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FOREWORD 

Some geometric properties of the solution set for nonlinear and multicriteria programming 
problems and the related numeric algorithms are considered. The author deals with 
necessary and sufficient conditions for nonlinear programming problem stability (in the 
nonconvex case), with Pareto set stability, Pareto set connectedness conditions, with 
weak efficiency, efficiency and proper efficiency criteria. A study of numerical algorithms 
based on geometric properties of the secalled convolutions function is also considered. 
Necessary and sufficient convergence conditions for large classes of algorithms are present- 
ed and easy to  check sufficient conditions are given. Further results deal with problems of 
using local unconstrained minimization algorithms to  solve quasi-convex problems and 
the problem of using some convolution functions for constructing decision making pro- 
cedures. New classes of inverse nonlinear programming problems are discussed and 
software implementations of DISO/PC-MCNLP are presented. 

Prof. A.B. Kurzhanski 
Chairman, 
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Preface 

Geometrical ideas in nonlinear programming (n.1.p.) are usually associated with 

various properties of goal and constraint functions mapping the argument space into the 

function values space (see Elster [1980]). We will interpret numerical nonlinear optimiza- 

tion methods with respect to  functions values space (f.v.8.). This paper deals with some 

results based on the study of generalized sensitivity function (g.s.f.) and convolution func- 

tion (c.f.) (see Kotkin [1988]). The g.s.f. is a dependance of the optimal value of some 

"main" function (goals or constraints) upon perturbations of other functions under the as- 

sumption that they are constraint functions. 

It is easy to  verify that the g.s.f. graph is a part of problem image bound. By p r o b  

lem image we mean the image of the argument space with respect to  goal and constraint 

functions mapping into the f.v.s. Because of g.s.f. nature the optimal value of one goal 

n.1.p. problem is a value of g.s.f. a t  zero. The Pareto set is the intersection the g.s.f. 

graph and a plane which can be characterized by zero valued constraints (see Golikov and 

Kotkin [I9861 and [1988]). A series of results devoted the connectedness of various optimal 

solution sets, Pareto set stability, efficiency conditions, etc. have been obtained in terms 

of g.8.f. properties. A brief review is given in Section 1. 

The efficiency of numerical n.1.p. and m.c.0. algorithms is due to  dual properties of 

g.s.f. and c.f. The c.f. is used to  reduce n.1.p. or m.c.0. problem to a series of uncon- 

strained minimization (u.c.m.) problems. C.f. arise in penalty functions methods, centers 

methods, dual Lagrange multiplier method, etc. (see Evtushenko [1985]). The main 

feature of c.f. is that it maps the f.v.s. into the space of values of function which arise in 

u.c.m. problem (we will call these functions u.f.). U.f. are constructed on the base of com- 

position of c.f. and goal-constraint functions. 

We obtain the necessary and sufficient convergence conditions of some classes of 

n.1.p. and m.c.0. problems in terms of c.f. properties (see Section 2). In Section 2 we also 

present easily to  check convergence conditions. Section 3 is concerned with similar condi- 

tions for the m.c.0. problem and some other results. Inverse problems are considered in 

Section 4. Section 5 deals with the software implementation DISO/PGMCNLP based on 

the ideas which are described in Sections 1 - 4. 



1. Problem definition 

Let us consider the following problem: 

where X ( y , v ) = { z E  Q C  R n : g ( z ) <  y,h(z)=v); Q = { z E  R n : a < z <  b) is rec- 

tangular conatrained set, a E Rn, b E Rn, a <  b, are given vectors; f (z), 9 (z), h (2) are 

continuous vector-functions f :  Q + R ~ + ' ,  g:Q -' RP, h :  Q + R'. 

The one goal n.1.p. ~ rob lem is problem (1) in the case m = 0. 

Let us denote the weak efficient, the efficient and the proper efficient (Geoffrion o p  

timal) estimations set of problem (1) by S (0,0), P (0,0), and G (0,O) respectively. Clearly, 

G (0,O) c P (0,O) c S (0,O). Let us denote for any vector a = (ao, ..., am) by 6 the follow- 

ing vector (a0, ..., a;-', a ~ + ' ,  ..., am) for some j. Without loss of generality we will consid- 

er sometimes the case j = O  and will omit the superscript j = O  in notation, for example 

F ( i , y ,v )  = P ( ~ , Y , v ) .  

