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Foreword 

A velocity controlled viability theory for control systems with inequality contraints is introduced. 
We do this by constructing a velocity controlled regulation map and change the control problem 
in that  sense. By doing that  the solutions to the differential inclusion are prevented from running 
into the border of the viability domain too fast. This leads to  a Machaud system, which provides 
for an application of the viability theorem as well as the smooth control theorem. 
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1. Viability Theory for Control Systems. 

Let X and Z be two finite dimensional vector spaces. We consider a control 
system denoted by (U, f )  described by a set valued feedback map U : X y.t Z and 
a single valued map f : Graph(U) + X denoting the dynamics of the system. The 
evolution of the system (U, f )  is governed by the differential inclusion [2]: 

for almost all t : ~ ' ( t )  E F(x(t)) : = {f ( ~ ( t ) ,  ~(t))}u(t)E~(z(t))  
with the initial state: x(0) = xo 

(1) 

f (x, u) denotes the velocity of the state x controled by u E U(x). Hence F(x) is 
the set of velocities available to the system at state x. An alternative approach to 
feedback control problems has been given by G .  Leitmann and his coauthors [7-91 
and A. B. Kurzhanski and T. F. Fillipowa [6]. Here we will follow the viability 
theoretical approach introduced by J. P. Aubin [:I.]. 

Consider the case when the set K c domU c X of viable states is described by 
inequality and equality constraints. Hence we have 

K : = { x E  LcXIg ; (x ) ?O  V i = l ,  ..., pandh j (x )=O V j = l ,  ..., q} 

with L closed in the finite dimensional vector space X and gi and (2) 
hi twice continuously differentiable functions from X to R. 

In many cases L = X. 

Typeset by AMS-W 



2 REGULATION OF CONTROL SYSTEMS 

We denote by 
I(x) := {i E {I, . . . , p }  I gi(x) = O} (3) 

the subsets of active constraints. Assume once and for all the transversality condi- 
t ion: 

( V X ~ E K  ~ v o ~ ~ L ( x O ) : = { ~ ~ X ~  lim dK(x1+hv) /h=0} 
h+0+ 

with dK(x) := inf IJx - zll 
z E K  

such that (g:(xo), vo) > 0 Vi E I(x) 

and hl(x)CL(X) = Bq 

We require that for every solution x(.) to (1) with the initial state xo E Ii', x(t) 
stays in K. We say that a function x : B+ + X is viable in K if x(t) E K for all 
t E R+. Our aim is to find out whether there are controls u(t) E U(x(t)) such that 
the solution of the differential equation xl(t) = f (x(t), u(t)) with x(0) = xo E I< , is 
viable in K. We say K satifies the viability property for F : K X -t X if for all 
initial states xo E K there exists a solution x : R+ + X to the differential inclusion 
(1) which is viable in K. K satisfies the invariance condition if all solutions are 
viable in K.  The contingent cone of K at x is according to viability theory [1,4] 
given by 

TK(x) := {v E XI lim inf 
~ K ( X  + hv) 

h 
= 0 with dK(x) := inf 115 - zll} 

h+0+ z E K  ( 5 )  

= {v E T L ( x ) ~ ( ~ ~ ( x ) , v )  = 0 V j  and (g:(x),v) 2 0 i E I(x)}. 

If L = X we have TL(x) = TX(x) = X. We associate with any subset I< C_ dom(U) 
the regulation map 

RK : X -t Z defined by 

RK(x) : = {U E U(x)If(x,u) E TK(x)} 

= {U E U(x)l(h;(x),f(x,u)) = 0 V j  (g1(x),f(x7u)) t 0 Vi E I(x)} 
( 6 )  

Furthermore the subset K C dom(U) is called a viability domain of the control 
system (U, f )  if the viability condition 

holds, which is the case if and only if 

Analogously we formulate the invariance condition by 

We may now formulate both theorems, namely the viability theorem for control 
systems and the smooth control theorem, which we use later on. 
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Theorem 1. (Viability Theorem). 
Let us assume that the control system (U, f )  is a Marchaud System, i. e. that 

it satisfies the following conditions: 

(1) Graph(U) is closed 
(2) f is continuous 
(3) the velocity subsets F(x) are convex 
(4) f and U have linear growth 

i . e . l l f (x ,u ) I I Ic (11~11+l l~ l l+1)  forsomec>O 
and 11~(~)11 5 d(11~11 + 1) for some d > o 

Then a closed subset K & dom(U) satisfies the viability property if and only if 
it is a viability domain. 

firtherrnore any open loop control u(-) regulating a viable solution x(-) in the 
sense that 

obeys the regulation law: 

for almost all t : u(t) E RK(x(~))  

Proof. 
We refer to theorem 3.5.5 in [I], which is based on Haddad's Theorem [5]. 

