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FOREWORD 

This paper deals with a domain of Artificial Intelligence known under 
the name of "qualitative simulation" or "qualitative physics", to which spe- 
cial volumes of Artificial Intelligence (1984) and of IEEE Transactions on 
Sys tems,  Man and Cybernetics (1987) have been devoted. 

It, defines the concept of "qualitative frame" of a set, which allows to 
introduce strict, large and dual confluence frames of a finite dimensional 
vector-space. 

After providing a rigorous definition of standard, lower and upper quali- 
tative solutions in terms of confluences introduced by De Kleer, it provides a 
duality criterion for the existence of a strict standard solution to both linear 
and non linear equations. 

It also furnishes a dual characterization of the existence of upper and 
lower qualitative solutions to a linear equation. 

These theorems are extended to the case of "inclusions", where single- 
valued maps are replaced by set-valued maps. This map be irseful for dealing 
with qualitative properties of maps which are not precisely known, or which 
are defined by a set of properties, a requirement which is a t  the heart of 
qualitative simulation. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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Qualitative Equations: The Confluence Case 

Introduction 

The purpose of this paper is to offer several theorems on the qualitative 
solutions to a linear or nonlinear equation 

given y E Rm, find z E Rn such that f (z)  = y 

in terms of "confluences", i.e., of the signs of the components of the vector 
y .  (See[2,8,19,33,35,38,40,41,48,55,62,64] for a survey of the literature on 
this topic.) 

For defining in a rigororls way qualitative solutions to an equat.ion, we 
adopt, and slightly relax for duality purposes, the definition of qualitative 
frames proposed in 121: 

A qualitative frame (1, Q) of a set X is defined by 
- a set X,  called the qualitative set' 
- a set-valued map2 Q : X - X ,  called the value map 

where we assume that 

i )  Q a E  X ,  Q(a)  # 0 
i i)  Q is surjective (Q z E X ,  3 a E X 1 z E Q(a))  
iii) Q is injective (Q a ,  b E X ,  a # b ,  Q, # Qb) 

We shall say that the qualitative frame is strict i f  we assume further 
that 

(2) Q a , b ~  X, a # b ,  Q , n Q b  = 0 

In this paper, we shall use only the confluence frames of finite dimen- 
sional vector-spaces, defined as follow: 

- Strict Confluence Frame We associate with X := Rn the 

n-dimensional confluence apace Rn defined by 

'which is generally assumed to  be a Bnite cet 
'A set-valued map Q from 1 to  X maps each a  E 1 to  a subset Q ( a )  c X ,  possibly 

empty. 



The strict confluence frame is defined by ( R n , Q n )  where the value 
map  Q, maps each qualitative value a E R n  t o  the convex cone 

Q n ( a )  := Rz := { v E Rn I sign of ( v i )  = a, ) 

For n = 1, we have 

- Large Confluence Frame We still associate with Rn the  n- 

dimensional confluence space R n .  The large confluence frame is then 
defined by the  set-valued map  Qn associating with every a E R n  the  convex 
cone 

Q n ( a )  := aR; := { v E Rn I s ( v i )  = a, or 0 ) 

which is the closure of Q n ( a )  = R:. 
- Dual Confluence Frame Let Rn* denote the dual of X := 

Rn. The dual confluence frame ( R n , Q i )  is made of t,he n-dimensional 
confluence space R n  := { - , O , S ) ~  and the set-valued map Q: from R n  
t o  Rn* which maps every a E R n  t o  the closed cone Q ' ( a )  of elements 
p  := ( p l ,  . . . , p n )  defined by 

Let ( X  , Q x )  and (Y, Q y  ) be qualitative frames of two sets X and Y ,  
f : X ++ Y and b E y be a qualitative right-hand side. We define three 
types of qualitative solutions: 

- the standard qualitative solution a E X satisfying: 

- the upper qualitative solution a E X  satisfying: 

- the lower qualitative solution a E X  satisfying: 

and we see a t  once tha t  any upper qualitative or lower qualitative solu- 
tion is a s tandard solution. 



Let the two quantitative spaces X := Rn and Y := Rm be finite dimen- 
sional vector-spaces. 

In the  case of s tandard solutions, i t  is more difficult t o  prove the existence 
of strict confluence solutions than large ones. We shall provide a criterion 
for the  existence of strict standard solutions. 

