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Foreword 

Since its foundation IIASA has played an important role in proving the 
power of dynamical system theory for understanding the behavior of natural 
and exploited resources. 

Insect pest outbreaks in forest ecosystems, selfpurification in rivers , lake 
management and exploitation of fish stocks, are examples of the research 
carried out at IIASA in this field. During the development of these stud­
ies, a great deal of attention has been paid to the problems of randomness 
and discontinuity of ecological systems which, indeed, are very often unpre­
dictable and undergo catastrophic transitions. These very complex issues 
can be nowadays highlighted by suitably combining basic results of bifurca­
tion theory of nonlinear systems and powerful numerical techniques. This is 
exactly what has been done in Summer 1991 by some scientists who have in­
vestigated, within the Dynamic Systems Project, the relationships between 
seasons and chaos in ecosystems . The present research report combines two 
journal articles which were published concerning this theme. They show 
that the strength of the seasons (i.e., the latitude) is a key factor for un­
derstanding the strange behavior of the ecosystem and that chaos can be 
present in an assembly of different communities provided that the rhythm of 
the seasons suitably interferes with the endogenous rhythms of the biological 
processes. The first paper by Rinaldi et al. studies a general predator- prey 
model describing the behavior of two interacting populations in a periodic 
environment. Multiple attractors and catastrophic transitions are proved to 
exist and the two classical routes to chaos (toms destruction and cascade of 
period doublings) are numerically detected. The second paper by Doveri et 
al. presents a seasonally perturbed plankton- fish model composed by five 
compartments: nutrient, algae, zooplankton, young fish, and adult fish. The 
bifurcation analysis of the model supports the conclusion that the dynamics 
of plankton communities can easily be chaotic provided that the strength of 
the season is sufficiently strong. In particular, the paper shows why large 
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year to year differences in young fish survival need not always be attributable 
to external factors like interannual weather variability. 

Peter de Jdnosi 
Director 
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The dynamics of a plankton-fish model comprising phosphorus, algae, 
zooplankton and young fish are analyzed for different values of average light 
intensity, phosphorus concentration in the inflow, and adult fish biomass. Light 
intensity and water temperature are periodically varied during the year, while the 
other parameters are fixed at realistic values. The analysis is carried out with a 
continuation method for the study of the bifurcations of periodically forced 
continuous-time nonlinear systems. The large number of bifurcations of different 
types indicates that the dynamics of the model can be very complex. In fact, 
multiplicity of attractors, catastrophic transitions, subharmonics of various periods, 
cascades of period doublings, and strange attractors arise for suitable values of the 
parameters. The results are in agreement with the most recent theories on food 
chain systems and periodically forced predator-prey systems. They also suggest 
that large year-to-year differences in food chain dynamics need not always be 
attributable to external factors like interannual weather variability. © 1993 Academic 

Press, Inc. 
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1. INTRODUCTION 

Historical time series of plant, animal, and human populations are often 
so irregular that it is hard to imagine that these populations are near an 
equilibrium. Nevertheless, some sort of periodicity is sometimes detectable 
in these time series. Examples of this kind are insect- pest outbreaks in 
forests (Royama, 1984 ), algae blooms in artificial reservoirs and lakes 
(Harris, 1986), fluctuations of some animal populations (Schaffer, 1984 ), 
dynamics of childhood diseases (Schaffer and Kot, 1985 ), and many others. 
Nevertheless, also in these cases, the deviations from a periodic pattern are 
conspicuous. Such deviations were attributed to various difficulties that 
arise when collecting data (measurement noise), or to fluctuations of 
environmental factors influencing the populations (process noise). In other 
words, scientists believed that, if the absence of measurement and process 
noise, populations would be constant or periodic and that all deviations 
from these modes of behavior would be due to random accidents. 

The discovery that nonlinear dynamical systems can behave in a purely 
chaotic way in the absence of exogenous noise sources has radically 
modified this belief. In other words, it could be that many of the deviations 
of a population from an equilibrium or a cycle are due to the internal 
mechanisms of reproduction and growth of the population and not to the 
influence of external forces. May ( 1974) was the first to point out this 
possibility in a study on insect populations with nonoverlapping 
generations. Since then, the problem of deterministic chaos in population 
dynamics has been intensely investigated. The analysis of many classical 
models has proved that chaos may arise for suitable values of the 
parameters characterizing the population. Among these studies we can 
recall those on parasitism (May, 1985; Lauwerier and Metz, 1986), 
competition (Gilpin, 1979), sex (Caswell and Weeks, 1986), and predation 
(Inoue and Kamifukumoto, 1984; Schaffer, 1988; Rinaldi et al., 1993) and 
the recent investigations on food chains (Scheffer, 1991; Hastings and 
Powell, 1991) and on a chemostat with a predator, a prey, and a 
periodically forced inflowing substrate (Kot et al., 1992 ). However, 
detecting chaos from real population data, which are, in any case, affected 
by some kinds of noise, is, at least, equivocal. Identifying the presence 
of deterministic chaos in such time series requires the capability of 
distinguishing between nonchaotic time series affected by noise and chaotic 
time series affected by noise. Nevertheless, the use of numerical techniques 
has allowed different authors to conjecture the presence of chaos, for 
example, in the dynamics of the Canadian Lynx population (Schaffer, 
1984 ), in the growth of some species of trees (Gutierrez and Almira!, 1989), 
and in certain childhood disease epidemics (Schaffer and Kot, 1985; Olsen, 
1987; Kot et al., 1988; Sugihara and May, 1990). As a result population 
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communities have all the ingredients of strongly nonlinear dynamics (for a 
debate on the importance of chaos in biology see Schaffer and Kot, 1986; 
Berryman and Millstein, 1989; Pool, 1989a, b ). 

This paper is devoted to the study of a model of plankton dynamics in 
a seasonal environment. In addition to the effects of light, temperature, and 
nutrients on the planktonic system, we take the impact of planktivorous 
fish into account. Traditionally, this aspect is rarely considered in plankton 
models (see, e.g., Jorgensen ( 1983) for a review), although the dominant 
influence of fish on plankton in many aquatic systems is now documented 
by a large number of studies (e.g., Lamarra, 1975; Leah et al., 1980; 
Cronberg, 1982; Shapiro and Wright, 1984; Reinertsen and Olsen, 1984; 
Levitan et al., 1985 ). Field data and laboratory experiments show that the 
dynamics of the populations coexisting in a water body are rather complex, 
although some general patterns are mostly identifiable. A well known 
scenario is the occurrence of a spring bloom of algae follwed by a 
zooplankton peak inducing a clear water phase, which, subsequently, 
changes to a more turbid situation with low zooplankton densities 
(Sommer et al., 1986). In other cases continuing regular density oscillations 
are found, especially of large Cladocerans (McCauley and Murdoch, 1987). 
Often, however, field data on plankton show considerable irregularity. 
Algae do peak in early Summer (blooms), but the amplitude and the time 
of occurrence of these blooms and subsequent zooplankton peaks are often 
quite different from one year to the next. The concentration of the limiting 
nutrient (in general phosphorus), as well as the biomass of young fish 
feeding on zooplankton, follows a simpler pattern during the year, but 
these patterns often vary conspicuously and aperiodically through years. In 
short, recorded time series of phosphorus, algae, zooplankton, and fish 
clearly point out two characteristic frequencies. A low frequency ( 1-year 
period) obviously due to the 1-year periodicity of the environmental factors 
(light intensity, water temperature, etc.) regulating the growth of all species 
involved in the process, and a high frequency (1- to 2-month period). 
Nevertheless, random deviations from the average periodic pattern are not 
negligible. These deviations have been, until now, explicitly attributed to 
the unpredictable fluctuations of environmental factors. In other words, 
algae, zooplankton, and fish populations would have exactly the same 
pattern repeating each year (periodic solution of "period one") if the 
environment were perfectly periodic. 

With no intention of underestimating the role of the environmental 
randomness, we present in this paper the results of a study which shows 
that plankton dynamics can be intrinsically chaotic. This fact could have 
been somehow conjectured by a naive analogy with the most recent results 
on periodically forced predator-prey systems (Rinaldi et al., 1993; Kot et al., 
1992). But the models discussed in these contributions are not suited for 
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describing the planktonic system. For this reason we have performed a 
systematic and detailed analysis of all possible modes of behavior of a more 
complex model. Our model is composed by five compartments, namely, 
phosphorus, algae, zooplankton, young fish , and adult fish (the last 
considered as a parameter) and encapsulates the most important processes 
(influcence of light intensity and nutrient concentration on algal growth, 
functional response of zooplankton and fish, recycling of phosphorus 
through excretion, decomposition, and mineralization, temperature 
dependence of growth, mortality rates, and so forth). The discussion 
is carried out with respect to three parameters: latitude, phosphorus 
concentration of the inflow, and fish biomass. Light intensity, water 
temperature, and recruitment of young fish are taken as periodically 
varying input functions of the model, while all other parameters are fixed 
at realistic values. The analysis shows that such a model has very complex 
dynamics, comprising multiple attractors, catastrophes, subharmonics, and 
chaos. Multiplicity of attractors can lead to high sensitivity to noise; 
catastrophes imply conspicuous variations of the populations for small 
variations of strategic parameters; subharmonics correspond to periodic 
behavior with long periods (3, 4, ... years); chaos implies no periodicity 
whatsoever although patterns may look periodic at first sight. 

The paper is organized in sections. In the next section we present our 
model and outline its limitations. In Section 3 the continuation method 
used to compute the bifurcations of the model is described. In the fourth 
section we present the results of the analysis in terms of bifurcation curves 
in two-dimensional parameter spaces. The presence of chaos is detected by 
means of Poincare sections which point out the fractal geometry of the 
attractors. Finaly, in Section 5 we summarize the results and outline the 
most important directions for further research. 

