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Foreword 

One of the classical objects of study in mathematical ecology is the predator-prey in- 
teraction. In particular, the well-known model by Gause exhibits a rich dynarnical struc- 
ture. In this paper, a Gause type predator-prey model with concave prey isocline and (at 
least) two limit cycles is constructed. This serves as a counterexample to a global stabili- 
ty criterion of Hsu 131. 
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1. I n t r o d u c t i o n .  

We consider the classical Gause predator prey model 

where x  represents the density of the prey and y  that  of the predator. The 
death rate J of the predator and the conversion factor c are positive numbers. 
The  growth rate g ( x )  of the prey and the predator response function p ( x )  are 
assumed to  satisfy 

( x  - K ) g ( x )  < O for x  2 O , x  # K ,  ( 1 . 2 )  

for some K > 0 and 

The  prey isocline is given by y  = h ( x )  := # and is assumed to be concave 

down, i.e. 
h f l ( x )  < O for x  2 0. ( 1 . 4 )  

Under these assumptions, the interior equilibrium E* = ( x * ,  y * )  exists and 
is unique. Let 5 be the unique point where h ( x )  attains its maximum. Then 
0 < ai: < K. E* is locally stable if h l ( x * )  < 0 or equivalently x* > ai: and it is 
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unstable if hf (x*)  > 0, that  is z*  < 2. It is known that  if 3i: = 0, i.e. the prey 
isocline is always decreasing, then E* is globally stable, see Hsu [3, Theorem 
3.21. 

In 13, Theorem 3.31, it was claimed that (1.4) together with local stability 
implies the global stability of the interior equilibrium. Later it was pointed out 
in [l] tha t  the proof was 'not rigorously correct'. In spite of this, this condition 
seems to be still believed by some as a criterion for global stability. The purpose 
of this note is to  construct counterexamples which satisfy the above conditions, 
but with the (locally stable) interior equilibrium being surrounded by (at  least) 
two limit cycles. 

2. M u l t i p l e  L imi t  Cycles .  

The  idea for constructing an example with multiple limit cycles is as fol- 
lows. We will use 3 as a bifurcation parameter. For 3 < i := p ( i ) ,  the interior 
equilibrium E,* = (x:, y,*) is unstable and hence, by boundedness of solutions, 
there is an attracting limit cycle or an attracting invariant annulus surrounding 
E f .  When 3 increases beyond i, xz passes i, so that E,* becomes stable and 
there is a Hopf bifurcation a t  3 = i .  If we can ma.ke this Hopf bifurcation sub- 
critical, there will be an unstable limit cycle bifurcating from E,* for s slightly 
larger than i. Hence there will be a t  least two limit cycles. 

Multiplying the vector field (1.1) by the positive function p(x)-1y8-' 
(where the real number p will be fixed later) we get 

- 3  
y = yo(- + c), 

. 
P(X) 

Clearly (1.1) and (2.1) have identical phase portraits. The divergence of the 
vector field (2.1) is given by 

Evaluating D,(x) a t  x = x: we have D,(x:) = hf(x:), in particular Di(S)  = 0. 
Hence hf(x:) equals the real part of the eigenvalues a t  Ei, up to a positive 

8 constant. Since & h f ( x i )  = hff(x:)E58 < 0, the transversality condition for a 
Hopf bifurcation is satisfied. 

Differentiating with respect to x we obtain D:(x) = h"(x) + 8%. Now 

we choose p such that D \ ( i )  = 0 i.e. p = - i p l ( % )  - ~h~~ 



and 

We will show in section 3 that it is ~oss ible  to find functions h and p 
obeying the assumptions (1.2) - (1.4) and satisfying 

Then D;(x) > 0 for x close to (but different from) 2. Hence, by a theorem of 
Bendixson, Ef is repelling. Consequently the Hopf bifurcation is subcritical 
and there are small limit cycles for s slightly larger than i. 

Alternatively, one could also follow the procedure as described in [2]. In 
their notation (see p. 90 of [2]) Re c1 (0) leads to the same expression as given in 
(2.2) for our D;(2), up to a positive factor, and hence is positive by assumption 
(2.3). Consequently, their pz and p2 are both positive. Therefore there is a 
unique unstable limit cycle bifurcating from El for 3 slightly larger than i .  

3. An Example .  

We conclude by giving a concrete example satisfying all the assumptions 
in sections 1 and 2. Let 

x 
c = 1, g(x) = (1 + x)(1 - -)(3 - 4x + 2s2)  and ~ ( x )  = x(3 - 4x + 2x2) 

3 

Then g and p satisfy (1.2) and (1.3) with K = 3. Also 

satisfies (1.4). Moreover, i = 1 and = 1. Using (2.2), D y ( i )  = and (2.3) is 
also satisfied. 
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