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Summary 

Up until now risk analysis, as a rule, ended with the estimation of the risks. Further 
improvements - optimal design, risk control, dynamic risk management - require many 
more efforts. Essential difficulties are connected with the discontinuous or nonsmooth 
behavior of performance functions with respect to the control and (or) random parameters 
due to possible failures of the system's parts. Usually, the systems also include discrete 
event elements - logical rules can change the structure of the system if some constraints 
are not satisfied, for example safety constraints. These problems require new formal 
analysis tools which will include dynamics, stochastics, nonsmoothness and discontinuity. 
In this paper, the authors consider a simple example of such a problem with the aim to 
explore the possibilities for its analysis. The problem is comprised of optimizing a material 
flow system based on an efficient use of simulation. The material flow system may be a 
production system, a distribution system or a pollutant-deposit/removal system. The 
important characteristic which is considered in this paper is that one of the components 
of the dynamic system is unreliable. This characteristic leads to simulation models in 
which criteria are discontinuous with respect to the optimization parameters. This makes 
it difficult to use the standard methods for the estimation of gradients of the expected 
criteria values. A method is introduced which overcomes the difficulty. From a formal 
point of view the problem can be viewed as a mixed integer stochastic optimization 
problem. 
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ON OPTIMIZATION OF 
DYNAMICAL MATERIAL FLOW 
SYSTEMS USING SIMULATION 

Yu. Ermoliev, S. Uryas'ev and J.  Wessels 

1 Introduction 

In several types of material flow systems there is at least one component which is un- 

reliable. This feature makes it particularly important to design such a system carefully 

by taking into account the uncertainties introduced by the component unreliability. Such 

material flow situations occur in production and distribution systems, but also in environ- 

mental systems for the temporary deposit and removal or transformation of pollutants. In 

production systems one of the work-stations may be unreliable. In distribution systems 

one of the transport mechanisms may suffer from breakdowns. In environmental systems 

it might be the removal or transformation mechanism which is not always operational. 

Particularly for production systems, there is quite an extensive choice of literature on the 

modeling and analysis of material flows with unreliable work-stations. 

Analytic approaches have primarily been developed for the case of two work-stations 

with an intermediate buffer. For the situation of discrete products with deterministic 

processing times we may refer to Buzacott [I] and Yeralan and Muth [27]. For the situa- 

tion of continuous material flows with deterministic machine speeds important references 

are Wijngaard [26] and Mitra [14]. De Koster [ l l ]  gives a good overview of the litera- 

ture and shows how to exploit Wijngaard's approach for the construction of a numerical 

procedure for the analysis of larger systems. Although these analytic approaches are 

very valuable for getting a better understanding of the characteristics of the relevant 

processes, they all suffer from the fact that they are based on severe assumptions. The 

usual requirement is that breakdown behavior as well as repair behavior is based on a 

negative-exponentially distributed time length or at least something very closely related 

to the negative-exponential distribution like a phase-type distribution with only very few 

phases. Therefore, for practical system design, simulation is the most important tool. 



However, a serious drawback of simulation is that a guided search for a good design usu- 

ally requires many simulations. Particularly, in the case of several design parameters, this 

can be prohibiting. 

A general approach for the optimization of stochastic systems by using Monte Carlo 

simulations is based on the technique of stochastic optimization [2, 3, 121. The technique 

relies on estimating the gradients (or their generalizations for nonsmooth functions) of 

a criterion and/or constraint functions. These estimates are called stochastic gradients, 

subgradients or quasigradients depending on whether the function is smooth or nons- 

mooth and whether we use unbiased or biased estimates. A lot of research effort has been 

concentrated on obtaining estimates which require only one observation of the random 

parameters - so called one-simulation-run estimates. The existing theory allows to calcu- 

late such estimates for various classes of applied problems, including problems involving 

stochastic inequalities or stochastic differential equations (ordinary or partial). Relatively 

