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FOREWORD

The authors describe a mathematical model associated with the yield of mass
production of products in any fabrication process. The problem is called a Cpr
embedded problem or is also called the design centering problem in the theory of
Integrated Circuits and Systems. Some results associated with conditions of
optimality are proposed. To a certain extent they provide the possibility to
develop search techniques. The authors mainly treat the case where the Min-
kowskian norm is just the Euclidian norm.

Alexander Kurzhanski
Chairman
System and Decision Sciences Program



ABSTRACT

In this paper the Cjrembedded problem which is also called the design
centering problem in other papers will be described, and a sufficient optimality
condition and some results associated with optimality conditions will be
presented. These results hold for general non-convex regions. To a certain extent
they provide the possibility to develop search techniques. It should be pointed out
that, in this paper, the only case where the Minkowski norm is just the Euclidean
norm is treated, whereas we only mention some results related to the general case
a little.

Keywords: Design centering, lineality space in a cone, Lipschitzian functions,
quasidifferentiable functions, semismooth functions.
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THE c,-EMBEDDED PROBLEM
AND A SUFFICIENT OPTIMALITY CONDITION

Z. Q. Xia, J.-J. Strodiot and V. Hien Nguyen

Introduction

During the last decade a mathematical model, the C,rembedded problem, has
started to be used in the optimal design and the analysis of integrated circuits, [1]-[5].
Actually, it could be used to treat problems arising in wider areas and designs in fabrica-
tion processes than the area of designs of integrated circuits and systems. This is because
in any fabrication process the cost associated with the mass production of products is
directly related to the yield that is some percentage of the total number of products
manufactured meeting the design specifications. The yield can be regarded as a probabil-
ity with a joint probability density function ~.

Yield = [ 4(p , ¢, §)dp ,
8

where p is a statistical parameter vector, ¢ is the mean value of p, § is the deviation of p,
S is a bounded closed and simply connected region, [1], [3], [4]. It is hoped that a max-
imum yield can be attained. To maximize the yield could be done by choosing the design
centre ¢ and the corresponding radius of a contour of 4 in a certain sense. This problem
is related to the Minkowski norm. It seems that it is necessary to study the DC (Design
Centering) problem as a mathematical model in order to solve more practical problems.

Some necessary conditions to this problem, say Kuhn-Tucker and generalized Fritz-
John necessary conditions, have been given [1]-[3], [15]. Especially, a sufficient condition
for the case where the region is non-convex one whose boundary consists of convex and
complementary convex constraints has been proposed in [1], and a proof was given in [14].
But these necessary conditions proposed are very general principles. It would be possible
to find further optimality conditions that are suited to solve the C,,embedded problem
with a non-convex region, [19]. The sufficient condition proposed in [1] is only used to
handle a kind of problem with convex and complementary convex constraints although it
is convenient to be employed. A new sufficient condition and some results given here may
be useful to constructing new algorithms and to practical calculations for this problem.

1. CprEmbedded Problem

The so-called Cyrembedded problem is to find one of the largest convex bodies in a
feasible region, which is associated with a Minkowski function which is defined by a
predefined convex set containing the origin as its interior point, called unit convex body
or unit ball. It can be described below.

The support function §*(- | S), of a convex compact set S, which contains the origin,
satisfies the following conditions.

(¢) 0<&(z|S)<+oco,VzeER", (1.1)
() &(az | S)=ab'(z| S) VzER"Va>0,
(c) &(z+y|8)<&(z|S)+&(y|S),Yz,yeR”
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In other words, the support function of a convex compact set S, §*(- | §), withO € Sisa
non-negative function satisfying sublinear conditions. Given a convex set K in R" con-
taining the origin as an interior point, the Minkowski function corresponding to K which
is defined by

m(z; K):=inf{A|z/2eK,x>0} (1.2)

satisfies the conditions in (1.1) [6], [16]. The function m(z : K) also possesses the follow-
ing properties [6]:

(i) m(z; K) is continuous on z € R"

(i) E={z|m(z;K)<1},int K={z | m(z; K) <1} .

