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FOREWORD

This paper deals with a domain of Artificial Intelligence known under
the name of “qualitative simulation” or “qualitative physics”, to which spe-
cial volumes of Artificial Intelligence (1984) and of IEEE Transactions on
Systems, Man and Cybernetics (1987) have been devoted.

It defines the concept of “qualitative frame” of a set, which allows to
introduce strict, large and dual confluence frames of a finite dimensional
vector-space.

After providing a rigorous definition of standard, lower and upper quali-
tative solutions in terms of confluences introduced by De Kleer, it provides a
duality criterion for the existence of a strict standard solution to both linear
and non linear equations.

It also furnishes a dual characterization of the existence of upper and
lower qualitative solutions to a linear equation.

These theorems are extended to the case of “inclusions”, where single-
valued maps are replaced by set-valued maps. This may be useful for dealing
with qualitative properties of maps which are not precisely known, or which
are defined by a set of properties, a requirement which is at the heart of
qualitative simulation.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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Qualitative Equations: The Confluence Case

JEAN-PIERRE AUBIN

Introduction

The purpose of this paper is to offer several theorems on the qualitative
solutions to a linear or nonlinear equation

giveny€ R™, find z€ R" such that f(z) = y

in terms of “confluences”, i.e., of the signs of the components of the vector
y. (See[2,8,19,33,35,38,40,41,48,55,62,64] for a survey of the literature on
this topic.)

For defining in a rigorous way qualitative solutions to an equation, we
adopt, and slightly relax for duality purposes, the definition of qualitative
frames proposed in [2]:

A qualitative frame (1,Q) of a set X is defined by

— aset X, called the qualitative set’
— aset-valued map? Q : X ~ X, called the value map
where we assume that

1) VaelX, Q(a) # 0
(1) 1) Q issurjective (Vz€ X, Ja€e X | z€Q(a))
111) Q isinjective (Va,b€ X, a#b, Q. # Q)
We shall say that the qualitative frame is strict if we assume [urther
that
(2) Va,be X, a#b, QanQ@y, = @

In this paper, we shall use only the confluence frames of finite dimen-
sional vector-spaces, defined as follow:
—  Strict Confluence Frame We associate with X := R" the
n-dimensional confluence space R" defined by

R"™ = {-,0,+}"

'which is generally assumed to be a finite set
2A set-valued map Q from X to X maps each ¢ € X to a subset Q(a) C X, possibly
empty.




The strict confluence frame is defined by (R",Q,) where the value
map Q, maps each qualitative value a € R™ to the convex cone

Qn(a) := R} := {veR" | signof (v;) =a, }
For n = 1, we have
Ql(‘) :]_00,0[’ Ql(o) = {0} & Ql(+) :l0,+00l

— Large Confluence Frame We still associate with R™ the n-
dimensional confluence space R"™. The large confluence frame is then
defined by the set-valued map @, associating with every a € R" the convex
cone

Q.(a) == aR} = {veR"|s5(v) =aior0}
which is the closure of @Q,(a) = R}.

— Dual Confluence Frame Let R™ denote the dual of X :=
R"™. The dual confluence frame (R" Q;) is made of the n-dimensional
confluence space R™ := {—,0,+}" and the set-valued map Q;, from R"
to R™ which maps every a € R™ to the closed cone Q*(a) of elements

p:=(p!,...,p") defined by

p;i >0 f ay = +
pi <0 if a; = -
pi€R ifag =0

Let (X,Qx) and (Y,Qy) be qualitative frames of two sets X and Y,
/X — Y and b € VY be a qualitative right-hand side. We define three
types of qualitative solutions:

— the standard qualitative solution a € X satisfying:

J(@x(a))nQy(d) # @
— the upper qualitative solution a € X satisfying:
/(@x(a)) c Qy(b)
— the lower qualitative solution a € X satisfying:
/7@v(¥) ¢ Qx(a)

and we see at once that any upper qualitative or lower qualitative solu-
tion is a standard solution.



Let the two quantitative spaces X := R" and Y := R™ be finite dimen-
sional vector-spaces.