Let us begin by the case when f := A E L ( X , Y )  is a linear operator.  
In this case, there exist always large qualitative solutions because A(0) = O! 
But  if we assume t h a t  the  dual condition 

(3) 
(0,O) is the only solution (P, q) t o  

P E A* (9) n Q 3 a )  k 9 E -Qk(b)  

is satisfied, then there exists a s tandard strict qualitative solution a E R n  

This  theorem can be extended t o  the non linear case through lineariza- 
tion and duality. 

Let zo E g,,(a) (where yo := f ( zo )  E Qn(b))  be a representative of a 
solution a t o  the large qualitative equation 

Assume tha t  f is continuous and continuously diflerentiable a t  zo. If 

(4 )  
(0,O) is the only solution (p,  q) t o  

P E r f ( ro )* (q )  ~ Q W  k q E -Q;N 
then a is a solution t o  the  qualitative equation 

For upper qualitative solutions, we shall prove in the linear case the fol- 
lowing duality principle: Let A E L ( X , Y )  be linear. Then the  two following 
conditions are equivalent: 

and 

A*(Q',(b)) c Q X a )  

as well as the  equivalent s tatement  for lower qualitative solutions: the 
two conditions 

~ - ' ( G m ( b ) )  c Qn(a) 



and 

Qk(a) c mzn'n 
are equivalent. 

As it can be seen from the definitions of qualitative solutions, our the- 
orems rely on "set-valued analysisn, which has been developed for various 
reasons from Painlevd's early works to recent results on graphical conver- 
gence and the differential calculus of set-valued maps, including an inverse 
function theorem we shall actually use.(See [1,3,4,6] for instance.) 

Hence we can study right away qualitative analysis of set-valued maps 
F : X u Y .  The mathematical cost will be slightly the same, and, further- 
more, there is an important motivation to just do that  a t  the onset in the 
framework of qualitative analysis. 

Indeed, when the objective is the resolution of an equation f ( x )  = y, 
the single-valued map f is not exactly known, even when physicists and 
other scientists model them by classical and familiar "special functions" 
through their behavior. It is just enough to mention the favorite use of 
the exponential, logarithmic, logistic, trigonometric, ... functions in many 
models. 

Actually, the choice of these functions is often made because t,here are 
L 1 r e p r e ~ e n t a t i ~ e ~ "  of a class of funct,ions defined by a list of p r~per t~ ies ,  
whether this list is exhaustive or not, conscious or not. 

Keeping in mind the philosophy of qualitative reasoning, i t  is more t,o 
the point to start  with such a list of requirements on maps from X to 1' 
and build from it the "largest" set-valued map F from X to Y which satisfy 
thern. 

Hence we are led to propose to solve right-away the qualitative solutions 
to "inclusions" 

F ( 4  3 Y 

We shall prove the set-valued versions of the results described above in the 
rest of the paper, after adapting to the set-valued case the above definitions. 

We begin by defining precisely qualitative frames, and then, five types 
of qualitative solutions to inclusions. We then provide the duality results in 
the linear case and study the non linear case in the last section. 



1 Qualitative Frames 

The general features of qualitative analysis, and, more particularly, of con- 
fuences, can be captured in the mathematical framework we propose below. 

Let X ,  called the quantitative space, denote the set of elements on 
which operates qualitative reasoning. 

Definition 1.1 A qualitative frame ( X , Q )  o j  a set X i s  defined by 
- a set  1, called the qualitative set3 
- a set-valued map4 Q : X u X, called the value map 

where w e  assume that 

) V a E X ,  Q(a)  # 0 
(5) i t)  Q is surjective (V z E X, 3 a E X I z E Q(a))  

i i i )  Q is injective (V a ,  b E 1, a # b, Q, # Qh) 

W e  shall s a y  that the qualitative frame i s  strict if wa assume jurther 
that 

(6) V a , b €  X ,  a #  b, Q a n Q h  = 0 

W e  denote  by P := Q-' the inverses of P ,  called the qualitative m a p  

Remark - S T R I C T  QllALlTATlVE F R A M E S .  When the qualitative 
frarne is strict, the qualitative map P is single-valued, and is then denoted 

by P .  
In this case, the subsets Q(a)  do form a partitmion of X when a ranges 

over the qualitative set X ,  so that t,hey constitute the equivalence classes of 

3which is generally assumed to be a finite set 
4 A  set,-valued map Q f ro~u  1 to X maps ench a E 1 t,o a subset. Q ( a )  C X, poseihly 

empty. We say that Q ( a )  is the image or the value of Q at a .  The image Q ( M )  of A4 is 
the union of the images (ar values) Q ( a )  when a ranges over M .  One set. Im(Q) := Q ( 1 )  
(the image of Q )  and Dom(Q), the domain of Q,  the subset of a E 1 such that. Q ( a )  is 
not, empt,y. 