That is why the Minkowski function corresponding to K is called PDF norm [4] or Min-

kowski norm [1]. It is always assumed throughout this paper that K is a closed and
bounded convex set with the origin as an interior point. We define

[l - gy : = m(-; K)

and B(0, 1) = K, where B(0, 1) denotes the Minkowski unit ball. In this paper we only
concentrate our attention on such a case where K ={z | || z ||g < 1} is considered.
Thus || - [|(x) =[] - || g, i-e., the Euclidean norm. For the sake of simplicity the sub-
script on a norm as defined above will be omitted under the case in which the meaning of
a norm is clear.

We now visualize the C)rembedded problem below. The feasible region can be
expressed as

S:={zeR"| fi(z) < ff,1€0},

where 0 : = {1,2,..., m} and f;(z) € C?, for every 1 € ). Assume that S is bounded,
intS # ¢ and simply connected, and assume further that V fi(y) #0,y€ bdd S, 1€ Q,
where we by bd S denote the boundary of set S.

. . . . 2
max min min T — or max min min|| z — 1.3
max miy i ||z -] [EETTIEE (13)

where D; : ={y € R" | f,(y) > ¥ and fily) < f,7€q\ {i}}, i €0, or equivalently,

max r
r,z
st fil(y)<f,ieq (1.4)
y € B(z, 1)
or as follows
max r
r,z
st. f(z+twr)<fi,1€0 (1.5)
w€ B(0,1).

Note that if intS # ¢ then D; # ¢ V, € (1. The formulae (1.3) - (1.5) were described in
[1]-[3]. The equivalence between (1.3) and (1.4) or (1.5) has been established in [2]. Some
necessary conditions have been pointed out in [1], [2], [15]. From now on we only consider
the case in which || - ||(x)=|| - || g. We will study further optimality conditions for
some specific situations with the Euclidean norm. These studies are based upon the for-
mula (1.3). Note that any solution to (1.3) always belongs to intS. So it would satisfy
optimality conditions concerning the unconstrained optimization. In theory, precisely
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speaking, a closed set close enough to S and included in intS should be constructed, but it
is not necessary to do it here.

Let

Y:= X D;,CR"*m™
1€

and
u=(ul,..,u™) e RPX™

Define a mapping ¢: R" x R x R"* ™ — R designated by
(2,6, 0)=d(z,8,0)= 2 wl®) ] z- ]

Our discussion is confined to that €1 ,Q2 C I C R where I is a bounded interval,
u € Y. The function w; (§) , ¢ € 0, are defined by

1 .
wi=— Il (-7,
i jeN\{i}

= I - =)™ -1 (m—-1)!,

6=, I (=)= ()™ 1) (m

due to [7]. Clearly, it is easy to be seen that ¢ € C1 (R™ x R xR"™ X ™) and the restric-
tionof Y (z,€,u)to S XA X Y, ¥ |g,qxy,can bereplaced by

Y(z,6,9)=|lz-y||* foryeD,, €0 ,z€8,

since w,(§) =0if 1 #& wi() =11 t+=¢ and Y, wi(§) | z—u' ||2= [l z— ub ||2,
€M)

¢en, UteD,. e

Therefore, we can define

o(z): = min, i d(z, y) (1.6)

min min ¥(z,€,u)

min ynengf v(z,€,9),

where z € S. Let Y(z, £), Q(z) and Y(z) denote respectively
Y(z,O:={yeR" | ¢(z,{,y) = min ¢z, ¢, 9)} (€0
£

O(z):={¢€€q |,,“€‘i35 ¢(z,€,y)=€ngr‘1) yneligf ¥(z,€,9)}z€8;

Y(z):= |J Y(z,¢).
¢ €Q(z)

Now we explore the differentiability of ¢(z). It is necessary for further studying optimal-
ity conditions of the problem (1.3).

Lemma 1.1. The function ¢(z) is locally Lipschitzian in int S, and for any z € S and
h € R" the directional derivative of (-) at z in the direction A exists and is given by

p'(z; h)= Jimy (e(z + k) — o(z))/h (1.7)
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=€én(i]rzz) ver;}zz’e)<vz¢(z,f,y),h>.