In the case of standard solutions, it is more difficult to prove the existence
of strict confluence solutions than large ones. We shall provide a criterion
for the existence of strict standard solutions.

Let us begin by the case when f := A € L(X,Y) is a linear operator.
In this case, there exist always large qualitative solutions because A(0) = 0!
But if we assume that the dual condition

(3)

(0,0) is the only solution (p,gq) to
p € A(g)NQr(a) & ge -Qr(b)

is satisfied, then there exists a standard strict qualitative solution a € R"

A(Qn(a))QO(b) # 0

This theorem can be extended to the non linear case through lineariza-
tion and duality.

Let 2o € Q,(a) (where yo := f(zo) € @,(b)) be a representative of a
solution a to the large qualitative equation

/(@Qn(a)) Q) # 0
Assume that f is continuous and continuously diflerentiable at zg. If

(4)

(0,0) is the only solution (p,q) to
p € ['(20)*(9) N Qnla) & g€ -Qn(d)

then a is a solution to the qualitative equation

/(@Qn(a))NQm(b) # 0

For upper qualitative solutions, we shall prove in the linear case the fol-
lowing duality principle: Let A € £(X,Y) be linear. Then the two following
conditions are equivalent:

A(Qn(a)) © Qn(b)
and
AY(Qn(b)) < Qpla)

as well as the equivalent statement for lower qualitative solutions: the
two conditions :

ATHQn() c Qula)



and
Qn(a) c A*(Qn(?)
are equivalent.

As it can be seen from the definitions of qualitative solutions, our the-
orems rely on “set-valued analysis”, which has been developed for various
reasons from Painlevé’s early works to recent results on graphical conver-
gence and the differential calculus of set-valued maps, including an inverse
function theorem we shall actually use.(See [1,3,4,6] for instance.)

Hence we can study right away qualitative analysis of set-valued maps
F : X ~ Y. The mathematical cost will be slightly the same, and, further-
more, there is an important motivation to just do that at the onset in the
framework of qualitative analysis.

Indeed, when the objective is the resolution of an equation f(z) = vy,
the single-valued map f is not exactly known, even when physicists and
other scientists model them by classical and familiar “special functions”
through their behavior. It is just enough to mention the favorite use of
the exponential, logarithmic, logistic, trigonometric, ... functions in many
models.

Actually, the choice of these functions is often made because there are
“representatives” of a class of functions defined by a list of properties,
whether this list is exhaustive or not, conscious or not.

Keeping in mind the philosophy of qualitative reasoning, 1t is more to
the point to start with such a list of requirements on maps from X to Y
and build from it the “largest” set-valued map F from X to Y which satisfy
them.

Hence we are led to propose to solve right-away the qualitative solutions
to “inclusions”

F(zr) > y

We shall prove the set-valued versions of the results described above in the
rest of the paper, after adapting to the set-valued case the above definitions.

We begin by defining precisely qualitative frames, and then, five types
of qualitative solutions to inclusions. We then provide the duality results in
the linear case and study the non linear case in the last section.



1 Qualitative Frames

The general features of qualitative analysis, and, more particularly, of con-
fuences, can be captured in the mathematical framework we propose below.

Let X, called the quantitative space, denote the set of elements on
which operates qualitative reasoning.

Definition 1.1 A qualitative frame (X,Q) of a set X 1s defined by
— a set X, called the qualitative set?
—  a set-valued map? Q : X ~ X, called the value map
where we assume that

i) VaelX, Qa) # 0
(5) 1) Q issurjective (Vz€ X, 3a€ X |z € Q(a))
ii1) Q is injective (Va,be X, a#b, Q. # Qs)

We shall say that the qualitative frame s strict if we assume further
that
(6) vavberaaibaQamtho

We denote by P := Q™! the inverse® of P, called the qualitative map.

Remark — STRICT QUALITATIVE FRAMES. When the qualitative
frame is strict, the qualitative map P is single-valued, and is then denoted
by p.

