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Preface 

In this study mathematical models of forest-pest interaction dynamics in tem- 
poral and spatial domains are developed. 

A comparison of models with different types of insect feeding and competition 
shows tha t  properties of forest  succession depend on insect feeding and competi- 
tive interactions within the  species. 

This study considers insect and seed spatial diffusion and transport  and shows 
tha t  the  dispersion pat terns of the  species should not be  ignored if a valid 
representation of reality is t o  be presented. In several particular cases traveling 
waves are obtained. 

Parameter identification and inverse problems a r e  discussed and finite- 
difference approximations and prepared software for  the interactive exploration 
of developed models are briefly described. Some numerical results a r e  presented. 

B.R. Doos 
Leader, Environment Program 
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E.A. Samarskaya  

Introduction 

Ecology and biology problems have  become increasingly pressing.  The only 

method of ecosystem r e s e a r c h  i s  simulation, a s  each  ecosystem i s  unique and no 

full sca le  experiments a r e  possible. A mathematical description of t h e  essential  

ecological problems h a s  only recent ly  come into existence.  

In t h e  mathematical theory  of ecological communities t h e r e  a r e  two major sub- 

jects:  

1. t h e  temporal dynamics of in teract ing populations, and 

2. a spat ia l  p a t t e r n  of t h e  community. 

Historically, these  sub jec t s  have  been developed independently and,  because 

of t h e  mathematical difficulties, t h e  majority of mathematical ecology models t r e a t  

only temporal  dynamics. 

A spat ia l  study of population dynamics began only recent ly .  A study of t h e  re- 

lat ions between s t r u c t u r e  and population dynamics i s  of c r i t i ca l  importance,  both 

to o u r  genera l  understanding of t h e  behavior  of t h e  ecosystem and to our abil i ty to 

manage such systems effectively. 

The r e m a r k s  of Okubo (1980) in h i s  book, -&on and  Ecological Problems: 

Mathematical Models, merits  consideration: 



"It may be  optimistic, but I feel  that  through t r ia l  and e r r o r  the use of 

mathematical models in the  field of ecological diffusion will eventually 

lead t o  t he  establishment of laws and basic equations." 

A mathematical treatment is indispensable if the  dynamics of ecosystems are 

to be  analyzed and predicted quantitatively. This fact  is  becoming m o r e  widely ac- 

cepted (see, f o r  example, Pielou, 1977; Clark, 1979; Levin, 1979,1981; Okubo, 1980; 

Hallarn and Levfn, 1986; Svfrezhev, 1987). 

When the  model represen ts  t he  ecosystem accurately,  then an  important as- 

pect of the  modelling is  control of the  biological system. A study of insect-forest 

systems is considered necessary fo r  predicting forest  dynamics and pest manage- 

ment (Bell, 1975; Holling e t  al.,  1975; Holling and Dantzig, 1977). 

Long-term relations between forest  resistance and pest population cannot be 

described properly without consideration of spatial dynamics. I t  i s  difficult t o  

overstate  the  necessity of taking into account the role  of spatial  heterogeneity 

where pest management is  concerned. Even the  best of long-term studies of local 

population dynamics fail t o  make sense in the absence of attention to  insect disper- 

sal. Consideration of spatial effects fundamentally changes our  view of the organi- 

zation of ecological communities. Models become aids to  asking be t te r  questions 

and help focus s ca rce  research  funds, manpower, and opportunities, where they 

will do most good. 

Studies of dispersal o r  spatfal heterogeneity are complex but, a t  t h e  same 

time, very urgent. A specffic problem can sometimes be solved analytically but 

usually one must re ly  on computer calculations. Here t he  computer se rves  as t h e  

only possible tool for model treatment (Okubo, 1980). 

Effective management of the  forest-pest system requires  an understanding of 

the consequences of alternative management s t ra tegies  (Bell, 1975; Holling and 

Dantzig, 1977). Mathematical models of ecology give t he  possibility t o  consider dif- 



fe ren t  situations, t o  come t o  some conclusions, and t o  discuss implications f o r  

forest-pest  management. 

Of course ,  t h e  main problem is  creat ing a mathematical m o d e l  of t h e  object  

under study. An adequate model i s  half t he  success.  I t  i s  necessary not only t o  

write down a l l  re levant  mathematical relations,  but a lso  to have a clear idea as to 

which of these  relations i s  of primary and secondary importance. The 

phenomenon, broken down into elementary physical processes,  should not lose i t s  

integrity in t h e  model. 

