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Foreword 

This paper deals with effective techniques for estimating a distributed field in the basis of avail- 
able measurements. One of the motivations for this study comes from problems of monitoring 
air pollution and other related environmental issues. This work continues an earlier investigation 
undertaken at the System and Decision Sciences Program. 
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Quasiinversion, Regularization 
and the Observability Problem 

A. B. Kurzhanski 
I. Sivergina 

Abstract 

This paper deals with the problem of estimating the initial state of a distributed field on the 

basis of measurements generated by sensors. The original ill-posed problem is regularized here 

through an auxiliary "guaranteed estimationn problem. This yields a stable numerical procedure 

and also allows to establish a unified "systems-theoretic" framework for treating regularizers 

in general. Particularly the important point is that for finite dimensional sensor outputs a 

necessary condition for the existence of a stable numerical solution is the observability property 

which ensures existence of solution in the absence of measurement noise. 

1 The Guaranteed Estimation Problem 

In a bounded domain C2 of the finite-dimensional space Rn consider a distributed field u(x,t) 

described as the solution to the boundary value problem 



Here 8 0  is a piecewise smooth boundary of R, A is a selfadjoint operator 

with elements 

aij ( z )  E Lcm(Q), 

that  satisfies the coercitivity property 

Taking w(.) E L2(R)  we will treat u ( z , t )  as a generalized solution [ I ]  t o  system (1.1) that  
0 1,o 

belongs to  the Banach space V 2  (Q) .  The latter consists of elements u( - ,  .) of H ~ " ( Q )  where 

H:'O(Q) = {cplcp E Hlt0(Q),  cpln = 01, 

acp 
H1*O(Q) = {cplcp E L2(Q),- E L2(Q)) azi  

with traces u(. ,  t )  E L2(R) ,  continuous in t ,  and with the norm 

I u I  = I l u ( ' ,  t)llb(~) + [ I u ( ' ,  .)IIIflJ"' 

Under the given assumptions the generalized solution to  system (1.1) exists and is unique. 

Taking the initial distribution w(.) E L2(R)  and the respective solution 

u(., 2 )  = u(., t ;  w ( - ) ) ,  u(., 0 )  = w(.),  

01,o 
to the boundary value problem (1.1), (1.2) as an element of V 2  ( Q ) ,  consider a mapping 
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G ( V 2  -+ L )  where L ( T )  is a Hilbert space, so that  

The latter mapping could be interpreted as  an equation for the sensor (the measurement device). 

Also consider an element z  E L. 

The first problem t o  solve is as follows: 

Given a cost functional 

~ ( z ' )  = f ( z ( - )  - y( . ) )  = f (z(.) - Gu(.,  -bO(-))) 

f ( 2 0,  f ( 0 )  = 0,  f ( z )  -+ llrll -+ 00) 

and a number 7 > 0 ,  solve 



Problem I: 

Find an element wO(-) E L2(Cl), such that  

J(w(.)) l Y 

with w(.) = wO(.). 

The latter is an inverse problem which was investigated by many authors. Particularly, for 

it was studied by J.L. Lions and R. Lattes [2] who have proved solvability for a quadratic 

functional J and any y > 0 and have introduced a numerically stable procedure of quasiinversion 

for its solution. 

Let us now present the problem in a somewhat different way, namely, consider 

Problem 11: 

Among the initial distributions w(-) E L2(Cl) find the set W* = {w*(.)) of all those distributions 

w*(.) that  ensure the inequality 

J (w(-) )  y ,  with w(.) = we(.). 

We preassume that  the problem data  ensures the solvability of the latter problem (W* # 0). 

Here one requires to  find the set of all solutions W* t o  the inequality (1.3) rather than t o  single 

out a special solution wO(.) of this inequality. 

Let us reformulate the two previous problems once again. This will be done in terms of systems 

theory, namely the guaranteed estimation concept, [3-51. 

