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Abstract
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Generalized linear programming problens have been well
solved by column generation and dual ascent procedures. The
same ~roblems with the variables restricted to be integer
have only been solved when all the coefficients are known
explicitly. This paper finds lower bounds for the optimal
value of such programs requiring only the implicit defini­
tion of the activities.



Bounds for Generalized Integer Programs

Some linear programs having a larce number of variables

may be solved relatively easily because each column of the

coefficient matrix is defined implicitly as a feasible solu­

tion to some other problem. For example, the columns of the

maximal flow prohlen (Ford and Fulkerson [4J) and multicom­

modity flow problem (Tomlin [14J) are defined implicitly as

all routes between sources and sinks in a network. Other

column defining subproblems are the minimum spanninc tree

calculation for the traveling salesman problem (Held and

Karp [lOJ) and the knapsack problem for the cutting stock

problem (Gilmore and Gomory [5J). Dantzig and Wolfe [2J

have generalized this approach in connection with the

decomposition of general large scale linear programs.

Little progress has been made in adapting these methods

to deal with the same problems when the variables are

constrained to be integral although Shapiro [13J has given a

dual method for cases in which all coefficients may be

generated explicitly beforehand.

The aim of this paper is to solve such problems in the

manner of the linear program, that is by considering most

of the activities implicitly. It will be shown how a lower

bound for the optimal value of the program may be obtained

which can then be incorporated into a branch and bound

procedure if necessary.

The first section sets out the problem in more detail

and is followed by two sections riving details of two

separate bounding procedures. Section four gives a worked

example of a cutting stock problem as a demonstration of the

ideas. It might be useful to glance at that example before

reading on.
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1. The Problem

The integer program to be considered is

Z· = min r c . x .
jEJ J J

s.t. r a.x. > b (1)
jEJ J J -

x. > o and integer
J -

where {a.}. J are activities defined as the set of solutions
J J E

to some sUbproblem with IJI assumed to be large. All the

coefficients in (1) will be taken as integral.

Considering (1) as an ordinary integer program and

using Gomory's group reformulation (see [6J), an equivalent

problem is

Z· = Zo + min r c.x. + c s
jEN J J s

-1 B-ILs B-lbr (B a.)x. - <
jEN J J

-1 B-ILs B-lbr (B a.)x. -
jEN J J

x., Ls > 0 integer
J -

B is an optimal L.P. basis, N the non-basic activities,

L = (1 .. ) is defined by
1J

(2)

and

1 .. =[1 if slack s. is non-basic
11 1

o otherwise
-1c j = c j - cBB a j are the revised cost coefficients.

The symbol '=' will represent equality modulo 1, that is,

a = b if and only if a - b is integral.

A lower bound for Z· may be obtained by forming the

unconstrained group problem suggested in [6] which is
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precisely (2) with the inequality constraints relaxed

~ z* + min

s.t.

r C.x. + C s
j EN J J s

-1 -1r (B a.)x. - B Ls
j EN J J

( 3)

x j ' Ls ~ 0 integer

that generated,

and may be

Wolsey [15]).
by considering

Shapiro [8] and

a lower bound Z

The group associated with this problem is
-1with addition modulo 1, by the columns B a.

J

shown to have an order which is a factor of Idet BI (see

This group problem may be solved very quickly

it as a shortest route problem (see Gorry and

Gorry, Northup and Shapiro [7]) and provides
for Z*.

For the problems under consideration, IJ/»Idet BI so

that many activities will be mapped into the same group

element in (3) thus giving a decomposition of J into equi­

valence classes. Let the group be G = {go' gl' ... gD-l}'

say, then define

1
-1

J. = {j EJ B a. -
1 J

g. }
1

Now consider the following problem

min
D-l
r h.x.

i=l 1 1
+ c ss

s.t.
D-l -1
r g.x. - B Ls­

i=l 1 1

(4 )

Ls, x. > 0 integer,
1

where

i = 0, 1, ... D-lh. = min c.
1 Jj EJ.

1

and hi = +~ if J i =~. The optimal value of this problem is

evidently equal to that of (3) since at most one variable
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from each equivalence class will be used in the solution to

(}), and (4) includes the cheapest from each class. So the

lower bound Z may now be found if the value of h = (hO' hI'

... hD- l ) is known. It could be found by explicit calcula­

tion ([13J) but this is prohibitive if IJI is too large.