In this case, the subsets Q(a) do form a partition of X when a ranges
over the qualitative set X', so that they constitute the equivalence classes of

Swhich is generally assumed to be a finite set

‘A set-valued map Q from X to X maps each a € X to a subset Q(a) C X, possibly
empty. We say that Q(a) is the image or the value of Q at a. The image Q(M) of M is
the union of the images (or values) @Q(a) when a ranges over M. One set Im(Q) := Q(X)
(the image of Q) and Dom(Q), the domain of @, the subset of @ € X such that Q(a) is
not empty.

A set-valued map Q is characterized by its graph Graph(Q), subset of the product
space I x X defined by

Graph(Q) := {(a,z) e X x X | z € Q(a)}

®This means that a € P(z) if and only if z € Q(a). In particular,
Vze X, z € Q(P(z))



the the binary relation R defined on X by:

z Ry <= p(z) = p(y)

which is an equivalence relation. Hence we can regard in this case the

qualitative set X as the factor space X := X/R and p as the canonical
surjection®. O
Remark — CLOSURE OF A STRICT QUALITATIVE FRAME.

When X is a topological space, it is convenient to associate with a strict
qualitative frame (X, Q) its closure (X, Q) where

(7) YVae X, Q(a) := c(Q(a)) =: Q(a) D
Example — Strict Confluence Frame
We consider the usual finite dimensional vector-space X := R" as a

quantitative space and we associate with it the n-dimensional confluence
space R" defined by

R = (-, 0,4)"
whose elements are denoted by a := (ay, ..., a,).

The strict confluence frame is defined by (R",Q,) where the value
map @, maps each qualitative value a € R™ to the convex cone

Qn(a) := R = {veR" | signof (v;) =a; }

It is obviously a strict qualitative frame, so that the inverse of Q,, de-
noted by sy, is the single-valued map from R" to R™ defined by:

Vie{l,...,n}, sp(z); = =z, O

Example — Large Confluence Frame

We still consider the finite dimensional vector-space X := R™ as a quan-
titative space and we associate with it the n-dimensional confluence space
R™. The large confluence frame is then defined by the set-valued map
Q,, associating with every a € R™ the convex cone

Q,(a) == aR} := {veR"|s(v;)=a;or0}

SConversely, we can associate with any equivalence relation R a strict qualitative frame,
whebe the factor space X := X/R is the qualitative set and the canonical surjection

p: X = I = X/R

associating to each element z € X its equivalence class p{z) € I, the qualitative map.



which is the closure of Q,(a) = R}, as well as the image of R} by the map
a:z+— az = (a171,...,anTn).
Its inverse is the set-valued map from R" to R" denoted by S,,, which

is defined by:

- if b o7t S 0
Vie{l,...,n}, Sa(z); =¢ {-,0,+} if ;=0
+ if T > 0 O
“Example — Dual Confluence Frame

Let R™" denote the dual of X := R™. The dual confluence frame
(R™, Q%) is made of the n-dimensional confluence space R" := {-,0,+}"
and the set-valued map QX from R" to R™ which maps every a € R" to

the closed cone Q*(a) of elements p := (p',...,p") defined by

pi >0 faq = +
pi <0 if a; = —
p,‘ER fa =0

Its inverse is the set-valued map from R"" to R" denoted by S; and

defined by

{+,0} if pi > 0
S*(p) =4 {-0) ifp <0
{—,0+} if pp =0

The reason why this qualitative frame is called the dual confluence frame
is given by the following lemma:

Lemma 1.1 The positive polar cone to the convez cone Q(a) := aR" is the

cone @*(a) := a 1(R7})
Proof — We associate with any a € R™ the subsets

Ip(a) :={t|ai = 0}
Ii(a) ={ila; > 0)
I-{a) ={1|a; <0}

of I:={1,...,n}.
We observe that

p€(aR})” ifandonlyif p; >0 if 1€ I4(a)& p; <0 if 1€ I_(a)



since this is equivalent to

YyeRY, D apyi = ) pyi- ) pyi >00

el i€l (a) i€l_(a)

2 Qualitative Inclusions

Let us consider two quantitative spaces X and Y, a single-valued map f :
X — Y and the equation

(8) find z € X such that f(z) = y

which we shall call the “quantitative equation”. More generally, we can also
start with a set-valued map F : X ~ Y and the “quantitative inclusion”

(9) find z€ X suchthat F(z) 3 y

In order to make a qualitative analysis of such an equation or an inclu-
sion, we introduce two qualitative frames (1,Qx) and (Y,Qy) and their
qualitative maps Px and Py.