Consider the measurement equation 

Y = Gu(., -) + q (1-4) 

where y is the measurement, u(-, -) - the solution generated by an unknown initial distribution 

w(.), G u  - the mapping for the sensor, q - the unknown but bounded measurement "noise" all 

the information on which is restricted t o  the inequality 



y > 0 given. Here ( 7 7 , ~ )  stands for a scalar product in the Hilbert space L .  We further assume 

J ( z )  = ( z ,  z )  leaving the more general case for special treatment which follows from this paper. 

The set W* will then consist of all the initial distributions w ( . )  consistent with the system (1 .1 ) ,  

the given measurement y  and the restrictions (1 .4) ,  (1.5) .  In other words, W* will be the set of 

all those functions w ( . )  E L 2 ( R )  for which the solution u( . ,  -; w ( . ) )  t o  system (1 .1 )  would satisfy 

relations (1 .4 ) ,  (1.5)  with y  given, namely the inequality 

In the general case the calculation of either W' or of one of its elements may turn to  be numer- 

ically unstable. The aim of this paper is therefore to  indicate numerically stable regularizing 

procedures for the ill-posed problems of the above for a rather general variety of sensors G u .  

(Other problems of this kind are indicated in [6] ) .  

2 Measurement Maps (Sensors) 

The present paper deals with the following types of measurement. 

1. Distributed Measurement 

G u ( . ,  .) = u ( - ,  0 )  

which gives the state of the process a t  time t = 0 .  

2. Distributed Zone Measurement 

where we can take L = Lz(Q) .  

3. Combined Distributed and Zone Distributed Measurement 

Here 

G u ( - ,  .) = (u( . ,  -), u(. ,  0 ) )  E L2(&) X L 2 ( 0 )  

and the error q( . ,  .) of the measurement y ( z ,  t ) ,  x(z) due to  



is restricted by the inequality 

with a 2 0, P 2 0, a2 + P2 # 0, or otherwise, by 

allq(*. .)llt(o) + PIIq(-. @)llL(n) 5 7 
2 

Remark 2.1 Although sensors 2, 3 imply that we may observe the exact solution, the actual 

measurement y is corrupted by "noisen q that may be 'worsen than the exact value u(x, 1). 

4. Finite-dimensional sensors 

Here the measurement trajectory 

YO) = G(t)u(., -1 + q(t) 

is a finite-dimensional function y(t) E L2(r, @), 0 < r < 8, L = L2(r, 8) and G(t)  is a continuous 
01,3 

linear mapping: V2 (Qt) -t Rm (Qt = Q x [O,t]). 

Particularly this includes pointwise measurements 

~ ( t )  = +*, t )  + q(t) 

and pointwise scanning sensors 

~ ( t )  = u(z*(t), t)  + q(t) 

along a preassigned or a controlled trajectory x*(t). The restriction on q(t), t E [O,8] may be of 

any conventional norm [3]. The solution u(x,t) should then be restricted to a class of smooth 

functions (see for example, [7]). 

Either of the types of sensors of the above may yield an ill-posed problem that requires regular- 

ization. However the existence of such a procedure may strongly depend on the invertibility of 

the map T where y = Gu(., .Iw(-) = Tw(.) which reflects the observability property for system 

(1.1), (1.2) in the absence of any measurement noise q. 

For measurements of type 1-3 the investigation of the invertibility of T does not lead to a major 

problem. Type 4 however requires additional consideration, since for finite- dimensional sensors 

the observability issue may turn to be a necessary condition for the existence of a regularizer. 

We will now proceed with the formulation of a regularizing problem - the "guaranteed esti- 

mation" procedure. This will also allow to  formulate the overall solution in terms of systems 

theory. 



3 "Guaranteed Estimation" as a Regularizing Problem 

Let us start with a simple auxiliary problem of estimating the initial distribution w ( . )  that  gen- 

era.tes the solution u ( . ,  -) = u( . ,  .Iw(.)) of system (1 .1) ,  on the basis of an available measurement 

corrupted by unknown "noisen 7 E L. The present problem presumes that  given is a restriction 

with linear bounded selfadjoint mappings N,  > 0 ,  K ,  2 0 ,  ( L 2 ( R )  -+ L )  also given. 

The mapping N,  is assumed t o  be invertible. 

