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A DETERMINISTIC APPROACH TO APPROXIMATE MODELLING

C. HEIJ AND J.C. WILLEMS

Abstract

In this paper we will describe a deterministic approach to time series
analysis. The central problem consists of approximate modelling of an
observed time series by means of a deterministic dynamical system. The
quality of a model with respect to data will depend on the purpose of
modelling. We will consider the purpose of description and that of
prediction. We define the quality by means of complexity and misfit
measures, expressed in terms of canonical parametrizations of dynamical
systems. We give algorithms to determine optimal models for a given time
series and investigate some consistency properties. Finally we present some

simulations of these modelling procedures.

Keywords
Approximate modelling, time series analysis, dynamical systems, canonical

forms, complexity, misfit, consistency.



1. INTRODUCTION

1.1. Modelling: specification and identification

The purpose of this paper is to describe a deterministic approach to time
series analysis. This means that within the realm "from data to model”, we
will pay special attention to the case where the data consist of a sequence
of observations over time and where the models consist of deterministic
dynamical systems. Our approach to this particular modelling problem forms
part of a more general modelling philosophy, which we will now describe.
Some of the essential factors which play a role in the problem of
modelling data are depicted in figure 1. Two of the main aspects in
approaching this problem are specification of the problem and,

subsequently, identification of the model.

description/prediction/control

S

phenomenon DATA
S

1
S| a priori ) model 1
theory conceptions class MODEL
I
s -
objectives criterion
construction/testing

figure 1: modelling (S: specification; I: identification)

In general terms, the problem of modelling data consists of constructing a
good model on the basis of these data. So the class of candidate models,
i.e., the model class, has to be specified. Moreover, the quality of
candidate models for modelling the data has to be assessed. This
assessment, by means of a criterion, depends on the objectives underlying
the modelling problem. An identification procedure describes the way a
model is chosen (identified) from the model class, given the data. The aim
is to construct the procedure in such a way that the identified models are

of good quality with respect to the data, as measured by the criterion.



-3-

So in order to investigate the identification aspect of the data
modelling problem it is necessary to specify the model class and the
objectives. In modelling problems in general it is not known a priori which
data will be included for identification of a model. This leads us to the
specification aspect.

Often the primary objective of constructing a model is not only to
model the data, but also to model a phenomenon. It then is supposed that
the data somehow reflect the phenomenon. The phenomenon is then considered
as a system which produces the data.

In the specification of the modelling problem one can incorporate
prior knowledge concerning the phenomenon. This prior knowledge partly can
be given by a theory concerning the phenomenon. Apart from this, one will
impose restrictions partly based upon the objectives of modelling and
partly for convenience. This leads to a collection of & priori conceptions,
on the basis of which one decides which variables will be included in the
model and what models will be considered. The identification problem is
then specified.

Some of the main objectives of modelling are given in figure 1. On the
one hand, an objective could be to model the phenomenon. One can think of
description, prediction or control of the phenomenon. On the other hand,
another objective could be to construct or test theories concerning the
phenomenon.

It is beyond the scope of this paper to discuss fundamental problems of
data, like the relationship between the phenomenon and the data and
problems of data collection.

In the practice of modelling one often considers the specification
aspect as part of the relevant scientific discipline and the identification
aspect as a problem of constructing mathematical procedures. However,
especially the choice of the model class also implies prior conceptions of
a mathematical nature. The choice between deterministic and stochastic
models forms a particular example.

We will illustrate the foregoing general description of the data
modelling problem by means of five simple examples.

1.2. Example 1: a resistor

Suppose one wants to describe a resistor. On the basis of physical theory
("Ohm’s law”) one postulates a linear relationship between the voltage
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(V) across and the electrical current (I) through the resistor, ie., V=1.R
with R>0 the resistance. A resistor is then described by a model R. So the
model class is R,. To identify R, suppose one performs a number (n) of
experiments with resulting voltage and current measurements (Vi,fij,

i=1,...,n. See figure 2.

figure 2

The identification problem consists of choosing R on the basis of these
data. In general there will exist no R such that I7,~=7,~.R for all i=1,...,n.
This can be due to inaccurate measurements and to the fact that the linear
relationship is an idealization - though it may be an accurate one. A
reasonable criterion could be total least squares.

So in this case, in order to describe the resistor, one uses physical

theory to specify the model class and the data to be collected.

1.3. Example 2: eye colour

Suppose one wants to predict the colour of the eyes of a person. On the
basis of Dbiological theory (genetics) one postulates a specific
probabilistic relationship between this colour and the colour of the eyes
of the ancestors. Assume that the colour is either brown (1) or blue (0).
As model class one could take [0,1], where a particular model pe[0,1] means
that p is the probability that the person has brown eyes. To identify p one
collects data on the colour of the eyes of the parents, grandparents and so
on. One then identifies p» by means of elementary probabilistic
calculations. See figure 3.



p=3/4

figure 3

One could now make a prediction for example by maximum likelihood,
i.e., predict the colour to be brown if and only if p> %
So in this case, in order to predict the eye colour, one uses

biological theory to specify the identification and prediction problem.

1.4. Example 3: consumption

Suppose one wants to predict the consumption C‘o“ for the coming year. On
the basis of an economic theory one postulates that the dominant factor
determining C,oﬂ is the income Y,o in the current year. Suppose data for
consumption and income, (C.,Y;), t=s,5+1,...,t, are available. For
convenience one could postulate an affine relationship between consumption

in a year and income in the preceding year. The model class for example

C(t+1) v -

Cltgr1) [ .

Y(to) Y(t)

figure 4
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could be Rf, where the model (a,b) with ¢,b>0 describes the postulated
relationship C,,y=6+b.Y, In order to identify a model one could use the
data to estimate a¢ and b for example by means of ordinary least squares. If
the resulting estimates a,b indeed are nonnegative, one could predict C‘o”
by means of a+b.Y,0._ See figure 4.

So in this case, in order to predict consumption, one uses economic
theory to specify the data. The choice of the model class is entirely a
matter of convenience. If the estimated values 2,3 are not accepted as a
reasonable description of consumptive behaviour one is ready to specify a
different class of models, e.g., C;,,=a+8.logY,.

1.5. Example 4: rainfall

Suppose one wants to control the water supply from a reservoir. The water
of the reservoir is supplied to customers and replenished by rain. Suppose
that one can construct a reasonable control strategy, once the rainfall is
modelled.

If the climatological conditions are rather stable the rainfall could
be viewed as a stationary stochastic process. As model class one could
consider the class of Gaussian ARMA processes. Suppose that rainfall data
{F(t); t,;<t<t,} are available. To identify a model on the basis of these
data one could consider the objective of simultaneous prediction of the
rainfall for a number of periods in the future.

So in this case, in order to formulate the water supply problem in
terms of only the rainfall, one has used prior knowledge of e.g. the demand
pattern for water and of (stochastic) control theory. It is assumed that
the rainfall can be modelled as a stationary stochastic process. This
assumption is of a mathematical nature. It can be supported by arguing
that the mechanism producing the rainfall is rather stable. This for
example means that, although the rainfall is uncertain, some time averages
of the rainfall are less uncertain.

1.6. Example §5: realization

Suppose one wants to interpolate n points (x,-,yi)eRz, i=1,..,n, by means
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of a polynomial p of lowest possible degree. So the data consists of n
points in R? and the model class consists of polynomials. As a criterion to
choose p one requires y;=p(x;), i=1,...,n, and the degree of p has to be
minimal.

So in this case the objective is to give an exact description of the
data in a most simple way. This is an example of exact modelling or
realization. The concepts of phenomenon or theory do not play a role in the
specification of the modelling problem. The criterion is inspired by

aesthetics or the desire to give a compact representation of the data.

1.7. Choice of model class

The foregoing examples especially are intended to illustrate the various
considerations which can play a role in specifying the model class. In
examples 1 and 2 well-established theories are used to choose the model
class, one deterministic and the other probabilistic. In example 5 the
choice is inspired by aesthetics. In examples 3 and 4 the choice of the
model class reflects an ‘aim of simplicity.

One of the crucial elements of the specification of modelling problems
is the choice whether the model class should consist of stochastic or of
deterministic models. In examples 1 and 2 the choice is based on a relevant
scientific theory. In examples 3 and 4, like in the majority of modelling
problems outside of the natural sciences, the choice is inspired by
convenience. Moreover, the current practice seems to be to take the model
to be stochastic. This implies that one introduces disturbances (noise) to
explain the fact that in general the data do not satisfy simple, exact
relationships. Moreover, it is nearly invariably assumed that the noise has
a stable distribution over time, i.e., the disturbances form a stationary
process.

This explanation of the discrepancy between the data and simple
(deterministic) relations has two important implications. First, the model
error is caused by disturbances of a stable nature, i.e., the relative
frequency of the disturbance terms is assumed to be rather constant over
time. Second, and based on this, the quality of proposed identification
procedures is assessed on the basis of statistical criteria like
unbiasedness, consistency and efficiency.

Clearly, this paradigm of stochastics often is a reasonable and

convenient one. However, especially for complex phenomena, the fact that
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the data do not exactly satisfy simple deterministic relationships is often
not due to disturbances or observation noise. Often the phenomenon simply
is too complex to be modelled exactly within the model class. The models
even deliberately are chosen to be simple. Both for human understanding and
for practical implementation a simple, slightly inaccurate model of the
phenomenon often is preferred above a complex, more accurate one. The

central issue then is not noise or stochastics, but approximation.

1.8 Overview of the paper

To conclude the introduction we give an overview of the contents of the
paper.

In section 2 we give a formal framework for approximate modelling,
using the concepts of complexity and misfit. We illustrate this framework
by some examples which play an important role in the sequel. In section 3
we describe the model class which we will consider in this paper, i.e., the
class of deterministic dynamical systems. We will consider the objectives
of description and prediction. Corresponding identification procedures are
presented in section 6. These procedures solve an optimal approximate
modelling problem, defined in terms of a utility of models. This utility
depends on complexity and misfit measures, which are described in section
5. The complexity and misfit measures are expressed in terms of canonical
representations of dynamical systems. These canonical forms reflect the
objectives of description or prediction and are defined in section 4.

Section 7 describes the numerical algorithms corresponding to the
modelling procedures of section 6. In section 8 we investigate some of the
consistency properties of the procedures. The procedures have a clear
optimality property as data modelling procedures. However, consistency
analysis deals with the question whether the models identified by a
procedure also are good models of the phenomenon. It is assumed that the
phenomenon belongs to a certain class of systems, which does not need to
coincide with the model class.

Section 9 contains some numerical simulations illustrating the
deterministic approximate modelling procedures of section 6. Section 10
concludes the paper by summarizing the main results and indicating some
topics of current research.

The main reference for the deterministic approach to approximate
modelling as presented in this paper is Willems [15].



2. APPROXIMATE MODELLING

2.1 Complexity, misfit, utility

In the sequel of this paper we restrict attention to the identification
aspect of the modelling problem. So we assume that one has specified the
objectives of modelling, denoted by m, the model class, denoted by M, and a
set of conceivable data, denoted by D.

Definition 2-1 A data modelling procedure is a map P:D->2M.

In other words, a procedure associates with any data a set of models.
Usually P(d) will be a singleton, but it need not be.

The aim now is to construct procedures which are optimal in view of the
objectives m. This means that for deD the identified model(s) P(d) should,
within M, reflect the data in a way which is optimal with respect to =.

A general objective is to construct models which are both simple and
accurate. We will assume that the objectives 7 can be specified by a
complexity mep ¢:M->C and a misfit map €: DxM-E. We assume the spaces Cand E
to be partially ordered. It is desirable to have models for which both the
complexity and the misfit are small. However, these desires in general are
competitive. We will therefore assume that 7 can be expressed by means of a
utility map u:CxE-»U, with U a partially ordered set. The aim then is to
choose a model for which the complexity and misfit are such that the
corresponding utility is maximal. For a partial ordering < on U, meU'cU is
said to be a maximal element of U’ if {u’'e€lU; mgu'} = {u' =m}.

Definition 2-2 The procedure P,: D->2M corresponding to the utility
u:CxE+U is defined by P,(d):=argmax{u(c(M),e(d,M)); MeM} for deD.

So P, assigns to data the set of models for which the utility is maximal.

This clearly raises questions of existence and unicity of maximal elements.
In the remainder of this section we illustrate this approach by means

of several examples. It will turn out that many classical identification

procedures can be formalized in this context.
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2.2. Exact modelling

In exact modelling one does not allow any misfit and wants to minimize the

complexity. We consider three examples.

2.2.1. Synthesis problem

As a first example, consider a synthesis problem of electrical circuit
theory. Suppose one wants to construct an electrical circuit with one
external port with a prescribed current/voltage behaviour B. Here Bc(Rz)R
describes which current/voltage trajectories over time at the external port
are compatible with the circuit. Moreover, suppose one wants to realize B
by means of an RLC-network, i.e.,, only using resistors, inductors and
caﬁacitors. For an RLC-network with one external port, let B(RLC) denote
the current/voltage behaviour at the port and let n(RLC) denote the total
number of resistors, inductors and capaéitors of the network.

The synthesis problem consists of finding an RLC -network with external
behaviour B and such that n»(RLC) is as small as possible. So one allows no
misfit and wants to minimize the complexity, measured by the number of
constituent elements. This can be formulated in terms of a utility. Let D=M
consist of the external current/voltage behaviours of RLC - networks with one
external port. Define the complexity by ¢(B(RLC)):= n(RLC) and the misfit by
€(B,B’):= 400 if B#B’', €B,B'):=0 if B=PB. The synthesis problem then
corresponds to the utility u(n,e):= -n-e.

2.2.2. Undominated unfalsified modelling

Let S be a set and let the set of conceivable data consist of finite tuples
of observations in S, i.e., D:= U{S";n>1}. Let a model M consist of a subset
McS and let Mc2® denote a class of models.

A model M is called unfalsified by a measurement deD if dcM. A model M
is called undominated unfalsified in M for d if dcMeM and {dcM'eM,
M cM} = {M' =M}. Define P(d) as the collection of undominated unfalsified
models in M for d. So P models d by models which are a> small as possible
in the sense of set inclusion. This could be expressed by means of the
following utility. Let e(d,M):= 1 if de¢M ,e(d,M):= 0 if dcM and define
c(M):= M. Let ugM, U= Mu{u} and define the utility by uu(M,1):= u and
uwu(M,0):= M. Define a partial ordering < on U as follows: u<M for all MeM
and for M,, M,eM, M, <M, if and only if M;>M, Then P coincides with the
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procedure P,, corresponding to the utility uu.

A special case of this arises if S=(Rq)z, so the data consists of a
finite number of infinite time series in ¢ real-valued variables. We will
briefly return to this case in section 3.2. For a more thorough discussion
we refer to Willems [16]. Here we only discuss a particular instance, known
as the minimal realization problem.

In the minimal realization problem of linear systems theory the data
set is D=(R""')N, where N:= {1,2,3,...}. In this case the data deD consists
of an (impulse response) sequence (Gi; keN) with G,eRP" keN. The model set
consists of triples (4,B,C) with AeR™™, BeR™™, CeR”™ for some neN. The
triple (4,B,C) is called a realization of (Gi; keNlN) if CAk'lB=Gk for all
keN. It is called a minimal realization if n is as small as possible. For
d=(Gy; keN)and M = (4,B,C)eR™" >R "xRF"" define the misfit by e(d,M):= 0
if M is a realization of d and £(d,M):= 1 otherwise. Moreover define the
complexity of M by ¢(M):= n. Let U= {-1, -2,-3,...}u{-}. Define a utility
by u(n,1):= -—oo0 and u(n,0):= -n for nel. The procedure corresponding to this
utility solves the minimal realization problem. The number n has the
interpretation of the dimension of the state space. In case a solution
exists, it is unique up to a choice of a basis in the state space. See e.g.
Kalman, Falb and Arbib [7].

2.2.3. Minimum description length principle

As a final example of exact modelling we mention the minimum description
length principle of Rissanen, see e.g. Rissanen [14]. In this case the data
set D consists of finite sequences of (finite precision) real numbers. The
model class M consists of finite sequences of binary digits. A model
represents data exactly by means of an injective code C:D-»M. It is assumed
that C codes the data d by means of an auxiliary (countable) class
P={Pg; 80O} of probability distributions on D, in the following way. The
binary sequénce C(d) consists of an initial part describing the parameter &
and a remaining part describing the data in a way which is optimal in P,
(minimum mean description length code for P,).

The complexity of a model is defined as the length of the binary
sequence. Given the class P, the minimum description length principle
corresponds to the procedure which consists of coding the data by means of
the shortest possible binary string, ie., by the model of Ileast

complexity. This minimum description length principle balances the desire
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for a small number of parameters (in 6) and a simple description of the
data by means of Py (maximal likelihood). It is intefesting to note that
this approach gives a deterministic interpretation, in terms of exact

modelling, of e.g. maximum likelihood estimation and modelling by means of

minimizing prediction errors.

2.3. Minimal complexity, given tolerated misfit

Suppose that the complexity space C and the misfit space E both are totally
ordered. We denote the orderings by <. A possible reconciliation between
the objectives of low complexity and of low misfit is to specify a maximal
tolerated misfit and to minimize the complexity under this constraint.
Given e,q€FE, we define the utility "’e,d as follows. let ugCxE and
U= (CxE)u{u}. For €26,y let uEwSc,e):= u, and for <€y ustc,e)z= (¢,€).
On U we impose the following total ordering: u<(c,e) for all (¢,e)eCxE, and
(c1,61) <(€py€5) if ¢;>¢5 or if ¢,=¢, and g;>¢, So misfits of &, or
higher are not allowed. Further, models of low complexity are preferred,
and for models of equal complexity low misfit is preferred. The procedure
P, o POV is defined as the procedure corresponding to U,

Definition 2-3 P,M(d):=a.rgma,x{u(c(M), e(d,M)); MeM}, where {u(c,,¢€,)=
u(C2€2)}: & {€1,62261 OT (C1,61) =(C5€,)} and {u(cy, &) <u(cy€,)}:

o {6,261 > €3, OT £1,6,<E4y, €>Cy O €,E3<E, €1 =Cy €;>E}.

Two of the procedures described in section 6 are of this type. These
procedures are based upon the ones which will be presented in sections 2.6
and 2.7.

The procedure corresponding to the requirement e<eg,,; (instead of
€<€y) Will be denoted by ﬁ‘u-

Here we illustrate the approach by a simple geometric example.

Let D consist of the bounded convex subsets of R* and M of the convex
polyhedral subsets of R®. For MeM define the complexity ¢(M) as the number
of extremal points of M. For CeD and MeM define the misfit ¢(C,M) as the
Lebesgue measure of the symmetric difference (C\M)uU(M\C). Llet &, be
given. Then P, ol models C by means of the convex hull of a minimal number
of points under the misfit restriction, and chooses among solutions those
with minimal misfit. See figure 5 for an illustration.
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(0-0) 1 a

figure S: C={(x,y)eR2;x2+y251, x20, y20}, &=0.05; P,M(C) is convex
hall of (0,0), (0,a), (a,0) and (,B), with a:=2(c?+1)2/(sa?+1)"

and bi=aa/(1+ct), where ou= tan(%?f)

Another example is speech processing. Let S denote the set of binary
strings of finite length. The problem is to code, transmit and decode a
signal seS in the simplest way possible, given a tolerated misfit and an
auxiliary class of models M,,,cS A coder is a map f:S5+»M,, xS transforming
a signal s into a transmitted signal teS. The signal t consists of an
initial part describing the auxiliary model and a remaining part describing
the signal s in an approximate way by means of the auxiliary model. A
decoder is a map g: M,,, x5S transforming a signal ¢ into a decoded signal
5. See figure 6.

s t=(MauxsS') 0
—3— coder =». decoder
figure 6

For example, M,,, could be chosen to be the (set of parameters of the)
class of autoregressive systems. The initial part of ¢t then describes the
order and the numerical values of the parameters of the auxiliary system.
The remaining part of ¢ could be used to describe the prediction errors of

the estimates generated by the auxiliary system with respect to the signal
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s. .The decoder could construct a signal § based upon the estimates
generated by the auxiliary system and the transmitted prediction errors.
See e.g. Jayant and Noll [6].

