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Foreword 

This report is devoted to  second order discrete approximations to  differential inclu- 
sions. The approximations are of the form of discrete inclusions with right-hand sides, 
which are explicitly described for some classes of differential inclusions. In the cases of 
linear differential inclusions or of differential inclusions with strongly convex right-hand 
sides, the approximating discrete inclusions are analogs of certain second order Runge- 
Kutta schemes. 

The approach can serve as a tool for numerical treatment of uncertain dynamical 
system and optimal control problems. 
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Approximations to differential 
inclusions by discrete inclusions 

V.M.  Veliov 



1. Introduction 

In this paper we investigate the problems of approximation of a differential inclusion 

by discrete inclusions. This problem will be stated more precisely in the further lines. 

Consider the differential inclusion 

where Z E R ~ ~  F:Rn x [to, T ] = R n  ( = indicates that  F is multivalued), X o c R n  . The 

interval [to T] is fixed. Denote by Xlt0,T] the trajectory bundle of (1.1) on [tO,T],  i.e., 

Xito,Tj = I(-); '(-)is absolutely continuous and satisfies (1.l)for a . e  t E [ t0 ,TI]  

and by X ( T )  the attainability domain of (1.1) on [to,T], i.e., 

Along with the inclusion (1.1) consider a family of discrete inclusions, parametrized 

by the integer N: 

where 7(-,k,N) : Rn=Rn for every N>1  and k = 0,- . - N  - 1. Define the trajectory bun- 

dle and the attainability domain of (1.2) (for fixed N) on [to,T] as follows: 

x 1 , q  = [(zo,. ..,zN); (1.2) is fulfilled for t = 0 , .  . ,N - 1 , I 
XN(N) = ZN; there is (q, . . . , z ~ )  E X 1 , q j  I 
The trajectory (z Ol...zN) of (1.2) will be denoted for brevity by 5. 

In the sequel we shall consider the approximating properties of (1.2) with respect to  

(1.1), associating every zk with the moment tk = to + kh of the time scale of (1.1) (here 

and further h = ( T  - to) / N). This point of view motivates the following definition of a 

distance between the trajectory bundles of (1.1) and (1.2), related to  the Hausdorf metric: 

~ ( ~ l t ~ .  TI $xt,nl 1 = inf 11z(.)-q1 , 



where 

11z(.) - 211 = max \z(ti) - zil ; i = ~ ,  ..., N .  I I 
Similarly, p ( x ( T ) , X N ( ~ ) )  will denote the Hausdorf distance between the two sets indi- 

cated as arguments of p(.,.). 

Definition 1. The discrete inclusion (1.2) (in fact, the family of inclusions (1.2)) 

provides a s-th order approximation to  the trajectory bundle of (1.1) if there is a constant 

c, such that  

for all N11 .  

Definition 2. The discrete inclusion (1.2) provides a s-th order approximation to  

the attainability domain of (1.1) if there is a constant c, such that  

for all NZ1. 

The aim of this paper is t o  present an approach for constructing discrete inclusions 

of the type of (1.2), providing approximations in the sense of definitions 1 and 2 to  a 

differential inclusion, and we shall concentrate, especially, on second order approxima- 

t ions. 

The natural way t o  construct approximating discrete inclusions is t o  apply some 

difference scheme for discretization of differential equations to  the differential inclusion. 

The simplest one is the Euler scheme, which leads to the discrete inclusion 

where as above, h = ( T  - to)/N, tk = to + kh. The fact tha t  every condensation point of 

a sequence (when h goes t o  zero) of discrete trajectories is a trajectory of the differential 

inclusion, is exploited by a great number of authors and in several different contexts. The 

result of A. Panasyuk and V. Panasyuk [12] implies that  the Euler scheme provides an a p  

proximation t o  the attainability domain. Estimations for this approximation are ob- 

tained in M. Nikol'skii [ll] and in A. Dontchev and E. Farkhi 131. The latter paper shows 

that  the Euler scheme provides first order approximation t o  both the trajectory bundle 

and the attainability domain. In a slightly different setting, a convergence result for the 



Euler scheme is contained also in P. Wolenski (181. The Euler approximation in the more 

complicated case with state constraints is investigated in A. Kurzhanski and A. Filippova 

[7]. K. Taubert [15] applies multistep schemes and proves corresponding (one sided) con- 

vergence results. These results are extended in H.-D. Niepage and W. Wendt [lo],  where 

multistep and Runge-Kutta schemes for differential inclusions are investigated by means 

of the unified approach presented there. The results are also of the type that the conden- 

sation points of discrete trajectories (when the steplength goes to zero) are trajectories of 

the differential inclusion. 

