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AEE1ication of Credibility Theory to

Material Accountability Verification

R. Avenhaus and W.S. Jewell

1. Formu.lation of the Eroblem

The nu.cleo,:;c ma.terials saf~~guards system of the Interna­
tio))..al Atomit:: E!1t1X'gy A9"~3:ncy (I,~,EA) in Vienna con.sists of t~~TO

parts (see Referen.ce [1]): the verification of the material
flow and inventory data reported by the operator of a nuclear
plant; the establish.i'nent of a material balance at the end of
an inventory period with the help of the operator's reported
data, ~Thich mee.DS t:h.at t.he hook. inventory (ini·tial physical
inventory plus :r-eosdpt.s minus shipments) is compared lIIrith the
ending physical inv':"mtory (see e. g., Reference [2]). By def­
inition it is necessary that the plant operator maintains a
complete measurement system for all nuclear materials pro­
cessed in the plant.

In this papF.;r u lJITe consider an alternative inspection
scheme which is based on material accountability too, but
which does not make use of the data reported by the operator.
Contrary to t.he IAB.~). sa.feguards system, the ma.terial balance
in this system is closed only with the help of the data
observed by the inspection team itself. Such a system could
be important in situations where there is no reason for a
plant operator to maintain a complicated measurement system,
or where, for some reason, the records are not available.

It is clear that if the inspection team cannot measure
the da1:a of all ma.terial bcrtches processed in the plant under
consideration (e.g. if the inspection budget or time is
limited), then some prior information about the average mate­
rial contents of the different batches as well as the batch­
to-batch variation have to be used. Therefore, a Bayesi.an
approach seems to be natural for the treatment of problems of
this kind. On the other hand, this prior information will not
be very detailed, and so we will use the principles of
credibility theory (see e.g., References [3] ,[4]) where only
the first two moments of the prior distribution have to be
known.

In the following i If!e first consider only one class of
material, and then R different classes (inputs, outputs, etc.)
with the problem of material balance closure. Finally we
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discuss the problem of optimization of a given inspection
effort.

As the batch-to-batch variation of the true material
contents within one cla.ss normally is much larger than the
measurement variance~ we will neglect the measurement errors
here; they could easily be taken into account, if necessary.

2. One class of ma~erial

Let us consider one class of material consisting of N
batches. An inspection team measures the material contents
of n of thf~!2A: N ba.:tch!2:s preci.s.e.ly and l ..rants to estimate the
total material content of the class with the help of the n
data. The true values of the material content of the batches
vary from batch to batch; because of long term experience,
however, the inspection team has a prior information about
the average value fuid the batch-to-batch variation of the true
material contents.

This prior information may be specified in ·the following
way: the true material contents Xj of the ith batch is a random
variable with a.likelihood density p(ijl~), where e'is the
pa.ram,et'0r (poSSJ,bly a vector) ~ representlng the unknown varia­
tion l ....hich has OCCu.:i'.·~E:d in this produ.ction run. In Bayesian
analysis, the parameter e ,itself_is con.sidered as a random
variable with a prior density p(e). _We do not assume that
the complete forms of p(xjle) and pre) are known to the in­
spection team, but only tne expectation value m,

m: = &'{x.} =tffrff{x·le}
J J

and the two components of variance

j = 1 ••• N (1 )

E: = g"CY{ 5C. j Ie}
D: :;: !yg"{Xj I8} j = 1 ••• N

(2 )

(3 )

(.As ,:",e have to diff;::;rentiate carefully bet';l'een ra.ndom. variables
2.nd their a.ctual values 9 we indicate random variables by a
tilde.) Notice that, even though the {x.} are independent,
given e, they are, a prj.ori, dependent r~ndom variaples; in
other words, it is possible to make inferences about future
values of the {xi} from observed values because they have the
same (unknown) value of e.

Assume that the inspection team has measured the material
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contents of n < N batches (for simplicity we relabel the
batches so that the:3e are the first n batches); let
x = (x, .0' x) be the r~sult of these measurements. The
problem is dj es·tima'ce t~e total material content of the
class using these data and the prior information (1), (2),
(3). Sin.ce we know ~, ~re must newly estimate (Xn + l ••· XN).