Here the set of conceivable data is D=S and the model class is
M=M,,,xS. Define the complexity of a model teM,, xS as the length of the
string t. Let &(s,5) denote a measure of the error of § with respect to s.
Define the misfit of a model t=(M,,,s’) with respect to data s by
€(Sy (Mauxys')):= 6(s,5) where §:= g(Mgyy,s'). Given a tolerated misfit, one
wants to minimize the complexity of the transmitted signal, i.e., of the
model.

This approach resembles the minimum description length principle,
though in speech processing it is not required that the data can be
reconstructed exactly from the transmitted signal.

2.4. Minimal misfit, given tolerated complexity

Again suppose that C and E are totally ordered. Another possible
reconciliation between the objectives of low complexity and of low misfit
is to specify a maximal tolerated complexity and to minimize the misfit
under this constraint. Given c¢,€C, we define the utility u, - 25 follows.
Let ugCxE and Ui= (CxE)u{u}. For ¢>cyy let uc‘d(c,s):= u, and for c<cyy
define uc‘d(c,e):=(c,s). On U we impose the following total ordering:
u<(c,e) for all (c,e)eCxE, and (c¢,¢)<(cye,) if €,>€, or if €,=¢, and
¢;>¢,. So a complexity above ¢,y is not allowed. Further, models of low
misfit are preferred, and for models of equal misfit low complexity is
preferred. The procedure Pcu now is defined as the procedure
corresponding to Yooy

Definition 2-4 Pcu(d):= argmax{u(c(M),e(d,M)); MeM}, where {u(cj,¢,)=
u(Cy€2)}: > {€1,62> € OT (€),6;)=(Cs,62)} and {u(cy, &) <u(Cy62)}: e

{e1> €262, OF €1,6; S Croty €1> €3, OT €),C3SCopty €1 =63, €1 >C3}

Again two of the procedures described in section 6 are of this type, along
with procedures presented in sections 2.6 and 2.7.

Returning to the geometrical example of section 2.3; SUppose Cyy 1S
given. Then P"u models C by means of the convex hull of at most ¢y

points in such a way that the resulting measure of the symmetric difference
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is minimal. Among solutions it chooses those with minimal number of
extremal points. It can be shown that the last step in fact never will be
invoked.

In the next section we give another example of modelling with given

tolerated complexity.

2.5. Simultaneous equation models

We consider a modelling procedure which is sometimes followed in
macro —econometrics and other disciplines dealing with complex dynamical
phenomena. See e.g. Maddala [12].

Suppose one wants to describe the relationship between two groups of
variables, one consisting of n, variables collected in xeR™ and the other
consisting of n, variables collected in yeR"2. For example, x could consist
of the values of n, variables of interest at time t and y of values of
these and possibly some other, auxiliary variables at times s<t.

Suppose one wants to use linear models. In general, no simple linear
relationship will be exactly satisfied by the data. It is assumed that this
misfit can be adequately modelled by means of a (Gaussian) disturbance
termn.

The model class of simultaneous equation models in this case can be
parametrized by {(4, B, L); AeR"*™ nonsingular, BeR™ ™2, LeR""™, L =57 > 0}.
The parameter (A4,B,r) corresponds to the model Ax+By=¢, where ¢ is a
Gaussian random variable with mean zero and covariance matrix L.

Let data {(¥;,%:); i=1,...,n} be available. One possible approach to
identify a model on the basis of these data, i.e., to estimate (A,B,L), is
the following. Suppose the data are generated by a stochastic system
Ax;+B,y;=¢€;, i=1,...n, where the ¢; are independent identically
distributed zero mean Gaussian random variables with covariance matrix £,
First estimate ( -A; B, , A7 L,(AY)T ), e.g. by least squares (maximum
likelihood). Denote the resulting estimates by (ﬁ,g'). Impose restrictions
on the parameter (4,B) in order to make the map f:(A,B)-»-A'lB injective.
The injectivity of f is called identifiability in the literature. In this
case the model could be estimated as (4,8):= f(iT) and £:= ASA”.

We want to state some of the essential elements in this approach.

First, identifiability often is obtained by imposing prior
restrictions on A and B, declaring certain elements of these matrices to be
zero. The interpretation is that every equation corresponds to a part of
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the phenomenon which only incorporates certain variables. These zero
restrictions are often inspired by theory. Imposing the restrictions
resembles fixing the tolerated complexity, interpreted as the number of
non - zero coefficients.

Second, it is not so much the least squares misfit as the variance of
the estimated parameters which determines the confidence in the model. In a
strict sense, every observation fits any model for which £>0. However,
inspection of the variability of the parameter estimates corresponds to
some intuitive concept of misfit.

Finall};, both the complexity and the "confidence” are defined in terms
of parametrizations of models. In particular, every equation is
investigated independent of the other ones. For example, declaring a
parameter in a particular equation to be zero does not imply the absence of
a direct relationship between the 'éorresponding variables, as such a
relationship can be due to the other equations.

In section 6 we decribe two modelling procedures for modelling
dynamical phenomena which do not make use of stochastic assumptiéns. This
in particular avoids the assumption of a stable distribution generating
disturbances. Moreover, complexity and misfit measures are explicitly
defined in terms of canonical parametrizations of dynamical models. These
canonical forms are directly inspired by the objectives of modelling and do
not depend on a theory concerning the phenomenon. The resulting measures
have a clear interpretation in terms of model quality, as opposed to
parameter quality. Moreover, the measures take the simultaneous nature of
the model equations explicitly into account.

The procedures of section 6 for modelling dynamical phenomena make use
of static modelling procedures. We will now describe these static
procedures in sections 2.6 and 2.7.

2.6. Static descriptive modelling

Suppose we want to describe a finite number of points in R" by means of a
linear subspace. So D consists of the finite subsets of R® and M consists
of the linear subspaces of R". A model M declares xeR" to be compatible
with the phenomenon if and only if xeM. As complexity we take
M {0,1,...,n} defined as follows.

Definition 2-5 The descriptive complexity of a model MeM is defined as
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its dimension, i.e., cD(M):= dim(M).

So a simple model is one which excludes much.

Let R" be equipped with e.g. the Euclidean inner product, denoted by
<+->. To define a descriptive misfit, first consider models of codimension
1, i.e., there is 0#aeR" with M=(spa.n{a})'L. Such a model claims the law
<x,a> =0 to hold true for the phenomenon. A measure of the quality of this
law with respect to data d =(%,,...,%y)e(R")" is e2(d,M):= ¢°(d,a), which is

defined as follows.

Definition 2-6 For data d=(:’f,,...,§~)e(R")~ and aeR", the descriptive

misfit of the law <x,a> =0 with respect to d is defined as

N
Pld,e)= {5 L <Fue>?/ o)’}

If codim(M)>1, then e?(d,M) is defined as the descriptive misfit of the
worst law claimed by M, i.e., €2(d,M):= max{e2(d,M'); McM', codim(M’)=1)}.
Note that the model M claims that ¥;eM, so in particular X;eM’ for M'oM,

i=1,...,1n

Definition 2-7 For de(R")N, MeM, the first descriptive misfit is
e2(d,M):= max{e®(d,a); 0#aeM ).

Note that M claims that <X;,a> =0 for all 1=1,...,n, eeM™*. The second
descriptive misfit is defined as the worst-but-one claimed law, i.e., if
ef(d,M):eD(d,al), a,eM'L, then e?(d,M):: ma.x{cD(d,a); O;taeM'Ln(span
{a,})"“}. So e?(d,M) measures the quality of the laws claimed by M and
orthogonal to the worst law a,. For k=3,...,n-¢(M) the k-th descriptive
misfit is inductively defined as follows: if for j<k e?(d,M):‘cD(d,aj),
ajeM'L o} (spa.n{al,...,a,-_l})'L , then ef(d,M):: ma.x{cD(d,a); OxceMn
(spa.n{al,...,a,‘-l})'L}. It can be shown that ef(d,M) is well-defined this
way, even if the a@; are not unique. For k=n-c(M)+1,...,n we define
€n(d,M):= 0. In this way the misfit is a map e”: DxM » RT.

On the complexity space {0,1,...,n} we take the natural ordering, as
well as on R,. The misfit space R} we order lexicographically, i.e.,
(€yy-.+1€En) 2 (Eyy...,Ep) if and only if £, =€, for all k=1,...,n or if there
is a k such that €;=¢€; for i<k and &;>¢&,.

We remark that complexity and misfit are defined on the level of
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models, not on the parameter level.

In the next propositions we give explicit algorithms for the
procedures Pf : corresponding to minimizing complexity, given a tolerated
misfit, and P ol corresponding to minimizing misfit, given a tolerated
complexity, as described in sections 2.3 and 2.4 respectively.

N
For data d=(%,,...,Xy) let Ilv r :“r,-fif have singular value decomposition
fm]

N

(SVD.) § L %%7=USU”. Here U is orthogonal, ie., VU =U"U=1I, , the
fxl

identity matrix in R™. L is diagonal, T =diag(a,,...,0,) With 0,2... 20,20.

N
Let r:=rank( IlviEI:"E,-'if), then o,,; =... =0,=0. Let u; denote the j-th column of

U. Define M::: span{u,,...,ux} and M(c):= span{u,; o0;=0}.

Proposition 2-8 For given data d =(§1,...§N)E(R")~ and tolerated
complexity ¢, Pgu(d) is given by

(1) Pe,(d)={0} if cou=0;

() Po,(d)=span{Zy,..., B} If co2r;

L
(#41) P[Zw(d)=Mcw if 0<cp<r and 0, >0, 41 ;

(iv) ifoy2... 20 >0c y1=-.. =0c, =0 4120c 422 20, then

PC_(d)={M +L; LcM(a, ), dim(L) = cy=cy}.

Proposition 2-9 Let data d = (%,,...,Xy)€ (R")N be given. Assume moreover
that a maximal misfit level is given with e,o,=e:°l.(1,...,1), so the
misfit restriction concerns only the worst law claimed by a model. Then
() Pe, (d)={0} if €">ay;

(#) PZ, (d)=span{%,..., %y} if €" S0

(#1) if a,.<e:°lsal,then P’,D‘d(d) =M: with k such that akze:d>a,,+1.

We also refer to Willems [15].

We finally remark that there is a close relationship between these
procedures and total least squares. See e.g. Golub and Van Loan
[1).Consider as a simple example the case c,=n-1. For 0#aeR" let
M(a):= (span{a})"‘:: {xeR"; <x,a> =0} and let m, denote the orthogonal
projection operator onto M(a). For given data d=(:‘c’1,...,5EN)e(R")N, in total
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1 X ~ 2
least squares one determines a such that &(d,a):= N ileIxi—ﬂax,»H is

minimal. See figure 7 for the case n=2.

X2

X

figure 7

N
It is easily shown that 6(d,a.)={ar(k'zlii’if)a}/\\al|z={e?(d,M(a))}z. So in

this case of c¢y=n-1 the procedure corresponds exactly to total

Ctol
least squares. Analogous results can be obtained for ¢y<n-1 and for
P, .
tol

2.7. Static predictive modelling

Suppose we want to predict (or estimate) n, variables yeR™ on the basis of
n, other variables xeR™ by means of a linear subspace of R"*"2,

Let N observations (%;,5;), %;eR™, %;eR™, i=1,...,N be available, so
the data set is D= (R"*"2)".

Let M be a linear subspace of R™*™2, The model M has the
interpretation that, given x, it is predicted that y will belong to the set
M(x):= {yeR™; (x,y)eM}. Stated otherwise, let xeR"! be observed. The model
M amounts to predicting that the with x associated, but unobserved, y will
be such that <a,x> + <a;,y> =0 for all (a,,a,) e M, o, €R™, a,€R™. Asmodel
class M we will take the class of those linear subspaces M of R™*™ for
which the projection on the x coordinate is surjective, i.e., {x; 3y such
that (x,y)eM}=R". This means that prediction is possible for every xeR™.

It is easily seen that M(x) =y +M(0) for any xeR™, yeM(x). So for given
model MeM, the dimension of the (affine) predicted set is independent of
the observation x. We define the predictive complexity i {0,1,...,m,}

as follows.
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Definition 2-10 The predictive complexity of a model MeM is defined as
the dimension of the affine predicted set, i.e., cP(M):= dim(M(0)).

So a simple model corresponds to predictions with few degrees of freedom.

To define a predictive misfit we again consider first models of
codimension 1. Let 0 # a = (a,,a,) eR™xR™ and M = (span{a})". Note that MeM
implies a,#0. The model M predicts that, given x, y will satisfy
<a,y>=-<a,x>. For data d={(%;,5;); i=1,...,N} the relative mean
prediction error of this model is ef(d,M ):= eP(d,a), which is defined as
follows.

Definition 2-11 For data d={(X,,¥;); i=1,...,N}e(R"1xR"2)N and a=

(a;,8,) eR"xR™ with a,#0, the relative mean prediction error is

. P 1N . ~ 1y ~ e
defined by e (d,a):= [{Ni§1(<a1,x,-> +<a2,y,->)2}/{Ni§1<a2,y,->2}] .

If codim(M)>1, then eP(d,M) is defined in analogy with the misfit in
section 2.6, i.e., ef(d,M ) measures the predictive misfit of the worst
prediction made by M, eg(d,M) the misfit of the prediction worst-but-one,
and so on.

Formally, let M'ZL:= {a,;3e, such that (a,, az)eM‘L}, so M'.zL consists of the
space of predicted functionals on y. There holds dim(M';')=n2-c(M). For
k=1,...,dim(M3) we define eh(d,M) inductively as follows.

Definition 2-12 For de(R"lxR"Z)N, MeM, the first predictive misfit is
ef(d,M):: ma.x{ep(d,a); aeM‘L}.

Further, if for j=1,...,k-1 e?(d,M) =eP(d,a(j)), ag"')eM‘é N (span
@6y then eb(d,M):= max{c’(d,a); a,e M} N (span {ail)..,
agk'l)})'L}. For k=dim(M'§)+1,...,n, we define ef(d,M):: 0. In this way the
misfit & : DxM » R}? is well-defined, provided N2n, and provided that the
data are generic in the sense that span{J,,...,jy}=R"2.

We order the complexity and misfit spaces as in section 2.6, i.e.,
naturally and lexicographically respectively.

Note that again complexity and misfit are defined on the level of
models, not on the parameter level.
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Next we will give explicit algorithms for the procedures wa‘
corresponding to minimizing complexity, given a tolerated misfit, and
mel corresponding to minimizing predictive misfit, given a tolerated
complexity.

Let the data be d = {(X,,¥;); i=1,...,N}. Suppose that N >max{n,,n,} and
that the data are generic in the sense that span{%,,...,%¥y}=R™ and

> T (ry+n,)x(n, +n,)
][f'] eRn1 P and let

Yi

_ . S S 1 N 3.
span(s, . 9w) =K Les (3 $ov)ue B [

5725,,5;% have S.V.D. UAVT, with UeR™™ and VeR™™ both orthogonal

matrices and A=[§ g] e R"™, I=diag(oy,...,0,), 0,2...20,>0. There

holds 0,51 and r=rank(S,,). Let r* denote the number of singular values

equal to 1. Denote the columns of S;’fU by agi), i=1,...,m,, and those of

S,;V by aé'.), i=1,...,n, For k=1,...,r define M}:= {(x,y); agi)y=ai-a§i)x,
i=1,...,k}. Then ¢(M})=n,-k and € (d,M}) = ((1-0b)%,...,(1~-03)",0,...,0).

Finally, let M(c) = {(x,y); at"y=0a{"x for all i with o;=0).

Proposition 2-13 For generic data d = {(%,,y;); i=1,...,N} and tolerated

complexity ¢, Pl: ol is given by

(1)  Pf _(d)={MeM; McM;, dim(M3)=ns-Cu} if Cou<na=T;

() P (d)=My if cu2my-1";

() Pe (d)=Mn c,,

(fv) if 012....zac1>ac1+1=....-:-a,,z_cw= Mg=Cpt1 =+t =0, > O 12
>0,.>0, then P':u(d)={Mc1nL; LoM{on e )y e(L)=Curtes).

if ;
T <Ny-Cy<T and Ony-cpyy > Tng=cogy+15

Proposition 2-14 Let data d={(%,7;); i=1,...,N} be generic. Assume
moreover that a maximal misfit level is given with €=
e(1,...,1), so the misfit restriction concerns only the worst

prediction made by a model. Then
(i) Pe (d)=My ifel”>1-0" )"
(i) PE_(d)=R""" if e <(1-0H)";

(i) P{_(d)=M7if r<n,and (1-0)"<el*s1;

(iv) if (1-03)%<e;°‘s(1-03)v’, then wax(d)'—'M: where £k is such

¥

that (l—a:) <e:°‘s (l-o:ﬂ)vz.
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We also refer to Heij [4].
We remark that for n,=1 and ¢, =0 the procedure P}: ol reduces to

ordinary least squares fitting. See figure 8.

figure 8

The special (vertical) way of measuring the error in this case reflects the
purpose of predicting y on the basis of x.

This concludes our section on approximate modelling. The procedures
for static modelling in sections 2.6 and 2.7 are used for approximate
modelling of time series by means of dynamical models in section 6. In
order to do this, we introduce the concept of a dynamical system and a
class of dynamical models in section 3. We define complexity and misfit in
section 5 in terms of canonical parametrizations of these models. These
canonical forms are described in section 4.

3. DYNAMICAL SYSTEMS

3.1. Definition of a dynamical system

Definition 3-1 A dynamical system is a triple (T,W,B) with TcR the time
set, W the signal set and BcWT the behaviour of the system.

The behaviour B we will sometimes call a system or a model.

A dynamical system describes the relationships between variables of
interest in the following way. Let W be the set in which the variables on
every time instant take their values, and let T denote the time set under
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consideration. The behaviour B then consists of a set of time series w:T -V
with the interpretation that time series weB are compatible with the laws
of the system, while time series wgB are not compatible with these laws,
This gives a deterministic description of the system.

For some illustrative examples we refer to Willems [15], [16].

3.2. AR-systems

In the sequel we will restrict attention to a special class of dynamical
systems, namely those describable by a finite number of autoregressive
equations. We will invariably consider discrete time systems with T=2Z and
with signal set W =R’ So there are ¢ variables of interest which take on
real values.

We will use the following notation. Let R eR™ for k=d,,d,+1,...,d,,

where dy,d,eZ, d,<d, Define ReR™[s,s™'] by R(s,s ' ):= kEd Res*, soRis a
=N

finite Laurent series in s with coefficients in R™¥, By a slight abuse of
language we will call R a polynomial matrix in s and s7. By o we denote
left shift, i.e., if w:Z»>R? then ow:Z>R’ is defined by (ow)(t):= w(t+3),
teZ. By o™ we denote the inverse of ¢. The autoregressive system B(R) then
is defined as ker(R(g,07’)), i.e., B(R) is the set of those time series

a2
w:Z->R? for which R(a,a'l)w.—.o, ie., kL'd Ryw(t+k)=0 for all teZ.
=%

Definition 3-2 Let ReR™[s,s”']. Then the autoregressive system
(AR-system) B(R) is defined by B(R):= {we (R)E; R(o,0™ yw=0}.

We will denote the class of all AR-systems by B, ie., B:= {Bc(Rq)z;
39 3ReR™[s,s”"] such that B=B(R)}.

This class of systems is interesting for a number of reasons. First,
it forms a class of models often used in practical modelling situations
where one wants to describe linear relationships between the variables and
their lagged values, as e.g. in econometrics, signal processing and linear
control. Second, this class of systems includes some widely used systems
as, for example, linear input/output systems with finite dimensional state
space. Third, there exists a nice interpretation of AR-'systems on the
behavioural level of sets of time series, which we will now describe.

It can be shown that a system Bc(R")Z is an AR-system, i.e., there is
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a polynomial matrix R such that B=B(R), if and only is B is a linear, time
invariant, complete system. B is called linear if it is a linear subspace
of (Rq)Z. It is called time $nvariant if cB=D, i.e., shifted time series of
the system also satisfy the laws of the system. This means that the laws of
the system are time invariant. B is called complete if {weB} {w|[,o,,1]
€ B|[,o’,1] for all —~o<ty<t; < +o0}. This means that in order to check whether
a time series wor:'(R")z belongs to B or not it suffices to consider only
windows [tq,t,] of arbitrary finite length. Moreover it can be shown that
if B is linear and time invarijant, then B is complete if and only if there
exists a A20 such that {weB} « {w|(sa] € Bljo,a) for all teZ}. So in
this case the laws which are imposed by B are local in time.

