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Foreword 

This paper deals with some optimal control problems in cancer research. The 

respective problems arise from applied motivations that come from biological and medical 

issues. The influence of treatment on the disease history, the performance criterion, the 

statement of the optimal control problems and a solution of the synthesis problem are 

discussed. 
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Even though much progress has occurred in cancer research, many problems are still 

unresolved. The absence of specific identifiable differences between normal and malignant 

cells is a major barrier that has limited the development of specific anticancer therapy. 

Treatment has had to rely on spatial separation of tumor and critical normal tissues ( surgery 

or radiotherapy), or on minor and normal tissues to systemic treatments such as 

chemotherapy. Thus almost all types of cancer treatments cause significant damage to normal 

tissue. There is little information on pharmacokinetics and other factors associated with 

effective concentrations of each drug at receptor sites; anticancer drugs have narrow 

therapeutic indices, are unstable, and have ill-defined metabolism. 



1. Introduction 

Systematic treatment with cytotoxic drugs is often the only treatment that may 

influence all sites of metastatic disease. At tolerated doses, such treatment can be highly 

effective for certain types of cancer (lymphomas and testicular cancer), but it is rarely 

effective for many of the common types of solid tumors (colo-rectal or lung carcinoma). A 

major limitation to the success of drug treatment is the presence in the tumor of drug- 

resistent cells which convey either initial resistance to treatment, or subsequent resistance 

after the tumor has initially responded. 

Alternative approaches to cancer treatment include the use of hormones, which may 

be effective in inducing remission, but not cure, some cancers that arise in hormone-sensitive 

tissues such as breast and prostate. Hyperthermia is being investigated as an alternative or 

auxiliary treatment which can be combined with ionizing radiation or chemotherapy, but it 

remains unclear whether heat can provide selective toxicity to tumor cells. 

Various approaches to immunotherapy have been tried clinically but classical 

approaches involving attempted immunization have met with minimal success. The 

development of monoclonal antibodies and of a number of agents which can stimulate specific 

components of the immune response (interferons, interleukins, tumor necrosis factor) has 

rekindled hopes for specific killing of tumor cells via immune-mediated effects. 

In this article we plan to discuss some aspects of the optimal management problems 

in cancer research. According to available information two classes of mathematical models 



can be considered. First is a so-called tumor growth model, then the tumor volume or the 

number of tumor cells can be calculated by means of direct measurements or by using 

specific "tumor markers". The second one there are no sufficiently specific "tumor markers". 

In such cases to study the tumor growth process we may use clinically measured laboratory 

indices. Good examples are given by Rescigno and DeLisi, Grossman and Berke, Lefever 

and Garay, DeBoer and Hogeweg, Asachenkov, Mohler and Lee. 

Consider the simple example. Let z(t) be the number of tumor cells, z(t) > 0 for t 1 0 ,  

and t=O be the instant of surgery to remove the solid tumor. Formally, the continuous tumor 

growth model has the following form 

where z(t) E R,, and f(z) is a rule a know nonlinear function. If f(z) = Xzln(z-Iz), where z- 

is the largest size of the tumor and X is a constant we have the so-called Gompertz growth 

equation 

An analytical solution of this equation can be obtained by using the transformation 

y = l n ( z / a ,  then 
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The anticancer drugs influence tumor growth. The real problem is to describe the 

therapy (control) in mathematical terms. If we suggest that the action of drug proportional 

to the population of tumor cells in the form v(u)z, where v(u) is a known function. We can 

write the perturbed tumor growth model 

Unfortunately, we have no recommendation to decide on an appropriate form for v(u). 