It does not seem reasonable to  expect that applying a higher order discretization 

scheme (say, of Runge - Kutta type) we shall come to a discrete inclusion with higher 

than first order accuracy. The reason is that if we restrict ourselves to  consider only 

those trajectories which have (uniformly) enough smoothness to ensure higher order a p  

proximation by a discrete scheme (for instance, uniformly bounded second order averaged 

moduli of smoothness, see B. Sendov and V. Popov 1141) then both the trajectory bundle 

and the attainability domain will essentially reduce. For this reason we shall not try to 

apply formally some discretization scheme to (1.1) and then to  study its convergence, but 

instead we shall construct discrete approximations of the type of (1.2) by taking into ac- 

count the local expantion of the attainability domain of (1.1). The inclusion (1.1) is s u p  

posed to  be in a more specific form, namely F(z,t) = f(z,t)  + g(z,t) U, where U is a con- 

vex compact set in R', g(z,t) is a (n x r )  -matrix and f (z , t )€Rn.  In Sections 3.1, 3.2 

and 3.3 the cases when U is an interval in R ~ ,  a coordinate polyhedron in R' and a 

strongly convex set in R n  are successively considered. In all of these cases we reduce the 

construction of a second order approximation of the type of (1.2) to the approximation of 

certain simple integrals of multivalued mappings. The latter is explicitly found in the 

cases mentioned above, which gives as a result corresponding discrete inclusions, provid- 

ing second order approximation to the trajectory bundle. In the single valued case (when 

(1.1) is a differential equation) the so obtained discrete inclusions are also single valued 

and coincide with a second order Runge-Kutta scheme. Nevertheless, in the multivalued 

case the approximating discrete inclusion differ from those which can be obtained from 

(1.1) by a formal application of this Runge-Kutta scheme. 

In Section 4, it turns out that in the case of a linear inclusion 

(F(z,t)  = A(t)z + B(t)U ) with polyhedral right-hand side, a certain Runge-Kutta 

scheme provides a second order approximation to  the attainability domain, but only first 

order approximation to  the trajectory bundle. This, namely, is the motivation of the two 

definitions given above. 



In Section 5 we present as applications some second order discrete approximations to  

control constrained optimal control problems. Some bibliography in this direction is in- 

cluded there. Section 6 deals with the problem of approximation of a given function by a 

trajectory of a differential inclusion. 

2. An auxiliary result 

Throughout the paper we shall assume the following. 

Basic aseumption. Let A be an open interval containing [tO,T] and S c R n  be an 

open set, containing Xo. Let F be convex and compact valued mapping defined on 

S x A. We suppose that  F is measurable in t for every fixed z and Lipschitz continuous 

in z ,  uniformly in t: 

p(F(zl , t) ,  F(z2,t))  < L I z1 - z2 I for every ~ E A ,  z l , z 2 ~ S .  

Moreover, 

IF(z,t)l 5 m(t) for every ~ E A  and ~ E S ,  

where m(-) is a L1 - function. 

We suppose also, that  the attainability domain X(t )  of (1.1) is nonempty for 

tE[tO,T] and X(t)  c int So(t), tE[tO,T], where S o ( - ) : A Z R n  is a Hausdorff continuous 

compact valued mapping, such that  So(t) c S for &[to, TI. 

The following is a direct consequence of the CarathCodory type existence theorem 

(see e.g. Filippov a [5] or J.-P. Aubin and A. Cellina [I]) .  

Lemma 1. There is n>O, such that  for every &[to, T] and zO€SO(t) and for every 

selection f(z,r) E F(z,T) defined for T E [t - n t + n] and ~ E S ,  which is continuous in z 

and measurable in t,  the solution of the equation 

exists on [t - n t + n] and does not abandon the set S. 

Denote by X(z;  tl,t2) the attainability domain of (1.1) on [tl,t2], starting from z a t  

the moment t l .  By Lemma 1, when tl,t2, E [to,T], It2 - tll < n and z€SO(tl), the set 

X(z;tl,t2) is nonempty. 



Definition 3. The discrete inclusion (1.2) provides a s-th order local approximation 

to  (1.1) in the tube So(-), if there is a constant c, such that  

for every sufficiently large N, k=O, ..., N- 1 and z€So(tk). 

Proposition 1. Let the basic assumptions be fulfilled. Let, in addition, the discrete 

inclusion (1.2) provide s-th order local approximation to (1.1) in the tube So(.) ( s  > 1). 

Then (1.2) provides ( s  - 1) -th order approximation to both the trajectory bundle and 

the attainability domain of (1.1). 

Proof. We shall sketch the proof which is enough standard. From the compact- 

ness of Xl t0 ,q  in the uniform metric i t  follows that  there is a > 0, such that  

z(t)  + B(a) C So(t) for every z ( - ) € X l t o , ~ ~  and t€[to, TI. (Here and further B (a)  denotes 

the ball with radius a, centered a t  the origin of the respective space). We can suppose 

that  h is so small, that h 5 n (trom Lemma 1) and ha-'C exp ((T-to)L) / L < a. 

Take an arbitrary z(.) E X [ L , , ~ ~  We shall define a trajectory i of (1.2) in the fol- 

lowing way. 