A set-valued mnp Q is characterized by it.> graph Graph(Q),  subset of the product, 
space 1 x X defined by 

Craph(Q) := {(a, z )  E 1 x X 1 z E Q(a) )  

 his means that  a E P ( z )  if and only if z E Q(a).  In particular, 



the the binary relation R defined on X by: 

which is an equivalence relation. Hence we can regard in this case the 
qualitative set X as the factor space X := X/R and p as the canonical 
surjection6. 

Remark - CLOSURE O F  A STRICT QUALITATIVE FRAME. 
When X is a topological space, it is convenient to  associate with a strict 

qualitative frame (1, Q )  its closure ( X  ,g) where 

Example - Strict Confluence Frame 
We consider the usual finite dimensional vector-space X := Rn as a 

quantitative space and we associate with it the n-dimensional confluence 
space R n  defined by 

R" := { -, 0, + )" 
whose elements are denoted by a := ( a l , .  . . ,a ,) .  

The strict confluence frame is defined by (Rn,Q,)  where the value 
map Q, maps each qualitative value a E R n  to the convex cone 

Q,(a) := Rz := { o E R" I sign of (oi) = a, ) 

It is obviously a strict qualitative frame, so that  the inverse of Q,, de- 
noted by s,, is the single-valued map from Rn to R n  defined by: 

Example - Large Confluence Frame 
We still consider the finite dimensional vector-space X := Rn as a quan- 

titative space and we associate with it the n-dimensional confluence space 
Rn.  The large confluence frame is then defined by the set-valued map 
Q, associating with every a E R n  the convex cone 

Q,(a) := aR; := { v E Rn I s(vi) = a, or 0 ) 

G ~ o n v e r e e ~ y ,  we can associate with any equivalence relation R a strict qualitative frame, 
w h e h  the factor space 1 := X / R  is the qualitative set and the canonical surjection 

aesociating to  each element z  E X  its equivalence class ~ ( z )  E I, the qualitative map. 



which is the  closure of Qn(a) = Rz, as well as the image of R",y the  map  
a : z - a2 = ( a l z l ,  . . . ,  anzn). 

Its inverse is the set-valued map from Rn t o  R n  denoted by S,, which 
is defined by: 

Example - Dual Confluence Frame 
Let R ~ '  denote the  dual of X := Rn. The  dual confluence frame 

(Rn,Qi)  is made of the  n-dimensional confluence space R n  := { - , 0 ,  + I n  
and the set-valued map Qi from R n  t o  Rn' which maps every a E R n  t o  
the  closed cone Q*(a) of elements p := . . , pn) defined by 

Its inverse is the  set-valued map from R"' t o  R n  denoted by S i  and 
defined by 

T h e  reason why this qualitative frame is called the  dual confluence frame 
is given by the following lemma: 

Lemma 1.1 T h e  positive polar cone to  the convex cone Q(a) := a Q",s the 
cone Q*(a) := aP1(R:) 

Proof - We associate with any a E R n  the  subsets 

of I := { 1 ,  . . . ,  n ) .  
We observe t ha t  

p E (aR;)+ if and only if pi 2 0 if i E I+(a) & p, 5 0 if i E I-(a) 



since this is equivalent to  

V y E R y ,  C ~ a i p i y i  = C Piyi -  C PiYi 2 O 
i € I  i € l +  ( a )  i E I -  ( a )  

2 Qualitative Inclusions 

Let us consider two quantitative spaces X and Y ,  a single-valued map f : 

X H Y  and the equation 

(*) find z E X such that  f (2) = y  

which we shall call the "quantitative equation". More generally, we can also 
s tar t  with a set-valued map F : X 2, Y  and the ' 'q~anti tat~ive inclusion" 

(9) find z E X such that  F ( z )  3 y  

In order to  make a q~a l i t a t~ ive  analysis of such an equation or an inclu- 
sion, we introduce two qualitative frames ( X , Q x )  and ( Y , Q y )  and their 
q~a l i t~a t ive  maps Px and Py . 

