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Foreword 

This is the third report on work done on time dependent probabilities a t  IIASA. The Interna- 
tional Atomic Energy Agency (IAEA) and the Technical Research Centre of Finland (VTT) have 
cooperated in this work which was initiated in 1990. The underlying mathematical model was 
described for two different cases in the earlier papers. This paper is directed towards solution 
techniques by which the optimal solution for the problem can be found. A special consideration 
in the paper is devoted to  the calculation of the gradient, because the nonsmooth character 
of the model makes this especially cumbersome. The assumptions of the model are relatively 
simple, but can be refined accordingly when necessary. The model is in its first phase and is 
intended to  be used to  obtain qualitative insights on relationships between main variables. The 
model has been tested using a computer code and the results obtained show agreement with 
practical results. 

Comments or proposals for applications of this modeling approach are invited. 

Bjorn Wahlstriim 
Leader 
Social & Environmental Dimensions 
of Technology Project 
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OPTIMAL OPERATIONAL 
STRATEGIES FOR AN 

INSPECTED COMPONENT - 
SOLUTION TECHNIQUES 

U. Pulkkinen and S. Uryas'ev 

1 Introduction 

This paper is a continuation of an earlier IIASA Working Paper entitled "Optimal Operational 

Strategies for an Inspected Component - Statement of the Problem" [3]. This earlier working 

paper presented a mathematical formulation of the optimization problem concerning the oper- 

ational strategies of an inspected component. More specifically, a probabilistic failure model 

of a component which has some initial defects due to an imperfect manufacturing process was 

presented, where the sizes of the defects may increase with random amounts whenever a random 

shock hit the system. The sizes of the defects may be measured with an imperfect device, and the 

measurements were described with another probability model. The inspection measurements, 

repairs and failures of the component were included in the cost model. The aim of the model 

was to find such an operational strategy to minimize the expected costs. The model is in the 

form of a stochastic optimization problem, and the aim of this follow-up paper is to construct a 

solution technique for the problem. 

The solution of the problem requires the differentiation of the objective function which is, in 

this case, a mathematical expectation of a discontinuous function. The objective function cannot 

be differentiated with standard techniques, since interchange of the gradient and the expectation 

operator is not allowed (see, for example [5]). To cope with the problem, we have to use formulae 

for differentiation of integrals over set depending on the parameters. To date, the theory for the 

differentiation of such integrals is not fully developed. Formulae for such derivatives, in general 

case, are described in the papers of E. Raik [4], N. Roenko [6], J. Simon [8]. The gradient 

expressions in these papers have the form of surface integrals, and they are computationally 

inconvenient since the probability measure of such surfaces is equal to zero. 

Uryas'ev [13] expressed the gradient in the form of an integral over a volume. This kind 

of formula is more convenient because stochastic quasi-gradient algorithms (see, for example, 

[1:1,[2],[10] and [14]) can be used for the minimization of integral functions. The paper by 



Uryas'ev [13] provides a formula for the differentiation of an integral over a set given by only 

one nonlinear inequality. In our model the objective function can be expressed as a sum of 

multidimensional integrals over sets defined by several nonlinear inequalities. The general ex- 

pressions for such gradients are known, but these results are not yet published. In this paper 

we apply these expressions to  evaluate the gradient of our objective function. As a special case 

of the general differentiation formula, we prove two lemmas, which are used in calculating the 

gradient of the objective function. 

The solution of the optimization problem by applying the stochastic quasigradient approach 

requires the sampling of the trajectories of the stochastic system. In the case of our model this is 

rather simple due to  the simple probability distributions. We have assumed discrete distributions 

for the numbers of the defects; exponential distributions for the sizes of the defects, the size 

increments of the defects and for the time between successive shocks; and normal distributions 

for the inspection models. The conditional distribution of the failure time is with the piecewise 

linear failure intensity. The methods to  generate (pseudo) random numbers are well known. In 

our case we apply the package C-RAND [9] to generate all random distributions. 