There are many ways to associate with F “projections” which map X to
Y. We shall only mention three of them.

— Standard Projection
It is the set-valued map no(F): X ~» Y defined by

(10) F = mo(F) = PyoFon,}l = PyoFoQx

where o denotes the usual product of set-valued maps’.

"One can conceive two dual ways for defining composition products of set-valued maps
(which coincide when G is single-valued):
Let X, Y, Z be Banach spaces and G : X ~» Y, H :Y ~» Z be set-valued maps:
1 — the usual composition product (called simply the product) HoG : X ~ Z of
H and G at z is defined by

(HoG)z) == |J HW)
yEG(2)
2 — the square product HOG : X ~ Z of H and G at z introduced in [5], is
defined by
(HOG)(z) = [ H(y)
¥EG(2)
There are also two manners to define the inverse image by a set-valued map G of a subset



Hence, we can associate with the quantitative inclusion the standard

qualitative inclusion:

(11) find a € X such that no(F)(a) > &

which is equivalent to either formulations®

1) F(Qx(a))ﬁQY(b) # 0
) # 0
X)Qy(b)) # 0

i) Qx(a)n F-1(Qy(d)
(12) 117) Graph(F)n (QX( )
iv) a € PX( ( (b))

The last property follows from the observation that
(13) (7o(F))™" = mo(F71)
which is obvious when we remark that
Graph(no(F)) = (Px x Py)Graph(F)

Solving the standard qualitative equation means that, given a “quali-
tative right-hand side” b € Y, there exist a quantitative right-hand side
y € Qy(b) and a solution £ € F~1(y) which belongs to Qx(a).

— The Upper Projection

M:

Wi

{ a) G (M)

{z ]| G(z)NM #0) theinverse image of M
B GH(M) =

z | G(z) C M} the core of M

The formulas which state that the inverse of a product is the product of the inverses {in
reverse order) become:

{i) (HoG) !(2) “I(HT(2)) = (GTloHTY)(z)

G
G (H™'(2))

i) (HOG)™'(2)
8When the quantitative spaces X and Y are vector-spaces, we can associate with F
the set-valued map ®: X x Y ~» Y defined by
®(z,y) = F(z)-y
Hence ny(F)(a) 2 b if and only if

3(z,y) € Qx(a) x Qv (b) such that ¥(z,y) = O



It is the set-valued map 7, (F): X ~» Y defined by
(14) 7+(F) := PyO(FoPy') := PyO(FoQx)

Hence, we can also associate with the quantitative inclusion the upper
qualitative inclusion:

(15) find a € X such that n (F)(a) > b

which is equivalent to either properties®

(16) {") F(Qx(a)) € Qy(b)
i) Qx(a) < F*(Qy(b))

In other words, solving the upper qualitative equation means that, given
a “qualitative right-hand side” b € Y, a is a an upper qualitative solution if
for all representative z € Qx(a), every y € F(z) is a representative of b.
— The Anti Lower Projection
It is the set-valued map w_(F): X ~ Y defined by

(17) w. (F) := (Py o F)OPg! = (Py o F)OQx

Hence, we can also associate with the quantitative inclusion the anti
lower qualitative inclusion:

(18) find a € X such that w_(F)(a) > b
which can be written in the following equivalent form:
(19) Qx(a) ¢ F7H(Qy(b))

Therefore, solving the anti lower qualitative equation means that, given
a “qualitative right-hand side” b € Y, a is a anti lower qualitative solution

®We use the following observations:

{ i) z € (HDG) (2) < G(z) C H '(2)
it) z € (GT'DH ')(z) <= H '(z) C G(z)

and

{ i) (HoG)™'(M) = G~'(H™'(M))
i) (HoG)*'(M) = G*'(H'(M))

10



if for all representative z € Qx(a), there exists a representative y € F(z) of
b.