The next section discusses how, for certain subproblems,

h may be found by dynamic programming.

2. A Dynamic Programming Approach

If the subproblem which generates the activities of J is

a dynamic programming problem, it may be possible to find h

by means of a simple extension of the state space.

For a problem having a finite state space Z and a

function C : Z x Z + R representing the cost of transferring

from one state to another, define t : Z + R to give the

minimum cost of reaching a given state S from some initial

state by a sequence of transferals. The recursion

~(S) = min {~(Sl) + C(Sl,S)}
Sl£Z

together with initial values, will give an optimal routing

to each state. Now if each transferal is assigned a group

value from G, we may consider the problem of reaching a

given state by a sequence of transferals whose group sum is

a given element of G. If ~* : Z x G + R is defined by the

recursion

~*rS,g] =
(6)

it can be seen that ~*(S,g) represents the minimum cost of

reaching state S with group value g. Comparing (6) with

(5) it can be seen that
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- (7)

o

where Z c Z is a subset of final states. This extension of

the state space may be applied to any monotone sequential

decision process, as described by Karp and Held [11]. Thus
a lower bound may be obtained for Z· by solving the sequence

of problems (6), (7), (4). The size of this effort evident­

ly depends upon IGI, but relaxation procedures exist for

reducing it if necessary (see Gorry, Shapiro and Wolsey [9J).
If IGI is too large and cannot be reduced the methods of the

next section may be applied.

As an example, consider the problem of finding the

shortest route between source and sink in the undirected

network of Figure 1.

z
Figure 1
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The state space for this problem is the set of nodes,

the non infinite state change costs are shown toget er with

the value of rIJ at each node. The set of final stat ,s is

Z = {sink} so that the shortest route has length 6. ) Now a

group weight from the addition modulo 2 group, G = {P, l},
I

is assigned to each arc and as the shortest route h~s group
'j

sum 1, the object is now to find the shortest route iwith

group sum O. The situation of (6) may be considered"

diagramatically in Figure 2.

f<6 }0/

[<a,l{

12)' j

\
~.

\

\
'.

-"" I \,
'< \."'-.... \.

"\

f12,O~

l"7: 0 i
~----_"'::::::::-oo::::::::-----..!----/l

/ 1",- ~\

Figure 2
Each node has been replicated (G) times and the short­

est route of group sum gEG is the shortest route from the

"0" source node to the "g" sink node. The vector

{rIJ(s,g),g} is marked at each node in Figure 2 showing that

the shortest route of group sum 0 has length 8.
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3. Bounds for the Equivalence Classes

The aim of this section is to find h or a set of lower

bounds h for h, in cases where dynamic programming is

inappropriate for solution of the subproblem. Recall from

section 1 that J was divided into equivalence classes where

aI, a 2 are equivalent if and only if

B-lal :: B- l a 2

Theorem 1 If c l ' c 2 are the modified objective costs of

. 1 . .. 1 2 tequlva ent actlvltles a , a hen

Proof Since the objective coefficients were assumed to be

integral c l :: c 2 :: 0

-1 1B a B-1 2. 1· -1 1 - B-1 2- a lmp les cBB a = cB a

II

o < h < 1

where cB is the vector of costs associated with

the basic variables. Thus
-1 1 _ -1 2 -

c l = c l - cBB a = c2 - cBB a = c2

The important implication of this theorem is that if

j e:J. then h. :: c..
1 1 J

Define h by the relation

h :: h

Theorem 2 Let Z be the optimal value of the unconstrained

group problem (4) with the objective coefficients h. Then

Z is a valid lower bound for Z*.

Proof With B an optimal LP basis

c j ~ 0 for all je:J,

hence h > O.
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Thus h ~ h, and Z < Z < Z· II

Note that in cases where J is large, the value of hi might be

expected to be near zero and perhaps less than one in which

case hi = hi. Compared with the task of finding h, the

problem of finding h is trivial. All that is required is

any integer vector a for which B-la = gi then hi is known
-1

from the value of cBB a. Indeed if G = {go' gl' .. gD-l}

is known explicitly, then h = (cBgo , cBgl , ... cBgD- l ).

Even if ~ < h. the relative ease with which it may be
1. 1.

obtained could more than compensate for any worsening of

the resulting bound.