Theorem 2. (Smooth Control Solutions). 
Let I( be closed in the finite dimensional vector space X. Consider a control 

system (f, U) such that K C dom U. Assume that the set valued feedback map 
U(-) is closed and that the dynamic f is continuous with linear growth. Then the 
following st a temen ts are equivalent: 

(1) For any initial state xo E K and any initial control uo E U(xo) there 
exists a smooth control solution (x(-), u(.)) to the control system starting 
at (xO, uO). This means that x(-) and u(-) are both absolutely continuous. 

(2) t / ( x , u ) ~ G r a p h U :  DU(x,u)f(x,u)#0 
with D the contingent derivative of U at (x, u )  E Graph U 
defined by Graph(DU(x, u)) := TGraph U ( ~ ,  21) 

Proof. We apply theorem 7.2.2 in [I], which provides the conditions for the existence 
of smooth state-control solutions. 

The above theorems provide conditions for the existence of viable or smooth 
control solutions, of the system. It seems likely that these viability conditions can 
be changed into invariance conditions, guaranteeing that all solutions are viable, 
by simply changing the differential inclusion given in (1) into 

for almost all t : xl(t) E {f ( ~ ( t ) ,  u ( t ) ) ) u ( t ) ~ ~ ~ ( z ( t ) )  
with the initial state: x(0) = xo. 
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F(x) then satisfies the invariance condition given in (8) by construction. 
But the reason why we often cannot use the above theorems for U = RK : X - Z 

is that TK and therefore also RK are both in general not closed. We solve this 
problem by introducing a velocity control. As we will see in the following section 
this is not only theoretically useful but has also an intuitive interpretation. An 
alternative way of dealing with the problem of non-closure of the regulation map is 
given by Aubin and F'rankowska [3]. 

2. The Velocity Controlled Contingent Cone. 

Although we have found appropriate conditions for the viability of the model, 
the situation is not satisfactory, mainly because of two reasons. 

The first one is of technical kind: In order to apply theorem 1, we need the set 
valued feedback map RK(-) to be closed. For simplicity let us assume that L = X 
in K given in (2). Then the graph of TK defined as in (5) and thus also the graph 
of RK are in general not closed. This follows from the fact that, TK(x) = ker hf(x) 
for any interior point but not necessarily on the boundary. 

In order to visualize this let us consider K = R for an example. We thus have 
TK(x) = {V E RJ v 2 0 if x = 0). Hence the sequence (x,, v,) := (i, -1) E 
Graph TK converges to (x, v) = (0, - 1) $ Graph TK. 

The second problem arises from interpretation. It seems strange that a solution 
is allowed to run into the boundary of K with so to say full steem. In many cases 
we would say that we have to decrease velocity if we are near the boundary, in 
order to be able to stop or change direction before it is too late. For example if 
we consider a human controler we would rather expect him to decrease the velocity 
of the system smoothly when it approaches the border line than to let the system 
crash into the border with uncontrolled velocity. 

It turns out that these two problems are closely related. In order to solve them 
we introduce a subset of the contingent cone and according to that also a subset 
to the regulation map. Intuitively we want to say that the system has to decrease 
velocity if it approaches a border line. Technically this leads to: 

Definition 3. (The Velocity Controlled Contingent Set). 
Let K be as in (2). We define the velocity controlled contingent set by 

T$ : K - X with 

T $ ( x ) : = { u E T L ( x ) ~ ~ ~ ( x ) + ( ~ : ( x ) , u ) ~ O  V i = I  , . . . , p  

and (hj(x),u) = O V j  = 1, . . . , q )  

Theorem 4. 
Let K be as in (2). We impose the transversdity condition (4) on K .  Then 

T$(x) is contained in  the contingent cone TK(x). Its graph is closed whenever the 
graph of  x - TL(x) is closed. 
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Conversely we obtain the following inclusion: 

with r K ( x )  := min gi(x)  
i4I(z) l)9:(x) 1 1  

and B the unit ball in X 

In order to prove the theorem we need the following 

Lemma 5. 
The function 7~ : K -10, oo] defined by (1  0) is upper semicontinuous. firther- 

more if there is a constant c > 0  such that 

then YK has Linear growth. 