We finally mention that the class of AR-systems exactly consists of
those subsets Bc(R")z which are linear, shift invariant and closed in the
Z' We will illustrate the use of
this characterization by briefly returning to section 2.2.2 on undominated

topology of pointwise convergence in. (R7)

unfalsified modelling. Let D=(Rq)z, so the data consists of an infinite
time series, and let M=B, so the model class consists of the AR -systems.
The property of closedness of AR-systems implies that for every weD there
exists a unique B*(#)€B such that 17)63.(17)) and { weBeB} = {B'('(T;)CB }.
The procedure P,, corresponding to undominated unfalsified modelling hence
models @ by means of B.(ﬂ'l). It is called the most powerful unfalsified
model. In the sequel we will not consider exact modelling of an infinite
time series, but approximate modelling of a finite time series.

3.3. Modelling a time series

Suppose we want to model a dynamical phenomenon. In terms of figure 1 in
section 1.1, we assume that the objective is either description or
prediction of the phenomenon. So we do not discuss control problems or
objectives corresponding to theories concerning the phenomenon. Moreover,
it is supposed that it is reasonable to model the phenomenon by means of a
system which is linear, time invariant and complete. The interpretation is
that the model gives a description of the phenomenon which is local, both
in space (linearity) and in time (time invariance and completeness). The
model class hence is B. It is assumed that ¢ real-valued variables have
been specified which have to be included in the model and that data on
these variables is available in the form of a finite time series. We denote

the variables by w:= (wl,...,wq)r, the time interval of observation by
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T:= [t t;] for some —oco<ty<t, < +oo, and the data by w:=( w(t); teT ), an
ordered sequence of observations. It is assumed that the data are directly
related to the variables of interest and that there are no ™missing
observations”.

In this case the data set is D= u{(Rq)";neN}, so the data consists of a
time series of length n in R’. The model class is M=B:= {Bc(Rq)z; B linear,
time invariant, complete}. The objective 7 is description or prediction.
The modelling problem consists of choosing a procedure P”:D-»2B,
corresponding to a utility u reflecting the purpose m of modelling. We
will follow the approximate modelling approach described in section 2.1.
Therefore we will define complexity maps c.: B> C7r and misfit maps €,
DxB » E1r and impose orderings on C7r and E”. The resulting identification
problem is depicted in figure 9.

time series: w

model class: B model: B(R)

" >>] objectives: (cg.eq)

figure 9: modelling a time series

In order to implement procedures algorithmically it is desirable to express
the utility not only in terms of the sets Bc(R")z but also in terms of a
finite number of parameters parametrizing B, i.e., in terms of an
AR -representation R such that B=B(R). However, defining a utility in terms
of R need not automatically be compatible with a utility in terms of B, as
the map f: v {Rm[s,s'l]; geN} » B with f(R):= B(R) is not injective. The
representation of B by means of R such that B=B(R) is highly non-unique.
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In section 4 we will describe the nature of the equivalence relation ~
defined on U { Rm[s,s'l]; geN} by {R,~ R,;}: « {B(R,) ¥B(R2)}. Moreover we
will define two canonical forms under this relation ~, which are inspired
by the objectives of modelling. In section 5 we will define complexity and
misfit maps for the problem of modelling time series by means of
AR -systems. These maps are defined in terms of the canonical forms, i.e.,
in terms of special AR -representations, and induce well -defined complexity
and misfit measures for systems in B. The corresponding modelling
procedures defined in section 2.3 and 2.4 are described in section 6. In

section 7 we give the resulting algorithms.

4. CANONICAL FORMS

4.1. Equivalent parametrizations

Let B denote the class of models Bc(R")Z which are linear, time invariant

and complete. As stated before, BeB if and only if there exist geN,
d2

d,,d,e2, d;<d,, and a polynomial matrix R=k£d R,,skeRM[s,s"] such that

1
B=B(R):= { we RE; R(o,0 ™ yw=0).

We will use the following notation. R, is called equivalent to R,,
notation R,~R,, if B(R,)=B(R,). For BeB let B’ denote the family of laws
which are satisfied by the behaviour B, ie, B = {reR"s,s™];
r(0,0 yw=0 for all weB). Let ReR™[s,s'] have rows r;eR™s,s™],

i=1,...,9, then the polynomial module generated by ry,...,r, is denoted by

M(R):= {reR"’[s,s‘l]; Bp,-eR[s,s'l], i=1,...,9, such that r= .Zgi Ppiti}. Let Bt
denote the class of these (finitely generated) submodules <;f- lRl'q[s, s'l].By
dim(M'L) we denote the dimension of M- eB" as a module, i.e., dim(M'L) is the
minimal number of elements of M which generate M. Finally, UeR™[s,s™"]
is called unimodular if it is invertible in R%Y[s,s™].

The next proposition summarizes some results on AR -representations of
models in B.

Proposition 4-1 (i) For every BeB, B‘LéBJ'; the map f:B-»BJ':B»B'L isa
bijection of B onto BY; (i) {B=B(R)} « {B =MR)}; (iii) if
dim(BJ' )=p, then there exists ReR”[s, s"] with B = B(R); moreover, this
R is unique up to left multiplication by a unimodular matrix.
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This implies that the equivalence class of AR-parametrizations of a given
model BeB consists of those polynomials ReR™[s,s™'], for some geN, for
which the rows generate B*. So the (autoregressive) laws which are
satisfied for any time series in B consist of the rows of R and
(polynomial) combinations of them.

We will use these results on equivalent parametrizations to define two
canonical forms. A canonical form is defined as any subset
Cc U{R"™ q[s,s'l]; geN} which contains at least one element of every
equivalence class, i.e., for any geN and ReRm[s,s'l] there exists an
R.eC such that R~R.. C is called minimal if it contains exactly one element
of every equivalence class, i.e., R;,R,€C with R~R, implies that R,=R,.
The two canonical forms defined in sections 4.3 and 4.4 are not minimal.
This non-minimality is rather intrinsic, i.e., forcing a reduction of the
canonical form so that it would become minimal would require arguments

which are not related to the objectives of modelling.

4.2. Preliminaries

In order to describe the canonical forms it is useful to introduce some

vocabulary and notation.

®
Z_7is, 7,€R™, define the order of r by

d(r):= max{k; 7 #0}-min{k; r;#0}. Let R=col(r,...,r,)€R™[s,s7'] denote
the polynomial matrix with rows ry,...,r,, then the order of R is defined

1 -1
For reR™[s,s7'], r=

dy }
as d(R):= max{d(r;); i=1,...,9}. Suppose r,~=k2_',‘;‘,. r,(")s,‘ with dj>d;,
rg);éo;ér:f,) sy SO d(r;)=di-d;. Let L,.:= col(r:,':,); i=1,...,9) and
1 3

L :=col(rif); i=1,...,9) be the leading and trailing coefficient matrices

of R. The;x R is called bilaterally row proper if L, and L_ both have full
row rank g. '

Let R=col(r,,...,rg)eRm[s,s'l], then (d(ry),...,d(ry)) is called the
lag structure of R. In the sequel we will make use of the equation

structure of R, which is defined in terms of the lag structure, as follows.

Definition 4-2 If ReR™[s,s”'] has lag structure (d,,...d,), then the
equation structure of R is defined as e(R):= (e ;t20), where
e, := #{i;d;=1t} is the number of rows in R of order .
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For lag structures we define a total ordering by {( di,...,d;,)s
(dy...,dg.)}: = {(d},...,d5)=(d},...,d,.) or g’ <g” or there is a g<g'=g"
such that d;<dg and d;=dj for all i<g}. So few equations and short lags are
w
preferred. We order equation structures by {e'<e"}:e {e'=¢" or ‘goe; <

‘éoe'; or ‘goe;=§°e'; and there is a t; such that e;0>e','0 and e,=¢; for all
t<ty}. For BeB we call R a shortest lag or tightest equation
representation of B if B=B(R) and the lag or equation structure
respectively is minimal in the class of AR-representations of B. Clearly,
every BeB has shortest lag and tightest equation representations. The

following proposition characterizes these minimal descriptions.

Proposition 4-3 Let B=B(R). -Then the following statements are
equivalent:

(i) R is bilaterally row proper;

(i¥) R is a tightest equation representation of B;

(i4i) there exists a permutation matrix II such that [IR is a shortcst
lag representation of B.

We will finally characterize shortest lag representations in terms of
matrices. Let BeB and Bl:= {reRl"q[s,s'l]; r(a,a'l)w=0 for all weB}. Let

R:’q[s] denote the class of polynomials in s of power at most t, i.e.,

[
Re[s)= {reR™[s]; 1=, T rs", ry=0for k<0and k>t}.Let By:= B nR'}Y[s],
then B‘i‘ describes the family of laws of order at most ¢ which are satisfied

by the behaviour B. We will identify Bt with a subspace of (R“9)"*! as
follows.

Definition 4.4 The bijection v :R;[s] » (R*)'*! is defined as
t
follows. Let r=k2_3°rksk € RY9[s], then v(r)e(R™)™*! is defined by

Ve(T) 1= (TosTyy---3Te)-

It can be shown that v,(B':' ) is the (Euclidean) orthogonal complement in

R)™ of B, := Bl(.¢,0)=Bl[s,s4r) for any seZ, i.e., the behaviour on an
interval of length t+1.

Next we define spaces L,cBJ' as follows. Let Lg:= B{,‘ consist of the



-20-

zero order laws for B. Define V= vy(Ly). Observe that B}l,'+st,'ch. We will
say that the first order laws in B}l,'+sB'(1,' are implied by zero order laws.
Truly first order laws for B, collected in Lch'i‘, are required to be
independent of those implied laws. Formally, let V, be a complementary
space of vl(B‘(',‘+sB}',‘) in vl(Bf), ie., Vlnvl(B}l,'+sB}';)={0} and
V1+v1(B}',‘ +sB}‘,' ) =v1(B‘{‘ ). Then L, := v}l(Vl). Analogously, the t-th order laws
in B‘l‘ _1+sB‘i‘ _1cB"{ are implied by lower order laws. Truly t-th order laws are
collected in L,cB‘l‘ , defined as L, := v;l(V,) for a complementary space V, of
vt(B-i--l""SB-:-l) in ”z(B-:-), ie., Ven vt(B-i-—l'*’SB-:--l) ={0} and
Vit 0Bty +5B 1) = v(BY).

Clearly, the spaces V; and L; in general are not uniquely defined. Let
n,:= dim(V,) and let {vi'),...,v,(,:)} be an arbitrary basis of V,. Moreover
define rf-”:: v;‘(vs-')), i=1,...,n, . The following proposition establishes
the relationship between the sets L, and shortest lag representations of a
model BeB.

Proposition 4-5 Let BeB. Then there exists a d such that n;# 0 and n,=0
for all t>d. Any tightest equation representation R of B has equation
structure ¢(R)=(ng,...,n4,0,0,...). Finally, R is a tightest equation
representation of B if and only if there exists a choice of the
complementary spaces V,, of bases {v?); i=1,...,n} of V;, and of
numbers k,t)eZ for i= 1,...,n, t=0,...,d, such that the rows of R

k.(¢)
consist of {o° -rf-'); i=1...,n, t=0,...,d}.

The canonical forms will correspond to a special choice of the

complementary spaces V,, which we will describe in the next two sections.

4.3. Canonical descriptive form

In section 5§ we will define the descriptive complexity and misfit of models
in terms of tightest equation representations of a special type. Note that
proposition 4-5 characterizes the non-unicity of tightest equation
representations in terms of the choice of the complementary spaces V, and
bases of these spaces. The canonical descriptive form selects particular
complementary spaces, but the choice of bases is left arbitrary. The
complexity and misfit in section 5 will be defined independent of this
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choice of bases.

We choose truly t-th order laws of B such that fhey are (Euclidean)
orthogonal to the t-th order laws which are implied by lower order ones.
Formally, we define L?CBJ; as follows. ng = B’f,‘, and Ll,) =
v}l{ [v,(B‘,L.1+sBJ;_1)]‘L N [v,(B’J;)] }. So, intuitively, the laws reL? are
orthogonal to those in BJ{_1+sB’J{ -1- The orthogonality is imposed to ensure
that laws in Ll,) are "far” from being implied by laws of lower order. Of
course, in some cases it could be sensible to choose other inner products
than the Euclidean one.

Now R is defined to be in canonical descriptive form if it is itself a
tightest equation description of the corresponding behaviour B(R) and if
the laws of truly order t are contained in Ll,). We will then say that laws
of different order are orthogonal.

Definition 4-8 R is in canonical descriptive form (CDF) if
() R is a tightest equation representation of B(R);
(i8) laws of different order are orthogonal.

Proposition 4-7 (CDF) is a canonical form.

Note that for R in (CDF) ReR¥[s), i.e., R is a polynomial matrix in s.
We will describe (CDF) in terms of matrices as follows. Let ReR"[s]

and let R®):= col(r?);i=l,...,n,) consist of the rows of R of order ¢,

®
t20, n,>0, 'I-Ion,=g. Let d be the highest power of s in R and for t>0 let

. (6. ._ n,x(d+1)q
N, :=col(vy4(r; '); i=1,...,n,)€R correspond to the t-th order laws

in R Lt N=[RY.R" with RPeR, i=0,...,d. Let
ko:=max{i; R"#0)}. Let  L_:=col(R{”,....Rs")eR™ and L,=
CORLY,...,RED) R,  Define s: R™URMMN a5 follows. It
v=(Vg,...,04.1,%5) With v,eR", i=0,...,d, then s(v):=(0,vy,...,v4,). Let
Vo:=N, and define 7, for t=1,...,d inductively by V,:= col(¥,_,,sV,_,,N,).
Finally, for matrices A4, and A, let A;14, denote that every row of A4, is
orthogonal to any row of A,.

Proposition 4-8 R is in canonical descriptive form if and only if
(3) L, and L. have full row rank; (this implies k,=t)
(i) N¢Lcol(P,,,s7,,) for all t=1,...,d.



-3]-

So, whether R is in (CDF) or not can be checked by means of proposition 4-8
in terms of matrices which can be easily calculated from R. These algebraic
conditions will play a role in the algorithms of section 7.

The next proposition describes the non-unicity of (CDF)
representations of systems BeB.

Proposition 4-9 Let BeB, B=B(R) with d(R)=d and R in (CDF). Let the
rows of R be ordered with increasing degree. Then B=B(R’) with R’ in
(CDF) if and only if there exists a permutation matrix I7 and a
blockdiagonal matrix A=diag(Aq,...,4as) With A,,eRn'm‘ nonsingular
such that R'=ITAR.

4.4, Canonical predictive form

The canonical predictive form also corresponds to a particular tightest
equation representation of the AR -equations describing a behaviour. Again,
the complementary spaces V, of section 4.2 are chosen in a particular way
and the choice of bases is left arbitrary. The spaces are intimately
connected with the purpose of prediction and corresponding complexity and
misfit maps, which will be defined in section 5.

To define the canonical predictive form, we consider the (forward)
predictive interpretation of a law reRl’q[s]. Let d(r)=d, r=k§.mrksk with
ry=0 for k<0 and k>d. The law r corresponding to r(¢)w=0 predicts that,
given w(s) for s=t-d,...,t-1, w(t) will be such that ruu(t)=

d-1
—kZ_TOr,,w(z—d-l-k), teZ. We call r a predictive law of order d, r; a predicted

a-1
functional of order d, and -k{,'orksk a prediction polynomial of order d.

Intuitively speaking, we will choose the complementary spaces V; such that
the predicted functionals of different order are orthogonal and such that
prediction polynomials of a certé,in order are orthogonal to predictive laws
of lower order. This ensures that predictive laws of different order are
"far” from each other.

Formally, for BeB define LY c B as follows. Let F,:= {FeR™; 3reBT,
r= !‘3 rksk, such that r,=7} denote the set of predicted functionals of order
at most t. Then LF:i= BE and LF:= v} [v(Fors') 4B ) nvdBH)] ).
R is said to be in canonical predictive form if it is itself a tightest

equation representation of the corresponding behaviour B(R) and if the
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predictive laws of order ¢ are contained in L’:. We will then say that
predicted functionals of different order are orthogon#l, corresponding to
v,(L}:).Lv,(F,-l.s'), and that the prediction polynomials are orthogonal to
predictive laws of lower order, corresponding to v,(L}:)J.v,(B',L-,).

Definition 4-10 R is in cenonical predictive form (CPF) if

(}) R is a tightest equation representation of B(R);

(1) predicted functionals of different orders are orthogonal,

(#4) prediction polynomials are orthogonal to predictive laws of lower
order.

Proposition 4-11 (CPF) is a canonical form.

Using the notation of section 4.3, proposition 4-12 gives simple algebraic
conditions for R to be in (CPF). These conditions will be used in the
algorithms of section 7.

Proposition 4-12 R is in canonical predictive form if and only if
()) L, and L_ have full row rank; (this implies k,=1)

() ROLR for all t#s, t,5=0,...,d;

(#i) N LV, for all t=1,...,d.

The non-unicity of (CPF) representations is exactly of the same kind as
described for (CDF) in proposition 4-9, i.e., the representation is unique
up to a permutation of the rows and a choice of bases in the spaces L}:.
We conclude this section by giving a simple example illustrating the
canonical forms (CDF) and (CPF). Consider BeB defined by B:={we (R%)%;
w(t)+wy(t-1)=0, w(t)+ws(t)+w,y(t-2)=0, teZ}. Then B=B(R) with

R:= [: i :] +[; : :].s + [‘: 2 :].sz. R is neither in (CDF) nor in (CPF).

0 00
Let Uy:= [_;} 1] + [_% o].s, Uy= [;2 ‘:} + [‘1’ :]s Ry= UyR and R;=

UsR. Then B=B(R)=BRa), Ri=[3 4 o) + [ o o)s + [h01)s

is in (CDF) and R2=[: W :] + [_,j’ . :]s +[: : ':].s’ is in (CPF).
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5.. COMPLEXITY AND MISFIT

5.1. Complexity

As before, let B denote the class of linear, time invariant, complete
systems in (Rq)z. Intuitively, a system is more complex if more time series
are compatible with the system, ie., if the system imposes less
restrictions on the behaviour. A simple system is one with a few degree of
freedom. In particular, if B,,B,eB and B,cB,, B,#B,, then we call B, less
complex than B,. More general, we will call B, less complex than B, if it
allows less time series. The complexity of a system will express the
magnitude of the set of time series compatible with the system. For BeB,
let Bp= Blg,) denote the space of time series of length t+1 which are
compatible with the system. By Z, we denote the set Z,:= {0,1,2,3,...}. We
now define the complexity as a sequence of numbers ¢,(B), teZ,, where c,(B)
measures the magnitude of B,.

Definition 8-1 The complexity of dynamical systems is defined by

¢:B>(R,)Z*, ¢(B):= (c(B); tel,), where ci(B) :=H‘_—1-dim(B,).

It can be shown that the limits glré] c(B)=: m and glroro] t.{¢c;(B)~m}=: n exist
and that m is the number of inputs in B and n the (minimal) number of state
variables.

A natural ordering of complexities is the partial ordering defined by
{cmzcm}: - {cﬁl)zcgz) for all teZ,}. This ordering is related to
tightest equation representations. For BeB let e'=(e:; t>0) denote the
equation structure of a tightest equation representation of B. If B,,B,eB

e*(l) and e*(2)

with  equation  structures
t ,
dim(B,-]lo,,])=(t+1)q-k§0(t+1-k)e:('), so ¢(By)2c(B,) if and only if for all

; (1) *(2)

t
tel, kgo(t+1—k)e, skgo(t+1—k)e, . So systems are complex if their

behaviour is restricted by few laws which are of high order.

respectively,  then

In the approximate modelling procedures of section 6 we will use
utility functions involving the complexity. These utility functions will be
based on a total (lexicographic) ordering of complexities which is a
refinement of the natural ordering, and which is defined by
{c(1)2c(2)}: - {c(1)=c(2) or there is a tyeZ, such that c(,;)>c(tz) and
c£1)=c£2) for all t<t,).

We want to make some remarks on this ordering.