recently a one-run gradient estimation technique was proposed for queuing type problems 

by Ho et al. in [9] under the name of perturbation analysis. For a good overview of its 

properties and possibilities, see Suri [20]. Subsequently, sensitivity analysis for discrete 

event processes with control parameters in the densities of the random values was de- 

veloped by Pflug [15], Rubinstein and Shapiro [17] and others. A disadvantage of the 

standard form of perturbation analysis is that, generally speaking, it does not work when 

the sample path is discontinuous in the relevant parameter. In that case it may no longer 

be allowed to change the order of taking the expectation with taking the derivative: 

where x indicates the decision vector and w  the random element, g(x, w )  is a sample per- 

formance function. In [lo], Ho and Li present an approach for circumventing this difficulty 

by using finite difference approximation ideas. However, their method requires that time 

periods between events are negative-exponentially distributed and their met hod requires 

very long simulation runs for obtaining good estimates. Gaivoronski and Ermoliev [4] 

suggested to use artificial random variables to smooth the function g(x, w )  and combine 

it with concurrent approximation and optimization techniques. The general framework 

for the development of concurrent approximation and optimization techniques is studied 

by Ermoliev, Norkin, and Wets [5]. In [7], Gong and Ho suggested to smooth over the 

function g(x, w )  by taking conditional expectation with respect to a a-algebra .F 



where the smoothed performance function G(x, w) is supposed to be explicitly defined to 

calculate the gradient. As a rule the explicit formulae for these conditional expectations 

are not available. However in various control problems the function G(x, w) can often 

be represented through multidimensional integrals over sets given by linear or nonlinear 

inequalities (with respect to decision and random variables). Although such integrals can 

not be presented as explicit functions of decision variables, it is possible to find implicit 

expressions of their gradients. We show that in an important case, when densities of 

the random variables and their derivatives are known, the gradient can be presented as 

an integral over a volume. We finally also show that the obtained expression of the 

gradient allows to estimate the gradient by one simulation run and that the stochastic 

quasi-gradient optimization procedures can be used for a directed simulation search. 

In Section 2 the model and the mixed integer stochastic optimization problem are 

introduced. We briefly mention in this section the optimization technique to be applied. 

Sections 3 and 4 show how estimates for the derivatives of the performance function 

can be obtained. Section 5 treats the optimization search techniques. The formulas for 

derivatives of integrals over sets given by inequalities are given in the Appendix. 

The Model Description and Statement of the Op- 

timization Problem 

2.1 The Model 

In this section we introduce a very simple material flow problem, which is used for demon- 

stration of our approach. There are two interacting processes (see Figure 1): a regular flow 

of material arriving a t  a "server" or "work station" and a service process of this material. 

Each batch of material arrives at the server at equidistant points in time t = 0, XI ,  2x1,. . . 
The intensity of this process can be adjusted by the value xl > 0 .  The work-station emp- 

ties the available batches one-by-one and x2 is the time needed to  process a batch by the 

work-station. The processing of a batch can be interrupted by the failure of the work- 

station, therefore, the work station has alternatively a period in which it is "operational" 

and in which it is in "repair". The lengths of these periods are independent random 
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Figure 1: System Flow Chart 
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variables with density functions v and p respectively. We suppose that a batch requires 

a position in the storage (buffer) from the time of its arrival until the moment that pro- 

cessing has been finished. Denote by S the number of batches that may be stocked in the 

storage. If the storage is full, we suppose that a newly arriving batch is lost with cost 

p .  The gain of each processed batch is equal to a .  The cost function includes, on the 

one hand, the investments and maintenance costs as functions of the design of parameters 

X I ,  2 2 ,  S.  On the other hand, the cost function provides a tradeoff between risk of profits 

and risk of losses. In particular, in the case when a << p main attention is paid to the 

losses due to exceeding storage capacity. 