2. MODEL DESCRIPTION 

The model considers the part of the aquatic ecosystem depicted in Fig. 1. 
Each compartment shown in the figure corresponds to one state variable in 
the model, except for the biomass of "adult fish," which is kept constant, 
as is discussed later. Obviously, the variables represent complex groups of 
species. Assuming that hydrology is constant the formulation of the model 
JS 

F= 13(P0 -P)-A'PA + pAm! A+ p 2 mi_Z + PFmPF 

+~zZ'Pz +~FF'PF (1) 

A= eA A'PA - Z'P2 -m!A-13A (2) 

Z = e2 Z'P 2 - F'P F- V0 'P v0 - mj_Z - 13Z (3) 

F=eFF'PF-m"!J+ V0 i(t, L 0 )-Fd(t, L 0 ) , (4) 
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FIG. 1. The flow of material in the phosphorus-plankton- fish model. Connections 
between the two fish compartments represent recruitment and aging processes. In the model 
each compartment is described by a single variable and adult fish V0 is assumed to be 
constant, while all other variables (P, A, Z, F) are in accordance with a differential equation 
(mass balance). 

where the four functional responses 'P are given by 

and 

p L 
'PA=f3~ kA+P.yA+L 

A 
'Pz=fJi kz+A 

z 
'JfF=fJi kF+Z 

z2 
B* -- 2 'Jf = Vo k2 + Z Vo Vo 

P =phosphorus concentration 

A =algal concentration 

Z = zooplankton concentration 

F = young fish biomass 

V0 =adult fish biomass 

P 0 =phosphorus concentration in the inflow 

L 0 =average light intensity 

L =light intensity 
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PA (p 2 ) (p F) =amount of nutrient released by decomposition of a unit 
of dead algae (zooplankton) (young fish) 

~ z ( ~ F) =amount of phosphorus excreted by zooplankton (fish) per 
unit of algae (zooplankton) eaten 

m! (m±) (mi)= mortality rate of algae (zooplankton) (young fish) 

b =inverse of retention time 

e A ( e z) ( e F) =efficiency of algae (zooplankton) (young fish) 

i(t, L 0 ) =recruitment rate of young fish 

d(t , L 0 ) =aging rate of young fish 

y = self-shading capacity of algae 

/3! =maximum rate of phosphorus uptake 

f3± =maximum grazing rate of zooplankton 

/3t (f3t
0

) =maximum predation rate of young (adult) fish 

k A, k 2 , kF , kv
0
=halfsaturation constants (i .e., values of A, Z, F, and 

V0 at which the corresponding functional responses are half maximum). 

Table I gives the dimensions of parameters, the range of realistic values, 
and the relevant sources of this information. In all figures which follow 
phosphorus concentration (P) is in mg P 1- 1

, while algal (A), zooplankton 
(Z), and young fish (F) concentrations are in mg dw 1- 1

. The stars ( *) 
appearing in Eq. ( 1)- (4) denote a temperature dependence. In accordance 
with the most commonly used Q 10 approximation of Arrhenius law, all 
parameters varying with temperature are assumed to double every 10°. The 
corresponding values at 20° C are indicated in Table I without *. 

Light intensity L and water temperature T are assumed to be sinusoidal 
functions of t (day), 

( 
. 2n ) L(t)=L0 l+ c: Lsm

365
t 

T(t) = T0 ( 1 + C: r sin 
3

2

6
11:
5 

(t- rr)), 

where t = 0 at Spring Equinox. In order to reduce the number of 
parameters, the average light intensity L 0 , inversely related to latitude, has 
been selected as an independent parameter, while r T has been fixed to 
80 days and c: L, T0 , and C:r have been related through linear regression to 
L 0 using data of lakes at different latitudes. The result is 

C: L = 2.3027 - 0.0048Lo 

T0 = 0.034L0 

C: r;,,,0.8c:L= 1.8421 - 0.0038L0 . 
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TABLE I 

The Parameters of the Model, Their Units, Their Minimum and Maximum Values, 
and the Sources of Information Supporting These Data 

Parameter Units Min value Max value Source of information 

Lo calc m - 2 day - 1 300 400 Hutchinson, 1957 

Vo mgdwl - 1 0.5 3 Scheffer, 1992 

Po mg p1 - 1 0 2 Vendegnaand Teruggi, 1984 

mA day - I 0.05 0.4 Scheffer, 1992 

mz day - I 0.1 0.25 Scheffer, 1992 

mF day - I 0.01 0.03 Scheffer, 1992a 

eA mgdw(mg PJ - 1 70 125 Scheffer, 1992" 

ez - 0.5 0.7 Scheffer, 1992 

eF 0.4 0.6 Scheffer, l 992a 

PA mg P(mg dw) - 1 2.85 x 10 - 3 4.65 x 10 - 3 Scheffer, 1992" 

Pz mg P(mgdw) - 1 2.85 x 10 - 3 4.65 x 10 - 3 Scheffer, 1992° 

PF mgP(mgdw) - 1 2.85 x 10 - 3 4.65 x 10 - 3 Scheffer, 1992° 

~z mgP(mgdw) - 1 4.5x10 - 3 9.5 x 10 - 3 Scheffer, 1992a 

~F mag P(mgdw) - 1 4.5x10 - 3 7.5 x 10 - 3 Scheffer, 1992° 

l' ca1cm- 2 day - 1(mgdw) - 1 l 120 180 Steemann and Hansen, 1959 
(5 day - I 0 0.05 Matsamura and Sakawa, 1980 

/3 A mg P day - 1(mg dw) - 1 0.005 O.D15 Scheffer, 1992 

/3 z day - I 0.5 0.7 Matsamura and Sakawa, 1980 

{J F day - I 0.10 0.20 Scheffer, 1992" 

{J Vo day - I 0.4 0.6 Scheffer, 1992 

kA mgPl - 1 0.01 0.03 Matsamura and Sakawa, 1980 
k z mgdw 1- 1 0.05 0.13 Matsamura and Sakawa, 1980 
k F mgdw1 - 1 0.25 0.75 Scheffer, 1992° 
kvo mg dw 1- 1 0.8 1.2 Scheffer, 1992 

Note. In all figures of the paper, unless explicitly stated, the parameters are equal to the 
central value of the range indicated in this table. 

" and references therein. 

In the following we describe briefly the rationale behind the model 
formulation, concentrating on the less traditional aspects of it. 

The phosphorus equation ( 1) contains the following terms: net input, 
uptake by algae, release from decomposing algae, zooplankton, and fish 
and finally excretion by zooplankton and fish. The concentration P0 is kept 
constant and is used to set the nutrient level in the system. Seasonal 
variation _ in processes like uptake by and release from sediments and 
aquatic macrophytes are neglected. Nutrient release from decomposing 
organisms is considered an instantaneous process, and excretion by 
zooplankton and fish is taken proportional to their consumption rates. 

The algal equation (2) consists of a growth term, mortality due to 
zooplankton grazing, basic mortality, and an outflow from the system. The 
growth 'PA, obviously dependent upon phosphorus concentration, is also 
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a function of light. The Monod function for light dependence can be easily 
justified (Cornelli, 1989) and serves to describe the competition effect due 
to self shading. The grazing 'P z by zooplankton is also written as a Monod 
formulation (type II functional response). 

Zooplankton, in the model, should be thought of as large Cladocerans­
like Daphnia species. This group represents the most dominant grazers of 
algae and is also most vulnerable to fish predation (Scheffer, 1992, and 
references therein). Concerning the zooplankton equation (3) it should be 
noted that there are two different predation losses, one for adult fish , and 
one for "young of the year" fish. Young fish are supposed to have a type II 
'PF functional response, whereas the adult fish have a type III functional 
response 'P v0, because unlike the young fish , the larger animals are able to 
switch to alternative prey (Scheffer, 1992). 

The equation for fish ( 4) is probably the least traditional part of the 
model. Generally, plankton and fish dynamics are not described in the 
same model. The rationale behind this is that the characteristic time scales 
of these groups differ quite substantially. This might be true if one focuses 
on the total biomass of the fish population, but certainly not if the 
planktivorous capacity is of interest. Young fish of almost all species go 
through a stage at which they are obligatory planktivores. Therefore, the 
yearly recruitment, which often gives rise to massive peaks of young fish , 
causes the predation pressure of the fish community on zooplankton to 
show a pronounced seasonal peak. Unfortunately, it is not reasonable to 
put this peak into the model as a forcing function, since it is known that 
there are large interannual differences in young fish survival, depending 
on the availability of plankton at the moment that young fish are in their 
planktivorous stage. Equation ( 4) shows how this complex interaction with 
fish is incorporated in the model. The number of adult fish, as mentioned 
before, is treated as constant with respect to the time scale of interest. 
Young fish have a consumption dependent biomass growth and a fixed 
mortality. In addition, there is an input, proportional to the number of 
adult fish representing recruitment, and an output representing the aging of 
young fish. Obviously, the latter process would put them in the adult fish 
class, if this class were modelled dynamically. The input and output of 
young fish are uniformly spread over some time. The timing of recruitment 
is especially relevant in this context. It is formulated in such a way that the 
input process is finished 6 weeks after the temperature reaches 14 ° C, which 
is the moment that, on average, young fish start to forage heavily on large 
zooplankters. More precisely, the recruitment function i(t, L 0 ) is equal 
to 0.005 for 20 days starting from day r; = 158 - 0.26L0 (typically the 
beginning of May) and 0 otherwise, while the aging function d(t, L 0 ) is 
equal to 0 for 120 days starting from day r;, and to 0.05 for the rest of the 
year. 
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The model is rather complex compared to traditional models used up to 
now. Although crude simplifications are made, and many potentially 
interesting factors are still left out of consideration, the number of 
parameters is large. This prohibits an extensive analysis over the complete 
parameter space. After it has been checked that the qualitative behavior of 
the model is sound for all realistic values of the parameters, the strategy 
has therefore been to analyze the behavior of the model with respect to just 
three parameters: the light intensity (L0 ), the phosphorus loading (P 0 ), and 
the adult fish biomass ( V0 ). All other parameters are fixed in the middle of 
the realistic ranges given in Table I. 

