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Abstract 

This paper describes a method for optimizing multistand timber harvest decisions under 

uncertainty. The optimal decision policy is approximated by a timber supply function. The 

supply function is formulated analytically and the supply function coefficients are optimized 

numerically by maximizing the expected present value of the forest. This method is 

implemented to the problem of timber harvest decision making under timber price uncertainty 

for a simple forest with one forest-level activity, i.e., investment in timber harvest capacity, 

incorporated. Stochastic quasigradient methods are introduced and suggested to be used to 

optimize the supply function coefficients. Advantages of this method lie in its computational 

efficiency, flexibility of model formulation, and its application potentials. A numerical 

example is used to illustrate the application of this method. Sensitivity analysis shows that 

the level of timber price uncertainty affects both the optimal harvest decision policy and the 

expected present value of the forest. However, the effects of correlations between timber 

prices in successive periods are not obvious, probably because of the relatively long decision 

intervals used in this study. Comparison of the numerical results with the optimal solution 

to a corresponding deterministic linear program shows that substantially higher expected 

present value of the forest (12.5-88.4% higher than the linear programming solution, 

depending on the variance and correlation of the timber price process) can be obtained using 

this method with the currently formulated timber supply function structure. 

KEY WORDS: Forest management, supply function, uncertainty, stochastic optimization. 
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Adaptive Optimization for Forest-Level 

Timber Harvest Decision Analysis 

Peichen Gong 

1. Introduction 

To date, deterministic optimization techniques, especially deterministic linear programming, 

are commonly used in timber harvest decision analysis. While deterministic timber harvest 

scheduling techniques have been continuously improved, they usually can not explicitly 

recognize and appropriately incorporate uncertainty in the future forest-market state in timber 

harvest decision analysis. Uncertainty in forest management has been widely acknowledged, 

and it has been argued that since the decision maker does not have perfect knowledge about 

the future, uncertainty in the future forest-market state should be explicitly taken into account 

in decision analysis (Buongiorno and Kaya, 1988; Smith, 1988). The theory of decisions 

under risk (uncertainty) was introduced into forestry (see, e.g., Thompson, 1968), and a 

number of studies have been conducted to investigate the applicability of various decision 

methods to forest management (timber harvest) decision analysis under uncertainty. 

Hool(1966) applied a Markov chain approach to an optimal forest production control (timber 

harvest) problem under forest stand state uncertainty. This approach was later applied to the 

management of even-aged (Lembersky and Johnson, 1975) and uneven-aged stand (Kaya and 

Buongiorno, 1987), where both timber price and timber growth are stochastic. Lohmander 

(1988b) studied the optimal stopping rule in even-aged stand management and derived the 

optimal reservation prices for clear cutting decisions. Similar problems were also studied by 

Brazee and Mendelsohn (1988) and Gong (1991). Effects of the risk of forest destruction 

caused by catastrophic reasons, such as fire, on the optimal rotation of a forest stand were 

investigated by, among others, Martell (1980), Routledge (1980), Reed (1984), and Caulfield 

(1988). Gong (1992) applied a multiobjective dynamic programming method to a timber 

harvest decision problem when nontimber values of the stand is considered. 



The results of these studies are promising. Several methods, such as Markov chain approach, 

stochastic dynamic programming, stochastic dominance analysis, etc., have been successfully 

applied to the respective example problems. However, all these studies are focused on stand- 

level decision analysis. More than often, timber harvest decisions for the individual stands 

in a forest can not be made independently. Possible reasons for the interdependencies 

between the timber harvest decisions for the individual stands include 

(1) Imperfect decision environment: Timber supply from a specific forest could be so 

important to the market that timber price is no longer exogenous to the harvest 

decisions; Budget and harvest-flow constraints are often imposed, especially in the 

management of public forests; The size of continuous clear cutting area is sometimes 

regulated; 

(2) Considerations of nontimber benefits of the forest (the multiple-use problem); 

(3) Nonlinear timber harvest cost functions; 

(4) Timber harvest related forest-level activities, such as investment in harvest capacity 

and road construction; 

(5) Ecological interactions between the stands. 

Under such circumstances, the overall timber harvest decision for a forest, formed by 

aggregating (putting together) the independently made decisions for the individual stands 

within the forest, could be either infeasible or not optimal. Methods which have been used 

in previous studies for stand-level management (timber harvest) decision analysis under 

uncertainty in timber price and/or timber growth commonly require solving recursive 

equations numerically to identify the optimal decision policy. Unfortunately it is difficult to 

apply these methods, which are applicable to stand-level decision analysis, to analyze the 

problem of multistand timber harvest decisions under uncertainty appropriately because of 

the well-known dimensionality problem. Lohmander (1988a) conducted an analytical study 

of the problem of continuous extraction (harvest) of the renewable resource under uncertainty 

in the price and growth of the resource. The (comparative static) results derived are 

important, yet the explicit optimal harvest policy can not be obtained analytically. 

Hoganson and Rose (1987) presented a timber management scheduling model which 



incorporates forestwide uncertainty. In this model, the planning horizon is divided into two 

parts, the "short-run" when the state of nature is known with certainty and the "long-run" 

in which the state of nature is stochastic. Uncertainty in the "long-run" is described by a 

number of scenarios, and the model is formulated in such a way that harvest schedules in the 

"long-run" are distinguished between the scenarios, while the "short-run" activities are 

identical no matter what specific scenario takes place in the future. An improvement of this 

model over the deterministic ones is that, in making the current decisions, a number of 

possible states of nature in the future are explicitly recognized and taken into account. 

However, such a formulation assumes that the actual state of nature in all the future periods 

(the realized scenario) can be completely observed in the beginning of the second part of the 

planning horizon. It is obvious that a "scenario" recognized in this model consists of the state 

of nature in a number of sequential decision periods and is only partly revealed after the 

observation in each single period has been made. While extension of this model to recognize 

the sequential structure of uncertainty and to incorporate the observations made in different 

decision periods is not practical because of computational reasons, such a simplification of 

the information (observation) structure will in principle result in over estimation of the 

expected present value of the net revenues in the future periods. 

Thompson and Haynes (1971) proposed a "partially stochastic linear programming" approach 

for analyzing decisions under uncertainty, and applied it to a wood procurement problem of 

a forest industry firm. This approach consists of two steps. First, simulate the possible states 

of nature in the future by using (subjective) probability distributions of the random state 

variables. Second, solve the linear program for each and every simulated state of nature. This 

method would be appropriate for analyzing the problem of decision making under uncertainty 

when perfect information could be available (at some cost). 

Reed and Emco (1986) incorporated the risk of forest fire in a timber harvest scheduling 

model. The optimal decision is identified by solving a deterministic linear programming 

problem which approximates the original stochastic one. The applicability of this method, 

however, is limited to this special kind of uncertainty. When uncertainty in other factors, 

such as timber price, is present, it is in general impossible to find an equivalent deterministic 

problem as long as one does not exclude the adaptive mechanism from the model. 