-34-
First, in assessing the complexity of a system the number of short lag

equations is decisive. Indeed, as ¢, = q—l— E (t+1 k)er, it follows that

(1), 2 o)) _ (2) ! o(1) __e(2)
{c {e

} - or there is a ter such that €y <€, and

e:“)se,(z) for all t<to}. Note that this ordering of equa.txon structures

differs from the one described in section 4.2.
@®
Second, it can be shown that for a system BeB there holds m=q—£oc:

and n=‘§ot.e:, where m denotes the number of inputs or unrestricted
variables, n the number of states and (e7; teZ,) the tightest equation
structure of B. A simple model is one which leaves little unrestricted,
i.e., for which the total number of laws zoc: is large, and which has

small memory, i.e., for which ‘g'ot. et is small. This amounts to preference
of many equations and of short lag, i.e., of small values of ¢,(B) for ¢
small. This is reflected by the leﬁcogra.phic ordering of complexities.
Note that the complexity is related to the system considered as a set of
trajectories and not to the number of parameters needed to represent the
system.

Third, this lexicographic ordering allows for simple recursive
algorithms, as will be seen in section 7.

Finally, the  reverse lexicographic = ordering  defined by
{c(1)>c(2)} - {c(l)—c(z) or there is a t;eZ, such that c(,1)>c(,;) and
(1)2‘:‘2) for all t>t,} seems more appealing. It is directly connected with
m and =, as for this ordering {m;>m,} = {c(‘)>c(2)} and {m;=m,,
m>c(2)}. This does not hold true for the lexicographic
ordering. However, the construction of algorithms for modelling procedures

based on the reverse lexicographic ordering seems to be difficult.

n,>n,} = {c

We conclude this section by defining the (total) complexity ordering
which we will use in the sequel and by expressing this ordering in terms of
equation structures.

Definition 5-2 The ordering of complexities of systems in B is defined
by {c(B;)2c¢(B,)}: «» {c(B,)=c(B,) or there is a tyeZ, such that
cto(Bl)>c¢°(B2) and c‘(Bl)--C,(Bz) for all t<t°}.

Proposition 5-3 Let B;eB have tightest equation structure
e’ (B;):= (e7(B;); tel,), i=1,2. Then ¢(B,)2¢(B,) if and only if
e*(B,)se”*(B,) in the lexicographic ordering, i.., e*(B,)=¢"(B,;) or
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there is a tyeZ, such that e:0(31)<e:0(82) and c:(81)=e:(82) for all
t<t,

The complexity ordering can easily be characterized in terms of the

canonical forms of sections 4.3 and 4.4 by using proposition 4-3.

Corollary 5-4 Let B;eB, B;=B(R}")=B(R.") with R{” in (CDF) and R{"

in (CPF), 1=1,2. Let cf,i) and e,(,i) denote the equation structure of

R,(,i) and R;,i) respectively, $=1,2. Then {c(B;)2c(B,)} «

(e = eV cef = e

p  in lexicographic ordering}.

5.2. Descriptive misfit

In this section we define the misfit of a model BeB in describing data

o~

consisting of a finite time series #:=(#(t); te7) on an interval 7 =[t,¢].
As in section 2.6 we first consider the case where B imposes one
restriction, in the sense that B=B(r) for some reRl"q[s,s'l].
As descriptive misfit we consider the average equation error. Let neZ,
n+d , 1xg . 2 mnid 2
dei,, r=k§"rks with r,eR™, r,#0# 1,4 We define ||r]|":= k§n||rk|| and
ty-n-d n44

. L { I rdi(t+k)}> So |ri| measures in how far @

I %:= :
31-20-d+1 t-tn-ﬂ kmn

satisfies the restriction imposed by B(r) that (r@)(t)=0 for
t=t;-n,...,t; -n—d. It is assumed that d(r) =d < ¢, - ;.

Definition 5-56 The descriptive misfit of reRl"q[s,s'l] with respect to
data ﬁ')e(R")y~
D ~

e (W,r):= |ril/lri

is defined as the mean equation error, ie.,

We define the misfit of B(r) by €2.,(&,B(r)):= e2(@,r).

Next let dim(BJ' )22. For reB" we measure the descriptive misfit by
eD(iZ':,r). The problem is to define the misfit of B, which imposes an
infinite number of laws on the phenomenon. We will define the misfit of B
by choosing a canonical basis in B‘L, using' the canonical descriptive form
(CDF). The idea is to define a sequence of misfits, measuring the quality
of laws of different order claimed by B. Note that using (CDF) guarantees
that laws of different order are orthogonal, so loosely speaking these
quality measures become more or less independent. By this we mean that e.g.
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a first order law should not be judged as being of small misfit if this is
due to the fact that this first order law is ("near” to being) implied by
good zero order laws. This is made explicit by the orthogonality conditions
in (CDF) as stated in section 4.3 and will be illustrated by means of
examples in section 9.

To define eD(ﬁ':,B), consider the spaces L? of truly t-th order
decriptive laws as defined in section 4.3. Let n,:= dim(v,(Ll,))), then n,=¢,
where (e;; tel,) is the tightest equation structure of AR-representation of
B. For n;>0 define el,)'l(ﬁ‘),B) as the worst fit of the truly ¢-th order laws
claimed by B, i.e. e?'l(ﬁi,B)z= ma.x{eD(iIr,r); reL’,’}.

Definition 5-8 For BeB, let L‘,’ denote the space of truly t-th order
descriptive laws of B. For data t’ie(Rq)T, the main t-th descriptive
misfit is defined by e?,l(ﬁ),B):= ma.x{eD(i‘b,r); reL’;’} if dim(v,(L?))>0,
else e?,l(t‘i,B):= 0.

If n,>1, then we define e?,z(ii:,B) as the misfit of the worst-but-one t-th
order law, i.e., if e,,l(ﬁ,B)=eD(1’5,r1), rleLIf, then eﬁ,(ib,B):: max{eD(iI;,r);
rev;{ v,(L?)n[v,(rl)]l} }. For k=2,...,n, el,),,,(ﬁ'),B) is  inductively
defined as the worst-but-(k-1) t-th order misfit, as follows. If e?,j('ii'),B)
=e"(@,ry),  rjev{w(L]) A [span(vny),..,vdri) )T} for =
1,2,...,k-1, then e?,k(ﬁ;,B):= ma.x{eD(iI),r); rev;l{ v,(LI,J) N [span
(v,(rl),...,v,(rk_l))]L} }. For k=n;+1,...,q, e?,k(ﬁ:,B):= 0. It can be shown
that e?’k is well-defined in this way, i.e., independent of the maximizing
arguments r;.

Definition 5-7 The descriptive misfit is a map eD:(Rq)‘TxB > (Ri“’)z“,
where €7 \(#,B) is the descriptive misfit of the worst-but—(k—1) law of
the truly t-th order descriptive laws in L[,’ claimed by B, teZ,,
k=1,...,q.

We remark that both the complexity and the descriptive misfit are defined
in terms of the spaces L?, hence in terms of (CDF), but independent of a
choice of basis in L?. A convenient basis for L’,J could be {r‘,...,r,,t} as
defined above.

Note that there are at most ‘goe,=q-m5q misfit numbers unequal to
zero. These numbers give the equation error of a suitably chosen basis of
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all the equations which are claimed by the model. The numbers
{5?,,,; k=1,...,q} measure the quality of the t-th order equations, which
are orthogonal to the lower order ones.

We will impose the following lexicographic ordering on misfits.

Definition 5-8 {e'=(g;s) 2 €"=(e}x)}: « {€'=€"; or there exists
toeZ,, ky<g such that e;o,k°>s','o,ko and & =€y, for all t<i,,
k=1,...,q and for t=t, k=1,...,ky-1; or there exists {;eZ, such that

e;o,1>e’,'o,1 and &; ,=¢;; for all t<ty, k=1,...,q}.

Note that if B, has lower order laws than B,, then the misfit of B, in
general will be larger than that of B,. On the other hand the complexity of
B, is smaller than that of B,. In section 6 we will describe two procedures
to balance the desires for low misfit and low complexity by fixing a
maximal tolerated level for one of the objectives and optimizing with
respect to the other one. These procedures correspond to the utilities
defined in sections 2.3 and 2.4. We will do the same for predictive misfit,

defined in the next section.

5.3. Predictive misfit

The one-step-—ahead predictive misfit of a dynamical system in predicting a
time serijes is based on the prediction error defined in section 2.7 for
static prediction. Now the data consists of a f{finite time series
W= (B(t); teT =[ty,t,]) and the model class consists of the class of linear,
time invariant, complete systems B.

Again we first consider the case where B=B(r) with reR™[s,s™]. Let

n+d
nel, deZ,, r=k§nr,,sk with rkeRl"q, Tn#0# 1,4 . Then B(r) predicts that
n+d-1 - n+d-1
TaedW(t+n+d) = -kz raw(t+k). Let 1, 0(t+n+d) = -kEn rii(t+k)+
-=-n -
e(t+n+d) for t=ty-n,...,t;-n-d. So e(t) is the error made at time ¢ in
t1

! z ez(t) denote the

i 2
the prediction of r,.qw(t). Let [Je||":= Py re PR 2

13 . o~ 2 1 ~ 2
O I ——
average prediction error and let |r,, 0|4 PRRr—TS '1-{:0" p {Tn+dti(t))

denote the average magnitude of the predicted functional. It is assumed
that d<t, - ¢,.
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Definition 5-9 The predictive misfit of reR™[s,s7'], with
l1<d(r)<t; -ty and with leading coefficient vector r‘eRlxq, with respect
to data ﬁ':e(Rq)T is defined as the relative mean prediction error, i.e.,

P, ~ *~ * ~
e (w,r)= |rwl| / |r wlg= el / Ir @l

We define the predictive misfit of B(r) by ei,(ﬁ':,B(r)):: eP(ﬁ'),r).

Next we define the misfit for models with dim(B‘L)22. Again we will
measure the predictive quality of a model by means of a sequence of numbers
which measure the quality of predictive laws of different order. The
quality assessment for laws of different orders is made independently by
using the canonical predictive form (CPF). First of all we require the t-th
order laws to be truly t-th order, i.e., the t-th order laws should not be
implied by lower order ones. Second, we require predicted functionals of
different order to be orthogonal. This is essential to guarantee that good
quality of one predictive law is not due to good quality of another
predictive law. This is made explicit by the orthogonality conditions of
(CPF) in section 4.4 and will be illustrated by means of examples in
section 9.

To define eP(fi),B), consider the spaces L’: defined in section 4.4 and
let ng= dim(v‘(Lf))=e,. We give the definition of predictive misfit in
analogy with the definition of descriptive misfit in section 5.2 and with
the same motivation. For ¢t =0 we define ef,k(fi),B): e?,k(fi:,B), as for d(r)=0
ek (w,7)=1 for any #, so the predictive misfit makes no sense for these
static laws. In this case we measure the misfit simply by |e|/l7].

Definition 5-10 For BeB, let Lf denote the space of truly t-th order
predictive laws of B. For data ﬁe(Rq)T, the main t-th order predictive
misfit for ¢21 is defined by e} (#,B):= max{e (B,r); rel}} if
dim(vt(Lf))>0, else ef'l(&';,B):= 0.

Moreover, ef'k measures the predictive misfit of the worst-but-(k-1) law of
the truly ¢-th order predictive laws in L}: claimed by B. If t>1 and n,>1,
then ef,k(&';,B) for k=2,...,n, is inductively defined as follows. If
e; i(@,B) =€ (@,r;) with rjev;'{ v(L))n[span(vy(ry),..., v(rj )]} for
j=1,...,k-1, then eflk(&'},B):= ma,x{ep(ii':,r); rev;{ v,(L’:) N [span(v,(r,),...,
v,(rk-l))]'l‘} }. For k=n,+1,...,q we define eik(fb,B)z= 0. It can be shown
that ef'k(fiz,B) is well-defined.
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" Definition 5-11 The predictive misfit is a map éP:(Rq)TxB»(Ri’q Z,
where sﬁ,k(i),B):e?,k(fb,B) and for t2>1 sf’k(ib,B) is the predictive
misfit of the worst-but-(k~-1) law of the truly t-th order predictive
laws in L} claimed by B, k=1,...,q.

We order the predictive misfit sequences in the same way as the descriptive
misfit  sequences, i.e., lexicographically. Corresponding modelling

procedures are described in the next section.

6. MODELLING PROCEDURES

6.1. Introduction

In this section we describe four modelling procedures. Both for the purpose
of description and for that of prediction we define two utility functions,
corresponding to fixing the tolerated misfit or the tolerated complexity
and optimizing complexity and misfit respectively. The correspondiag
procedures lead to relatively simple algorithms, the details of which are
given in section 7.

6.2. Deterministic descriptive modelling procedures

Let B consist of the class of AR-systems Bc(Rq)z and let the set of
conceivable data be D:= U {(R*)"; neN}, so the data consists of a finite time
series ﬁ're(Rq)'T for some 7T = [ty,t,].

First consider the case that a maximal tolerated complexity
Coot’= (c:d; teZ,) is given. Fixing ¢,y is interpreted as requiring that
allowable models should satisfy ¢:,(B)_<_c,'°l for all teZ,. As

t t . *
c,=q—h:—1k§°(t+1—k)e: this amounts to requiring k{.‘g(Hl—k)e:(B)z

(q-c§°‘).(t+1) for all teZ,, where (e$(B); tel,) is the equation structure
of a tighest equation representation of B. So a maximal tolerated
complexity amounts to requiring that B imposes a minimal tolerated number
of (truly) t-th order restrictions. Under this requirement the descriptive
misfit will be minimized. The misfit of B is the sequence eD(fé,B)e(R:"")z*
with lexicographic ordering as defined in section 5.2. The procedure

Pe‘d:D->2B then is defined as in section 2.4, i.e., as follows.
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Definition 6-1 For weD, P?td(ﬁ')): argmax{ ucm(c(B),eD(iIJ,B)); BeB},
where the ordering for u:= u. is defined by
(%) {u(c(l),s(l))= u(c (2) e )}: - {3t;eZ, c(')> c:‘:‘, i=1,2; or
(e gDy 2 ((2’,5‘2’)},
(1) {u(c(l), (1))<u(c(2),s(2) )}: & {3tyel, c(1)>c,0 and VteZ, c(,z)

<c:°‘; or ViteZ, cﬁl),c$2)<c, and 3JtpeZ, such that 5(1)>e$2) and

(1)_5(,2) for all t<t, or Vtiel, c(,l,)c(,z)<c:°',e(l) (2) and
3tyeZ, such that c(l)>c£2) and c(l) 2) for all t<ty}. Here the

vectors e,eR are ordered lexxcogra.phlca.lly.

Note that the requirement c¢(B)<c,y is not interpreted in the lexicographic
ordering, but in the pointwise ordering, i.e., ¢(B)<cyy if and only if
c,(B)sct for all teZ,.

Next suppose that a maximal tolerated misfit ¢,:= (e:d;
tasZi,)e(Rl"")z+ is given. We will invariably assume that £ =&".(1,...,1)
with E’,"‘ €R. The requirement eD(ﬁ':,B)<ew, also is not interpreted in the
lexicographical sense, but pointwise. As e?,k(ﬁ'z,B)se?,,(ﬁ,B) for k21, this
means that a model BeB is tolerated if and only if e?,l(ﬁ':, )<e¢ for all
teZ,. So fixing e,; amounts to requiring that the misfit of (truly) t-th
order laws should be smaller than e, . One can impose an upper bound L on
the order of equations by taking e, <0 for t>L.

Under the requirement e?,l(ﬁ'),B)<E:°' the complexity has to be
minimized. The complexity of a system is c(B)cs(R,,)z+ with lexicographic
ordering, as defined in section 5.1. Equivalently, under the misfit
restriction the equation structure (e:(B); t20) has to be maximized
lexicographically. So the purpose is to find as many relationships of small
order as possible.

The procedure P:I: o D->2B corresponding to the one described in
section 2.3 for minimizing complexity given a misfit restriction is defined
as follows. For weD, PSP (1‘5) argmax{ u(c(B),e (#,B)); BeB}, with the
ordering {u(cm (')) (2) (2))} « {3t;€l, eg')lze,, i=12; or
(c(l),em) ((2) (2))}, and {u(c(l) (1))<u(c(2) 2))} - {3teZ,
eﬁ”,zi”‘ and VtelZ, e(z)<E'°‘ or Vtel, e(,li, e(,zl <e, and 3Jt,eZ, such

o
that c(l) (2) and cgl)_cfz) for all t<ty; or Vtel, e(,li, e(,zz <e, ,
P =c? and €5¢? in lexicographic ordering}.

However, PSP is difficult to implement algorithmically. We will

€ ol
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consider a slight variation P’: of P:?d. We will illustrate the

tol
difference between these two procedures by means of a simple example in
section 9. The procedure Pewz allows for a relatively simple algorithm,
described in section 7.

We now first define and subsequently give an interpretation.

€l

Definition 6-2 For #ieD, P (#):= argmax{u,_(c(B),e"(T,B)); BeB)

where the ordering for u:= u,  is defined by

(3) {u(c(l),e(l))=u(c(2),e(2))}: « {3t;eZ, e(,::?l 2 E:‘:, i=1,2; or
(c(l),e(l)) = (6(2)’6(2))}; ’

()  Am, e <u(D e} - (Fthe, )28 and  VieZ,

eﬁ?i<§§d ; or Vtel, e(,f}, eﬁ?} <E:°I and (cgl),ef,fi,...,egll‘()1),
1 1 1 1 1 1) 1)
cg ), ei,i,...,ei,lgx), cg ), eg,z,...,e;éx), c;(, geee)>
2 2 2 2 2 2 2
@ @@, P DD,
€0 1€

egﬂ,...,eizl(z), c:(,z),...) in the lexicographic ordering, where
. 1€2 .
e is the tightest equation structure corresponding to M

i=1,2}.

)

This means that Pf ol maximizes the number of zero order relations under
the misfit constraint. Among solutions, which in general are highly
non - unique, it chooses the one with minimal misfit. Subsequently the number
of first order relations is maximized, and then the first order misfit is
minimized, and so on. Note that these first order relations should be
orthogonal to the zero order ones, as the utility is defined in terms of
eD(fb,B) which involves (CDF). The resulting model is optimal with respect
to the utility u, ol Proposition 5-3 indicates a close relationship
between € and P:?d. -However, P?w need not always minimize the
complexity with respect to the lexicographic ordering on (c(B); teZ,), as
will be illustrated by means of an example in section 9. This is due to the
auxiliary minimization of misfits, which is essential for obtaining simple
(recursive) algorithms.

Proposition 8-3 The procedures P'z ol and Pf

are well-defined maps
from D into 28.

tol

Finally, by P?td(ﬁ'v) we denote the procedure which is defined in analogy

with P; , but requiring e¢,(%B)<&" in contrast with P; , which
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. D -~ tol
requires €, ,(w,B) <&, .

6.3. Two deterministic predictive modelling procedures

In this section we Dbriefly describe two predictive procedures,
corresponding to fixing a maximal tolerated complexity or misfit and
minimizing misfit and complexity respectively. These procedures are
analogues of the descriptive procedures defined in section 6.2 and are
obtained by replacing the descriptive misfit e? by the predictive misfit
e

Again, fixing a maximal tolerated complexity amounts to requiring of
an allowable model B that it imposes a minimal tolerated number of (truly)
t-th order restrictions on the phenomenon, teZ,. Under this requirement the
relative mean prediction error ¢’ is minimized lexdcographically. So first
the misfit of the zero order laws (in Lﬁ) is minimized, then the misfit of
the truly first order laws (in Lf, hence orthogonal to the zero order
laws), and so on.

On the other hand, one can fix a maximal tolerated relative mean
prediction error Efd €R for predictive laws of (truly) order t. The

«P
procedure P, tol

() corresponding to minimizing the complexity
lexicographically under the constraint ef,l(ﬁ),B)<Ef°‘ , tel,, again is
difficult to implement algorithmically. Therefore we will consider a
slightly different procedure Pf ol in analogy with P?wl. This procedure
corresponds to first finding a maximal number of zero order relations, then
minimizing the misfit of these, subsequently maximizing the number of first
order relations and minimizing their predictive misfit, and so on. Due to
proposition 5-3 there is a close relationship between Pf ol and P:fd.
However, they are not equivalent, due to the auxiliary minimizatidn of the
misfit.

We define f’f ol in analogy with Pf o’ replacing the constraints
5‘:,1(‘75,3)<E:d by 5’:,1('7’yB)SE:d-

For completeness we define P‘: ol and Pf ol explicitly.

