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Introduction 

The aim of this paper is to derive necessary conditions of optimality for an infinite horizon 
optimal control problem. The Pontryagin maximum principle for this problem without 
transversality condition at infinity was derived in Pontryagin et al. [I.]. Transversality 
conditions were derived for some dynamical optimization problems arising from mathe- 
matical economics [2, 31. The presence of an exponential factor in the integral functional 
is a characteristic of these problems and facilitates consideration to  a certain extent. In 
this case the transversality conditions were formulated in terms of the asympotic behavior 
of solutions to an adjoint equation. The problem without an exponential factor was con- 
sidered by Gani and Wiese [4] under rather restrictive assumptions, and the transversality 
conditions were given as initial conditions for the solution to the adjoint equation. 

It seems quite natural to  use stability theory [5, 61 to  analyze infinite time optimal 
control problems. Following this idea we derive the transversality condition at infinity in 
terms of a Lyapunov exponent of the solution to the adjoint equation. The problem with 
the exponential factor is considered as well as the problem without it. 

The first section of this paper describes results from stability theory. A property 
of regular linear differential equations is also established, which is important for further 
consideration. Necessary conditions of optimality for a general infinite horizon optimal 
control problem are stated and proved in Section 2. Section 3 investigates of a linear 
quadratic optimal control problem arising from regulator design theory [7]. The case 
when the set of controls is a closed convex cone is considered. 

1 Regular linear differential equations 

In this section results from the stability theory developed by Lyapunov in his famous 
monograph [5] are recalled. 

Let j : R R be a continuous function. The Lyapunov exponent of the function j 
is defined by 

1 

The Lyapunov exponents possess the following properties 



J o  f ( t )  = 5," f (s)ds if x[f (91 > 0, 
otherwise 

If f : R + R" is a vector function, then the Lyapunov exponent is defined as the 
minimal value of the Lyapunov exponents of the components X[f'(.)]. 

Let us consider the linear differential equation 

where n x n matrix C(t) has measurable bounded components. Lyapunov proved that the 
exponent is finite for any nonzero solution of (1). Moreover, the set of all possible numbers 
that are Lyapunov exponents of some nonzero solution of (1) is finite, with cardinality 
less than or equal to  n. Lyapunov exponents of nonzero solutions to  a linear differential 
equation with constant matrix C coincide with the real parts of the eigenvalues of C taken 
with the opposite sign. 

A fundamental system of solutions of (1) X I ( . ) ,  . . . , x, is said to be normal if for all 
a], . . . ,an E R 

n 

Lyapunov proved that a normal system of solutions always exists. Lyapunov exponents 
X I , .  . . , An of a normal system of solutions (there may be equal quantities among them) 
are called the Lyapunov spectrum of (1). 

Let X I , .  . . , A n  be the Lyapunov spectrum of (1). Then the value S = X1 + . + An 
does not exceed x[((.)] where 

From this fact we obtain the following consequence. If zl(.), . . . , zn(.) is a fundamen- 
tal system of solutions of ( I ) ,  vl , . . . , vn are corresponding Lyapunov exponents, and 
v1 + . + vn = x[((.)], then the system is normal. Equation (1) is called regular if 
S = -x[(l/()(.)]. In this case, obviously, 

As a consequense we derive that the limit 

1 t 
lim - 1 t r  C(s)  dt 
t-+m t 

exists. All linear differential equations with constant or periodic coefficients are regular. 
Let us consider along with (1) the adjoint equation 

where C8(t) represents a transposed matrix. An important property of regular equations 
was established by Perron (see [6], e.g.). If X I  5 . . . < A n  is the Lyapunov spectrum of 



(1) and pl > . . . >- pn is the Lyapunov spectrum of (2), then equation (1) is regular i f  
and only if A; + pi = 0, i = 1, .  . . , n. 

We denote by A,(6) the subspace consisting of all points xo E Rn such that a solution 
of (1) with the initial condition X ( T )  = x0 has a Lyapunov exponent greater than -6 and 
by Af (6) the subspace consisting of all points x; E Rn such that a solution of (2) with 
the initial condition X ( T )  = x0 has a Lyapunov exponent greater than or equal to 6. 