There are many ways to associale with F "projections" which map X to  
J .  We shall only mention three of them. 

Standard Projection 
It  is the set-valued map n o ( F )  : X  -.A y defined by 

where o deuotes the usual product of set-valued maps7 

' o n e  can conceive two dual way9 for defining compneition products of set-valued maps 
(which coincide when C: is single-valued): 

Let X, Y, Z be  Bannch spaces and C: : X -.A Y ,  H : Y Z be  set-valued maps: 
1 - t he  usual composition product (called silnply the  p r o d u c t )  H o G  : X Z of 

H and C: a t  z is defined by 

( H o  G ) ( z )  := U H ( Y )  
y E c : ( = )  

2 - t he  a q u a r e  p r o d u c t  H O G  : X u Z of H and G a t  z introduced in 151, is 
defined by 

( H O G ) ( z )  := n H ( Y )  
y E f : ( = )  

There  are also two manners to  define the  inverse image by a set-valued m a p  G of a subset 



Hence, we can associate with the quantitative inclusion the standard 
qualitative inclusion: 

( 1 1 )  find a  E X such that  r o ( F ) ( a )  3 b  

which is equivalent to either formulations8 

) F ( Q x  ( a ) )  n QY ( b )  # 0 
Q X ( ~ ) ~ F - ' ( Q Y ( ~ ) )  # 0 

;;;) G r a ~ h ( F )  n ( Q x ( a )  x Q y  ( b ) )  # 0 
1.) a  E p x ( F - ' ( Q y ( b ) ) )  

The last property follows from the observation tha t  

which is obvious when we: remark tha t  

Solving the standard q~a l i t a t~ ive  eq~lat~ion means tha t ,  given a "quali- 
tative right-hand side" b  E Y, there exist a quantitative right-hand side 
y  E Q y ( b )  and a solution z E F - ' ( ~ )  which belongs to Q x ( a ) .  

- The Upper Project,ion 

G - ' ( M )  := { z I G ( z )  n hf # PI ) the inverse image of b.I 
h )  G + ' ( M )  := { z 1 G ( z )  c M )  the core of M  

The for~nulas which state that the inverse of a product. is the product of the inverses (in 
reverse order) become: 

( H  o G ) - ' ( 2 )  = C - ' ( H - ' ( 2 ) )  = ( G - I  o H - ' ) ( z )  
it) ( H O G ) - ' ( 2 )  = G + ' ( H - ' ( 2 ) )  

'When the quantitative spaces X and Y are vector-spaces, we can associate with F 
the set-valued map @ : X x Y - Y defined by 

@ ( z ,  y )  := F ( z )  - y 

Hence r , , ( F ) ( a )  3 h if and only if 

3 ( 2 ,  y)  E Q x ( a )  x Q Y ( ~ )  such that @(z, y) = 0 



I t  is the set-valued map  n + ( F )  : X u Y defined by 

Hence, we can also associate with the quantitative inclusion the upper 
qualitative inclusion: 

( 1 5 )  find a  E X such tha t  . r r+(F) (a )  3 b 

which is equivalent t o  either propertiesg 

In other words, solving the upper qualitative equation means t h a t ,  givrn 
a "qualitative right-hand side" b E Y ,  a  is a an upper qualitative solution i f  
for all representative z E Q X ( a ) ,  every y E F ( z )  is a representative of b.  

- The Anti Lower Projection 
It is the  set-valued map  w - ( F )  : X u Y defined by 

( I 7 )  W -  ( F )  := ( P y  o F)DP;'  := ( P y  o F ) u Q x  

Hence, we can also associate with the q ~ a n t ~ i t a t i v e  inclusion the anti 
lower qualitative inclusion: 

(181 find a E X such tha t  w- ( F ) ( a )  3 b 

which can be written in the following equivalent form: 

Therefore, solving the ant,i lower qualitative equation means t h a t ,  given 
a "qualitative right-hand side" b E Y, a is a anti  lower qualitative solution 
-- - 

w e  use the following obsewat,ions: 

and 



if for all representative x E Q X ( a ) ,  there exists a representative y E F ( x )  of 
b .  

