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Foreword 

The minimum variance resource allocation problem asks to allocate a given amount 

of discrete resource to  a given set of activities so that  the variance of the profits among 

activities is minimized. The author presents a fully polynomial time approximation 

scheme for this problem. 

Alexander B. Kurzhanski 

Chairman 

System and Decision Sciences Program 



An E-Approximation Scheme for Minimum Variance Resource Allocation 
Problems 

Naoki Katoh 

1. I n t r o d u c t i o n  

The problem of allocating a limited resource to relevant activities in a fair manner 

on the basis of a certain general objective function has recently been considered by Katoh, 

Ibaraki and Mine [13]. Fujishige, Katoh and Ichimori [5] extended this result to  the one 

with submodular constraints. The problem considered by [13] is written as follows. 

FAIR: minimize g( max j .(x .), min f .(z -)) 
l < j < n '  ' l < j < n '  

n 
subject to x z, = N , 

j= 1 

where g is a function from R~ to  R such that g(u,v) is monotone nondecreasing in u and 

monotone nonincreasing in v, and j,,j = 1,2, ..., n,  are nondecreasing functions from [0, u,] 

t o  R .  j,(z,) denotes the profit resulting from allocating x, amount of resource to  activity 

j .  N and uj, j = 1, ... ,n ,  are positive integers satisfying 

If (1.4) is not satisfied, the problem is infeasible or has a trivial solution. If (1.5) is not 

satisfied for some j, replacing it by u, 5 N does not change the feasible set. Therefore as- 

sumptions of (1.4) and (1.5) do not lose the generality. 



This problem arises whenever the distribution of a given amount of integer resource 

to  a given set of activities is required so that the profit differences among activities are 

minimized. The fairness of the allocation is measured by the function g in problem FAIR. 

Zeitlin [18] and Burt and Harris [l] considered the special case of FAIR such as 

g(u,v) = u - v, and gave a finite algorithm. [13] and [5] gave polynomial time algorithms 

for the general case. 

The fairness of the allocation can be measured alternatively by the variance among 

the profits resulting from the allocation. Letting z = (z1,z2, ..., zn) be a feasible allocation, 

the variance among profits is defined by 

The minimum variance resource allocation problem is then described as follows 

P : minimize var(z) (1.7) 

subject to  the constraints of (1.2) and (1.3) . 

We assume that  all f,, j = 1 ,..., n, are nondecreasing, or all f , , j  = 1 ,..., n ,  are nonincreas- 

ing. Notice that  all f , , j  = 1, ..., n ,  can be assumed to be nonnegative valued without loss 

of generality. Let us consider the case in which all f, are nondecreasing (the case in which 

all f, are nonincreasing can be similarly treated). Let 

a -- min f,(O) , 
l s j l n  

and define for each j with 1 5 j 5 n 

Let P' denote problem P with all f, replaced by g,. It is easy to  see from (1.6) that  a 

solution is optimal to  P' if and only if it is optimal to  P, and that the objective value of 

P for a solution z is equivalent to  that of P' for z. This proves the above claim. 

We first give a parametric characterization stating that  an optimal solution of the 

following parametric problem P(A) defined below provides an optimal solution of P, if an 

appropriate number A is chosen. 

n 

P(A) : z(A) minimize C ( {  / ,(z,))~ - A f,(z,)) . 
j= 1 

(1.8) 

Thus, solving P is reduced to  find a A = A t  with which an optimal solution to P(At) is 



also optimal to P .  Such characterizations can be obtained in the same manner as was 

done by Katoh [ I l l  (Sniedovich 116, 171 and Katoh and Ibaraki 1121 treat the more general 

cases). [14] also gave the similar result for variance constrained markov decision process. 

This characterization, however, does not tell how to find such A*. The straightfor- 

ward approach for finding X * is to compute optimal solutions of P(X) over the entire 

range of A. Based on this idea, we shall present a pseudopolynomial algorithm for P (see 

[7] for the definition of a "pseudopolynomial algorithmn). We assume throughout this pa- 

per that the evaluation of f,(z,) for each integer z, can be done in constant time. 