Problem 111 (Guaranteed Estimation) 

The problem (1 .1 ) ,  (1 .2 ) ,  (3 .1) ,  (3.2)  of guaranteed estimation will consist in finding the infor- 

mational set W , ( y )  = { w ( . ) )  of all functions w ( - )  E L2(R)  such that  for each of these there exists 

an element 77 E L ,  so that  the pair { w ( - ) ,  7) would satisfy (3 .1) ,  (3.2)  due t o  system (1 .1 ) ,  (1 .2) .  

We further presume W , ( y )  # 0. This could be reached for any pair N,,  K ,  by selecting an 

appropriate p, > 0 .  Direct calculation gives us 

Lemma 3.1 An element w ( . )  E L 2 ( R )  satisfies w ( . )  E W , ( y )  if and only if 

where 

K: = y + p, - ( y ,  K,Y)  + ( w ~ ( . ) ~ B ~ w : ( - ) ) L ~ ~ ) -  

6 



Here operator U maps the variety of initial distributions w(-) E L2(R) into the set of solutions 
. . 

0 1 to 

u(-, .) EV to ( 1.1), (1.2) (ti(-, 0) = w(-)). The subindexes in the last scalar product or further 

in the symbols for the norm emphasize the respective Hilbert spaces. It is clear that W, is a 

nondegenerate ellipsoid in L2(R), whose center w:(-) is also its Tchebycheflcenter, namely 

min max IIw(-) - v(-)llk(n) = ,.EE,~, 114.) - w;(*)ll~z(n) "(.)€We(Y) w(.)€We(v) 

Therefore w:(-) is also the minmaz estimate for the initial distribution w(-) in the sense of the 

previous relation. 

Let us now introduce the definition for a (variational) regularizer. 

Definition 1 A variety offunctions we(-) will be a regularizer for Problem 11 (with respect to 

the functional J) if 

J(w,(.)) + Jo with 6 + 0 (3.5) 

where 

We will now demonstrate that depending on the selection of N,, K,, the guaranteed (minmax) 

estimator w:(.) can serve as a regularizer for Problem 11. Moreover the latter "systems theoretic" 

viewpoint produces a unified framework both for the known regularizing schemes, of [2, 8, 9, 

101, and also for schemes that are new. 

(i) Assume 

and 

for some a > 0. Then particularly from (2, 31 it follows that function w:(-) of Lemma 3.1 

(see (3.4)) is a minimizer for 



Assumption 3-A: The map T = GU is invertible with a bounded inverse T-'. 

In terms of paper [7] this reflects the property of strong obseruability. 

Lemma 3.2 The following assertions am true 

( a )  The variety {w:(.)) given by (3.4) satisfies relation (3.5) and is themfom a regularizer for 

Problem II. 

( b )  Under assumption 3-A take w*(.) E L2(Q),  

and find the ellipsoid W,[y,] with center w:(-) of initial sates consistent with (1.1), (1.2), 

(X I ) ,  (3.2), then with y2/c  + 0,  c + O,p, = 0 we have 

The given variety {w:(.)) is therefom a Tikhonov regulan'zer [9]. 

(ii) A developed method for resolving the operator equation A6w = y6 is the method of qua- 

sisolutions (V. Ivanov, [ l o ] ) ,  where A6,  y6 are the approximate values for the parameters 

of the equation Aw = y ,  whose solution is presumed to exist within a compact set M. 

The quasisolution is defined as 

For the specific problem ( P )  of this paper we come to  its following version 

we( - )  = arg inf (11 Gu(.,  a )  - y 1 1  L : w ( - )  E M,) 

Solving problem (3.6), (3.7) by Lagrangian techniques of nonlinear analysis we come to the 

saddle-point problem 



x0 = sup inf { p ( <  w ( - ) , w ( - )  > ~ ~ ( n )  - c2) t 
p>O w(.)ELz(n) 

whose convexity properties imply that there exists a saddle-point {ji, "(.)I that satisfies the 

complementarity condition 

Presuming 

x0 > JO = inf {J (w( . ) ) lw( . )  E L 2 ( 0 ) )  

we observe that p # 0 ,  (otherwise one would have X0 = J,) ,  and that therefore p > 0. 