For our example, the following expression looks reasonable (Swan, 1984) 

k1r 
v(r) = - k,, k, = co-0 

k, + r' 

Now, lets r=Xt,  u=r/k2, p=kl/X then 

Another problem consists in the selection of suitable performance criteria. One of the 

simplest way is a following. It is known, that anticancer drugs are toxic. In the absence of 

additional information, let us consider the following measure 

where u(t) is a nondimentional input of drug and t is a nondimensional time. 
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Now using the Pontryagin Maximum Principle we can write an analytical solution for 

a control variable 

and 

Here y leads to (-p) for large time. This means that even with unbounded control a plateau 

level for y is eventually reached beyond which the number of cancer cells cannot be 

reduced. The problem becomes more difficult when we deal with more sophisticated models. 

Some of the preliminary results are presented in the next Sections. 

2. The controlled dynamic system 

Let us consider the dynamics of observed indices from the patients after surgery. Let 

t=O be the instant of surgery. Denote x(t)cRn vector measured in clinic indices. 

Development of disease leads to deviations of these indices from the values corresponding 

to the healthy organism. Let the dynamics of the clinically measured indices, on the average, 

be described by the equation 

where p' is parameter. 
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In the mathematical modelling, two approaches can be used to include a control in the model 

parameters. In the stochastic scheme we suppose that the individual trajectories of these 

indices have presumably stochastic character, and for computer simulation ODE with random 

perturbations of parameters can be used (Asachenkov, Marchuk, Mohler, Zuev) . 

Here x: is a perturbed solution, e > 0 is a small parameter, 2, is a stochastic process 

such that e , = O  and cov(,$,,~,+,) -. 0 as 7 -. 00.  These trajectories can be considered as a 

result of small perturbations of dynamic system. The perturbed motion described by this 

model is the fast random fluctuation along the reference trajectory xt(pa). Let Y,E=x:-xt(pa) 

be a deviation between the perturbed motion and reference trajectory. Then,the process Y," 

is approximated by the lineal stochastic differential 

where w, is a Gaussian stochastic process with independent increments (Zuev, 1988). 

The effect of drug action is manifested by the dynamics of the measurable indices and 

survival function. There are two possibilities to incorporate the control variables in the 

model: 

1. The action of an anticancer drugs is proportional to the population of the cancer 

cells; 

2. Drug administration changes the parameters of the model. 
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The problem is to construct the function a(t,u) and b(t,u) on the basis of available 

information. Let A, - be the group of patients with surgery only, A, - be the group of 

patients with surgery and treatment (chemotherapy and etc). 

The experimental data from the patients with stomach cancer show that the character 

of the x(.) dynamics in the groups A, and A, are similar and , consequently, can be described 

by the equation of the same structure (Asachenkov et al. 1990). By taking into consideration 

this fact we can formulate the following 

Hypothesis. The dynamics of measurable variables in the groups of A, and A, are 

described by the same equation with the parameters p* and p, , p* # p, , respectively. 

The dzference between the coencients is determined by the cancer therapy (control). 

Under the hypothesis the perturbed controlled model is 

and the model for the deviations Z,=x f x,(u,p*) can be approximated by the following SDE 
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Here E&=0 for all V,,,=O and x,(u,p*) is a solution of 

d 
-xt(ug & *) = fix, g + pu(r) ) , 

Another scheme is based on the idea that the parameters of the model are connected 

by means of some common factor (Asachenkov, Pogozchev, Zuev, 1992). This means that 

if p* is a known vector such that the model 

describes the average dynamics, then the individual dynamics for the k-th patient can be 

described in the form: 

This means that for the individual evaluation of the model parameters we have to estimate 

only one parameter HL which may be done in the beginning of the disease treatment and then 

to use the model (18) for the solution of the optimal drug administration problem. 

In the deterministic case we assume that the unsertanty E(t) is a measurable by 

Lebesque function from the compact set E and the model equation can be written in the form 



where u is a control variable from the appropriate compact set. This type of controled model 

will study in Section 4. 

3. A performance criterion. 

In medicine the following scalar cost functional is sometimes used 

where q(z(T)) is a function of the state variable at the end of treatment and the second term 

estimates the cumulative drug toxicity over the time period [ O , q .  The optimization problem 

is to determine the control (administration of drugs) so as to minimize the maximum 

uncertainty for this performance index. 