We are concerned with the following objects in the space Z+ of functions f ,  g,h 

values (see Fig.1): 

1) problem image 2: 

2) generalized sensitivity functions (g.s.f.) FJ : YJ -+ R] 

FJ (i,y,v) = min f (z), 

z E X ( i , ~  ,v) 

where 

X(i,y,v) = {z E Q:f (2) 5 z', i = O  ,..., j-1, 

j+l, ..., m,g(z) < y, h (z )  = v), j = O  ,..., m; 

Y={(i,y,v) : x iz,y ,v) # 1; 

(3) weakly efficient estimations (w.e.e.) set S (0,O): 

S (0,O) = {z E R ~ + '  :there are not exist zo E f (X(0,O)) such that z0 < z); 



(4) convolution functions (c.f.) Mk (z, y ,v): 

Mk : Z+ -' R1 ; Mk (z,y,v) are continuous nondecreasing with respect t o  z functions, 

defined on the domain 9 c Z+, k = 1,2,- 

(5) the function value isolines Vk ( t )  of c.f.: 

and the minimal function value ieolines Vk ( t  *), where 

t* = min M~ (z,y,v) (5) 

The well known sensitivity function (see Elster [1980]) is a g.s.f. in one goal n.1.p. 

problem ( ~ r o b l e m  (1) in the case m =0) .  

If the arguments y and v are fixed (y = 0 and v = 0) the g.s.f. transform into a func- 

tion ~ ' ( 2 )  = J"(i,O,O) which can be used for w.e.e. set parametrization in the following 

way. 

Let us add vertical lines to  the graph TJ of function F J ( ~ )  through the points where 

FJ (2) is discontinuous. We obtain the set T ~ J :  

such that  F J ( ~ )  5 b 5 Fj(ik)}, 

under the assumption that  FJ (2) = +oo (V i 4 YJ) . 

Theorem 1 (see Kotkin [1988]). 

1) T r O = T r l =  ...= Trm. 

2) S (0,o) = f ( X  (0,O)) n TrO . 

3) Under the  assumption that  g.s.f. FO(i,y,v) or function FO (2) is continuous function 

we have 

It is easy to  show the efficient estimation set P (0,O) is a set of points z j  of graph TO 
under the assumption that  FO (2) "left hand side decreasesn a t  i*, and the proper efficient 



estimation set G (0,O) is the set of the points z* of the graph TO under the assumption 

that  derivatives of @ ( 2 )  a t  i* are not equal t o  zero (see Golikov and Kotkin [1988], Kot- 

kin [I9881 and Fig. 2). 

We will say the n.1.p. problem is stable if and only if the optimal value function 

F (y,v) is continuous at (0,O). In this case the stability with respect t o  right hand side 

perturbations of the constraints is considered. 

Let us consider the n.1.p. problem with inequality constraints (problem (1) in the 

case m = 0, 8 = 0) and denote 

Theorem 2 (see Kotkin [1988]). 

Let us suppose that  f (2) and g (z) are continuous functions, Q is a compact set and 

I(yo) # g. Then in order that  F (y) be a continuous function a t  yo it is necessary and 

sufficient tha t  

Theorem 2 and some similar results can be used to  study the connectedness of vari- 

ous optimal solutions set and t o  obtain proper efficiency criteria (see Kotkin [1988]). 

Theorem 3. 

Let us suppose that  F J  (i), j = 0, ..., m, are continuous functions and X (0,O) is ' a con- 

nected (linear-wise connected) set. Then S (0,O) = P (0,O) is a connected (linear-wise con- 

nected) set. 

Let us denote r1 (r) = f 1  ( 2 )  n X (0,O). 



Theorem 4. 

Let us suppose that F J ( ~ ) ,  j=O,  ..., m, are continuous functions, f 1  (z) is a connect- 

ed set for any z E f ( X  (0,O)) and S (0,0), P (0,O) or S (0,O) = P (0,O) are a connected sets. 

Then f 1  (S), f 1  ( P )  or f 1  ( G) are the associated connected sete, respectively. 

Theorem 5. 

The sufficient conditions for proper efficiency of estimation 

zo E ( F  (i,), io)  n f ( X  (0,O) are the following: 

lim 
I" (xk)  - f' (XO) # 0,  where i = 1,. . .,m, 

k-+m f ' l ~ k )  - ~ ( x O )  

for any sequence {zk) which tends to  any point 

zo E W (2,) = Argmin P (2); 

z E X (io,O,O) 

F ( 2 )  j = O m ,  are continuous functions a t  the neighborhood of 

z =  ( P  (zo), z; ,..., zi-1, z i+l ,  ..., tom). 

Let ue consider the stability of the m.c.0. problem (1) with respect to right hand side 

perturbations of the constraints. We will say problem (1) is stable if and only if the w.e.e. 

set S (y,v) of the perturbed problem is a continuous point-to-set mapping at (0,O). We use 

the Hausdorf metric in this definition. 

