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ON THE OPTIMAL STOCHASTIC CONTROL

OF WATER RESOURCES SYSTEMS*

A. SzBllBsi-Nagy

ABSTRACT

To get an effective control of large river basin systems, the decision

maker wishes to develop optimal operating policies. To establish these

policies, the future behaviour of inputs, such as available resources, de­

mand to be satisfied, etc., must be known or rather predicted. Because of

the uncertainties inherent in water resources processes, both in quantity

and quality, the prediction scheme to be constructed should be able to handle

stochastic effects. Moreover, the algorithms should be recursive to avoid

cumbersome computations and to be able to be used for real-time forecasting.

This is especially important in case of emergency, e.g. flash floods.

A general state space based formulation of water resources systems 1S

given. It is sho,m that the general model of runoff control systems is able

to handle different kinds of uncertainties. Optimal sequential prediction

algorithms for linear discrete time stochastic WR system are presented.

In the framework of runoff control the case of optimal stochastic dynamic

water quality control is discussed and feedback control policies are

established.

The algorithms proposed might help the decision maker in working out

the optimal operating policies for a large river basin system in the pre­

sence of different kinds of uncertainties.

* to be presented as a semi-tutorial paper at the UNDPfUN Interregional
Seminar on River Basin and" Interbasin Development, September 1975, Budapest.



- 2 -

INTRODUCTION

It is rather a truism that the Large River Basin and/or Interbasin

problems are extremely complex. They involve physical, economical, social,

legal, poiitical and several other issues. The collection and dynamic

behaviour of the above listed issues are usually called Water Resource(WR)

System.

There ~s no question about the fact that the main problem dealing with

WR systems is how to bring them into the 'best' possible states either in

a short-term or in the long run. In other words, how to make decisions

during either the operational or the planning phase in order to reach

maximum utility. The decisions are generally sequential in time, e.g.

short-term reservoir policies or long-term investment strategies. The

different kinds of water resources decisions are imbedded here into the

collective term of runoff control [8]. The purpose of runoff control is

to regulate the distribution of water both from quantity and/or quality

standpoints. The runoff control problem is essentially a stochastic

control problem, mainly due to (1) the randomness of natural and man-made

environmental effects and (2) some uncertain economic effects. It is ob­

vious, that the role of predictions in the water resources policy making. or,

as we term in selecting an optimal runoff control strategy. is highly im­

portant. (Throughout this paper the word prediction is understood in a

fairly broad context. it might include economic forecasting as well as

hydrologic predictions.)

The purpose of the paper is to propose a systems methodology for solving

runoff control problems. As the indicated problems are fairly sophisticated,

the tools for their solution are, unfortunately not less sophisticated.

Here, we consider optimal sequential prediction/control algorithms using

which the runoff control problems can be solved. In the first part, the

state space description of WR systems ~s given. Then the measure of system

performance is discussed follpwed by the determination of an optimal pre­

diction algorithm. The third part deals with the problem of optimal stochastic

water quality control. the later being an important issue in the general run­

off control. The procedures developed can readily be applied for other run­

off control problems too. All in all. the author would like to clarify some

runoff control problems from a methodological point of view trying to

follow in the meantime Einstein's dictum that "an explanation should be as
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simple as possible but no simpler".

Before going into the details here 1S a remark on the terminology

used throughout the paper.

Although these are some rather standard terms, borrowed from econometrics,

1n water resources management to name random WR systems, here we rather use

the terms of teh control science, noting that in many instances we are talking

about the same thing and nothing else but the 'name of the game' is different.

To prove this and to help the reader's orientation in the labirinths of

different terminologies Table I contains some technical terms of the control

field as well as the corresponding ones of the econometrics. The table is an

extension of that given by Mehra [19].

STOCHASTIC DISCRETE TIME WR-SYSTEMS

In the past decades considerable efforts were made to describe the be­

haviour of WR systems by using the so-called 'black-box' approach. The rain­

fall/runoff models as well as the input/output econometric models give good

examples ob this statement. The questions 'What is going on inside the box?'

'How can we relate the internal dynamics to the input/output behaviour?',

and 'How can we incorporate our a priori knowledge to the model?' lead to

the introduction of a new concept. This is the concept of state. In­

tuitively speaking, the state is the minimal amount of information about

the past history of a system which is required to predict its future be­

haviour [3].

For deterministic systems it means that the state of a system is a

set of quantities xl (t), x 2(t), ••. xn (t) which if known at t = to are de­

termined for t > t by specifying the inputs u(o) to the system for
- 0

t > t. Subsequently we are going to deal with discrete time systems only
o

where the systems are evoling on the discrete time set T = {t : t =
t , t + l, ... ,t f }, but are continuous in the state. Here t is the
000

initial time, t f 1S the final time which may be specified t
f

= N or

'free' depending upon the problem. For example, in long-range development

problems t f is usually fixed (planning horizon, N) while in real-time WR

control problems it is generally unspecified.

As Xstr8m [3] indicates for stochastic systems we naturally cannot

require that the future behaviour be uniquely determined by the actual state x.
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TABLE 1.

TERMINOLOGY OF SYSTEM IDENTIFICATION

IN ECONOMETRICS ANO CONTROL

Control Theory

Input variable
Output variable
Control function
Identification

Identifiable model

Unidentifiable model
Noise
White Gaussian n01se

Colored noise

Measurement noise

Process noise
Stochastic state variables
Performance index
Separation theorem
Markovian model
Rational z-transform
Impulse response model
Filtering
Prediction
Impulse response functiOn}
Markov parameters
Weighting pattern

Econometrics

Exogeneous variable
Endogeneous variable
Decision function
Specification and estimation
of the model

Justidentified or overidenti-
fied model

Underidentified model
Error
Nonautocorrelated normally

distributed error
Autocorrelated error
Sample uncertainty
Measurement error
ffudel uncertainty •
Natural uncertainty
Objective function
Certainty Equivalent Principle
Distributed Lag Model
Rational lag distribution
Final form model
Exponential smoothing
Forecasting

Impact, interim and
total multipliers
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A natural extension of the concept of state to stochastic systems would be

to require that the probability distribution of the state variable x at

future time be uniquely determined by the actual value of the state.