The main difficulty of incorporating uncertainty in forest-level timber harvest decision 

analysis by extending deterministic timber harvest scheduling models is that the resulted 

optimization problem is (numerically) too complicated to be solvable. This paper presents an 

alternative approach to formulate and solve the problem of forest-level timber harvest 

decision making under uncertainty. With this approach, the adaptive mechanism can be 

incorporated into a solvable forest-level timber harvest decision model without simplifying 

the sequential structure of uncertainty in the future state of nature. To be specific, the fact 

that observations of the realized state of nature are made sequentially is recognized and the 

dependency of the optimal harvest level in the future periods on the then observed state of 

nature is explicitly formulated in the decision model, while keeping the model manageable 

(solvable). After a brief description of the problem addressed and the proposed approach for 

formulating and solving the problem, the decision model is formulated and solution methods 

are discussed followed by an introduction to stochastic quasigradient methods which will be 

used to solve the optimization problem. The formulated decision model and the introduced 

solution method are applied to a numerical example problem, and comparison of this model 

with the deterministic linear programming method is conducted. Possible improvements and 

extensions of the described model for more complex decision problems, aa well as the 

efficiency of this approach are discussed. 

2. The Problem and the Proposed Method 

2.1 The problem 

We are thinking of the problem of forest-level timber harvest decision making under 

uncertainty. The sate of the forest in period t is described by X, and V. 

where N is the maximum relevant age (in number of age-classes) of the stands, x: (for i= 1, 

. . . , N) is the area of the stands in age-class i in period t, and v i  is the per unit area growing 

stock of timber in age-class i. V is constant over time. 



Timber price in the future is stochastic and the stochastic timber price process can be 

estimated from historical timber price records. The timber market is perfect and the actual 

timber price in any period can be observed before the decision for that period has to be 

taken. The management objective is maximizing the expected present value of the net 

revenues in the current and in all the future periods. Decisions are related to the optimal 

timber harvest level. 

Previous studies of stand-level timber harvest decision problems show that, when timber 

price is stochastic, the expected present value of a forest stand could be increased 

significantly if observations of the actual timber price in the future periods are utilized and 

decisions are taken adaptively (Brazee and Mendelsohn, 1988; Lohmander, 1988b). When 

timber harvest decisions should be made at forest-level, there are two connected questions 

to ask. (1) Can we find a computationally feasible method for forest-level timber harvest 

decision analysis under uncertainty? And (2) if we can, is the method efficient? In other 

words, can the expected present value of the forest be increased when the identified method 

is used to explicitly take into account uncertainty in timber harvest decision making? 

This study is mainly concerned with the first question. The objective is to develop a method 

which enables the adaptation of future timber harvest decisions to the observed timber prices 

without over-simplifying the structure of the problem. To highlight the development of the 

method, we consider a forest with one tree species and one site quality. One forestwide 

activity, i.e., investment in timber harvest capacity, is considered. As to the second question, 

the answer could be affected by how the method is used. And it is likely that the magnitudes 

of changes in the expected present value resulting from the use of a new decision method are 

problem dependent. For these reasons we do not intend to draw any general conclusion with 

respect to the second question. 

2.2 The proposed method 

Generally spealong, forest management is a multistage decision problem where the optimal 

decisions in the current period and in all the future periods are interdependent. It is therefore 

essential to consider also decisions in the future periods when making the decision related 



to the management activities in the current period. Moreover, the optimal decision in every 

period is dependent on the forest-market state in the same period which is affected by 

decisions in the preceding periods and by a number of random factors. Since the forest- 

market state in the future periods is not known with certainty, uncertainty should be taken 

into account and decisions in the future periods should be formulated appropriately. When 

decisions are made at stand-level, the scale of the problem is relatively small and it is usually 

possible to formulate and determine the optimal decisions for each and every possible stand- 

market state in the future periods. In this case, the dependency of the optimal decision on the 

stand-market state is formulated implicitly and the optimal decision policy is derived 

explicitly. Forest-level decision problems are much more complicated in terms of the 

decision- and the state-space. It is generally impossible to derive the optimal decision for 

each and every possible forest-market state directly because of the enormous number of 

possible states and decisions which should be considered. In such cases, one may think of 

the possibility of using some function to describe the dependency of the optimal decision on 

the state of nature, and deriving the optimal decision for each possible state of nature 

indirectly by optimizing the structure and coefficients of this function. By this means the 

problem can hopefully be made manageable. Clearly, the obtained optimal function is an 

approximation of the true optimal decision policy. 

In timber harvest decisions, such a function should link the optimal harvest level with the 

forest-market state variables which affect the harvest decisions. This leads us to think of the 

timber supply function. From production theory, the supply function of a firm is a functional 

relation between the optimal production level and prices of the product and the production 

factors conditional on the production conditions (e.g., technology, capacity, etc.). Once such 

a supply function has been obtained, the optimal production level can be easily determined 

after the actual prices have been observed. Following this idea, the method which is proposed 

for forest-level timber harvest decision analysis is to derive the (short-run) timber supply 

function of the forest. The structure of the timber supply function can be formulated 

analytically, and the supply function coefficients are optimized numerically by maximizing 

the expected present value of the current and all the future net revenues when timber harvest 

decisions will be made by using this supply function. 



With such a representation of the timber harvest decision policy, the problem of forest-level 

timber harvest decision making 'under uncertainty can be formulated as a single-stage 

stochastic optimization problem. In this way we overcome the dimensionality problem, which 

seems to be the main obstacle for the application of stochastic models to forest-level timber 

harvest decision analysis. Uncertainty in timber price, in the forest state (forest state 

transitions), and in timber harvest cost can be simultaneously incorporated into the decision 

model. And as it will be shown, such a method is quite flexible in the sense that constraints 

related to the periodic timber harvest level can be easily accommodated in the model and that 

this method is capable of dealing with "nonstandard" timber harvest decision problems in 

which the timber harvest cost function is nonlinear and/or the timber market is not perfectly 

competitive. 

3. The Model and Solution Methods 

The best way to describe and discuss this method in more detail is to use it to formulate and 

solve a concrete timber harvest decision problem. In this Section, we formulate a timber 

supply function and the stochastic optimization problem related to the timber harvest decision 

problem which was described in Section 2. Then solution methods which can be used to 

solve the obtained optimization problem will be introduced. 

3.1 The timber supply function 

To implement this method, we first need to find a suitable structure for the timber supply 

function. Theoretically, the supply function of a firm can be derived from the profit function 

of production. However, the timber supply function can rarely be obtained in this way 

because the profit function (the maximum present value function) can not be formulated 

explicitly due to the multistage nature of timber harvest decision problems. Although there 

are analyses about the properties of the implicit timber supply function in deterministic or 

stochastic contexts (Johansson and Liifgren, 1985; Lohmander, 1988a), there is no analytical 

discussion, to the best of my knowledge, about the appropriate structure of the timber supply 

function in the literature. There are, however, a number of econometric studies of the timber 

harvest behavior of nonindustrial private forest (NIPF) owners (Kuuluvainen, 1989; 



Aronsson, 1990; CarlCn, 1990), and of the market (aggregate) supply of timber (Brhnlund 

et al., 1985; Briinnlund, 1988). The econometric studies serve as a good starting point for 

formulating the timber supply function. 