We can also inverse first the set-valued map F  and "project" the set- 
valued map  F - ' .  We then obtain the two following concepts of projections 
and qualitative solutions: 

- The Lower Projection 

It  is the set-valued map ~ r -  ( F )  : Y u X defined by 

lIence, we can also associate with the quantitative inclusion the lower 
qualitative inclusion: 

P I )  find a  E ~ r -  ( F ) ( b )  

which is equivalrnt to property 

Therefore, to  say tha t  a  is a lower qualitative solution amounts t o  saying 
tha t  for all representatives y E Q } . ( h )  of the qualitative right-hand side 6, 
all solutions t,o the inclusion F ( x )  3 y are representatives of a .  

- The Anti Upper Projection 

It, is the set-valued map  w + ( F )  : Y --. X defined by 

Hence, we can also associate with the quantitative inclusion the anti 
upper qualitative inclusion: 

( 2 4 )  find a E w+ ( F ) ( b )  

which can be written in the following equivalent form: 

Therefore, solving the anti upper qualitative equation means tha t ,  given 
a "qualitative right-hand siden b  E Y ,  for all representative y E Q y  ( b ) ,  there 
exists a solution z t o  the inclusion F ( x )  3 y which is a representative of a .  

We observe a t  once tha t  



Lemma 2.1 Let F be a set-valued map from X t o  Y .  
- A n y  upper qualitative solution is  a ant i  lower qualitative solution, 

any  lower qualitative solution is an ant i  upper qualitative solution, 
- both any ant i  lower and ant i  upper qualitative solutions are s tan-  

dard qualitative solutions.  

holds true 
We shall say that a is a "strong lower qualitative solution" if it is both 

a lower and anti lower qualitative solution, i.e., i f  

and that a is a "strong upper qualitative solution" if it is both a upper and 
anti upper qualitative solution, i.e., if 

R e m a r k  - Nat,urally, when F is a single-valued map f ,  the inverse 
image f -  I (M)  and the core f + '  (M)  do coincide, so that 

R e m a r k  - We could also havc considered the projection of a set- 
valued map F to the set-valued map P y o ( F o Q x ) ,  but its inverse has not 
int,erest,ing properties for our concern: Indeed, a belongs to (PY o ( F o Q ~ ) ) - ~ ( ~ )  
if and only if  

whenever Qx(a )  c F - ' ( ~ ) ,  then y E Q,.(b) o 

3 Qualitative Duality of Linear Confluences 

Let the two quantitative spaces X := R n  and 1' := R m  be finite dimensional 
vector-spaces and A E f (X,  )I) be a linear operator from X to 1'. 

We introduce the strict and large confluence frames (Rn,Qn)  and ( R m ,  Q,), 
their dual confluence frames and the transpose A* E f (X*, Y*) of A. 

We consider the upper large projection of A and the anti lower projection 
of the transpose A* defined by: 

(29) 
) -(A) := S , U ( A O ~ ~ )  

1 )  w- (A*) := (Si 0 A*) o Q k  

and the lower and anti upper projections 



Theorem 3.1 (Qualitative Duality) Let us consider a l inear operator 
A E L ( X ,  Y )  and i t s  t ranspose .  The  following condit ions are equivalent: 

i )  a E R n  solves q ( A ) ( a )  = b where b E R m  
i i )  b E R m  solves w- (A*)(b) 3 a where a E R n  

as well are the t w o  condi t ions  

i) a E R n  is equal to T -  ( ~ ) ( b )  where b E R m  
i i )  b E R m  belongs to  w+ ( A A ) ( a )  where a E R n  

Proof - Indeed, to  say that  b E A+(A)(a)  am0unt.s tso saying tllat 

or ,  by polarit,y, t,hatj ( ) +  c (,4(aRn))' 

By the "Bipolar Theorem" (see for instance 13, Chapter I ] ) ,  t,his is equiv- 
alent to say that, 

b - ' ( ~ ' ; )  c A * - '  ( a - l ( ~ . ; ) )  

which we can write i n  the form: 

This means that. a E w- (AA)(b) .  
The proof or the second stat,emenl is analogous. o 
We can extend these theorems to the set-valued analogues of continuous 

linear operators, which are the closed convex processes. 

Definition 3.1 (Closed Convex Process) Let F : X --, Y be a s e t -  
valued m a p  fo rm a Banach  space X to a Banach space Y .  U'e shall say  
that  F i s  

- convex i f  i t s  graph i s  c o n v e ~ ' ~  

"'This means that 

V z l ,  2 2 ,  E Dom(F),  A E [O, 11, 
AF(z l )  + ( I  - A)F(zz) c F(Azl + (1 - A)zz) 



- closed i j  i t s  graph i s  closed 
- a process (o r  positively homogeneous) i j  i t s  graph i s  a cone1  l .  