Lemma 1.1. If equation (1) is regular, then 

Proof. We first establish the inclusion 

Assume that s o  E A,(6), xz E Af(6) and that x(.),  x8(-)  are solutions of equations (1) 
and (2), respectively. Then 

Taking into account properties of the Lyapunov exponents, we obtain x[(x,x8)(.)] > 0. 
Thus, l imt+m(x(t),  x8(t)) = 0 and (so, x;) = 0. The inclusion (3) is proved. 

To prove the equality we consider matrices @(t ,  T )  and @+( t ,  T )  of fundamental so- 
lutions of equations (1) and (2). Assume that their columns form normal systems of 
solutions. The subspace A,(6) is spanned by column vectors of the matrix @(T, T ) ,  which 
correspond to solutions that have Lyapunov exponents greater than -6, and the subspace 
A$(6) is spanned by column vectors of the matrix @+(T,  T ) ,  which correspond to solutions 
that have Lyapunov exponents greater than or equal to 6. Let dimA,(6) = k. S' lnce equa- 
tion (1) is regular,the Perron theorem implies that the Lyapunov spectra A1 5 . . . 5 An 
and p1 >- . . . 2 pn of (1) and (2) satisfy the equalities A; + p; = 0 , i  = 1 , .  . . , n .  Thus 
dimAS(6) = n - k. If we combine this with (3), we reach A$(6) = A$(6) and the end of 
the proof. 

I conclude this section with two theorems concerning an analogy of solutions of differ- 
ential equations. These theorems are special cases of more general results which are given 
in Bylov et al. (61 (Theorems 29.3.1 and 26.1.2). 

Let us consider the differential equation 

which is obtained from (1) by adding a nonlinear function f : R x Rn + Rn to the 
right-hand side. 

Assume that the following conditions hold true: 

1. f ( t , O )  = 0 for all t ,  

2. the function t + f ( t ,  x) is measurable for all x, 

3. the function x -+ f ( t ,  x )  is continuously differentiable for almost all t ,  



4. 1 v, f( t ,x) l  = O ( J x J C )  where c > 0. 

Under these assumptions we have the following resulit: 

Theorem 1.2. Let T > 0 , s  < 0. Suppose that equation (1) is regular and that X1 5 
. . . 5 A n  is its Lyapunov spectrum. Then there exists a homeomorphism @: defined in 
some neighborhood of the origin U: and satisfying the following conditions: 

1. @f(x) = x + O ( l ~ l ' + ~ ) ,  

2. if xo E A,(6) n U:, yo = @f(xO), then there exist solutions of the equations (1) 
and (4) with initial conditions xo and yo, respectively, and with identical Lyapunov 
exponents. 

To give a geometrical interpretation of this theorem we need the definition of a tent 
introduced by Boltyanski [8]. 

A convex cone K c R" is called a tent of a set M c R" at a point x E M if there 
exist a neighborhood of the origin R and a continuous map 4 : R + Rn such that 

1. x + v + 4(v) E M for all v E It'n 0, 

2. lim-o I v I - ~ ~ ~ ( v )  = 0. 

Theorem 1.2 implies that any solution of equation (4) with the initial condition X(T)  E 
M: = @ f ( ~ , ( 6 )  n U:) has a Lyapunov exponent greater than -6. Moreover, the subspace 
A,(6) is a tent of the set l\.C at  zero. This statement combined with Lemma 1.1 is of 
crucial importance for the proof of transversality conditions which is discussed in the next 
section. 

It should be mentiond also that Theorem 1.2 fails to be true when 6 > 0. 

Example 1.3. Consider the system 
x = 5 ,  

Y = Y -  
Obviously, A0(2) = R2. The system 

x = x + yx, 

has, however, a solution that has a Lyapunov exponent -m when initial conditions satisfy 
xo # 0, yo > 0. Hence, A0(2) is not a tent of M i .  

The second theorem concerning an analogy of solutions of differential equations deals 
with the linear equations 

where C is a constant matrix and B( t )  is a bounded matrix with measurable coefficients. 

Theorem 1.4. Let XI < . . . < An be the Lyapunov spectrum of equation (5). Assume 
that Jom e a t 1 ~ ( t ) l d t  < m 

for some cr > 0. Then there exists a homeomorphism @ : Rn + Rn such that solutions 
x(.) and y(.) of the differential equations (5) and (6), respectively, with corresponding 
initial conditions y(0) = @(x(O)) have identical Lyapunov exponents. Moreover, if x(.) 
and y(.) have a Lyapunov exponent Xk, then ~ [ ( x  - y)(.)] > X k  + a/2.  