The basic structures of the individual and market timber supply functions used in econometric 

studies are respectively 

where s j  is the output of timber supplied from NIPF j in period t, s, is the market supply of 

timber in period t, Zj is a vector of independent variables related to the j-th NIPF in period 

t, p, is timber price(s) in period t, Po, P,, a, and a, are coefficients. 

A distinctive feature of the individual forest owner's timber supply function used in 

econometric studies is that most of the factors which affect (or are supposed to affect) the 

forest owner's harvest decisions are included as independent variables. Explanatory variables 

used in such supply functions can be grouped into, following CarlCn (1990), personal-, 

forest-, and market-related variables. On the other hand, these supply functions are usually 

formulated as linear models because of statistical reasons. Some empirical data, however, 

show that a linear relation between the observed timber harvest level and the independent 

variables does not exist (Kuuluvainen, 1989). In the present decision problem, investment 

in timber harvest capacity implies that the optimal harvest level may not have a linear 

relation with the independent variables, such as the price and growing stock of timber. 

Therefore, we formulate the supply function by taking (2) as the basic structure and including 

in it the relevant forest state variables. 

In market timber supply functions, forest state variables are usually not included as 

independent variables to explain the year-to-year variations in the observed timber supply 

level. One justification for this could be that the relation between market timber supply and 

timber price(s) are usually investigated for a relatively short period within which the overall 

forest state is rather stable. On the average, only a small percent of the growing stock of 



timber (or forest area) is harvested in each year. Effects of timber harvest on the 

development of the aggregate (overall) forest state are small in a relatively short period. 

However, the same can not be said of the individual forests. Annual (or periodic) timber 

harvest level in a single forest could be high enough to change the forest state significantly, 

which in turn affects harvest decisions in the subsequent periods. The forest state, therefore, 

should be explicitly included in the timber supply function of a specific forest. 

Effects of the forest state on the optimal timber harvest level could be taken into account in 

several ways, for example, by including the forest area in each age-class or some aggregate 

measurets) of the forest state in the supply function. In this study, we take into account a 

lower age limit when clear cutting is allowed. Two aggregate forest state variables, the total 

and the average per unit area growing stock of timber in the harvestable stands (stands which 

are not younger than the lower age limit) in the forest, are used to reflect the supply effects 

of the forest state. The total growing stock of timber determines the harvest potential (the 

highest possible harvest level) in each period. However, a change in the total growing stock 

of timber may result from changes in the harvestable area and/or in the average per unit area 

volume, both of which are important for the determination of the optimal harvest level. Since 

the harvestable area can be uniquely determined when the total and the average per unit area 

growing stock in timber of the harvestable stands are known, we choose the latter two as 

independent variables in the timber supply function. The average per unit area volume 

reflects effects of the average age of the harvestable growing stock of timber on the optimal 

harvest level. 

Including these two independent variables, the supply function is formulated as 

where S, is the amount of timber supplied from the forest under consideration in period t, Y, 

is the harvestable growing stock of timber in period t, A, is the average per unit area volume 

in period t, at,,-% are coefficients. Y, and A, are calculated by 



where z is the lower age limit (in number of age-classes) when clear cutting is allowed. 

With supply function (3), the timber harvest level will be continuously adjusted according 

to the observed timber price and forest state. Though this is an improvement over the 

deterministic timber harvest scheduling formulations where only one of all the possible 

timber price series in the future periods can be recognized and possible adjustments of the 

optimal harvest level in the future periods can not be incorporated in the model. However, 

the adjustment of harvest level to timber price in supply function (3) is not always sufficient. 

When the observed timber price is low enough in some period, it is possible that to wait one 

period for a possibly higher price is more profitable than harvest anything at all in that 

period. In such a case, the supply of timber (harvest level) should be reduced to zero instead 

of some lower level calculated by using (3). To incorporate such discontinuous adjustments 

of the harvest level, we introduce a reservation price in the supply function. The reservation 

price RP, is formulated as a function of the average volume per unit area. 

where a,-a, are coefficients. 

Including this reservation price in (3), the supply function is 

In addition to timber price and the forest state, there are several other factors, such as the 

personal-related variables and timber harvest cost, which affect the optimal timber harvest 

level, as has been mentioned earlier. When analyzing the timber harvest decision problem 

related to a specific forest and the management objective is maximizing the expected present 

value, the personal-related variables are (or can be regarded as) constant, and therefore need 



not be explicitly included in the supply function. Timber harvest cost can be explicitly 

included in the timber supply function, and uncertainty in timber harvest cost in the future 

periods can be taken into account directly in optimization of the supply function coefficients. 

When timber harvest cost function is linear and when the correlation between prices and the 

correlation between (per cubic meter) harvest costs in successive periods are of the same 

sign, the effect of an increase in timber harvest cost on the optimal harvest level is similar 

to that of a decrease in timber price. It is then possible to take into account uncertainty in 

timber harvest cost indirectly by using the net timber price in the supply function. We 

consider this simple case and take p, in (7) as the net timber price. Extension to situations 

where the timber harvest cost function is nonlinear will be discussed later. 

In supply function (7), no upper limit of the timber harvest level in each period is explicitly 

indicated. When the observed timber price is higher than the reservation price, it is possible 

that the harvest level calculated by using (7) could be higher than what is available for 

harvesting. One could of course set constraints on ar to assure that the calculated harvest level 

does not exceed the harvestable growing stock of timber. This, however, is not a proper way 

of describing the upper limit of the periodic timber harvest level because using such 

constraints would reduce the possibility for the obtained supply function to be a good 

approximation of the true optimal harvest policy. To satisfy the constraints on ar which assure 

that S, I Y, when both Y, and p, are high implies that, when the harvestable growing stock of 

timber is sufficiently small, only a part of it can be harvested no matter how high (within the 

possible ranges) the average volume per unit area and the actual timber price are. However, 

when the average volume per unit area and timber price are high, it is likely more profitable 

to harvest all of the harvestable growing timber stock. In this case, the adjustment of the 

harvest level should also be discontinuous, that is, the optimal harvest level should increase 

with the average volume per unit area and timber price and eventually reaches a constant 

level which is equal to the harvestable growing stock of timber. Such discontinuous 

adjustments can be achieved by the following modification of the timber function. 