As a consequence of the interruptions, the real processing time of a batch may be 

essentially longer than x2, since the processing might be interrupted several times. If TI 

and T2 are the expected values for the life time (between two successive failures) and the 

repair time respectively, then the availability fraction is 

- lost with cost /3 

Consequently, the real processing time will be on the average 

If x1 would be chosen smaller than this latter value, then the work-station could not cope 

with the input even if the storage capacity would have infinite size. 

The model as sketched above was inspired by the problem of designing a production 

system in which the batches would be delivered by a chain oven and the work-station 

treats the individual products of a batch one-by-one. In this way, the platter, which 

bears a batch of products through the oven, occupies a position in the buffer as long as it 



contains some products. It is not possible to stop the oven when the buffer is full, since 

this would lead to the loss of several hours of production, namely all the batches which 

are in the oven would be lost in this case. The chain pulls the batches through the oven 

with a fixed speed and batches which leave the oven are mechanically delivered to the 

buffer. If the buffer has no position available, then the batch is set aside and lost for 

further processing, since outside the buffer the products cool down too much, which is 

not good for the quality. 

In fact, the situation described above is an example of the two-machine system with 

one unreliable machine and an intermediate buffer. All assumptions have been chosen as 

simple as possible in order to keep the discussion of the essential aspects clear. 

A similar model might be reasonable for a pollutant removal/transformation situation, 

where batches of the pollutant are delivered by an uncontrollable process, whereas the 

transformation or removal only works under certain conditions. We will stick to the first 

interpretation for the introduction of a design criterion. 

For the production problem the criterion is to design a system which works at  the 

lowest possible costs. There is no constraint on the desired output, since it is already 

certain that several units will be needed, therefore the only goal is to find the most efficient 

design. The first components of the costs per time unit are caused by the investments and 

maintenance costs. We suppose that they are known functions of the design parameter for 

each of the parts of the system: cl (xl)  + c2(x2) + c3(S). The most complicated costlgain 

component is delivered by the performance of the system: processed batches bring a gain 

a and lost batches a cost P. So the criterion becomes 

C(x,  S) = cl(x1) + cz(x2) + 4s) + aL(x,  S) - p q x ,  S), 

where x = (xl,  x2) and L(x, S) , 9 ( x ,  S) are the expected numbers of lost and processed 

batches per time unit, respectively. We could minimize function (1) with respect to 

(x, S), by using the conventional optimization techniques, if we would know L(x, S) and 

9 ( x ,  S). Unfortunately, it is impossible to find analytical expressions for L(x, S) and 

9 ( x ,  S). With fixed (x, S), a simulation run could provide only estimates for 9 ( x ,  S) and 

L(x, S). However, we will show that one simulation run may also provide estimates for 

the gradient of function (1). 

Let us make some useful rearrangements of the problem. We assume that all random 

variables are specified on the probability space (P, .F, R) . Let us suppose that we simulate 



the process for a given setting (x, S) of the design parameters until N batches are delivered 

(and lost or processed). Denote by LN (x, S, W )  the random number of lost batches and 

by QN(x, S, W )  the random number of processed batches during the simulation run, while 

w E R denotes the random element in the process. We have 

lim LN (5, S, 4 
= L(x ,S ) ,  

N+CQ Nxl 
1im QN(x,S, = ~ ( x ,  S) (as . )  

N+CQ Nxl 

Therefore, a sensible estimate of aL(x,  S) - PQ(x, S) , based on the simulation run, would 

be 

Let us denote 

F ( x , S )  = lim L N ( x , S , ~ ) \ I I ; ( x , S , ~ )  (as.) ,  
N-rw 

then 

Thus the criterion function is equal to 

2.2 Optimization Problem 

Usually feasible storage sizes S E isl,. . . , Sz) are known a priori. The problem is to find 

values xl 2 0 ,  5 2  2 0 and S; minimizing the function C(x,  S;) . It is easy to see that 