2 Necessary conditions of optimality for an infinite 
horizon optimal control problem 

Consider the problem 

4 ( x ( t ) ,  u ( t ) ) d t  + inf 

Let f  : R" x U + R", 4 : R" x U + R be continuous functions that are continuously 
differentiable with respect to x. Arbitrary bounded measurable functions u  : [0 ,  m[+ U 
are considered admissible controls. 

Let i i(-)  be an optimal control for ( 1 ) - ( 4 ) ,  and let i(.) be the corresponding trajectory 
of equation ( 2 ) .  

Denote 

c ( t )  = vzf (W, W ) ,  
b ( t )  = v z 4 ( i ( t ) ,  W ) .  

Suppose that the differential equation 

is regular and that 

where c > 0.  Under these assumptions we obtain the following result: 

Theorem 2.1. There exist a number X 5 0  and a function p : [0 ,  m[+ Rn such that 

Proof. Denote 



Obviously, C(.) solves the problem 

y(0) + inf 

i ( t )  = f ( z ( t ) ,  ~ ( t ) ) ,  

.(t) E U, 
~ ( 0 )  = (y(O), XO),  limt,, z ( t )  = 0, 

and i(.) is the corresponding trajectory. 
We claim that the differential equation 

is regular. Indeed, if z(.) = (y(.), x(- ) )  is a solution to (10) then x(.) solves (5) and 

Let xl(.), . . . , xn(.) be a normal system of solutions of (5) and let X I , .  . . , A n  be the cor- 
responding Lyapunov exponents and also X1 5 . . . 5 Xk-l  5 0 < X k  5 . . . 5 An. Since 
the function b(.) is bounded we have x[b(.)] 2 0 and, consequently, ~ [ ( b ,  ")(.)I 2 x[x(.)]. 
Consider the collection of n + 1 functions 

We derive from the inequalities 

(see Section 1) that the functions (11) possess the Lyapunov exponents 

The equalities 
n+ 1 n x p; = EXi, t r C ( t )  = t r C ( t )  
i=l i=l 

imply that the functions (11) form a normal system of solutions of (10) and that this 
equation is regular. 

Denote by i , (0 )  c R"+l the subspace consisting of all points ito E Rn+' such that a 
solution of (10) with the initial condition ~ ( r )  = ZO has a positive Lyapunov exponent. 
Let P, c R"+' be the convex cone consisting of all points iio such that there exists a 
solution to  the differential inclusion 

satisfying the boundary conditions 

Obviously, we have P,, C P,, if 7 2  > 71. Denote 



Consider the ray L = ( ( 0 , O )  E R x Rnla  < 0). We claim that the ray L and the 
cone P are separable. Indeed, if L f l  i n tP  # 0, then (-1,O) E intP, for some r > 0. We 
can apply Theorem 1.2, which states the existence of a set ~ 4 ,  satisfying the following 
conditions: 

1. 0 E M,, 

2. A,(o) is a tent of M, at 0, 

3. for all ij E M, + g(t) any solution of the Cauchy problem 

has a positive Lyapunov exponent. 

Define M, as a set of all points Zo such that there exist some admissible control u(-) 
and a corresponding trajectory satisfying 

Using standard methods developed to prove the maximum principle given in Pontryagin 
et al. [:I] and Boltyanski [8] or applying differential inclusions technique discussed in 
Smirnov [9], we conclude that P, is a tent of M, at i ( 0 )  = (J,O" 4(i(s), G(s))ds, xo). Since 
(-1,O) E intP,, we obtain 

for some a < 0 (see [I ,  81). This contradicts the optimality of G(.). Thus L and P are 
separable. 

Applying the separation theorem, we find a vector po = (X,po) E R x Rn such that 
Xa 2 (po,if0) for all a < O , ?  = (y,x)  E P. Setting 5 = 0, we conclude that X < 0. 
Allowing o to tend to zero, we obtain 0 2 (PO,?)  for all 2 E P. The last expression 
implies that (Po, ~ ( 0 ) )  5 0 for all z(-) satisfying 

Z(T)  E A+(o),  r 2 0. 