3. THE METHOD OF INVESTIGATION 

The model, adding the equation i = 1 (t mod 1 year), can be 
transformed into an autonomous five-dimensional system for which 
four-dimensional Poincare section and four-dimensional first return map 

(P(O), A(O), Z(O), F(O)) .-+ (P( 1 ), A( 1 ), Z( 1 ), F( 1)) 

can be defined (Arnold, 1982; Guckenheimer and Holmes, 1983). This map 
specifies the values P(l), A(l), Z(l), F(l) that the four state variables have 
at the end of the year, once the values P(O), A(O), Z(O), F(O) that the same 
variables have at the beginning of the year are known. Fixed points of the 
kth iterate of the map correspond to periodic solutions with period k years. 
We refer to these points as period k fixed points. It should be noted that 
a periodic solution with period k corresponds to a k-ple of period k fixed 
points of the Poincare map. Closed and regular curves (invariant tori) on 
the Poincare section correspond to quasi-periodic solutions, while irregular 
invariant sets (strange attractors) correspond to chaotic solutions. Fixed 
points of the Poincare map can bifurcate at some parameter values. In the 
following we discuss bifurcations in two-dimensional parameter spaces and 
therefore talk of bifurcation curves. In all our figures we display only 
bifurcations involving at least one attractor because only these bifurcations 
are of biological interest. 

We use the following notation for fixed point codimension one 
bifurcations. 

J<k)_flip (period doubling) bifurcation curve. For parameter values on 
this curve the map has a period k fixed point with a multiplier µlkJ = -1. 
When this curve is approached, a stable cycle of period k loses stability and 
smoothly becomes a stable cycle of period 2k. 
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t(kl_tangent (fold) bifurcation curve. For parameter values on this 
curve the inap has a period k fixed point with a multiplier µ\kl= 1. On this 
curve a stable and an unstable cycle of period k collide and disappear. 

The bifurcation curves presented in the following section have been com­
puted by means of a continuation method interactively supported by the 
program LOCBIF developed by A. Khibnik, Yu. A. Kuznetsov, V. Levitin, 
and E. Nikolaev at the Research Computing Centre of the USSR Academy 
of Sciences at Pushchino. The method can be briefly described as follows 
(Khibnik, 1990a, b ). Each bifurcation curve is computed by projecting a 
one-dimensional manifold located in the six-dimensional space (P, A, Z, F, 
Pi, p 2 ) on the (pi, p 2 ) plane, where Pi and p 2 are two parameters (for 
example, P0 and L 0 ). The manifold is determined by the four fixed point 
equations and by a bifurcation condition imposed on the multipliers of the 
fixed point. This condition is written using the characteristic polynomial 
det(J - µI), where J is the Jacobian matrix of the proper iterate of the 
Poincare map at point (P, A, Z, F) and I is the 4 x 4 unit matrix. More 
precisely, the bifurcation conditions are det(J +I)= 0 for flip bifurcation 
and det(J - I)= 0 for tangent bifurcation. In the program LOCBIF the 
bifurcation curves are computed by means of an adaptive prediction­
correction continuation procedure with tangent prediction and Newton 
correction. All relevant derivatives, as well as the Poincare map, are 
evaluated numerically. 

4. ANALYSIS OF THE RESULTS 

In this section we present and interpret bifurcation curves in the 
parameter spaces (P 0 , L 0 ) and ( V0 , L 0 ). These curves are only some of the 
bifurcation curves we have obtained. In particular, we do not display bifur­
cation curves involving only unstable modes of behavior, because they are 
of no biological interest. (They are needed only if one likes to fully under­
stand the global bifurcation structure of the system from a purely formal 
point of view (Kuznetsov et al., 1992).) We also do not show bifurcation 
curves that we have detected only in very small regions of the parameter 
space because we are not sure whether they correspond to relevant 
phenomena. For these reasons, the analysis is not complete and the modes 
of behavior we point out are only samples of the dynamics of our 
plankton- fish model. Nevertheless, these samples are quite interesting and 
refer to characteristic phenomena that we have checked to be robust with 
respect to parameter perturbations. 

In order to be as clear as possible, we present the results in three 
different subsections dedicated, respectively, to multiplicity of attractors, 
catastrophes, and chaos. 



A PLANKTON-FISH MODEL 169 

4.1. Multiplicity of Attractors 

It is already known (Muratori and Rinaldi, 1989; Scheffer, 1992) that 
even the most rudimentary food chain model composed of a prey, a 
predator, and a constant superpredator has multiple attractors in the 
absence of seasonalities. On the other hand, it was pointed our recently 
(Rinaldi et al., 1993) that periodic variations of environmental factors can 
easily give rise to multiple attractors even in the simple predator-prey 
models which have only one attractor in a constant environment. Thus, 
multiplicity of attractors may also be expected in our plankton-fish model, 
which is more complex than a simple food chain and has many periodically 
varying factors. 

Figure 2 shows two sets of bifurcation curves in the parameter space 
(P0 , L 0 ). In Fig. 2a we have two branches of a tangent bifurcation of 
period 1. In the shaded region delimited by the two curves, the system has 
two stable cycles of period 1 and an unstable cycle of period 1. When a 
bifurcation curve t 0 ) is crossed coming from inside the shaded region, one 
of the two stable cycles collides with the unstable one and disappears. 
Thus, in the shaded region we have coexistence of two distinct stable cycles 
of period 1, while outside that region we have only one stable mode of 
behavior. Figure 3 shows the two coexisting attractors for point l of Fig 2a. 
In both cases algae peak three times per year and zooplankton peaks 
(essentially) two times per year, but the amplitudes of the oscillations are 
quire different. Of course, each of these attractors has its own basin of 
attraction, so that, in the presence of heavy intermittent noise, the system 
will randomly visit the two attractors. 
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FIG. 2. Bifurcation curves in the two-parameter space (P 0 , L0 ) with V0 = 1.00. 
(a) Tangent bifurcations of period 1 (on the two curves t(l 1, a stable and an unstable periodic 
solution of period I collide and disappear). (b) Tangent and flip bifurcations of period I 
(crossing the flip curvef(lJ from the left to the right a stable periodic solution of period 1 loses 
stability and becomes a stable periodic solution of period 2). Units are as in Table I. 



FIG. 3. Coexistence of attractors. Two stable periodic (a) and (b) solutions of period 1 
corresponding to the same parameter values, P 0 = 0.346. L 0 = 308, V0 = 1.00. See point 1 of 
Fig. 2a. In the second attractor (b) algae and zooplankton blooms are much more marked. 
Concentrations are in mg dw 1- 1• 

Figure 2b shows another set of bifurcation curves, namely flip of period 
and tangent of period 1. When the flip bifurcation curve j< 1 l is crossed 

from below, a stable cycle of period 1 loses stability and becomes a stable 
cycle of period 2. In the shaded region of Fig. 2b we have two attractors: 
a cycle of period 1 and a cycle of period 2. Figure 4 shows these two attrac­
tors for point 1 of Fig. 2b. Recognizing that the second attractor is not a 
cycle of period 1 requires a close look: this is because point 1 in Fig. 2b is 
situated near the flip bifurcation curve f(I 1 where cycles of period 2 
degenerate into cycles of period 1. The period 2 behavior shown in Fig. 4b 
is an example of subharmonic behavior. The occurrence of subharmonics in 
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the model suggests that plankton communities can vary periodically with 
period k = 2, 3, ... years even if environmental factors do vary periodically 
with period 1. 

4.2. Catastrophes 

Macroscopic transitions can easily occur for small vanat10n of a 
parameter in a nonlinear system with multiple attractors (May, 1977). 
Perhaps the best known example (Noy-Meir, 197S) in population 
dynamics is the crash of food chain systems for an increase of the exploita­
tion rate of the top predator (adult fish in our case). On the other hand, 
it has been recently ascertained (Rinaldi et al., 1993) that seasonalities can 
favor catastrophic transitions in simple predator-prey models. Thus, it may 
be expected that our plankton-fish model can also undergo substantial 
transitions when parameters like phosphorus or adult fish biomass are 
slightly perturbed. Confirmations of this conjecture can be found in Figs. S 
and 6. In each one of these figures the two stable modes of behavior are 
shown. In Fig. 5 the transition is obtained by lowering the phosphorus 
concentration of the inflow (see points 2 and 3 in Fig. 2a). Since the 
catastrophe is associated with a tangent bifurcation of period 1, the system 
"jumps" from a cycle of period 1 (Fig. Sa) to another cycle of period 1 
(Fig. Sb). Nevertheless, the two cycles are different, the first one having 
much more pronounced oscillations. In Fig. 6 the catastrophe is obtained 
by increasing the biomass of adult fish so that a curve of tangent bifurca­
tions of period 3 (see curve t( 3 l of Fig. 12, below) is crossed. The attractor, 
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FIG. 5. Catastrophic transitions. Two stable cycles of period 1 for the same average light 
intensity (L0 = 308) and adult fish biomass (V0 = 1.00), and for slightly different phosphorus 
concentrations of the inflow (P0 =0.330 in (a) and P0 =0.325 in (b)). See points 2 and 3 in 
Fig. 2a. Lowering the concentration of phosphorus in the inflow generates a catastrophic 
transition from a cycle with marked algae and zooplankton blooms to a smoother cycle. 
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FIG. 6. Catastrophic transitions. A stable cycle of period 3 and a strange attractor for the 
same average light intensity (L 0 = 340.7) and phosphorus concentration of inflow (P0 = 1.00) 
and for slightly different values of adult fish biomass ( V0 = 2.115 in (a) and V0 = 2.150 in (b) ). 
Increasing the adult fish biomass gives rise to a catastrophic transition from a cycle to a 
strange attractor. 

just before the bifurcation, is therefore a cycle of period 3 (Fig. 6a), while, 
just after the bifurcation, the system behaves aperiodically on a strange 
attractor (Fig. 6b ). Note that the aperiodicity of the strange attractor is 
more easily seen in the dynamics of the higher trophic levels (fish) than, for 
instance, in phosphorus and algae. 