this problem is equivalent to the minimization problem 

I 

@(x, y) !sf C C ( x , S i )  y; + min 
i=l (x,y)~lR2 xlR' 

subject to constraints 



Denote 

I 

Y = { y ~ ~ ' :  Cyi = 1,  y i > O ,  i = l ,  ..., I ) ,  
i=l 

then problem (3) can be formulated as 

@(x,y) -+ min . 
(X,Y)EX xY 

This is a typical stochastic optimization problem with linear constraints. Despite the fact 

that the original problem is a mixed discrete-continuous stochastic optimization problem, 

we reduced it to  the conventional problem with continuous variables by using the addi- 

tional variables yl, . . . , y~ . As we see further, the function @(x, y) involves the calculation 

of multidimensional integrals, the exact evaluation of which is out of the question. 

2.3 On Optimization Techniques 

The function 9 ( x ,  y) is smooth with respect to  the variables x , y. We will apply stochastic 

quasigradient techniques [2], [3] (see Section 5) to optimize the function @(x, y) with re- 

spect to the variables x, y . The value of the criterion function @(x, y) cannot be calculated 

analytically since an analytical description of the function F ( x ,  S) is not available. There- 

fore, we simulate the process to estimate the values of the function F ( x ,  S;) , i = 1,. . . , I. 
Because of technical (mathematical.) reasons it is convenient (but not necessary) to  change 

to the situation that the number of processed batches 9 is fixed (rather then N) and the 

total number of processed batches N*(x, S, w) and the number of lost batches L*(x, S, w) 

are random functions of the variable 9 and the control variables x ,  S.  Let us denote by 

$ the batch number processed by the work-station and by (+(x, S, w) the number of lost 

batches during processing of the batch with number $. Since L*(x, S, w) is the number 

of lost batches during the processing of 9 batches by the work-station, we have 

As an approximation of F ( x ,  S) we consider the function 



Partial derivatives &@(x, y) and &@(x, y) can be estimated through the derivatives 

L F @ ( X ,  S) and & F@(x, S) . In the next two section, we develop unbiased estimates for 
8x1 

the derivatives &F*(x, S) and &F@(X, S) . The problem with the calculation of these 

derivatives is that the analytical description of the function FQ(x, S) is not available and 

the function LQ (x, S,  w) is generated algorithmically. Moreover, the function Ls (x, S, w) 

is discontinuous with respect to xl,  xz . For the discontinuous function Ls(x, S,  w) (in spite 

of almost everywhere differentiability with respect to xl , x2 ) the interchange of taking the 

gradient and the mathematical expectation is not allowed. We differentiate the function 

Fq (x, S) with respect to XI,  2 2  by the direct formulae for derivatives of the integrals over 

the sets given by inequalities (see Appendix). Although the exact calculation of these 

derivatives is practically impossible we estimate these derivatives during one simulation 

run of the model. For these estimates we only need the following information: the sequence 

of busy periods of the work-station, the number of the batches which were supplied and 

processed from the beginning of the current busy period, operational and repair intervals. 

During one simulation run we estimate derivatives of the function @(x, y) at some point 

(xs, ys) , then improve this point and get the next approximation (xS+', yS+') and so on 

s = 1 ,2 , .  . . This procedure will further be described in Section 5. 

3 The Derivative with Respect to the First Variable 

In the present section and the next, we differentiate the mathematical expectation of the 

function L+(x,  S, w) with respect to variables xl ,  and x2 respectively. Since we do not 

variate variable S to simplify formulas we omit in this and the next section argument 

S . Further we write the random variables without the argument w E R, i.e. the random 

variable ('(w) is denoted simply by ('; we use bold face style for random variables. Thus 

the function Ls(x, S, w) is denoted as Lq(x) .  