PROOF. The proof follows from (8, Th. 3.2], [5, Prop. 3.1 and Prop. 5.4]. O

A function is said to be quasidifferentiable at a point if there exists a convex compact set
such that its directional derivative can be expressed as the support function of that set,
[8].

Proposition 1.2. The function ¢(z) is quasi-differentiable in the sense of [8] in int S.
PROOF

The directional differentiability of ¢(-) in #ntS issues straightforwardly from Lem. 1.1 and
one has

©'(z; h) <2(z-y),h> VheR"™.

= min min
£€0(z) veY(2,¢)
It is clear that Y(z) and Y(z, £) are all compact. The formula can be rewritten as

(z:h)= min®? <z-y,h>. 1.9
©'(z; h) JTip <y (1.9)

Let d¢(z) denote

co2[z— Y(z)]. (1.10)
Since d¢p(z) is convex compact, we have from | 8, Th. 3.4] that
mn <2(z-y),h>= min <w,h>. (1.11)
y € Y(z) w € 3y(z)

Hence ¢(-) is quasi-differentiable at z . O

The function qp(-)l/ % is a d.c. (difference of two convex or difference convex) function in
intS when S is determined by convex and complementary convex constraints, [20].

The quasi-differential of ¢ at z is also called a superdifferential in the sense of [9], i.e.,
dp(z) = dp(z) , dp(z) = {0} .

The quasi-differential of () at z is dp(z) = co 2 [z — Y(z)]. This is what we want. It
follows from (8] that if z is a solution of the problem (1-3), then it is necessary to satisfy
the condition

0€dp(z)=co2[z - Y(z)]. (1.12)
When z € int S the optimality conditions of (1.3) is the same as that of a corresponding
unconstrained problem. From this, as for searching techniques the formulation (1.3) can

be regarded as an unconstrained problem at least partially. It has been proved in [5,
Prop. 5.2] that

d.p(z) Ceo{V,¥(z,€,y) | €€Q(z) ,y€ Y(z, &)}, (1.13)
z€int S,
where we denote by 8,p(z) the generalized gradient of ¢ at z in the Clarke’s sense, [12].
In consequence, the following relation
d.p(z) C dp(z) = co 2[z — Y(z)]
holds. In addition, (1.12) is equivalent to [2, condition 10]. It is also equivalent to the
condition

(z; h) = in 2<z-y,h>= i <w,h><0 Vhe R".
Plzih) = min,y2 <o weopx TS €
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Since 0 ¢ z — Y(z) , z € int §, (1.12) holds if and only if
dimLcatp(z) 75 0

or

d‘l'mLc(z - Y(z)) #0 (1.15)
where CA means the conical hull of the set A, and L4 means the lineality space of the
cone CA, i.e.,

Logy:=CAN(-CA),

due to [10]. The following simple example illustrates the fact that the condition (1.15) is
not tight for the problem (1.3).

EXAMPLE. Let R” = R% The feasible region § is defined by
(2 - 1)+ (s -1)% <1,
(2, - 1)2 +2¢ >1/4,
(21 — 1) + (2, - 2)* 2 1/4,
where
z=(z;,12)T € R?.

Take z=(1,1)7.
Then one has

= 1 3
Y(z) = {yl ) y2} = {(1 ) _)T ’ (1 ) —2_)T} :
It is easy to see that the formulae (1.12) and (1.15) are satisfied at £ = (1, 1)T and
dimL gz =170

But in this case mentioned above, every direction k € [(0, l)T]'L is a really expansible
direction for this problem at (1, 1)7.
If ’(z ; k) > O, then the direction h is a really expansible direction because

p(z+ ak) — p(z) =ap’(z; k) + o(a) >0

for a € (0, 6) , 6 small enough. In general, if (1.12) does not hold, then the direction is a
steepest ascent direction, where || Nr dp(z) || h(z) is just the projection of O onto
dp(z).

h(z) = Nr dp(z) / || Nr 8¢p(z) || (1.16)

When the relation (1.12) is satisfied at z, it is impossible to infer in terms of it if the func-
tion o(-) has a really expansible direction at z or not. Therefore it is worth to study
furthermore and to improve (1.12) at least for some specific cases on the problem (1.3),
see [19].