Recalling the properties of a Markov process, we thus require that the

system be described as a Markov process.

Consider a general dynamic lumped WR system~ as depicted in Fig. 1.

the behaviour of which on the discrete time set T can be described by the

stochastic difference equation

x(t + 1) =3'ix(t),u(t),w(t),t] (1)

where x(t) is the n-vector of the system states, a vector in the n-dimensional

state space X C ~~, x(t) E X; u(t) is the vector of control variables at

time t and is an element of the set of admissible controls U C~; u(t) € U;

wet) is the s-vector of uncertain disturbances (essentially the process

noise), wet) € D5ls , while the given function ~characterizes the properties

of the system~. First of all, a few words about the control u. As it

will be discussed later the principal aim of applying any control is to

bring our system into a desired, either physical or economical (or both)

state. There are, however, certain constraints to be considered when

choosing a control strategy. Constraints, usually given either by physical

laws or by limited resources (monetary or whatsoever). A control which

satisfies the control constraints during the entire time interval [to,tfl

is called an admissible control and the set of admissible controls is

denoted by U.

In order to evaluate the performance of the system quantitatively a

performance measure should be established. Here, the performance of the

system~is characterized by a scalar loss function of the type

t
f

J L Qt[x(t),u(t)]
t=t

a

where Qt > a is a given cost-functional. Clearly the system performance de­

pends on the states reached and the control efforts taken. Further, we

call a control u* E U optimal if it minimizes the loss J subject to the

behaviour of~! given by (1). However, as the states are random variables



U
~
~
C
O
N
i
\
~
C
;
L
L
E
O

't
~A
NO
Oi
'<
!

'tV
'(

)

D
IS

TU
R

8,
4N

C
E

S

CO
N

TR
O

L
V

A
R

tA
8L

E
S

u
(t

)

fll
E

A
S

U
R

E
M

E
N

T
N

O
IS

E v
(t

.
-
-
~
~
-

....
·1

2
,m

;
:

i
:

I
'

'
I

I

I
I·

··
..

:

1
;-

.-
--

-.
--

--
--

--
-.

--
.-

--
.-

--
-.

.,
t.Y

._
--

f-.
r

._
_~

\
~

~
I

i
2

J
j

1
l

1
1

<
-
-
_

...
~

H
v

III
R
~

la
C

',
I

C
~

'L
;
-
-
-
-
-
-
~

I
-

\
-
-
-
-
.
\

I
!

1
_

v
-

0
'

f
,
\
:

·z
I

;
:

;
;

~
j

•
:

--
+~

:t
~

2
:U

J
<

J
)

,
2

!
:..-
-

-"
..

"W
'1

\
T

E
R

R
!=

S
O

U
R

C
-

-
,I

.-.
.:2

:
U

J
-
~
-
-
.
;

,
t.,

f....
.

_
,

...
.

\
,t

.:
::'

;,
.

i
<

,
I

0
:

:
1

:
.;

'
;

L
U

•
I

(
t)

(_
_

'._
.__

._
.~

i
(

.)
'

;
0:

:
>

:
~

z
,

.
2

1
i

X
t

:
::>

:
!

.::
-
.
-
-
-
-
~
:

P
R

O
C

E
S

S
!

~
lJ

1
W

:
i

;
:

~
\

-
I

;
0

.
[I

I
.;

i
n

!
«

m
I

..$
:
j

.P
I

~
w

....
.

,.
...

..
..e

J.
I

I:
?

:
,I

•
I

~
"

_
_

_
_

_
•

•
.

I
0

..
-'

_
--

-'

I

M
E

J.
\5

U
H

E
-

0
'

M
EN

TS

F
IG

U
R

E
1.

H
Y

D
R

O
LO

G
lC

P
R

O
C

E
S

S
tD

E
N

T
IF

IC
A

TI
O

N



- 7 -

the loss J itself is also a random variable, consequently there is no way

of defining what is meant by the smallest value of J. Therefore, in the

following the expected loss

(2)

where €f o } denotes the expected value operator, will be chosen as a criterion

to be minimized subject to the same constraints as above. To evaluate the

system performance one must know exactly the actual state x at time t. In

other words, it means that there is no measurement error and sample un­

certainty 1n determining the state. One can expect intuitively that this

is rarely the case. There are rather inaccurate 'measurements', z(t), on

the state x(t). (Here. the 'measurement' should be understood in a

fairly large context, it might mean real measurements. say of rainfall,

or the evaluation of certain economic issues such as market effects in water

pricing etc.) That is the measurements are given by

z(t) =If[x(t),v(t).t] (3)

where z(t) E~ is an m-vector of measurements on the system states

~ctually the outputs); v(t) is the m-vector of measurement noise and the

functionaL~is given and characterizes the measurement 'device'. Obviously

m ~ n indicating that sometimes not all the state variables are ob­

servable. In the case of complete state information z(t) = x(t) while for

incomplete state information we have a stochastic measurement vector

sequence up to the current time t

T T T T'L = [z (t ).z (t + 1) ..... z (t)]too

consisting pf the previous measurement vectors. (The upper T refers to

transposition and should not be confused with the discrete time set T.)

Clearly, ~t is a vector in an m x (t - to + 1) dimensional space

Z .'V E Z and has the 'chain' propertyt' r.:t t

T rr T T:T
'Z't = L~t-l' z (t)J t E. T (4)
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Now, the stochastic control problem can be formulated as follows:

IFind an admissible control strategy for the WR system des­
cribed by (1) and (3) such that the criterion (2) is minimal.

As far as the possible control actions are concerned there are two funda­

mental ways the control can be specified.

(1) Open-loop: u(t), t = t , t + l, ... ,t f - 1, is a
o 0

fixed time function completely specified before the

control starts;

(2) Closed-loop: u(t) is determined as some specific function

of ~t'

In the open-loop case u(t) is a deterministic function. In the closed-loop

case u(t), t = t • t + l, •••• t
f

- 1 is a stochastic process, as it is a
o 0

function of a stochastic process z(-). A special caSe of the closed-loop

control occurs when the system states can be observed perfectly. i.e. when

z(t) = x(t)--no measurement n01se. Of course, even in this special case.

the control is a stochastic process. In this case, the admissible control

strategies are functions which map the state space X into the control space

U. u: X -4 U. The closed-loop or feedback optimal control, in case of in­

complete state information. is 1n the form of

(5)

where the functional 5fis called the optimal control law or policy. Notice

that the optimal control policy specifies how to generate control value at

time t from the observed state values up to the time t. In this case the

admissible control strategies are functions which map the space of ob­

served states (observed outputs) Zt into the space of possible control

actions U. u: ZtxT --)U. Since the dimension of the space Zt will in­

crease as t increases, it is much more difficult to determine the con-

trol strategy.