We can also inverse first the set-valued map F and “project” the set-
valued map F~!. We then obtain the two following concepts of projections
and qualitative solutions:

— The Lower Projection
It is the set-valued map n_(F): Y ~» X defined by

(20) 7_(F) := PxO(F 'oPy') := PxO(F 1oQy)

Hence, we can also associate with the quantitative inclusion the lower
qualitative inclusion:

(21) find a € n_(F)(b)
which is equivalent to property
(22) F7I(Qv(®) c Qx(a)

Therefore, to say that a is a lower qualitative solution amounts to saying
that for all representatives y € Qy (b) of the qualitative right-hand side b,
all solutions to the inclusion F(z) 3 y are representatives of a.

— The Anti Upper Projection
It is the set-valued map w, (F): Y ~ X defined by

(23) wy(F) = (Pxo F Y)oPy! = (Px o F 1)OQy

Hence, we can also associate with the quantitative inclusion the anti
upper qualitative inclusion:

(24) find a € w,(F)(b)
which can be written in the following equivalent form:

(25) Qy(b) ¢ F(Qx(a))

Therefore, solving the anti upper qualitative equation means that, given
a “qualitative right-hand side” b € Y, for all representative y € Qy (b), there
exists a solution z to the inclusion F(z) 3 y which is a representative of a.

We observe at once that

11



Lemma 2.1 Let F be a set-valued map from X to Y.
—  Any upper qualitative solution is a anti lower qualitative solution,
— any lower quelitative solution is an anti upper qualitalive solution,
—  both any anti lower and anti upper qualitative solutions are stan-
dard qualilative solulions.

holds true
We shall say that a is a “strong lower qualitative solution” if it is both
a lower and anti lower qualitative solution, i.e., if

(26) F7HQy(b) = Qx(a)

and that a is a “strong upper qualitative solution” if it is both a upper and
anti upper qualitative solution, i.e., if

(27) Qr(b) = F(Qx(a))

Remark — Naturally, when F is a single-valued map f, the inverse
image f~1(M) and the core f*!(M) do coincide, so that
(28) () =w(f)=] O

Remark —  We could also have considered the projection of a set-

valued map F to the set-valued map Py O(FOQ x), but its inverse has not
interesting properties for our concern: Indeed, a belongs to (Py O(FOQ x)) ™ !(8)
if and only if

whenever Qx(a) C F‘l(y), then y€ Qy(b) O

3 Qualitative Duality of Linear Confluences

Let the two quantitative spaces X := R™ and Y := R™ be finite dimensional
vector-spaces and A € L(X,Y) be a linear operator from X to Y.

We introduce the strict and large confluence frames (R™,Q,) and (R™,Q,,),
their dual confluence frames and the transpose A* € L(X*,Y*) of A.

We consider the upper large projection of A and the anti lower projection
of the transpose A* defined by:

i) 7r(A) == S.0(A0Q,)
(29) { i) w_(A*) = (S} 0 A*)DQ},

and the lower and anti upper projections

12



(30) { i) 7_(A) := 5,04 '0Q,,)

i) @, (A7) = (ShoA)OQ;

Theorem 3.1 (Qualitative Duality) Let us consider a linear operator
A€ L(X,Y) and its transpose. The following conditions are equivalent:

(31)

1) a€ R™ solves 7y (A)(a) = b where be R™
t1) be R™ solves w_(A*)(b) D a where ac R"

as well are the two conditions

(32) 1) a€ R" isequal to n_(A)(b) where be R™
11) b€ R™ belongs to w,(A*)(a) where a € R"
Proof — Indeed, to say that b € 7 (A)(a) amounts to saying that

A(aR™) C bRT

or, by polarity, that
(bRT)* < (A(aR"))"
By the “Bipolar Theorem” (see for instance |3, Chapter 1]}, this is equiv-
alent to say that
- m. * e - n
b"YRT) c A (a Y(RT))
which we can write in the form:
* « 1! *
Qn(b) ¢ A" (Qn(d))
This means that a € w_(A*)(b).
The proof of the second statement is analogous. O
We can extend these theorems to the set-valued analogues of continuous
linear operators, which are the closed convex processes.