The notation of this paper is based on the earlier Working Paper [3]. 

2 The Calculation of the Conditional Expectations for the 

Cost Function 

The cost function F (z )  = E [ j ( z ,w) ]  can be calculated with the function 

T. top j , t ~  

X(t) dt - Gp Tat, + C [ ~ l x l ( t j )  + G 2 ~ 2 ( t j )  + ~ r x r ( t j ) ]  
j=1 

(see p.18 in [3]). The first term in this formula is a mathematical expectation of costs of the 

component failure; the second is a profit from the component exploitation; the third is a cost of 

the large inspections, small inspections and repairs, respectively. We consider that all random 

values are specified on the probability space (P, F, R) '. The function f(z ,  w) is a discontinuous 

one with respect to  z , since indicator functions ~ ~ ( t ~ ) , ~ ~ ( t j ) , ~ ~ ( t j )  and time moment Tatop 

are discontinuous functions of z. For this reason, i t  is not possible t o  calculate the gradient of 

the function F (z )  as a mathematical expectation of the gradient of the function f(z ,  w )  . To 

calculate the gradient we have to  rewrite the objective function F(z).  Objective function is 

presented as a mathematical expectation of some random function continuously and piecewice 

smoothly depending upon the parameter z .  To smooth over the function j ( z ,  w) we integrate 

'We denote the random variables without the index w  E fl, i.e. the random variable 8 ( w )  is denoted simply 

by 8 ,  whenever it is possible without confusion. 



it with respect to  random variables BV(tj) , 0 5 t j  5 Tat,. More formally, it could be presented 

as a mathematical expectation of the function j(z, w) with respect to a proper a-algebra. 

Further, to simplify investigation we clearly specify random values which generate all stochas- 

tic behaviour of the model: 

1. Initial number of the defects M(0) ; 

2. Initial defect sizes Cl (0), . . . , CMp)(0) ; 

3. Number of the defects M(t5) after repair, j = 1,2,. . . ; 

4. Defect sizes Cl(t;), . . . , CM(t;)(t;) after repair, j = 1,2,. . . ; 

5. Shock points TI, 1 = 1,2, ... ; 

6. Exponentially distributed independent variables 61, b2,. . . , i.e. these variables have density 

function 

Defect increases ACi(tj) (here i = 1,. . ., M,,, j = 1,2, .. . ) are generated by these 

identically exponentially distributed independent variables. Defect increase AC;(tj) is 

equal to the product of the proper value 6, on C;(tj) ; 

7. Signals Bi(tj) caused by the defects ( i  = 1,. . . , M-, j = 1,2,. . . ) . 

We introduce a new a-algebra 31  belonging to the a-algebra 3. The a-algebra 31 is gener- 

ated by the random values specified in items 1-6. It means that if we calculate the mathematical 

expectation of the function j (z, w) with respect to the a-algebra 31, the integration will be made 

only with respect to the random values Bi(tj) specified by item 7. 

Let us fix the variables specified in items 1-6. For given q, 1 = 1,2,. . . denote by V, union 

of all possible inspection time points. This set includes the points TI, 1 = 1,2,. . ., the inspection 

points t i ,  t i , .  . . planed in advance (before operation) and also the inspection points which could 

appear in case of the shift of the schedule for the regular inspections. 

Let us define decision functions 91,92,93 analogously to [3]. We slightly change the definition 

in comparison with [3]. The sense of the functions 91, 9 2 ,  93 can be explained as follows: 

. if 91 (X(t), vl(t)) > 0 , then terminate the operation of the component after a large inspec- 

tion; 



if v2(i(t),  v2(t)) > 0 , then make a repair of the component after a large inspection 

(in case of vl(i(t) ,  vl(t)) 5 0 ) ; 

if ip2(i(t), v2(t)) 5 0 , then continue the operation after a large inspection (in this case 

v1(i(t), ~ l ( t ) )  < 0 ; 

if 3 ( ( t ) ,  v t )  0 then continue the operation after a small inspection without a large 

inspection. 