Hence  a closed convex process i s  a set-ualued m a p  whose  graph i s  a closed 
c o n v e z  cone .  

(See for instance [3, Chapter 1111). Since the graphs of continuous linear 
operators from a Banach space to another are closed vector subspaces, we 
justify our statement that closed convex processes are their set-valued ana- 
logues. Actually, most of the properties of continuous linear operator are 
enjoyed by closed convex processes. 

Definition 3.2 (Transpose of a Process) Let F : X 2. Y be a process. 
I t s  left-transpose ( i n  shor t ,  i t s  transpose) F* i s  t h e  closed convez  process 
j r o m  Y *  t o  X* defined by 

(33) 
p E F*(q) i f  and  on l y  i f  
V Z E X ,  V Y E F ( Z ) ,  < p , z >  < < q , y >  

(See for instance 13, Chapter I J J ] ) .  The graph of the transpose F* of F 
is relat,ed to the polar cone of the graph of F in the following way: The 
following conditions are equivalent: 

(34) 
( q ,  p)  E Graph(FA) if and only if 

(P, -9) E ( G r a ~ h ( F ) ) -  

The Qualitative Duality Theorem 3.1 can be ext,ended to closed convex 
processes because we can adapt the Dipolar ~ h e o r e m l ~ .  

Theorem 3.2 (Set-Valued Qualitative Dualit,y) Let u s  cons ider  a closed 
c o n v e z  process F j r o m  X t o  Y a n d  i t s  t ranspose .  A s s u m e  that  

"t.his means that. 

t/ z  E X ,  A > 0 ,  A F ( z )  = F ( z )  and 0  E F ( 0 )  

1 2  Theorem (Bipolar Theorem) Let F  : X I., Y be a closed convex process and 
K  c X be a closed convex cone satisfying 

Then 
( F ( K ) ) +  = F ' - I  ( K + )  

(See for instance 13, Chapter 1111) 



T h e n  the following conditions are equivalent: 

( 3 5 )  { 1 )  a E Rn solves ~ r + ( F ) ( a )  3 b where b E R m  

ii) b E R m  solves w- ( F * ) ( b )  3 a where a E R n  

If we assume that 

then  the two  following conditions are equivalent: 

1 )  a E Rn belongs t o  ~ r -  ( F ) ( b )  where b E R m  
b E R m  solves w + ( F * ) ( a )  where a E R n  

4 Standard Strict Solutions to Confluence Equa- 
tions 

Let the t,wo quantitative spaces X := Rn and Y := Itm be finite dimensional 
vector-spaces and f be a continuous single-valued map from X to  Y .  

We consider the qualitative spaces R n  and R m ,  the strict and large 
projections 

T O ( / )  = S m O f  o Q ~  { = S m o f o ~  

of f and the qualitative equations 

Let us assume that  we know a solution to  the large q~a l i t~a t ive  equation 
( 3 7 ) i i )  which can be written in the form: 

( 3 8 )  f ( Q n ( a ) ) n Q m ( b )  f 0 

We shall provide a sufficient condition for a solution to  the strict qualitative 
equation ( 3 7 ) i )  t o  exist. 

Theorem 4.1 Let zo E Q n ( a )  (where yo := f ( z o )  E Q n ( b ) )  be a represen- 
tative of a solution a t o  the large qualitative equation (37)ii) .  

A s s u m e  that f i s  continuous and continuously diflerentiable at 20. If 

( 3 9 )  
(0 ,O)  is the only solution (p, q )  to 

P E f l ( zO)*(q)  Q ; ( U )  & E -Qk(b) 
then  a i s  a solution t o  the qualitative equation (37)i). 



Proof - By assumption, we know that (zo, yo) belongs to the inter- 
section of the graph of f and the closed convex cone g n ( a )  x Qm(b), so 
that ((zo, yo), (zo, yo)) is a solution in Graph( f )  x (gn (a )  x Qm(b))  to the 
equation ( z l ,  yl) - (zz ,  yz) = 0. 