Definition 6-4 For given c,‘,,e(R+)Z'*,e,‘,,e(Rl"4)z+ with €=

E:d.(l,...,l), E:deR, the procedures Pﬁu: D+QB and P‘:W:D->2B are
defined as follows. For tweD, P‘:‘d(ﬁr):= argmax{ u, u(c(B),
ef(®,B)); BeB} and wa(ﬁi)z= argmax({ u,w‘(c(B),eP(iD,B)); BeB ), with
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the orderings for e, and Ue, | defined as in the definition of PEM
and Pem respectively.

We finally remark that for univariate time series, ie., g=1, the
descriptive and predictive procedures are equivalent. That is, for iDeR‘T
Py (@) =P% (#) for all cp, and P7 (B)=P¢ (®), P{ (B)=F (D)

for all g4y

7. ALGORITHMS

7.1. Introductjon

In this section we describe algorithms for the four deterministic
approximate modelling procedures of section 6. These algorithms basically
consist of sequential application of the results stated in propositions 2-8
and 2-9 in section 2.6 and propositions 2-13 and 2-14 in section 2.7.
Before giving a detailed description of the algorithms we first introduce
some concepts and notation and illustrate the approach by describing wal
in general terms.

Let the data consist of a finite time series Be(RY) with T = [tg,t,].

lxq -1 n+d k
Let 0<d<t;—ty and 7(T,d):=t;-ty~d+1, then for reR"[s5,57], r= L s,

1%g .2 1 t1-n-d gn.4 - 2
r.€R 7, ,#0# .4, there holds |7 ":= T tgto_n{kﬂn r(t+k)} =

t)-d
vd(r)f(w,d).vd(r): where S(ﬁ,d):=1—,(7l.ﬁ. této (ﬁ(t)T,..., ﬁ(t+d)T)T.
((¢)",...,B(t+d)") is the empirical covariance matrix of order d.

The algorithms consist of constructing complementary spaces
{V,; teZ,}. The corresponding models BeB are then defined in terms of
Le=v;\(V,) by B:= {we(R’)Z; r(oc)w=0 for all reL,, teZ,}. Here L;={0} for
t sufficiently large.

The models identified by the algorithms coincide with the models
corresponding to the procedures of section 6 for specifications of c,y; and
€,y Which are in accordance with the number of observations and for
generic data. In general terms, one should not allow laws for which the
order is too large in comparison with the number of data. Moreover, the

algorithms generate optimal models for A-generic data, i.e., non-optimality
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only can arise in a subset N of (Rq)T for which (Rq)T\N contains an open
set of full Lebesgue measure in (Rq)'T.

We will illustrate the foregoing by considering Pgu. We will make a
sensibility assumption on ¢,y which is related to the number of
observations. Moreover we will make some generic assumptions on the data.

First, in order that the descriptive misfit eD(iZ‘J,r):= (r&j/lr) is
well-defined, it is required that d:=d(r)<t,-t;. Moreover, {eD(ﬁ,r)}2=
1712 va(r). S(,d). vg(r)T, with rank(S(®,d))<min{t,~to-d+1, g(d+1)}. If
t,-to—d+1<g(d+1), then for any t’Be(Rq)'T there exists an r with d(r)<d and
eD(iZz,r) =0. To prevent overparametrization it is reasonable at least to
require t,—ty-d+12¢g(d+1) ,i.e., d<d(T):=(t; -ty+1—-g)/(g+1). This restricts
the set of laws for which the quality can be reasonably assessed, and
implies restrictions on the requirements in ¢,; to be sensible. In order
to state this exactly as well as some generic assumptions on the data, we
consider for given c,de(R,,)Z* the class of allowable models BeB for which
c,(B)sc:d for all teZ, and the corresponding class of tightest equation
structures E(cey):= {(€}; teZ,); 3BeB, c,(B)sc:d for all teZ,, such that
(€7; teZ,) is the tightest equation structure of B}. Equip E(c,) with the
lexicographic ordering, and let e(c,y) be the corresponding minimal
element of E(c,y)-

Definition 7-1 For given tolerated complexity ¢,y the equation
structure corresponding to ¢,y is defined as the minimal achievable
tightest equation structure of tolerated models in B with respect to
the lexicographic ordering.

We will now first state the assumptions and then comment on them.
Z+ -~ T .
Assumption 7-2 Let cye(R,) * and we(R')’ be given.
(i)  max{t; efcu) #0}<d(T):= (t,-to+1-q)/(g+1);
(#) P, (®)={B}, ie., a singleton;

(i#) B has tightest equation structure e(c,y).

Proposition 7-3 Given (i), then (ii) and (iii) hold true for generic
data 4.

Assumption 7-2(i) expresses a sensibility requirement for ¢,y as
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equations of order more than d(7) are not sensible. Assumption 7-2(iii)
also expresses a sensibility requirement which we only illustrate in detail
for c;(B)zco(cw), as the other requirements have a similar
interpretation. The condition co(B)sc;d implies that at least q-céd zero
order laws need to be accepted. Let n, denote the number of independent.
equations of order zero which are exactly satisfied by the data #. It is
reasonable to suppose that q—c(t,dzno. In this case any optimal model B has
a tightest equation structure (e:(B); teZ,) with cK(B):q—céd, which is
minimal in view of the requirement co(B)sc;d. That e:(B)=q-c;°I for
optimal models B is seen as follows. Let c;(B)>q-c;°‘zno. It follows from
the definition of €’ in section 5.2 that eg’q_ cao,_noﬂ(ib,Bpo. As the
ordering on e’ s lexicographic, an optimal model should satisfy
es(B) =q—c;°', because models with e:(B)<q-cf,°' are not allowed and models
with e:(B)>q-c;°' can be improved' by deleting an equation. Similarly, once
B‘:' .1 has been identified, the requirements in ¢,y imply a minimal required
number e, of truly t—th order laws in the space v;{ [v,(B'i'_l-q-sB‘i‘ _1)]'L }.
Let n, denote the number of independent t—th order equations in this space
which are exactly satisfied by the data. Under the reasonable assumption
that e,>n, it follows that for optimal models e} (B)=e¢;. Roughly stated, due
to the lexicographic ordering it is preferable to accept as few low order
equations as possible, given the complexity constraint.

It can be shown that for generic data # there holds n,=0 for all
t<d(7). So in this case assumption (iii) is satisfied

Under assumption 7-2, due to the lexicographic ordering on e? we first
have to identify eg(ciyy) zero order equations of minimal misfit. In the
following section it will be assumed that this problem has a unique
solution. This holds true for generic data. Let the solution be L, and
define B‘A‘:= Ly, Voi=1v4(Ly). Next we have to identify e;(c.y) equations of
first order and minimal misfit, under the restriction that the equations
are truly first order, i.e., orthogonal to B}','-q-sB‘,‘,'. A second (generically
satisfied) assumption is that this problem also has a unique solution, say
L. Let V= vl(L,)J.v,(B‘(','-;-th) and B'{':=B‘",'+sB}',‘+L,. In the same way we
identify e,(c;y) equations of truly t-—th order of minimal misfit. It is
assumed that this problem has a unique solution L,. Let Vg:=wv,(L,) and
Bt=BL 4+sBt,+L. The resulting model is then defined by
B:= { we(R")Z s r(o)w=0 for all re'LzJoB‘:' }. For this B there holds L, = L? of

(CDF). Moreover, for generic data % the model B is uniquely defined by %
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and gives the optimal model Pel d(ﬁ‘:).

Note that the foregoing consists of sequential optimal choice of
e(Ceqy) descriptive equations of minimal misfit. Every step of this
sequential optimization will be solved by means of an algorithm
corresponding to proposition 2-8.

In the next sections we describe computational details of this
algorithm and the other ones. We specify input, initialization, recursive
part, termination and output of the algorithms. Moreover, we state the
optimality properties of the resulting models in terms of assumptions on
‘the data which are generically satisfied. We refer also to Willems [15] and
Heij [4].

In the algorithms we will use the notatlon A =col(A,,...,A,) to
indicate the matrix AeR™ with blockrows A,eR , $=1,...,n, where

n
k=T

7.2. Descriptive modelling, given tolerated complexity

In this section we describe an algorithm which for generic data ibe(Rq)T and
sensible tolerated complexity c,; generates the model {B}=P€ ‘d(ﬁi) as
defined in section 6.2. We first give the algorithm and subsequently state
the generic conditions on the data.

Algorithm for PIC) ol

1. Input.
11. Data &= (B(t); teT = [to,t,]) € (RY) .
1.2. Tolerated complexity cu=(c:°‘; teZ+)e(R+)z".

Let e.:= e(cy) denote the equation structure corresponding to cy.

2. Initialization (step 0).
¢

2.1. Let S(w,O)- E w(t)w(t) , the empirical covariance matrix

1-tg+1 | 1=t

of order 0, have smgula.r value decomposition (SVD) S(,0)= UOEOUO,
0 0 0 0

Eo-—dla.g(a( ) :"q(q )), o, 2.2 :_lodza( )001,,1 .2 aq(l "20.

2.2. If Uo-(uio), ugo))’ (°)eR’ k=1,...,q, then define Vo-span{u(°)T
kzq-eo +1} and B}I,':= Yo (Vo).

(nT,

2.3. Define p;:= Ze; and let {v,’"; k=1,...,p,} be an orthonormal basis
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of v;(B‘L+sB‘L)th2q, eg., v£ T is the k—th row of [1(7)0 g} where
0

(O)T

Ug:= col(ug k=q—eo +1,...,9).

3. Recursion (step t).

(t)T

3.0. Input from step t-1: an orthonormal basis {vi k=1,...,p,} of

”t(BJz--x‘*’-’BJ:--x) c th(“l)a where pt=dim(vt(8-i--1+58-|t--l)) =

t-1 tol
k§0 (t+1-k). e .
Pt

SVD: E T =9 L7 E,=diagd'?,... Egzﬂ)), 1=39=... =

(8 =(t ~(t t 0, (t t
‘7;(:,)>0;:,-)+1—---—‘7;(2+1)-0a Vt—(”() ”;‘) 1’;‘4)»1) ”g(ln)) Let g¢.=

g,%q(t+1)
OT. k= p+1,...,q(t+1))eR "’ . So

the rows of P, form an orthonormal basis for [v,(B"{_1+sB',L-1)]‘Lc
RUt+1) '

q(t+1)-p, and define Pg= col(v;

ty~t
3.1 Let  S(&,t)= ﬁ kit @BE)T,... Bk + )V @Bk)T, ..., Bk +)T),

the empirical covariance matnx of order t, and let P,S(w,t)P, have
VD PS(5,0PT =UEDE, Di=diagol’,...,000 of%2...2 o' 2
(t) (t)

aa:-‘fd“ 20, 20

3.2. If U,_(u(‘) .,ug:)), (‘)eR k=1,...,q,2, then define Vg =
t
span{uy ). Py k2g-e”+1), Li=vi(Vy) c {reR™s]; r= L s,
rneR™, k=0,...,t} and By:= Bt +sBt_,+L,

3.3. Output to step t+1: an orthonormal basis ({7

3 k=1,---,Pg+1} of
”:+1(BJ:-+-’BJ:-), Prai= E (t+2-k)-ek
Note that Oy = {v“)T =1,...,pJu{uiTP,; k=q,-e:°‘+1,...,q,}

t
forms an orthonormal basis of v,(B‘L), with dim(O,)— b)) (t+1 k)e,:d
0%:= {(v,0); veO,, OeR’q} and °0g:= {(0,v); OeRl'q, veO,}, then it
suffices to choose E ek orthonormal vectors in span 0,, orthogonal
to 0,.

4. Termination (at step t*).

- 4
Either at *=3(T):= (~to+1-)/(g+1), or at t" <d(T) when T € =g.
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5. Output.
- B.L . . g Z AL
BasesforV,, t<t , and e Define B:= {we(R*)"; r(c)w=0, reB‘.}.

We remark that the algorithm basically consists of sequential application
of proposition 2-8 in section 2.6. In the initialization the data is
x; = W(to+1), i=0,...,t;—t;. In step ¢t of the recursion the data consists
of x;:=P,.col(®(ty+4),...,W(to+i+1)), i=0,...,¢,-t,—t. The operators P,
take care of the requirement that the new laws should be orthogonal to the
old ones. Concerning step 3.1 note that for laws r with d(r)=¢ and
v,(r)e[v,(B‘l‘_ﬁsBJ{_,)]’L there holds ||rﬁ||2=v,(r).P,.S(ib,t).Pf.v,(r)T.
Next we state the assumptions on % and cgy.

Assumption 7-4 (Pf_.’u). Let cope (R,)2* and G (RY)’ be given.
(i)  assumption 7-2(i); '

(0)

. (0) (©) (¢)
(i) aq_ea,,, > cr«_e -4

ol > tol

. t
;instept o 3
6°‘+1’ P a-es g-eso+1’

(i44) for step ¢, let u,(:)T

Py= (U 0000 Upyt)s uk,jeR“q, and Up=
col{u o; kZQ:-e:d+1} R Ut:=col{uk,t;k2qg-e:°'+1} ; assume

rank(Ug) = rank(Uy) =e>.

Assumption (i) expresses a sensibility requirement for c,y. Assumption
(ii) is satisfied for generic data and guarantees the existence of a unique
solution for the problem of optimal choice of e:"‘ equations of order ¢,
orthogonal to BJ{ _1+sB':‘_1. Assumption 7—4(ii) implies assumption 7-2(ii) and
(iii). Assumption 7-4(iii) is satisfied for generic data and corresponds to
requiring that the laws, identified in step ¢, really have order ¢, ie,
{0%reLl}= {d(r)=t}.

Theorem 7-5 Suppose assumption 7—4 is satisfied, then
(3) Pem(i'b) = {B}, the model generated by the algorithm;
(i)  €"(B)=ew;
~ ¥
(“’) e?,k(va) ={a;:ie§d+k} ’ k=1"--’c:°‘;

(iv) L,=L’,’ for B, so the algorithm gives a CDF representation of B.

Optimality of the model generated by the algorithm follows from proposition
2-8, due to the lexicographic ordering on e® and assumption 7—4(ii).
It can be shown that the algorithm always generates an allowable
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model, i.e., c,(B)sc:d for all teZ. However, the generated model may be
suboptimal in case assumption 7-4 is not satisfied, i.e., for non-generic

data.

7.3. Descriptive modelling, given tolerated misfit

Next we describe an algorithm which for generic data fz')e(Rq)'T and sensible
tolerated misfit generates the model Pe tM(ﬁ')) as defined in section 6.2.
The algorithm basically consists of sequential application of proposition
2-9. The (generic) optimality of the model generated by the algorithm is a
consequence of proposition 2-9 and the special utility Ue,, 23 defined in

definition 6-2.

Algorithm for Pl‘)wz'

1.  Input.
1.1. Data®=(W(t); teT =[tyt;]) € (Rq)T.
1.2. Tolerated misfit g, = (e:d; tel,), e:d-e, AL,.. l)eRl"q, EfdeR.

2. Initialization (step 0).

21. SVD: §(8,0)=UoL Uy, Lo=diag(of”,...,0{"), o{"2..20%1 > (&>
o 2. 200 20.

22. It Up=(u{",...,ul”), u{VeR}, k=1 th defi Voi=

2. o=(% )y ur €k, N en efine 0
span{uk) ;k2q-eo+1} and B‘,’;:: val(Vo).

(I)T; k=1

2.3. Define p;:=2¢, and let {v; =1,...,p;} be an orthonormal basis of

vl(B'L+sB'L)cR“2q, e.g., v,(cl)T is the k—-th row of [g g ] where U=
0

col(u(o)T k=gq-¢e+1,...,q).

3. Recursion (step t).

3.0. Input from step t-1: an orthonormal basis {v(‘)T k=1,...,p} of

t=-1
”t(B-L-1+SB:-1)CRDq(‘ﬂ) Where?:=djm(”z(B'L-1+'33-L-1))= 2 (H'l'k)-eln
where ck is the number of accepted k-~th order laws. Let ¢.:= q(t+1) Des

=q- 2 ok and define P, as in step 3.0 of the algorithm for Pf .
3.1. svn P,.S'(w,t)P, _U.z,u,, L, =diag(a!",... 05, of My . 249,
(:) ON e
&> L2002

3.2. If U,-(u(') ,;')), u,(")eR k=1,...,q,, then with eg= mm{e,, t}

define  Vg=span{ul"T.P,; k2gq-e+1}, Lg=vi(V,) and Br:=
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Br_ +sBt_ +L,
3.3. Output to step t+1: an orthonormal basis {v,(cm’T; k=1,...,p¢s} of
t

Vear(BT +5BY), Pravi= L (t+2~k).er. See also step 3.3 of the algorithm

k=0
for Pftd.

4. Termination (at step t°).

¢
Either at ¢t* =d(T), or at t* <d(7) when Ze=gor £ <0 fort>t".

5. Output.
Bases for V,, t<t*, and BJ“.. Define B:= {we(Rq)z; r(o)w=0, reB'tL.}.

We will make the following assumptions on % and &u.

Assumption 7-6 ( ‘u)' Let (E:d; teL)eRz* and ﬁe(Rq)T be given.

() %<0 for all t>3(T);

» -
(#) if at t* €' > € 4(>0), then assume o ). >a't ), ;
t t g‘-e‘. q,-¢‘.+1

(i4d) assumption T-4(iii), with e:d replaced by e,.

Here (i) expresses a sensibility requirement for g, (ii) is satisfied
for generic data and guarantees the uniqueness of wal(ﬁ:), and (iii) is
satisfied for generic data and amounts to requiring that the laws,
identified in step t, really have order t.

Theorem 7-7 Suppose assumption 7-6 is satisfied, then

(1) Pew(fb) = {B}, the model generated by the algorithm;
() e*(B)=(e; tel,);

() €onBBI={ogleer)”, k=1t

($v) L,=Ll,) for B, so the algorithm gives a CDF representation of B.

7.4. Predictive modelling, given tolerated complexity

In this section we give an algorithm which for generic data ﬁe(Rq)T and
sensible tolerated complexity ¢,; generates the model {B}=P‘,:D wl('&’:) as
defined in section 6.3. We first give the algorithm and subsequently state

the generic conditions on the data.
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Algorithm for P}::oz'

1. Input.
As for Pe ol
2. Initialization (step 0).
2.1 As for P, .

2.2. As for Pg .

2.3. Define Do= e;d, Ng:= e;d and let {1){0) qu cO +1}’ (0) k ,

k2 q-c;d+1, be an orthonormal basis of vo(Bf,' and Fy= vo(Bf,' ), where Fg
is as defined in section 4.4.

3. Recursion (step t).

(- I)T

3.0. Input from step t-1: an orthonormal basis {v; k=1,...,

t-1
Pia}y Peri= kgo(t—k)eid, of v,_l(BJ' _l)ch"", and an orthonormal
t-1
basis  {f¢VT; k=1,...,m0), Peg= z:e;"‘, of F, ;= {FeR™;

t-1
3r EBJ; L T= g rksk, such that r,_, =F}.

Pt-1 ., -

SVD: k§1 "y (t R 121 Vt b £ua .-d.lag("(t .. ’—sttl)),
~(t-1 ~(t-1) _ =(t-1 ~(1-1 -1 -
1=5 )= ...—a}(,t_)>a§,t 111—.... 5',)_0, V,,_(v(' ). .,v}(,:_;),

- -1 .
v;: :11 yooe (' )) Let ge=¢.t-Dey and define Py =
ge%qt
col(v(' I)T k= pi,1+1,...,qt)e R .

t-1 - - -
Similarly, SVD: kglf("l)f("l)7=V,_IE,-IVf_l, £,., = diag(at"™Y,

(‘—1)), 1 = ;gz-l) vee = ;'(l:-i) > ;'(1::1)+1= ces = ;gt-l) = 0, V’-l =

- (@-ny_y)xq

(f(' n. f(' 1)) Define Pzt—col(f(' 0T, i k=nyy+1,...,9)eR =

Finally let Pg= . Then the rows of P, form an
0 P,

orthonormal basis for [vy(F,_,. s') +v,(BJ,'_1)]'LcR"‘4(‘“),

55‘) SE:,) (l) [t
(0 ot) with S:”eR
S S,

o

3.1 Let PS(%,t)PT = [
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3.3.
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(g-n¢_y)x(g-ng_y)

qv‘(q'"t-l)
sV eR St _gliT e .

gex(g-ng.q)

S (SO s - A, A, - 5] e

(1) (t)

) o> (1)
X =diag(o, ’,..., Og-n,_ 1), ...zae za ol 2 zaq_,,”zo.
It (5“’)' (ﬁﬁ", L8D) and (s“’) Up= (@Y, uth),  then

(t)T (- a(t -(t)T, u(t)T) P Rlxq(u-l).

o7 k<et }, Le=vi'(Vy) and B‘:-:= B_:--l"'

for k< e, let U
Define V= span{u;
SB_:_I + Lt .