Take zo = z(tO). Let zk be already defined so that zk E So(tk). Consider the equa- 

tion 

where f(y,s) = P F ( y , 8 ) i ( ~ )  and PY is the projection of z on the convex compact set Y. 

Since f is continuous in z and measurable in t by Lemma 1 the solution Y(.) exists on 

[tk,tk+l]. Since for a. e. s 

we conclude by the Grunwall inequality that 

Since ~ ( t k + ~ )  E X (zk ;tk, tk+l) there is zk+l E 7 (zk,k,N) (by Definition 3) such 

that  Izk+l - Y ( ~ ~ + ~ ) J  5 ch8. Hence 



By induction we can see that  if h is so small as required above, then zk+l E So(tk+l) and 

which completes the first part of the proof. 

In a very similar way we can prove that  every trajectory of the discrete inclusion 

(1.2) can be approximated with the same accuracy by a trajectory of (1.1), Q.E.D. 

We shall mention, that  the constant c in definitions 1 and 2 can be taken to  depend 

only on the constant c , comming from Definition 3 and the Lipschitz constant L (as seen 

in the proof), if only N is supposed to be sufficiently large. 

3. Second order approximations to the trajectory bundle 

3.1 The single input case 

We shall begin with the single input case in order to  present the idea of the approxi- 

mation in a more clear way. Consider the differential inclusion 

where z E R n  x R-+Rn, Xo is a convex and compact subset of R n .  

First we shall mention that  we consider for simplicity the interval [O,  :I.] in the righ- 

hand side of (3.1), but the more general case of an interval [a(t) ,b(t)]  can be reduced to  

[0,1] by taking in (3.1) f(z, t)  + a(t)g(z, t)  instead of f (z , t )  and (b(t) - a( t ) )g(z , t )  in- 

stead of g(z,t).  

We shall strengthen the basic assumption from Section 2.1, supposing the following: 

A. There are an open bounded set S c Rn, open interval A 3 >to,T] and a Hausdorff 

continuous mapping So(.) : A 2 R n  , which is convex and compact valued, 

So(t) c S for every t E A and 

Al .  f and g are differentiable and the derivatives f ,, f t ,  g', and g't are Lipschitz con- 

tinuous with respect t o  each of the variables z and t ,  uniformly in the other variable, 

in the set S x A; 

A2. X ( t )  is nonempty and is contained in int So(t) for every t E [ tO,T].  



Let L  be a real which majorates the Lipschitz constants of f , g  and their derivatives 

in S  x A, and let M  majorates I f ( z , t ) l  and Ig ( z , t ) J  when z E S ,  t  E A.  

In the sequel we shall denote by 0 ( - )  any function ( 0 , l ) - > R n ,  such that  IO(h)( / h is 

bounded by a constant, and in what follows this constant will depend on L ,  M  and [ t O , T ] ,  

only. 

As  in Section 2  we shall denote by X ( z ; t l , t 2 )  the attainability domain of (3.1) on 

[ t l , t 2 ]  C [ t o , T ] ,  starting from the point z E So( t l )  a t  t l .  By Lemma 1  X ( z ; t l , t 2 )  is 

nonempty when t 2  - t l  < K and is contained in S .  We can suppose that  h l n .  

Now, take an arbitrary t  E [ t o , T - h ] ,  z E So( t )  and z" E X ( z ;  t ,  t + h ) .  Then there is a 

selection u ( . )  of [0,1.] such that  

where z ( - )  is the corresponding solution of ( 3 . 1 ) ,  z ( t )  = z ,  and M ( . )  is defined in an obvi- 

ous way. Taking into account A1 and A2 we obtain 

Introduce the notations 



Then using the equality 

we get 

Denote by R = R(z,t,h) the set of points in the right-hand side of the above equality, 

corresponding to  all measurable selections u(.) of [0, 11. Thus, we have proven so far that  

where B ( T )  is the ball with radius u centered a t  the origin, and c is an appropriate con- 

stant. Observe, that  c is not only independent of h,t and z ,  but it can be taken to  depend 

only on L and M. 

From Lemma 1 it follows that  the "inversen inclusion to (3.2) also holds. Actually, 

if y E f0(z , t ,h)  + R(z,t,h), we can use in (3.1) the selection u(.), corresponding to  y, 

with z(t)  = z ,  and repeating the same argument to  verify that  Iz(t+h) - y J  5 ch3 with 

the same constant c. Hence, 

for every h>O, t E [to,T-h] and z E So(t). Now, let us tackle the set R.  Obviously R 

can be presented in the form 

where (changing the variable of integration) 



Fortunately, the set R can be exactly found. Using the obvious fact that  every point 

from the boundary a R  corresponds to a piece-wise constant u ( . )  taking only the values 0 

and 1 and having only one jumping point, we easily calculate that 

Using (3.3) - (3.5) and replacing a by h a  and @ by 2h2@, we obtain 

p(X(z;t,t+h), Po + & h e o  + 0.5@h2e1 + 0 . 5 a ~ h ~ ~ ~ ;  I (3.6) 

Now we shall get rid of the derivatives in Po, ...,f10 , replacing them with finite 

difference (obviously first order approximation of the derivatives is enough). This leads 

to  the new notations 

where 

p = p(z,t,h) = z + hf(z,t) 

q = q(z,t,h) = z + hg(z,t). 