2. Optimality Conditions
In this section we will give some optimality conditions about a (local) solution to the
problem

. - 2
max min min T — . 2.1
zeHEQVEDEII vl (2.1)
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For any set Q C Y(z), we can define a corresponding set
G(z;Q):={z-yeR"|yeQ} (2.2)
=z—- Q.

Clearly, Q; C @, CY(z) implies CG(z; @) C CG(z; Q;) C CG(z; Y(z)) . Further-
more define

Nt(z:Q):={heR"|<z-y,h>>0,y€ Q} (2.3)
={heR”| <uv,h>2>20,veG(z; Q)}
Called the conjugate cone to ¢ G(z; @), evidently @; C @, CY(z) implies

N+(}::; Q) D N*(z; Q) D N*t(z; Y(z)) . From (1.9) and dp(z) = ¢co 2 G(z ; Y(z)),

Nt(z; Y(z)) = Nt(z; z — 3p(z)/2)
={heR” | <u,h>>0,u€dp(z)}.

Proposition 2.1. Suppose that Q C Y(z). If

Y(z) () int [CG(z; Q) + ] # 6 (2.4)
(i.e., CG(z ; Q) is blunt), then

N*(z; Y(z)) = {0} .
PROOF. For the sake of contradiction, suppose that there exists a direction i # 0 such
that h € Nt(z ; Y(z)). In terms of the hypothesis (2.4), there exists such a y that

y € Y(z) N int [CG(z; Q) + z]

In consequence of dim G(z; Q) =n, there exists a set of positive scalars
{A;>0|¢t=1,..., n} and a set of vectors, which constitute a basis in R",

{z-—y;,€CG(z;Q)|i=1,...,n} (2.5)
such that
n
y-z= 3 N(z-y).
i=1

Since y € Y(z) and h € N*(z ; Y(z)) , one has
<z—-y,h>=-NXA<z-y,,h>>0.

Every term <z — y; , h > in the above expression is nonnegative because of
CG(z; Q) C Cop(z) .

Since A; >0,1=1,..., n,one has
<z-y;,h>=0, t=1,..,n.

Because (2.5) is a basis in R", its corresponding matrix is nonsingular, i.e.,

det [z — y;,..., 2 — yp] #0.
From this it follows that A = 0. This contradicts A # 0. The proof is completed. D
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I Q c R" is finite, then from the well-known Farkas lemma [10, Th. 2.8.5] and |10,
Lem. 2.7.9], it follows straightforwardly that

ue[CG(z;Q)+z] <= <u—-2z,N(z;Q)>>0

where <u — z , N*(z ; Q) > > 0 means that, for any v N¥(z; Q) ,
<u-—-z,v>2>0

always holds. A stronger result will be given below.

Proposition 2.2 Suppose that Nt (z ; Q) # {0} and int CG(z; Q) #¢. Then
ueint[CG(z;Q)+z]<=><u-2z N (z;Q) \{0}>>0.

PROOF. To begin with, we prove the necessity of it.
= (only if) : Let z — z € N*(z ; Q)\{0}. We can form a subspace

L{v —z,2z- 1z},
determined by v — z and 2 — z, with dimension two. Let
Miz;u-—z,2-2z):=L{s—-z,2—z}+1z

denote the linear manifold with dimension two, determined by ¥ — z and 2 — z, through
the point z. Since u € int[CG(z ; Q) + z| , there exists A > 1 such that

ug:=Au+(1-ANzeMz;u—-z,z-2)[CC(z; Q) + 2] . (2.6)
Clearly ug # u because A > 1. Because z — z € NY(z ; Q), one has
M(z;u—2,2-2)[N*(z; Q) +1] #0.
From this there exists a scalar g > 1 such that
zy:=pz+(l-p)veMz;v—z,2—2)[Nt(z;Q)+1]. (2.7)

The points v , ug, z, zy are in the same one-dimensional linear manifold. In view of
A>1and u > 1, uand z are included in the interval

{v|w=PFz2y+(1-PBug,Be(0,1]} (2.8)
Since ug; — z € CG(z; Q) and zy — z € N¥(z; Q), we have

<uG—a:,zN—a:>20.