The solution w , ( . )  = " ( a )  to (3 .6) ,  (3.7) gives 

w,( . )  = (PI  + u*G*G*u)-I  U*G*Y 

where p is selected from the isoperimetric condition 

Relation (3 .8)  obviously coincides with (3.4).  

Therefore 

J(w:*(-))  + Jo, 6 + 0 

and the variety { w k ( - ) )  of (3.8) is a regularizer to Problem 11. 



If, however x0 = Jo = J ( w ! ( - ) ) ,  then depending on the value c we have either the same solution 

w:.(-) = w,. (when Jo < xO)  or w!;) = w! for ( X O  5 Jo) which is also a solution to the 

nonconstrained problem (3.6).  

We will now indicate that the quasisolution w:*(.) of (3.8) can be obtained through Problem I11 

of guaranteed estimation in the form of an element w:(.) (3.4) obtained by appropriate selection 

of N,, K, .  

An obvious answer is given by 

Lemma 3.3 For the Problem 111 due to ( X I ) ,  (3.2), (1.1), (1.2) select 

K ,  = I ,  N, = + ) I  

where a ( ( )  > 0 is given through the relation 

(I is the identity map in Lz(Cl)). Then the quasisolution w:*(.) coincides with the guaranteed 

estimate w: ( . ) ,  namely w:*(-) = w:( - ) .  

(iii) A third conventional regularizing scheme is given through the "bias method". This implies 

the solution of a constrained extremal problem 

which is reciprocal to (3 .6) ,  (3.7).  It can therefore be handled similarly to  the previous case. 

The guaranteed estimator is thus shown to be a conventional regularizer of the Tikhonov type 

or a quasisolution or a solution to the "bias method". Let us now indicate in more detail that 

the quasiinversion technique of [2] could also be treated in terms of guaranteed estimates. 



4 The Quasiinvertibility Method of J-L. Lions and R. Lattes. 

(Distributed measurements) 

A technique for regularizing Problem I1 for noninvertible evolutionary systems was suggested in 

[2]. This technique, which is known as the quasiinvertibility methud, ensures numerical robustness 

for the respective class of ill-posed problems. We will now treat this technique in terms of systems 

theory. 

Suppose an element y(.) E L2(R) is given. Is it always possible to  select an initial distribution 

w(.) E L2(fl) that we would have ti(., 8Jw(.)) = y(.) for a given instant 6 > O? The answer is 

obviously negative. Therefore one comes to  a particular case of Problem 1 (with L = Lz(n), 

Gu(. ,  .) = u(., 8)) which is to find a distribution w(.) E L2(n) such that 

with 7 > 0 given. 

According to  the method of quasiinversion 121, one considers the following boundary value prob- 

lem (in reversed time) 

This problem is well-posed, so that if 



lim J(w,(.)) -, 0 with 6 -, 0 

Let us also pose the following problem: Does there exist a guaranteed estimation Problem I11 

of finding W, due to  (3.1), (3.2), (4.1) such that by appropriate selection of N,, K, we would 

achieve TI,(., 0) = w,D(-) ? (here v, and wf are given through (4.2) and (3.4) respectively). 

Some further notations. 

Denote 0 < X1 5 X2 5 . . .I A, 5 . . . to be the eigenvdues, {(pi, (.));=I - a complete orthonormal 

system of eigenfunctions for the problem 

Also denote 

where w,, q; are the Fourier coefficients for w(. ) ,  q(.) dong the system {(pi(.))zl, namely 

We now come to a particular version of Problem 11: 

Problem 4.1 



Find the guaranteed (minmax) estimate w: ( - )  for the system ( 1 . 1 ) ,  ( 1 . 2 ) ,  ( 3 . 1 )  ( G u ( . , . )  = 

4 . 3  el), ( 3 . 2 ) ,  (4 .4 ) .  