We assume the following regularity condition holds: for any sequence 

(yk, vk) + (yo, v0) and any io ((2,) yo, vo) E yo) there exists a ik + io such that 

(ik, Yk, vk) E - 

Theorem 6 (see Kotkin [1988]) 

If for any io g.s.f. P ( i ,  y, v) is continuous function a t  ( io,  0, 0) than the m.c.0. 

problem (1) is etable. 



2. Geometr ic  characteristics of the class of nonlinear programming methods  

A great variety of numerical methods to solve n.1.p. and m.c.0. problem are based on 

their reduction to a sequence of unconstrained minimization (u.c.m.) problems. We will 

call these methods sequential unconstrained minimization (s.u.m.) methods. In order to 

construct each u.c.m. problem, a -called convolution function (c.f.) is used. This section 

is concerned with necessary and sufficient convergence conditions in terms of c.f. proper- 

ties for class of s.u.m. methods for the problem with inequality constraints. 

Let us consider, for example, the penalty functions method which reduce the n.1.p. 

problem to the following problem with rectangular constraints (we will called it the 

u.c.m. problem): 

where (y)+ = max (y ,O), for any y E R I  . 

In this case we have the following goal function in the u.c.m. problem (we will 

denote it by u.f.): 

and the following c.f. is used for this method: 

M L ( ~ , Y )  = z + t k  C (yi ) t ,  where z E R ~ , ~  E RP. 
i 

We have a sequence of u.c.m. problems and associated u.f. and c.f. when the penalty 

coefficient tends to  infinity the following way: tl = 10, tk+, = lo tk .  

Therefore the s.u.m. method wold be defined if we define a sequence of c.f. and 

choose a u.c.m. method. This way we are concerned with external iterative process which 

is changing the c.f. and the associated u.c.m. problem. 

Because of the nature of s.u.m. methods we may consider the problem 

min Mk (z,y), where 2' = 2 n 2, 
( 2 , ~ )  E 2' 

instead of the u.c.m. problem 



Therefore the efficiency of the s.u.m. method is determined by dual properties of the 

problem image 2 and c.f. Mk (z,y) or minimal function value isolines Vk (t*) (see (5)). 

It is easily to prove that Vk (t*) is situated not higher than problem image (see Kot- 

kin (19881). 

Lemma 1. For any y , zl, z2 if 

then zl < z2 . 

Therefore, if we would solve the equation 

Mk ( 2 , ~ )  = t *  

with respect to  z: 

then g.s.f. F (y) greater than Mk(y). It helps us to  derive a convergence conditions for 

s.u.m. methods. 

Similar conditions can be derived for m.c.0. methods if we would base on the fact 

that the w.e.e. set S(0,O) is intersection of the g.s.f. p ( i , y , v )  graph and the plane 

{( y , v) : y = 0, v = 0) (and the image f (X (0,O) , of course). 

The theorems which are considered in this and the next sections permit us to prove 

convergence of s.u.m. methods and to  construct m.c.0. methods on the base of well known 

n.1.p. methods. 

For example, it has been proved that the following method converges in finite 

number of steps: 



for any y E RP; z* is the n.1.p. problem solution. 

Let us define the optimal solution set W with respect to  the apace Z+: 

Let us denote y- = (yl,. . . ,  y!!); y+ = (y: ,..., YE), for any y E RP. 

Let ua define the class of n.1.p. problems by the following conditions: 

1) F (y) is continuous function at  zero; 

3) 3 y E Y:y < 0. 

It is easy to show that the conditions 1) - 3) are satisfied in the case of stable p r o b  

lem with finite Lagrange function saddle point which satisfies the Slayter regularity condi- 

tion. 

We will suppose initially that we have the exact solutions of u.c.m. problem. We 

will call the c.f. exact if and only if the s.u.m. method converges in a finite number of 

steps. Otherwise we will call the c.f. smooth. 

Let us define conditions that the minimum q of the u.c.m. problem is the exact (A) 

or approximate (B) solution of the n.1.p. problem: 

A) 3 ko V k 2 ko V z k c  Argmin Mk (f (z), g(z)): 
z E  q 

9 ( 4 )  5 0, f ( q )  = zP$o) ; 

B) V ~ > O 3 k ~ V k ~ k ~ V z ~ A r m i n ~ ~ ( f ( z ) , ~ ( z ) ) :  AQ 
9 ( q )  l E ,  f ( q )  - min P ( z )  5 E; 

z E X(0) 

where E = (E, ..., E) E RP. 

We have the following conditions with respect to  the space Z+: 

a) 3 ko Vk 2 ko V (zk,yk) E Ar mi? Mk ( z , ~ ) :  yk 5 o,% = F (0); 
( z . 3  E 

b) V E  > 0 3  k o V k > k o V ( z k , y k ) ~  Ar min Mk(z,y): 
(2.8 E 



where 2' = 9 n 2. 