4.3. Deterministic Chaos 

Deterministic chaos has been shown to be possible in many simple 
continuous-time population models. Food chain systems have been proved 
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to be chaotic even in the constant parameter case (Hogeweg and Hesper, 
1978; Scheffer, 1991; Hastings and Powell, 1991 ). The classical predator­
prey model can become chaotic when one of its parameters is varied 
periodically (Inoue and Kamifukumoto, 1984; Schaffer, 1988; Toro and 
Aracil, 1988; Allen, 1989; Kuznetsov et al. , 1992; Rinaldi et al., 1993) and 
the lowest amplitude of the seasonal variation needed to generate chaos 
can become quite small if there are many periodic factors acting on the 
system (Rinaldi and Muratori, 1993 ). Finally, a chemostat model composed 
by nutrient, prey, and predator has also been shown to be chaotic for 
suitable amplitudes of the periodically varying inflow concentration of the 
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V0 = 1.00. See point 1 of Fig. 7. 
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nutrient (Kot et al., 1992). It would, therefore, be at least surprising if our 
plankton- fish model were not chaotic in some subregions of the parameter 
space. 

Figure 7 shows a complete set of flip bifurcation curves in the parameter 
space (P0 , L 0 ) and three distinct regions in which chaos may arise. If the 
phosphorus concentration of the inflow P0 is slowly increased over time 
and the average light intensity L 0 is fixed at a high value (e.g., L 0 = 390), 
the model predict that the standard period 1 periodic solution wil first 
bifurcate into a period 2 periodic solution (on curve f(l l) and then, for a 
slightly larger value of P0 , again double its period (on curve j<2 l) and 
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continue in this manner until the periodicity is lost. At that point the 
attractor becomes a genuine chaotic attractor. This region of chaos is 
characterized by high concentrations of phosphorus ( eutrophic lakes) so 
that algae are not nutrient limited. This is equivalent to saying that 
plankton and fish are independent of phosphorus concentration and that 
the model, in fact, reduces to a three stage food chain. The amplitudes of 
the light and temperature seasonal variations in this food chain are rather 
small because L 0 is high. Nonetheless, the existence of chaos in this region 
of the parameter space is not a surprise, since food chain systems can be 
chaotic in a constant environment especially if growth rates are high. The 
closed region of chaos at lower values of P 0 and L 0 is also interesting 
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because it shows that chaos can be obtained either by increasing or by 
decreasing the concentration of nutrient, a result similar to that found by 
Kot et al. (1992) for a much simpler model. Finally, Fig. 7 shows that there 
are very large regions, in particular in eutrophic lakes, where the system 
behaves periodically with period 2. 

The strange attractors corresponding to points 1, 2, and 3 in Fig. 7 are 
shown in Figs. 8, 9, and 10. The upper part ( (a) and (b)) of these figures 
shows two different projections of the Poincare sections. Each dot in these 
figures is a sample of the variables indicated on the axis, taken the same 
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day once a year 500 times. The lower part ( c) of each figure shows the 
corresponding time series of one of the populations: as already remarked 
for Fig. 6b, the irregularity of the attractor is at first sight more evident for 
fish than for algae. An explanation for the large interannual differences in 
fish becomes apparent if one samples the zooplankton population on the 
first day on which the young fish cohort is fully foraging on large 
zooplankton (see dots in Fig. !Oc). The density of zooplankton, which is of 
critical importance to fish at this life stage, is highly variable. The match or 
mismatch of the appearance of young fish and the peak in their food 
availability has been suggested as the main cause of the huge year-to-year 
differences in young fish survival of natural fish populations (Cushing and 
Dickson, 1976; Cushing, 1982 ). Our analysis suggests that in addition to 
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meteorological variability the intrinsic chaos in the aquatic ecosystem is a 
likely cause of this mechanism. 

The fractal geometry of the attractors is very clear in Fig.s 8 and 9, while 
Fig. 10 displays an attractor which, at first glance, seems to represent some 
kind of quasi-periodicity (behavior on torus). Nevertheless, the fractal 
nature of this attractor can be revealed by changing the scale of 
observation. 

Figure 11 illustrates the results of two successive zoomings into the 
attractor and points out the classical selfsimilarity property of fractal sets. 

To conclude our analysis of chaos, we show in Fig. 12 two other period 
doubling routes to chaos in the parameter space ( V0 , L 0 ). The figure 
indicates that adult fish biomass might be a critical control variable, 
because an increase of this variable can cause either the appearance or the 
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disappearance of chaos. The strange attractors corresponding to points 1 
and 2 of Fig. 12 are shown in Figs. 13 and 14. Also in these cases, the 
variability of the young fish peaks is greater than that of the algal blooms. 

5. CONCLUDING REMARKS 

We have shown in this paper that the variability of the yearly patterns 
of plankton and fish populations (usually attributed to some environmental 
randomness) can be a direct consequence of the biological and physical 
processes characterizing the model. This conclusion is based upon the 
results obtained by analyzing the stable modes of behavior of a model with 
periodically varying light intensity, water temperature, and fish recruitment 
and aging. From a technical point of view, the analysis has required 
the study of the bifurcations of a periodically forced four-dimensional 
dynamical system : a quite difficult problem that could not have been solved 
by standard simulation techniques. We have used, instead, a package 
implementing a powerful continuation method producing flip and tangent 
bifurcation curves of periodic solutions of any period. The package also 
detects "codimension two" bifurcation points, a fact that has not been 
emphasized in the paper but which is of strategic importance for success­
fully organizing the analysis (Kuznetsov et al., 1992 ). 

Some of the results we have obtained confirm many of the conclusions 
recently obtained by different authors who have analyzed the dynamics of 
simple ecological models. The chaos predicted by our model in eutrophic 
lakes at low latitudes seems to be originated by the possibility that three 
stage food chains behave aperiodically even in a constant environment 
(Scheffer, 1991 ; Hastings and Powell, 1991 ). The existence of subharmonics 
and of strange attractors obtained through cascade of period doublings is 
in line with the analysis carried out in Rinaldi et al. ( 1993 ), while the rarity 
of quasi-periodic behavior is perhaps due to the high ratio between the 
period ( 1 year) of the forcing functions and the period ( 1- 2 months) of the 
autonomous oscillations of phytoplankton- zooplankton communities. 

There are many caveats when interpreting the results of rather abstract 
models like the one discussed in this paper in terms of real world biology. 
Nonetheless, a number of significant inferences can be made. First, the 
analysis shows that the normal seasonal cycle of light and temperature can 
easily lock the relatively fast cycling plankton system into yearly repeated 
pattern. This result will probably be in accordance with general biological 
intuition. More remarkable is the observation that the interplay of the 
season with the intrinsic rhythms caused by food chain interactions can 
give rise to more irregular patterns. Sometimes the same seasonal pattern 
may repeat every 2 or 3 years, but more often no repetition whatsoever is 
found. The pattern is chaotic, although, at first glance, the time series often 
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look more or less like yearly repeated patterns. This mix of regularity and 
randomness is, of course, in perfect accordance with observations on 
seasonal dynamics in nature. However, the real world randomness will, no 
doubt, also be caused by external perturbations like yearly differences in 
weather. Nevertheless, it can be stated that observed interannual differences 
in the ecosystem dynamics need not always be attributable to weather or 
other external forces. The detected kind of deterministic irregularity offers 
a good explanation of a phenomenon that has bothered aquatic ecologists 
for many years: the extremely large year-to-year variation in young fish 
survival. Although the generated zooplankton patterns often look rather 
similar in different years, the timing of their peaks appears to vary. 
Since the timing of fish spawning is triggered by temperature, and not by 
food availability, this can cause the young fish to be born in a period of 
eiiher very high or extremely low food abundance, resulting in large 
differences in survival. The fact that "time shift irregularities" causing this 
match- mismatch process typically arise from the model suggests that it 
might be impossible to properly relate the natural variation in recruitment 
success to weather conditions. 

The relationship between the investigated control parameters and the 
occurrence of phenomena like chaos, catastrophes, and subharmonics in 
the model is rather complex, but some broad patterns can be detected. 
The results suggest, for instance, that oligotrophic systems tend to show 
regular, yearly repeating, seasonal patterns. Chaos arises only in more 
eutrophic situations. The temperature- light regime of northern countries 
seems also to be in favor of yearly repeating patterns. The model generates 
chaos more easily in conditions associated with warm climates. Of course, 
these conclusions are only based on observations of the behavior in a 
limited part of the parameter space and should therefore be interpreted 
with care. 

Obviously, the work presented in this paper is merely a starting point for 
further research. The bewildering range of behavior suggests that a detailed 
analysis of simplified submodels might be informative. On the other hand, 
many sources of seasonal variation are still left out of consideration, and 
the effects of including these extra perturbations would be worth studying. 
The search for patterns predicted by the model in real world data sets 
(Sugihara and May, 1990) seems especially challenging. However, in view 
of the noisy character of most ecological data this is an ambitious target. 
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A classical predator- prey model is considered in this paper with reference to the case of 
periodically varying parameters. Six elementary seasonality mechanisms are identified and 
analysed in detail by means of a continuation technique producing complete bifurcation 
diagrams. The results show that each elementary mechanism can give rise to multiple attractors 
and that catastrophic transitions can occur when suitable parameters are slightly changed. 
Moreover, the two classical routes to chaos, namely , torus destruction and cascade of period 
doublings, are numerically detected . Since in the case of constant parameters the model cannot 
have multiple attractors , catastrophes and chaos, the results support the conjecture that seasons 
can very easily give rise to complex population dynamics . 