In these notations (3.6) can be rewritten as 



where c possibly differs from the constant in (3.6), but has the same property mentioned 

after (3.2). Now, define the set 

and consider the discrete inclusion 

z ~ + ~ €  7 (zk,k,N), zO€XO, k = O,.. .,N - 1. (3.11.) 

Theorem 1. Under the assumptions A the discrete inclusion (3.11) with 7 given by 

(3.10), (3.7) and (3.8), provides a second order approximation to both the trajectory bun- 

dle and the attainability domain of the differential inclusion (3.1). 

The assertion of the theorem follows directly from (3.9) and Proposition 1. 

Observe that the constant c in definitions 1 and 2 can be estimated making use only 

of the constants L,M and T - to, if N is supposed to be sufficiently large. 

In the particular case when (3.1) is single valued, i.e., g(z,t) = 0 we have 

and (3.11) is just a second order Runge-Kutta formula. Nevertheless, in the multivalued 

case the definition (3.10) of F(z,k,N) is not a result of a formal application of this 

Runge-Kutta formula to  (3.1). T o  make clear the difference, let us apply the above 

Runge-Kutta formula to  (3.1), but taking a particular selection u ( . )  of [0, I.]. After some 

transformations we come to  the discretization 

Let us neglect for simplicity the term Ho in (3.10) (if g is independent of z ,  then Ho is ac- 

tually equal to  zero). There are different possible interpretations of (3.12). If in (3.1) we 

consider only selections u(.) which are constant a t  every interval [tk,tk+l], then 

u(tk) = ~ ( t ~ + ~ )  and (3.12) corresponds to  (3.10) with B = a in the right-hand side. This 

means that the set of trajectories generated by (3.12) is not enough reach to approximate 

X l t o j T ~  of order 2 (this will be seen by an example in Selection 4). 



If we admit arbitrary (it is enough piece-wise linear) selection of [0, 11 in (3.1) (as it 

is done in [ lo]) ,  then u(tk) and ~ ( t k + ~ )  can be rewritten in the form (again in the case of 

Ho = 0) 

+ 0.5h(Fo + {aGo + BG1; aE[O,l], @€[max {0,2a - 11, min {2a, l )  ] ) 13.13) 

Comparing with (3.10) we see that  the right-hand side in (3.13) is essentially larger than 

in (3.10) (the difference is 0 ( h 2 )  ) and what can be concluded from here for the discrete 

inclusion (3.13) is that  it provides approximation of order one to  the trajectory bundle of 

(3.1) (this also can be seen by an example). 

Often in the discrete approximations of optimal control problems the value of u(.) a t  

the right side of the internal [tk,tk+1] is taken to be just the value of u(-) a t  the left side of 

the next interval [tk+l,tk+2]. In this case the difference between (3.10) and (3.12) is not 

well seen in one step. But even the example z = u in the one dimensional case shows that  

the accuracy of this approximation is not better than O(h). 

3.2 Second  o r d e r  approximation in t h e  multi-input case. 

We shall extend the approach presented in the preceding section to  differential inclu- 

sion of the type 

where z e R n ,  f,g : R n x  R 1  -r R n .  As mentioned in the previous section, also included 

here is the case of intervals [ai(t),bi(t)] in the right-hand side of (3.14). 

We shall suppose that  the assumptions A from section 3.1 are fulfilled (what is re- 

quired for g here concerns g ~ ,  ...,gr ). In order to  prevent some technical complications we 

shall introduce the following additional assumption, restricting the interaction between 

different gi. 

A3. [gi,gj](z,t) = O for i # j 

here 



is the Lie bracket of g; and g, with respect to  z. 

Similarly, as in Section 3.1, we can verify that  for every point z ~ S ( t ) ,  the set 

X(z;  t,t+h) is approximated in Hausdorff sense by the set of all points 

corresponding to  measurable selections ui(.) of [0,1]. Denoting 

we have for i # j 

t + h  
Hence, denoting ai = vi(t+h) and = J (a-t)ui(s)ds it remains to  repeat the argument 

t 

from Section 3.1. We shall formulate the final result, using the following notations, simi- 

lar to  (3.7) and (3.8): 



where i ,  j = I ,  ..., r and 

Define the set 

and consider the discrete inclusion 

zk+l E 7(zk,k,N), z o E X o ,  k=O ,..., N-1. (3.20) 

Theorem 2. Under the assumptions A 1 - A 3  the discrete inclusion (3.20) with J 

given by (3.19), (3.17) and (3.18) provides a second order approximation to both the tra- 

jectory bundle and the attainability domain of (3.14). 