Let 1 E Rn denote the unit vector 

We shall prove that there exist a solution (z l ,  yl)  E Graph( f )  and a 
solution (zz ,  y2) E Qn(a)  x gm(b) to the equation 

for some E > 0, SO that z l  = z2 + ca l  belongs to Qn(a)  arld f ( z l )  yl = 
yz + c b l  belongs to Qm(b). 

For that purpose, we can apply the "Constrained Inverse Functior~ The- 
orem" (see [3,4]) ,  which states that a solution to the above equation does 
exist provided that the assumption 

(where CK(z)  der~otes the Clarke tangent conel%o a subset K at a point 
z E K ) ,  is satisfied. 

Since zo belongs to g n ( a )  := a t ; ,  the Clarke tangent cone CiT,,(a)(z,,) 

coir~cides with the tangent cone, which contains14 Qn(a) .  In the sarne way, 

CQ,,(*)(YO) 2 Qm(b) 

On the other hand, f being continuously diflerentiable at zo, the Clarke 
tangent cone to the graph of f is the graph of the derivative f f (zo) .  Hence 
the above assumption can be rewritten in the form 

1 3 ~ n  element v  belongs to  the Clarke tangent cone C K ( Z )  if and only if 

liui d ( y  + hv,  K ) / h  = 0 
h - U + . K 3 y - x  

This is always a closed convex cone, which coincides with the tangent space when K is a 
differentiable nianifold and with the tangent cone of convex analysis when K is a convex 
aubeet.(See for instance (3, Chapter VIII) 

"If Q is a convex cone, 



By polar i ty ,  t h i s  is equivalent t o  t h e  condit ion 

which is no th ing  o t h e r  t h a n  condit ion (40).  0 

W h e n  f = A E f ( X , Y )  is  a l inear ope ra to r  f rom X to Y ,  we can  
t a k e  (zo ,  yo) = (0,O) a n d ,  observing t h a t  A = f l ( 0 ) ,  deduce  t h e  following 
consequence: 

Theorem 4.2 Let A E f ( X , Y )  be a l inear  operator.  If the dual  s t a n d a r d  
qualitative equation is "singular" i n  the sense  that  

(40)  
(0,O) is t h e  only solution (p ,  q )  t o  

P E A*(q) n Q3c(a) q E -QL(b)  

then there ezists  a solution a to the s t andard  qualitative equation 

We c a n  use exact ly  t,he s a m e  proor  for extending th i s  theorem t o  t h e  case 
of set-valued m a p s  F ,  since we only used t h e  fact  t h a t  t h e  C la rke  tangent.  
cone to t h e  g raph  of  f is t h e  g raph  of f l ( z o ) .  

W h e n  F is a set-valued m a p  f rom X t o  Y ,  we define i t s  "circatangent.  
derivative" C F ( z o ,  yo) a t  a point  ( zo ,  yo) of i t s  g r a p h  by t h e  fo rmula  

(See for in s t ance  13, C h a p t e r  VII]) .  Since t h e  C la rke  t a n g e n t  cone is a lways  
a closed convex cone,  we deduce  t h a t  t h e  c i rca tangent  derivative C F ( z o ,  yo) 
is a lways  a closed convex process.  Hence Theorem 4.1  can  b e  ex tended  in 
t h e  following way: 

Theorem 4.3 Let (z",  yo) E C r a p h ( ~ ) n ( g , ( a )  x Q m ( b ) )  be a representative 
of a solution a to  the large qualitative inclusion 

If 

(42) 
(0,O) is t h e  only solut ion (p ,  q) t o  

P E C F ( z o , ~ o ) * ( q )  nQ3c(a) & q E -Q*m(b) 

then a is a solution to  the  qualitative inclusion 



When F is a closed convex process, we can take (zo, yo) = (0,O). Since 
CF(0 ,O)  = F (because the Clarke tangent cone t o  the  closed convex cone 
G r a p h ( F ) )  a t  the  origin is equal t o  this closed convex cone, we deduce from 
the  above theorem the  following consequence: 

Theorem 4.4 (Standard Set-Valued Q u a l i t a t i v e  D u a l i t y )  Let F be a 
closed convez  process from a finite dimensional vector-space X to a finite 
dimensional vector-space Y .  If the dual qualitative inclusion is  singular in 
the sense  that 

(43) 
(0,O) is the  only solution (p, q )  t o  

P E F*(q)  n QW & q E -QN 
then there exists a solution a to  the qualitative inclusion 
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