1. Introduction. The study of ecological systems driven by periodic external 
forces is of great importance since, with almost no exception, population 
communities are imbedded in periodically varying environments. Tempera­
ture variations strongly influence the reproduction rate of bacteria during the 
day, moon and tide cycles regulate migration rates of numerous species in 
aquatic and terrestrial ecosystems, light intensity controls photosynthesis 
during the seasons, hunting perturbs game stocks once a year. It is therefore 
quite natural to try to identify the functional role that seasons play in the 
behaviour of population communities. In particular, a basic problem is to 
understand if the magnitude of the seasonal variations is related to the 
complexity of the system. Indeed, it has been known since long ago that the 
nonlinear mechanical and electronic systems described by Duffing and Van 
der Pol equations have a very simple dynamic behaviour in the constant 
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parameter case, but become very complex (multiplicity of attractors, 
catastrophes and chaos) when they are periodically perturbed (Gucken­
heimer and Holmes, 1986). Another important example in a different field is 
the classical SEIR epidemic model which has a globally stable equilibrium in 
the constant parameter case and a great number of modes of behaviour in the 
periodically varying case (Schwartz and Smith, 1983; Aron and Schwartz, 
1984; Kot et al., 1988 ; Olsen et al ., 1988). 

Jn this paper we prove that the Rosenzweig- MacArthur predator- prey 
model, composed of a logistic prey and a Holling's type predator, is also very 
sensitive to seasonality. In the constant parameter case the model has a 
supercritical Hopf bifurcation and therefore has only one mode of behaviour 
for each combination of the parameters: a globally stable equilibrum or a 
globally stable limit cycle . For small magnitudes of the seasonal variations of 
the parameters the equilibrium is replaced by a periodic solution with the 
same period of the perturbation (say, period 1 ), while the limit cycle is, in 
general , replaced by a quasi-periodic solution (torus). Nevertheless , if the 
parameter values are such that the period of the limit cycle of the unperturbed 
system is approximately k times bigger than the period of the forcing function 
(k =integer), then even a small periodic perturbation of a parameter can give 
rise to "phase-locking", i.e. to stable period k periodic solutions (called 
subharmonics). This well-known phenomenon (Guckenheimer and Holmes, 
1986) is particularly relevant (and therefore easy to detect numerically) for 
k = 2 and k = 3. Period 2 and 3 subharmonics can coexist with the basic 
period 1 solution as well as with quasi-periodic solutions or with strange 
attractors obtained through torus destruction. Obviously, the presence of two 
(or more) attractors, each one having its own basin of attraction, makes the 
system particularly sensitive to random disturbances . Moreover, some of the 
bifurcations characterizing the system (for example, tangent and flip bifurca­
tions) are such that small variations of a parameter can entail "catastrophic 
transitions" between different attractors . Finally, for high magnitudes of the 
seasonal variations the period 2 and 3 subharmonics can very easily undergo 
a cascade of period doublings ending in a strange attractor. Some of these 
attractors are quite similar to those discovered by Ueda for the periodically 
perturbed Duffing equation (Guckenheimer and Holmes, 1986). 

This is not the first contribution on periodically forced ecosystems. 
Discrete-time models (maps), in which the unit time step coincides with the 
period of the forcing function, have been used to show that quasi-periodic 
and chaotic solutions are possible in population dynamics (see, for example, 
May, 1974; Kot and Schaffer, 1984; Lauwerier and Metz, 1986). Models of 
this kind are very easy to handle and can give rise to spectacular dynamics, in 
particular when the map is non-invertible as in the famous case of seasonally 
breeding organisms with nonoverlapping generations (May, 1974). More 
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interesting continuous time models with periodically varying parameters 
have been used to show that seasonality can support coexistence of 
competing species (Cushing, 1980; De Mottoni and Schiaffino, 1981; Smith , 
1981; Butler et al ., 1985; Namba, 1986), and that periodic Lotka- Volterra 
predator- prey systems can have a great variety of periodic solutions 
(Cushing, 1977; Bardi, 1981; Cushing, 1982). Nevertheless, these studies are 
somehow incomplete, because they do not touch the problem of deterministic 
chaos. On the contrary, more recent contributions on second order 
periodically varying predator- prey systems (Inoue and Kamifukumoto , 1984; 
Schaffer, 1988; Toro and Aracil, 1988; Allen, 1989; Kuznetsov et al., 1992) 
deal with such a problem and are much closer, at least in spirit, to the present 
analysis . Specific comments on these contributions can be found in the 
following sections. Here it suffices to say that the analysis presented in this 
paper is much more accurate and complete and allows one to synthetically 
interpret the results. Some interesting analogies can also be found in a very 
recent work (Kot et al., 1992) on a third order chemostat model with 
periodically varying concentration of the inflowing substrate. 

Finally, we would like to mention that the analysis of a number of recorded 
time series of seasonally perturbed plant, animal and human populations 
seems to confirm the existence of the above nonlinear phenomena (Sugihara 
and May, 1990). Subharmonics of period 2, 3 and 8 days , as well as phase­
locking with the moon cycle , have been found by analysing the abundance of 
reef fishes influenced by tides (Robertson et al. , 1990). A low dimensional 
strange attractor has been ascertained in the Canadian Lynx population by 
applying Taken's method to the 200 year long time series of number of skins 
shipped by the Hudson's Bay Company (Schaffer, 1984 ), while higher 
dimensional strange attractors have been detected in plant populations 
through the analysis of tree-rings (Gutierrez and Almira!, 1989). But the most 
convincing and detailed analysis showing evidence of chaos in a periodically 
perturbed population is , without doubt , the study of childhood diseases 
which are strongly influenced by the seasonality of the contact rates induced 
by the Summer and Christmas vacations in schools (Kot et al., 1988; Olsen et 
al., 1988). Other examples can be found in the broad area of food chain and 
food web systems which comprises forest ecosystems with recursive insect 
pest outbreaks , and aquatic ecosystems with chaotic algae blooms season­
ally triggered by light intensity . Nevertheless, we would like to stress that 
the ultimate goal of this paper is only to show that the analysis of a classical 
predator- prey model supports the conjecture that seasons can generate very 
complex ecosystems dynamics , comprising catastrophes and chaos . The 
reinforcement of this conjecture through the analysis of field data and 
laboratory experiments is certainly a much more ambitious and difficult 
task . 
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2. The Model and the Six Seasonality Mechanisms. The model we discuss in 
this paper is the classical Rosenzweig- MacArthur predator- prey model used 
in the last 20 years to interpret the behaviour of many predator- prey 
communities, namely: 

[ ( x) av J x=x r 1-K - b~x (1) 

y = y[e _!13_ - d] 
b+x 

(2) 

where the six parameters r, K, a, b, d, e are positive and x and y are the numbers 
of individuals of prey and predator populations or suitable (but equivalent) 
measures of their density or biomass. In the absence of predators (y = 0) the 
rate of growth of prey per unit of biomass, namely r(l -x/ K), decreases with x. 
This is the standard assumption of logistic growth of populations (Verhulst, 
1845) which accounts for competition for food and space among individuals of 
the same species and for increased mortality at high density due, for example, to 
higher chances of epidemics at higher frequency of encounters among 
individuals. The intrinsic growth rater describes the exponential growth of the 
prey population at low densities, while the carrying capacity K is the prey 
biomass at equilibrium in the absence of predators. The intrinsic growth rate 
and the carrying capacity increase with the quality and amount of food 
available to the prey population and can therefore undergo synchronous 
periodic variations during the year. 

The function: 

ax 
q(x) = b+x (3) 

appearing in equations (1) and (2) is the type 2ftinctional response proposed by 
Holling (Holling, 1965), which is, by far, the most commonly used in these kind 
of studies. It represents the prey biomass destroyed by each predator in one 
unit and can be justified as follows (for a more detailed interpretation see Metz 
and van Batenburg, 1985). Let us assume that the searching time, namely the 
time the predator spends to find a unit of prey is inversely proportional to prey 
density, i.e. s/x, wheres is a suitable parameter. If the time needed by each 
predator to handle one unit of prey is hand all other activities (resting time) of 
the predator occupy a fraction u of its time, we can write: 

s 
- q(x) + hq(x)+ u = 1 
x 

from which equation (3) follows with: 
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1-u 
a=h 

s 
h =y;· (4) 

Thus, q(x) is a concave saturating function and a is the maximum harvest rate of 
each predator, while bis the half saturation constant, namely the density of prey 
at which the predation rate is half maximum. Finally, the parameter e in 
equation (2) is a simple conversion factor, called efficiency, that specifies the 
number of newly born predators for each captured prey, whiled is the predator 
death rate per capita. 

Of course, the parameters must be time-varying if relevant environmental 
factors periodically fluctuate in time. For simplicity we consider only 
sinusoidal perturbations so that for any periodic parameter pin equations (1) 
and (2) we write: 

p=po(l +r sin 2nt) 

where p0 is the average value of p and e is the "degree" of seasonality (notice that 
ep0 is the magnitude of the perturbation). Obviously, 0 ~ e ~ 1 because p cannot 
be negative: e=O corresponds to absence of seasonality, while e= 1 means that 
the maximum value of the parameter is twice its average value. 

Real predator- prey communities are characterized by many seasonality 
mechanisms so that many, if not all, parameters of model (1), (2) vary 
periodically. Moreover, these periodic variations are often not in phase, 
because, even when the different seasonality mechanisms have a common 
physical origin, their influence reaches its maximum at different times. For 
example, light intensity and water temperature influencing in different ways 
phytoplankton-zooplankton communities are out of phase of 1 or 2 months in 
relatively large lakes, although they both depend upon the sun cycle . In order 
to avoid too heavy an analysis, we only deal with "elementary" seasonality 
mechanisms, namely with phenomena that entail periodic variations of a single 
parameter in model ( 1 ), (2) or periodic but synchronous variations of two 
parameters. For this aim, we identify six elementary mechanisms denoted by 
(i), (ii), ... , (vi) in the following. The first one entails the synchronous 
variation of the intrinsic growth rater and of the carrying capacity K , while all 
others imply the periodic variation of one parameter. 

(i) Amount of food available to prey (r, K). The intrinsic growth rater in (1) 
is the difference between basic birth and death rates of the prey . Hence r 
increases with the amount of food available to the prey community, so that 
r=r0 (1 +e sin 2nt). Since, on the contrary, the prey intraspecific competition 
(r/ K) is not influenced by the amount of food available to the prey it follows that 
K=K0 (1+e sin 2nt). 
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(ii) Prey intraspecific competition (K). Surplus of prey mortality at high 
densities due to competition for special niches or to epidemics can be enhanced 
in some seasons. If this is the case, the carrying capacity varies periodically, i.e. 
K=K0 (1 +1: sin 2nt). 