Definition 3.1 (Closed Convex Process) Let F : X ~ Y be a set-
valued map form a Banach space X to a Banach space Y. We shall say
that F 1s

— convex if its graph is convez!®

'®This means that

Vzy, 22, € Dom(F), A€ [0,1],
AF(I[)"’(I—A)F(ZQ) C F(AI["’(I—/\)I;)

13



— closed if its graph ts closed

— aprocess (or positively homogeneous) if its graph is a cone!!.
Hence a closed convex process 1s a set-valued map whose graph 1s a closed
conver cone.

(See for instance [3, Chapter 111]). Since the graphs of continuous linear
operators from a Banach space to another are closed vector subspaces, we
Jjustify our statement that closed convex processes are their set-valued ana-
logues. Actually, most of the properties of continuous linear operator are
enjoyed by closed convex processes.

Definition 3.2 (Transpose of a Process) Let F : X ~ Y be a process.
Its left-transpose (in short, its transpose) F* 1s the closed convez process
from Y™ to X* defined by

{p € F*(q) 1if and only if

(33) Vze X, Vye F(z), <p,z> <<gq,y>

(See for instance |3, Chapter 111]). The graph of the transpose F* of F
is related to the polar cone of the graph of F in the following way: The
following conditions are equivalent:

(34) { (9,p) € Graph(F*) if and only if

(p,—9) € (Graph(F))~

The Qualitative Duality Theorem 3.1 can be extended to closed convex

processes because we can adapt the Bipolar Theorem!?.

Theorem 3.2 (Set-Valued Qualitative Duality) Let us consider a closed
convez process F from X to Y and tts transpose. Assume that

Dom(F) - Q.(a) = X

this means that

Vze X, A>0, MF(z) = F(z) and 0 € F(0)

'2Theorem (Bipolar Theorem) Let F : X ~+ Y be a closed convex process and
K C X be a closed convex cone satisfying

Dom(F)- K = X

Then \
(F(K)Y = F (KY)

(See for instance [3, Chapter III])

14



Then the following condilions are equivalent:

{ 1) a€ R" solves 7 (F)(a) > b where be R™

(35) i1) be R™ solves w_(F*)(b) > a where a € R"

If we assume that

then the two following conditions are equivalent:

(36) { 1) a€ R" belongs to x_(F)(b) where be R™

11) be R™ solves w,(F*)(a) where a€ R"
4 Standard Strict Solutions to Confluence Equa-
tions

Let the two quantitative spaces X := R™ and Y := R™ be finite dimensional
vector-spaces and f be a continuous single-valued map from X to Y.
We consider the qualitative spaces R™ and R™, the strict and large

{ ”O(f) smofan

projections

f6(/) = Smofoan

of f and the qualitative equations
1) mo(f)(a) > b
(37) { i) T > b

Let us assume that we know a solution to the large qualitative equation
(37)ii) which can be written in the form:

(38) J(@n(a))NQm(b) # @
We shall provide a sufficient condition for a solution to the strict qualitative

equation (37)i) to exist.

Theorem 4.1 Let 79 € Q,(a) (where yo := f(z0) € Q,.(b)) be a represen-
tative of a solution a to the large qualitative equation (87)ii).
Assume that f 1s continuous and continuously differentiable at zg. If

(39) p € ['(20)*(9) N Qa(a) & g€ ~Qh(b)

then a s a solution to the qualitative equation (37)i).

{ (0,0) is the only solution (p,q) to

15



Proof — By assumption, we know that (zo, yy) belongs to the inter-
section of the graph of f and the closed convex cone Q,(a) x Q,,(b), so

that ((zo, o), (z0, yo)) is a solution in Graph(f) x (Q,(a) x @, (b)) to the
equation (z1,y1) ~ (z2,¥2) = 0.
Let 1 € R"™ denote the unit vector

1 = (1,...,1)

We shall prove that there exist a solution (z;,y1) € Graph(f) and a
solution (z2,y2) € Qn(a) x @,,(b) to the equation

(z1,41) = (z2,42) = e(al,bl)

for some € > 0, so that x; = z2 + cal belongs to Qn(a) and f(z1) = w1 =
y2 + €bl belongs to Q. (b).