The decision function v3(i(t), v3(t)) is used after a small inspection. The decision functions 

v2(f(t), v2(t)) and vl(i(t) ,  vl(t)) are used after a large inspection. Since repairs can be made 

only if the operation of the component is not stopped, then 

We denote BY = (81,. . . ,BY).  The set of inequalities B1 2 Btr,  . . . ,BY 2 Btr, we present as 

follows BY 2 (Btr )". For each t E V, , we denote by Qal1(t) a family of sets in the space of signals 

with the structure 

Let 2{O1.- .J)  be a set of all subsets of the time points (0,. . . , t )  . We denote all possible 

Cartesian products of sets with structure (2) - (6) by @:~:~(t), where the time moments are 

varied from 0 to t. For example, the set Balr(0) x . . . x Bae(t) belongs to the set ~:;:~(t) . More 

formally, it can be written as follows 

We denote all possible elements from the @:rd(t) which can lead to a repair at the time t 

by Er(t) C 8:;:d(t) . Analogously, 



are sets, which lead to a termination of the operation, a big inspection and a small inspection 

respectively. 

The mathematical expectation of the function f (z, w )  with respect to the a-algebra 3 1  can 

be written as follows 

The last expression can also be presented as 

where N1(0),  N2(0 ) ,  and Nr(0)  denotes number of the large inspections, the small inspections, 

and the repairs for the sequence of sets O . Denote 

then 

Since all random variables specified in items 1-6 (see page 3) are fixed, then for 

the probability measure is presented with the product 

Let us calculate a conditional probability measure for some concrete set Ot E Oal1(t) . If, for 

example, 



then (see [3], page 9) 

Analogously, P(O, 1 . . , 0 0 ,  31 ) can be calculated for all 0, from the sets OalI(z), 

1 5 z 5 T- . Since the function P(O, 1 . . , 00, 31 ) is conti,nuous and piecewise smooth 

with respect to variable z , formula (7) can be used for the calculation of the gradient estimate 

of the cost function F(z)  = E [ j ( z ,w) ]  . 

3 The Calculation of the Gradients for the Cost Function 

The function j(z,w) is continuous and piecewise smooth with respect to  variable z (see for- 

mula (7)). Analogous to  [5], we can interchange the gradient sign 

Let us calculate v,~(z,  w) (see (7)) 

Thus, to calculate v,j(z,w) we have to calculate V,P(O I 31 ) for O E Z,top(t) for t E V, , 
0 5 t 5 T-, . If O = (Oo x . . . x Ot) , then (see (10)) 

Now with (13) and (14) we have 

Further we show that for any Ot E Oarr(t) the calculation of V,P(Ot 1 Ot-1,. . . , 0 0 , 3 1 )  Can be 

reduced to the calculation of the gradient of the functions 

where 



Q" qtr = - and 
' 

The calculation of a gradient for the conditional probability of sets (2) and (4) can be reduced 

to  the calculation of the gradient of the function Z(z). The calculation of a gradient for the 

conditional probability of sets (3) and (6) can be reduced to  the calculation of a gradient of 

the function Z1(z). The calculation of a gradient for conditional probability of set (5) can be 

reduced to  the calculation of a gradient of the function Z(z) or the function Zl(z). To illustrate 

this let us calculate, for example, the partial derivative of function (12) with respect to  the 

variable z: 

Further, we have (see (31),(32) and (26) in [3]) 

X1(t) + pl exp { -~o/Pl )  C oilh (t) - (z: + zit) = 
i=l 

Thus, 



and the calculation of the derivative 

is reduced to the calculation of the derivative of the function Z ( z )  (see (16)).  

For some vectors y" E R" , BY E R" , we denote 

" api(ei) divpU(B") = C - 
i=l ae, - 

Now we present a lemma about the derivative of the function Z ( z ) .  

