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Foreword 

The problem considered consists of the reconstruction (restoration) of a parameter of an elliptic 
system based on the results of measuring its state. To solve this problem the method of dynam- 
ical approximation is used. The method was proposed by A.V. Kryazhimskii and the author, 
and is based on the ideas of the differential games theory and the ill-posed problems theory. The 
reconstruction algorithm presented here is stable with respect to the errors of measurements and 
is fairly constructive. 
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On the Reconstruction of a Parameter of 
an Elliptic System 

Yu. S. Osipov 

1 Notation and preliminary discussion of the 
problem statement. 

Let V, H, U  be real Hilbert spaces with scalar products (., .)v, (-, -)H, (-, -)u 
and norms I Iv, I . I H ,  I J u ,  corresponding to them. Let V* and H* be 
the spaces dual to V and H respectively. Assume that V is densely and 
continuously imbedded into H. The spaces H and H* are identified. 

Let an operator A : V -+ V* be given. It depends on a parameter u E P c U :  

Assume that for every u E P the operator A[u] is linear, continuous and 
self-conjugate. Denote by a(u; a , . )  the bilinear for some numbers XI > 0, 
X2 > 0 and any u E P 

Let an element f E V* be given. 



Consider an elliptic system ([14], p. 52-53) 

In order to emphasize that y is dependent on u we also write y  = y ,  when 
necessary. 

The problem is the following. 

The parameter u in (1.1) is unknown. It is only known to belong to the convex 
bounded closed set P c U. It is necessary to construct an approximation 
uh to the parameter u based on the approximation [ to the solution y  of the 
system (1.1) with error no larger than h: 

The approximation uh should satisfy the condition 

2 Specification of the problem statement. 

Let P, be the set of all elements of P which generate the same solution y  = y ,  
of system (1.1) as the parameter u does 

P, = {v E P : A [ v ] y ,  = f). 

For an element v E P we put 

J(v) = inf Iv - ulv. 
uEP. 



The initial problem can now be formulated like this. 

Problem 2.1. Construct an operator D : (0, oo) x V -+ P with a property 

sup J (D(h ,  t)) -+ 0 as h -+ 0, 
(€2 

(2.1) 

where E is the set of all elements [ E V satisfying (1.2). 

An operator D satisfying the property (2.1) will be called a reconstruction 
algorithm. 

Remark 2.1. The algorithm D reconstructs the unknown parameter u, if the 
set P, consists of the only element u. 

3 The finding of reconstruction algorithm 
D. 

Consider an argument t (imaginary time) which varies in the interval 
T = [t0,29], -a < to < 29 < +oo. Below it is assumed that the operators 
A[u] satisfy the following additional condition: if a sequence {vk) weakly 
converges in L2(T; P) to vo then for all w E V and t E T the sequence 
{J:, A[vk(r)]wdr) converges in V* to the element {J:, A[vO(r)]wdr). This 
property implies, in particular, the weak compactness of P,. 

Fix h > 0 and [ E V which satisfy (1.2). 

Consider a partition of the interval T by points t;: 

where C > 0 is a fixed number. The function m = m(h) is also assumed to 
be fixed. 



Consider a control system on T (this system will be called a model) which is 
described by relations: 

Here vh(-) : T -, P is a piece-wise constant control formed according to the 
rule: 

where vf is an element of P which corresponds to the minimal value of the 
functional @(v) on the set P ,  

a(h) is a non-negative function on (0, oo) with a property: 

a(t)  -, 0 and h/a(h) -, 0 as h -, 0 

(according to the terminology of the ill-posed problems theory [12, 131 a(h) 
can be called a regularization parameter). Note that there always exist the 
minimizing elements vf. 

Now D can be defined as the rule which to every pair (h, t )  puts into corre- 
spondence the element 'uh: 

Theorem 3.1. If the set P, 2s convex, then the operator D solves the Problem 
2.1. 