What now follows is 

Theorem 4.1 Let the maps N, ,  K ,  in (3.2) be given by relations (4.4). Then the solution 

w e ( . )  = v , ( . ,OJy ( . ) )  to the quasiinversion problem (4.2) satisfies equality: w: = w , ( . )  (!) The 

explicit representation for w , ( . )  is given by 

The proof of this theorem follows directly from relations (3 .4 )  and the expansion ( 4 . 5 )  for w, ( - ) .  

We note that the properties of the eigenvalues ( A i  2 A1 > 0 )  imply the invertibility of N,  (4 .4 ) ,  

since 

and therefore 

The next issue is how to ensure a robust procedure for calculating w* - the solution set to Prob- 

lem 11. This will be also achieved by appropriate selection of N,,  K ,  in (3 .2 )  and by calculating 

the respective set W , ( y ) .  

Theorem 4.2 Assume c > 0 ,  v > 0  and take the inequality (8.2) with p, = 0 ,  



Provided 6, v are suficiently small, the respective informational domains W,(y) r W,,,(y) of 

initial slates w ( - )  consistent with (1.1), (I.,!?), (3.1), (3.2), (4.6) are nonvoid nondegenerate 

ellipsoids in L 2 ( 0 )  with centers w:(.) = w:,,(-) that satisfy the relations 

lirn w:,(.) = w,(.)  
v+O 

lim W,,,, (.) = W *  
C,Y-40 

(4.8) 

The limits are taken in the L 2 ( 0 )  metric ((4.7)) and in the sense of Kumtowski ((4.8)). 

Recall that a sequence of closed sets {Cn,n E N )  in L 2 ( 0 )  converges to set N  in the sense of 

Kuratowski if 

lim sup Cn = lirn inf C n  = C, 
h+m n+m 

where 

limsupC, = {X = limz,, X, E Cm, m E M c N )  
n+co 

liminfC, = {z = limz,, z, E C,, n E N )  
n4oo 

Here N  is an ordered set of integers, M is its countable subset. 

In this case one writes 

lim C, = C 
n+oo 

The proof of this theorem will appear in a separate publication. 



5 Other Regularization Methods 

The problem of solving inequality (4.1) can be associated with a whole class of quasiinvertibility 

maps if, for example, we substitute (4.2) by the system 

a v c ( x 9 t )  = AV,(., t )  + r(- lIm ( B * B ) ~ v . ( . ,  t )  
at 

where B is equivalent t o  A in the sense that  

1 1  Bv 1 1  5 k 1 1  Av 11, V V ( - )  E D ( B ) ,  k > 0,  

We further assume B = A. 

Taking the quasiinvertibility equation 

consider the element we( . )  = ve ( - ,  0). The explicit relation for w e ( - )  is 

a.nd w,(-) = v,(-, 0) is the center or the informational ellipsoid W , ( y )  (3.3) if 



00 

K ~ r ) ( * )  = C e ~ p ( - € X r O  + 2 X i O ) ~ i ~ i ,  
i=l 

The relation ( 4 . 3 )  is also true. 

Papers [13, 141 are devoted to  the regularization of problem (4.1) through the Soboleu equation 

Taking w , ( . )  = u,( . ,  -) we may again observe that ( 4 . 3 )  is true. Further on, assume 

and W , ( y )  # 0 (through appropriate selection of p, > 0 ) .  

Lemma 5.1  The ellipsoid W , ( y )  need not be bounded for N , ,  K ,  (3.3), (5.3). It is given by the 

inequality 



where 

and where to:(.) is the only center of symmety for w,(y). 

The map N,  (when applied to L2(R)) does not have a bounded inverse. This implies that W,(y) 

need not be bounded. However, the properties of map Uw(-) also imply that set W,(y) # 4 

does not contain any affine varieties, so that wS)(.) is the only center of symmetry for TW,(y). 

Therefore inequality (5.4) gives a unique representation for W,(y). 

According to [13] the solution to  (4.9) could be represented as 

This yields 

or after comparing with (5.4), that 



Finally, taking (5.1) for m 2 2 and considering the respective problem (3.1), (3.2) with 

we again come to property (4.3), (5.5) where we(.) = v,(-,0) is taken due to (5.1), m 2 2 and 

N , ,  K,  - due to (5.6). For m = 2 the quasiinvertibility problem was treated in [15]. 