Asaresult of A >1,u=f2y+ (1 - B) ugforsome B € (0,1). Thus

— — ug — 7 Iy — 2
u-—z , z—z S>> < G , N >>0.

u-=z]|]|]z=-2]] g -2zl |l 2y —=]|
So <u—z,z—2>>0, ie, <u—z,Nt(z;Q)\ {0} >>0. That is the proof of
necessity.
(if) : Prove by contradiction. Suppose that u ¢ int (CG(z ; Q) + z) . Then there exists
a sequence {u'};° convergent to u, but not included in CG(z; Q) + z . The sequence
satisfies

<u'-2z,N'(z;Q)>%0 foranyi=1,...,.

<

Correspondingly, there exists a sequence {z'} ¢ N* (z ; Q) + z such that
<w-z,2-2z><0. (2.9)
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For the sake of simplicity, assume that {z}{° is bounded and converges to
z€ N*(z ; Q) + z different from z. As a result of taking the limit of (2.9), one has

<u—z,z—z><0.
The above inequality contradicts < u — z, N+(z ; @) > > 0. The proof of sufficiency is
completed. O
Note 2.3. When v € CG(z ; Q) + z and Q is finite, the well-known Farkas lemma shows
that

Nt(z;Q)+zc HY(z;u—2) 2 {weR" | <w—z,u—z> >0}

Prop. 2.2 points out furthermore that, under the same hypotheses as above, if
u € int [CG(z; Q) + z], then [NT(z; Q)+ z] \ {z}C int H(z; u — z) strictly. The
result shown in this proposition could be used to construct an ascent algorithm for search-
ing an expansible direction.

In the next theorem, a sufficient condition for a locally optimal solution to the problem in
question will be given.

A function ¢ : R®" — R is said to be semismooth at z € R" if it is Lipschitzian in a
neighborhood of z and if for each k € R™ and for any sequences {t,} ¢ R, {0} c R"
and {g;} € R" such that

{t,}10,{0;/ t;} ~0€R™.
g€ 9. p(z + th +0;)
the sequence {<g; , & >} has exactly one accumulation point, [11]. If ¢ is semismooth at
z, then for each h € R" [ o’ (z ; k) exists and equals klim <gt , h> where {g;} is any
— 0O

sequence just mentioned above, [11, Lem. 2.
Theorem 2.4 If z € int S satisfies the following condition

dim Nt(z; Y(z)) =0, (2.10)
then z is a locally optimal solution.
PROOF. The condition (2.10) is satisfied if and only if

N¥(z; Y(z)) = {0},

otherwise dim N*t(z; Y(z)) #0. According to the definition of N*(z; Y(z)) for any
non-zero h € R™, one has

e (z;h) <0 (2.11)
since if there exists k # 0 such that
e (z;h)= min 2<z-y,h>= min <u,h>>0,
y € Y(z) u € 3p(z)

then it follows that
h € N*(z; Y(z)) and dim N*(z ; Y(z)) #0.

For the sake of contradiction, suppose that z is not a locally optimal solution to the prob-
lem (2.1). This implies that there exist a sequence {);}{° | 0 and a vector sequence
{h;}s° € R™ with || k; || = 1 such that

oz + A; b)) > o(2) . (2.12)
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Without loss of generality, assume that h; — h asi — oo . The function ¢(-) is sem-
ismooth in the sense of Mifflin in a neighborhood of z, in terms of [5, Props. 5.6 and 5.7]
or [11, Ths. 2 and 6] that states that, if {2 is a discrete set, then the function () is sem-
ismooth. The function ©(z + A; k;) can be written as

p(z + A; k) = o(z + A h+ Xi(h; — B)) .
From the mean value theorem [13], one has

oz + A by) —p(z) = < g;, A by >, (2.13)
where

9, €0, p(z+a; X\ by) =38, p(z+a; A h+ a; X (ki — k), ;€ (0,1).
The expression can be rewritten as

oz + X k) — o(z) = A; <g;, by >

=A;<g;, hy—h>+ A <g;, by >

In consequence of (2.12), we have

<g;,hj—h>+<g;,h>>0. (2.14)
Since h; > h as 1 — oo and the mapping 3,p(-) is bounded in a bounded subset

8§ c int S one obtains

<gi hy~h>—>0 asi—oo.