There is a stronger condition with respect to  the exact solution, namely the sets 

equality: 

a') 3koVk 2 k o A r  min Mk(z ,y)  = {F(O)) x Wy(0).  
(I,$ E Z. 

Let us define the following compact set: 

K ( a , b ) = { ( z , y ) : o 0 ~ z 5 b 0 ,  a ~ y 5 6 ,  ~ E R ~ + ' ,  b ~ R p + ' ,  a < O < b ) .  

We have to use sophisticated notation in order to take into account that the equali- 

ty (9) can be solved with respect to z in the points (z,y) E 2 and cannot be solved in the 

points (z,y) E Rp+' \ 2. It is usually connected in nonlinear programming with using the 

following c.f. Mk (z,y)  = ( z + ~ ~ ) $  + tk C (yi)$. If one is not going to use such kind of c.f. 
i 

then one can assume 

and continue from the Theorem 7. 

Let us define the function 

and consider the function M ~ ( z ,  y) which is defined on the set 

go = {(q (z ,y) ,  y) : (z ,y)  E 2). Let us denote the function value isolines of the functions 

Mk ( z , ~ )  and ( z , ~ )  2(z09 YO) and 21) ( ~ 0 ,  YO): 

Let us denote 

2 ( ~ 0 ,  YO) = {(z,Y) E 9 : M k  (z,Y) = Mk(z0,yo)) 



Clearly, Pr (2?(zo, yo)) = Pr (20 (zo, yo)), where Pr (-) is a projection operator from 

Z+ to  RP 3 yo. Therefore we may consider function ~f (z,y) instead of Mk (z,y) because 

for any (z,y) E RP+' we can solve the equation ~f (z,y) = t t  with respect to z : z = M; (y) 

and conclude that the graph of the function @(y)  is located not lower than Vk ( t t ) .  

We will use also the notation @(y, t * )  = @(y)  in order to  consider the relation- 

ship between the function M: (y,t) and parameter t. 

It can be proved that the characteristic property of the 8.u.m. methods, under the 

assumption that c.f. series does not depend on the n.1.p. problem which is solved, is con- 

vergence of @(y) "global derivatives surfacen to  the negative orthant with the origin at 

(F (0),0) (see Fig. 3). The exact c.f. differs from the smooth c.f. on that i t  has a break- 

point. To take this fact into account in the case of smooth c.f. we have to  consider global 

derivatives anywhere but a E - neighborhood U ( y , E) of the points 

y = (y' ,..., yj-',o, yj+' , m e . ,  YP). 

Let us define the global derivatives d+ u (y,w,B) and d- u (y,w,B): 

d+ u (y,w,B) = U (y + wt) - u (y) 
SUP t 

E R1; 
{ t ~ R ~ : ~ + w i € B }  

inf U (y + wt) - u (y) d- u (y,w,B) = 
t 

€El.  
{ t €R : :y+wi~B)  

Let us determine the class of s.u.m. methods with the following conditions: 

1) Mk (z,y) is nondecreasing function with respect to z; 

2) V(z0,vo) 2: ( Y  : Y < YO) c Pr (9 (~0,Yo)) , 
v(zo,Yo) E 2: { Y  : Y l Yo) C Pr (2(zo,vo)) ; 

3) M: (y) is continuous function; 

d M: 
4) M: (y) has a derivative - with respect to  any direction w; 

dw 

5) sequence of c.f. does not depend with respect to n.1.p. problem which is solved. 

Theorem 7 (see Kotkin 119881). 

In order that condition b) holds for any n.1.p. problem it is necessary and sufficient 

that for any compact set K(a,b) 



1) R 1  x { y  E  RP : y  < 0 )  c 2, minima min , Mk ( z , y )  exist for any k  2 ko 
( g , v )  E 

2 )  V 6 > O V ( z , y ) E K o ( a , b ) :  

d + @ ( y - , c , y + , ~ ~ ( a , b , 6 ) ) - +  - m ,  if k - + m  , where 

c  = Mk ( z , y ) ,  KO (a,b,6) = { y  E Pr ( K o ( a , b ) )  : 3iyi$!] -6,6[) ; 

3)  V 6  > O V ( z , y ) ~ K ~ ( a , b ) V w ~ R P ( ~ ~ 0 , w ~ 0 )  : 

d(T) ~ ~ ( y , c , w , & ( a , b , 6 , ~ ) ) - + 0 ,  if k - + m  , where 

c=Mk(z,~),kO(a,b,6,~)=KO(a,b,6) \ U(y ,6) .  

Let us assume for any compact set K ( a , b )  that 

3 k o V k l  k o ~ ( z , y ) ~ ~ o ( a , b ) = ~ ~ ~ ( a , b ) ~ w ~ ~ ~ ( y ~ O ) ,  

w 5 0 :  dT) M: (y ,c ,w,  PT ( K O  ( a , b ) ) )  = O  , where c  = Mk ( z , y ) .  