(iii) Caloric content of the prey (e). If the caloric content of the prey varies 
during the year, like in some plant- herbivore communities , the energy 
available to the predator for reproduction varies consistently. Hence the 
efficiency varies periodically, i.e. e=e0 (1 +i:: sin 2nt). 

(iv) Predator exploitation (d). The periodic presence of a superpredator 
exploiting the predator community gives rise to periodic variations of the 
predator death rate, i.e. d = d0 (1 + i:: sin 2nt). Phytoplankton- zooplankton 
communities with first year class fish feeding on zooplankton during the 
Summer and tree- insect pest systems controlled by migratory insectivores are 
examples of this class. 

(v) Predator and prey mimicry (b ). When the degree of mimicry of the prey 
(predator) is not constant during the year or when variations of the habitat 
facilitate the escape or the capture of the prey in some specific season, the 
parameter identifying the searching time in equation (4) varies periodically. 
This implies [see equation (4)] that the half saturation constant varies in the 
same way, i.e. b=b0 (1 +i:: sin 2nt). 

(vi) Predator resting time (a). If the resting time of the predator fluctuates 
during the year, as in populations characterized by some degree of diapa\]se, 
the parameter u in (4) varies periodically. Thus the maximum harvest rate of 
the predator varies in the same manner, i.e. a= a0 (1 + i:: sin 2nt). 

The only "single parameter" perturbation we have excluded in our analysis is 
that of the intrinsic growth rate r, because we have not found an interesting 
biological interpretation for it. In this respect we must point out that the 
analysis carried out in Inoue and Kamifukumoto (1984), Toro and Aracil 
(1988) and Allen (1989) refers exactly to this case. Moreover, the discussion in 
Inoue and Kamifukumoto (1984) is mainly focused on the influence of the 
frequency of the forcing function, which is classical in mechanics and 
electronics but has very little meaning in ecology, while in Toro and Aracil 
(1988) and Allen (1989) only the results of a few simulations are shown. On the 
contrary, the discussion in Schaffer (1988) (corresponding to our third 
elementary mechanism) is more systematic and points out that chaos can be 
obtained through torus destruction. This is confirmed by our analysis which, 
nevertheless, shows that the period doubling route to chaos is also present, as 
was already proved for the fifth elementary mechanism in Kuznetsov et al. 
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(1992) and for a third order chemostat model composed by limiting substrate , 
heterotrophic prey and holozoic predator in Kot et al. ( 1992). 

3. The Constant Parameter Case. In the absence of seasonality (1: = 0), system 
(1 ), (2) is an autonomous second order system where all parameters and state 
variables are nonnegative. The analysis of the local stability of its equilibria 
(May, 1972) shows that there is a Hopf bifurcation at: 

K=b ea-d 
ea-d 

and a transcritical bifurcation at: 

K=b _d 
ea-d · 

(5) 

(6) 

The Hopf bifurcation is always supercritical [the computation of its Liapunov 
number is relatively easy if one considers the orbitally equivalent system 
obtained by multiplying equations (1 ), (2) by (b + x)] and the asymptotic 
period of the appearing limit cycle is: 

Ta= 2n (_!_) 112 

rbd 
(7) 

Moreover, the limit cycle does not bifurcate since it is unique (Cheng, 1981; 
Wrzosek , 1990). Thus the parameter space is partitioned into three regions 
separated by the manifolds (5) and (6). For all combinations of the parameters 
there is a single attractor which is globally stable in the first quadrant as 
indicated in Fig. 1. More precisely, for sufficiently high values of the carrying 
capacity K, the attractor is a stale limit cycle. For decreasing values of K this 
cycle shrinks and disappears through a Hopf bifurcation. Then the attractor is 
a stable equilibrium which is positive for intermediate values of Kand trivial 
(absence of predator population) for low values of K. 

4. Method of Investigation. For i; > 0 system (1 ), (2) adding the equation i = 1 
(t mod 1 ), can be transformed into an autonomous three-dimensional system 
for which a Poincare section and first return map (x(O), y(O))-+(x(l), y(l)) can 
be defined (Arnold, 1982; Guckenheimer and Holmes, 1986). Fixed points of 
the kth iterate of the map correspond to periodic solutions (cycles) of equations 
(1) and (2) with period k (we will refer to these points as period k.fixed points) . 
Closed and regular invariant curves of the Poincare map correspond to quasi­
periodic solutions (invariant tori), while irregular invariant sets correspond to 
chaotic solutions (strange attractors). 
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Figure I. Phase portraits of system (I), (2) in the case of constant parameters: (a) 
K > h(ea + d)/ (ea - d): the attractor is the cycle f ; (b) bd/ (ea -d) < K < b(ea + d)/ 
(ea -d): the attractor is the equilibrium P; (c) K < bd/(ea-d): the attractor is the 

trivial equilibrium (K, 0). 

x 

Non-saddle (i.e. attracting or repelling) and saddle cycles of period k of 
system (1), (2) can bifurcate at some parameter values. We use the following 
notation for the corresponding fixed point codimension one bifurcation curves. 

h<kJ_ Hopf (Neimark- Sacker) bifurcation curve. For parameter values on this 
curve the map has a period k fixed point with a pair of multipliers on the unit 
circle: µ\k!2 = e ± iw, w > 0. When curve h<kJ is crossed, an attracting (repelling) 
cycle of period k bifurcates into an attracting (repelling) quasi-periodic 
solution and a repelling (attracting) cycle of period k. 

r<kJ_ tangent (fold) bifurcation curve . For parameter values on this curve the 
map has a period k fixed point with a multiplier µ\kl= 1. When this curve is 
crossed, a saddle and a non-saddle cycle of period k collide and disappear. 

J!kl_flip (period doubling) bifurcation curve. For parameter values on this 
curve the map has a period k fixed point with a multiplier µ\kl= -1. When 
this curve is crossed a saddle (non-saddle) cycle of period k bifurcates into a 
non-saddle (saddle) cycle of period k and a saddle (non-saddle) cycle of 
period 2k. 

The behaviour of the system for parameter values close to these curves is 
described in Arnold (1982) and Guckenheimer and Holmes (1986). It is 
worthwhile noticing that tangent and flip bifurcations always involve saddle 
cycles, while Hopf bifurcations are only concerned with attractors and 
repellors. Moreover, Hopf bifurcations always involve an attractor, while 
tangent and flip bifurcations sometimes do not. Although all curves h(kl, t(kl, J<k> 
are needed if one likes to fully understand the structure of the bifurcations of a 
dynamical system, only those concerning attractors are useful to classify the 
asymptotic modes of behaviour of the system. In the following, in order to 
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facilitate the biological interpretation of the results, we will not display 
bifurcation curves which do not refer to attractors. Readers interested in the 
bifurcation structure of the model can refer to Kuznetsov et al. (1992), where 
the bifurcation curves corresponding to our fifth elementary mechanism are 
fully displayed. 

The bifurcation curves presented in the next section have been computed by 
means of a continuation method interactively supported by the program 
LOCBIF developed by the third author and by A. Khibnik, V. Levitin and 
E. Nikolaev at the Research Computing Centre of the U.S.S.R. Academy of 
Sciences at Pushchino. 

The method can be briefly described as follows (see Khibnik, 1990a,b ). Each 
bifurcation curve is computed by projecting a one-dimensional manifold 
located in the four-dimensional space (x, y, p1 , p2 ) on the (p 1 , p2 )-plane, where 
p 1 and p 2 are two parameters of (1 ), (2). The manifold is determined by the two 
fixed point equations and by a bifurcation condition imposed on the 
multipliers of the fixed point. This condition is written using the characteristic 
polynomial det(A- µ!) , where A is the Jacobian matrix of the Poincare map at 
point (x, y) and !is the unit matrix. More precisely, the bifurcation conditions 
are the following: 

R[det(A- µ!), det(µA -!)] =0 (for Hopf bifurcation), 
det(A - /) = 0 (for tangent bifurcation), 
det(A +I)= 0 (for flip bifurcation), 

where R[· ;] stands for the resultant of two polynomials (Lancaster and 
Tismenetsky, 1985). In the program LOCBIF the bifurcation curves are 
computed by means of an adaptive prediction- correction continuation 
procedure with tangent prediction and Newton correction. All relevant 
derivatives, as well as the Poincare map, are evaluated numerically. The 
program LOCBIF also produces phase portraits of the Poincare map, 
continues fixed points in any (x, y, p 1 )-space and detects codimension one 
bifurcations. 

5. Bifurcation Curves. In this section we present and discuss the bifurcation 
curves of system (1), (2) for the six elementary seasonality mechanisms 
identified in Section 2. The reference values of the parameters are the following: 

e=K=l r=d=2n a=2.2n b=0.3. (8) 

For these values, the system oscillates on a limit cycle [K is slightly bigger than 
b(ea+d)/ (ea-d), see equation (5)], and the period of the cycle (evaluated 
numerically) is T= 1.85. Thus, in the parameter space we are not too far from 
Hopf bifurcations (5) and from k = 2 resonances, i.e. values of parameters 
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giving rise to a cycle of period two times bigger than the period of the forcing 
function. Actually, the reference values of the parameters have been tuned 
intentionally in this way , because these are the most favourable conditions to 
point out periodic and quasi-periodic behaviour, as well as phase-locking of a 
paiodically forced dynamical system . The reader interested in the analysis of 
the bifurcations of system (I) , (2) in other regions of the parameter space can 
refer to Kuznetsov et al. ( 1992), where the fifth seasonality mechanism is 
discussed in some more detail. 

For each seasonality mechanism the discussion is carried out with respect to 
two parameters . The first is the degree of seasonality 8, which varies from 0 to 1, 
and the second is the average value of the periodically varying parameter, i.e. 
K0 (with r0 = 2w K 0 ) in case (i), K 0 in case (ii), e0 in case (iii), and so on. All 
other parameters are kept constant at their reference value (8). The second 
parameter varies in a range that contains the value for which the unperturbed 
system has a Hopf bifurcation [easily computable from (5)] and the resonant 
value for which the period of the limit cycle for i; = 0 is equal to 2. 