3.1 The Conditional Expectation of the number of Lost Batches 

The mathematical expectation of the function Ls(x) is a highly dimensional integral. To 

smooth the function Lq(x) it is sufficient to integrate it with respect to some random 

variables, which possess probability densities. This means that we can calculate some 

conditional expectation of the function Llu(x) and afterwards interchange the gradient 

and the mathematical expectation sign. 
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Figure 2: Amount of material in the bufler. Bufler size equals to 2. Batches with numbers 

3, 4, 5, 7, 8 are lost. 

The size S of the buffer is fixed. Denote by d the number of arriving batches such 

that after processing of these arrivals without repair the work-station is definitely idle 

where n/ is the set of natural numbers. 

Let us split the sequence of batches ($1 processed by the work-station in "indepen- 

dent" chains such that each chain begins with a batch with repair and is finished a t  least 

by S + d + 1 batches without repairs (we exclude from consideration the batches from the 

beginning of the process up to the first batch with repairs). We might use the value S + d 

for splitting the process in independent chains, but here we take S + d + 1 to guarantee 

that "small" changes of x do not influence the independence of the chains. Further, for 

sensitivity analysis with respect to x , we assume that the value d does not depend on x . 
Let us numerate these chains with the index a. Denote the set of batches, belonging 

to the chain with the number a by 6(x2,a)  . Further let us specify in each chain busy 

periods with repairs (subchains of batches between two idle periods of the work-station, 

at least for one batch in such a subchain the processing should be interrupted by repair). 

Let us call such a subchain (see Figure 2) Busy Period with Repair (BPR). 

We numerate the sequence of BPR7s by the index q, q = 1,. . . , Q(a)  and numerate 

by the index 9 ,  9 = 1,. . . , @(a, q) the batches which were processed with repairs in BPR 



number q . Finally, let us numerate by the index j , j = 1, .  . . , J (a ,  q, 8) the repairs during 

the processing of batch 8 . Denote by u:, the number of batches which were processed 

by the work-station from the beginning of BPR (a, q) to batch 8 (including batch 8) and 

denote by vf,, the number of batches which were supplied to the buffer (some of them 

may be lost) from the beginning of BPR (a, q) to the finishing of the processing of batch 

8.  Each repair period can be identified by four indices a,  q, 8, j , i.e. rzq is a repair number 

j which happens during the processing of batch 8 in BPR q from the chain a .  

We suppose that lengths of repair periods are statistically independent and have a 

smooth probability density function e . 
Let us denote: 

l is the number of the operational period (this is a period in which the work-station is 

available); 

Ye is the length of the operational period l ;  

3, is the a-algebra generated by the random lengths of the operational periods ye,  l = 

1,2, ... ; 

E, is the conditional expectation with respect to the a-algebra 3, ; 

IP, is the conditional probability with respect to the a-algebra 3, ; 

A(x2) is the number of chains for 9 consumed batches. 

The expectation of the function LQ(x) can be represented as 

e Let us denote the set of random values u:,,, v,,,, q = 1, .  . . , Q(a) , 8 = 1, .  . . , @(a, q) 

by Ua(x) . This random set Ua(x) can attain different values Ua , where the set Ua is the 

e e set of u,,, , v,,, , q = 1, . . . , Q(a) , 8 = 1, . . . , @(a, q) . Denote the set of all sets Ua by 

U:"(x2). The random value C,E6(x2,a) C,(x) is a function of the set U,(x) i.e. 



Further, with the full probability formula, 

Let us represent the value IP, {Ua(x) = Ua) , which is the probability that the random 

set Ua(x) take the value Ua under the condition that the operational intervals are known. 

If the random values u:,~, v:,, take the values u:,~, v:,,, it means that from the beginning 

of the subchain (a, q) to  the end of the processing of the batch (a, q, 8) a time period with 

length 

passed and this length exceeds viqxl and is less than (v:, + l )x l  . Thus u:, = u:,, , v:, = 

if and only if 
va?q 

The probability that this inequality is satisfied for 8 = 1,. . . , @ ( a ,  q); j = 1 , .  . . , J ( a ,  q, 8), 

under the condition that the operational intervals .yo , l = 1,2,  . . . are known, is equal to  

daq (5) = 

Since the repair intervals are independent random values, the conditional probability 

IP, {Ua(x) = Ua) is equal to  

Combining (9), (lo), (11) and (14) we have 



3.2 Derivative 

The functions d a q ( x ) ,  a  = 1,.  . . , A ,  q = 1, .  . . , Q ( a )  are smooth with respect to X I  . 