In order that condition a') holds for any n.1.p. problem it ie necessary and sufficient 

that for any compact set K(a ,b )  

1 )  R ' X  { y ~ ~ P : y 5 ~ ) c 2 ? ;  

2 )  V  ( 2 , ~ )  E KO (a ,b)  : 

d+ Mk ( y - ,  c ,  y+, Pr ( K O  ( a , b ) ) )  -+ - w , if k  -+ oo , where c  = Mk ( z , y ) .  

It should be noted that the conditions of Theorem 7 are sufficient convergence condi- 

tions if we exclude the assumption 5) about the relationship between the n.1.p. problem 

and the c.f. sequence. 

Theorem 7 is interesting by itself but is hard to use. Easy to check convergence con- 

ditions in term of partial derivatives of the c.f. M k ( z , y )  are presented in the following 

theorem. It can be proved that a sufficient convergence condition for a wide range of 

s.u.m. methods is that the partial derivatives of Mk ( y )  should tend to  infinity if y  > 0  and 

tend to zero if y  < O .  We have to  consider "right hand siden and "left hand siden semi- 

derivatives in order to  study the exact c.f. 

Let us consider these derivatives: 



The function Df (z,y) has the following domain: 
($1 

Let us denote 

20(z0, YO) = { ( z ) ~ )  E2O:Mk ( z , ~ )  = Mk(zO, go)). 

To take into account the special case when c.f. M(z,y) does not have semi- 

derivatives, let us denote 

Let us denote the domain of D: (z, y , A) by 2; . 

We will not write the assumptions with respect to  c.f. Mk(z,y). They are 

modification of the assumption 1) - 3) of theorem 7 (see Kotkin [1988]). 

Theorem 8. 

1. In order that condition a') holds for any n.1.p. problem it is necessary and 

sufficient that for any compact set K(a,b) 

1) for any point (z,y) E jO such that yi 2 0, y~ 5 0 ( v j  # i): 

Di+(z,y)-+-=, i f  k - + o o , i = l ,  ..., p ; 

2) for any big enough k and any point 

(z,y) E jO n K (a,b) such that y 5 0: 

Df- (z,y) =0, i= 1 ,..., p; 

2. In order that condition b) holds for any n.1.p. problem it is necessary and 

sufficient that for any compact set K(a,b) 

1) f o r a n y p o i n t ( z , y ) ~ ~ o s ~ ~ h t h a t y i > ~ , y ~ ~ ~ ( ~ j # i ) :  



2) for any big enough k and any point 

(z,y) E jO n K (a,b) such that y < 0: 

D:- (z,Y) 5 0, 

D:- (z,y)+O, if k + , i = l ,  ..., p. 

Theorem 8 is true if we would use D: (z, y, A) instead of D:+ (z, y) and Di  (z, y,- A) 

instead of Di- (z,y), where A E R: is little enough, and pi instead of jo. 

3. Geometric properties of multicriteria optimization methods 

Let us now consider the m.c.0. problem (1). The u.f. for this problem may be written 

as Mk(f (z ) ,g (z ) ,h (z ) )  and the c.f. may be written as Mk(z,y,v),  where 

z E R ~ + ' ,  y E RP, V E  R8 are the variables. We will consider the following two problems. 

1) How to choose the type of c.f. with respect to variables zf,  j = O ,  ..., m in order to con- 

struct decision making procedure. 

2) How to choose the type of c.f. with respect to  variables zE  R ~ + ' ,  yE RP, vE  RE in 

order to  provide convergence to  some weakly efficient point (because the conditions 

may be out of order, for example). It can be shown that in this case it is not necee- 

sary to take into account the type of the c.f. Mk (z,y,v) with respect to all zO, ..., zm , 
but z0 (and y,v of course). 

We consider first the second problem. From the formal definition point of view there 

is only one difference between the m.c.0. problem and the n.1.p. problem, namely the c.f. 

M k ( z , ~ , v )  and derivatives Dkr+) (z,Y,v) of function &(z,y,v) with respect to z0 depend 

from Z E  R ~ + ' .  

To simplify the proofs, we suppose that derivatives of c.f. Mk (z,y,v) with respect to  

zf,  j = 0 ,  ..., m, are bounded by positive values. In addition to  assumptions associated with 

the n.1.p. problem, we assume that all functions F J ( ~ , ~ , V ) ,  j = O ,  ..., m are continuous. The 

Slayter condition should hold in a small neighborhood of a weak efficient solution. 