Under certain circumstances it is possible to show that

as long as a given equivalence class is non empty then
h. = h .. The conditions of Theorem 3 enforce all activities

1. 1.

in the same class to have the same revised objective costs

but this is overly strict since it only requires one of the

activities of each class to be less than one in order to

have h = h.

Since the activities are generated implicitly by a

subproblem, so too must the objective coefficient be so

generated. Assume that for some integral vector (ro ' r)
the cost of an activity a. is

J

c. = r + ra. .
J 0 J

All the examples quoted in the introduction have such a

representation.

Partition the optimal L.P. basis B for (1) as
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-1
L~t n = 1.Bl ' with a j =

accordance with B.

Theorem 3 For a non empty equivalence class J.
1

h"":" = h. if
1 1

(i) nalj > 1 - llro for all j E:J .
1

(ii) r 2 = 0

Proof 0)
-I

Let r = (rl , r 2 ) so that

-1
cj = cj - cBB a j

-1= r o + rlaij + r 2a 2j - (rol + rlBl + r 2B2 ,0)B a j
-1= ro(l - nalj ) + r 2(a2j - B2Bl a lj ) •

Now h. = h. if
1 1

o < c. < 1 for all jE:J.
J 1

which with r 2 = 0 is equivalent to

o < r (1 - na l .) < 1 •
- 0 J

Since B is optimal c. > 0 is automatic so that condition
J

(i) enforces i1':"' = h.. II
1 1

Definition A set of activities will be called complete

if for a given activity a, if a is any integer vector for

which 0 ~ a ~ a, then a is also an activity.

For example, solutions to the Knapsack problem form a

complete set as indeed do the set of solutions to inequali­

ties of the form Ax ~ b where A is a non-negative matrix.
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The shortest route and minimum spanning tree subproblems do

not have complete sets of activities.

Theorem 4 For problems having a complete set of activities

there exists an optimal basis having no slack variables,

hence condition (ii) of Theorem 3 may always be satisfied.

Proof The idea is that if a given optimal basis uses slacks

then the optimal activities may be reduced so that the

slacks become zero.

Consider any row in the given basis which has a basic

slack,

*Ea .. x. = b.
lJ J 1

*+ S.
1 ,

*s. > 0
1

Case 1 For some j * *a .. x· > S ••lJ J 1

Then choose 0 < ~ < a ..
- lJ - lJ

Replace the activity a j by

to maximize -- * *a .. x. < s ..
lJ J - J

a· .lJ

a· .
IJ

a ..
lJ=a.

J

amj

* * *so that now Ea .. x. = b. + (s. - a.. x.).
lJ J 1 1 lJ J

* *If a .. = 0 then x. > s. so in this case letlJ J 1

alj.
a. = a .. - 1

J lJ.
a

mJ
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a. .
J

by
o
o.

-1

0

* * * -* *Replace x. by x. - s. and let x. = s .
J J ]. J ].

* * * *Then E a.kxk + a .. (x. - s. ) + (a .. - l)s. = b.
k¢j ]. ].J J ]. ].J ]. ].

aQd replace the slack column

The new matrix has the correct number of columns and is

nonsingular because its determinant is unaffected. (Adding

one column to another does not affect the determinant).

* *Case 2 For all J , a .. x. < s . .].J J ].
a lj.

Then replace a. by a. = then
J J 0

a .
mJ

* * * *E a.kxk + a .. x . = b. + ( s . - a .. x.).
k¢j ]. ].J J ]. ]. ].J J

* *If s. = a .. x. replace the slack column by any independent
]. ].J J

activity.

Since either case 1 or case 2 must apply the above

process may be repeated until the required matrix has been

obtained. The resulting solution is non-negative by

construction and must be optimal if r· > O. Indeed if
]. -

r i > 0 this row would have no slack anyway for then the

above construction improves the basis. II

Theorem 5 If the objective cost of all activities is

constant, condition (i) of Theorem 3 is automatically

satisfied for almost all equivalence classes.
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In this case (I' , 1') = (1, 0), so that it need only be
o

shown that

1 - nalj < 1

or nalj > ° for all j £J . 0

1

The objective function l:c.xo may be
J J

rewritten as rl(Lx j ) + rAx

which equals I' (LX.) + rb + rs 0

o J

The dual of min LX. + 1'5

J J

Ax - Is = b

s, X > 0

( 8 )

is max yb

yA < 1

- Y ~ I'

so that with I' = 0, Y ~ 0 0

If B is the optimal basis for (8) then the optimal y in (9)

is -1
Y = (loB l ,0) = (nJO) which implies that TI ~ O.