3.3 Second order  approximation i n  t h e  strongly convex case 

In this section we shall consider the case where the right-hand side of the differential 

inclusion is strongly convex in the state space. It turns out that the strongly convex case 

is remarkably different, compared with the previously considered polyhedral cases. The 

reason is, that in the third order local approximation of the attainability domain it is 

enough to  use constant inputs only as i t  will be shown below, in contrast to  the po- 

lyhedral case where at  least one jump is needed to  ensure third order local approximation. 

This reflects in the fact that in the approximating discrete inclusion which will be ob- 

tained below, the right-hand side is parametized only by one parameter, instead of a and 

p in the previous cases. This discrete inclusion turns out to be just the one which can be 

obtained by the formal discretization of the differential inclusion using a second-order 

Runge-Kutta formula. 

The differential inclusion will be supposed to  be in the form 



where z € R n ,  j ( z , t )€Rn,  G(z,t)  is ( n x n )  - matrix and U is a time invariant strongly 

convex set in R n .  

We shall remind that  the strong convexity of U means, that  there is a constant 

p > 0, such that  the inclusions ul,u2E U imply 

0.5(ul + u2) + v E u for every VER", Ivl 5 p J u l  - u2I2, 

i.e., with every two points ul and u2, U contains a ball centered a t  ( u l  + u2) / 2 with a 

radius proportional to  lul - u2I2. 

The rows of G(z,t) will be denoted by gl, ...,gn. 

We shall suppose that  conditions A1-A3 are fulfilled. In addition we shall intr* 

duce the following assumption, which prevents the flattening of the set G(z,t)  U. 

A4. U is strongly convex and rank G(z,t) = n for every t€[tO,T] and z€S0(t). 

We consider a time-invariant set U, but this is not quite a restrictive assumption. 

Actually, if U(t) is an elipsoid given by 

where Q(t) is a strictly positive definite symetric matrix with Lipschitz continuous 

derivative, then we can replace U(t) with the unit ball, taking ~ ( z , t ) ~ - l ( t )  instead of 

G(z,t).  Observe that this transformation does not affect the property A 3  of G. 

Using (3.15) and (3.16) as in Section 3.2 we see that given t€[to,T-h] and z€S0(t), 

the set X(z;  t,t+h) differs only of order 0(h3) (in the Hausdorf metric) from the set of 

points 

corresponding to  all measurable selections u(.) of U. Here we use the following notations: 

Fo is exactly as in Section 3.1, 



(by definition [f,G] is the matrix with columns [f,g;] ) 

Define 

that  is the set of points in (3.22), corresponding to constant selections uEU. We shall 

prove below that  if 7(z,t,h) is the set of points defined by (3.22), then 

where the constant c does not depend on t€[to,T], z€SO(t) and h. This means that  we 

can replace $ by % and getting rid of the derivatives in the definition of % we come to the 

discrete inclusion 

where 

Here we use the notations (3.17) and (3.18) in a matrix form: Go and GI are the matrices 

with columns ~i and GI respectively, and Ho is the bilinear mapping defined by 

Theorem 3. Under the assumptions A 1-A4 the discrete inclusion (3.24) with 7 

given by (3.25), (3.17) and (3.18), provides a second order approximation to  both the tra- 

jectory bundle and the attainability domain of (3.21). 

Proof. It remains to  prove only the inequality (3.23). Denote by 6 * ( l )  Y) the s u p  

port function of the bounded set of Y c R n  a t  1, i.e. 



First we shall prove that  there is c l ,  such that  

for every IcRn,I1I = 1 and then, that there is c2, such that  

which together with ? c f imply (3.23) and complete the proof of the theorum. 

From the definition of eo and assumption A 4  it follows that  there is a. > 0 such 

that  )Gill 2 a. for every IcRn,I1I = 1 and for all sufficiently small h, uniformly in 

tc[t0,  TI and zcS0(t) .  

We may suppose, in addition, that  h is so small that  

0.5 sup lHo(u,v)l lUlh + l l ~ f l h  < 0 0 1  2. 
IuJ = Iv I  = 1 

Take an arbitrary vector 1 c R n ,  11) = 1, and let u(.) be a measurable selection of U, 

such that  

( u(-)  exists because of the continuity of the functional in the right-hand side of (3.29) 

with respect to  u(.) in the L2 weak topology). Define the matrix H1(l) by 

II 

<Hl(l)u,v> = 0 . 5 ~ 1 ,  Ho(u,v)> 

and let 

then (3.29) can be rewritten as 

Hence, u(-) satisfies the following necessary condition (the maximum principle): 



- # 

u ( s )  = arg m a x i  Go/  + ( t - s )  6 ; l  + H l ( l ) v ( h ) ,  u> (3 .30)  
uE U 

Since I v ( h )  1 < I Ul h  we conclude from (3 .28)  that 

and u ( s )  is uniquely defined. Let us estimate the difference l u ( s )  - u ( t ) l .  From the 

definition of the strong convexity of U 

p T = 0 . 5 ( u ( t )  + u ( s ) )  + p*lu(t) - u(s ) I2  E U for every r  E It, t + h ] .  
I(o(r)l 

Hence 

which yields 

Setting successively r  = t  and r  = s  and summing the corresponding inequalities, we get 

Taking into account (3 .31)  we obtain 

Using the last inequality and ( 3 . 3 0 ) ,  we estimate 



Thus we proved ( 3 . 2 6 ) .  