Let us define conditions that the minimum z of the u.c.m. problem is the exact (a) 

or approximate (b) weak efficient solution of m.c.0. problem (1). 



-.E < v < & , 3 ( i k O , O )  E Y I z f  - F(i,O,O) 1 5 E ;  Y k 5 . 5 ,  - 
- A I where Z ' = Z C  Z , E = ( E ,  ..., E ) E R  ,l=p,e. 

a') 3 koVk > ko 

Let us first consider the problem ( 1 )  with inequality constraint ( e  = 0) .  

Theorem 9 (see Kotkin [1988]). 

The conditions of the Theorem 8  hold for the m.c.0. problem ( 1 )  if we use appropri- 

ate notation (D ( z ,  y), z  R , 

Theorem 9  can be modified for the case of the m.c.0. problem ( 1 )  with e  $0.  It is 

easy t o  take into account approximate solutions of u.c.m. problem and to  apply some con- 

sidered ideas to  study the s.u.m. methods which hardly depend on the properties of the 

n.1.p. problem and do not satisfy the conditions of Theorems 8  and 9  (for example, Dual 

Lagrange Multipliers Method, see Kotkin [1988]). 

The following theorem describes the type of c.f. with respect to  the decision making 

procedure. We consider the c.f. which is generalization of the reference point c.f.: 

M ( ~ , y , v , ~ ~ , y ~ , v ~ , u )  is a continuous function which is increasing with respect t o  
. . . . 

z i , y~ ,v r  if respectively zi > z;), y' > yg, v1 > 4; constant with respect to z g ,  y', if respective- 
. . .  

ly z' 5 26, y l <  yg; decreasing with respect to  v1 if v 1 5  v;; and depends on the following 

parameters z0=(z; ,  ..., z r ) ,  where Z ~ E R ~ U { - O O ) , ~ ~ E R P , V ~ E R ~  , 
u E  ~ ~ + ~ + p + ~ , i = ~  ,..., m , j = l ,  ..., p , I = l ,  ..., e. 

Let us define the associated u.f. a ( z ) ,  minimal function value isoline V ( t ) ,  etc.: 

a ( 2 )  = M  (f (4, o ( 4 1  h ( z ) , z o ,  Y o ,  vo, u ) ;  

V ( t )  = ( ( 2 , ~  ,v) : M  (z , y  ,v, 20, Y o ,  vo,u) = t ) ;  



c (t) = V(t) n 2; 

q, (A) = { Z E  Q : r (z,A) < E ) ,  where r (z,A) = inf 1 1  zo - z ( 1 .  
% € A  

Let us suppose that z t  E Q is a solution of the following u.c.m. problem: 

min M ( f  (z),g (z), h (z),zo, Yo, ~ 0 , " ) .  
z €  0 

Theorem 10 (see Kotkin [1988]). 

If there exists a j such that f (zt) > zg , then 

1) if z t ~  X(0,0), then f (zt)  E S (0,O); 

2) if in addition to  the assumptions in 1) we have 

f ( z t )  > t o ,  then f ( z t ) ~ P ( 0 , 0 ) ;  

3) if in addition to  the assumptions in 1) and 2) 

M (~>Y,v,zo~Yo,~o,") 

is a differentiable function with respect to  z and in the neighborhood of 

a M (~,Y,~,~O,YO,~O,") 
(f (z*), g (z*), h ( ~ * ) )  we have # O , i = O  ,..., m, then a z1 

The following theorem allow to make a conclusion about quasi-convexity (unimodal- 

ity) of the u.f. in the case of nonconvex (for example, quasi-convex) goals f (z) or con- 

straints g (z) or h (2). It is possible sometimes to use the u.c.m. local algorithms to  inves- 

tigate the quasi-convex problem (1). In this paper we consider only necessary conditions 

(see Kotkin [1988]). 

Under the aasumption that r1 (t) is a continuous point-to-set mapping we have 

the following result (see Fig. 4). 



Theorem 11. 

If there exist a number t t  that the set C ( t t )  can be partitioned into the closed 

nonempty sets A and B, and for any t < t t  we have C (t)  n r), (A) =pl  or 

C ( t )  n 9, (B) = pl then (z) is not unimodal. 

4. Inverse nonlinear programming problems 

Inverse nonlinear programming problem it is a new class of optimization problems 

which is eraeed in game theory, system optimization, multicriteria optimization, etc. 

Inverse nonlinear programming problem may be formulated as follows. We have to  

find out the pair z t  and ut  which satisfy the following system. 

z t  Ar min f1 (z,ut); 
zE%(u*)  

where X ( u )  = { Z E  R n :  g (z,u) 5 0, h (z,u) =O); u E Rm; 

f1 (.,.I, 9 (.,.I, h (zlu), G (z,u), H ( 2 , ~ )  are continuous functions, 
f l : ~ n + m + ~ l , ~ : ~ n + m + ~ ~ , h :  R ~ + ~ + R S ,  G :  ~ n + m +  RI,  H:  R " + ~ +  R ~ .  