As far as the second term is concerned, from the fact that
9, €0, p(z+ a; A\; h + a; A; (h; — k) foralli,
a; A; =0 and (a;X; (h;—h))/(a;A) >0 as i— oo,

and p(-) is semismooth, it follows that the sequence {< ¢; , h >} converges and

lim < g;, h>=¢ (z;h) (2.16)

1t — OO

[11, Lem. 2 |. Taking the limit to (2.14), one has from (2.14), (2.15) and (2.16) the con-
clusion that

e (z;h)>0. (2.17)
Clearly h € N*(z ; Y(z)) and h # 0. Comparing (2.11) and (2.17), it leads to a contrad-

iction. The proof is completed. O

Note that when Y(z) is finite, another way to prove this theorem can be given in terms of
[17, Prop. 5 | where the fact was pointed out that

flz;9)=(z;9) forallye R".

Suppose that bd K is smooth (continuously differentiable) where K is a convex closed and
bounded set predefined as a unit body in the definition (1.2). Define

p(z) : = mi i - . 2.

?(z) Jin  min, Iy = =||x) (2.18)
we have

@ (z;h)= min <—-k(y,z) VF(y),h>, (2.19)

vy € Y(z)
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where V(, _ ;) |y — = ||(K) =k(y,z) Vf(y),y € Y(z) and k(y,z) >0, the mean-
ings of Q, D; , Q(X), Y(z, £) and Y(z) are the same, respectively, as mentioned previ-
ously. The formulae (1.9) and (2.19) are the same in substance from the point of view of
gradient. Let

9p(z) : = co{w | w=—k(y,z) Vf(y) ,y € Y(2)} .
Then @(z) is quasi-differentiable at z and

@(z;h)= min <w,h>. (2.20)
w € 3¢(z)

@(z) is locally Lipschitz, quasi-differentiable in the sense of [8] and also semismooth in the
sense of Mifflin [11]. Some results similar to Prop. 2.1 and Th. 2.3 could be established.
The following theorem represents the relation between the number of dimensions of
N*t(z; Q) and LCG(z; Q) - Generally speaking, determining the number of dimensions of
the lineality space Lcg(,; @) is easier than that of N*(z ; Q) in computation. The result
given in the coming tileorem could be found in [18], but the proof is integrate and

independent.
Theorem 2.7. For any closed set @ C R" , one has the relation
dim Nt (z;Q)=n ~ dimLcg(z; Q) - (2.21)
PROOF. Since CG(z ; Q) is a closed cone, it can be expressed as
CG(z; Q) = [G(z ; Q)°° (2.22)
= (-N*(z; Q))°
=-N*(z; Q)°
or
—CG(z; Q) = N*(z ; Q)° (2.23)

where A° denotes the polar cone of A. Because N*(z ; Q) is a cone, 0 € the linear mani-
fold of N*(z; Q). Hence LN*(z; Q) is the linear manifold of N*(z; Q) where LA
means that the linear subspace is spanned by A. From this one has

Logie; @) € N¥(z5 Q)L = [LN+(z; Q)]+ . (2.24)
It is evident that the following relations hold

N*(z; Q)F c Nt(z; Q)°
and

N*(z; @)t c -N*(z; Q).
In as much as

Legz; @)= CG(z; @) N (-CG(z; Q))

=N*(z; Q)° N (-N*(z; Q)7),

we get

N*(z; Q) =[LN*(z; Q)I* € Logs; gy - (2.25)
Combined (2.24) and (2.25), it follows that

[LN*(z; Q)]* = N*(z; Q' = Log(s; @) -
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So (2.21) holds. The proof of this theorem is completed. O
Finally, we point out a remark relative to the decomposability of CG(z ; Q).