Output to step t+1: orthonormal bases {v(‘)° k=1,...,p;} of v,(B‘,L ) and

{f(')T ..,ny} of F,. Here pgo=p, ,+ E ek and ng= n,_1+e:°'.

Note tha.t a basis for F, is {f("l) k 1,...,mey} U {umT Pye;
k<e!®}. Further, let O, p={v{*"7; k=1,. ,p,_l}, 0= {(v,0)
ve0,,, 0€R™} and "0, ;:= {(0,v); 0eR"™, ve€O0,,}. For v,(BT) it then
suffices to take 02_1, V,, and n,_; orthonormal vectors in span °0,_,,
orthogonal to 0?_1+V,.

4. Termination (at step t*).

As for PDQd

5. Output.
Bases for V,, t<t*, and B‘tL,. Define B:= {we(Rq)Z; r(o)w=0, reB‘tL.}.

We

remark that the algorithm basically consists of sequential application

of proposition 2-13 of section 2.7. As a rough outline, P‘:‘d models data

by successively minimizing the misfit of a required number ef,d of zero

order laws, then minimizing the predictive misfit of a required number e:d

of first order laws, and so on. In order to measure the misfit more or less

independently, as made precise in section 5.3, the newly identified laws r

of order t have to be elements of the space [v,(F,-,.s')+v,(B‘,L-1)]J‘, see

section 4.4. The operator P, takes care of this requirement. The resulting

optimization problem of step ¢ of the recursion is of a static nature as

described in section 2.7. The data consists of (x;%;), §=0,...,t,~ty-¢,

with y, := Pyib(tg+¢t+4) and x; := Py,.col(W(tg+1),...,B(Le+2—-1+1)).

Next we state the assumption on @ and c.y.

Assumption 7-8 (P} ). Let cue (R,)™* and Se(R%) be given.
(i)  assumption 7-2(i);
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(11) JNW>J)M ; in step ¢ U%I>J&
g-eg g-eg +1 (t) e es +1’

(#1) for step t, let = (Ug,0,.- ,u“), ukJequ and Uy=
col{ug g; k<e:°‘}, U= col{uy ¢; kse,} ; assume rank(Ug) =
ra.nk(U)-c, ;

(iv) for step ¢, St and Sit) have full rank.

Here (i) is a sensibility requirement for ¢, Assumption (ii) is
satisfied for generic data and implies assumption 7-2(ii) and (iii).
Assumption (iii) also is satisfied for generic data and corresponds to
requiring that the laws, identified in step t, really have order ¢, i.e.,
{0#rel,}= {d(r)=t}. Also, given assumption (i), assumption (iv) is
satisfied for generic data, which is seen as follows. For step t, the

99 (g-ny_y)x(g-n,_;)
number of data is ¢t;—-¢;-t+1 and seR" ' S(') R ! =1

g<q.t, g—-np1<q.t, 5% and SS.‘) ‘generically have full rank if ¢ -¢~
t+12>4q.t, e, t<(t;-ty+1)/(q+1), which is implied by assumption (i).
The following theorem is a consequence of proposition 2-13 and the

lexicographic ordering of e’

Theorem 7-9 Suppose assumption 7-8 is satisfied, then
(%) PP (w) ={B}, the model generated by the algorithm;
(8) e (B) = €eal;

(i) €} (B,B)={1- (“’ P k=1,...,6%;

-k+1

(iv) L,=Lf for B, so the algorithm gives a CPF representation of B.

7.5. Predictive modelling, given tolerated misfit

Finally we give an algorithm which for generic data ﬁe(Rq)T and sensible
€. generates the model Pf u(ﬂ')) as defined in section 6.3. The algorithm
basically consists of sequential application of proposition 2-14 of section
2.7. The (generic) optimality of the model generated by the algorithm is a
consequence of proposition 2-14 and the special utility u, o 23 defined in
definition 6-2.

Algorithm for wal.

1. Input.
As for Pfu
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2. Initialization (step 0).
2.1. As for PI,) .
tol

2.2. As for Pf .
tol

2.3. As for P‘:w‘, with c(',d replaced by e,.

3. Recursion (step t).

t-1
3.0. As for Pﬁu, with e;d replaced e, k<t-1; let e;:= q—kgoek.

31 As for PL . Let 0<1-(0{")<... c1-(¢!")2< (e <1-(0'}) )’<... <
tol ct ¢t+1
1-(6) <1

9"

3.2. As for Pfu, with e:d replaced by e,;:= min{e;e;}.

3.3. As for P{"m’ with c:d replaced by e,.

4. Termination (at step t").
As for PI‘)wf

5. OQutput.
Bases for V,, tst®, and B‘i‘-. Define B:= {we(Rq)z; r(o)w=0, reBJ,‘-»}.

Assumption 7-10 (wal).
(¢) assumption 7-6(i);
(#8) assumption 7-6(ii);
(#it) assumption 7-8(iii) with cfd replaced by e

(iv) assumption 7-8(iv).

Again (i) is a sensibility requirement for &,. Given (i), the assumptions
(ii), (iii) and (iv) are satisfied for generic data.

Theorem 7-11 Suppose assumption 7-10 is satisfied, then
(%) me(i‘é) = {B}, the model generated by the algorithm;
() e"(B)=(es; teZ,);

P P ~ %

() eLp@BI=(1-(0), )}, k=lmer

(iv) L,=Lf for B, so the algorithm gives a CPF representation of B.
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7.6. Comments

The algorithms described in the foregoing sections allow for a simple
numerical implementation of the procedures of section 6. The computational
complexity is mainly determined by singular value analysis of empirical
covariance matrices and, in the case of predictive modelling, determination
of the square root of positive definite matrices. The algorithms have been
numerically implemented and employed, e.g., for the simulations described
in section 9.

The essential part of the algorithms is the construction of the
complementary spaces V,, either generating a canonical descriptive form or
a canonical predictive form. The operators P, guarantee that newly
identified laws are ™far” from being implied by the already identified
laws. In this way the misfit is measured according to the principles of
section 5. This perhaps is one of the main contributions of the paper. In
assessing the quality of a model, the simultaneous nature of AR-equations
representing a system is fully taken into account. The quality is measured
by means of canonical parametrizations, which are not determined by
(scientific) theory, but which are based upon the purpose of modelling,
i.e. here, description or prediction.

The identified models may be rather sensitive for changes in ¢,y. For
changes in ¢£,; the identified models only change at discrete critical
values. This indicates that fixing the complexity (the structural form)
leads to non-robust identified models. Minimizing misfit of a given
parametrized model hence often leads to models which are less robust than
models obtained by minimizing complexity under the constraint of a maximal
tolerated misfit. So in cases where one has no strong reasons to postulate
the structure of a phenomenon, it seems preferable to infer approximate
structure from the data by imposing a pragmatic requirement of fit.

8. CONSISTENCY

8.1. Definition of consistency

The procedures of section 6 have a clear optimality property as data
modelling procedures. The identified models are optimal with respect to

the utility u, o O Ye The procedures give a solution for the
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identification problem, i.e., given data and the model class B, a model is
choéen from the model class which is optimal in view of a criterion, based
on the objective of modelling. It need not be assumed that the data are
generated by a phenomenon of a certain structure. This pure data modelling
is of interest e.g. in data compression, speech processing, econometrics,
and so on.

However, in other cases one wants to construct a good model of the
phenomenon which generates the data. The identified model then should not
only be good with respect to the particular data, but it should be good
with respect to the generating system.

In this section we will define a general concept of consistency,
reflecting the purpose of constructing models which approximate the
generating system in an optimal way. The approach is inspired by Ljung (9],
[10]. We also refer to Heij and Willems [5].

Intuitively, a procedure is called -consistent if the model,
identified by the procedure, converges to an optimal approximation of the
generating system when the number of observations tends to infinity. So in
the limit a consistent procedure identifies a model which, within the given
model class, is as close as possible to the phenomenon. In this sense a
consistent procedure gives a good model of the phenomenon, provided the
number of observations is large enough.

To define consistency we introduce some additional concepts. Let the
set of conceivable data be D:= U{(R")"; neN}, so data WeD consists of a
finite time series @ = (W(t); teT =[ty,t,]) in g variables. Let #(7 ):=¢,-ty+1
denote the number of observations. Let M be a class of models and G a class
of generating systems. It is assumed that the phenomenon generating the
data corresponds to a system GeG. This means that there is a time series
we(R’)z compatible with G from which we observe ¥ =w| T

Suppose that the objectives w have been used to construct a procedure
P:D->2M. Moreover, assume that =7 induces an optimal approximation map
A:G->2M. This means that, with respect to m, A(G) is the set of optimal
approximations within the class M of the system GeG. Often A(G) will
consist of a singleton. Further, let » be a concept of convergence in 2M,
possibly also related to =. Finally, let n.a. denote a concept of "nearly
always” for systems GeG. Such a concept is crucial, as optimal properties
of procedures can fail to hold true for nasty data which nearly never
occur.
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Consistency now is defined as follows.

Definition 8-1 P is called consistent if for all GeC, n.a. in wegG,
P(w|7.) > A(G) if (T )»oo.

This means that, if the length of the observed time series tends to
infinity, the set of models identified by a consistent procedure converges
"nearly always” to the set of optimal approximations within M of the
generating system G.

In this paper, A(G) will consist of Singleton, ie., for GeG there
exists a unique approximation a(G)eM, so A(G)={a(G)}. In this case, let -»
be a concept of convergence in M. Then P:D->2M is called consistent if for
all GeG, na. in weg, P(w|7)={M(w|T)}, i.e., a singleton, for #(7T)
sufficiently large, and M(w| T)-»a(G) for #(7T)+»o. By slight abuse of notation
we will indicatate this by P(w|7.)->A(G).

The consistency problem is depicted in figure 10.

[ w —% HI’- e H('lr)

N a(8)

figure 10: consistency

This concept of model consistency differs in some important aspects
from the concept of parameter consistency in statistics, see e.g. Kendall
and Stuart [8). In the latter case M=G={M(6); 8e6O} for some parametrized
class of models (probability distributions). The data modelling problem is
formulated as an estimation problem, and a modelling procedure is a map
E:D-»0. The procedure is called consistent if (n.a.) E(w|7.)-»8 when #(7)+0c0,
where 6 parametrizes the generating system. Model consistency differs in

four main respects from this parameter consistency. First, it need not be
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assumed that M=G, i.e., that the generating system belongs to the model
class. Second, convergence is defined in terms of models, not in terms of
parametrizations. Third, parameter consistency raises problems in case of
non-unique parametrizations, model consistency avoids these problems.
Fourth, the models need not be stochastic.

For the case of time series analysis, see e.g. Hannan, Dunsmuir and
Deistler [3] for parameter consistency and e.g. Ljung and Caines [11] for
model consistency. '

In the next two sections we investigate consistency of some of the
procedures of section 6 for certain classes of generating systems G. In
section 8.2. we suppose G=B, i.e. the phenomenon itself is a linear, time
invariant, complete (deterministic) dynamical system. In section 8.3 we
consider the case where G consists of stochastic ARMA models and the
purpose = is prediction. For this case we define optimal deterministic
approximations of stochastic systems.

8.2. Deterministic generating AR-systems

Let the model class M again consist of the AR-models, i.e., M:=B. Suppose
that the data are generated by a system GeG =B, i.e., the generating system
itself is an AR-system, so there exists an exact model of the phenomenon in
the model class. In this case it is assumed that there is a system BeB such
that the data ﬁe(Rq)T is a finite observation of a time series we(Rg)Z
generated by B, i.e., there is weB with 175=1n|7.. We restrict attention to
so—called controllable systems B, cf. Willems [15].

Let D:= U{(R")"; neN}and p:p>2Ma procedure. To define consistency we
specify an optimal approximation map A:G-+B and a concept of convergerce on
B. As G=B, an obvious choice for A is the identity map. Moreover, we take
the discrete topology on B. A procedure P then is consistent if for all
BeB, n.a. in weB, there holds P(w|7.)={B} for #(7') sufficiently large. In
this case, nearly always after observing a sufficienfly large finite part
of the time series the procedure identifies the generating system exactly.

To define n.a., we use the concept of genericity. Let Vc(R")'T be a
linear subspace. A subset V'cV is called generic in V if there is a
polynomial p:V-+R, p#0 such that the complement of V' in V is contained in
p'l(O). For BeB we call B'cB generic in B if B’fy.cB|7. is generic in B|7. for
#(T) sufficiently large. A property now is said to hold true n.a. for B if
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the set of points weB where the property holds true is generic in B.

In this setting of consistency we first consider the exact modelling
procedure P,, as described in section 2.2.2, i.e, the procedure
corresponding to undominated unfalsified modelling. So PW:D->2B, where for
Be(R)’ BeP,, () if and only if BeB, B is unfalsified, ie., BB, and B
is undominated, i.e., {ft’)eB’|7., B'eB, B'cB} = {B'=B}.

Proposition 8-2 P, is not consistent.

As a simple example, take B=(R")z. For any weB and any 7 of finite length
there exist B' €B such that w|7.eB'|7. and dim(B’) < q.#(7), hence B¢Pw('w|7.).

Next we consider the procedures described in section 6. We define two
exact and sensible modelling procedures as follows. For keZ, let &.(k)=
(Efd(k); tel,,)eRz* be defined by Eid(k):= 0 for 0st<d(k):=(k-q)/(g+1) and
k)= -1  for t>d(k). Let eq(k)=(e%(k); teZ,) with €%(k):=
E:"‘(k).(l,...,l). The procedures me(k) and l-’fu(k) as defined in
sections 6.2 and 6.3 correspond to accepting only exact laws of order at
most (k). Now define P’(u|,)=P; g yiwly) and Pluw|r)=
P‘Zw(,( J ))(w|7.). So PP and P* accept the exact laws which are significant,

given the number of data.
Proposition 8-3 PP and PP are consistent on controllable systems.

For fixed ¢,y oOr &4 i.e., independent of the number of data, the
procedures P? o’ P? o’ P': o’ P’: o }"f i and l-":w are not consistent,
in the strict sense of exact identification for generic finite time series.
We illustrate this for P? i and Pf o Similar arguments hold true for the
other procedures. First suppose ¢, is given. Let ey :=e(cyy), be the
equation structure corresponding to ¢y If e4=0, then Pf ol is not
consistent for the same reasons as given for P,,. If there is teZ, with
¢'21, then BeB with ¢(B)=0 cannot be exactly identified, hence P  is
not consistent. Next suppose €., is given. If e:"’{so for some teZ,, then
exact identification of BeB with e3(B)21 is impossible. If e:‘,’i>0 for all
tel,then €,y does not satisfy the sensibility assumption 7-6(i) for any
7. Moreover, as €51 >0 Pfu(wIT) will accept laws of order 0 for w|7.e(R’)T
of sufficiently small norm. Not having this sufficiently small norm is not

a generic property for any BeB with B # {0}. If BeB with eg(B)=0, then P?u
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in this case cannot exactly identify B generically, hence Peu is not
consistent.

An interesting question is the relationship between consistency of
Pl‘)u and Pf ol and a definition of n.a. in terms of “sufficient
excitation”. Without going into details, the procedures are consistent for
the class of controllable systems if n.a. is defined in terms of
sufficient excitation of the inputs with respect to &,. Exact
identification then is guaranteed provided the inputs are sufficiently rich

with respect to &,.
8.3. Stochastic generating ARMA-systems

8.3.1. Introduction

In this section we will consider the predictive procedures P’:w‘ and wal
in case the data consist of a finite part of a realization of a stochastic
process. In section 8.3.4 we will define the optimal approximation of a
stochastic process by a deterministic system, given c,y Or &, Roughly
speaking, the optimal deterministic approximation is described by the
predictive relationships corresponding to ¢,y Or &4 in case the
stochastic process were known. Note that both deterministic and stochastic
systems generally can be given an interpretation in terms of (optimal)
one-step-ahead prediction by means of deterministic equations.

A similar exposition could be given for the descriptive procedures
Pem and wa. However, in general it seems difficult to give an
interpretation of stochastic systems in terms of deterministic descriptive
relationships. Therefore we restrict attention to Pfu and Pf‘d.

In the following we introduce a concept of convergence on B, describe
a class of generating ARMA-systems, define optimal approximation maps
A’: wza.nd Af‘da.nd state consistency results.

8.3.2. Convergence

Let ByeB, keN, and B,eB. Then B, is defined to converge to B, for k+oo if
there exist parametrizations By = B(R;), k€N, and B, = B(R,,) with the following
properties. R, has full row rank over the polynomials, {d(R)); keN} is
bounded, and Ry+R, for k+ in Euclidean sense. By this we mean that for k
sufficiently large KR, has as many rows as R, and if R;=
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jz:_ng-k)sj, R = (r]%)eR”, keNu{w}, then ,-24 r’; mél( A 50 if
k> oo,

This concept of convergence is analysed by Nieuwenhuis and Willems
[13]). There it is shown that this convergence in terms of parametrizations
is equivalent to a natural concept of convergence of systems, considered as

subsets of (R")Z.

8.3.3. Generating stochastic systems

We assume that the generating system belongs to the class G of stochastic

processes w={w(t); teZ} which satisfy the following assumption.

Assumption 8-4 (i) v is second order stationary with for all teZ

Ew(t)=0, Cy= E'w(t)w(t+k)T; (#%) almost surely for realizations w, of w
ty-k

there holds for all keZ, :t—n ‘Et w,(t)w,(t+lc:)T->C,c if |t,—tg|>o00.
1-to =19

A sufficient condition for the assumption to be satisfied is that w is
strictly stationary and ergodic, e.g., that w is Gaussian with a spectral
distribution @ which is continuous on the unit circle. We refer to Hannan
[2]. This especially holds true for Gaussian ARMA-processes, in which case
&(z):= ki::_mc,‘.z"c is a rational function with no poles on the unit circle.
The process w then has a representation of the following form. There exist
meN, polynomial matrices NeR™™[s] and M e R”7[s] with det(M(s))# 0 on |s| <1,
and an m-dimensional Gaussian white noise process n, i.e., En(t)=0 and
En(t)n(s)T=0 for t# s, such that M(a'l)w-—-N(a'l)n.

The consistency result stated in section 8.3.5 is in terms of generic
subclasses of G which we will define in section 8.3.4. Here genericity is
defined as follows. Define Cc(R”“’)z as the collection of (Cy; keZ) for
which there exist weG with Cy=Eu(t)w(t+k)T, keZ. A subset C'cC is called

generic if for all-co<tz<t<+00 €| is a A-generic set in C|

[t0, 1] [tg,t,)’
i.e., it contains an open subset of full Lebesgue measure in cl[to,tll .
A class of stochastic systems G' ¢ G is called generic if C:= {(Cy; keZ);
JweCG' with Ck=Ew(t)w(t+k)T for all keZ} is igeneric, i.e., if the
set of covariance sequences in G’ is A-generic.

The classes ch and G,‘d of section 8.3.4 are generic. Moreover,
the Gaussian ARMA-processes in Gc:oz and G‘u are generic in the class of
all Gaussian ARMA-processes in G. So the consistency results of section

8.3.5 in particular hold true for generic ARMA~processes.
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8.3.4. Approximation maps and the classes Gcwl, G,w
In this section we construct for a given stochastic process w optimal
approximations in B. The optimality has to be understood in the sense of a
utility corresponding to the purpose of modelling. For w we define the
optimal approximations Af w(w) and Af u(w) as the models of optimal
prediction of w for ¢,; and g, respectively in case the generating
system w were known.

The foregoing is made precise as follows. For reRl"'[s,s'l] with
d(r)>0 define the relative expected prediction error in analogy with
section 5.3 as cP(w,r):={(E||rw||2) /(E||r'w||2) }%, where r* is the leading
coefficient vector of r and E‘||rw||2:= E‘«((r(cr,cr'l)w)(t)}2 which does not
depend on ¢t due to stationarity. If d(r)=0 then define
eP(w,r):={E||rw||2/ ||r||2 }V’. For BeB we define ep(w,B)e(Rf,"')z* exactly
analogous to eP(-z'D,B) in section 5.3. Hence ef,l(w,B) measures the largest
relative expected prediction error of the truly t-th order predictive laws
claimed by B, teZ,, and so on. We now define Afu(w) and Af w‘(w) as the
predictive models which are optimal for ¢, and &, respectively, in case

w were known.