Let us consider the multicriteria optimization problem (I )  and assume that we can 

write the decision maker's additional information about the solution z t E  S, in the form of 

equality and inequality constraints. 

For example, if the reference point z t  is given the additional constraints are 

p (2') - z9= f1 (zt)  - 21 = ... = p (2,) - z!P. 

If the aspiration level zt  is given the additional constraints are f ( z t )  5 z t  . 

In common cases these constraints link the solution z t  and the parameter ut  : 

G (zt, ut) 5 0; H (zt, ut) = 0, 

where G (z,u), H (z,u) are continuous vector-functions. 



We have the following inverse problem: 

z*E Ar min < u t , f ( z ) > ;  B r E  (0,O) 

G(z*,u*) <),H(z*,u*) =O, 

where U * E  Rm+' ; f :  R"+ Rm+'. 

In this paper we present the generalized Newton method to  solve the following in- 

verse nonlinear programming problem: 

where f1 : R " + ~  -+ R' is sufficiently smooth strong convex function, A and B are given 

matrixes. It is based on the idea that we can calculate the derivatives zu (u) of a so-called 

solution function 

z ( u ) =  argmin f1 ( z , ~ ) ,  
r E R n  

if we consider the second order derivatives f, (z,u) and fzu (z,u) of the function f (z,u). 

It can be proved that these derivatives z (u) are the solutions of the following system 

< [ f , Y f z u l Y [ < ~ u ( ~ o ) Y ~ - ~ o > , u - u o ] >  =o. 

Therefore we can solve the system 

z(u)  - (Au+ B) =0 ,  

with respect to  u using usual Newton method. 

This method converge to  the solution u* (and z(u*)) of inverse nonlinear program- 

ming problem under the assumptions that the solution function z(u)  is sufficiently 

smooth and a function 

q (u) = Z  (u) - (Au + B) 



satisfy the usual assumptions of the Newton method. So we have the local convergence 

for this method. 

5. Interactive eyetem D I S O / P C - M C N L P  

The DISO/PGMCNLP system is developed for IBM-PC/XT compatible computers 

in the Computer Center of the USSR Academy of Sciences for multicriteria nonlinear pro- 

gramming solving. 

DISO/PGMCNLP is based on idem of multicriteria and nonlinear optimization as- 

sociated with parametric optimization, sensitivity analysis and inverse optimization prob- 

lems. The great variety of numerical algorithms, interactive procedures, parametric and 

inverse study possibilities and flexible control are the main features of the DISO/PC- 

MCNLP system. DISO/PC-MCNLP reduces any optimization problem (nonlinear pro- 

gramming or multicriteria optimization) to a parametric or inverse optimization problem. 

Therefore all functions such as goals, constraints or parametric constraints are equal on 

the base level of DISO/PGMCNLP system program. Some geometric parametric ideas 

form on the base of DISO/PC-MCNLP prograrnm. The function identification is a proper- 

ty of some environmental level. Some protection against incorrect data is the essence of 

the next level (see Fig. 5). The flexible control system Field Manager and analytical 

differentiation language DIFALG are the user level. One can use the "C" language to  

make a problem definition if one prefers "C" to  DIFALG. 

The unconstrained optimization algorithm, nonlinear programming algorithm, in- 

teractive procedure of multicriteria search, any parameters of numerical method and some 

parameters of the applied problem can be changed assynchronically with respect to  the 

calculation process. Field Manager allows one to  adjust the interface to  one's own applied 

problem. The beginning of the possible adjustments is choosing the numerical algorithm 

and its parameters, followed by preparing (if so one needs) windows, the form of presenta- 

tion of the system and problem objects (numeric, histograms, graphs), defining the a p  

plied problem objects, names, etc. One can change the values of parameters which lie in 

the basis of one's own applied problem, write and read these parameters and other infor- 

mation from a floppy disk assynchronically to the calculation process. All these features 

of DISO/PGMCNLP allow the easy construction of the interactive system for applied o p  

timization problems. 



Such interactive systems have been constructed for water resources distribution 

problem (see Kotkin and Mironov [1989]), metalworking production and other applica- 

tions. 

A great variety of numerical algorithms and interactive procedures are available in 

DISO/PGMCNLP system. They are need to  choose the appropriate algorithm for solv- 

ing the problem. The DISO/PGMCNLP haa a multi level structure with respect to nu- 

merical methods (see Fig. 6). Several unconstrained minimization methods are a t  the 

base level. They are the result of the long time experience of a group of scientists from the 

Computer Center of the USSR Academy of Sciences (see Evtushenko [1985]). 