Lebesgue's theorem and equality (15)  imply 

Further we have 

At first we calculate the derivative of the function d a q ( x )  with respect to xl  . Here we 

omit the indexes a  and q to simplify formulas 

Denote 



The vector function f : lR2 x lRm + lRk is smooth with respect to the variables x, r. 

With these notations 

We use formula (82) of the Appendix to differentiate function (20). Suppose 1 = 2 0  . 

Initially we must solve the equation (see (83)) 

Let us calculate V, flr(x, r) 

Further let us calculate & fll(x, r) 

Equation (21) has many smooth solutions. For example the vector H;(x, r) 

is a solution of equation (21). Suppose that the function p(r) 



is equal to zero on the boundary of the set 

For example, this is valid if e ( 0 )  = 0 .  In this case equation ( 8 2 )  implies 

where 

By ( 2 5 )  and ( 2 6 )  

Finally, we have from ( 1 7 )  and ( 2 7 )  

where 

def O O J ( a , 9 , 7 )  
{ r a q : f a q ( x , r a q ) < O )  = { r a q : v a q  < 5;  u : ~ x ~ + C  C 

~ = 1  j=l 

P: > 0 ,  8  = 1 , .  . . , @ ( a ,  q ) ;  j = 1 , .  . . , J ( a ,  q ,  8 )  ) , 

- 1  O j  
h z  = x 1  [rag + (u!,  - u : i 1 ) x 2  J-' ( a ,  q ,  8 ) ]  , (u:, = 0 )  , ( 3 0 )  

With ( 2 9 )  and ( 3 0 )  



Therefore 

Equation (28) implies 

By (16) and (33) 

where (see (10) and (32)) 

For example, suppose that e is a gamma distribution, i.e. 

A" r " - l e - X t  
e(r) = r ~ )  , A > l ,  ~ > l ,  

then 

Thus, for this special case 



4 The Derivative with Respect to the Second Vari- 

able 

4.1 The Expectation of the number of Lost Batches 

In section 3.1 we presented (see ( 1 5 ) )  the function E L s ( x )  as expectation of the function 

This function is smooth with respect to  the variable xl for the fixed value of w E 52 and 

the buffer size S. We differentiated the function j ( x , w )  with respect t o  xl and got an 

estimate for the derivative of the function E L s ( x )  . Unfortunately, the function j ( x ,  w )  

is not smooth with respect to  the second variable 2 2 .  To smooth over the function j ( x ,  w )  

we have to integrate it  additionally with respect to  the random variables y e ,  l = l , 2 , .  . . . 
Let us define the random sequence B ( x 2 )  which consists of be , l = 1 , 2 , .  . . given by 

equation 

This random sequence B ( x 2 )  can attain different values. Denote by Ba" the set of such 

deterministic sequences of natural numbers. The random function j ( x ,  w )  is a function 

of the control variable x  and the random sequence B ( x 2 )  i.e. 