A s  some au thors  point out  (see,  f o r  example, Banks and Kareiva, 1983). be- 

f o r e  applying models t o  r e a l  experimental systems i t  appea r s  necessary t o  t es t  

the i r  performance against  "data" generated by equations. Therefore ,  interactions 

between different components of t h e  system are studied t o  determine a minimum set 

of necessary information about t h e  system. So, initially, one should investigate the  

pract ical  issues such a s  t he  amount of data  required,  the  accuracy of the  method, 

and t he  computational hazards.  A l a rge  scale  of complexity and detail  may be  

necessary in o r d e r  t o  discuss t he  main character is t ics  of t he  system. 

Studying t h e  effects  of temporal and spatial  dynamics requ i res  additional da ta  

beyond t h e  data  needed f o r  temporal models. Therefore ,  t h e  problem of parame- 

ters and da ta  becomes ve ry  important. I t  i s  urgent t o  study inverse  problems and 

t o  apply estimation and optimization techniques. 

The main purposes of mathematical models of ecosystems are: to search  f o r  

par t i a l  solutions, t o  examine limiting cases ,  to provide qualitative dimensional 

analysis, to evaluate t h e  dependence of t he  solution on various paramete rs  - 

whether i t  i s  continuous o r  prone t o  increase  unlimitedly, etc. Mathematical 

models f o r  population t r y  to descr ibe  t h e  behavior of t h e  system by using stable 

points, s table  cycles and apparen t  chaos (May, 1976; Pielou, 1977; Svirezhev, 

1987). Of special  importance are the  implications fo r  pest  outbreaks ,  where "ca- 



tastrophes",  in both t h e  mathematical and t h e  biological sense,  may o c c u r  (May, 

1976; Svirezhev, 1987). 

The main goals of th is  p a p e r  are: 

(i) to develop some temporal  mathematical models of insect-forest  dynamics by 

taking into account  intraspecific competition; 

(ii) to study spat ia l  dynamics and heterogeneity;  

(iii) to compare models which desc r ibe  temporal and spat ia l  dynamics of insect- 

f o r e s t  systems with temporal  models and to discuss considerations of s p a c e  in- 

fluence on t h e  systems' behavior description.  

Our intention in constructing mathematical models f o r  insect-forest  dynamics 

is  t o  understand t h e  way in which different kinds of biological and physical in- 

teract ions  affect  t h e  dynamics of f o r e s t  and pest .  This p a p e r  will t r y  t o  point out 

what new information can b e  obtained by taking into account different n a t u r e  ef- 

f ec t s  and by studying spat ia l  structure-population dynamics. 

In Section I,  t h e  temporal dynamics of t h e  system are considered.  In- 

t raspecif ic  competition and cases  where insects feed both on young and old t r e e s  

are taken into account.  

In Section 11 t h e  models which desc r ibe  both temporal  and spat ia l  dynamics 

with consideration to insect migration are presented.  

In Section 111, forest-pest  interaction dynamics in heterogeneous environ- 

ments i s  studied. 

Section IV i s  devoted to t h e  investigation of a model which desc r ibes  two-age 

f o r e s t  dynamics with seed dispersal .  

As an analytical  t rea tment  may b e  c a r r i e d  ou t  only in ce r ta in  cases ,  i t  i s  

necessary  to provide a computer experiment. In Appendix A t h e  finite-difference 

approximations. and in Appendix B t h e  software which was p r e p a r e d  and used f o r  

numerical experiments, are briefly descr ibed.  



I. Spatio-Temporal Forest-Pest Interaction Dynamics 

1. Basic Model 

The influence of insect  pes t s  on t h e  a g e  s t r u c t u r e  dynamics of f o r e s t  systems 

h a s  not  been extensively studied in mathematical ecology. In Antonovsky et al. 

(1988) t h e  temporal  mathematical models of two-age fo res t ,  a f fec ted by insect- 

pes t ,  are considered.  

Here  u and v are densit ies of "young" and "old" t r e e s ;  N  i s  insect  density,  

p = p ( v  ) i s  fer t i l i ty  of t h e  species ,  h = h ( v  ) and s = s (u ) are dea th  and aging 

r a t e s ,  E = E (u ,V ,N) i s  t h e  mortality r a t e  of insects,  B  = B ( u  , N , b  ), C  = C(v ,N , b  ), 

where b is  a coefficient which r e p r e s e n t s  a dependence of "young" t r e e  mortality 

on t h e  density of "old:' t r e e s .  

Terms u N  and vN r e p r e s e n t  t h e  insect-forest  in teract ion,  a i s  a pa ramete r  

and desc r ibes  how insects  feed.  In  [14] a = 0 and a = 1 only a r e  considered.  When 

a = 0, system ( 1 )  desc r ibes  t h e  c a s e  of insects feeding only on "old" t r e e s  and 

when a = 1, insects feed only on "young" trees. 