The number of optimal solutions of P(X) generated over the entire range of X is not 

polynomially bounded in most cases (see Chapter 10 of Ibaraki and Katoh [lo]) .  In addi- 

tion, solving P(X) for a given X cannot be done in polynomial time in general unless 

{ ( z , ) } ~  - A ( z )  is convex. Notice that { f , ( ~ , ) } ~  - A f,(?) is not convex in general 

even if f,(z,) is convex. Therefore it seems to be difficult to  develop polynomial time al- 

gorithms, and we then focus on approximation schemes in this paper. A solution is said 

to be an 6-approzimate solution if its relative error is bounded above by 6 .  An approzima- 

tion scheme is an algorithm containing 6 > 0 as a parameter such that ,  for any given 6 ,  it 

can provide an €-approximate solution. If it runs in time polynomial in the input size of 

each problem instance, and I /€ ,  the scheme is called a fully polynomial time approzimation 

scheme (FPAS) [7,15]. 

We shall show that ,  if P(X) for each nonnegative X can be solved in polynomial 

time, we can develop an FPAS for P. The idea is to solve P(X) only for a polynomially 

bounded number of X's, which are systematically generated so that  the relative error of 

the achieved objective value is within E. We shall then show that if all f,(z,),j = 1, ..., n,  

are convex, we can develop an FPAS for P .  

We should mention here relationships between this paper and related papers 111, 121. 

Recently, Katoh [ l l ]  studied the minimum variance combinatorial problems and gave an 

FPAS under the assumption that  the corresponding minimum sum problem can be solved 

in polynomial time. (111 is based on the parametric characterization which is the same as 

this paper and the scaling technique. Notice that the scaling technique cannot be applied 

to our problem since f, are nonlinear in general. An FPAS for the problems similar to P 

of (1.7) has been proposed by Katoh and Ibaraki [12]. Though the techniques employed 

therein are similar to  those developed here, our problem P does not belong to the class of 

problems for which they developed an FPAS (especially the condition (A5) given in Sec- 

tion 5 of [12] does not hold for P ) .  



This paper is organized as follows. Section 2 gives the relationship between P and 

P(X), and shows that P can be solved in pseudopolynomial time. Section 3 gives an out- 

line of an FPAS for P, assuming that P(X) for any nonnegative X can be solved in polyno- 

mial time. Section 4 describes the FPAS for P .  Section 5 shows that if all 

f , (z ,) , j  I 1 ,..., n, are convex, the procedure of Section 4 with slight modifications becomes 

an FPAS. 

2. Relationship between P and P(X) 

Katoh and Ibaraki 1121 and Sniedovich (16, 171 considered the following problem Q. 

Q : minimize h(q,(z), q2(z)) , 
%EX 

(2.1) 

where z denotes an n-dimensional decision .vector and X denotes a feasible region. 

q,, i = 1,2, are real-valued functions and h(u1,u2) is quasiconcave over an appropriate re- 

gion and differentiable in u,, i = 1,2. They proved the following lemma. 

Lemma 2 . 1  [12, 16, 171 Let z f  be optimal to Q and let uf,  = qi(zf),  i = 1,2. Define A* 

Then an optimal solution of the following problem Q(X) with X = X * is optimal to  Q. 

The following lemma is obtained by specializing Lemma 2.1 to problem P. Let z *  

and z(X) be optimal to P and P(X) respectively. 

Theorem 2.1 Let X * be defined by 

Then z(X *) is optimal to P. 

Proof. First note that for any n-dimensional vector z = (z1,z2, ..., z,), 



Let X be the set of all n-dimensional vectors satisfying (1.2) and (1.3), and let 

and 

Then it is easy to  see that  for any z E X 

Therefore P can be rewritten into 

Since h(ul,u2) is clearly quasiconcave, i t  turns out that  P is a special case of Q. As a 

result, by ah(u1,u2) /aul  = l / n  and ah(u , ,u2) /au2 = -2u2/n2, the theorem follows from 

Lemma 2.1. 

Notice that  X * is nonnegative since all fj are assumed to be nonnegative valued. 