The idea of the cred:U:d.lity approach is to take an
estima.te f (x) for the material content x +1 of the n + 1stn - n
batch which is linear in the data and which minimizes the
preposterior variance of the forecast error defined by

(4)

(H is, in fact, a variance since f (x) will be an unbiased

eS~imate, i.e. <ff{X
n

+
l

- f
n

(5e)} = o.)n-

As a linear form, we take

f (X.) = z + zn - 0 1
1 n. - . I x.
n j=l J

(5)

since there is no reason to use a different weighting factor
for each x j . Then Hx is given by

Hx; .s{X~+l} + z~ + :~.u{CL Xj ) 2} - 2Z0 • .s{Xn+l} +

and we get with

(6)

from equation (6)

2D+E+m , ,
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2 2 zl 2 2
= D + E + m + 2 0 + n . (n(D+E+m ) +n(n-l)·(D+m »)

The optimal values of Zo and zl are determined by

aBx
= 0azO

which finally gives

= 0

n
zl = n + EjD (7)

Notice that (5), (7) can, in fact, be used to estimate any
future {xi}' j = n+l ... N. The minimum of the preposterior
variance of Hx is given by

min Hx = D + E - nn+
o ~/D = E + (nE-1 + D-1) -1 . (8 )

These results have an intuitive interpretation: fot nD » E
we obtain Z 1 'll 1, Zo :::: 0 and therefore,

f (x)
n -

1 n:::: I x.
n i=l 1.

I

i.e. we use primarily the information contained inithe data.
Note that this could happen either because the numli>er of
examples ~,a.s very large, or because D, the variance for our
prior information, was large. For nD « E we obtafn z « 1
and therefore, I

i.e. we use primarily the prior information m.

We now estimate the sum S of all material in the class,
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(9)

by the true values of the material contents in the first n
n

batches, l x., plus the sum of the estimates of the remain­
j=l J

ing N - n material contents, given by equation (5):

n
l x.

j=l J
+ (N - n) • f (x)

n -
(10)

Using (7), we obtain the following estimate Fn(~) of the sum S:

= (N - n)" (1 - z ) - m + (N -n - Z + 1) - ¥ x .
1 n 1 j=l J

• (11)

The preposterior variance of the forecast error of this estimate,
which is defined by

(12)

is not just the sum of (N - n) terms Hx in (8), because the

same value of e applies throughout, and thus the error terms
are correlated. However, it can be written in simplified
form as:

where

HS = r{a I x. + ¥ x.}
j=l J j=n+l J

(13 )

a = N-n- ---·zn 1

Therefore, we get

H = (a2 .n + (N-n»'Y{x.} + (n(n-l»)-a2 + (N-n)-(N-n-l)s J
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which gives withCif{x ,x .• .!-.} = D the final result
J TJ

For n = N we get H = 0, since the "esti.mate I' iss

N
F N = LX.

j=l J

i.e. the true value of the total material content is knm..rn.
For n = 0 we get

,

which shows that D behii'ves like the variance of a ~ystematia
error, which persists in all estimates because e remains the
same.

3. Ssve~al cla~Bes of material; no diyersion of m~terial

Let us consider now one inventory period and ~ssume for
simplicity that the physical inventories at the beginning and
a'c the end of th.8 inventory period are zero. The material
flowing through the plant during ,this inventory period may be
classified. into R classes of material: Rl input and R - Rl out-

I

put classes. Let x ij be the true material content/of the jth

batch of the ith class which will be measured by the inspection
team in case this batch is selected for measuremen~. xij is

positive if i is an input class, negative otherwise.
I

In case that no material has been lost or div$rted (null
hypothesis Ho ) the material balance principle post~lates that
at the end of the inventory period the algebraic sum of all
throughputs must be zero; in other words:

R Ni
L L x.. == 0 (15)

i=l j=l 1.J

He assume that the random sampling scheme of the inspec­
tion ·team is -to select n. out of the N. batches of each class
at the end of the invent6ry period; fo~ example, one may
imagine a chemical plant, where samples from all batches are
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dr~~n and stored an.d where only a fraction of these samples is
analyzed at the end of the inventory period.