In t h e s e  models, cases in which insects  feed both on  "old" and "young" t r e e s  

are not considered.  In th i s  p a p e r  d i f ferent  types  of insects  feeding are studied, 

t h e r e f o r e ,  let a E [ O , l ] .  

Models in Antonovsky et al. (1988) d o  not  consider intraspecific competition. 

The formation and maintenance of selfaggrandizing systems are t h e  resu l t  of ap- 



propr ia te  nonlinear couplings and of competition between t h e  enti t ies constituting 

t h e  ecosystem. Competition becomes significant whenever t h e  r e s o u r c e s  necessary  

f o r  survival  of biological components are limited. Therefore ,  competition is  in- 

cluded in t h e  models. When fert i l i ty of t h e  "old" trees means seed production, seed 

dispersal  i s  taken into consideration. 

General  "directed movement" mechanisms such as convection of seeds,  and at- 

t rac t ive  phenomenon in population dispersal  models, are taken into account. 

Notice t h a t  t h e  basic model in form (1) i s  obtained from t h e  initial one by a 

l inear  change of variables.  In th is  work, models obtained by t h e  change of vari-  

ables  are studied. 

2. General Model 

Consider t h e  so-called general  model which is  obtained from t h e  mass balance 

laws and t h e  basic model (see  Fig. 1). 

-b 

+ V  (DZVN) - V  (VN), 

where t i s  time, z and y are t h e  Cartesian spatial  coordinates: u = u ( z  , y  , t  ), 

u = u ( z , y , t ) ,  N = N ( z , y , t ) .  FunctionsD1 = D 1 ( u , z , y , t ) ,  Dz = ( N , z , y , t )  a r e t h e  

diffusion coefficients f o r  seed and insects correspondingly. In general  cases  they 

may b e  determined in two directions:  

D* = IDi" ,Dp], 2 = 1, 2. 



-b 

The terms involving V r e p r e s e n t  a general  "directed movement" mechanism. 
-b -b 

In genera l ,  t h e  velocity V = V ( 2 ,  y , t ) r e p r e s e n t s  convective/advective movement. 

The t e rms  V (Dl V p v )  and V (D2 V N) r e p r e s e n t  seed and insect  diffusion 

correspondingly.  

Let  us  study system (2) in domain C l  c R' at time t > 0 with initial and boun- 

d a r y  conditions f o r  u , v  ,N, 2 0 ,  t 2 0. 

For  studying t h e  system along with ce r t a in  initial conditions 

u ( 2  ,Y ,0) = uo ( 2  ,Y). v ( 2  ,V ,O) = v o  ( 2  ,Y 1, N ( 2 , ~  lo) = No ( 2  ,Y 

boundary conditions are considered.  

2.1 Boundary Conditions 

Nowadays, f o r e s t  pa tches  exis t  as more or less  isolated islands surrounded by 

agr icul tura l  and u rban  land (Johnson et a l . ,  1981). Spatial  boundary conditions can 

b e  specified in various ways. Two types  are studied (Okubo, 1980). 

Let P be  population density (pv or N) .  Consider t h e  following conditions at 

t h e  boundary a n. 

a) Presc r ibed  population densit ies a t  t h e  boundary: 

~ ( z , y , t ) = ~ ( t )  a t a n .  

This condition r e p r e s e n t s  a population r e s e r v o i r  at t h e  boundary. 

When a habi ta t  i s  surrounded by a completely hosti le environment, t h e  boun- 

d a r y  may b e  t r e a t e d  as a n  absorbing boundary, 1.8. population density i s  equal  to 

z e r o  at t h e  boundary: 

P ( z , y , t ) = O  at 8n. 

This condition means t h a t  t h e r e  is no  f o r e s t  f o r  insects and t h e r e f o r e  no  in- 

sects to feed on trees. 



b) Prescr ibed flux across  the  boundary. Immigration o r  emigration across  the  

boundary may be represented by the  condition 

- v V P = W ( t )  ( v = D 1  o r  v = D 2 )  a t  an. 

Figure 2 il lustrates how from one fores t  island, a new fores t  island may be ob- 

tained by means of seed t ranspor t  - seed rain around a seed source.  So  if t h e r e  is 

an outbreak of insects on one forest  island, i t  may cause insect outbreaks on o the r  

fores t  islands. There is  insect immigration f o r  t he  second island and emigration 

fo r  the  f i r s t  island. 