Although this theorem states that  P(X) for an appropriate X can solve P, such X is not 

known unless P is solved. A straightforward approach to resolve this dilemma is to  solve 

P(X) for all A ;  the one with the minimum var(z) is an optimal solution. This idea leads 

to  a pseudopolynomial algorithm for P .  For this, we shall give basic properties. 

It is well known in the theory for parametric programming (see for example [2, 6, 8, 

91) that  z(X) (the optimal objective value of P(X)) is a piecewise linear concave function 

as illustrated in Fig. 1, with a finite number of joint points X(1),X(2),...,X(M) with 

0 < < < - - -  < X c M )  Here M denotes the number of total joint points, and let 

A(,) = 0 and X(M+l) = 00 by convention. In what follows, for two real numbers a,b with 

a 5 b ,  (a,b) and [a,b] stand for the open interval {zla < z < b)  and the closed interval 

{zla 5 z 5 b)  respectively. The following two lemmas are also known in the parametric 

combinatorial programming. Let X be the one as defined in the proof of Theorem 2.1. 

Lemma 2.2 [8, 91 For any A'  E (X(k-l),X(k)), k = 1, ..., M +  1, %(A') is optimal to  P(X) 

for all X E [X(k-l),X(k)]. 



Figure 1 Illustration of z(X) .  

Let for k = 1,  ..., M + 1  

X t k  = { z  E q z  is optimal to P(A) for all A E [ A ( k - l ) , A ( k ) ] )  

Lemma 2.3 (8, 91 ( i )  For any two z,z' E X t k  with 1  5 k 5 M + 1,  

n n n n 

C { f j ( z j ) ) 2  = C {I,(.> ) I2  and C f j ( z j )  = C I,(.; ) 
j= 1 j= 1 j= 1 j= 1 

hold. 

(ii) For any z  E X t k - l  and any z' E X t k  with 2 5 k 5 M + 1, 

holds. 

Lemmas 2.2 and 2.3 ( i )  imply that in order to determine z(A)  for all A 2 0, it is 

sufficient to compute z(A ' )  for an arbitrary A' E (A (k - l ) ,A (L ) )  for each k = 1,2, ..., M + 1.  

We shall use the notation zk to stand for any z E X t k .  

Eisner and Severence [3] proposed an algorithm that determines z(A)  for all A 2 0 
k and z  , k = 1, ..., M + 1, for a large class of combinatorial parametric problems including 

P(A) as a special case. They showed the following result. 



Lemma 2.4 [3] Let r(n,N) denote the time required to solve P(X) for any fixed 

X 2 0. Then r(X) for all X 2 0 and zk,  k = 1, ..., M +  1, can be determined in O(M.r(n,N)) 

time. 

Lemma 2.5 (Chapter 10 of [lo]) 

Since P(X) for a fixed X can be viewed as the resource allocation problem with a 

separable objective function, it can be solved in o ( ~ N ' )  time by applying the dynamic 

programming technique (see Chapter 3 of [lo] for the details). Thus, by Lemmas 2.4 and 

2.5, we have the following theorem. 

Theorem 2.2 Problem P can be solved in o ( ~ ' J ~ N ~ )  time. 

Notice that  this running time is not polynomial in the input size but pseudopolynomial. 

3. The Outline of an  FPAS for P 

We assume in this section that  P(X) for any given X > O can be solved in polynomial 

time. Based on this assumption, we shall develop an FPAS for P .  Consider the following 

two problems MINIMAX and MAXIMIN associated with the original problem P .  Let X 

be as defined in Section 2. 

MINIMAX: minimize max f .(z .) , 
Z E X  l < j < n f  ' 

MAXIMIN: maximize min f .(z .) 
Z E X  l s j s n  f 3 

Let VMINIMAX and VMAXIMIN denote the optimal objective values of MINIMAX and 

MAXIMIN respectively. Since all fj, j = 1 ,... ,n ,  are assumed to  be nondecreasing or non- 

decreasing, problems MINIMAX and MAXIMIN can be reduced to problems of minimiz- 

ing certain separable convex functions over X (see Chapter 5 of (101 for the reduction), 

and hence these problems can be solved in polynomial time. If we apply the Frederickson 

and Johnson algorithm [4] to solve MINIMAX and MAXIMIN, we have the following lem- 

ma. 