As it will be shown later the predictions playa central role in the

choice of the proper control strategy. Now, the problem is as follows:

the actually observed values of a stochastic process over some interval of
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time are given, then the conditional probabilities of all future values

should be determined based upon those given values. As a definition,
!/,

we call a function~ !/'-step-ahead predictor if it maps.Z into the !/'-step
t . t

'enlarged' state space X+JI,

(6)

The value of this function for a particular value of ~t is called an

JI,"step-ahead prediction and is denoted by ~(t + Jl,l~t). In the one-step­

ahead case the predicted value of the state will be denoted by x(t + ll~t).

Obviously, the 'goodness' of prediction must also be evaluated through a

given loss function J(o). Now, the prediction problem can be formulated

as follows:

Given the set of measurements ~t find and estimate

x(t + !/, I~t) of x(t + 1), !/, > 0, subject to the con­

dition that this estimation (prediction) should

minimize the chosen loss function.

Again, as the loss function J itself is a random varibale the minimization

should be carried out with respect to the expected loss ~{J(o)}. The de­

tails will be given later.

THE MEASURE OF SYSTEM PERFORMANCE

The selection of the proper performance criterion 1S a basic issue.

Obviously, the better the criterion characterizing the real goals, the

more efficient control is achieved. Some examples of setting up performance

indices to differnt runoff control problems are given as follows:

Minimum-Time Problems,where the problem is to transfer a WR

system from an arbitrary initial state x(t ) to a specified
o

target set ~, in a minimum time by applying an admissible

control u(t) € U, t € [to,t f ]. The performance measure to

be minimized is

(7. a)
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with t f the first instant of time when x(t) and ~ intersect

[17] . This is e.g. the case of flash-floods when the flood

retention reservoirs should either be emptied or be brought

into a prescribed lower level 2 in a minimum time.

Terminal Control Problems, where the problem is to minimize the

deviation of the final state of a WR system from its designed
nvalue d(t

f
) E' R. The performance measure to be minimized

might be the following quadratic form

Since positive and negative deviations are equally undesire­

able, the error is squared. A quadratic performance index is

chosen not only because of its easy mathematical handling but

because the convergence in the mean square implies convergence

in probability [23]. To attach different weights to the dif­

ferent deviations we can insert a real symmetric positive semi­

definite nxn matrix Q and using matrix notations, the per-
o

formance measure becomes

or 1n a short-hand form

(7. b)

where

with

".~~ is the squared norm of the deviation vector
o .

respect to Qo. To illustrate the terminai control

problems consider again a storage system consisting of n

reservoir and assume that certain irrigation demand d(t
f

)

should be satisfied by the time t
f

. In this example x(t
f

)

reflects the volume of stored water which can be used for

irrigation purposes at t f , and Q
o

consists of the cost

associated with the economic losses of the non-sufficient

irrigation.
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Tracking Problems, where the problem is to maintain the system

state x(t) as close as possible to the desired state d(t) E~

in the interval [to,tf ]. The performance measure of these

problems is generally in the form of

t
f

€U} = e{ L
t=t

o

2
II x(t) - d(t)~ Q }

1
(7. c)

where Q
1

is a real symmetric positive semi-definite nXn weighting

matrix. Note that Q1 may be time-varying rather than con-

stant. Some of the water quality control problems give ex­

cellent examples of these sort of tasks. The desired values

for the water quality state variables are generally given by

standards. For example, let d1 (t) be that for the Biochemical

Oxygen Demand (BOD)~ x1(t) and let d
2

(t) be the standard value

for the Dissolved Oxygen (DO)~ x2(t) to be maintained during

[to,tf ]· Moreover, let q11 resp. q12 be the cost associated

with the BOD resp. DO differences. Then the objective function

to be minimized is

e{.r}

Obviously, 1n this case

(More about the water quality control will be given later)

Minimum-Contral-Effort Problems, ~yhere the problem is to trans­

fer a WR system from an arbitrary initial state x(t ) to a
o

specified target set ~, with a minimum expenditure of control

effort. Obviously, the control to be applied must also be

admissible; u(t) ED, t € [to,t f ]. The general performance

measure of this kind of problem is in the form of
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€'{-J} = e{ ;f II u (t) II Q2 1
t=t 21

o j

where Q2 is a real symmetric positive definite weighting

matrix consisting of the cost of 'energy' consumed by

applying a particular control policy. Of course, the

elements of Q
2

may be functions of time if it is desired to

vary the weighting on control effort expenditure during the

interval [to,tfJ. To illustrate this problem is straight­

forward. One might think of e.g. the long-range dynamic

water resources planning problems to be carried out with

minimum energy.

(7. d)

Unfortunately, the real-world problems are rarely so simple as the above

listed ones. They are more

Complex Problems, where there are multiple, sometimes con­

flicting, objectives to be reached. For example, a decision

maker wants to control a WR system in such a way that the

particular final states of the system be close to their

desired value and in the meantime the deviations during the

operating period also be small by applying as minimal con­

trol efforts as possible. In this case, the performance

measure

g{ J} = e{11 x(t f ) - d (t f ) II~ +
o

tf-l

I
t=t

o

[ rx(t) - d(t) II
Q
2

+ II u(t)ll; ]}
1 '2

(7. e)

could be used. In the following we assume that the weighting

matrices Qo,Ql and Q2 are being independent of time, noting

however, that the results developed are valid for time-de­

pendent matrices too.

By comparing eqs. (7) with (2) the specialities become apparent.

LINEAR STOCHASTIC WR~SYSTEMS

In hydrology and water resources development the linear

models are of fundamental importance since.most of



the practical

of linearity.