The six diagrams (i), (ii), ... , (vi) of Fig. 2 display the bifurcation curves of 
system (I), (2) for the corresponding six seasonality mechanisms . Five 
bifurcation curves are drawn on these diagrams, namely, h0 ', h( 2'J0 ',f' 2

' and 
t( 2

', the last one composed by two branches (t\ 2
' and t~2 '). These bifurcation 

curves are present in all cases, but curve h( 2
l cannot be seen in cases (i), (ii), (iii) 

and (vi) because of the particular range of the parameter. The curvesf(I ',f( 2
' 

and r< 2
l are not complete, because the branches not involving attractors have 

been disregarded. The bifurcation curves/<4
' andf' 8

' have also been obtained 
but they are not shown in Fig. 2 because they almost coincide with f' 2

'. 

Nevertheless. they must be kept in mind because they clearly indicate one of the 
two routes to chaos (i.e. cascade of period doublings). 

If we compare the six diagrams 2(i), . . . , 2(vi) we immediately recognize that 
turning the fourth and fifth upside down we obtain six topologically equivalent 
diagrams. This fact is very important and clearly indicates that the six 
seasonality mechanisms give rise to the same phenomena. Let us therefore 
consider and interpret in detail the qualitative bifurcation diagram of Fig. 3 
which is equivalent to those of Fig. 2, but contains, for the sake of clarity, the 
bifurcation curvesj<4

l and h< 4
l_ The parameter p0 of this diagram is directly [in 

cases (i), (ii), (iii) and (vi)] or inversely [in cases (iv) and (v)] related to the 
average value of the periodically varying parameter. On the p0 -axis there is 
point H [computable from (5)] corresponding to the Hopf bifurcation of the 
unperturbed system. Below that point, the attractor of the unperturbed system 
is an equilibrium, while above it the attractor is a limit cycle. Thus, for small 
values of i; and below point H we have period I periodic solutions, while for 
small values of i; and above point H we have quasi-periodic solutions. 
Consistently, a bifurcation curve h0 ' rooted at point H separates the two 
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Figure 2. Bifurcation diagrams for system (I), (2). Each case (i), ... , (vi) refers to 
the corresponding seasonality mechanism identified in Section 2. Curves h1k1, 1 121 

and.f!kl, k= l, 2 are Hopf, tangent and flip bifurcation curves, respectively. Points 
A, B, C, Dare codimension two bifurcation points. 
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regions. When this curve is crossed from below, the forced stable cycle of 
period l smoothly bifurcates into a stable quasi-periodic solution. While 
continuing curve hr 1 ' from the left to the right the multipliers µ~1.h = e ±iw of the 
Poincare map vary and become equal to - 1 when the terminal point A is 
reached. 
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Figure 3. A general qualitative bifurcation diagram for systems ( l ), (2). Curves '1 111 , 

1i 121 , 1i 1+1,p 11Jl 21J<4 1, 11 21 are bifurcation curves. Points A, B, C , Dare codimension 
two bifurcation points. 

Point A is a codimension two bifurcation point, called strong resonance l : 2, 
studied in Arnold (1982) by means of the normal form approach. The two 
coefficients of the normal form are of opposite sign and this suffices to say that 
only two bifurcation curves , namely, a Hopf h(l' and a flip f(ll, are rooted at 
point A (as already said, the branch of p 1 

l not involving attractors is not shown 
in the figure). Curve p 1 l can be generated by the continuation technique 
starting from point A. Along curveP'l the normal form coefficient (computed 
as in Kuznetsov and Rinaldi, 1991) varies and becomes equal to 0 at point B, 
which is therefore a codimension two bifurcation point. Thus , curve J0 l is 
divided into two segments (AB and BE) and the period doubling takes place in 
opposite directions on these two segments, namely from region 4 on segment 
AB and from region 1 on segment BE. More precisely, when curve p 1i is 
crossed from region 1 to region 4 the forced cycle of period I loses stability and 
smoothly bifurcates into a stable period 2 cycle. On the contrary, if p 1l is 
crossed from region 3 to region 4, the stable cycle of period 1 collides with a 
saddle cycle of period 2 and becomes a saddle cycle of period 1. 

The codimension two bifurcation point Bis the terminal point of one of the 
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two branches of a tangent bifurcation curve t( 21 (Afrajmovich et al., 1991 ). The 
two branches [t\21 and ti21

] originate at point T2 on the p0 -axis where the limit 
cycle of the unperturbed system has period 2. Some details concerning the 
system behaviour near point T2 can be found in Guckenheimer and Holmes 
(1986). When t\2

) and ti21 are crossed from the left, close to point T2 , a stable 
cycle of period 2 and a saddle cycle of period 2 appear. When branch t~2 ) is 
continued from point T2 the first multiplier 11\2 ) remains equal to 1 while the 
second A2

) varies smoothly and becomes equal to 1 at the codimension two 
bifurcation point C. After this point, che bifurcation curve ti2

) does not involve 
attractors and has not been drawn in Fig. 3. 

Point C is the root of a Hopf bifurcation curve h( 2
) ending at point D where 

the two multipliers are equal to -1 and the two coefficients of the normal form 
have the same sign. When h< 2 l is crossed from below, a stable cycle of period 2 
bifurcates into an unstable cycle of period 2 and in a stable quasi-periodic 
solution. 

Point Dis the root of a bifurcation curvef<2
) [and of a bifurcation curve h <4 )]. 

When curvef< 2
l is crossed from region 4 to region 6, a stable periodic solution 

of period 2 smoothly bifurcates into a stable periodic solution of period 4. 
Finally, the analysis shows that flip bifurcation curves J<4 >, J< 8

) ... exist in 
the vicinity of curve J< 2 l [the difference between curves .[1 2 ) and J<41 is 
intentionally magnified in Fig. 3]. This cascade of period doublings results in 
strange attractors which can be found in some subregions of region 7. 

The quasi-periodic solutions also bifurcate, but their bifurcation sets cannot 
be computed with our continuation technique . Nevertheless, in accordance 
with (Guckenheimer and Holmes, 1986), we can say that the stable quasi­
periodic solution appearing on h01 disappears through a homoclinic structure 
on a bifurcation set resembling a curve connecting point A with a point on 
branch t\21 close to point T2 . Thus, in this region we have strange attractors 
obtained through torus destruction (see Schaffer, 1988, Kuznetsov et al. 1992, 
for some examples). 

Finally, we must point out that the same kind of bifurcations exist for cycles 
of period 3 (as well as for cycles of higher period). Indeed , two branches t\31 and 
ti3

) of a tangent bifurcation originate at a point on the p0-axis where the period 
of the limit cycle of the unperturbed system is equal to 3. When these branches 
are crossed from the left , a stable cycle of period 3 appears together with a 
saddle cycle of period 3. Then, the stable cycle undergoes a cascade of period 
doublings J< 3 >, j<61 , .... None of these bifurcation curves is shown in our 
figures in order to maintain them as readable as possible. 

6. Multiple Attractors, Catastrophes and Chaos. The qualitative bifurcation 
diagram of Fig. 3 points out a number of interesting facts which prove that 
seasonalities can generate rather complex dynamics . 
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The first and most important fact is the existence of multiple attractors. 
Indeed , for a constant value of c and for increasing values of p0 , a stable cycle of 
period 2 first coexists with a stable cycle of period 1 (in region 3 of Fig. 3 ), then 
with a quasi-periodic solution [in region 4,just above curve h( 1l] and, finally, 
with a strange attractor obtained through torus destruction (in a subregion of 
region 4 ). Coexistence of cycles of period greater than or equal to 3 with quasi­
periodic solutions and strange attractors are also possible in the regions 
delimited by the branches r\k 1 and t~k>, k ~ 3 of tangent bifurcation curves not 
shown in Fig. 3. Moreover, coexistence of triplets of attractors like, for 
example, cycles of period 2 and 3 and strange attractors, cannot be excluded 
although we have not found numerical evidence of it during our computational 
experiments. 

A second relevant fact is that some of the bifurcations shown in Fig. 3 are 
catastrophic, so that even very small variations of a parameter can sometimes 
entail a radical change of behaviour of the system. Assume, for example, that 
the system behaves in region 1 of Fig. 3,just below the Hopf bifurcation curve 
11 r1

i. In this region the system has only one stable mode of behaviour, namely a 
cycle of period 1. If p0 is kept constant and c; is slowly increased , the stable cycle 
of period 1 varies smoothy but gradually loses stability when approaching the 
flip curveJ< 1 

l. When line AB is crossed the attractor disappears because on that 
line the stable cycle of period 1 collides with a saddle cycle of period 2 and 
becomes a saddle cycle of period 1. Therefore, after p 1 

l has been crossed, the 
system moves toward another attractor, which, in the present case, is a period 2 
cycle. After this catastrophic transition has occurred , the system is trapped in 
the new attractor. Indeed , even if t; is now slowly decreased , so that f 01 is 
crossed from the right, the stable mode of behaviour remains the cycle of 
period 2. Of course, if 1; is further reduced , so that the tangent bifurcation curve 
t\2

l is crossed from the right, we will have another catastrophic transition that 
brings the system back to a period I cycle. All this can be summarized by saying 
that if c is alternatively increased and decreased so that curves t\2

l andf0 l are 
crossed we will have a "hysteresis" involving transitions between cycles of 
period I and 2. Therefore, the catastrophic transitions characterizing the 
hysteresis involve a sudden variation of the frequency at which the system 
operates: a rather interesting behaviour . 