Definition 8-5 For weG, A}:w‘(w): argmax{ u;_(c(B), ¢"(w,B)); BeB)
and A} _(w):= argmax{ v, (c(B), & (v,B)); BeB).

So Af wl and Afw‘ give deterministic approximations of stochastic
processes which are optimal in terms of a utility on complexity and
predictive quality of models described by (deterministic) autoregressive
equations.

In the sequel we will restrict attention to subclasses of G for which

P
A
Ctol

E[col(w(t),...,w(t+k)).col(w(z),...,w(t+k))T], teZ,. Now consider the
algorithms of sections 7.4 and 7.5 with S(i,t) replaced by S(w,t). Note
that any c,; satisfies assumption 7-2(i) for #(7) sufficiently large.

and Afu consist of singletons. For weG define S(w,t):=

Suppose that &,y is such that there is a t such that e:f{so for s>t.

Definition 8-6 G, o= {weG; assumption 7-8(ii), (iii), (iv) is
- satisfied}; G,u:= {weG; assumption 7-10(ii), (iii), (iv) is satisfied
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(0) =tol 2 (0)

t).2 =tol 2 t) (2
and Og-eqt1 < (& )" < Og-¢q ()) &) }-

1"(0.:" < (&) < 1'(‘7c'£+1)

Proposition 8-7 (i) G‘wz and G‘wx are generic in G;

(i1) for wchw‘ Aftd(w) is a singleton, generated by the algorithm
of section 7.4 with S(#,t) replaced by S(w,t);

(11t) for weG,w Afm(w) is a singleton, generated by the algorithm

of section 7.5 with 5(i,t) replaced by S(w,t).

Moreover, the Gaussian ARMA-processes in G, ol and G, o 2T€ generic in the

class of all Gaussian ARMA-processes in G.

8.3.5. Consistency results

Assume that the data % consist of a (finite) observation on 7 of a
realization w,.e(R")Z of a stochastic process w. As definition of n.a. in w
we take a.s., i.e., "almost sure” with respect to the process . The next
theorem states consistency results for Pf; ol o’ with  the
approximation maps as in section 8.3.4 and the concept of convergence as
defined in section 8.3.2. It is assumed that for €,, there is a t such

that €,’; <0 for s>, in which case we call ¢, finite.

Theorem 8-8 For every ¢y, Pﬁ is consistent on ch. For every

tol
finite €.y, Pf ol is consistent on G,w

This means the following. Let w, be a realization of a stochastic process
weG, » and let ﬁ:w,.ly.. Let AJ: w(w):BeB with corresponding predictive
spaces Vf:= v,(L’:), where Lf is as defined in section 4.4. Then almost sure
P’:wz(ﬁ‘:) is a singleton for #(7) sufficiently large. Denote the
corresponding predictive spaces by Vf(.'/" ), the complexity by ¢(7). and the
predictive misfit by &(7). Then for #(7T)+»oco there holds a.s. that
c(T)»c((B), Vf(T )-»V':’ in the Grassmannian topology (i.e., there exist
choices of bases of Vf(.T ) which converge to a basis of Vf), and
e,,,,(T)-uef',,(w,B), k=1,...,q, teZ,. A similar result holds true for wa.
The convergence V’:(T )-»Vf implies convergence of AR-relations and of the
corresponding models. So if the number of observations tends to infinity,
the identified model a.s. converges to the optimal (prediction) model B
which would be identified in case w were known.

Proof of the theorem consists of using the ergodic properties of w and
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establishing continuity properties of the steps of the algorithms in
sections 7.4 and 7.5 with respect to changes in S(#%,t), teZ,.

We remark that also the procedure I-Dfu is consistent on G, o’
Moreover, Pf ol is not consistent if e, is not finite. Note that such
€, is not sensible.

We conclude this section by commenting on the optimality. Consider

e.g. wa and suppose that weG,u is such that B:= Af o) satisfies

‘z‘oe:(B) =¢. Then use of B leads to one-step—ahead pointpredictions, which
we indicate by v*. In this case as. and for #(T) sufficiently large
Pf w‘(iD) also leads to pointpredictions, indicated by (7). There holds
EIIG'—'E;(.T JI+0 if #(T)+co. In this sense the one-step—ahead predictions
converge to the optimal ones. However, if ¢>1 in general there does not
exist a choice of e,y such that w* (and hence w7 )) is close to the least
squares (causal) predictor for w. So the optimality has to be interpreted
in terms of u, o 1Ot in terms of minimal mean square prediction error. It
is not unreasonable to be slightly non-optimal in accuracy if the
predictions can be made by much simpler models.

9. SIMULATIONS

9.1. Introduction

In this section we will illustrate the modelling procedures of section 6 by
means of four simple numerical examples.

In section 9.2 we consider exact modelling. In this case only exactly
satisfied laws are accepted. This corresponds to applying the procedures
P
time series generated by an AR-system.

and Pf ” with €,4=0. The data consists of an exact observation of a

Section 9.3 gives an example of descriptive modelling of a time
series, given a maximal tolerated complexity, i.e., of the procedure Pe ol
The data consists of a noisy observation of a signal generated by an
AR-system. We will compare the (non-causal) impulse response of the
generating system with that of the identified model.

In section 9.4 we illustrate the difference between descriptive and
predictive modelling. For a given time series we compare the models
identified by the procedures Pl‘)wz and Pfu.
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Finally section 9.5 contains a simulation illustrating the fact that
the procedures for modelling, given a maximal tolerated misfit, need not
generate models of minimal complexity. This indicates the difference
between the procedures Pfu (Piw‘) and P:L: o (P:': ,) as defined in
sections 6.2 and 6.3 respectively. We also illustrate consistency of Pfu'

9.2. Exact modelling

8.2.1. Data

In the first simulation we consider exact modelling of a signal generated
by an AR-system. The signal consists of two components, each being a sum of
two sinusoids. To be specific, let fy:=2m/100, f:=27/120 and fj:= 2m/150.
Define  si(t):= sin(fi.t), k=1,2,3, teR, and  wy(t):= 54(¢) + 54(t),
w,(t):= 5,(t)+s3(t). The data consists of observations of the signals w, and

w, on times t=1,...,300, i.e., 1’5:([:18;]; t=1,...,300)e(R2)3°°. The
2

signals are given in figure 11.

0 S0 100 150 200 2%0 300

wil

0 80 100 180 200 250 300
w2

figure 11: data for simulation 9.2.

9.2.2. System

Both w;, and w, are periodic, with period 600 and 300 respectively. Hence

weB(R) with R:= [" -1 0

. 300 ] . However, there are more powerful models for
0 o=

1
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w. Observe that for s(t)=sin(f.t) there holds s(t+2)+s(t)=2cos(f).s(t+1),
hence seB(r) with r(s):= s2-2cos(f).s+1=(s—€”)(s—€e). Defining py(s):=

S “ify ~ .
Ms-e ), k=1,2,3, we conclude that wWeB(R,) with Ry=

[Px-Pz 0 ]
0 717

9.2.3. Model identification

(s—e'

Exact models for the data % are obtained by applying the procedures P":
and Pf @l with €., =0. We denote the resulting models by B(RD )i= Pg(ﬁ:) and
B(RP )= Pﬁ(ﬁ). These models are identified by using the algorithms of
section 7 with ., =0. Both models consist of one second order laws and one
fourth order law. Let R® and R have elements r?,,, and rf,,, respectively,
l,m=1,2. The identified laws are given in table 1.

coefficients of:
00 al 02 03 04
laws:
r?l 0.5007 -1.0000 0.5007 0 0
1'11)2 -0.2754 0.5502 -0.2754 0 0
7'21 0.4637 -0.9568 0.5746 -0.1319 0.0507
7'12)2 ~0.0352 -0.3517 1.0000 -0.8055 0.1920
rfl 1.2392 -2.4750 1.2392 0 0
sz -0.6815 1.3618 -0.86815 0 0
Tfl 0.6815 -2.7224 4.0818 -2.7223 0.6815
ri, 1.2392 -4 .9490 T.4196  =4.9489 1.2391

table 1: identified AR-laws for simulation 9.2.

8.2.4. Model validation

Two questions arise, namely, whether these AR-laws are equivalent and
whether they are equivalent to Ry, i.e., if B(RD )-B(RP ) = B(Ry).
Direct calculation shows that there exist a constant a#0 and

P2 op;
unimodular matrices U° and U” such that UPR?=U'R" =Rp:= [P P ] So
1P2
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indeed B(R®) = B(R"). As [PO ﬂ R; = [(1) g] R, it follows that B(R;) < B(R,), but
-

B(R;) # B(R,). So the identified laws R and R’ are equivalent, but not
equivalent to R,. This is due to the fact that B(R,) is not the most
powerful unfalsified model for . Indeed, a short calculation gives that
py+opy=a'p, where ou= {cos(f,) - cos(fy)}/{cos(fs) ~cos(f,)} and o=
{cos(f;)—cos(f;)}/{cos(fs)-cos(f;)}. Stated otherwise, the space of
polynomials {52+c.s+1; ceR} has dimension two. The most powerful

PPz 0
unfalsified model for the generating system is B(Rj) with Ry:= [ 0 P pa].
P2 ap3

It easily follows that B(R®) = B(R") = B(R;) = B(R}).

The foregoing shows that the identified models correspond to the
(most powerful unfalsified) model for the generating system. Hence the
generating system is exactly identified. This illustrates the consistency
result stated in proposition 8-3.

9.3. Descriptive modelling

9.3.1. Introduction

In the second simulation we model a time series by minimizing the
descriptive misfit, given a maximal tolerated complexity, i.e., we use the
procedure wa. We will first describe the data and the system generating
it, then present the identified model and finally compare this model with
the generating system.

9.3.2. Data

2,1000

The data consists of a two-dimensional time series @ = w‘] €(R%) and is
2

depicted in figure 12.

9.3.3. System

The data # is generated by the system shown in figure 13. Here s, is the
noise-free input, n, the noise on the input, and w:=s,+n; the exactly
observed input. The signal s, is the output generated by the input w,. The
observed output is w,:= S;4n,.

The signals s,,s, and the noise n,,n, are given in figure 14. For a
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Q 100 200 300 400 800 800 700 800 200

wi

1000

0 100 200 ° 300 400 800 a00 700 800 900

figure 12: data for simulation 9.3.

figure 13: generating system for simulation 9.3.

1000

flgure 14: signals and noise for simulation 9.3.
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signal seR’ and noise neR’ we define the signal to noise ratio in s+n as
T

Isil/imll:= { Z s() / E ) Y. In this simulation the signal to noise

ratio for w, is 3, for w, 100.

The system generating s, from w, is a (symmetric) exponential
smoother. For 0 <o <1 we define the exponential smoother e, as follows. Let
lo denote the set of bounded sequences, i.e., I = {weRz;
sup(|w(t)|; teZ)<o}. Then ey:ly+»ly is defined by eq(u):=1y, where

®©
(t)—m TZ al Iu(t+'r) Note that for u a constant signal, u(t)=c for
all teZ, the output is y=1u.
We will embed the graph of ey, gr(eq):= {(u,y)el:;y=ca(u)} in an

AR-system Bac(Rz)z. In order to describe B, let y=¢,(u)= :;—g (y-+u+v,),

where y_(t):=T_Z:flaTu(t-1') and y, (T)= Téla‘ru(w‘r).'l'hen (r-a)y.=ou and
(1-ao)y, = aou, hence (d-a)(l-ao)(y.+u+y,)={(l-ao)ox + (0~ oz)(l oo)
+ (0-a)arju= (1-« )au Define po:=(s-a)(1- as)a.ndqa-5+—a.(1 e" )s_
(1- cx)sthengr(ca)cB = B(Ry) where Ry:= (- Qo Px)-

In the simulation the signal s, is the exponential smoothing of w,
with «=0.95. Hence the (most powerful unfalsified model of the) generating
system is B(R;) with Ry=(-g¢,0,):=(~go.es,Po.ss)- We remark that in
identifying the model there is no prior knowledge that w, is the input and
w, the output.

9.3.4. Model identification

Next we analyse the data # by means of Pf‘ o We consider models of
decreasing complexity, corresponding to requiring one AR-relation of order
5,4,3,2,1 and 0 respectively. For order k the resulting model is indicated
by Bi=B((-¢®,7®)= {my)e®)E; PPy =g®on), k=54,3,2,10.
See table 2. This table also contains the roots of the polynomials p(k),
q("), and the descriptive error ef,l(ﬁ,B,‘).

The results in table 2 indicate that little descriptive power is lost by
reducing the order from 5§ to 2. Moreover, two of the roots of the
identified polynomial p turn out to be rather invariant under different
orders, while the roots of the identified polynomial ¢ seem to be quite
random, although generally one of them is close to 0. It seems reasonable
to take c,y such that the corresponding equation structure is e(cyy)=
(0,0,1,0,0,0,...), ie., to require one second order relation.
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coefficients of: roots
’0 al az al a‘ ,5 P q error
order 3 p(S) 0.4473 0.0883 -0.533) -0.3363 0.11861 0.4298 0.9336 0.21 0.0134
q(S) 9.0003 -0.0010 -0.002) -0.0028 -0.0014 -0.0003 1.0348 -0.84¢1.071
-1.03 ~1.8320.834
—0.6120.781i -18 0.0158
order 4 4 0.3482 -0.3488 -0.4063 -0.3417 0.5440 1.0814¢ 0.18
Y 0.0003 -0.001¢ -0.0018 -0.0017 -0.0001 -6.6920.731 -0.3620.881
order 3: p(:) 0.5427 -0.6713 -0.2884 0.4144 0.9301 0.037 0.0159
q(:) 0.0001 -0.0014 -0.000% -0.0003 _:':z:" =1.3121.88)
order 2: p(z) 0.4061 -0.83188 0.4099 0.9529 5.24 0.0159
q(z) 0.0002 -0.0011 0.0002 1.0308 0.18
order 1: P“) 0.7073 -0.7089 1.0008 1.20 0.0178
q“) 0.0011 -0.0008
order 0: P(O) 0.9308 0.719%0
q(o) 0.1962

9.3.5. Model

table 2: identified AR-laws for simulation 9.3.

validation

The identified model B{({ - ¢y, p;)):= B, is compared with the generating system

B((—qg)pg))

in table

3.

This indicates

that

the AR-law of

identified system is close to the law of the generating system.

coefficients of:

0 1 2
o o -4 roots
system: D, 1 -2.0026 1 0.95 1.0526
4 ] -0.0026 ] ]
model: P 0.9906 -1.9925 1 0.9529 1.0396
qr 0.000¢ -0.0028 0.0005 0.1537 5.2435

table 3: system and identified model.

the

We next want to compare the model and the system with respect to their

input—output behaviour. So we now will use the prior knowledge that w, is
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an input and w, an output. We will compare the impulse responses of the

model and the system.
For B= {(u,y)e(R2

with respect to u as Bé:= {(u,y)eB; u=6}, where 6(0):=1 and é(t):=0 for all

t #0. It can be shown that 86 contains exactly one bounded element if ¢#0,

)z; p(o)y=gq(o)u} we define the impulse response of B

p#0 and p has no roots on the unit circle. In this case we call the time
series ieRz such that (6,i)e35nl“ the stable impulse response. The models
B((-qq4p,)) and B((-gr,p;)) satisfy these conditions. We denote their

el

stable impulse responses by i, and i; respectively.Here ig(t)=;—:%.a and

i; is determined as follows. There exist unique real numbers a,, 4, b,

. b b D
b,, d with || <1, |a;|>1 such that %ﬁ- = s_—clzT"' s—_g—;—+ d. Define i;(0):=
d - %, if(t)=by.a'™ for t>0 and if(t):= -bal™ for t<0. It then is a

matter of simple calculation to verify that pj(o)i;=g;(c)é. This
corresponds to a causal interpretation of the transferfunction 3,%}1: and an
anticausal one for s_fczz?'

The stable impulse responses i, of the system and i; of the identified

system are given in figure 15.

0.03
= = :ddentiffed system

0.025F — .gystem -
0.02
0.015}+
0.01

0.00%

-80 -40 0 40 80

figure 15: impulse responses for simulation 9.3.

9.3.6. Scaling and sampling

We conclude this section with some remarks.

First, the stable impulse response of a system is a highly sensitive
function of the AR-coefficients describing the system. For example, in the
system (0-1-¢)y=u with |£| <1 the stable impulse response is causal if £<0,
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anticausal if €>0.

Second, the result of the identification algorithm depends on scaling
of the variables. In order to illustrate this, consider scaling of the
output in the system B(R,) by a factor c¢#0. Let B.= {(u,y)e(Rz)Z;
Pylo)y=c.gg0)u}. Let &= cD(iI:,(—qI,pI)) denote the descriptive misfit of

the identified law (-gqp,p;) with respect to the data #w= [zl] Denote the
2

transformed data by .= [‘:;,] From definition 5-4 it follows that
2

(@ (-carp)) = e (lgrl*+ 120" /arl® + ¢ tprh*)”. Using the results
in table 3, it follows that the descriptive misfit of (-cqr,p;) with
respect to the scaled data %, is approximately c.e. So, e.g., if ¢ is very
large then the law u=0 has smaller error. In the next section we will
illustrate that the predictive procedures prevent these problems of
scaling. o

Finally, autoregressive modellingl is subject to problems of fast
sampling. Consider the case that a continuous time system is sampled at a
certain sample rate A™. The magnitudes of the AR-coefficients of the
sampled system depend on this sample rate. This affects the descriptive
quality of the AR-laws, as indicated above. The constant ¢ is related to A
as c=A. It especially seems difficult to identify good approximations of
infinite dimensional systems by means of autoregressive modelling in case
of high sample rate and small noise. This is only partly due to the
smoothness of the resulting signals. It seems contradictory that having a
large amount of data, i.e., fast sampling, and good data, i.e., small
noise, would be undesirable in identification.

To illustrate this we refer to table 2, where the best AR-law of order
1 is close to (0-1)w,=0 with a small descriptive misfit of 0.0176. If we
scale the output appropriately this effect is reduced. For example,
®(,(0,0-1)) =¢.00176, while (., (~c.qs,pr)) =0.0159. (Nqr1%+12s1%)"/
(llqlllz+c'2||pzﬂz)%. So for c¢ sufficiently large the law (-cgr,p;) has much
better descriptive fit than the law corresponding to smoothness. We remark
that decrease in the signal to noise ratio of the output hardly helps in
discriminating (-g¢;,p;) from (0,0-1). This is due to the fact that

2

V2 D,
(-g2r)) = 0.0159+(c~1). Ingl- Up:N/(Hgrl*+0ps1")™ and €°(&',(0,0-1))
&= 0.0176 +(c-1). |[n,]|, so for ¢ large the errors are nearly the same.

lpzﬂ/(l]qzllz+||p1|]2)v’==1. If 1‘5'=[::¥] with wy=s34¢.n, ¢>1, then cD(iE',
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9.4. Predictive modelling

9.4.1. Introduction

In the third simulation we illustrate the difference between descriptive
and predictive modelling. We will see that the predictive procedures suffer
less from scaling problems. On the other hand, the imposed asymmetry in
time, due to the one-step—ahead prediction criterion, sometimes is
artificial, in which case the descriptive procedures seem preferable.

We will now first describe the data and the generating system and
subsequently analyse the data by means of descriptive and predictive
procedures.

9.4.2. Data

The data consists of a three-dimensional time series % =col(w;,10,;,w,;)€
(R3)2°°. We will investigate the effect of scaling. In order to illustrate
this we will scale w,, and identify models for the scaled data #":=

(k) m(k) n(k
col(wg ),wg ),w;(, )):= col(w,,wqy, k. wp,), keR,.

9.4.3. System

The data is generated by the system shown in figure 16.

figure 16: generating system for simulation 9.4.

Here s,, is the noise-free input, =, noise on the system input,
§;:=8;;+n;; the input for the system, », noise on the observed input,
w;:= 5, +7n, the observed input,s, the output of the system, n, and n,, noise
on observed outputs, wy:= 534y and w,,:= S5+ 14, the observed outputs. The
signal to noise ratios are [sy[l/[ny, [l =10, lis,[/ln.l =20, Is2]l/[n21]l =10 and
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sl /sl =2.