It is assumed

- 13 -

problems can successfully be tackled with the assumption

For linear systems the functionals ST and 0~'are linear.

then,that the system~ is governed by the linear stochastic

difference equation

{

X(t +1)
A:

z(t)

¢x(t) + fu(t) + wet)

Hx(t) + vet)

(8)

(9)

where again t E T, x E X cF,n, u E: U C RP, z E j<.m and the uncertainties

{w(t):: t E: T}, {v(t): t E T} are multivariate Gaussian white noise sequences

with zero mean values and the covariances

cov

cov

cov

[wet) ,wet) ]

[vet) ,v(t)]

[v(t),w(t) ]

e{w ( t) wT( T) }

e{v(t)vT
(T)} =

e{v(t)w
T

(T)} =

(10. a)

(10. b)

(10. c)

where 0 denotes the Kronecker delta. In (8) ~ is an nxn nonsingular
tT

matrix called state transition matrix andf is the nxp control ga1D matrix

while in (9) the rr.xn matrix H is called measurement matrix. In case of time

varying systems the matrices ~, f, H, R
l

and R2 depend on time. Here, for

notational simplicity we consider those matrices with constant elements,

noting however, that the subsequently developed algorithm are also valid

for time varY1ng cases, the only thing we ought to do is just to insert

the time as an argument of matrices. As it is indicated by (lO.c) we

assume that the uncertainties are independent of each other. Anyway, this

is an obvious fact. Moreover, it is assumed that wet) and vet) are inde­

pendent of x(t) and the initial state x(t ) is normal with
o

~{x(t )} = x(t ) (11. a)
o 0

cov [x(t ) ,x(t )] = €'{(x(t ) - x(t )) (x(t ) - x(t ))T} = pet )
o 0 0 0 0 0 0

(11. b)

One can argue about the basic assumptions of being the noise process

Gaussian white sequences with known covariance matrices. Specially he is

right 1n the second issue because it is hard to say that those values are

known 1n dealing with hydrologic time series. To overcome this difficulty,
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an adaptive noise covariance matrix algorithm is introduced in (29].

As concerns the handling of 'colored' noises, by augmenting properly the

state vector with the dependent part of the processes, the resulting

residual is a white sequence (for details see Porebski (20]).

As far as the performance measure is concerned, it might be selected

from eqs.(7) - always carefully considering the objective of the control

to be achieved.

OPTIMAL SEQUENTIAL PREDICTION ALGORITHMS FOR LINEARWR-SYSTEMS

In large river basin management one of the most crucial issues, if not

that one, IS the lack of reliable predictions. Predictions for the future

resources as well as those for the future demand. The need for a reliable prediction

scheme is as old as civilization itself and dates back to the good old

Egyptian days. Nowadays, to achieve reliable predictions first of all a

reliable remote sensing network should be established which then makes

the quick collection of information possible, upon which the prediction

is based. Here, we do not touch this issue - some details can be found In

the WMO Casebook (34] or in [28J. Clearly, for real-time operation of

water resource systems, small computers are preferable. Hence, our pre­

diction algorithms must be suited for these small computers. But how? The

answer is simple: Using recursive prediction algorithms in which there

is no need to store all the past measurements for the purpose of predicting

future behaviour of the time series in question. Moreover, these algo­

rithms offer:

(1) The treatment of the information of each measurement In a

sequential manner allows for on-line implementations (e.g.

by means of data-acquisition by automatic measurement devices

connected in real-time mode with a central processor)

(2) Time variable parameters and different types of disturbances

can easily be treated. Hence, the suitable prediction scheme

should preferably satisfy the following requirements:

-it should be mathematically tractable

-it should be easily implemented for small computers

-it should be generally applicable
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-it should yield an 'optimum' prediction

-it should be adaptable to the varying environmental

conditions

-it should yield an acceptable convergence.

As it will be shown soon, the state space based prediction models are good

candidates for fulfilling the above requirements. We mention in advance

that the prediction scheme given below can also be applied for economic

forecasting. A somewhat similar approach ~to economic forecasting is dis­

cussed in [11].

It is well-known (see e.g. in Dooge [10] ) that a fairly large class of

lumped hydrologic systems (e.g. rainfall excess/suface runoff, runoff/run­

off transformations of flood-routing etc.) can be described by a single

input-single output discrete convolution type of model

q

y(t) = 2 g(T)h(t - T) t,T E T
T=O

where h(t) is the input of the system (either controllable or not), g(t)

is the impulse response of the system having finite memory q and y(t) is

the output process. In practice, however, we have only noise computed

measurements

z(t) = y(t) + v(t)

where v(t) 1S a Gaussian white noise process. Hence, the model is

q

z(t) = I g(T)h(t - T) + v(t)
T=O

t,T € T (12)

Note, that although the system was assumed linear, in case of slight non­

linearities, the noise process v(·) might be sought as a term including

those non-linear disturbances. By defining the vectors

H(t) [h(t),h(t - l), ... ,h(t - q)]

Tx = [g(o),g(l), ... ,g(q)]
(13)
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Eq. (12) becomes

z(t) = H(t)x + v(t) (13)

This equation can be looked upon as a measurement equation for the above

defined state vector x, c.f. (9). The missing state equation can also be

introduced without much difficulty. As it was assumed that the system is

time invariant, its impulse response g(o) does not change with time,

i.e. it is assumed to be the same at time t + 1 as at time t. Using the

above defined state vector, x, this statement can be formulated as

x(t + 1) <Px(t) + w(t) (14)

where we consider the uncertainties by adding a white Gaussian noise term

w(t). Clearly, (14) plays the role of the state equation, c.f. (8), with

<P = I, the identity matrix and r = o. (Though it is absolutely unnecessary

here to indicate <P, but because later on in the water quality control prob­

lem we deal with the <P 1 I case we still use the general formulation of

(14). For notational simplicity, on the other hand, H(t) will be denoted

by H, bearing in mind that in this case it is obviously time variant.)

We also assume that the noises have the properties as those of (10).

Now, in the sequential prediction scheme first we have to estimate the

state based upon the past and the newest measurements and then to give a

prediction for the output process.