Lemma 3.1 (Chapter 5 of [lo]) VMINIMAX and V M A X I M I N  can be computed in 

O(max{n,n log ( N l n ) ) )  time. 

Lemma 3.2 



Now let us consider problem FAIR with g(u,v) = u - v. Let d(z) denote the objec- 

tive value of this problem for an z E X ,  and let z"  denote its optimal solution. Though 151 

and [I31 treated only the nondecreasing case of f,, the nonincreasing case can be treated in 

the same manner, since replacing all f, by -1, does not change the problem. Therefore, 

we have the following lemma. 

Lemma 3.3 15,131 z"  can be computed in O(max{n log n ,  n log(N/n))) time. 

Lemma 3.4 For any z E X ,  we have 

Proof. Assume without loss of generality tha t  f l (z l )  < f2(z2) < L fn(zn) holds. 

First notice tha t  

holds. By fj(z,) - fi(zi) < fn(zn) - f l (z l )  for i , j  with 1 < i < j < n ,  the  second inequal- 

ity of (3.4) immediately follows. By the well known inequality qC a: 2 ( 5 for 
k= 1 k=l 

nonnegative numbers a l  ,a2,. . .,aq, 

holds. Since 

the first inequality of (3.4) follows from (3.5) and (3.6). 

Lemma 3.5 



Proof. Since d ( z 0 )  5 d ( z f )  holds by the optimality of zo  t o  FAIR with g(u,v)  = u - v ,  

the first inequality of (3 .7)  follows from the first inequality of (3 .4) .  Since 

v a r ( z f )  5 v a r ( z 0 )  holds by the optimality of z f  to  P ,  the second inequality of (3 .7)  fol- 

lows from the second inequality of (3.4).  

Lemma 3.6 For any optimal solution z f  of P ,  we have 

Proof. Let 

v f  = max j j ( z f j )  and v*  = min j , ( z f j )  . 
l<lsn l < j i n  

By the minimality of VMINIMAX and the maximality of VMAXIMIN, 

v f  2 v~~~~~~~ 

and 

v t  5 v M ~ ~ ~ M I N  

follow. If (3 .8)  does not hold, 

n 
d ( z f )  = v f  - v t  > -. d ( z e )  

2  

follows from (3.8) and (3.12).  By the first inequality of (3 .4) ,  

{ d ( z * ) } 2  5 va r ( z * )  
n3 

holds. Then it follows that  

n- l  { ~ ( Z O ) ) ~  (by the second inequality of (3.7)) va r ( z * )  5 - 

< -.--. "-' { d ( z * ) I 2  (by (3 .13))  
2 n  n2 

- - { d ( ~ * ) } ~  5 vo r ( z * )  . (by (3.14)) 
n  3 



This is a contradiction. Hence (3 .8)  is derived. (3.9) can be similarly proved. 

Lemma 3.7 For X * defined in (2 .3) ,  

m a x { 2 v M ~ N ~ M A ~  - n ' d ( z 0 ) ,  0 )  < * 5 2  vMAXIMIN + n - d ( z 0 )  (3.15) 

holds. 

Proof. Immediate from (2 .3 ) ,  (3 .8)  and (3.9). 

Now we shall describe the outline of FPAS for P .  First note that  if d ( z 0 )  = 0 ,  it is 

obvious that v a r ( z o )  = 0  and thus z o  is optimal to  P .  By Lemma 3.3, P  can be solved in 

polynomial time if d ( z 0 )  = 0 .  Therefore assume d ( z o )  > 0  in the following discussion. 

Define 

where la1 denotes the smallest integer not less than a .  Then solve P ( X )  for 

X = X o , X 1 ,  ..., XK. Among K + 1  solutions obtained, the one with minimum v a r ( z ( X k ) )  is 

output as an c-approximate solution of P .  This is proved as follows. 