Lemma 3.1 Let the set (8" E R" 1 h"(Bu) < z ,  BY 2 (Btr)" ) be non-empty for some open 

neighborhood of the point z .  The function Z ( z )  (see formula (16)) is differentiable, and the 

derivative is given by the formula 

Proof. Here we give only an idea of the proof. A more detailed proof can be written analo- 

gously to [13]. In this case, it is not possible directly to apply the results of the paper [13], since 

the integration (see (16)) is made over the set with the simple constraints BY 2 (Btr  )". 

Let us calculate Z ( z  + A z ) .  Using the Taylor's series it is easy to show that 

We will make an increment A z  in the argument of the function Z ( z )  and change the variables 

BY = yY + AZ p"(yY) in the integral 

Z ( z  + A z )  = / ~.(B:c) do' = 
hv(BY) 5 z+Az , 

ow 2 (BtT)" 



Integral (25) can be presented as 

We can write integral (24) as follows 

J 

h v ( ~ " )  S z ,  
yV+Azp" (y")  > ( O t r ) "  



Formulae (24) - (27) imply 

The last equation proves the lemma. 

Analogously to  lemma'3.1 we can prove a lemma about the derivative of the function Zl(z). 

Lemma 3.2 Let the set {Bv E Rv I hv(Bv) < z ,  BY 2 (Btr)v) be non-empty for some open 

neighborhood of the point z.  The function Zl(z) (see formula (16)) is diflerentiable, and the 

derivative is given by the formula 

Remark. Lemmas 3.1 and 3.2 are also true for an arbitrary function jv(Bv, C)  and any func- 

tions hv(Bv) and pv(Bv) satisfying equation (23). We suppose that for these functions integrals 

(21),(22), (28) and (29) exist. 

Finally, we can calculate the gradient of the objective function F(z)  = E [ j ( z ,  w)] using formula 

(15) and lemmas 3.1 and 3.2. 

4 A Solution Algorithm 

4.1 A Stochastic Quasi-Gradient Algorithm 

Let us consider the following optimization problem 

F ( x ) = E [ ~ ( x , w ) ]  -+ m i n ,  
xEX 

(30) 

subject to the dynamics of the process X ( t )  , i ( t )  (see Sections 2 and Subsection 3.2. in [3]). By 

X we denote a feasible set for the decision vector z , i.e. 



where 21, T I ,  I = 1,. . . , 6  are low and upper bounds for variables zl , I = 1,. . . , 6  . 

To solve this problem one can use a gradient-based method. Note that for the computation 

of the gradient VxF(z) , formulae (15) and 

can be used. However, these formulae would be difficult to implement, since it would require 

computation of number multi-dimensional integrals. In order to  avoid this, stochastic quasi- 

gradient algorithms can be used (see, for example, [I] and [2]). One of the most simple stochastic 

quasi-gradient algorithms has the form 

where s is a number of the algorithm iteration; zd is the approximation of the extremum on the 

sth iteration; IIx(.) is the orthoprojection operation on the convex set X; p, > 0 is a step size; 

and is a stochastic quasi-gradient satisfying the following property 

i.e. the conditional expectation of the vector is equal to  the gradient of the function F (z )  

at  the point z'. Results of computation experiments show that the algorithm (32) rapidly 

leads to  the point of the extremum if the objective function is not ill-conditioned, i.e., for non- 

"ravinen functions. In cases where the function f (z) is "ravine", the algorithm gets stuck "at the 

bottom of the ravine". This difficulty may be overcome by using more complicated stochastic 

quasigradient algorithms with averaging (see, for example, [lo]), or variable metrics algorithm 

[12] with metric transformation. 

For improving the convergence rate of the algorithm (32), we use here stochastic quasi- 

gradient algorithm with adaptively controlled step sizes (see [12] and [14]) and the scaling pro- 

cedure, suggested by Saridis [7] 

where H a  is a scaling matrix. The scaling procedure and adaptive control of step size con- 

siderably improve the practical convergence rate of the algorithm (32). The scaling matrix is 

calculated as follows 



where 

n = 6 is the dimension of the control vector z ; 

0 5 k,+l 5 n is the quantity of numbers i for which (f+'(zq - z;+') > 0 . 
Step size p, is given by the following recursive relations 

if Pa+l/pa > 3, 

P ~ + I / P ~  < 1/47 

, otherwise . 