Assume that given a prior estimate x(tlt - 1) of the system state x(t)

at t E twhich is based on previous measurements up to t - 1. Then we

seek an updated estimate x(tlt) which takes into account the new measurement

z(t) at t e: T. Consider this updated estimation as being the linear com-

bination of the previous state arid the new (noisy) measurement

x(tlt) = K(t)x(t!t - 1) + K(t)z(t) (15)

where K(t) and K(t) are time varY1ng weighting matrices as yet unsepe,ified.

In fact, we wish to minimize, in a certain sense, the prediction error



x(tlt) x(tlt) - x(t)
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(16)

Introducing (13) into (15) and utilizing the 'whiteness' of the noise

process, it can readily be seen that (15) is an unbiased estimation only

if K(t) = 1- K(t)H. Hence, the state estimation, x(tlt) using the new

measurement, z(t) is

x (t It) = x (t It - 1) + K( t) [z ( t ) ;.. Hx (tit ;..' 1) ] (1 7)

where K(t) is still unspecified, and the initial condition at t = t for
o

the state estimation is given by (ll.a) since x(t It ) = x(t ). As a
o 0 0

measure of the goodness of the estimation, we use the covariance matrix

p(o) of the prediction error defined as

(18)

the initial condition of which is given by (ll.b), s~nce pet It ) = pet ).
o 0 0

It can also easily be seen that the covariance matrix of x(tlt) can be

projected from that of x(tlt - 1) as

p(tlt)

(19)

As far as the loss function ~s concerned we define it similarly to (7.c),

~.e.

where Q ~s any positive semidefinite matrix and for the sake of simplicity

let Q I. Having defined the loss function we seek that estimate x'(tlt)

of x(t)--in other words, that form of the yet unspecified K(t) - which

minimizes the expected loss (as sometimes called Bayesian risk) B
t

=~{Jt}.
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Since B
t

is the trace of the error covariance matrix (18), the problem

is to minimize the trace norm IIp(tlt)11 of p(tlt), i.e. the length of the

estimation error vector. Using the properties of matrix derivatives, it

can be seen that the weighting matrix K(t) can be obtained from

as

K(t) (20)

which is used to refer to as the Kalman gain matrix. Now, the next step

is the extrapolation of the state variable. Consider the one-step-ahead

case, when £ = 1. In the process model (14) w(.) is a white noise se­

quence so no more information on it is contained in z(.) and thus the best

prediction of w(·) that can be made from z(.) is its mean value, i.e. 0,

consequently, the one-step-ahead prediction of the state vector, given

observations up to t € T is

x(t + lit) = ~x(tlt) (21)

The propagation of prediction errorsP(tlt) ~ p(t + lit) can be determined

by computing the predicted error covariance matrix as

Using (21) and (14) and utilizing the fact that the prediction error and

model error are independent of each other, we obtain

(22)

Using the formulas in the order of (21), (22)--and then with t : = t + 1-­

(20) (17) and (19) the celebrated Kalman filter algorithms [14] [16J are

obtained. The algorithms should be used sequentially, t = 1,2, ... , starting

with the given initial concitions at time t. The complete algorithms,
o
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together with the initial conditions, are summarized in Table 2. We mentioned

that in order to obtain the best estimate of the state we actually should com­

pute the conditional distribution of x(t + 1) given ~t. As the distribution

is Gaussian, it is completely given by the mean x and the cova~iance P. An­

other interesting fact is that the P and K can be precomputed, so there is

no need to store all the past observations as the calculation progresses.

Due to this fact, the conditional distribution of x(t + 1) given ~t is

uniquely given by the conditional mean x(t + lit) = ~[x(t + 1)1 ~t]' If f

denotes the conditional density we thus have

f[x(t + 1)1 ~t] = f[x(t + l)lx(t + lit)],

which means that the conditional mean is a sufficient statistic for the conditional

distribution of x(t + 1) given ~t. In other words, it means that the

knowledge given of x(t + lit) is equivalent to the knowledge of ~t' This

arguement can be extended for the ~ > 1 case as well. In fact, the col-

lection of algorithms summerized in Table 2. is the prediction functional

~~ of (6). It can be seen that the algorithms fulfill the requirements for

a suitable prediction scheme laid down previously.

Although it was assumed that the system is truly time variant, it

should be stressed, however, that .the above formulation can be used for des­

cribing slightly time variant systemswhich are, due to seasonal changes most

common in hydrology. The system behaviour can however be considered as being

time invariant within a well defined "data window". This data window, of

course, is of a moving type. As concerns the length of the moving data

window, it is essentially equal to the memory of the system and might be es­

timated from cross-correlation analysis performed on the input/output pro­

cesses. The moving data window creates the basis of the sequential prediction.

Up to this point we assumed that the noise sequences are Gaussian white ones

with known statistics. However, this is far from being true and the noise

variance estimation should somehow be included in the algorithms discussed.

This can be done by an adaptive algorithm developed by Sage and Husa [24].

For details, the reader should refer to [29]. In that paper examples are

also given to illustrate the utility of the proposed prediction scheme us~ng

simulated sequences. Finally, we note again that the algorithms can be
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used for economical forecasting as well. In this respect the reader should

consult Chow [6]. It might also be mentioned that the above algorithms can

also be derived in the framework of Bayesian statistics. Schweppe [Z5] gives

an excellent treatment of the BDT applied to dynamic state estimation problems.

OPTIMAL STOCHASTIC WATER QUALITY CONTROL

The water quality control is one of the fundamental categories of the

general runoff control. In the following we will discuss a stochastic water

quality control model which utilizes the previously discussed optimal sto­

chastic state estimation of the state variables involved and the dynamic

programming technique.

It is well-known that the Biochemical Oxygen Demand+) (BOD) and the

Dissolved Oxygen (DO) concentration give a fairly good measure for character­

izing the quality of a polluted river. If it is assumed that

-The width and depth of the river are small compared to the

length on the section [ro,rf ] considered and

-The effects of longitudinal dispersion along the length

of the river are small

then~y the mass-balance, the following partial differential equations are

obtained:

aB(r,t) + a(r) aB(r,t) = -K B(r,t)
at ar r

aD(r,t) + a(r) aD(r,t) _- -K D(r t) ()
at ar a' - KdB r, t + KaD s

These are the famous Streeter-Phelps equations [9] [27] where

r is the distance downstream from the reference point
r , re:[r ,rfJ;o 0_

t denotes time;

(23.a)

(23.b)

B(r,t)

D(r,t)

K
r

is the BOD concentration in [mg/£],

~s the DO concentration in [mg/£],

~s the BOD removal (decay) coefficient [day-I],

(say BOD removal by sedimentation),

+) The BOD is usually defined as the amount of oxygen required by
bacteria while stabilizing decomposable organic matter with the
help of dissolved oxygen in the water [9].
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K
d

is the deoxygenation coetficie11t [jay-1],

K ~s the reaerationcn~fficient [day-l]
a

D
s

a(r)

~s the saturation level of D,

stream velocity at r.