Lemma 3.8 Let Xo ,X1 , .  . . ,AK be as defined above, and let X k  t satisfy 

v a r ( z ( X k * ) )  = min v a r ( z ( X k ) )  . 
O l k j K  

Then z ( X k t )  is an c-approximate solution of P .  

Proof. By Lemma 3.7 and (3.16)-(3.20), there exists 1 with 0  < 1 5 K such that  

holds. Since var(z(X1))  2 v a r ( z ( X k t ) )  holds by (3 .21) ,  it is sufficient to show that  z ( X l )  is 

an c-approximate solution. Define 6' by 

6' G X 1  - X *(< 6) . (3.23) 
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For the sake of simplicity, let 

n n 

51 = C { f , ( z , ( ~ , ) ) > ~  9 Ez = C f,(z,(A,)) 7 

j= 1 J= 1 

n n 
.*1 = C(I , (~* , )>~  , z*2 = C f jb* , )  . 

j= 1 j= 1 

Since z(Al) is optimal t o  P(Al), we have 

z(z(Al)) = Z1 - AlZ2 5 (z (z t )  = )zS1 - A1z*2 . (3.24) 

It  then follows tha t  

1 ,  1 
a r ( z ( ) )  = - - z - 5 (by (2.4)) 

n 

1 A'+& 5 -zS1 - - - A*+6' 1 
zt2 + --- z2 - ,F2 (by (3.23) and (3.24)) 

n n n n 

- - 
1 A*+6' 

- - % * I  n - 7. zf2 

1 n 1 
- ( Z  - ( A  * + F ) ) ~  + $A * + F)? 

n 2 2 

1 1 * A*+6' %S2 + -(A.+6.)2 
- < - . z l - Y .  n 4 

1 2 
*2) 

6' < - - .%t l  - - . ( %  - -. 
n n . n  zS2 

1 6' 1 2zS2 + - - ( z * ~ ) ~  + , - z f 2  + (by substituting A * = - from (2.3)) 
n2  n 

1 
= var(z*) + a(6')2 (by (2.4)) 

1 5 var(zf )  + -h2 . (by (3.23)) 
4 

Therefore 



n3-h2 
5 (by the first inequality of (3.7)) 

8(n-1) - { d ( ( ~ " ) ) ~  

= €  . (by (3.16)) 

This implies that  z(X,) is an c-approximate solution. 

4. Description of FPAS for P 

Based on the results given in the previous section, we shall describe an FPAS for P. 

Procedure APPROX 

Input: The minimum variance resource allocation problem P with n,N,fj and 

u,, j = 1,2 ,..., n .  

Output: An c-approximate solution of P .  

Step 1: Solve MINIMAX and MAXIMIN with n ,N,  f, and u,,j = 1,2, ..., n ,  and let 

VMJNIMAX and VMAXIMIN be their optimum values, respectively. Solve FAIR with 

q(u,v) = u - v,n, N and f, and ujl j = 1,2 ,..., n ,  and let z" and d(zo) be its optimal solu- 

tion and optimum value, respectively. 

Step 2: If d(ze) = 0, then output z" as an optimal solution of P and halt. Else go to 

Step 3. 

Step 3: Compute 6,Xo,X1,.. .,AK and K by (3.16)-(3.20). 

Step 4: For each k = 0,1, ..., K ,  compute z(Xk). 

Step 5: Compute z(Xkt) determined by 

var(z(Xkt)) = min var(z(Xk)) 
OLkIK 

and output z(Xkt) as an €-approximate solution of P .  Halt. 

Theorem 4.1 Procedure APPROX correctly computes an €-approximate solution of P in 

o ( r ( n , ~ ) n ' / J ;  + max{n log n ,  n log ( N l n ) ) )  (4.1) 

time, where r(n,N) is the time required to compute an optimal solution z(X) of P(X). 

Proof. The correctness follows from Lemma 3.8. The running time is analyzed as fol- 



lows. Step 1 requires O(rnaz{n log n,n log(N/n)}) time from Lemmas 3.1 and 3.3. Step 2 

requires O(n) time to  output an n-dimensional vector zo. 