Now, let us prove ( 3 . 2 7 ) .  Take arbitrary y l ,  y 2 ~ ?  and a ~ ( 0 , l )  and consider the dis- 

tance p between y = a y l  + ( 1 - a )  y2 and ?. Let 

Denote u  = a u l  + ( 1 - a ) u 2 .  From the strong convexity of U it follows that  u  + vE U if 

Then for every v  satisfying (3 .32)  we have 

p 5 I y - Po - h e 0 ( u + v )  - 0 . 5 h 2 d l ( u + v )  - 0 . 5 h 2 / l , ( u + v , u + v )  I . 

Using the identity 

we obtain 

There is a constant d, such that  Jl?o(P,q)I 5 d for ever p , q ~ R " , l p l  = Iql = 1  and 

t € [ t 0 , T ] , z € S 0 ( t )  (we remind that  f io  depends on z and t ) .  From the property of do it 
follows that  when v  varies according to  ( 3 . 3 2 ) ,  h d o v  covers a ball with a radius 

h a o 4 p a ( l - a ) l u l - u 2 1 2 .  

Since 

we conclude that  there is v ,  Ivl 5 w h ,  such that  
2ao 

which can be estimated by e2h3, because of the inequality for Ivl, and e2  can be found in- 

dependent of t € ( t o , T ] ,  z € S o ( t )  and h .  

The proof is now complete. 



Remark. The inclusion (3.24) and (3.25) can be formally obtained applying the 

Runge-Kutta scheme mentioned in Section 3.1 to the inclusion (3.21), and considering the 

selection u(.) constant on every interval [tk,tk+l]. In this sense, the differential inclusions 

with strongly convex right-hand side have better behaviour (than in the polyhedral case) 

with respect to second orde discretizations. This is connected with the fact, that  in the 

strongly convex case the set of trajectories, corresponding to  continuous selections, gen- 

erates t he whole attainability domain. 

4. Second order approximations to the attainability domain 

The results from Section 3 concern also the approximation of the attainability 

domain. However, this is a more specific problem than the approximation of the trajecto- 

ry bundle, and the difference between the two problems turns out to  be essential. We saw 

in Section 3 that  excepting the strongly convex case, the discrete inclusions providing 

second order approximation to  the trajectory bundle ar more complicated that  those 

which can be obtained by formally applying a second order Runge-Kutta scheme t o  the 

differential inclusion. In particular, even in the linear case with polyhedral constraints, 

the right-hand side of the approximating discrete inclusion is not described by linear con- 

straints (because of the quadratic relationship between the 'free' parameters a and P ) .  
Nevertheless, we shall see in this section, that  we can get rid of this nonlinearity, and in 

fact, that the formal analog to  a second order Runge-Kutta formula provides second order 

approximation to  the attainability domain (but not to  the trajectory bundle) of a linear 

differential inclusion with polyhedral right-hand side (see also V. Veliov [17] ) .  

Consider the inclusion 

where z€Rn,A (t)  and B(t )  are ( n x n )  and ( n x  r)  - matrices, correspondingly, and 

U c R n .  

Assumptions: 

B1) A (-) and B(-)  have Lipschitz continuous derivatives; 

B2) Xo is convex and compact; 



B3) U is a convex and compact polyhedron (i.e., an intersection of finite number of half 

spaces, which is compact). 

Given the integer N we define the matrices 

where as above = ( T - to) / N, tk = to + kh, k = O,.. .,N - 1. 

Theorem 4. Let the assumptions B1-B3 be fulfilled. Then the discrete inclusion 

q + l  E i k ( h ) z k  + Bk(h) U, 20 E Xo, k = 0 ,..., N- 1 (4.2) 

provides a second order approximation to  the attainability domain of (4.1). 

The statement of the theorem can be reformulated in the following way. If we set 

xON = XO and successively 

then there is a constant c, such that  

P(x$, X(  T)) 5 ch2 

(as above X ( T )  is the attainability domain of (4.1) on [to,T]). 

Proof. Obviously 

where @(t,8) is the fundamental matrix solution of (4.1), normalized at  t = s. From (4.3) 

we obtain 



which using (4.5) and the semigroup property of (9 gives 

Hence, using the Couchy formula for (4.1) we obtain the following estimation of the 

difference between the support functions of X(T)  and X# : 

We can replace 

since the subintegral function is differentiable and its derivative is Lipschitz continuous. 