Now we have formulated the timber supply function, and the vector of coefficients ar in (8) 



will be optimized by maximizing the expected present value of the forest. Before turning the 

discussion to the expected present value function, we first examine the constraints on ar. The 

sign of each element of ar can be determined by the signs of timber supply S, and the 

reservation price RP,, and by the signs of their (partial) derivatives with respect to the 

relevant variables. Timber supply S, is always nonnegative and sometimes strictly positive, 

it follows that > 0. Previous studies show that as, lap, > 0 and as, lax > 0 (Johansson and 

Liifgren, 1985; Lohmander, 1988a), from which a, and a, should be positive. Since the term 

A, represents the average age of the harvestable growing stock of timber, it is reasonable to 

assume that the optimal harvest level does not decrease with A,, i.e., ar320. And from the 

fact that the optimal reservation price decreases with stand age1, aRPIaA, < 0,  the signs of 

as and ar, should be opposite, i.e., %*u6< 0. We choose us> 0 and ar6<0, and a, is 

restricted to be nonnegative because the optimal reservation price can not be negativs. Since 

the upper and lower bounds of the periodic timber harvest level have been included in the 

supply function and with the above restrictions on the signs of ar4-ar, the reservation price is 

always positive, no explicit constraint on the absolute values of ar,-a, is necessary. 

3.2 The objective function 

Having formulated the structure of the timber supply function, the coefficients should be 

optimized before we can use the supply function to make harvest decisions. This is done by 

maximizing the expected present value of the forest, i.e., the expected present value of the 

net revenues of timber harvest and investments in the current and all the future periods. To 

formulate the expected present value function, we make the following specifications of the 

problem: Harvesting takes place in the beginning of the decision period and the harvested 

area will be planted immediately with the same tree species at a constant per unit area 

At forest-level this should also be true, though the optimal reservation price curve of 

a forest may be different from that of a single stand. 

The discussion about the signs of ar is for the purpose of setting up lower (upper) bonds 

for the individual coefficients, which is desirable for the optimization process (Gaivoronski, 

1988b). The example test show that, even if these constraints are removed, the obtained 

optimal value of ar still fall in these regions, and therefore support the above arguments. 

12 



planting cost; Investment in timber harvest capacity in any period, if necessary, is made just 

before harvesting in the same period takes place; Investment in timber harvest capacity is 

continuous and the unit investment cost is constant. Given the supply function coefficients 

a ,  the expected present value function has the following form, 

where F(a) is the expected present value of the forest, E stands for mathematical expectation, 

JT * )  is the random present value function with a particular realization of the price process P 

when the harvest policy defined by (8) is followed, &-, is the initial age-class distribution of 

the forest, K, is the initial timber harvest capacity, n is the number of years included in one 

decision period, T is the number of decision periods considered, R, is the net revenue of 

timber harvest in period t, CP is the cost incurred by planting the harvested area in period 

t, C: is the cost of investment in timber harvest capacity in period t, Ilf is the present value 

of the ending forest, and IIK is the present value of the ending timber harvest capacity. 

Age-Class Specflcation of the Periodic Harvest Volume: In order to calculate the harvested 

area in each period and to determine the forest state in the subsequent period, the periodic 

harvest volume determined by using the timber supply function should be allocated to the 

age-classes. To do this, we adopt a simple rule of cutting from the oldest to the younger age- 

classes. There are other ways of allocating the periodic harvest, some of which may be better 

than the one used here in the sense that more detailed forest state information can be utilized. 

However, the "oldest cut first" rule is simple to use and therefore enables us to highlight the 

formulation of the optimization problem and to concentrate on the solution methods. The 

solution methods which will be introduced are also applicable when other timber harvest 

allocating methods are used, using a more complicated method to determine the harvest area 

in each age-class does not help to gain more insights of the problem. Let ~,=(h,', h:, ..., 
hITT denote the vector of harvest area in period t, HI should satisfy the following constraints. 

(1) The area constraint: 

HtsX, for t=1, ..., T 

(2) The total harvest volume constraint: 



VH,=S, for t=1, ... , T 

From these constraints on H, and the cutting rule we setup, the total harvest volume in period 

t can be allocated to the age-classes by the following set of equations. 

N 

( s t -  x h:vj)/v for i=N-1, N-2, ... , z 
j=i+l 

h : = ~  for i= l ,  ..., z-1 (10~)  

The total area harvested in period t is 

Forest State Tmnsition: Since the forest state is described by the area in each age-class, 

forest state transitions can be formulated in the following way. 

where G,' and G: are the transition matrices. 



where g( is the portion of area in age-class i in period t, i.e., x(-h(, moving up to age-class 

i+ 1 in period t+ 1. In the simplest case when the decision period length is equal to the age- 

class width, g(= 1 for all i and t. 

Investment in nmber Harvest Capacity: Investment in timber harvest capacity is determined 

in the following way: Investment in any period is made only if the existing capacity falls 

short of the harvest requirement, and the investment will not exceed what is necessary in the 

same period. 

It== [0, St-Kt] (13) 

where K, is the existing timber harvest capacity in the beginning of period t before investment 

in the same period has been made. 

nmber Harvest Capacity Tmnsition: From the above investment rule, the existing timber 

harvest capacity in a period (i.e., timber harvest capacity carrying over from the preceding 

periods) is one variable which affects the investment level in that period. To formulate the 

dynamics of timber harvest capacity, it should be noted that the machines purchased in one 

period are unlikely to be completely out of use in the next period, nor is it true that they can 

be used forever without reduction in productivity. When the time horizon considered is long, 

which it usually is, proper accounting of harvest capacity is especially important. We assume 

that the productivity of the machines decreases over time exponentially at a constant rate A, 

and the dynamics of the timber harvest capacity is 



Kl =KO 

K,=(K,-,+I~-~)~-" for t=2 ,..., T+l 

Revenues and Costs: The periodic revenues and costs within time horizon T can now be 

explicitly formulated. 

Timber harvest revenue: R, =P,S, (15) 

Planting cost: cp=cl~,C (16) 

hvestment cost: c;=c2It (17) 

where C and C are respectively the per unit area regeneration cost and the price of timber 

harvest capacity. 

End Values: The expected present value of the ending forest is estimated using Faustmann 

forest (land) expectation values, i.e., the expectation value of the forest land when there are 

trees of age t (Johansson and Liifgren, 1985). The present value of the ending timber harvest 

capacity is equal to its market value (in present term). 

where w=(wl, g,. . . , )cT) is a vector of Faustmann forest expectation values. 

Substitute (15)-(19) into (9), the expected present value function is 

where the harvest level S,, harvested area A:, the forest state XI, investment in timber harvest 

capacity I,, and the timber harvest capacity K,, have been defined in (4), (5) ,  (8), (lOa), 

(lob), (1W, (111, (121, (13), and (14). 



3.3 Solution methods 

The resulting optimization problem is 

Find acQcRm 

such that F(a) =E Lf(a, X,, K& P)] is maximized 

where Q refers to the feasible set of the coefficient vector a in timber supply function (8), 

m is the dimension of a (the number of supply function coefficients). 