For that purpose, we can apply the “Constrained Inverse Function The-
orem” (see [3,4]), which states that a solution to the above equation does
exist provided that the assumption

C'Graph(f)(:to, Yo) — Ca..(a)(xo) x 06",(6)(3/0) - XxY

(where Ck (z) denotes the Clarke tangent cone!® to a subset K at a point
z € K), is satisfied.
Since z belongs to Q,,(a) := ak%, the Clarke tangent cone C'é,,(a)(z“)

coincides with the tangent cone, which contains!* @Qn(a). In the same way,

Cam (b)(yo) > Qn(b)

On the other hand, f being continuously differentiable at z¢, the Clarke
tangent cone to the graph of f is the graph of the derivative f'(zy). Hence
the above assumption can be rewritten in the form

Graph(f'(20)) = (Qn(a) X Qu(b)) = X xV¥
"2 An element v belongs to the Clarke tangent cone C(2) if and only if

lim dly + hv, K}/h =0

h—04 K3y—:

This is always a closed convex cone, which coincides with the tangent space when K is a
differentiable manifold and with the tangent cone of convex analysis when K is a convex
subset.(See for instance [3, Chapter VII]}

'41f Q is a convex cone,

Tu(z) = cd(@+zR) D Q@

16



By polarity, this is equivalent to the condition

(Graph(f'(z0)))” N (Qn(a) x Qn(b))* = 0

which is nothing other than condition (40). O

When f = A € L(X,Y) is a linear operator from X to Y, we can
take (zo,y0) = (0,0) and, observing that A = f'(0), deduce the following
consequence:

Theorem 4.2 Let A € L(X,Y) be a linear operator. If the dual stendard
qualitative equation is “singular” in the sense that

(40) (0,0) is the only solution (p,q) to
p € A (q)NQr(a) & g€ -Q7(b)

then there ezists a solution a to the standard qualitative equation
(41) 79(A)(a) > b

We can use exactly the same prool for extending this theorem to the case
of set-valued maps F, since we only used the fact that the Clarke tangent
cone to the graph of f is the graph of f'(zo).

When F is a set-valued map from X to Y, we define its “circatangent
derivative” CF(zo, yo) at a point (zo,yo) of its graph by the formula

Graph(CF(I07y0)) = CGraph(F)(IO3y0)

(See for instance |3, Chapter V1I]). Since the Clarke tangent cone is always
a closed convex cone, we deduce that the circatangent derivative C F(zg, yo)
is always a closed convex process. Hence Theorem 4.1 can be extended in
the following way:

Theorem 4.3 Let (zo, yo) € Graph(F)N(Q,(a)xQ,, (b)) be a representative
of a solution a to the large qualitative inclusion

7o(F)(a) :=SmoFoQ, > b

If
(42) (0,0) is the only solution (p,q) to
p € CF(z0,%0)*(9) N Qr(a) & g€ —-QL(b)

then a s a solution to the qualitative inclusion

7o(F)(a) = smoFoQp,> b

17



When F is a closed convex process, we can take (zg,yo) = (0,0). Since
CF(0,0) = F (because the Clarke tangent cone to the closed convex cone
Graph(F)) at the origin is equal to this closed convex cone, we deduce from
the above theorem the following consequence:

Theorem 4.4 (Standard Set-Valued Qualitative Duality) Let F be a
closed convez process from a finile dimensional veclor-space X lo a finite
dimensional vecltor-space Y . If the dual qualitative inclusion is singular in
the sense that

(43) (0,0) 1is the only solution (p,q) to
p €F(9)NQr(a) & g€ -QL(b)

then there ezists a solution a to the qualitative inclusion

(49) no(F)(a) > b

18
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