The next level consist of a number of nonlinear programming techniques because any 

multicriteria programming problem is usually reduced to  one goal programming problem. 

The last level consist of a series of decision making procedures. 

The DISO/PC-MCNLP includes the following methods. 

Unconstrained minimization methods: 

lu) coordinate descent; 

2u) direct search (two modifications); 

3u) random search method; 

4u) conjugate gradient; 

5u) Newton method. 

Nonlinear programming methods: 

In) center method modifications; 

2n) penalty functions method modifications; 

3n) barrier methods; 

4n) exact penalty function method modifications. 

Decision making methods: 

Id) gradient method (Geoffrion); 

2d) parametric programming method (Guddat); 

3d) reference point method modifications; 

4d) scalarization method modifications; 



5d) nonlinear parametric programming method. 

In order to  construct nonlinear programming method and decision making procedure 

we used a convolution wich satisfying conditions of Theorem 9 and in special case 

Theorem 10: 

We can construct the methods In) - 4n) and Id) - 5d) if we choose the parameters 

V ~ , L I ~ , L T ~ E R ~ ;  p-li,p-ri~{-1,1,2,4),i=~ ,..., m + l + p + a ,  using Table 1. 

Table 1 

The interface possibilities of DISO/PC-MCNLP system are provided by the Field 

Manager system (see Mazourik [1988]). Field Manager allows to construct a number of 

windows and to receive any information in these windows. The main idea of the Field 

Manager system is aa follows. We may look out and correct a set of data which have been 

marked in our program. There are the following kind of data to  be marked (they are 

called objects): scalars, vectors, matrices, functions with respect to  real, integer, character 

or string values. When running the program, we can choose the following form of presen- 

tations for the objects: numeric, histograms, graphs. We can also link t o  some reaction 

with special user actions. For example, the control menu is just the vector of strings with 

some reaction to  pushing the "enter" key (running some process for instance). 

Parameters of c.f. 

Method 
- 

4 d 

3n+ 
4 d 

I n +  
3 d 

3n+  
3 d 

4n+ 
3 d 

I n +  
5d 

With respect to 

i vi ui u  p- p+ 
2 n + o 1 1 1 1 0 0  

0 1 1 1 1 

z' 0 1 2 2 
var 

0 1  2 2 
v ar 

z ' o i  2 2 
v ar 

z' o 1 2 2 
v ar 

With respect to 

I I vi u 1  u  pi p )  
t l  2 2 O t 2  
+00 

0 - t l  t l  -1 2 
-0 +00 

0 0 t l  2 2 O t 2  
+OO 

0 0 t l  1 1 0 t 2  
+O +oo 

o o t l  1 1 0 t 2  
+oo 

v l '  o t l  2 2 
v ar +OO 

With respect to 

I vi u i  u; P- P; 
t2 2 2 

+00 +00 

0 t2 t2 2 2 
+ +00 

t2 2 2 
+OO +oo 

t2 2 2 
+oo +oo 

t2 1 1  
+oo +oo 

v2' t2 t2 2 2 
var -00 +m 



We need not think about all these things when writing the program, but only mark 

the objects we are interested in and define how often we want to redraw them on the 

display. 

We may construct a number of windows with any objects on it in any form of presenta- 

tion with any names (labels) after running the program. This way we may prepare some 

standard windows and make other windows when we wish. 

The set of DISO/PGMCNLP system objects is fixed. Thecre objects allow to choose 

various numerical algorithms and interactive multicriteria procedures, change its parame- 

ters, to  run and stop processes and correct some problem definition parameters. This way 

we may see and correct the following problem definition parameters: 

1) functions type (goal, inequality or equality constraint); 

2) right hand sides of inequality or equality constraints; 

3) lower and upper bounds of rectangular constraints; 

4) vectors of parameters introduced by the user if one wishes to correct the applied 

problem parameters during the numerical method calculations. 

Therefore, there are not only universal decision making procedures in DISO/PC- 

MCNLP system but special procedures which can be prepared by the user. The desired 

"applied" parameters are the control parameters in this procedure. 
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Figure 1: Problem image, 2, weak9 efficient estimation set S(0,O) and convolution 
function value isoline vk ( t  ) . 



Figure 2: Weakly efficient S (0, O), efficient P (0,O) and proper efficient G (0,O) estima- 
tion sets and sensitivity function graphs (2') and F' (2'). 



Figure 9: Convolution function value isolines vk ( t t ) ,  vk+l ( t t )  and "global derivatives" 
d+ hiI,, d+ Mk+1. 



Figure 4: Quasiconvex problem study 





Figure 6: DISO/PC-MCNLP structure with respect to numerical methods. 