When a habitat  boundary is  completely closed to  the  population - tha t  means a 

fenced population. I t s  flux can be considered to  be  zero  across  the  boundary (so- 

called reflecting boundary) 

W(t) = O  a t  an. 

This equation states tha t  no flux of population occurs  across  the  domain. 

2.2 Different  Types o f  hsect Diffusion Coef f i c i ent  

In accordance with nature 's  processes,  different types of insect diffusion may 

be considered. 

(i) Isotropic diffusion with a constant diffusivity: D2 = const .  

(ii) The diffusivity is  a function of trees ("old" and "young") densities: 

D2 = D o  [alpha u + (1 - a )u]. Do = const. 

Many species  of insects make use of smell, so at t ract ive diffusion can be con- 

sidered. The diffusivity increases with the  density of tree increase.  

(iii) The diffusivity i s  a function of insect density: 



f o r  example, 

Therefore  t h e  diffusivity i s  high due to t h e  high density of insects. 

(iv) The combination of cases (ii) and (iii): 

2.3 Different Typea of Inrect Death R a t e  

Different types  of insect  mortality are studied. Some important a s p e c t s  of in- 

sect death  concern  t h e  following: 

(i) Death by natural  causes  only means tha t  E = cO = c o n s t .  

(i i)  Death by intraspecific competition 

a )  E = c0 N ,  EO = c o n s t ,  t h e r e f o r e  

b) competition depends on feeding pat terns :  

E = E O N  tha t  means, 
a u  + ( I - a ) v  

In th is  pa r t i cu la r  case ,  mortality i s  high due to low tree density. 

(111) Death by na tu ra l  and intraspecific competition causes;  



From a biological point of view, a l l  of these  cases  mean considering di f ferent  

a spec t s  of na tu re ' s  processes .  From a mathematical point of view, di f ferent  types 

of diffusion equations ( l inear and nonlinear) are studied. 

11. Temporal Dynamica 

1. Consider a n  insect  population which i s  closed t o  migration. Ignoring t h e  

effects  of space,  and t h e r e f o r e  of wind and diffusion, w e  obtain system (1) from 

system (2). Let  us  study di f ferent  types  of insect  mortality, t h e  case when a E [0,1] 

and a l l  pa ramete rs  are constant.  

The main purpose  of th i s  study is  to find out how t h e  consideration of different 

na tu re  processes  influence t h e  solution. Consider t h e  following di f ferent  models: 

Model A: 

Insect  - f o r e s t  dynamics with insect  death  by na tu ra l  causes  only: 

E = c0 = const .  When a = 0 and a = I t h e  basic model i s  obtained. 

Model B: 

Insect  - f o r e s t  dynamics with insect  death  by intraspecific competition, 

without consideration of dependence on tree density (see (a) from (ii)). 

Model C: 

Insect  - f o r e s t  dynamics with insect  death  by intraspecific competition, which 

i s  dependent on tree density (case  (b) from (ii)). 

2. The stabil i ty of t h r e e  models i s  studied. The main in te res t  i s  not in t h e  

a lgebra ic  details  bu t  in the  following questions: which f a c t o r s  determine t h e  

number of equilibrium points; w i l l  t h e  system t r a c k  environmental var ia t ions  o r  

will i t  a v e r a g e  o v e r  them; which quanti t ies in t h e  equations are biologically signifi- 

can t?  



Models A ,  B ,  and C have di f ferent  numbers of equilibrium points but al l  of them 

have t h e  same points as t h e  model considered in Antonovsky et al .  (1988). The or i -  

gin Eo = (0,0,0) i s  always a n  equilibrium, i t  has  no biological significance. On t h e  

invariant  plane N = 0, t h e r e  may exis t  e i t h e r  one o r  two equilibria with nonzero 

coordinates. 

Table 1 i l lus t ra tes  t h e  maximum possible number of equilibrium points f o r  t h e  

di f ferent  models. The number of these  points depends on t h e  o r d e r  of t h e  

corresponding a lgebraic  equation. 

Table 1. 

I I 
M o d e l  1 a = O  1 a = l  I O < a < l ,  

Analytically and numerically, t h e  relat ionship between t h e  solution behavior,  

t h e  number of equilibrium points, and t h e  type  of insect  death  are obtained. 