Let the mean value, given e, of the material contents of
a batch of the ith class be defined as

m. (e): = 8J X.. 1 e}
1. 1 1.J

, j.= 1 .•. Ni , i = 1 ••. R (16)

and let the covariance of material contents of the ith and the
jth class given e be defined as

cii,(e): = cc{x ..;X. I . lie}
1.J 1. J

,
(17 )

j=l ••. N i , j'=l ..• N i" i,i'=l ..• R

We assume in the following

Cii I (e) = 0 for i f i ' , (18)

Which means that the batch-to-batch variations between batches
of different classes do not depend on each other.

Note: This assumption seems to contradict equation (15) where
such a dependence is given explicitly. HOiArever, this
equation is a material balance equation which may be
interpreted in such a way that the last output batch
can only contain the amount of material which has been
left (and which may be excluded from the random sampling
procedure.) This means that only the last batch depends
on the foregoing batches; it does not imply a non zero
correlation between all batches of the R classes under
consideration.

Corresponding to the case of one class of mater~al we now
assume that the prior information available to the inspection
team is the knowledge of the values of the parameters:

m. = <Semi{S} (19a)
1.

-E" , = <Se c .. .(e) (19b)
1.1. 1.1.

Dii, = et'e{mi (8) ; mil (8)} (19c)
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In the following, we denote the vector tml .•• mR)' by !!!. and

'che mat:z:-ices corresponding to (19b) and (l9c) by E and D,
respectively. According to (la) E is a diagonal matrix; D
is not assumed to be diagonal as one can imagine that distur­
bances of the plant operations (expressed by variations of
the parameter a may cause common changes to all class mean
values miCa).

Let xi be the sample mean of the observed values of the

ith class,

m.
1

We then get

rS{~i la} =

~{~ila} =

and because of (19)

n i
I x ..

j=l 1)

rS{~i} =

; ~{~i} = 1
E .. +D ..n

i
11 11

(20)

(21a)

(21b)

(21c)

We now consider a vector ~* of unobserved vaLues of ,batch data.
A credibility forecast for this vector ~* is given!by

!. (~) = ~O· ~ + ~l • ~ , (22)

where x is the vector of the sample means (20).

Minimization of the trace of the preposterior!variance
matrix of the forecast error, H, defined by

(23 )

gives after some calculations similar to those in the fore­
going part (see e.g., Reference [3]).

(24 )
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where the diagonal matrix is defined by

~o = (n1
••• 0 )

o n
R

and where l R is the Rx R unit matrix. The preposterior

variance of the forecast error then is given by

(25 )

In the same way we estimated in the foregoing part the sum
of all material contents of one class we estimate now the sum
Si of all material contents of the ith class by

which gives with (24) in explicit terms

(26 )

g, (x)
l. -

R
= (N, - n,)· L (lkl.' - zkl.') • mk +

l. l. k=l

I nr (N, - n,) • Zki + I. k) . xk.k=l j=l l. l. n k l. J

(27 )

Defining the diagonal matrix

~l =

we get the vector forecast

~ (~) = ~ • !. + ~l • !. (~) ,

which gives with (22) and (24)

(28 )
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The preposterior covariance of the forecast error of the sums
S. is then given by
~

where 8 = (81 ... 8R) which gives after some calculations

H = N
l

• E + N (I - Z) • D • NsIR 1

The elements of this covariance matrix are given by

(29 )

Hij = (N i -ni)Eij + kt (N i -nil (Iki -Zki)·Dkj • (N j -n j )

(30)

Finally, the preposterior variance of the forecast error of
the sums is given by

(31)

= I H .. ,. ., ~~
~,~

where H .. , is given by (30).
~~

4. Optimization of inspection effort

In th~ following we assume that for the inspection of
the material flo~ during the inventory period under consider­
a.tion there is only tb:2: amount C of inspection effort (given
in ma.nhours or in monetary terms) available. Furthermore,
it is assumed that the observation of one batch datum of the
ith class needs the effort ~.. Therefore, the question arises
how to distribute the effort~among the different classes, in
other words how to choose the class sample sizes n. such that
the boundary condition ~

C >
R

L
i=l

~.• n.
~ ~

(32 )
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is met.