In fact, the above model describes the self-purification process of the pol­

luted river. (Anyway, the author is aware of the fact that the Streeter­

Phelps model has some drawbacks, e.g. in case of industrial wastes. However,

the methodology developed below is general enough to handle more sophisticated

pollution situations as well and the only thing to do is to add some more

balance equations, e.g. for Dissolved Orga~ic Carbon, for the suspended

biomass etc.) The above nodel is of distributed type and can be pretty well

applied for space dependent problems, such as e.8. estuary pollution studies.

For small rlvers, however, a simplified lumped parameter BOD-DO interaction

model can be set up by adding a third assumption to those of the distributed

-The river ':an be decourled into k non-ove'rlapping reaches
k .

;ji(., U ::!I? , = [r ,r
f

], in such a way that BOD and DO con-
~ i=l ~ 0

centratlons do not change with respect to r E.'~. within
~

that particular reach ~., ~.e.
~

aD(r,t) __ 0
ar ' Vr e: gt'i

In other words, a reach is defined as a stretch of the river of some con­

venient length or of which there is only one treatment facility of any kind.

Hence, with this assumption the lumped BOD-DO dynamics is described by

the well-knOlm [9] relations

dB (t)
cit ==

dD(t) =dt

- K B(t)
r

- K D(t) - K B(t) + K D
a d a s

(24.a)

(24. b)

which characterize the pollution situation at some average point rE.fi.
~

in the reach. Until now the effect/addition of effluents have not been taken

into account. This can be done by defining the control vector
T

u(t) = [u
l
(t),u2 (t)] , where u

l
(t) is for the dumping control of effluents from

the sewage treatment plant and u
2

(t) is for artificial aeration carried
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out along the reach, if there is any. The first control might mean, say,

the operation rule for a retention (depletion) reservoir located right

after the treatment plant and the second control is the timing schedule

for the aeration brushes. For sure, the controls belong to the set of ad­

missible controls u(t) € U. As far as the stochastic effects, such as

random disturbances caused by turbulence, model uncertainties, etc., are

concerned they were also ignored. Obviously, they can also be easily
Ttaken into account by defining the random vector w(t) = [wI (t),w2 (t)]

which is assumed again to be a zero mean Gaussian white noise sequence with

(IO.a). And now, to complete the formulation of the water quality control

problem we define the state variables and the performance measure. As we

already mentioned in connection with the tracking problems, there are

certain water quality standards to be satisfied during the control period.

Let those be denoted by d = [d l ,d2]T with respect to the BOD and Do con­

centrations. (They might be time varying but for notational simplicity we

assume them to be constant.) Now, we define the state x(t) = [xl(t), x
2

(t)]T

as being composed from the deviation from the desired BOD level dl,xl(t) =

= B(t) - dl , and from x2(t) = Ds - D(t), which is called oxygen deficit.

Clearly, the standard value d2 corresponding to x2 (t) might be set to zero,

since one of the objectives of the water quality control is to maintain

high DO values whenever it is possible, e.g. d
2

= O. So, using (24) the

complete process model becomes

where

dx(t)
dt

~x(t) + ru(t) + w(t) (25)

since the more the artificial aeration the less the oxygen deficit, and

reversely.

Due to the fact, that in practice we have discrete measurement, we

hearafter deal with the discrete time model



- 24-

x(t + 1) = ~x(t) + fu(t) + wet) (26)

where ~ and f are the same matrices as in (25). Eq.(25) is really a

linear stochastic difference equation, c.f.(8). The system dynamics IS de­

piced in Fig.2. We mention here, that ~ may be time dependent, but it

does not change the picture too much at least from a technical point of

view. It can also easily be proved that the system is state controllable.

As far as the state measurements are concerned. the situation is that the

evaluation of BOD concentration usually needs several days in a laboratory

and to determine the optimal real-time control policy instantaneous DO

measurements are available only. Again, the noisy measurment at one par­

ticular point are assumed to be in the form of (c.f.(9»)

z(t) Hx(t) + vet) (27)

where H = [O.l]T and vet) = [0.v2 (t)]T is as (IO.b). Surely. the un­

certainties have the property of (IO.c).

A suitable performance measure by which various control strategies can

be compared in order to find the optimal one is in the form of (7.e) or,

because of the tricky choice of the state variables, even simpler as

c{llx(N)~~ +
o

N-l
I

t=t
o

(28)

i.e. the operational time horizon N is fixed and we assume that it progresses

with the same 'speed' as the data collection. In other words, we are always

optimizing our decisions N step ahead. The elements of the matrices Qo' Q
l

and Q2 are the costs related to the treatment efficiency and efforts, and

have the same properties as those of (7.e).

And now comes the solution. Up to time t the measurements
T T T T

Zt-l = [z (to)'z (to + l), ... ,z (t - 1] have been observed and the problem

is to determine the control strategy u such that the criterion (28) is mini­

mal. The criterion can be split up into two parts as



- 25-

I ]
X1 (t)

J-~) DEL A Y -- ....-.;.

x1(t + 1) _
"-------

v(t)

~--__~--~ MEASURE­

MENT
DEL A Y

FIGURE 2. THE DYNAMICS OF THE DISCRETE TIME
LUMPED STOCHASTIC WATER QUALITY

CONTROL SYSTEM
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Clearly~ the second term depends on u(t) only. Assuming that a unique mini­

mum exists~ it follows from the Optimization Lemma A.l.(see Appendix) that

{ 2 N-l [2 2J}min ~ ~X(N)~Q + L IX(T)II Q + 11u(T)"Q =
u(t) 0 T=t 12

t { 2 N-l ~ 2 2 ] }}=€~in e Ilx(N)ll o + L Ilx(T)II Q + Ilu(T)II Q I~t-l '
u(t) '0 T=t 1 2