The resu l t s  of d i f fe ren t  models, numerically integrated by a computer, are 

presented in Figures 3-7. The pamimeters are chosen in accordance with Antonov- 

sky et al. (1988). There  are obvious quali tat ive di f ferences  between t h e  computed 

solutions f o r  d i f ferent  models.  From Figures 3, 4, 5, and 6, i t  i s  easy to see how 

t h e  effect  of within-population competition influences t h e  solution. From Figures 7 

and 8, one can see how t h e  s t r u c t u r e  of t h e  solution depends on t h e  varying of 



coefficient a. For different types of insect feeding (i.e., different values of a )  dif- 

fe ren t  types of solutions are obtained. In Figures 7 and 8, t he  results of Model C 

a r e  presented. All these figures i l lustrate tha t  propert ies  of forest  succession 

depend on competitive interactions within and between species. 

Therefore,  different types of nonlinearities completely change the  behavior 

of a system. But these different types of nonlinearities appear  from complicating 

by a consideration of the  natural world processes. This analysis of the  models 

shows how necessary i t  i s  to take into account the  physical character is t ics  of the  

medium, without which the  model would be  useless - obtained resul ts  would not be  a 

valid representation of reali ty.  

Future s teps  of presented model development a r e  t o  study the  case of parame- 

t e r  dependence on densities of t r ee s  and insects and t o  discuss how it  effects the 

solution of t he  models. 

3. Consider t he  stability of Model B fo r  a par t icular  case a = 1. This means 

the  forest-pest ecosystem with intraspecific competition ( E  = E O  N ) ,  when insects 

feed on "young" trees only. From Table 1, one obtains evidence tha t  t h e r e  may ex- 

ist  from one to five equilibria in t he  f i r s t  octant R: : 

Eo = (0 ,0 ,0 ) ,  E l  = (U 1 , ~ 1 , 0 ) ,  E2 = ( u 2 , v 2 , 0 ) ,  

E3,4 = (U3,4'  V 3 , 4 *  4 , 4 1 1  

where 



Equilibrium a p p e a r  in system (1) on t h e  line 

L l  = I ( p , h ) ,  P = s h  j 

On t h e  line 

equilibrium E2 coalesces with equilibrium Eo and disappears  from R:. 

Equilibrium E4,5 a p p e a r s  in system ( 1 )  on t h e  l ine 

On t h e  line LZ (if q < 2) equilibrium E4 coalesces with equilibrium Eo and 

d i sappears  from R Q .  If q  = 2, t h e r e  exis ts  only equilibrium Eg, which coalesces 

with equilibrium Eo on t h e  line L l  and disappears  from R: . If q  > 2, t h e r e  exis t  

equilibrium Eg only when p  > ( s  + 1)h. On t h e  line L i t  coalesces with Eo. There- 

f o r e ,  t h e  parametr ic  p o r t r a i t  of Model B d i f fers  from t h e  corresponding p o r t r a i t  

of t h e  model descr ibed in Antonovsky et al. (1988) .  By means of l inear  stabil i ty 

theory  pa ramet r i c  conditions a r e  obtained. 

In Figure 9, t h e  solution numerically in tegra ted by t h e  computer i s  presented 

f o r  a pa r t i cu la r  case (a = 1) of Model B. Analytically, i t  i s  obtained tha t  on line 

L5 = t ( p , s ) :  P = sq + s h  j 

ex i s t s  equilibrium 

E, = ( h  + q , l , q ) ,  

stable when certain conditions on t h e  parameters t a k e  place. 

IIL Forest-Pd Intmction Dynamics in Heterogeneou Environments 

A consideration of spat ia l  e f fec t s  may fundamentally change o u r  view of t h e  

organization of t h e  fores t -pes t  system. 



For  t h e  s a k e  of simplicity, consider t h e  one-dimensional diffusion-reaction 

system (2) with constant  coefficients when non-diffusive t e rms  are not included. 

This system provides d i f ferent  models as submodels and t h e  most convenient start- 

ing point f o r  a discussion of a mathematical modeling. 

Let us study t h e  following submodel of t h e  spatio-temporal model (2). Consider 

forest-pest  in teract ion dynamics in t h e  one-dimensional domain O = [OJ] (see  Fig. 

10).  

The main intent  of th i s  study is to consider t h e  e f fec t s  of diffusion (Ha l l am and 

Levin, 1986). Let  D2 = c o n s t ,  a = 1. System (3) h a s  spatial ly uniform equilibrium. 

Note (U.,V.,N ,) i s  one of them. To study i t s  stabil i ty with r e s p e c t  to small p e r t u r -  

IV 
..# 

bations l e t  u = u . + u , v = v .  + v ,  - N = N. + N and discard  higher-order  terms 

to obtain t h e  linearized system: 

Consideration of d is turbances  propor t ional  to eih gives t h e  following results: 

If F < F, then  diffusion does  not  destabilize s t ab le  equilibrium. 






