Then with the full probability formula 

4.2 Derivative 

Since functions P { B ( x 2 )  = B) , j ( x 7  ~ ( 5 2 ) )  are smooth with respect to  x2 , we can 

differentiate function ( 3 8 )  



The derivative &i(x,  B) can be calculated as 

Analogously to the section 3.2 we use formula (82) (see Appendix) to calculate the deriva- 

tive &daq(x). Skipping the subscripts a ,  g we have the function d(x) (see (20)). Suppose 

1 = 2 0  . To differentiate the function d(x) ,  we must solve the equation (see (19), (83)) 

Let us represent & fll (x, r )  

Equation (41) with (22) and (42) has many smooth solutions. For example, the vector 

is a solution of equation (41). Suppose that the function p(r) 

is equal to zero on the boundary of the set 

In this case equation (82) implies 

where 

By (45) and (46) 

Hence, we have from (47) and (44) 



where 

With ( 4 0 )  and ( 4 8 )  

Now let us represent the function P { B ( x 2 )  = B )  as probability that the following con- 

straints are satisfied 

We consider that the random variables ye, l = 1 , 2 , .  . . are independent and have density 

function v (.) . Denote 
e mas 

r = (re . . . , r e m a s )  , l i ( y )  = n v ('yp, - 
e= 1 

Thus 

Denote 



Let us calculate &ip(x2) with the formula ( 8 2 ) .  Suppose i = 2emaz . We should solve 

the equation 

a A 

I;ri(x2, 7 )  v T f l i ( x 2 ,  Y )  + - f I i (x2 ,  7 )  = 0 . 
(3x2 

We obtain 

Further let us calculate & f l i ( x 2 ,  y )  

emaz e maz 

Equation ( 5 4 )  has many smooth solutions. For example, the vector H f ( x 2 ,  7 )  

is a solution of equation ( 5 4 ) .  The equation ( 8 2 )  implies 



Since the functions f;(x2, y)  , i = 1 + 1, .  . . , k do not depend upon x2, we have 

It is easy to  see that for i = i+ 1,. . . , d all components of the vector V7 fi(x2, y) are equal 

to zero except 

Thus, by (58) and (61) 

Since on the set dijl(x2) the value y;-2emar is equal to zero for i = 1 + 1 , .  . . , k, we obtain 

(60) and (62) 

Hence, by (58) and (59) 

p maz 

- - J . [ u - l ( y e ) ~ ~ ( y e )  -1 aye 5 2  re + WG1ye)] fi(y) dy 
,qx2) e=1 dye 

p maz 

dlnv(ye) 

= J 2 [ aye 
5 2  ye + x i 1  j (y)  dy 

4 x 2 )  I 
where 

With (37), (39), (52) and (64) 



where (see ( lo) ,  (50) and (65)), 

5 Stochastic Quasigradient Algorithm 

Let us consider the optimization problem (6) 

@(x,y)  -+ min 
( ~ , Y ) E X X Y  

By X x Y E IR2 x IR' we denote a feasible set for the decision vector (x, y) . The standard 

nonlinear programming techniques are not efficient for this problem since computation 

of gradients requires computation of multi-dimensional integrals. In order to avoid this, 

stochastic quasi-gradient algorithms can be used (see, for example, [2] and [3]). One of 

the most simple stochastic quasi-gradient algorithms is 

where s is the number of the algorithm iteration; (xS, yS) is the approximation point of the 

extremum on the sth iteration; nXXY ( a )  is the orthoprojection operation on the convex set 

X x Y; ps > 0 is a step size; and ts is a stochastic quasi-gradient satisfying the following 

property 



i.e. the conditional expectation of the vector ts is equal to the gradient of the function 

@(x, y) at the point (xs, ys). Results of computation experiments show that the algo- 

rithm (71) rapidly leads to the point of the extremum if the objective function is not 

ill-conditioned, i.e., for non-"ravine" functions. In cases where the function @(x, y) is 

"ravine", the algorithm gets stuck "at the bottom of the ravine". This difficulty may be 

overcome by using more complicated stochastic quasigradient algorithms with averaging 

or a variable metrics algorithm [25] with metric transformation. 

The algorithm with the averaging of stochastic quasi-gradients was considered by many 

authors (see, for example [8], [13], [21]). 

For improving the convergence rate of the algorithm (71.), we use here the stochastic 

quasi-gradient algorithm with adaptively controlled step sizes (see [22]) and the scaling 

procedure, suggested by Saridis [18] 

where Hs is a scaling matrix. 