(29.a)

given ~ l' the first ~t-

respect to the distribution

where e{·I~t-l} denotes conditional expectation

of the right hand side denotes expectation with

of ~ l' and the minimum is taken with respect to all admissible stra-
t-

tegies which express u(t) as a function of ~ l' Repeating the
t-

given above for (29.a) for t = t + l,t + 2, ... ,N - 1 under the assumption

that all the unique minima with respect to u(t),u(t + l), ..• ,u(N - 1) exist,

we obtain

where

i.e. 1n a detailed form

(29.b)

= min ~{IIX(t)ll~ + 111l(t)ll~ + min ~{IIX(t +
u(t) 1 2 u(t+l)

+ I!u(t + 1)11
2

+ min e{···.I2' ~ ...}
Q2 u(t+2) t-l

j

1)11 ~ +
1
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Using the (29. b) definition of <yto ) for t + 1 we have

7(~,t + 1) = min e{llx(t + l)11~ + I\u(t + l)11~
t u(t+l) 1 2

+ min
u(t+2)

m i ne~lx(N)11 ~ +
uEU 1 1

(29.c)

c3mbining Eqs. (29.b) and (29.c) we obtain the following functional equation

for cy;

which is called Bellman equation and in fact is the result of the Principle

of Optimality+). The recurrence functional equation(30)0creates the

basis for the dynamic programming optimization in order to find the optimal

control strategy. The equation itself is fairly complicated due to the fact

that the dimension of Zt increases with t. However, (30) can be simplified

by taking into account the system structure. To evaluate (30) the con­

ditional distributions of x(t) and Zt given Zt-l should be determined. It

follows from (4) that the firs~ components of ~t are identical to those of

~t-l' i.e. to determine the conditional distribution of '<'t.giv.en ':l't-l it ~s

sufficient to know the distribution of z(t) given ':l't-l' Due to (27), how-

ever, it is determined by the conditional distribution of x(t) given ':l't-l' which

is uniquely given by the conditional mean x(tlt - 1) = e{x(t)l~t~l}' since this

is a sufficient statistic (c.f. the arguments given below (22». In other

words, it means that the conditional mean x(tlt - 1) can be introduced in-

stead of ':l' 1 in (30), i.e.
t-

+) An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must consitute an optimal
policy with regard to the state resulting from the first decision [4].
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C)Y(~(tlt - l),t) =ryCl~'t_l,t)

min €{II x (N) 11 2
+

u(t), ... ,u(N-l) Qo

N-l
+ I [llx(·r)I~ + ~u(T)I~2Jlx(tlt - I)}

T=:::t -I

and the Bellman equation becomes

(31)

<)'I'"(~(tlt - l),t) = min e{lIx(t)ll~
uEU 1

+ lIu(t)lI~ +C)f'(x(t + llt),t + l)lx(tlt - I)}
-2

(32)

Despite its form, this is a considerable simplification because the dimen­

sion of ~ is constant and usually much lower than that of ~t. Clearly, the

initial condition for (32) is

eyf'(~,N) (33)

As you may recall, we came to the conclusion in the prevIous chapter

dealing with the prediction algorithms, that the conditional distribution of

x(N) given ~N_lis normal with mean ~ and covariance P(N). Applying a

sjmple relation given in the Appendix (see there as Lemma A.2) we have for

(33) that

<)'I'"(St,N) = II ~,,~ + II QoP(N)1I
o

(34)

which is clearly a solution for the Bellman equation at time t = N. As

far as the other time instants are concerned, we assume the solution In a similar

quadratic form

<)'1'"(~, t) = II ~ ~ 2 + S ( t)
S(t)

(35)

where S(t) and s(t) are as yet unspecified. Eq.(35) is apparently true for

t = N and gives (34). By induction, it is assumed that (35) holds for t + 1

and then it will be shown that it holds for t. To evaluate (32) the con­

ditional distributions of x(t) and ~(t + lit) given ~t-l should be known.

It is known from the prediction study that the conditional distribution of
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x(t) given ~ 1 is normal with mean x(t! t - 1) and covariance matrix
t-

p(tlt - 1). Therefore. the first term of (32). by the use of Lemma A.2.

becomes

(36)

Considering eqs.(21) and (17) and the presence of the control func­

tion at the same time. we have

~(t + lit) = ~~(tlt - 1) + fu(t) + ~K(t)[z(t) - H~(tlt - 1)] (37.a)

Since the sequence z(t) - H~(tl t - 1). called' innovations' [13]. is again a

Gaussian white noise and its conditional distribution given Z 1 is normal
t-

with zero mean and covariance matrix HP(tlt - I)HT + R2 we have for the

statistics of (37)

S-{x(t + 11 t) '7't-l} = ~x(tl t - 1) + fu(t)

cov[x(t + Ilt)IZt_l] = cflK(t)[HP(tlt - 1)H
T

+ R2]KT(t)~T

(37. b)

(37.c)

Using the above results the Bellman equation (32) becomes

C)'/'tx(tlt - 1).t)= min {llx(t/t - 1)"~ + I/QIP(tlt - 1)11 + "u(t)lI~ +
uEU -1 2

+ lI~x(tl t - 1) + fu(t)1I ~(t+1)

+ IIS(t+I)~(t)[HP(tlt - I)HT + R2]KT(t)~T~ + set + 1)}

(38)

And now. if we are looking for an optimal feeback control in the form like

(5). or more specifically using the form u + Lx, where L is of course un­

known by completing squares in (38) and then elaborating some elementary

but tedious algebra. we find that the minimum is obtained for

(39)u*(t) - - L(t)x(tlt - 1)
--------------
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where the optimal control matrix IS

L(t) (40)

and the solution is In the form of (35) with the recurrence relation

Set) (41)

with the initial condition seN) = Q . (A similar expreSSion can be ob-
0

tained for set + 1) but it is not used directly to calculate the optimal policy. )

It can be proved [2] that (39) gives really an optimum policy. The complete

control algorithms are summarized in Table 3. It can be shown [15] that the

solution is unique and stable since

the controlled water quality process specified by

¢ and r of (26) is state controllable,

the matrices Qo' Ql and Q2 of the performance measure (28)

are positive definite.