The Lemma 1.1 means that a solution to the Cauchy problem 

satisfies 

xb(.)l 2 0, 

max (w,p(i)) = 0, t E [0, oo[. 
w ~ K ( t )  

Evidently we have p ( . )  = (-X,p(-)) where X = const 5 0 and p(.) is such that 



The theorem is proved. 
The most restrictive assumption of Theorem 2.1 is regularity of the differential equa- 

tion (2). However, this assumption is essential as we can see from the following example: 

Example 2.2. Consider the problem 

i ( t )  = a(t)x(t) + u(t), 

.(I) 2 0, 

x(0) = 1, lim x(t) = 0, 
t+m 

where a(t ) = cos In t - 1. Obviously, C(t) = 0 is an optimal control and i ( t  ) = exp S,' a(s)ds 
is the corresponding trajectory. We claim that the statement of Theorem 2.1 fails to be 
true. Assume that there exist a number X 5 0 and a function p(.) satisfying 

xb(.)I  2 0, 

p(t) 1 0. 

Since x[p(-)] > 0, we conclude that X # 0. Let X = -1. Then 

Observe that X[(l/i)(.)] < 0. Consequently, limt+, Ji i ( s )ds  = -PO. Thus we have ~ ( t )  = 
(i?(t))-I (- i?(s)ds). The inequality 

leads to a contradiction. 
Now we consider an optimal control problem with the functional 

where b > 0. Since we can consider trajectories with negative Lyapunov exponents as 
possible variations, it is natural to expect that, for an optimal control problem without 
restrictions a t  infinity under suitable growth assumptions on the function 4, a transver- 
sality condition will be x[p(.)] 2 a. > 0. According to Example 1.3 we know that such 
variations cannot be used for nonlinear controlled system. Therefore we shall investigate 
the linear case only. 



Consider the following problem 

e-"q!~(x(t), u ( t ) ) d t  + inf (12)  

where 6 > 0. Let : R" x U + R be a continuous function that is continuously 
differentiable with respect to x  and satisfies the growth conditions 

liminf Is\-" inf $ ( x ,  u )  > 0 ,  a > 1 
2400 uEU 

Suppose that C ( t )  is a matrix with bounded measurable components and that the differ- 
entional equation 

~ ( t )  = C ( t ) z ( t )  

is regular. Arbitrary bounded measurable functions u  : [0, m[+ U are considered as 
admissible controls. 

Denote 

6(1 - P/a) otherwise. 

Theorem 2.3. Let f i ( . )  be an optimal control for the problem (12)-(15)  and let i(.) 
be the corresponding trajectory. Then there exist a number X 5 0 and a function 
p : [0,  m[+ Rn such that 

Proof. This proof is similar to the proof of Theorem 2.1 except for a variation of the 
optimal trajectory at infinity. The presence of an exponential factor permits us to extend 
the set of variations. To this end consider the subspace A,(?) c Rn consisting of all 
points so E R" such that a solution of (18)  with the initial condition X ( T )  = so has a 
Lyapunov exponent greater than -7. We prove first that the integral 

exists when x ( . )  is a solution to (18)  satisfying X ( T )  E A , ( y ) .  Observe that existence of 
the integral 



together with (16) imply that 

Since (C(t)I 5 b, 1fi(t)1 5 b for all t 2 0, we obtain 

Therefore the integral 

exists. This implies that the function e-6t)i(t:~l" tends to zero as t + m. Thus, x[i(.)] > 
-610. 

By condition (17) 

Since x[x(.)] > -7, the Lyapunov exponent of the second term is greater than -6. Thus, 
the integral Lm e-6t4(i( t )  + x(t),  fi(t))dt 

does exist. 
Consider the set M, c Rn x R consisting of all points 

where x, E A,(y) and x(.) is a solution to (18) with the initial condition x ( r )  = x,. Using 
estimates similar to those obtained above, it is not difficult to show that the subspace A, 

is a tent of the set M, a t  the point 

Then following the proof of Theorem 2.1 we achieve the result. 
There is no end-point constraint at infinity in the problem (12)-(15), but, as we can 

see from the example below, the Lagrange multiplier X can be equal to  zero. This is a 
payment for the transversality condition. 

Example 2.4. Consider the problem 

Lm e-'I2(xl(t) + x:(t) + x:(t))dt + inf 



Here all assumptions of Theorem 2.3 are satisfied. Obviously, G(t) e 0 is an optimal 
control and iil(t)  i 2 ( t )  0 is the corresponding trajectory. Growth conditions (16) 
and. (17) are satisfied when cr = 2 and ,B = 1, e.g. By Theorem 2.3 there exist a number 
A 1 0 and a function (pl(.),p2(.)) such that 

Suppose that A = -1. Then j2( t )  = p2(t) - e-'l2. Therefore p2(t) = set + + $e-t/2. 
Since X[P~(.)] > 114, we obtain a = 0. Then for t sufficiently large p2(t) > 0. This 
contradicts to  the inequality p2(t) 5 0. Thus, A = 0. 