This is a stochastic optimization problem, for which several solution methods are available 

(Ermoliev and Wets, 1988). The main difficulty of using algorithms developed for 

deterministic problems to solve (21) is the need of calculating the mathematical expectation. 

Because of the dynamics involved in the random functionfl-) and the possible correlations 

between timber prices in successive periods, the objective function F(a) and its gradients can 

not be calculated directly. Stochastic optimization techniques are designed precisely to 

overcome this difficulty. There are two basic types of stochastic optimization methods, i.e., 

approximation methods (Wets, 1983) and stochastic quasigradient methods (Ermoliev, 1983). 

In the remainder of this Section we give a brief introduction to stochastic quasigradient 

methods which will be used later on to solve the example problem. For detailed discussions 

about the theoretical and implementation aspects of the method, the readers are referred to 

Ermoliev (1983, 1988) and Gaivoronski (1988a, 1988b). 

Consider the following maximization problem 

Find xcXcRn 

such that F(x) =E lf(x, o)] is maximized 

wherex is the vector of decision variables and w the vector of random parameters. Stochastic 

quasigradient methods solve problem (22) through an iterative procedure which utilizes 

samples of the random function flx, a). The iterates are obtained by 



where p j ,  means projection on X, p' is step size, and (' is step direction. 

The step direction (' is determined by the stochastic quasigradients of function F(x) which 

can be obtained by the sample gradients (subgradients) of the random functionflx, a). The 

simplest way of choosing step direction is 

tS=f,(xS, .r') (23b) 

where d is a sample of the random parameter o. 

If taking a sample of the random parameter o and calculating the gradients (subgradients) of 

the random function flx, o) is inexpensive (in terms of CPU time), one could take the 

average of some specified number L of samples of the gradients (subgradients) of the random 

function flx, o) . 

where ol.. .d are independent samples of o. 

Starting from an initial point xO, in each iteration s, one (or L) sarnple(s) of the random 

parameter o are taken and the gradients (subgradients) and the value of functionflx, o) are 

calculated at xs. The direction of movement from xs  is determined by using (23b) or (23c), 

and a new vector of values of the decision variable xS+' are obtained from (23a). The process 

is continued from xs+' on, until xS+' approaches the optimal point x'. 

4. A Numerical Example 

The timber supply function constructed and the solution method outlined in the preceding 

Section are applied to a hypothetical timber harvest decision problem to illustrate how the 

proposed method may work numerically. The forest consists of stands of Pinus contorta with 

the same site quality, and the initial age-class distribution of the forest is given in Table 1. 



Table 1. The initial forest state. 

age-class 

area (ha) 820 820 820 820 820 820 820 825 

The maximum relevant stand age (in age-classes) N is 20, but there is no stand older than 

8 in the initial forest. The per hectare timber volume in age-class i (for i= 1, 2, . . . , N) is 

estimated with the following yield function (Fridh and Nilsson, 1980). 

The net timber price follows an AR(1) process. 

where 4,,=20.0 and 4,=0.8, the random term e, for all t are independent, normally 

distributed with zero mean and standard deviation a,= 15.0. 

The initial timber harvest capacity is 0.00 m3, investment cost per unit harvest capacity is 

100.00 Swedish crowns (SEK) per cubic meter, the rate of decrease of timber harvest 

capacity is 4%,  planting cost is 1000.00 SEWha, and a continuous real discount rate of 3% 

is used. Forty five-year decision periods are included in the expected present value function 

(the objective function). The minimum stand age when clear cutting is allowed is set equal 

to 6. 

Seven coefficients in the timber supply function (8) need be optimized. Preliminary runs of 

the optimization program show that if the value of is fixed in the optimization process the 

optimal values of a0-a5 can be obtained much more quickly?. We tested three fixed values 

of a6, i.e., the coefficients q,-ar,  are optimized in three cases when a,=-1 .O, as=-0.5, and 

when a6=0 (here zero can be viewed as the maximum value of 4. The results show that 

When %-a6 are optimized simultaneously, the required number of iteration increases. 

The main reason is that step size p' is controlled subjectively and we did not implement any 

formal rule of choosing step size in the optimization program. 



the expected present value of the forest is rather insensitive to the value of a6 (see Table 2), 

and therefore optimization of %-a, with other values of a, are omitted. 

The optimal value of the supply function coefficients are also derived for four other timber 

price process scenarios, partly to show the effects of timber price uncertainty (measured by 

the standard deviation of the random term e, in the price process (24)), and partly to 

investigate the effects of correlations between timber prices in successive periods. The four 

tested price process scenarios are 

(1) p1=20.0+0.8p,, +e; u,=25.0 

(2) pl=2O.0+O.8p,,+e; u,=5.0 

(3) pl=60.0+O.4p,,+e; u,=22.9129 

(4) p,= lOO.O+e; u,=25.0 

For an AR(1) process, a change in the value of 4, not only changes the autocorrelation 

function of the process, it also changes the mean and the (unconditional) variance of the 

process. The indirect changes in the mean and the variance likely affect the optimal harvest 

policy and/or the expected present value of the forest, and therefore could mask the effects 

of timber price correlation. For this reason, the values of 4, and u, in scenarios (3) and (4) 

are changed correspondingly to keep the mean and the variance of the process constant. 

The optimal solution to the example problem is presented in Table 2. The last row in Table 

2 gives the estimated expected present value of the forest. Estimates of the expected present 

value of the forest in Table 2 through Table 4 are obtained by taking the average of 40 000 

samples of the random functionflu, &, KO, P) using the optimal value of a. The expected 

present value of the forest when a6=-0.5 is higher than when a6=0 or when @,=-I .O, and 

it appears that among the three tested values of q ,  -0.5 is the best one. The sensitivity 

analysis is therefore made with the value of q fixed at -0.5. 

The optimal value of the supply function coefficients and the expected present value of the 

forest under different price uncertainty levels are presented in Table 3. With the values of 

4, and 4r constant, changes in price uncertainty has significant effect on the expected present 

value of the forest. When u, decreases from 15.0 to 5 .O, the expected present value decreases 



Table 2. The optimal value of the supply function coefficients and the expected present 

value of the forest with three fixed u6 values. 

Optimal value when u,= 

Coefficient 
0 -0.5 - 1 

EF (SEK) 45517108.63 46473397.17 46127590.36 

by 17.4% ; When u, increases from 15.0 to 25.0, the expected present value increases by 

38.3%. The expected present value increases with the value of a,. However, the observed 

changes in the expected present value may result from a change in the optimal harvest policy 

and/or from changes in the level of price variations. From Table 3, it is obvious that a 

change in price uncertainty level changes the optimal value of the timber supply function 

coefficients. However, it is difficult to tell the total effect of price uncertainty on the optimal 

decision policy by looking at the changes in the individual coefficient values because the 

effects of the individual supply function coefficients are interdependent. The policy effect can 

be singled out by comparing the expected present values when different decision policies are 

followed. When ue=25.0, the expected present value (estimated by 10 000 sample price 

series) is 62202280.74 SEK if timber harvest decisions are made following the optimal 

supply function, and using the same 10 000 sample price series the figure is 60257177.68 

SEK if the supply function derived using u,=15.0 is used to determine the harvest levels. 