And now, some remarkable properties of the optimal control are briefly sum­

marized. Notice that the optimal control strategy (39) can be separated into

two parts, namely into an algorithm computing ~he conditional mean of the states

at time t given the observations up to t - 1 (this is apparently done by the

Kalman filter) and into the computation of the control matrix (40). The

later depends only on the system dynamics <!> and r and the parameters Qo' Q
l

and Q2 of the performance measure and is independent of the uncertainties.

In other words L(t) can be precalculated and has the same form as the de­

terministic optimal control solved by dynamic programming. Clearly, the

stochastic effects are taken into account by using the stochastic state

estimation algorithms. This IS a very important and deep result known as

Separation Theorem (in control [12] ) or Certainty Equivalence Principle (in

econometrics [26]). Summarizing, the separation theorem states that, for

linear systems with quadratic cost functions and subject to additive

Gaussian white noises, the optimum stochastic controller is realized by

cascading an optimal estimator (predictor) with a deterministic optimum

controller. This is depicted in Figure 3, where the fat arrows mean vector

and the system dynamics is shown in detail in Figure 2. It has been mentioned
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as Akashi and Nose [1] have shown quite recently, that the separation

theorem holds even if all the random variables are non-gaussian and

correlated. Well, this was the solution of the lumped stochastic water quality

control problem using which the on-line real-time control of polluted rivers

becomes feasible. The distributed parameter case, however, is much more

difficult both from methodological and practical computational standpoints.

An effort to the optimal stochastic distributed water quality control is

found in [30], but at this stage that is far from being readily applicable.

As far as other water resource systems are concerned, the above

methodology might presumably be used as an extension to the long-range dynamic

water resources development models, reported in [7], by considering stochastic

effects. The same statement holds for stochastic linear runoff control

problems ( linear reservoirs etc.) as well.

SUMMARY AND CONCLUSIONS

In this paper the role of predictions in water resources policy making

was analyzed. A general state space based formulation of WR systems has been

introduced. It was shown that this general model of runoff contrcl systems 1S

able to handle different kinds of uncertainties. The objective of the WR

systems control were briefly touched and then the different measures of

system performance were discussed.

Optimal sequential prediction algorithms for linear discrete time

stochastic vIR systems have been discussed in detail and the advantages of

the Kalman filtering technique have been taken. In the framework of runoff

control the case of optimal stochastic water quality control has been con­

sidered. Using the discretized lumped parameter Streeter-Phelps equation the

optimal treatment control has been determined by means of stochastic dynamic

optimization. It was shown that the stochastic optimization process can be

separated into two parts, namely stochastic state prediction and deterministic

dynamic programming. In this way the optimal feedback control strategies

have been obtained. The procedures discussed offer that

using time domain formulation, the usual frequency~domain

based computations can be avoided on the one hand and the

problem becomes mathematically tractable on the other;

due to the recursiveness of the algorithms the scheme can
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easily be implemented even for small computers and are

applicable for real-time on-line forecasting control,

always taking into consideration the newest information

gathered;

due to the state space formulation, it is generally ap­

plicable for the most general hydrologic time series

(water quantity and/or quality), the joint prediction/con­

trol of multidimensioanl time series (which might include

some economic data) becomes feasible even in the presence

of different kinds of uncertainties;

the algorithms give optimal prediction control 1n Bayes

sense (Bayesian minimum variance estimators);

the algorithms fulfill the requirement of adaptivity

to changing environmental conditions as through a moving

data window it allows slight modifications in the model

parameters;

the algorithms are convergent and stable under very

general conditions.

Finally, we mention that due to the sometime uncertain future goals

of the water resources planning the theory a fuzzy systems (Zadeh [37]) and

that of the random cost functions (Rozanov [22]) offer powerful techniques.

Clearly, quite a lot of methodological work should be done in the

future to clarify the different sophisticated issues of the runoff control.

This paper did not wAnt to be anything other than a humble contribution to

those efforts.
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APPENDIX

Lerrnna A. 1.

Let x E X and z E Z be two scalar stochastic variables defined on a

probability space and let the control variable u E U be admissible. Let the

loss function J be a function which maps X X Z X U into the real numbers,

J : X x Z x U -7' R. The expected loss is then e{J(x,z,u)} where edenotes

mathematical expectation with respect to x and z. In case of incomplete state

information the admissible control strategies are the functions

u : Z --7 U. The control action thus has to be based on information

of one of the variables only. Let Nt£)e{J(x,z,u)} denote the minimum of

e{J(x,z,u)} with respect to all admissible control strategies and let

~{·Iz} a conditional mean g1ven z. Assume that the function f(z,u)

e{J(x,z,u)lz} has a unique m1n1mum with respect to uE U,V z E Z. Let

u*(z) denote the value of u for which the minimum is achieved. Then the

optimization Lemma states that

min e{J(x,z,u)} = e{J(x,z,u*(z))}
u(z)

= e. {min e{J(x,z,u) Iz}}z
u

(1)

where e denotes expectation with respect to the distribution of z[32].
z

Proof

For all admissible strategies we have

f(z,u) > f(z,u*(z)) = m1n f(z,u)
u

Hence

e{.f(x,z,u)} = e{f(z,u)} > e{f(z,u*(z))}
z - z

= e{min e{J(x,z,u) Iz}}z
u

e{J(x,z,u*(z))}

Minimizing the left hand side with respect to all admissible strategies we have

mine{J(x,z,u)} > ~{J(x,z,u*(z))}
u(z) -

e{min {j(x,z,u) Iz}}z
u

(II)
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Since u*(z) e U is also an admissible strategy we have on the other hand

~{J(x,z,u*(z))} > min e{J(x,z,u)}
u(z)

(III)

Combining the inequalities (II) and (III) we find (I) and the Lemma is proven.

Lemma A.2

Let x be a Gaussian random vector with mean x and covariance P and

let S be a nonnegative definite matrix. Then

~{llx" ~}

(Note that the trace norm 1·11 should not be confused with the squared vector

norm with respect to S, II·II~.)

The proof is straightforward. Consult [3].
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