The signals, observed data and noise are given in figure 17 for the
case k=1 (no scaling on wy,).

-2 R -2 —
] 80 100 180 200 ] 80 100 150 200
sll wl

0 80 100 150 200 0 50 100 1% 200
2 w22 (k=1)
0.2 -
0.1
0
-0.1
-0.2
200 [} 80 100 180 200
a2}
0.1 1 —
0.05 0.8
[} 0
-0.08 -0.5
-0.1 -1 )
0 50 100 180 200 0 80 100 150 200
ni a22

figure 17: data, signals and noise for simulation 9.4.
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The system relating s, to s; is described by qzsz=(20—1)sl. This
corresponds to a simple linear  extrapolator  sy(t):i=  §(t-1)

9.4.4. Model identification and validation

In order to identify a model, we have to reconcile the desires for low
complexity and for low misfit. In the simulation we identified the
AR-models with best descriptive and predictive fit for orders from 0 up to
4 and for data ®* corresponding to various scaling constants k. In order
to choose a model we compared the increase in fit due to increase in
complexity. It turns out that the descriptive misfit decreases only
slightly for orders larger than two. Moreover, the results for k>1 nearly
coincide with those for k=1.

The main results of the simulation are summarized in tables 4 and 5.
Table 4 contains the best predictive models of orders from 0 up to 4 and
for various values of k. Table 5 contains the best descriptive models of
orders 0 and 2 and for various k. Specified are the AR-coefficients in
rl(a)t'b(lk)+r2,(a)17;§k)+r22(a)1'bgk)=0, some of the roots of r,, r,, 7y, and
the misfits.

From table 4 it is clear that the model identified by the predictive
procedure does not depend on scaling of w,,. Moreover, considering the
predictive misfits it seems very reasonable to choose a second order model,
with predictive misfit 0.12. The model for data #™® then becomes

1P o10l® + o)l + 1 (o) =0, where r%)(s)=0.085>-1.995+0.96,

r,ﬁk)(s)=sz-0.055+0.01, rg)zk'1(0.013—0.03). So this law is close to the
generating system (—2a+1)sl+azs2=0. The procedure identifies the relation
between w, and w,; as its misfit is due to the noise on w, and w,;, which
is much smaller than the noise on w,;,. Note finally that, even if #® is
observed instead of 177=15(1), the predictive procedure for all k identifies
the same AR-relation for the unscaled variables (w,,w,,,w,,).

On the other hand, as shown in table 5, the model identified by the
descriptive procedures depends strongly on scaling of w,;;. Roughly
spea.king, for values of k larger than 0.1 it seems reasonable to choose a
model of order 2, which model turns out to be relatively close to the
generating system. For values of k smaller than 0.1 it seems reasonable to

choose a model of order 0, approximately corresponding to w&”:k. w;k).
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order 0 order 1 order 2 order 3 order ¢
T T Ta T T T " fa T i1 Tan Tn 8 Ta1 T2
k=1
coeff. o -0.80 1 -0.44 |-1.82 0.48 -0.0S| O0.96 0.01 -0.03( 0.18 0.01 -0.02( -0.18 0.0s -0.00
o 0.40 1 -0.04| -1.99 -0.08 0.01| 0.89 -0.02 -0.02 0:30 0.07 -0.02
o 0.08 1 0.00/-1.99 0.08 0.01 0.73 -0.09 -0.02
o 0.08 1 -0.00 -1.99 0.07 0.01
o 6.07 1 -0.00
roots - 4.62 -0.48 -1.23| 0.49 0.02:t 1.65| 0.53 0.41%0.211
15.3 0103017 -0.43
24.4 36.6
misfit 0.3250 0.2153 0.1168 0.1149 0.113¢
k=0.1 0
coeff. o -0.60 1 -0.4¢4 |-1.82 0.48 -0.46| 0.96 ©0.01 -0.23| 0.18 0.01 -0.19| -0.18 0.08 -0.00
o 0.40 1 =-0.37| -1.99 -0.05 0.14| 0.69 -0.02 -0.21| 0.30 0.07 -0.13
’z 0.08 1 0.02|-1.99 0.09 0.14| 0.73 -0.09 -0.19
v: 0.08 1 -0.02| -1.99 0.07 0.13
o 0.07 1 -0.0¢
roots - 4.82 -0.48 -1.25| 0.490 0.02: 1.85]| 0.53 0.4120.211
25.2 0.1 -10.3|-0.17 -0.43
2¢.4 26.6
misfit 0.3250 0.2153 0.1168 0.1149 0.113¢
k=0.01
coeff. o ~0.60 1 -0.44 (-1.82 0.48 -¢.87| 0.96 o0.01 -2.75) 0.18 0.01 -1.89| -0.18 0.0S -0.08
e 0.40 1 -3.85| -1.99 -0.05 1.40| 0.9 -0.02 -2.14| 0.30 0.07 -1.8
o 0.08 1 0.16/-1.99 0.09 1.¢0| 0.73 -0.09 -1.93
P 0.08 1 -0.17| -1.9% 0.07 1.20
e 0.07 1 -0.42
roots - ¢.02 -0.46 ~1.23| 0.49 0.02: 1.e8| 0.53 0.4120.211
DY BRI WY IPIRC -0.43
2¢.4 26.6
misflt 0.3250 0.2153 0.1188 0.1149 0.1134

table 4: predictive AR-laws for

simulation 9.4.
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coef{f. order 2:

order 0 misfit co cl 02 roots mis{it
k-l:
1) 1.36 (0.3250| 1.13 -1.99 0.02|0.57; 87.7|0.0561
Ta1| -2.28 -0.03 -0.12 1 [0.24;-0.12
B % 1 -0.03 0.02 -0.00(4.92; 1.99
kwo0.2:
Ty | -0.00 [0.1137 1.13 -1.99 0.02(0.57; 89.5|0.0559
Ta1| -0.21 -0.02 -0.13 1 [0.20;-0.08
722 1 -0.19 0.14 -0.02[3.06; 2.49
K=0.14:
Ty | -0.01 (0.0804| 1.11 -1.98 0.02]/0.57; 91.8]/0.0585
T21| -0.14 0.01 -0.14 1 |o0.07+0.091
T22 1 -0.43 0.33 -0.08(1.98+1.091
k=0.12:
Ty | -0.01 (0.0691| 1.08 -1.95 0.02)|056; 89.8|0.0547
T21| -0.12 0.06 -0.1T7 1 [o0.08%0.231
T22 1 -0.80 0.68 -0.24|1.43+1.15]
=0.11:
Ty | -0.01 |0.063¢] 1.02 -1.88 0.02(0.55; 78.9)|0.0535
T21| -0.11 0.13 -0.22 1 |0.11+0.34]
T22 1 -1.37 1.29 -0.59|1.10%1.06l
k=o0.1:
ry | -0.01 (0.0577T| 0.90 -1.72 0.03(0.53; 49.4|0.0505
T2:| -0.10 0.26 -0.33 1 |0.1740.481
T22 1 -2.54 2.71 =~1.54|0.8810.94]
k=0.09:
Ty | -0.01 |0.0520| 0.76 -1.52 0.05(051; 30.3|0.0461
T21| -0.09 0.40 -0.47 1 [0.2410591
Ta2 1 ~4.08 4.868 -2.96|0.79+0.871
K=0.01:
Ty | -0.00 [0.0058| -0.01 0.01 -0.00(0.40; 8.84|0.0052
Ta1| -0.01 -0.01 0.01 -0.02|0.44%0.77i
T22 1 1.10 -1.39 1 |0.70%0.781

table 5: descriptive AR-laws for simulation 9.4.
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In this way the simulation clearly indicates the effect of scaling of
data on the resulting model identified by the descriptive procedures. The

model identified by the predictive procedures is invariant under scaling.

9.4.5. Effects of scaling for SISO systems

We conclude this section with a few remarks on the effect of scaling on the
identification of single-input single-output (SISO) systems.

In table 6 we give the main results of the simulation experiment
consisting of modelling the data ™= col(w,,k.wy,) for various k by means
of the descriptive procedures. From the table of misfits it seems
reasonable to accept a second order law , as the second order laws have
considerably better fit than lower order laws and nearly as good fit as
higher order laws. The table indicates that scaling has little influence on
the model for (w,,wy;), as for scaling constant k£ the identified AR-law
(rgk),rg'f)) is approximately equal to (krgl),rg)).

On the other hand, it turns out that by decreasing the signal to noise
ratio for w,, the identified model becomes more sensitive to scaling.
Moreover, in section 9.3 we concluded that for the exponential weighting
system the identified model is sensitive to scaling. It hence appears that
scaling sometimes has influence on the identified model, but that the
effect need not always be large. Here we only will give a sketch of an
explanation.

For simplicity, consider a second order system B={(w;,w,); p(0)w,=
g(o)w,} with degrees d({p,q)) =d(p)=2. Assume that w, is scaled in such a
way that ||p[|2=||q||2= ¥. Let the data consist of ©=(i,1%,), ©,=w+¢€,,
i, =w,+€,, Where ¢€; and €, are uncorrelated white noise with o,:= ||¢,|| and
oy:= |l€g]. To investigate the effect of scaling, suppose we observe
(¢, €qa105), €1.¢;#0. As the identified models are invariant under a data
transformation (+cW,, +¢i,), ¢#0, we may consider .= (1%, k.10,), with
ki= |cafcy).

First let k=1 and let o denote the descriptive misfit of (-g,p), i.e.,
o= || pivg - qihy | ~ %V2. (af+0‘:)vz. Moreover, let § and v denote the descriptive
misfit of the best first order law for @, and @, respectively. For k let e,
denote the descriptive misfit of the best first order law for g
the misfit of (-kgq,p), i.e., o= cn(ﬁ')(k),(-kq, p))=oz.kV2/(1+kz)V’. A relevant
indication for the sensitivity to scaling is the influence of k on «) and

, and o
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order
misfit 0 1 2 3 4
k=100 0.4812 0.1587 0.0616 0.0564 0.0554
k=10 0.4798 0.1585 0.0616 0.0564 0.0554
k=1 0.3726 0.1370 0.0565 0.0528 0.0520
k=0.1 0.0544 0.0245 0.0134 0.0127 0.0125
k=0.01 0.0055 0.0025 0.0014 0.0013 0.0013
AR-law coeff. of: roots
-4 01 02
k=100: T 118 -202 3.37 0.59  89.1
T21 -0.07  -0.12 0.33  -0.21
k=10: T 11.8  -20.2 0.34 0.59  59.3
T2 -0.07  -0.12 1 0.33  -0.21
k=1: T 1.15  -2.00 0.02 0.58  80.0
T2 -0.06 -0.11 0.31  -0.20
k=0.1 T 0.10 -0.19  -0.00 0.52 -111
T2 -0.03  -0.05 0.19  -0.14
k=0.01 T 0.01 -0.02 -0.00 0.51 -98.0
Ta1 -0.02  -0.0S 0.18  -0.13
k-l :
predictive: Ty 0.97 -1.99 0.08 0.50 23.8
T21 ~0.02  =0.04 1 0.17  -0.13
table 6: descriptive misfit and AR-laws for 5 (k).

c:. We assume that for small k c,l,zk.‘r and for large k e:tz B. This seems
often to be the case. Now if V2 < min{8,y} we may expect little
sensitivity to scaling, as it seems probable that in this case ci>o¢,, for

all keR,.

In the case of data ™= col(w,,kw,,) in this section the underlying
system is described by p(s)=s2 and ¢(s)=2s-1. So for k=1/V5 we have




-80-

kgl = llpll- Form this we get «=~0.04, F=~0.28, y=~0.27. So indeed
aV2 < min{8,v}.

On the other hand, for the exponential weighting system of section 9.3
we have |[p,[>>[lgqll. It can be calculated that for ¢ =850 we have [cgy| = |4
and a=~9.5, f~1.82, v=~15.3. So in this case § < oV2 < v. For large values of
k we will be unable to identify the generating system. The simulation of
section 9.3 corresponds to small k (k=1/850).

Finally, if w, and w, are very smooth we will always have problems in
identifying the relationship between w, and w,. In this case
ﬁacD(ﬁ}l,a-l)zal and 7==cD(17)z,a-1)=az, while oz,,z(a§+a:)v’. k/(1+k2)%.

In this case we may expect c,1¢<o:>z,c for all k.
9.5. An example illustrating non-optimality

9.5.1. Introduction

In the fourth and final simulation we illustrate the fact that the
procedures for modelling, given a maximal tolerated misfit, need not
generate models of minimal complexity. This then shows that the procedures
PP o 20d Pt ., Giffer from the (optimal) procedures P:’: , and P:’:d
respectively, as indicated in sections 6.2 and 6.3.

We first describe the data and the generating system, then analyse the
data by means of the procedures P’f‘d and Pf o’ and comment on the
identified models. We finally illustrate the consistency of Pf‘d.
8.5.2. Data and system

The data % =col(i,,,,1%;)e (R‘"’)“’0 is generated by an ARMA-system
M(c™ )yw=N(o")n, where n = col(n,,n,,n,) consists of three uncorrelated white

noise processes with En; =0, En: =1, k=1,2,3. The matrices M and N are given

1 0 0 V2 0o 0
byM=|o 1 -1 andN=|o B o| witha:=1/V1l and B:= V1.1.
0

0 l-oo o 0 1
This corresponds to w, =%a.n, , Ow; = aw;+0ny , W, =wy+Pn, . Figure 18 shows
the data ¥, generated by a realization of n.



figure 18: data for simulation 9.5.

9.5.3. Model identification

We will identify a model for # by means of descriptive and predictive

procedures with (unfavourable) given tolerated misfits.

First we consider wa with  £4=( E:d.(l,l,l) ; tel,), E;d:=
ef:: 1.6, Ei°l:= e?:: 1.2, and &; := -1 for t>1. This means that only zero

order and first order laws may be used in the identification of a model.
The identified model is given in table 7, along with the best
(not-allowable) first order law.

Next we consider P‘:td with g =( E:d.(l,l,l) ;tel,), Ef,d:=e§:=
1.6, E:d:= ef:: 0.95, and E:d :=-1 for t>1. The identified model is given in

table 7, along with the best (not-allowable) first order law.

9.5.4. Model validation

The identified models are not of minimal complexity, given the maximal
tolerated misfit. This is also indicated in table 7. It turns out that both
for descriptive and predictive tolerated misfit as given before the model
B*:= {we(R*)L; w,=0,1,=0, (0~o)w,=0) satisfies the misfit constraint. This
model has complexity ¢(B®)=(1,4,4,,...), which is smaller than the
complexity of the identified models, which is (1,1,1,1,...). It easily
follows that ¢(B®) is the lowest achievable complexity, given the misfit
constraints. However, among these allowable models of lowest complexity
there exists none of minimal misfit. For the procedures me and F‘:wc
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identified model] model B*
w0, w, W3 misfit | Wy Wy W3 misfit
descr.
order 0.9978 -0.0364 0.0552 | 0.4992 [ 1 0 0 .5000
-0.0661 -0.5347 0.8425 | 0.6562 | 0 1 o .4938
1.7197
order ~0.0012 -0.8443 -0.83359 | 1.4470 | 0 0 -« L9574
0.0012 ‘0.8439 0.5358 0o 0 1
pred.
order 0.9978 ~0.0364 0.0552 | 0.4992 | 1 0 O .5000
-0.0661 -0.5347 0.8425 | 0.8562 | 0 1 'o .4938
1.7197
order ~0.0004 -0.2937 -0. 1885 0.9559 0 0 - .9301
o! 0.0014 1 0.6348 o 0 1

table 7: descriptive and predictive AR-laws for simulation 9.5.

there exist models of lowest complexity and minimal misfit, but they seem
difficult to compute. Their identification involves the question what is
the lowest possible zero order misfit such that there exist first order
satisfying the and the
conditions of the (descri;;tive or predictive) canonical form.

The procedures Pf ol and PJ: ol first determine as many zero order
laws as possible. Requiring three of those laws results in a zero order
misfit (1.7197, 0.6562, 0.4992), which is more than tolerated. Hence two
zero order laws are accepted. Moreover, the best two laws are chosen. This
implies conditions, due to the canonical form, on first order laws. In this
simulation there

relations,

misfit constraint orthogonality

is no allowable first order law satisfying these
conditions. The model B* shows that it is profitable not to take the best
two zero order laws in order to get allowable first order laws, i.e., with

. p: P
misfit less than e? or e;.

9.5.5. Consistency

We finally consider increase of the number of data generated by the
ARMA-system. In table 8 we summarize results for the procedure Pf tol in
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identified models

P
T=S$0 T=100 T=400 T=800 A,m
order 0:
AR-coef{.
w, 0 .9999 0.982¢ 0.9978 0 .9961 1
v, 0.0019 0.1422 -0.0364 -0 .023¢ 0
w3 0.0161 ~-0.1210 0.05S52 -0.0346 0
misfit 0.3820 0.5161 0.4992 0 .4994 0 .5000
AR-coeff .
w, -0.0127 0.1797 -0.0661 -0 .0547 0
102 ~0 .3286 -0 .5440 -0 .85347 -0 .5246 -0.5287
w3 0 .8488 0.8196 0.84238 0 .8471 0 .8507
misfit 0.6593 0.6621 0.6562 0 .6429 0 .6482
AR-coef (.
w, -0.0102
v, 0 .8489
s 0.5285
misfit 1.5920 >1,6 >1.6 >1.8 1.68970
order 1: -
AR-coeff.
0
o : W 0.0228 -0 .0004 -0 .0004 0
W, -0.3708 -0.2937 -0 .2874 -0.2182
L7 =-0.2511 -0.18635 -0.1772 -0.1348
1
[ 2 101 -0 .0614 0.0014 0.0014 0
v, 1 1 1
3 0.6771 0.6348 0.6164 0.6180
misfit 0.9298 0.9359 0.9578 0.9759

table 8: consistency of P’:

tol
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case of T=50,100,400 and 800 observations. We also calculated the best
first order laws. Observe that for T =50 the procedure for this simulation
would accept three zero order laws, while for T =100 it would accept a first
order law. We also give the optimal approximation Afld, corresponding to
the optimal predictive model for &, in case the generating system were
known. This model can be calculated from covariance matrices, derived from
M and N.

The results in table 8 illustrate consistency, as defined in section
8. Note especially that in the limit the best first order law which
satisfies the orthogonality conditions of the canonical predictive form has
predictive misfit 0.9759>ef=0. 95. Hence, almost sure, for a sufficiently

large number of observations the procedure Pt

¢t will only accept two zero

order laws.

10. CONCLUSION

In this paper we have described some procedures for approximate modelling
of a time series, along with corresponding algorithms. The procedures have
been illustrated by means of some numerical simulations.

The procedures determine a deterministic dynamical system which for
given data is optimal with respect to a utility of models, depending on the
objective of modelling. This utility is expressed in terms of a complexity
of models and a measure of fit between data and models. The utility
reflects a compromise between the generally conflicting objectives of
identifying a simple model and a model which fits the data well. The
utility is numerically expressed in terms of canonical parametrizations of
dynamical systems. These canonical forms are determined in accordance with
the objective of modelling.

The procedures form part of a more general deterministic approach to
approximate modelling, as extensively discussed and illustrated in the
paper.

The procedures have a clear optimality property as data modelling
procedures, in terms of the corresponding utility. A procedure also has an
optimal performance as a method of modelling phenomena if it is consistent.
This means that nearly optimal models of the phenomenon are identified if
the number of observations generated by the phenomenon is sufficiently
large. This has been investigated for certain classes of data generating
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systems and some of the procedures.

(i)

(if)

(iii)

(iv)

(v)

We finally mention some topics for future research.

The construction of algorithms for utilities other then U, , and
Ue, especially for minimizing the number of unexplained variables
(inputs) under a misfit constraint.

Utilities and algorithms when the purpose of modelling is control.
Consistency analysis for generating systems of ARMAX type, i.e., with
inputs, and the related issue of sufficient excitation.

Definition of approximate structure of a phenomenon, and
corresponding interpretation of stochastic systems, especially of
ARMAX type.

Definition of the amount of confidence in identified models,
sensitivity with respect to changes in data and tolerated levels of

complexity or misfit, and robustness.
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