Finally, the third important fact is the existence of deterministic chaos in two 
different regions of parameter space (see dotted regions of Fig. 3). The first 
region is characterized by relatively small values of c; and is delimited from 
below by the bifurcation set on which stable quasi-periodic solutions disappear 
through homoclinic structures (torus destruction). If p0 is increased at constant 
c starting from a point just above curve h( 1 l in Fig . 3, a small closed and regular 
curve on the Poincare section (stable invariant torus) will first become bigger 
and bigger and then smoothly lose continuity and degenerate into a fractal 
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set (strange attractor). It is clear from Fig. 3 that these strange attractors can be 
present only for values of p0 for which the unperturbed system behaves on a 
limit cycle. In other words, a predator- prey system which does not 
autonomously cycle in a constant environment, cannot become chaotic 
through torus destruction. 

The second region of deterministic chaos is characterized by relatively high 
values of£ and corresponds to the second well-known route to chaos, namely 
cascade of period doublingsf(2),j<4 ',J<8 >, .... This region is delimited by a 
curvej< :xi l where the attractor loses periodicity and becomes chaotic. The curve 

_r< 00 J cannot be found by numerical analysis because it is not possible to 
distinguish between a periodic cycle with an extremely large period and a 
genuine chaotic solution. Nevertheless, we can reasonably conjecture that 
curve J' 00

l is quite close to f' 2
l because the flip bifurcation curves .[< 21

, /1 4
', 

_f( 8l, ... follow, in general, the Feigenbaum accumulation law (Guckenheimer 
and Holmes, 1986) and all our computations point out that /<4

' and /1 8
' are 

already almost coinciding withf(2). Figure 4 shows six chaotic attractors. one 
for each seasonality mechanism, while Fig. 5 shows the corresponding time 
series of they variable (predator) for a time interval equal to 25. All attractors 
have been obtained with the same degree of seasonality 1; = 0.7 and with the 
other parameters (except the time varying ones) at their reference values (8 ). 
The corresponding points are denoted by Q in Fig. 2. 

The analysis of Figs 2, 3 proves that the value of p0 at which curve p x 1 is 
minimum is sometimes lower than the value of p0 corresponding to point H. 
This implies that this kind of chaotic behaviour can occur even if the 
corresponding unperturbed system does not autonomously cycle. The 
attractors (iii), (iv) and (v) of Fig. 4 are three examples. This characteristic 
allows one to further distinguish between the two types of chaos: the first (torus 
destruction) does not need high degrees of seasonality but requires a strong 
endogenous tendency to cycle, while the second (period doubling) requires 
high degrees of seasonality but can develop also in systems that would not cycle 
in a constant environment. 

7. Concluding Remarks. A classical predator-prey model has been studied in 
this paper with reference to the case of periodically varying parameters. Six 
elementary seasonality mechanisms have been identified and analysed in detail 
by means of a continuation technique automatically producing Hopf, tangent 
and flip bifurcation curves of periodic solutions of any period. The results have 
been compared and summarized through a general qualitative bifurcation 
diagram (Fig. 3) which allows one to classify and interpret the main modes of 
behaviour of the model. The general conclusion is that for suitable values of the 
parameters there are multiple attractors, catastrophes and strange attractors. 
Since, on the contrary, the unperturbed system has always a unique attractor 



30 S. RINALDI et al . 

y 
/,.---

/~~~ 
8 

Ii "-, '· I .._ _~ ··,, 

".,. " '\.\, 

K = 1.5 

\. ' 
\,.'\ 

~- \ 
'\. \ 

___ J\ 
x 

y 

//·\ ® 

/ .. 

6
1 . . , ~- : . \ 
~ .· / . · ..... : . \ 

/ ', , \ 
/ '. \., 

' ·! 

\' 

\ 
e = 0.9 x 

y 8 

""' 
r
/<-: :-,:::°::;;,~ 

"'",;-.. ' , ... \ 
' ·c\ " ~ .. ' \·•, 

~) 
b = 0.4 x 

y 

{,;~"" --,_ "-, 

© 

_ ;,i? ~~-;:~'.: ~ ' ' k: ---- --------., ' ~ ,, .. ~-- ~ '·~·.- , ,. 

; 
·!'~ 
.:i •• 
. :; 

K = 1.44 

y 

' ', ['' '· 
. ' '" . ' 

'·. . . . "" 

x 

G 

·.,. : "'· 
·- .. : .. ' \ 

.. 
. \ _j, 

d/2rr = 1.1 

y 

.;';,.._:..::.;.'' ..... 

i \ / 
.i 

i 

/ 
i 

/~/ .· -,- .­
~-

a/ 2rr = 2.8 

.··· ·· ....... 

_ .. ~ 

x 

0 

x 

Figure 4 . Strange attractors on the Poincare section obtained through period 
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Figure 5. Normalized fluctuations of predator population y over a time period equal 
to 25 . Each case (i) , ... , (vi) refers to the corresponding strange attractor of Fig. 4. 

(an equilibrium or a limit cycle) our analysis proves that seasons can easily give 
rise to very complex predator- prey dynamics. This fact had already been 
established (Inoue and Kamifukumoto, 1984; Schaffer, 1988 ; Tord and Aracil, 
1988; Allen, 1989) but not synthetically interpreted in terms of bifurcations, 
since the analysis was carried out only through simulation. 

From a biological point of view the most interesting results are the following . 
If the degree of seasonality is small , the predator and the prey populations 
asymptotically vary in a periodic or in a quasi -periodic way . The period of the 
oscillations coincides with that of the forcing function (normalized to I) if the 
system does not autonomously cycle when there are no seasons . On the 
contrary, if the unperturbed system behaves on a limit cycle, then the 
introduction of a small degree of seasonality transforms the cyclic behaviour 
into a quasi-periodic one. Moreover, in some subregions of the parameter 
space, there are also subharmonics, namely periodic solutions of period k times 
bigger than that of the forcing function (k =integer). In particular, subharmo­
nics of period 2 and 3 are relevant and have indeed been detected numerically in 
all cases we have analysed. Thus, multiplicity of attractors, for example 
coexistence of periodic solutions of period 2 or 3 and quasi-periodic solutions, 
is possible even at very low degrees of seasonality. This is also true for higher 
magnitudes of the seasonal variations at which , for example, subharmonics of 
period 2 can coexist with the basic period 1 solution (region 3 of· Fig. 3 ). 
Actually, if the degree of seasonality is slowly varied and alternatively increased 
and decreased, the system can repeatedly undergo catastrophic transitions 
between periodic solutions of period 1 and 2 (hysteresis with frequency 
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switches). Finally, the two classical routes to chaos, i.e . torus destruction and 
cascade of period doublings , are present. Strange attractors of the first kind are 
obtained by introducing a low degree of seasonality in a predator- prey 
community which, in the absence of seasons, behaves on a limit cycle, while the 
second type of attractors can be generated, with a higher degree of seasonality, 
even when the system does not autonomously cycle. This means that chaos can 
be present in a predator- prey community provided that the exogenous and 
endogenous sources of periodicities are, as a whole, sufficiently strong. 

As far as the method of analysis is concerned, we can summarize our 
experience by saying that continuation techniques producing bifurcation 
curves are very effective when they are used in conjunction with "detectors" of 
codimension two bifurcation points. Indeed , our bifurcation diagrams have 
been obtained in the following way. We have first generated curve JzPl starting 
from the Hopf bifurcation of the unperturbed system (point Hin Fig. 3) and 
ending at point A, which is a codimension two bifurcation point. Then, we have 
produced the flip curve f' 11

, starting from poinl A, thus finding a second 
codimension two bifurcation point , namely point B. From this point we have 
generated the tangent bifurcation curve t! 2

' and found the third codimension 
two point, namely point C. Continuing like so, we have alternatively obtained 
bifurcation curves (h!2l, f<2 1, h'4

', f! 4
l) and codimension two bifurcation 

points . Finding these codimension two points is therefore necessary for 
producing in a systematic way all the bifurcation curves. Of course, a~ each 
codimension two bifurcation point one must use the normal form approach to 
find out how many and which bifurcation curves are rooted at that point.For 
this reason we beiieve that packages which incorporate "detectors" and 
"analysers" of codimension two bifurcation points are very powerful for 
discussing the qualitative behaviour of nonlinear dynamical systems. More­
over, they are the only serious tool for Anding bifurcation curves which are not 
predicted by the available theories. For example, our bifurcation curvesf<2l are 
not predicted by the known theory of periodically forced Hopf bifurcations 
(Kath , 1981; Rosc-nblat and Cohen, 198i ; Gambaudo , 1985; Bajaj, 1986; 
Namachchivaya and Ariaratnam, 1987) (the interested reader can find more 
details on this matter in Kuznetsov et al., 1992 ). 

Although the analysis presented in this paper is quite detaiied, we believe 
that there are still inte res ting questions to be answered and meaningful 
extensions to be performed. For example, it would be of interest to extend the 
analysis presented in this paper to predator- prey models which have also 
tangent and homociinic bifurcations when i.hey are not periodically perturbed. 
Among these model::; we h<tve the case of a logistic prey, ?:. Holling's type 
predaior and 2, constant H olling's type superpredator, i.e. the most rudi­
mentary food chain model (a more complete study of periodically forced food 
chain systems involving third order mod.els appears to be very difficult because 
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such models can have chaotic behaviour even in the case of constant 
environment (Hogeweg and Hesper, 1978; Scheffer, 1990; Hastings and 
Powell, 1991 ). Another interesting extension would be to revisit the analysis of 
the periodically forced chemostat model carried out in (Kot et al ., 1992) with 
the use of circle maps. In fact, our continuation technique allows one to find 
codimension two bifurcation points and is therefore more powerful than the 
circle map technique. Finally, an interesting direction for further research is the 
investigation of the synergism among mdependent sources of periodicity . In 
particular, it would be interesting to know how chaos could be reinforced or 
damped by suitably "controlling" the phase between different elementary 
seasonality mechanisms. Information on this matter would be of particular 
relevance in the field of renewable resources management, where the time and 
intensity of stocking and harvesting must be well tuned with the natural 
periodicity mechanisms in order to avoid undesirable modes of behaviour . 

The first author would like to thank C. S. Holling with whom in the Summer of 
1985 he had stimulating discussions which have originated this study. Some of 
the results presented in this paper were actually anticipated by Holling on a 
purely intuitive basis. 
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