The former is 3.2% higher than the latter. When ue=5.0, the difference is 2.2% 

(36386486.99 SEK following the optimal supply function and 35608245.85 SEK following 

the supply function derived using a,= 15.0). From these figures, we could say that changes 



in timber price uncertainty level does affect the optimal timber harvest policy. 

Table 3. Effects of timber price uncertainty on the optimal value of the supply function 

coefficients and the expected present value of the forest. (q = -0.5, the price process 

is p,=20+0.8p,-,+E) 

Optimal value when a,= 

Coefficient 15 

EF (SEK) 46473397.17 64294968.10 38382938.55 

The optimal value of the supply function coefficients and the expected present value of the 

forest under different timber price correlation levels are given in Table 4. Keeping the mean 

and the variance of the price process constant, changes in the value of 4 have little effect 

on the expected present of the forest. When 9, changes from 0.8 to 0.0, the expected present 

value changes less than 1 %. Tests of the policy effect do not show any significant change in 

the optimal decision policy either. When 9,=0.4, the expected present value when the 

optimal supply function is used to determine the harvest levels (46902775.44 SEK) is 0.02% 

higher than when the supply function derived using 9, =0.8 is followed (46895141.88 SEK). 

When 9, =0.0, the difference is 0.01 % (46895009.45 SEK for the optimal supply function 

and 46889991.50 SEK for the supply function derived using 9,=0.8). Since decisions are 

made at five-year intervals, the differences in timber price correlations are actually small. 

Correlation between p, and p,,, is 0.33 when 9, =O. 8, it is 0.01 when 9, =0.4. Therefore the 

results are not surprising. 



Table 4.. Effects of timber price correlation on the optimal value of the supply function 

coefficients and the expected present value of the forest. (%=-0.5, the mean and 

the variance of the price process are kept constant.) 

Optimal value when 9, = 
Coefficient 

0.8 0.4 0.0 

EF (SEK) 46473397.17 46857462.98 46894883.59 

Although the objective of this study is not to investigate the optimal structure of the timber 

supply function, a numerical comparison of the developed and illustrated model (which will 

be referred to as the stochastic model in the following) with the deterministic linear 

programming method which is commonly used in practical timber harvest decision analysis 

would help to show the possible benefits of using this decision policy approximation approach 

for analyzing the forest-level timber harvest decision problem. Numerical evaluation of the 

stochastic model is conducted in the following way: We formulate and solve the same 

decision problem as a deterministic linear program, and compare the expected present value 

of the forest associated with the optimal solution to this linear program with the values we 

have obtained using the stochastic model. The linear program of the example timber harvest 

decision problem is 
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where x:=number of hectares of the initial forest stands in age-class i which will be 

harvested in period t; 

xjl=number of hectares of the forest stands regenerated in period j which will be 

harvested in period t; 

x~,+,=number of hectares of the initial forest stands in age-class i which will be left 

to the end of the planning horizon; 

x ,~+,  =number of hectares of the forest stands regenerated in period j which will be left 



to the end of the planning horizon; 

a:=present value of the net revenue associated with harvesting (in period t) per hectare 

of the initial forest stand in age-class i; 

ajI=present value of the net revenue associated with harvesting (in period t) per hectare 

of the stand which is regenerated in period j; 

yO=per hectare present value of the stands in the initial forest in age class i which is 

left to the end of the planning horizon; 

y.=per hectare present value of the stands regenerated in period j and left to the end 

of the planning horizon; 

A,=number of hectares of the initial forest stands in age-class i; 

v;=per hectare volume of timber of the initial stands in age-class i in period t; 

vjI=per hectare volume of timber of the stands regenerated in period j in period t .  

a: and ajt are calculated by 

where jt is the predicted (expected) timber price in period t. The other variables and 

parameters in (25) through (30) take their definitions from the stochastic model. 

To make the numerical results comparable, the values of all the parameters in (25)-(30) 

except timber price are set equal to their corresponding values in the stochastic model. The 

predicted timber price in (30) is equal to the expectations of the actual timber price in 

the corresponding period. In the stochastic model, we set the timber price in the first period 

equal to 100.00 SEWm3, it follows from (24) that E=100.00 SEWm3 for all t. 

As a kind of sensitivity analysis, the supply function coefficients were optimized under five 

timber price process scenarios. Because the expected timber price in the future periods 

conditional on the initially known timber price under these five scenarios are the same, it 

suffices to solve (25)-(29) only once. (25)-(29) is solved using MINOS, and the objective 



function value associated with the optimal solution to (25)-(29) is 34121860.16 SEK. 

Let Obj,,, denote the expected present value of the forest associated with the optimal solution 

to (25)-(29), since the objective function in the linear program is linear in timber price p,, 

Obj,,, =34 121 860.16 SEK. Let Objd be the expected present value of the forest under timber 

price process scenario k (k=O refers to the base scenario) when the stochastic model is used. 

The differences in percentage between Objd and Obj,,,, &=100*(0bjG-Obj,)/Obj, is 

calculated and listed in Table 5. The interpretation of & is that if the future timber price 

follows the stochastic process described by scenario k, the expected present value of the 

forest would be & percent higher if timber harvest decisions are made by using the optimal 

timber supply function than when the optimal solution to the linear program is followed in 

the following forty five-year periods. From Table 5, the gain in terms of expected present 

value of the optimal decision policy approximation approach (using timber supply function) 

over the deterministic linear programming method is significantly high. And as one can 

expect, the gain increases when uncertainty in the future timber price increase. Even when 

the standard error of the random term in the price process is 5.0, which means relatively 

small variations in the future timber price, the 12.5% increase in the expected present value 

of the forest is a convincing indication of the importance of taking into account future timber 

price uncertainty in forest-level timber harvest decision analysis. 

Table 5. The percentage gain of using the stochastic model compared with linear 

programming method. 

4 

(d,=O.O) 

37.4 

Scenario k 

Gain (gL%) 

1 

(ue=25.0) 

88.4 

0 

(ae= 15.0) 

36.2 

2 

(ue=5.0) 

12.5 

3 

(d1=0.4) 

37.3 



5. Model Improvements and Extensions 

The structure of the timber supply function described in this paper is formulated by 

modifying the supply functions used in econometric studies. Due to limited studies in this 

direction and lack of analytical methods to evaluate the supply function, we do not know if 

the formulated structure is optimal (for the example problem). It is likely that the 

performance of a timber supply function is problem dependent, a good functional form in one 

case is not necessarily good (or even suitable) in another case. Improvement of the supply 

function structure is possible when more experiences are available. Another possible 

improvement of the formulated model could be made on the method for allocating the 

periodic harvest volume to the age-classes. The allocation of periodic timber harvest itself 

could be formulated, for example, as a subsidiary optimization problem (e.g., as a so-called 

operational decision problem) within the master problem. However, it should be noted that 

when "implicit" rules are used to determine the harvest area in each age-class (i.e., when H, 

can not be calculated directly) it is not possible to calculate the gradients (subgradients) of 

the random function. In such cases, the step direction can be determined by using finite 

approximation methods (Ermoliev, 1988; Gaivoronski, 1988a). Also the periodic harvest 

allocation problem need be formulated and solved automatically because this problem need 

be solved at least (m+ l)*T times (m is the number of timber supply function coefficients and 

T is the number of decision periods) in each iteration. 