3 The linear quadratic problem 

In this section we deal with the linear quadratic optimal control problem 

Lm(x2( t )  + u2(t))dt --+ inf (1) 

~ ( t )  = Cx(t )  + u(t) ,  

u( t)  E Ii', 

4 0 )  = xo, 

where C is a constant (n x n)  matrix and I( is a closed convex cone. We shall derive 
necessary and sufficient conditions of optimality for the problem under the following 
hypothesis 

(H) for any xo E Rn there exists a solution to the controlled system (2) and (3), with the 
initial condition (4) satisfying 

lim x( t )  = 0. 
t-+m 

To test this hypothesis one can use the following result [lo]. 
We denote by I(* the polar cone of Ii', the closed convex cone defined by 

K* = {x*lVx E Ii', (x*, x) > 0). 

Theorem 3.1. The following conditions are equivalent: 

1. the hypothesis (H)  holds true, 

2. the matrix C* has neither eigenvectors corresponding to  nonnegative eigenvalues 
contained in I(* nor proper invariant subspaces corresponding to  eigenvalues with 
nonnegative real parts contained in Ii", 



3. the differential equation p(t) = -C*p(t) does not have nontrivial solutions that have 
nonnegative Lyapunov exponents contained in li" . 

Now, we derive from (H) the solvability of the problem (1)-(4) for any initial condition. 

Theorem 3.2. Assume that hypothesis (H) holds true. Then the problem (1)-(4) has a 
unique solution C(.), i(.). Moreover, i ( t )  -+ 0 as t -+ oo. 

Proof. We prove first that there exist numbers 7 > 0 , a  > 0, b > 0 such that for any 
xo E R" one can find an admissible control u(.) and a corresponding solution x(-) of the 
Cauchy problem (2) and (4) satisfying 

Consider a simplex an+' c Rn a containing unit ball centered at zero. Let t k ,  k = 0, .  . . , n 
be its vertices. By hypothesis (H) there exist admissible controls uk(.) such that solutions 
of the Cauchy problems 

xk(t) = Cxk(t) + ~ k ( t ) ,  

tend to  zero as t becomes infinite. There exists T 2 0 satisfying 1xk(7)( 5 l / e ,  k = 0, .  . . , n. 
Without loss of generality (uk( t ) (  < T,I for all t E [O, T] ,  k = 0, .  . . , n. Let y E Rn, ly(  = 1. 
Then y = EL=, X k t k  for some Xk 2 0, k = 0 , .  . . , n satisfying E;=, X k  = 1. Obviously, 
the trajectory x(., y)  of the controlled system (2) with x(0, y )  = y corresponding to the 
control u(., Y )  = C;=, Xkuk(.) satisfies (x(T, y:ll 5 l /e ,  lu(t, y)l < 7,  t E [O, T]. We define 
for xo E R" 

uro(t)  = I x o I u ( ~ ,  X O / ) X O I ) ~  t E [ O ,  71. 

Let x,,(t) be the corresponding trajectory with x,,(O) = XO. Then I x , , ( T ) ~  5 1x01/e7 
Iu,,(t)J 5 qlxol when t E [O, T]. For t > 0, we set 

This control and the corresponding trajectory x(.) satisfy (5) with y = 117, b = eq, and 

By (5) the functional (1) in the problem (1)-(4) is finite for any xo. Using standard 
reasoning based upon weak compactness of a unit ball in Hilbert space and Mazur lemma, 
we obtain existence of an optimal control. 

To prove uniqueness suppose the opposite. Let u(.) and w(.) be optimal controls, and 
let x(-)  and y(-) be the corresponding trajectories. Then 

The inequality 



contradicts optimality of u(.) and w(.). 
We prove now that the optimal trajectory i ( t )  tends to zero as t becomes infinite. Since 

i(.),i(.) E L2([0, m[, Rn),  the function eli(t)12 = 2 ( i ( t ) , i ( t ) )  belongs to  L1([O,m[, R). 
Therefore, limt,, Ii(t)I2 exists and is equal to zero. This ends the proof. 