Consider the model (19) without of [(t). Let y,(t) be a known function. This function 

prescribe the "desirable" time course for the measured variable and reflects the experience 

of the investigator. Define e(t) =x(t)-y,(t), where e(t) is the deviation between the model- 

derived value x(t) and its desired level. It looks reasonable to use a drug in such a manner, 

that the measurable variables follows the curve given by y,(t) with the minimal toxicity 



effect 

where Q,R are weighing matrices. 

But the function y,(t), as a rule, is carried out through examination by experts. 

Therefore, it contains some elements of subjectivity. Is it possible to choose this function 

using only objective information? Basis on our experience, the answer is "yes". It may be 

a reference trajectory which describes the average dynamics in the group of patients with 

"favorable clinical history". Now, it looks reasonable to consider the following cost function 

Here Y,(u) =X,~(U)-x,@*) and one of the reason for the appeal of the cost function in the form 

(22) is the following 

Observation. According to (Asachenkov, 1990) the variance of deviations of 

immunological indices for three groups of patients with stomach cancer differing by 

the pattern of disease. It is important to note that the variance of deviations of indices 

from the reference trajectories is inversely proponioml to the life duration of patients 
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The quadratic form (22) represents increased risk for significant deviations from a 

reference trajectory. It means that to minimize the pathological pressure upon the organism 

caused by the disease (tumor growth) is equivalent to maximization of the life span after 

beginning of treatment, and the expression (22) could be considered as a good candidate for 

the cost function. 

4. Statement of the problem. 

A commonly accepted criterion of recovery in oncology is a 5-year period in the life 

of patients from the beginning of his treatment. Because after this, the pattern of the fall in 

the number of oncological patients in a group of the same age is determined by the 

magnitude of the natural mortality factor. This means that we can study the optimal treatment 

problem on the finite interval only. 

Let y(t) >0, a scalar, denote the state of the system at time t, with y(&) =yo> 0, u(t) 

is measurable by Lebesgue function from the compact set [O, 11 and its dynarnical equation 

is 

d -y = -2( X + Pr(t))y + (0, + U,U(~))~X~(~),  
dt 

Y. usal, Y(TJ = Yo , to[ To,T I, .(t)~[ 41 I, 

x(t) = xoexp(-X(T - TJ), 

where u(t) is a control function to be chosen so that one minimizes the cost functional 



Here %, Q, R, T, A, B, a,, u2 are positive constants. 

The motivation for this type of control problem comes from the study of oncological 

patients after radical surgery to remove the solid tumor (Asachenkov, 1990). 

5. Solution of the synthesis problem. 

To solve this control problem we can use the maximum principle of Pontryagin. 

Denote J,  conjugate variable and introduce Pontryagin's function for the problem (24)-(25) 

H(t,y,$,u) = -( Qy + Z b  ) + $1-2(1 + pu)y + (a, + u,u)~x~]. (26) 

The adjoint equation has a form 

d 
-$ = 2 0 ,  + Pu)$ + Q 
dt 

and the condition of transversality is J,(T)=O. 

According to Pontryagin's principle, the extremum control uD(t,y,J,) satisfies the 

conditions 



for @ < 0 

I R P + -  Y - -  I for o ~ r ~ , @ s ) ~ l  
2a,2x2@ o,2x2 a 2 (28) 

u *(t,Y,@) = 
0 for pOI,@,t)<O 

where 

for @ = 0 
u *(tYY,@) = 0 

for @ > 0 

1 for pOI,@,t) < 0.5 

0 for pCyy@,t) > 0.5 

0 or 1 for pb,@,t) = 0.5 

Thus we must study a boundary-value problem (24), (27), with u =u0(t,y ,$) (28)-(3 1) 

in the rite side to compute the optimal solution. 