Remark 2.8

In (10, Th. 2.10.5], it was pointed out that every cone can be expressed as the direct sum
of its lineality space and a pointed cone. So CG(z ; Q) can be decomposed as

CG(z; Q) = LCG(::; Q9 (LéG(z; Q) N CG(z; Q)) - (2.26)

For any ge& CG(z; Q), there exists a decomposition whose components are
l € Log(y; g) and g belonging to the part of its pointed cone LéG(z Q) M CG(z; Q) .
Thus for any h € N*(z ; Q), one has

<h,g>=<h,I>+<h,g>
=<h,g>
0, if g€ Log(s; gyor k€ gt
T k>0, otherwise ,
where both h and g belong to LéG(z . Q) s e, k and g in the same subspace. And
dim CG(z ; Q) = dim Lpg(,, g) + dim (LNt (z; Q)N CG(z; Q)) -

Acknowledgements

We are grateful to Professor Hiriat-Urruty, Dr. S. Uryas’ev and Mr. L. Wu for their
many helpful suggestions and comments.



-12-

References

1]

[2]
[3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[18]
[16]
[17]

[18]
[19]

[20]

L.M. Vidigal and S.W. Director, "A design centering algorithm for non-convex
regions of acceptability”, IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems CAD-1 (1982) 13-24.

L.M. Vidigal and S.W. Director, "Comparison of two methods for design centering”,
IEEE CH1635-2 (1981) 843-846.

R.K. Brayton, S.W. Director, G.D. Hachtel and L.M. Director, “A new algorithm for
statistical circuit design based on quasi-Newton methods and function splitting”,
IEEE Trans. Circuits Syst. CAS-26 (1979) 784-794.

R.K. Brayton, S.W. Director and G.D. Hachtel, "Yield maximization and worst-case
design with arbitrary statistical distributions”, IEEE Trans. Circuits Syst.CAS-27
(1980) 756-764.

Elijah Polak and Alberto Sangiovanni-Vincentelli, "Theoretical and computational

aspects of the optimal design centering, tolerancing and turning problem”, IEEE
Trans. Circuits Syst. CAS-26 (1979) 795-813.

D.G. Luenberger, Optimization by vector space methods (Wiley, New York, 1969).

V.F. Demyanov, "Differentiability of a maximum function I (USSR Comput.
Maths. Math. Phys. 8, 1-15, 1968).

B.N. Pshenichnyi, Necessary conditions for an extremum (Marcel Dekker, New
York, 1971).

V.F. Demyanov and A.M. Rubinov, "On quasidifferentiable mappings” (Math.
Operationsforsh. u. Statist., Ser. Optimization, 14 (1), 3-21, 1983).

J. Stoer and C. Witzgall, Convexity and Optimization (Springer-Verlag, New York,
1970).

R. Mifflin, "Semismooth and semiconvex functions in constrained optimization”
(SIAM J. Control and Optimization 15, 959-972, 1977).

F.H. Clarke, "Generalized gradients and applications” (Transactions of the Ameri-
can Mathematical Society, 205, 247-262, 1975).

M. Gérard Lebourg, "Valeur moyenne pour gradient généralis¢” (C.R. Acad. Sc.
Paris 281, Série A, 795-797, 1975).

Z.Q. Xia, J.-J. Strodiot, V. Hien Nguyen, "On a proof of the sufficient condition
mentioned in the VD2 algorithm” (Report, Dept. of Math., Facultés Univ. N.D. de
la Paix, Namur, Belgium) to appear.

Z.Q. Xia, J.-J. Strodiot, V. Hien Nguyen, "On expansible directions for the norm
bodies in the DC problem” (J. of Dalian Institute of Technology, 25 (4), 7-13,
1986).

Seymour Goldberg, Unbounded linear operators (McGraw-Hill, New York, 1966).

R.T. Rockafellar, "Generalized directional derivatives and subgradients of noncon-
vex functions” (Can. J. Math. 32, 257-280, 1980).

R.T. Rockafellar, Convex analysis (Princeton Univ. Press, Princeton, N.J., 1970).

Z.Q. Xia, V. Hien Nguyen and J.-J. Strodiot, "Some further optimality conditions
for the Cj; — embedded problem (Report, SDS/IIASA).

H. Tuy, "A general deterministic approach to global optimization via d.c. program-
ming” (Institute of Mathematics, Hanoi).