Proof of the  Lemma.  
Let x ,  E K converge to xo and a, 5 r K ( x n )  converge to ao. xo E I<, since K is 

closed. gi(xo)  > 0  whenever i 6 I ( x o ) .  From that we infer that i 6 I(x,)  for n large 
enough. Hence the inequalities a, ((g:(z,) 1 1  5 gi(xn) hold true for any i 4 I ( x o )  if 
n is large enough. They imply that aollg:(xo)ll < gi(xo) for all i 4 I ( x o ) .  Hence 
ao < Y K ( X O ) .  

The second statement follows directly from the definition of linear growth given 
as in theorem 1. By taking d  = f we achieve l rK(x) l  = r K ( x )  < d(llxII + 
1)  v x .  

Proof of the  Theorem. 
Let u belong to T$(x) .  If i E I ( x )  it follows that (g : (x ) ,  u )  = gi ( z )  + (g:(x) ,  u )  > - 

0. Hence u  E T K ( x ) .  
Conversely let u  belong to TK ( x )  n y K ( x )  B. Then either i E I ( x )  and gi(x)  + 

( 9 : ( ~ ) ,  21) = (g:(x) ,  u )  2 0 ,  or i 6 I ( x ) .  Then g;(x)  > 0  and since llu 1 1  5 rK ( x )  5 
gi ( z )  

Ilgf ( z )  l l  ' we see that g i ( ~ )  + (g:(x) ,u)  2 I ~ ~ : ( x ) I I I I u I I  + (g : (x ) ,  U )  > 0. It follows that 
u  belongs to T$(Z).  

It is left to show that the graph of T$ is closed whenever the graph of Tc is closed. 
Let x ,  E K converge to xo and u n  E T $ ( x ~ )  converge to uo. Since K is closed we 

only have to prove that uo E T$(x0) ,  in other words that gi(zo)  + ( g : ( x o ) )  2 0  Vi. 
Assume that gi(x0) + (g:(zo),  uo) := -e < 0  for one i. We know that there exists 
an n and 61762 > 0  such that ( g i ( ~ n )  + ( g : ( ~ n ) ,  un )  - gi(x0) + ( g : ( ~ o ) ,  uo)  I < E 

provided J ( x ,  - xoll < 61 and Ilu, - U O ( I  < S2. Hence gi(xn)  + (g:(x,), u,) < 
gi(x0) + ( g : ( ~ o ) , u o )  + e = -E + E = 0. But this is a contradiction. 

3. The Velocity Controlled Differential Inclusion. 

Naturally we can also redefine RK(- )  and F(.)  in the new sense: 
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Definition 6. (The Velocity Controlled Regulation Map). 
Consider a control system (U, f )  described by a feedback map U and dynamics 

f .  Let K C dom U be as in (2) .  We define the f velocity controlled regulation map 

R& : K - Z  with 

R$(x)  := { u  E U ( x ) l f ( x , u )  E T$(x)}  

Lemma 7. 
The set valued map R&(-), defined above in ( l l ) ,  is closed. 

Proof. 
This follows from theorem 4. 

Definition 8. 
We consider the same situation as in definition 5. We define the set valued map 

In the following we consider the differential inclusion: 

for almost all t  : x l ( t )  E F0(x ( t ) )  

withtheinitialstate x ( O ) = x o ~ K  given (13) 

Theorem 9. 
Let us assume that the control system (U, f )  has an upper semicontinuous set 

valued feedback map U : X --, Z  with closed values. Let the dynamic of the system 
f : X x Z  -+ X be continuous. Then the graph of F0 is closed. 

Proof. 
We use the fact that the graph of an upper semicontinuous set valued map with 

closed values is closed [4]. Thus we have to show that FO is upper semicontinuous 
and that F 0 ( x )  is closed for all x. The second statement follows directly from 
theorem 4, which says that T$(x)  is closed for all x  and from the assumption that 
U has closed values. Hence it is left to show that FO is upper semicontinuous. 

R$ : X w X defined in (11) is upper semicontinuous since R $ , ~  : X u X with 

R&,,(x) := { u  E Zl(g: (x ) ,  f ( x , u ) )  +g i ( x )  2 0  V i }  and U : X - X are both 
upper semicontinuous and R&(x) = U ( x )  n R & ~ ( X )  for all x. 

Choose x  E K  and E > 0. We have to look for some p > 0 such that the velocity 
set F O ( X ~ )  is a subset of B~ ( F o ( x ) ,  E )  whenever llx - xl 1 1  < p. This means: 

Vxl E K with Ilx - xlll < p : 

vul E R $ ( x l )  3 u  E R$(x) such that 1 1  f ( X I ,  u 1 )  - f ( x ,  u)ll < E. 

