contingent derivative F> is almost- 

surely single-valued with respect to a given probability measure P on Z,  then F is P-a.s. 

semi-differentiable at z* relative to x* and, moreover, F> = $.,z,, P-a.s. 

Proof. Let Di be the difference quotient multifunction 

Di(z) = t-I [F(z* + tz) - x*], t > 0. 

Let z be a point where F;,~* is single-valued. We want to show that 

(4.2) lim Di(rl) = F$ (2). 
I10 

2 ' 4 ,  

Since z* E int(domF) it follows that Di , (~,)  is eventually nonempty for any sequence 

t, 3 0 and z, + z. The locally upper Lipschitzian property also implies that eventually 



Thus any sequence xu E Dl, (2,) is eventually bounded, has limit points, and these limit 

points must be in J$ (2) by definition of the contingent derivative (3.3). Now, by our 

assumption, G ( z )  is a singleton, say {x}, and we have in fact shown that limx, = x for 

all sequences xu E Dt, (z,), all t, 1 0 and z, z. This proves (4.2), and the conclusions 

of the proposition follow. 

Note that we do not require F itself to be P -as .  single-valued, just $+.. This is 

mostly a vacuous generality since F could not be too far from being P-a.s. single-valued 

in small neighborhoods of z*, but it affords a useful flexibility in some applications. An 

immediate consequence of the above is a delta theorem for selections of F. We first deal 

with a technical lemma. 

Lemma 4.2. Let F : Z 3 X be locally upper Lipschitzian and single-valued at a point 

z* E int(domF). Then 

(4.4) Z = dom F$ . 

Proof.  Let z E Z be given. For all sufficiently small t we have z* + t z  E domF, since 

z* E int(domF), and Dt(z) c XJlzl(B, since F is locally upper Lipschitzian. Hence there 

are points xt E Dt(z) for all sufficiently small t and at least one limit point of {xt) ,  which 

by definition must belong to F$(z). Therefore z E dam$+,, proving (4.3). 

Theorem 4.3. Let {z,} be a sequence of random variables in Z satisfying a generalized 

central limit theorem with limit z* and asymptotic distribution j. Let F : Z 3 X be a 

closed-valued measurable multifunction that is locally upper Lipschitzian and single-valued 

at z*, with F(z*) = {x*}. Suppose further that: 

(4.5) z* E int(dom F);  

and 

(4.6) F'$ (3) is a.s. single-valued; 

Then for all measurable selections x u  E F(z,) and I E J$ ,=. (3) one has 

as random variables in X. 

Proof. F'rom assumptions (4.5) and (4.6) and Proposition 4.1, it follows that F is a.s. 

semi-differentiable at z* relative to x* with respect to the measure induced by j. Hence 



Theorem 3.2 applies and r;'(F(z,) - x*]+F> (3). The conclusion will follow from Theo- 
v 

rem 2.3. From (4.3) we have that eventually r;'(x, - x*I 5 AT;' J I z ,  - z*l(, and this latter 

sequence is tight. The only thing that remains is to show the counterpart of (2.5). Let p 

be the probability measure corresponding to 3. By Lemma 4.2, we have p(dom F> ) = 1; 

therefore, (2.5) follows from Proposition 2.5. 

Example 4.4. The statement of Theorem 4.3 is particularly useful in investigations of 

limit behaviour of solution sequences in statistical estimation and stochastic programming, 

as described above in Example 1.3. There is no space here to give a full treatment; we 

merely indicate the possibilities by an illustrative example (that can certainly be treated 

by existing parametric theories - for example, Shapiro [19]). Consider the constrained 

least squares problem 

minimize 2 

subject to x E C 

where {z,} is an independent and identically distributed sequence of random variables in 

lRn that satisfies a central limit theorem, and where C is a polyhedral convex subset of 

lRn. (C  is given by a finite number of linear inequalities.) The optimal solution xu  to (Q,) 

is unique and satisfies . v 

where Nc(.) is the normal cone multifunction of convex analysis. The mapping F(z) given 

by 
F(z)  = {x 10 E x - z + Nc(x)} 

is locally upper Lipschitzian by Robinson [15], and it clearly has dom F = lRn. Further- 

more, it is proto-differentiable by Rockafellar [16; 5.61, and we have, for any (z*,x*) E 

gph F, 

(4.8) F>(Z) = {C E c:* 1 0  E c - I +  N ~ I * ( € ) }  2 

where 

C:. = {< E Tc(x*) I C-[x* - z*] = 0) 

and Tc(-) is the tangent cone of convex analysis. It is easy to see that x E F$(z) if and 

only if x is the solution to 
1 

minimize 1x - zI2 

subject to x E Tc(x*) 

[x* - z*].x = 0, 



therefore F$ is single-valued everywhere. 