We denote by nK(p) the point x E K such that Ix - = inf{ly - pl ly E K). 

Theorem 3.3. Suppose that hypothesis ( H )  holds true. Then the control C ( - )  and the 
corresponding trajectory i(.) are optimal for the problem (1)-(4) if and only if x[i(.)] > 0 
and there exists a function p : [0, w[---+ Rn satisfying 

Proof. To begin with, note that by Theorem 3.2 optimal control exists and belongs to 
L2. Since Theorem 2.1 was proved under the assumption of boundness of optimal control, 
it is not applied directly. But because this problem has a linear quadratic form, following 
the proof of Theorem 2.1, it is possible to derive that there exist a number X 5 0 and a 
function p : [O, o o [ d  Rn such that 

To show that X # 0 suppose the opposite. Then by (6)-(9) we have 

This contradicts hypothesis ( H )  because of Theorem 3.1. Thus, we can set X = -112. 
Using subdifferential calculus (see [ l l ] ,  e.g.) we obtain that (7) implies 0 E C(t) - ~ ( t )  - 
K* n {C(t))l  or C(t) E K n (I(* n {ii( t )) l  +p(t)) .  Therefore C(t) = nK(p(t)). Thus, if &(.) 
is an optimal control and i(.) is a corresponding trajectory, then there exists a function 
p : [O, w [ d  R" satisfying 

We now prove that x[i(.)] > 0. For this purpose consider the value function 

00 

V ( x )  = min (x2(t) + u2(t))dt,  



where minimum is taken over all admissible controls and over all corresponding trajectories 
with x ( 0 )  = x .  By Theorem 3.2 there exists an optimal control fi(.). Let Z ( . )  be a 
corresponding trajectory with Z(0 )  = x .  We observe that 

Furthermore, 

Hence, $ v ( i ( t ) )  < -Z2( t ) .  Since the function [ v ( x ) ] ' / ~  is a norm in R", we obtain 
$ v ( Z  ( t ) )  5 - c V ( i ( t ) ) ,  c  > 0. This implies that [ v ( i ( t ) ) ] ' 1 2  < [ ~ ( i ( ~ ) ) ] ' / ~ e - " ~ / ~ .  Thus, 

x[i(.>l > 0. 
We claim that p ( t )  tends to zero as t becames infinite. If this is not the case there exist 

a sequence t k  -t 0  as k  -t oo and a number a > 0  such that Ii(t)l < l l k  for all t  2 t k  
and (p( tk ) l  2 a. We denote by t ( - )  a pair of functions ( 2  ( . ) , p ( . ) )  and consider a sequence 
of solutions to differential equations (10)  and ( l l ) ,  t k ( t )  = t ( t  + t k ) / l p ( t k ) l ,  t 2 0. Since 
the sequence t k ( 0 )  is bounded, we conclude without loss of generality that  t k ( 0 )  tends to  
some t o .  Obviously, t o  = ( 0 ,  po), Jpol = 1. There exists a solution to(-) to (10 )  and ( 1  1 )  
with t o ( 0 )  = t o ,  which is a uniform limit of the sequence tk(.) on finite intervals. Taking 
the limit in (10)  and (11)  we obtain that to(.) = (O,po(.))  where 

xK(p0 ( t ) )  = 0. 

The latter equality implies that  po(t)  E - I<* ,  t > 0. By Theorem 3.1 x[Po(-)] < 0. To 
obtain the contradiction we shall prove that po(.) is bounded. 

Set p =  PO,^) E R x Rn and consider the differential equations 

where ( n  + 1 )  x ( n  + 1 )  matrices C and B( t  ) are equal to  

The  solution of the equation (14)  q ( t )  = ( l , p ( t ) )  has zero Lyapunov exponent. By Theo- 
rem 1.4 the difference between q(.) and some solution of (13 )  is a function with a positive 
Lyapunov exponent. The  solution of (13)  with zero Lyapunov exponent is a polynomial 
with bounded functions as coefficients. Hence, the function limk,, Ip(t + t k ) l / l p ( t k ) l  is 
bounded. Thus, limt+oo p( t )  = 0. 

Applying Theorem 1.4 to  the equations (13)  and (14)  once more we obtain x[P(.)] > 0. 
The  necessity of the theorem statement is proved. The  sufficiency is a consequence of 

the standard argument given in Lee and Markus [12]. 
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