Since f is continuous there exist 61, S2 > 0  such that for all u ,  ul E Z  and for all 
x ,  xl E X with llx - xlll < S1 and Ilu - ulll < 62 one has 1 1  f ( x ,  u )  - f ( x l ,  ul)ll < E. 
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We use that R$(.) is upper semicontinuous. Thus there exists v > 0 such that 
R$(x1) C B~(R$(X) ,  b2) whenever llx - xlll < v. In other words: 

V u i E ~ $ ( x i )  3uER$(x)  suchthat IJu-ul l l<b2 

We choose p = min{bl, v} and conclude that whenever llx - xl 1 1  < p, F0(xl ) is 
a subset of B ~ ( F O ( X ) ,  E ) .  

We proved that if the control system (U, f )  obeys the corresponding continuity 
conditions, TKO and hence also R$ as well as FO are closed maps even if the original 
set valued map TK was not closed. We constructed F O  by reducing the set of 
possible dynamics F(x) = { f (x, u ) } , ~ ~ ~ ( ~ )  to those which are velocity controlled, 
i. e. to the set of velocities f(x, u )  with u E R$(x). 

We can now apply these results. First we conclude in theorem 10 that FO is a 
Marchaud map whenever its values are convex and it has linear growth. 

Theorem 10. (Velocity Controlled Viability Theorem). 
We make the same assumptions for the control system (U, f )  as in theorem 9. If 

furthermore FO has linear growth and convex d u e s ,  then F O  is a Marchaud map 
and hence the system (R$, f )  is a Marchaud system. Thus whenever the stronger 
velocity controled viability condition 

holds, there exists for each initial point xo E K and each initial control uo E R$(xo) 
a velocity controled viable solution, that is a solution to the differential inclusion 
(13). Moreover any solution to (13) is viable. 

firtherrnore we claim that the velocity controlled viability condition (14) holds 
whenever the usual viability condition (7) is replaced by 

where -yK(-) is defined as in (10). 

Proof. 
The first statement is true by theorem 9 and the definition of a Marchaud map 

[I]. Viability is then a direct deduction from theorem 1. Invariance holds since 
F0(x) is a subset of TK(x) by definition. 

To prove the last statement, we choose for a given x E K a control u E RK(x) 
such that 1 1  f(x, u)11 5 -yK(x) = min. gi (2)  

~ I ( z )  I I ~ ; ( Z ) ~ I  If i E I(x) then gi(x) = 0 and 
hence gi(c) + (gl(x), f (x, u)) = (g:(x), f (x, u)) _> 0. Let i 4 I(x). We know that 

Ilf (x, u ) ( I  5 TK(X) 5 M. It follows that I(g:(x), f (x, u))l 5 Ilg:(x)llllf (x, u)II 5 
gi(x). We conclude that gi(x) + (g:(x), f (x, u)) 2 O holds in both cases. 

In the following we may not only fix an initial state xo but also an initial control 
UO. Furthermore the theorem provides for the existence of smooth control solutions. 
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Theorem 11. (Smooth Control Solutions for FO). 
Let X and Z be finite dimensional vector spaces. Consider a control system 

(U, f )  described by an upper semi continuous feedback map U  : X --t Z with closed 
values and a continuous dynamics f : X x Z + X, exhibiting linear growth. Let 
K dom U  be defined by inequality conditions as in (1.2). Assume that 

V ( x ,  u )  E ~ r a ~ h ( R $ )  3 v  E DU(x ,  u ) ( y )  s.th: 

(&), Y + fL(x,  U ) Y  - f&, u ) v )  + g:'(x)(f ( x ,  u ) ,  Y )  2 0  vi E I ( x ,  u )  (15) 

where I ( x , u ) : = { i = l ,  . . . , p (g i (  x ) - ( g i ( x ) , f ( x , u ) ) = O )  

Then if the velocity controlled viability condition (1 4) holds there exists for any 
initial state xo E K and any initial control uo E R $ ( X ~ )  a smooth control solution 
(x( . ) ,  u( .))  to the differential inclusion (13) with FO as in (1 2). This means x ( - )  
and u ( - )  are both absolutely continous. 

P ~ o o f .  
In order to apply theorem 2 we have to show that DR$(X,  u)(  f ( x ,  u ) )  # 0. But 

this is, in case where K is given by inequality conditions, equivalent to assumption 
(15). 
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