Statement 1. For the system (27), the terminal condition $(T)=O satisfies an 

admissible control only for the initial values $(To) from the interval 



By this means the cases (30), (3 1) can be omitted and we concentrate our attention 

on the problem (24), (27) and (28). Introducing new variables 

and rewrite our problem in the form 

Here 

For u=O the system (34) has a form 



Then, we have the following: 

Statement 2. The solution of the system (24) on the interval [ O , q  satisfies the initial 

condition q (T) = 0 only for 

I I U 

Figure 1 The phase portrait of  the system (24) for u =O. 



Figure 2 The phase portrait of the system for u= 1. 

The following conditions hold for the trajectories ~ ( 7 ) :  x,' > 0 for all 7 < 0, x," > 0 

if -Q/2X < 7 < 0 and x," < 0 if 7 < -Q/2X. The phase portrait of the system (36) is presented 

in Fig. 1. 

Consider the system (24) for u = 1. One is also non-stationary and has a form 

The phase portrait of the one is presented in Fig. 2. 

Now we study the system (24) for u=vk,q). We have 



in the domain 0 I v k , ~ )  5 1 

To study the system (24) introduce four line constants by: 

This is a set of p i n t s  for which ll,'=O. 

Which is a set of p in t s  for which X,'=O.  
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Which is a lower bound of the domain (40). 

Which is a upper bound for the (40). The lines Il, I', B are situated above the one H 

in the plane ( q , ~ ) .  The abscissa of intersection point for Il and B is 

One of the intersection point for I' and B is 

Let C be a point of intersection for Il and I'. It is a moving saddle point (Bylov et al, 

1966). The form of separatries are given in Fig. 3. The abscissa of the point C is 

By virtue of the fact that the system (24) is non-stationary, singular point C is a 

saddle point and moving from the left to the right. If Q/2@ > R/(u,~+ a:) then C is outside 

of the domain (40) for 0 < t 5 ln(Q(u,2-~:)/2/3R)/2X. Associated phase trajectories are given 

in Fig.4. For t > ln(Q(u~-u~)/2@R)/2X the point C moving inside one. If Q/2@ < R / ( u ~ ~ +  a:) 

then C is inside of the domain (40) for t > 0 and the associated phase trajectories are given 

in Fig. 3. 



Figure 3 The form of separatries and phase trajectories. 
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Figure 5 The solution of the synthesis problem (24), (25). 

Now consider the problem of synthesis. The conditions of Filipov theorem (Warga) 

are realized for the extremum problem (24)-(25). The region of the fase space for which the 

controllability problem on the terminal set is solvable, is field with the trajectories which 

satisfy to maximum principle. These trajectories do not cross. There are no singular surfaces 

in the problem (24)-(25). Therefor the extremal trajectories are optimal trajectories. In this 

case the lines B and H are switching ones. The control is u =  1 above the line B, u=v&,g) 

between B and H, and u =O be low the line H. In Fig. 5 the solution of the synthesis problem 

are given. Next characteristics are interesting for the practice realization. 

Let T, be a time of transfer of the system, using u=O, from the initial state on the 

line H at t=T-T, to the state xQ, g Q  =O at t=T. We can calculate T,, using (36), (40) and 

the definition of T,, by means of the transcendental equation 



Statement 3. A solution of the equation (48) for T, exists 

This takes place, if the following inequality holds 

then T, < T. If the inequality (49) is realized and if XQ + 0 0 ,  then T, + 0 for all fixed T. 

Let T, be the time of transfer of the system, using u=v(q,x), from the state on the 

line B at t=T-T,-T, to the state on the line H at t=T-T,. From the system (38) it is clear that 

T, is finite only for the initial values situated above the point A (see Fig.3.). Fixing x(T) and 

integrating the system (34) in inverse time we can calculate values ~ ( 0 )  and ~ (0 ) .  In Fig. 6. 

the optimal trajectories for the initial values ~ ( 0 )  =48.4 are given. 
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Figure 6 The result of the calculation by the option "Simulation for the clinician" 

The solution of the synthesis problem is a basis for the development of the computer 

algorithms for the optimal drug administration problem. In Fig. 6 the menu of the program 

for the solution of the extremal problem (24),(25) and the example of optimal trajectory for 

the given initial value and corresponding control are given. 