In the development of a decision analysis method, it is usually more fruitful to concentrate 

on problem formulations and algorithms by studying a simple decision problem which has 

the essential features of the class of problems to which the developed method is oriented. 

However, the developed method is useful only if it can be extended to capture the more 

detailed characteristics of the problem which are neglected in the stage of methodological 

development without too much analytical and/or numerical complication. In order to draw 

any conclusion about the applicability of the method developed and illustrated in this paper, 

we should first investigate the possibility of using it to formulate and solve timber harvest 

decision problems in more realistic and more complicated situations. 

Recall the structure of the decision problem addressed in this paper, the major simplification 



of the problem has been made on the forest structure. We considered a simple forest consists 

of stands with the same tree species and site quality, and the forest state is described by a 

single age-class distribution of the stands in the forest. For a typical forest where stands with 

different tree species are growing on different site qualities, the forest state can be more 

appropriately described by the age-class distributions for each combination of the tree species 

and site quality. Also several stochastic timber price processes may be necessary for 

describing the future timber prices for different tree species. For a forest consists of multiple 

specieslsite qualities, the timber supply function could be formulated in several ways. One 

could, for example, divide the whole forest into several analysis units and formulate one 

supply function for each analysis unit, with the interactions between these units taken into 

account numerically in the optimization of the supply function coefficients. The analysis units 

can be organized according to the tree species (the timber price process), or according to the 

tree species and site quality combinations. Another possibility is to construct a single (total) 

timber supply function using some "normalized" variables to describe the actual forest state 

in the supply function, with the harvest level for each tree species determined by, say, some 

predetermined functions of the actual forest-market state and the total harvest level. 

In this study we have already incorporated the restriction on the minimum age when clear 

cutting is allowed. Including in the model the upper age limit when the trees are allowed to 

grow, if there are such limits, is straightforward. Let S,'=S,'(X,, p,) be the general form of 

the timber supply function when there is no constraint related to timber harvesting. The 

upper age limit u can be taken into account by determining the harvest level St with 

One type of constraints which are frequently found in deterministic timber harvest decision 

(scheduling) models but not included in our model are the harvest-flow constraints. When 

harvest-flow constraints are imposed, they can be included in the decision model by the 

following modification of the timber supply function 

where S, is the supply of timber (harvest level) in period t, S,' is the calculated supply of 



timber in period t when there is no harvest-flow constraint, HL, and HU, are respectively the 

lower and upper bonds of the allowable harvest level in period t. HL, and HU, can either be 

fixed or take the following familiar form 

where a is the maximum percentage of allowed decrease in the harvest level from period to 

period, q is the maximum percentage of allowed increase in the harvest level. 

Other types of constraints related to the periodic timber harvest level, such as budget 

constraints, can be formulated in a way similar to (32). 

From analytical point of view, the timber harvesting related constraints which have just been 

discussed can be easily incorporated in the decision model. And from (31), (32), and (33), 

incorporation of such constraints would not lead to any obvious increase in the required 

computation efforts. As a matter of fact, incorporation of timber harvest-flow constraints 

actually reduces the computation efforts required to solve the optimization problem because, 

in this case, it is no longer necessary to consider the reservation price and therefore less 

supply function coefficients need be optimized, while the computation efforts for solving (32) 

and (33) can be neglected. 

Following the timber supply function (32), the harvest-flow constraints can not always be 

satisfied with certainty. However, harvest-flow constraints belong to the class of the so-called 

soft constraints in timber harvest decisions. The exactly specified maximum and minimum 

allowed harvest level in each period (or the values of a and q) are usually not of definite 

importance, and some violation of these constraints does not imply that the solution is truly 

infeasible. Moreover, even if the harvest-flow constraints in the model are satisfied, they are 

actually not always satisfied because of the uncertainty in timber growth (yield), as it has 

been shown in deterministic linear programming (see Hof et al. 1988; Pickens and Dress, 

1988). If the frequency that the harvest-flow constraints are not satisfied is high, the model 

could be modified as a probabilistic-constrained optimization problem to assure that the 

harvest-flow constraints are satisfied with a predetermined probability. Another possibility 



is to introduce a penalty function in the objective function to investigate the trade-offs 

between variations in the periodic harvest level and the expected present value, and this is 

probably a more appropriate way of formulating in the decision model the concerns related 

to variations in the periodic timber harvest level. 

In the optimization model presented in Section 3, an implicit linear timber harvest cost 

function is assumed. While the linear timber harvest cost function has commonly been used 

in deterministic timber harvest decision (scheduling) models, the actual timber harvest cost 

function in practical harvest decision problems could well be nonlinear. With the described 

policy approximation approach, there is little complication to use a nonlinear timber harvest 

cost function, given that such a function is known. Moreover, the nonlinear harvest cost 

function can be either deterministic or stochastic. The timber harvest cost function can be 

formulated in the following general form 

where w, is the wage rate, and q(SJ is the required harvesting time (may include the moving- 

in time) as a function of timber harvest level, 

We consider the case when the function q(S,) is nonlinear. Usually the function q(S,) is 

viewed as constant. If the expected variation in w, is small and it is reasonable to treat w, as 

a constant, then w, need not be included in the supply function. In this case, the nonlinear 

harvest cost function can be readily incorporated into the decision model by modifying the 

net (timber harvest) revenues in the present value function. 

where p, is the market timber price (in contrast to the net timber price) and w is the constant 

wage rate. 

If the expected variation in w, is large, w, can be treated as stochastic. To use such stochastic 

nonlinear timber harvest cost functions, w, need be included in the timber supply function, 

the constant term w in (34) should be replaced by the random term w,, and samples should 

be taken on both timber price p, and wage rate w, in optimization of the supply function 



coefficients using stochastic quasigradient methods. 