Denote 

Then 

What remains to prove now, is that  the rectangular formula for numerical integration has 

accuracy 0(h2) when applied to  the function bt(l(.) 1 U), and moreover, that  this accuracy 

0(h2) is uniform with respect to  all functions of the form of (4.5), when 111 = 1. This will 

imply (4.4). 

In B. Sendov and V. Popov [14] it is proved that  if p(.) is absolutely continuous, the 

error of the rectangular formula can be estimated by 

where V means the variation and the constant c does not depend on p(.) .  Thus we shall 

complete the proof by the following result. 



Lemma 2. Let I ( - )  : [ t o , T ]  + Rr  be differentiable and let i ( . )  be of bounded vari- 

ation. Let U  be a compact convex polyhedron in Rr .  Then 

is absolutely continuous and 

where e is independent of I( . ) .  

Proof. Denote 

e;  (el = 1 ,  e  - colinear to some edge of U .  I 
It is easy to  prove that  for every s , t € [ t O , T ]  and U E  U ( t ) ,  vE U ( s )  there is a relation 

where e i € f ,  <I( t i ) ,e i>  = 0 for some t i € [ s , t ] ,  i = l ,  . . .p ,  and [ail are bounded by a con- 

stant  e ,  depending only on U  (but not on I ( - ) ) .  

It is standard to  prove that  P ( . )  is Lipschitz continuous and hence its derivative ex- 

its almost everywhere. It is well known that  

( 8 9  is the subdifferential of 9) and hence 

where it exists. Thus it remains to  estimate the variation of the above function. Taking 

again arbitrary t l ,  ..., $ € [ t o ,  TI we have 



where as above u i E U ( t i ) ,  but in addition 

((*ijl I c and < / ( t i j ) ,  ei,> = 0 for some t i j ~ [ t i , t i + l ] .  Hence we estimate ( 4 . 7 )  by 

where f i  the subset of f ,  consisting of these e ,  for which < l ( t ) , e >  vanishes a t  some point 

t i ( e ) ~ [ t ~ , t ~ + ~ ] .  The second term in ( 4 . 8 )  can be written as 

where I ( e )  is the set of those i, such that  < l ( t ) , e >  vanishes somewhere in [ t i , t i + l ] .  Fix an 

arbitrary e  E  f and take two neighboring i and i' from I ( e ) .  Since < l ( t ) , e >  vanishes in 

[ t i , t i + l ]  and in [ t is , t ie+l] ,  then < i ( t )  ,e > vanishes a t  some point < ~ [ t , , t , , + ~ ] .  Then 

which proves the lemma, since f is a finite set. 

The following example shows that  the discrete inclusion ( 4 . 2 )  does not provide a 

second order approximation to the trajectory bundle of ( 4 . 1 ) .  

Example. 

The discrete inclusion ( 4 . 2 )  is now 



From Theorem 4 we know that  

Nevertheless, it is easily seen that 

~ ( x j o , l , .  ~ 1 , ~ )  2 h I 8, 

which means that  (4.10) provides only a first order approximation to the trajectory bun- 

dle of (4.3). 

5. Second  o r d e r  d iscre te  approx imat ions  t o  o p t i m a l  con t ro l  p rob lems  

In this section we shall apply some of the preceding results to obtain second order 

discrete approximations to some optimal control problems with control constraints. 

A great number of papers are devoted to the problems of how to discretize an op- 

timal control problem so that  the solution of the discrete (finite - dimensional) problem to  

converge in some sense to  the solution of the original one (see e.g. A. Dontchev [2] and B. 

MordukhoviE [9] and the bibliography there). If there are no constraints on the control 

and the state variables, then discrete approximations with higher accuracy than O(h)  are 

developed for various optimal control problems and by different approaches (W.  Hager 

[6], G. Redien [13], F. Mathis and G. Redian [8], K. Teo [16] ). 

Applying the approximations developed in the previous sections one can obtain 

second order approximations for some classes of optimal control problems with control 

constraints. 

First, consider the problem 



where Z E R " , U E R ~  , f and g satisfy conditions A from Section 3.1, fo,go and cp also satis- 

fy condition A l ,  Xo is a convex compact set. 

We consider the single-input case only for notational simplicity. As already men- 

tioned the case of more general control constraints [a(t) ,b(t)]  with a(.) and d( - )  being 

Lipschitz continuous, can be reduced to  (5.3) by change of the control variable. 

Introducing the new variable y by 

we can replace (5.1) by 

which is a minimization problem over the attainability domain of (5.2), (5.4) and (5.3). 

Applying Theorem 1 and taking into account the specificity of the right-hand side of (5.2) 

and (5.4) we come to  the following discrete relations 

where Fo,Go,G1 and Ho are defined by (3.7) in Section 3.1 and F ; , G ~ , G ~  and H i  are 

defined by exactly the same formulae, but applied t o  f0 and go instead of f and g (p  and q 

remain unchanged). 