In Re.:t?:r.s,Dce [5] 2.::gUl.n,s,nts have been given that the
effort should be distributed in such a way that the probabiZity
of detection in case the operator diverts the amount M of
materiaZ should be maximized. In case the plant operator wants
to divert material dn:ciDg t.he inventory period under consider­
c"tion. Calterna::::.tve hypothesis H

1
) f equation (15) does not hold

a.ny more. Io,~t ns':u:;sume that tJ':1e operator does not change the
nnmhsr of bat.ches in each class by simply taking a~Tay some of
the bat.ches hu.t ra'che:r' diverts from r. batches of the i th class
the amolmt 1.1. of material. I,et us aS~h!.me furthermore, that
the operator

1
decides at the beginning of the inventory period

~.7het.her or not he '\!ldll elivert any material. Finally, let us
a.ssume tha.·t the divp.rsion takes place in the first Rl classes
after the inspection teamDs measurements, and in the remaining
R- R} classes before the inspection team's measurements (the
reason being that input ba.tches are measured immediately after
their arrival, and output batches immediately before their
shipment). Then we, have instea.d of equation (15) the following
relation for the true material contents of the batches Yij to
be measured by the inspection team:

R

l
i=l

N.
1

l y ..
j=l 1)

= :M (33)

&~ example for this relation is given in Figure 1 for R = 2,
Nl = 5, N2 = 4, r l = 2, r 2 = 1.

Let us define now the set Ai of batches of the ith class from

which the operator diverts the amount ~i of material. Then

we have

for all batches from Ai'
i = Rl + 1 •.• R

{

Xij - l.Ii

y .. =
1)

Xij othen~!ise

(34)

where x .. is the material content of the jth batch of the
1)

ith class to be measured by the inspection team in case of
no diversion, and ~here accordingly

(35)
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As we get from (15)

R

l
i=l

N.m. = °1 1
,

and as IAil, the nUIT~er of elements of Ai' is hypergeometrically

distributed, we have

r. 0 n.
1 1.

= ----N.
1

and the expectation value of the sum of the class sum forecasts
is given by

R

L
i,k=l

(36)

In the same way. we can calculate ~{q g i (~)) 2\ HI} and there­

fore the variance r{r 9 i (~) IHIJl of the forecast ~ 9 i (~) under
~ 1

the alternative hypothesis H1 (diversion of the amount M of

material). Because of its length, and as we will not use it
in the following, we will not gi~e its explicit form here.

We now assume that the random variable ? gi(~) is approximately
J.

normally distributed with expectation value and variance given
as above. Then the probability of detection 1 - a based on a

significance test for the null hypothesis ~{i gi(~) IHO} = 0,

is given by the following expression

1 - 8 = 4>

~lI gi (~)IHll- Ul - a.~}

~ r {f g i (!) IHI}
(37)
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where a is the significance level, ¢ the normal distribution
function and U its inverse.

According to the principle mentioned at the beginning of
this chapter the optimal distribution of the inspection effort
is det.ermined by maximizing the probability of detection 1 - a
under the bound.ary condition (29) for the case that the
operator w~nts to divert the amount M of material. As the in­
spection teB.m do:<;;;s not kno~T the 'diversion strategy' (r l ··· r R)

of the operator, and as one is furthermore interested in de­
termining the guaranteed probabiZity of detection, the inspec­
tion team will maximize the probability of detection for that
case that the opl'~rator minimizes the probability of detection
subject to the boundary condition

M « ~
1

J1 •• r.
1 1

(39)

This means that the op·timal distribution of inspection effort
is gained by solving the following optimization problem

max

C > L~' n.
ill

I

min 1- a(n l .•. nR;r l ... r R)

r l r R:

(40)

Because of the complicated structure of 1 - 8, given; by
equation (38) this problem can be solved only numerically.

I
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Figure 1. Illustrat:i,on of the Material Balance

(Zero beginning and ending physical
inventories)

Input:

Output:

rJ--i
It,~~~~__J

x 12 = Y12

r~~.]
:L __

x14 = Y14

[
'~-=~

I ,
I I

l -~1

-=~==~ material contents x .. measured by the inspection
1.J

team in case of no diversion

---- material contents y .. measured by the inspection
1.J

team in case of diversion

rnITillTIID diverted material

Null hypothesis (no diversion) :

5 4
I xl' + I x 2 · = 0

i=l 1. i=l 1.

Alternative hypothesis (diversion):
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