From Theorem 4.3, it follows that the sequence of least squares estimates satisfy the 

asymptotic formula 

&[x, - x * ] + x ,  
D 

where x* is the solution to the "true" problem 

1 
minimize - E l x - z 1 I 2  

2 
subject to x  E C 

and where the asymptotic law X is the solution to a random quadratic program 

1 
minimize -12 - j 1 2  

2 
subject to x  E T c ( x * )  

with j - N ( 0 ,  cov 2 1 ) .  This result is a precursor to an asymptotic theory for solutions to 

convex stochastic optimization problems along the lines sketched in Example 1.3. 



Appendix 

In this appendix, we record some specifics about measures induced by a closed-valued mea- 

surable multifunction from a given probability space (R, A, P )  into a complete, separable 

metric space X with Borel sets B, when the multifunction is almost surely single-valued. 

Our interest is in when such a multifunction can be interpreted as inducing a measure on 

X itself. 

Recall that a closed-valued multifunction F : R 3 X is measurable if F-'(C) E A 

for all closed subsets C C X .  Using Castaing and Valadier [5; III.SO], this implies that 

F-'(B) E A for all Borel subsets B E B provided we assume A is complete relative to the 

measure P (includes all sets of P-measure zero). Thus PF-I is a set-function on 23. Our 

first result determines when this set function is a measure on 23. 

Proposition A.1. Suppose F : R 3 X is closed-valued and measurable. Then PF-I is 

a measure on (X,  B) if and only if 

foreveryA,B E B with A n  B = 8. 

Proof. It is the requirement of additivity of a measure that necessitates (A.l). Indeed, 

it is trivial that if A n B = 0, then PF-'(A U B) = PF-'(A) + PF-'(B) if and only if 

condition (A. 1) holds. To complete the proof we need only demonstrate that (A. 1) implies 

countable additivity of PF-I. Let A,, n = 1,2, .  . ., be a sequence of pairwise disjoint sets 

in B. Define B,, n = 1,2, .  . ., by 

B~ = F-~(A'),  

B2 = F - ' ( A ~ )  \ B1, etc., 

and then 
OQ 

PF-I (a An) = P (6 Bn) = P(B.) 
n= l  n = l  n=l  

by the countable additivity of P .  Now note that Bn c F-'(A,) for every n,  and further- 

more that 

Hence 

P(Bn) I PF-l(An) 2 P(Bn) + P{F-'(A,) n F-' (.4n-1)), 



but this last term is zero by our assumption (A.l). Therefore P(Bn) = P F 1 ( A n ) ,  n = 

1,2,.  . ., and we conclude from this that PF-' is countably additive. 

If a multifunction F : 52 3 X is single-valued almost surely, then condition (A.l) 

will be satisfied-since when A and B are disjoint, any element of F - I  (A) n F - I  (B) 

will be a point where F is not single-valued. Thus PF-I is a measure on 23 when F is 

a.s. single-valued. It turns out that the converse is also true, but first let us review a 

fundamental concept. If F : 52 =$ X is closed-valued and measurable, then it is well-known 

that there exists a Castaing representation for F - a countable family {zi : i = 1,2, . . . } 
of measurable functions, zi : dom F X, such that 

F(w) = cl{xi(w) I i = 1,2,. . .} for all w E dom F; 

cf. [5 ; 111.301. This representation of F is very useful in measure theoretic arguments 

concerning set-valued maps. 

Theorem A.2. Let F : 52 =$ X be closed-valued and measurable. Then PF-' is a 

measure on (X, 6 )  if and only if 

(A.2) P{w E dom F I F ( w  ) is not single-valued} = 0. 

Proof. It remains only to show the necessity of (A.2). Let us characterize the set M c 52 

where F is not single-valued as follows. Let Q be the rationals in IR, and let D be a 

countable dense subset of X. Denote by B(d; r) the closed ball with center d and radius r 

in X. Then 

M = U U U U{W E domF (zi(w) E B(d;r) and z,(w) $ B(d;r)}, 
dED rEQ i=l j2i 

where {zi} is the Castaing representation for F .  It follows that M is a measurable subset 

of 52. Furthermore, P (M)  > 0 if and only if there is some quadruple (d, r, i, j) with 

P{w E domF I xi(w) E B(d; T) and zj(w) $ B(d; T)} > 0. 

If this is the case, then clearly 

P{F-'(~(d; r)) n F - l ( ~ ' ( d ;  r))} > 0, 

which contradicts (A.l). Thus P (M)  = 0 and the proof is complete. 

The existence of a Castaing representation is crucial in establishing that the set M 
of points where F is not single-valued is measurable. When this set has P-measure zero, 



then it is clear that the xi differ from F only on the set M  and hence they all induce the 

same measure P X ~ ' .  In fact, if f is any selection of F we have 

since f = F on M C  (complementation is taken relative to dom F )  and M  is measurable. 

Thus f is measurable, and 

and we have proved the following corollary. 

Corollary A.3. Let F : R 3 X be a closed-valued measurable multifunction satisfying 

condition (A.2). Then any selection f of F is P-measurable and P f -' = PF-'. 
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