In principle, this method is also applicable in situations where the timber market is not 

perfectly competitive. For example, if the timber market is monopoly and the demand 

function in any period is known with certainty when that period has been reached but before 

the harvest level in that period has been determined, it is possible to take into account the 

future timber price uncertainty, i.e., uncertainty in the price function (the inverse demand 

function) by including the price function parameters in the timber supply function as 

independent variables. The problem, however, is that the monopoly assumption can rarely 

be justified in reality even if the timber market is not perfectly competitive. When the timber 

market is imperfect, it is more likely that the price function remains stochastic until the 

decision has been made and implemented. In other words, the decision maker does not 

known the exact price of timber before timber has been harvested and delivered to the 

market, though heishe knows that timber price will be affected by hidher harvest level 

before harvest level has been determined. In such cases, it is conceptually incorrect to 

incorporate the adaptive mechanism in the decision model. And even if one formulate the 

decision problem as a stochastic optimization problem, the stochastic optimization model 

reduces to a deterministic one which can be solved by using deterministic optimization 

methods (see, e.g., Walker, 1976). 

We have argued that the formulation of the problem of forest-level timber harvest decision 

making under uncertainty developed in this study can be extended to suit several practical 

situations. The suggested ways of extending the model for analyzing more complicated 

practical timber harvest decision problems change only the timber supply function and/or the 

objective function, but not the basic structure of the obtained optimization problem. In any 

of the situations discussed in this Section, some suitable timber supply function(s) can always 

be formulated, and the supply function coefficients can be optimized by using, for example, 

stochastic quasigradient methods. By suitable it is meant that the timber supply function can 

capture the important issues of the decision problem. The question of how to find a good 

functional form for the supply function in a specific timber harvest decision problem is out 

of the extent of this paper. 



6. Summary and Discussions 

While deterministic timber harvest scheduling methods have been continuously improved, 

uncertainty in forest management has been widely acknowledged. Previous studies of the 

problem of timber harvest decision making under uncertainty have to a large extent been 

confined to stand-level analysis. However, decisions for the individual stands in a forest in 

many situations are interdependent for one reason or another and should be coordinated. The 

multistage timber harvest decision problem can be readily formulated as a recursive model, 

in which the expected present value of a forest is equal to the sum of the immediate net 

revenue and the maximum expected present value of the forest after the harvest. In principle, 

the optimal decisions (decision policy) can be derived by solving this recursive equation 

numerically. However, it is well known that the application of this method is limited by the 

number of possible states and decisions. The dimensionality problem seems to be one major 

obstacle to the application of stochastic models in forest-level timber harvest decision 

analysis. 

This paper presents an alternative approach for formulating and analyzing the problem of 

forest-level timber harvest decision making under uncertainty. A timber supply function is 

formulated to link the optimal harvest level with the forest-market state variables. 

Coefficients of the timber supply function are optimized numerically by maximizing the 

expected present value of the forest. The obtained timber supply function is used as an 

approximation of the true optimal decision policy, and once such a timber supply function 

has been obtained, the optimal harvest level in each period can be easily determined when 

the forest-market state in the same period has been observed. The implementation of this 

method is exemplified using the timber harvest and harvest capacity investment decision 

problem related to a hypothetical forest with relatively simple structure, and a numerical 

example is used to illustrate its application. Stochastic quasigradient methods are introduced 

and used in optimization of the timber supply function coefficients. 

By using a functional representation of the dependency of the optimal timber harvest level 

on the forest-market state, we overcome the dimensionality difficulty in optimization of the 

decision policy, and thereby gain computational efficiency. Only a small number of timber 



supply function coefficients instead of the optimal harvest level for each and every possible 

forest-market state need be optimized, and the optimization can be carried out by taking 

samples of the possible future forest-market states instead of enumeration. The proposed 

method is flexible in the sense that it is applicable in several typical decision situations, e.g., 

when there are harvest-flow constraints or when the harvest cost function is nonlinear. 

As to the efficiency of this method in terms of the expected present value, one could expect 

that it is largely dependent on the specific decision problem and on the structure of the timber 

supply function used. For the example problem, the described model is significantly better 

than the commonly used deterministic linear programming method. However, general 

conclusions about the magnitudes of the benefits of using this approach can not be drawn 

from these numerical results. It is perhaps safer to state that if the true optimal decision 

policy is smooth, it is likely that we can find a good timber supply function structure and that 

the derived timber supply function be a good approximation of the true optimal decision 

policy. When compared with stochastic dynamic programming, this method somewhat 

simplifies the relation between the optimal decision and the state of nature (the forest-market 

state). On the other hand, there is the advantage of treating the state of nature and especially 

the decision variable in a continuous way, neither the possible decisions nor the possible 

states of nature need be aggregated into a number of discrete levels. More importantly, since 

the sets of possible states of nature and of the possible decisions need only be implicitly 

defined with this approach, it does not have the dimensionality problem which limits the 

application of stochastic dynamic programming in forest-level timber harvest decision 

analysis. 

Statistics on the CPU time required for optimizing the supply function coefficients and for 

solving the deterministic linear program are not collected. Since much more time are needed 

to formulate the model and/or prepare the input data, the CPU time does not provide much 

useful information about the cost of using an analytical method, if it is not unreasonably long 

from practical point of view. Another reason we did not collect and compare the CPU time 

is that the CPU time needed using stochastic quasigradient methods is dependent very much 

on computational experiences, e.g., choice of the number of samples to be taken for 

determining step direction, control of step size, and determination of stopping time. 



However, it worth mentioning that the CPU time required for calculate the gradients of the 

random function f ie)  in (21) at fixed values of ct and P is approximately equal to that for 

calculating the value of fie). The CPU time required in each iteration is approximately 

L*t,+L*(m+ l)*t,, where L is the specified number of samples to be taken in each iteration, 

m is the number of decision variables (timber supply function coefficients), t, is the CPU 

time required for taking one sample of the random parameter P, and t, is the CPU time 

required for calculating the value of the random fi * )  at fixed values of ct and P. Although 

we have mentioned that the number of iterations needed to reach the vicinity of the optimal 

solution is dependent on computational experiences, the characteristic behavior of stochastic 

quasigradient methods is that the neighborhood of the optimal solution is reached reasonably 

rapidly, then oscillations occur and approximation to the optimal solution (the objective 

function value) improves slowly (Gaivoronski, 1988a). These two observations together with 

the structure of th random expected present value function imply that, if solution of the 

periodic timber harvest allocation problem is not very computation demanding, the 

optimization problem of type (21) can be solved with reasonable requirement of CPU time 

even when several timber supply functions are necessary for rather complex forests. 

The main objective of this study is to develop a computationally manageable method for 

forest-level timber harvest decision analysis under uncertainty. Given the possibilities of 

extending the model (the timber supply function and the objective function) to incorporate 

more details without making the problem unsolvable, using a specific practical problem with 

all the details included does not help to gain more insights. We therefore have chosen to 

work with a relatively simple problem which does not include all the details but has the 

essential structure of most real-world forest-level timber harvest decision problems. Although 

the example decision problem addressed in this study is considerably simplified, the analysis 

is a necessary fust step to the formulation and solution of more realistic and more complex 

problems. From the computational efficiency and the formulation flexibility, the proposed 

and demonstrated policy approximation approach (but not necessarily the formulated timber 

supply function) may turn out to be a promising method for practical forest-level timber 

harvest decision analysis. 
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