Since 

5 2n - d(zo), (by Lemma 3.2) 

follows. Thus , K is determined in O(1og n -loge) time by applying the binary search. 

By (4.2), O(r(n,N) - n 2 / d i )  time is required in Step 4. Step 5 requires O(n) time to  out- 

put z(Akt). The total time required by APPROX is therefore given by (4.1). 

Corollary 4.1 If r(n,N) is polynomial in the input size of a problem instance P(A), pro- 

cedure APPROX is an FPAS. 

5. The Case Where All fj are Convex 

We shall discuss the case in which all j,,j = 1, ..., n,  are convex. It should be men- 

tioned that  {/,(z,)}~ - A/,(z,) may not be convex for some positive A. Therefore, P(A) 

cannot, in general, be solved in polynomial time. Recall that  all 1, are nondecreasing or 

all 1, are nonincreasing. First consider the case in which all 1, are nondecreasing. Let 

cr = max j . (u  .) , l < j < n f  

and let for each j with 15 j 5 n 

Notice that  g, is nonincreasing and nonnegative valued. Then apply procedure APPROX 

with all 1, replaced by g,. We shall claim that this gives an €-approximate solution of P 

and that its running time is polynomial in input size and 116. Let P' denote P with all 1, 
replaced by g,. It is easy to  see from (1.6) that a solution is optimal to P if and only if it 

is optimal to P' and that  the objective value of P for a solution z is equivalent to that  of 

P' for z. This proves the first claim. 



T o  prove the second claim, note t ha t  g,(z,) is concave and nonnegative valued over 

[O,u,], and tha t  -g,(z,) is convex. With this observation it is easy to  show tha t  

{gj(z,)}2 - Agj(zJ) is convex. By the convexity of -g,(z,) and the nonnegativity of A, i t  

is sufficient t o  show tha t  {gj(zj))2 is convex. For any y and y' with 0 < y < y' < uj, we 

have 

Y + Y ' )  2 0 holds. By definition of a and the By the convexity of f,.f,(y) + f j (yr)  - 2 f j ( T  

Y + Y '  nondecreasingness of f,, fj(-----) - a + f,(y) - a 2 0 holds. Thus, the first term of (5.3) 
2 

) > 0 and f,(ye) - f,(y) > 0 is nonnegative. Since f, is nondecreasing, f,(y') - f,(- 
2 

follow from y' > y. Hence, the second term of (5.3) is also nonnegative. This shows the  

convexity of {gj(zj))2. Thus,  the  second claim is proved. 

The  case in which all f,,j = I,...,", are convex and nonincreasing can be similarly 

treated after replacing f,(z,) by h,(z,) defined as follows. 

where 

= max f,(O) 
l < j < n  

An FPAS for the case where all f, are convex is described as follows. 

Procedure APPROXCONV 

Input: The  minimum variance resource allocation problem P with n,N,f, and 



uj, j  = 1,2 ,..., n ,  where all f, are convex. 

Output: An r-approximate solution of P .  

Step 1: If all f, are nondecreasing (resp. nondecreasing), replace f,(z,) by q,(z,) of (5.3) 

(resp. h,(z,) of (5.4)), and call APPROX. Output z returned by APPROX as an r- 

approximate solution of P. 

Theorem 5.1 Procedure APPROXCONV correctly computes an r-approximate solution 

of P with convex f,,j  = 1 ,..., n ,  in 

O(max{n,n log(N/n)).  n 2 / d r  + max{n log n,  n log(N/n))) (5.6) 

time. 

Proof. The correctness is immediate from the discussion given prior to  the description of 

APPROXCONV. Since { q , ( ~ , ) ) ~  - Xgj(zj) (resp. { h , ( ~ , ) } ~  - Xh,(z,)) is convex as shown 

above, P(X) with all f, replaced by g, (resp. hi) can be solved in O(max{n,n log(N/n)}) 

time by applying the Frederickson and Johnson algorithm [4]. This and Theorem 4.1 

prove that the running time of APPROXCONV is given by (5.6). 
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