In formulae (34) and (35), an additional reduction of the step size occurs only if the value T, is 

negative. The recommended values of parameters are 

Note that the considered algorithm has a natural termination criterion for the iteration process. 

In the neighborhood of extremum the value IlAz8+'ll becomes small and tends to zero. Therefore, 

for the procedure t o  terminate, we may use the following averaged value Q, 

If Q, 5 c , the process is terminated. Here c is some positive constant which characterizes the 

required precision of the solution. 

4.2 A Stochastic Quasi-Gradient Calculation 

Equation (31) implies that in the case considered a stochastic quasi-gradient can be computed 

by the formula vZf(zd,wa) . Here w' denotes a sample at  the sth iteration of random val- 

ues specified in items 1-6 (see, page 3). It is much simpler to  calculate ~ ~ f ( z , w )  than 



E [v2f(z8, w)]  , because it does not require integration with respect to random variables spec- 

ified in items 1-6. Nevertheless, it is necessary to calculate V2P(0 I 31 ) for some 0 E 0:~;~(t) 

for t E V, , 0 5 t 5 T,, (see 13) . We do not actually need to calculate V2P(0 I TI ) exactly. 

As it was mentioned before, it is sufficient to use Monte-Carlo estimate of this vector. 

The gradient v2f(zd, w') can be estimated during one run of the model. Suppose, some 

sample of the model is known. It means that all random values specified in items 1-7 (see page 3) 

are sampled. In this case, some sequence of sets 8; x . . . x is calculated together with 

the value T(Q8, T,tq) . It can be seeing from formulae (9) and (15) that the difference between 

them is in the term 

Therefore, to calculate an estimate of the gradient v,~(z',w') , we can multiply the value 

As it was mentioned before, the calculation of V,P(O: 1 . . ,0&, Fl ) can be reduced to 

the calculation of the derivative of the functions Z(z) and Zl(z) (see (16)). According to 

lemmas 3.1 and 3.2 the derivatives % and are presented as a sum of integrals. The 

calculation of a gradient for the conditional probability of sets (2), (4) and (5) can be reduced 

to the calculation of a gradient of the function Z(z). According to lemma 3.1, 

Integrals (37) and (38) are calculated with the density function j,(eY, C). Thus, we can use for 

the estimation of the the same random generators as in the generation of the trajectory 

of the model. Analogously, the calculation of a gradient for the conditional probability of sets 

(3) and (6) can be reduced to the calculation of the gradient of the function Zl(z) 



Instead of the exact calculation of the value P(43: I . . ,436, F1 ) in the formula (36), we 

can also use some approximation of this integral (for example, Monte-Carlo approximation). 

The trajectories and stochastic quasi-gradients, t8 , should be sampled for each value of the 

argument of the objective function, z8 . 

5 Conclusions 

In the paper we have proposed a stochastic quasi-gradient algorithm for the optimization of 

operational strategies. We have derived an expression for calculating the gradient of the objective 

function. The gradient is presented as a sum of rather simple integrals. Furthermore, the 

gradient is estimated with Monte-Carlo techniques. This expression is used for the calculation 

of stochastic quasi-gradient (stochastic estimate of the gradient). 

The model discussed in the earlier working paper [3] and in this paper is intended for find- 

ing of the optimal operational strategies for an inspected component. Similar problems are 

encountered in many contexts in the field of reliability and risk analysis of technical systems. 

The models of failure phenomena in these analyses are case dependent, but the structure of the 

optimization problems is the same as here and the same solution techniques can be applied. One 

of the most fruitful application areas is the optimization of the operational and maintenance 

strategies of components, which are subject to  aging (see, for example, 1151). 
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