6 Zone measurement 

Assuming the observation to be a zone measurement (0'  = 0 )  

with 

and treating the respective version of Problems I, I1 we again come to the minimization of 

J ( w ( . ) )  which is now 

With y(-, -) E L2(Q) we have in general 

We further give some techniques related to the quasiinvertibility idea, that allow to handle the 

problem of this section. 



Theorem 8.1 The value 

where 

and 

J(w, ( . ) )  -+ Jo, c -+ 0, 

where 

Let us introduce a function 

and a functional 

Then 



where 

Its minimizer we(.) exists and is given by 

we(-) = arg min{Je(w(.)) : w(.) E Lz(R)) = 

00 

= x 2(1 - exp -2X;B)-'Xip; exp(-cX;B)cp;(.) 
i=l 

The element we(.) E L2(Q) since 

The property 

lim J(we(-))  = inf{J(w(-)) : w(.) E L2(R)), 
c--ro 

now follows from the obvious relation 

and the estimate 



Fjnaly, by direct calculation of J(wc) we have 

which, after a limit transition (c -+ 0), does yield the relation (6.1) of Theorem 6.1. 

Remark 6.1 The suggested approach is actually not very different from the quasiinvertibility 

techniques. Indeed, taking the problem of Section 4 which is t o  find a numerically stable solution 

t o  inequality 

and solving i t  through the techniques of this section we introduce a function 

constructed through function y(.). 

The respective functional R(w(.); y(.)) has a minimizer which is 



and which coincides precisely with the Lions-Lattes solution. 

Let us now solve problem (6.1) through guaranteed estimation with measurement 

y(.,t) = u(z,t)  + f)(z,t) 

under restriction (3.2) with Nc, K, given. 

Theo rem 6.2 Taking N, as in Theorem 4.1 and 

with 

we observe that the center w:(.) for the respective ellipsoid W, does coincide with w e  of (6.4) 

7 Finite-Dimensional Sensors and the Observability Property 

Let G u  be a finite-dimensional sensor of type (iv) in Section 2. Taking Problem 11 for this case, 

we will solve it through the guaranteed estimation procedure for Problem 111 with 

Nc = €I, Kc = I  

Assumption 7.1 Taking Problem 11, assume that 

and therefore W, # 0 . 

Denote 



Assumption 7.2 The system (7.1), (7.2) 

is strongly observable (set U(. ,  8 (W( . ) )  is bounded for 7 > 0).  

The following assertions are true: 

Lemma 7.1 Under the assumptions 7.1, 7.2 with G u  - finite dimensional and N,, K ,  taken 

according to (7.1), the solution W, to Problem 111 satisfies the elation 

Lemma 7.2 Under the assumptions 7.1, 7.2, the centers u f ( . ,  8 )  = u(., elw;(.)) of set U ( - ,  91 W,)  

for the W,  of Lemma 7.1 do have a weak convergence 

am ~ : ( . , e )  = u O ( . , ~ ) ,  u O ( . , ~ )  E L2(R).  
,-PO 

Take the boundary-value problem 

Then the following proposition is true. 
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Theorem 7.1 Assume Gu(.,.) to be a compact map (V2 (Q) -, L2[0,8]). Then under the 

assumptions 7.1, 7.2 with u0(.,8) of (7.2) taken as in Lemma 7.2 we have 

where h(v, W*) is the Hausdorff semidistance 

d(v, W*) = inf{r : W* + rS  > v), 

The observability property is therefore crucial for the existence of a regularizer. 

Remark 7.1 With the interval [0,8] being variable, the techniques of this paper could be 

presented in terms of solutions to  the guaranteed filtering problem as described, for example in 

Remark 7.2 An important class of inverse problems however, are those that require on-line 

estimation (or "reconstruction") of the unknown distributions or parameters on the basis of 

observations taken on a variable time interval [O, 81 with 8 increasing. Effective numerical tech- 

niques for treating these were proposed in papers [18-201. 
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