6. Discussion. 

Here one special type of nonlinear control problem is discussed. The solution of this 

high dimensional problem may be transformed to the solution of the problem with smaller 

dimension. Similar problems with the additive control and the condition of invariant norm 

was studied by M. Athans and P.Falb. 



Consider a problem 

dr 
- = x , , ,  X(O) = x0, 
d-r 

where x€Rn, ~ E R ~ ,  t€[O,a, u(t) is measurable by Lebesgue function from the 

compact set pcRk- Introduce absolute-continuous on [O,n function z(t) from Rn. The 

problem is to calculate the appropriate control minimizing the functional 

J,(u) = / ( QII *(t) - z(f) I + RII ~ ( f )  I ) d-r. 

where 11 .I1 is Euclidean norm. 

Assumption 1. a) There exists the unique and positive continuating solution of (51); 

b) The solution of extremal problem (51),(52) exists; c) The function z(t) and a vector 

function f(x,t,u) satisfy the condition 

for all t from [O,V and all permissible control u(t) and corresponding x(t). Here 

h( I x(t) - z(t) I,uJ ) is a scalar continuous function. 

Consider an extremum problem. We want to find measurable by Lebesque control 



u(t) E P C Rk minimizing the functional 

under the condition 

Assumption 2. a) There exist the unique and nonlokal continuating solution of (55); 

b) The solution of extremum problem (54),(55) exists. 

Statement 4. Let li(f) be admissible control, y(t) and be corresponding trajectory 

of (55) and (51). Then under the Assumptions 1 and 2 y(t) = = - 11. 

Proof. We have dj;(f) = hlG(t),i(t),t), y(0) = yo = I X, - L, 11, 
dl 

Introduce 9 = 11 - z(t) 1. Then 



According to uniqness of the solution (55) $2) = P(t) almost everywhere. 

Statement 5. If for the extremum problems (5 l), (52) and (54), (55) the assumptions 

1 and 2 are satisfied and z(t) is a solution of (54),(55) then the minimum of the 

functional J, coincidence with minimum of functional J,. 

It means that the extremum control for the problem (51),(52) may be fined from the 

solution of (54), (55). 

Remark. The nonlinear controlled system which satisfy the assumptions 1 , 2  

dx and z(t)=O has the following structure- = ( I(~,uJ)I + S ( t , u ~ )  )X + @ l ( t , ~ ~ ) .  
dt 

Here xcRn,  I is a unit matrix, S(t,u,x) is n x n  matrix such thatS(t,uJ) = - s *(t,u&) 

and the coefficients of this matrix continually depend on arguments. l ( t ,uJ )  is a 

cp,(t,u) continuous function and @l(tyuJ) is a function with components. - , i =  1 ,..., n, 
xi 

where qi('*') are continuous functions of arguments. The example of the dynamic 
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system which satisfy the assumptions 1,2 and can be transform to (55) is a model 

describing the competition two species for one resource 

cp,(t,u> where - - c(u)x, is a source rate; c(u) is a continuous function of argument; 
Xi 

f(x,,x,,u) is a function describing the competition, for example 

A ~ , J ~ , ~ )  = (a - bxlx2) ; u(t) from [O, 11 is a control variable. 

Let z(t)€R2 be absolute continuous function on [O,Tl.The problem is to calculate the 

admissible control minimizing the functional 

T 

J(u(*)) = I ( QII ~ ( t )  - z(f) I + W f )  
0 

The problem (57),(58) satisfy the assumptions 1 and 2 and the solution of this 

problem can be calculated as a solution of bilinear control problem (24),(25) smaller 

dimension. 
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