Proof. To prove the theorem it suffices to show that, whatever the sequences 
{hk) (hk > 0, hk + 0), {(k) ((k E V, I(k - y(v 5 hk), the following relation 
holds 

Fix arbitrary sequences {hk) and {tk), which satisfy the above-mentioned 
properties and denote by vk = vh,, uk = D(hk, tk), zk(-) the solution of the 
mode1 (3.1)-(3.2)) 

t t 

Ak(t) = 19 - rk(t)lZ* + a(hk) - J Ivk(r)I; d r  - a(hk) . J I U , ~ ;  dr, 

u, is an arbitrary element of P, whose norm is minimal. 

Taking into account the rule, according to which the function vk is formed, 
one can obtain the following estimate for the functional A k  

where 7 > 0 is some number which depends on the known parameters of the 
problem, but not on number k. In particular, this estimate implies 

b = max 1211; 
uEP 



Choose a subsequent { v k )  of the sequence { v k j ) ,  which provides the upper - 
limit limk,,J(uk) and weakly converges in L2 = L2(T; P )  to some element 
v, E L2 (vk and uk = D(hk , tk )  are connected by (3.3)).  From the above- 
mentioned properties of operators A and estimate (3.4) it follows for all t  E T 
that 

rk , ( t )  -+ y in V*, 

Hence, the uniqueness of the limit gives an equality 

which implies that v , ( t )  E P, for almost all t  E T and 

Thus, 



and SO, 

Taking into account the convexity of the set P, we obtain 

(more than that, it is easy to see that iv*lu = Iu* l o ) .  Consequently, J(uk,) -t 
0. The theorem is prooved. 

Remark 3.1. If the set P, is not convex, then in the general case one can 
guarantee the convergence 

min J lvh(t) - u(t)l;dt 0, 
uEU. 

T 

where U. = {u E L2(T; P) : u(t) E P., for almost all t E T). 

Remark 3.2. The properties of the algorithm D can be characterized by the 
following estimates: 

sup sup ( J  I V ~ ( T ) ~ ; ~ T  - J l u l ~ d ~ )  = < 7 2  h/a(h), 
UEP, ~ E T  to 

to 



where 72 > 0 and 7 3  > 0 are constants dependent only on the known pa- 
rameters of the initial problem, but are not dependent on h. In particular, 
if 

where p > 0 is some constant (probably, dependent of y ) ,  then 

Remark 9.9. When dealing with concrete problems of restoration of coef- 
ficients in elliptic systems, one can often take for U the space of function 
defined on the corresponding domain R, where the space variables of the 
elliptic operator take values, which can be imbedded into the space of con- 
tinuous functions on R. Then Theorem 3.1 implies the uniform convergence 
of the coefficients being restored. 

Remark 9.4. In the case when the set P, does not consist of the one element 
the algorithm D provides the convergence of the elements uh to the elements 
of minimal norm of the set P,. 

Remark 9.5. Let M be a compact subset of P .  Assume that for every 
u E M the set P,(u) = { v  E P; A[v]y ,  = f} is convex, and Z(h, u )  = {( E 

V ;  I( - yulv I h}. Then 

sup sup inf ( v - u h J u  -+ 0 as h --t 0. 
uEM CEZ(h,u) vEP*(u) 

4 An example. 

Consider an elliptic system 



The unknown coefficients to be restored are 

The approximations are taken equal to 

where k and 1 are some numbers. Take the regularization parameter in the 
form a = fi. Let 

U = W,' x W,' (W,' is the S.L. Sobolev space ), 

The calculation results are shown in the figures. The numbers 1, 2 ,  3 de- 
note the results of restoration for h = 0.5, h = 0.2, h = 0.02 respectively. 
Figure 1 shows the dynamics of discrepancy r(t) = lu - vh(t)lc. The results 



of reconstruction of coefficients u1 and u2 are depicted in Figure 2 and 3 
respectively. 

The author wishes to express his gratitude to I.A. Korotki and I.N. Kandoba 
for their valuable discussions and assistance. 
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