Now we can approximate the problem (5.1) - (5.3) by the following discrete problem 

subject t o  

Theorurn 5. Both problems (5.1) - (5.3) and (5.5) - (5.7) have solutions. If j and 

jN are the optimal values of the objective functions of the respective problems, then 



In fact, problem (5.5) - (5.7) provides much more information than the approxima- 

tion of j. If 2,6,8 is a solution (or even a c - solution) of (5.5) - (5.7), then one can im- 

mediately reconstruct from a piece-wise constant control u(-) on [tk,tk+,] with a t  

most one switching point in each of these intervals, which when applied to (5.2) results in 

a trajectory z(-) ,  such that  

Iz(ti) - zil 5 const / N ~ *  

In particular 

J ( u ( - ) )  5 j + const / N~ (+ 6). 

Let us compare the discrete problem (5.5) - (5.7) with the Euler discretization of 

(5.1) - (5.3). In order to  attain accuracy 0(h2) by the Euler discretization one need 

N-1 / h2, while in (5.5) - (5.7) N-2 / h. But in the same time, in the second order 

discretization there appeared N new constraints (5.7), which are quadratic. Thus (5.5) - 

(5.7) is a nonlinear problem, even in case of a linear problem (5.1) - (5.3). 

The result from Section 5 can be also applied in an obvious way to  obtain a second 

order approximization to  the problem 

u ( t ) ~  U - convex and compact polyhedron. 

The discretized problem is with linear constraints and the accuracy in z ( T )  is 0(h2). 

Similar discretization is studied also in E. Farkhi [4], but the estimate of the convergence 

obtained there depends on the second order averaged modulus of smoothness of the solu- 

tion u(.). 



6. Appl ica t ion  to a p r o b l e m  of a p p r o x i m a t i o n  b y  t r a j ec to r i e s  of a differential  inclusion 

In this section we shal consider the following problem. Let 

be a given differential inclusion in Rn and Z(.) be an absolutely continuous function 

[to,T] -) R n .  Following [3] we define the discrepancy 

T 

d(z(.)) = dist(z(to), Xo) + 1 dist( i( t) ,  F(z( t ) ,  t ))  dt, 
to 

which is a measure of how much Z(.) fails to be a trajectory of (6.1). 

In [3] i t  is developed a numerical procedure based on the Euler discretization formu- 

la, which gives a sequence zo, ..., z ~ ,  having the properties: 

1) there is a trajectory z(.) of (6.1), such that  

max Jz(t i)-zi  5 c / N ;  
i=O, ..., 

where c is a constant. 

On the basis of the results from sections 2 and 3 one can replace c / N with c / N~ 
in 1) and 2). 

Suppose the following. 

B1. For every z e R n  and tE[to,T] the set F(z, t)  is nonempty convex and compact; F(.,t) 

is locally Lipschitzian, uniformly in tf [to, TI ; F(z,.) is Hausdorff continuous. 

B2. There exists constants M and a ,  such that  

for every ZER" and &[to, TI. 

It is obvious that  B1 and B2 imply the basic assumption from Section 2, for a p  

propriate S and So(-). Let 

be a discrete inclusion which provides a third order local approximation to  (6.1) in the 

tube So(-). Define a particular trajectory of (6.3) setting 



where P y z  is the projection of z on Y. 

The following result is a direct consequence of Proposition 1 and [Corallary, 31 

Theorem. The sequence zo, ..., ZN defined by (6.4) satisfies the properties 1) and 2) 

with c / N~ instead of c / N in the right-hand sides. Moreover, the constant c can be 

found independently of Z(-) . 

We shall mention that  if the 'function' Z(-) is known only a t  the points to, ..., t N ,  it is 

not a trivial problem t o  estimate the discrepancy d(Z(-)), because the subintegral function 

in (6.2) is not known. Theorem 6 means, that maxlZ(ti) - ziJ with z, given by (6.4) is a 
i 

lower estimate of d(Z(.)) with accuracy 0(h2). To  obtain i t  we need the discrete inclusion 

(6.3) with 'local accuracy' 0(h3). Such discrete inclusions were constructed in Section 3. 

Let us consider the simplest case when (6.3.) is in the form 

Then the discrete inclusion (3.11) with 7 given by (3.10) provides a third order local ap- 

proximization to  (6.5). In order to  construct the sequence {zk) from (6.3) we have to  

solve a t  every step the problem 

subject to  

This problem is explicitly solvable a t  least when Ho = 0 which happens whenever g(z,t) 

does not depend on z. In this case the right-hand side of (6.4) can be written by an expli- 

cit formula. 

We shall mention also that  when the values of a and /3 are already known, then the 

corresponding selection u(-) of [0,1] can be found in an  obvious way as a piece-wise con- 

stant  function, having one switching point in every interval [tk,tk+1] (see Section 3.1). 
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