Although the exact calculation of the derivatives of the function @(x, y ) is practically 

impossible, the stochastic quasigradient tS at  the point (xs, y3) can be calculated during 

I runs of the simulation model. Indeed, formula (2) implies that 

and 

Hence, 

Instead of values F ( x ,  Si) , Vz F ( x ,  Si) , i = 1, . . . , I in formulas (75) and (76), we can use 

the estimates obtained in the previous sections. 



Let us suppose that at the sth iteration of algorithm (72) the current approximation 

(xs, ys) is available. Let us sample the simulation model and as an estimate of F(xs, S;) 

we use the value (see (8)) 

\k-l Lu(xS, s;, wS) . (77) 

An estimate 

for the derivative & F(xS, S;) follows from formula (34), where IC (u.(x)) , (u.(x), ra) 

are given by formulas (35), (36). An estimate 

for the derivative & F(xS, S;) follows from formula (66), where 

are given by formulas (35), (68) and (69). Since for each (xs, ys) and S; the estimates (77), 

(78) and (79) can be obtained during one run of the model, we should sample the orig- 

inal simulation model I times in order to obtain the stochastic quasigradient Js with 

formula (75) and (76). 

6 Conclusions and Remarks 

The preceding analysis shows that it is indeed possible to develop efficient search algo- 

rithms based on performance estimates obtained via simulation. It even appears possible 

in the case of non-smooth behavior of the sample path as a function of the system pa- 

rameters to estimate "gradients" which are useful for an optimality search. 

The gradients are obtained easily from the simulation run, however, the analysis for 

finding the right formula is rather complicated. 

In order to make this approach practically applicable, it is essential that progress 

is made in two directions of research: in the first place, formulas should be developed 

for one-simulation-run estimation of gradients in large classes of realistic models; in the 

second place, the analysis leading to such formulas should be standardized in such a way 

that the formulas can be produced (semi-) automatically without requiring mathematical 

skill of the user. A promising approach seems to be a combination of the ideas in this 

paper with those presented in [5]. 



7 Appendix. The Analytical Derivatives of the In- 

tegrals over Sets Given by Inequalities 

Let the function 

be defined on the Euclidean space Rn, where f : Rn x Rm -t Rk and p : Rn x Rm -t R are 

some functions. The inequality f (x, y) _< 0 should be treated as a system of inequalities 

For example, let 

be a probability function, where ('(w) is a random vector in Rm. The random vector ('(a) 

has a probability density p(x, y) which depends on a parameter x E R .  

We present a general formula [24] for the differentiation of integral (80). A gradient of 

the integral is represented as a sum of integrals taken over a volume and over a surface. 

Let us introduce the following shorthand notations 

Further, we need a definition of divergence for the matrix H 

We define 



and dp(x) to be the surface of the set p(x). Let us denote by djp(x) a part of the surface 

which corresponds to the function f;(x, y) 

If we split the set K ef { I , . .  . , k) into two subsets K1 and K2, we can consider, without 

loss of generality, 

I(1 = (1,.  . . ,1) and K2 = {I + 1, .  . . , k) . 

There is freedom in the choice of the sets K1 and I(z and the representation of the 

gradient of the function (80). At first we consider the case when the subsets K1 and K2 

are not empty. In this case the derivative of integral (80) is given by the formula 

where the matrix function Hl : Rn x Rm -t RnXm satisfies the equation 

The last equation can have a lot of solutions and we can choose an arbitrary solution, 

differentiable with respect to the variable y . 
Further, let us present the derivative of function (80) for the case with the empty set 

I(1. In this case the matrix function Hl is absent and 

Finally, let us consider a formula for the derivative of function (80) for the case with 

the empty set K2. In this case the integral over the surface is absent and the derivative 

is represented as an integral over the volume 

where the matrix function H : Rn x R"' -t RnXm satisfies the equation 
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