Hence 0<'C:"<1
- J-

so that 'i1"':" = h 0 unless there exists a class J. for ~"hich
1 1 1

every' activi ty has 'C:" = 1. In this case 'Fl:'" = 0 h 0 = 1
J 1 ' 1 '

and each activity satisfies

= 0 . II

Lagrange multipliers have been used to improve the bound

given by the unconstrained group problem [3], [12] 0 The

methods of this section may be adapted for this case, see

chapter 2 in [1] 0
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4. An Example - A Cutting Stock Problem

The cutting stock problem was first solved using column

generation methods by Gilmore and Gomory [5J and concerns

the minimization of material required to fulfil given orders.

Consider a situation in which a supplier has rolls of

cloth of a given length L. He has orders for b. rolls of
1

cloth of a smaller length w. i = I, .
1

m. Each roll

may be cut into smaller rolls by using any cutting pattern
Which produces a non-negative integer number a. rolls of

1

length w. sUbject only to the condition
1

m
1: a.w. < L .

. III1=
(10)

Hence the set of activities for this problem consists of all

non-negative integer solutions to (10). Clearly this set is
-complete if a > a > 0 then (10) implies

m
E a.w. < L

. III1=

to satisfy the order, the

have r o = 1 r = 0 so that

satisfies the conditions of Theorem 4.
number of rolls on which cutting

so that this problem

Let x. represent the
J

pattern a. is used so that if the objective
J

number of rolls of length L used

coefficients c. = r + r.a. = 1
J 0 J

this problem also satisfies Theorem 5.

function is the

As a numerical example, suppose L = 58, bl , b2 , b3 = 7

with WI = 7, w2 = 11, w3 = 16. The object is thus
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minimize 1: x.
j e:J J

s.t. 1: a.x. > b (11)
j e:J J J -

x. > 0 integer
J -

where the {a.}. J are any non-negative integer solutions to
J J e:

7a l · + lla2 · + 16a3 . < 58 (12)
J J J -

The optimal L.P. basis uses activities (2, 1, 2), (2, 4, 0)

and (1, 0, 3) each 1.4 times for an objective value of 4.2.

B = n~D
II = l.B- l =

-1B = 1
10

1 (1, 2, 3).
10

Since two activities are equivalent if they have the same

values of -1 (mod 1) the equivalence classes deter-B a are

mined by the values k
l

, k2 , k
3

given by

a) 2al + 4a2 + 6a
3 - k l (mod 10)

b) 7a l + 4a2 + a 3 - k2 (mod 10)

c) 2al + 4a2 + 6a
3 - k

3
(mod 10)

Clearly k l :: k
3

and since k l :: 6k2 the equivalence classes

may be determined solely by the value of

7a l + 4a2 + a
3

(mod 10)

a l + 2a2 + 3a
3

(mod 10)
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9
min 1 (E kXk + sl + 2s2 + 3S

3)
10 k=l

s.t.
9
E kx + sl + 2s 2 + 3s3 = 8

k=l
(mod 10)

Xk ' si ~ 0 integral

which has an optimal value of 0.8. This gives a lower

bound of 4.2 + 0.8 = 5.0 for the number of rolls required.

There are many optimal solutions to (13) a sample of which

are
(i) xl = 8 (ii) x2 = 4

(iii) x4 = 2 (iv) x8 = 1

(v) sl = 8 (vi) s2 = 1, s3 = 2

(vii) x2 = 2, sl = 1, s3 = 1.

Some of these solutions may not be feasible in (11) and

since there are so many it would be useful to have criteria

for choosing amongst them.

Criterion 1 The optimal solution which minimizes

should be chosen.

E x.
j EN J

Reasoning This criterion is just as applicable to all the

problems fitting the model of this chapter. The inequality

constraints omitted from (13) are

E (B-la.)x. - B-ls < B-lb (14)
j EN J J

which, if summed to give a single surrogate constraint

yields

or

-1 -1
E (loB a.)x. - loB s <

j EN J J

E (ITa.)x. - ITs < ITb
j EN J J

(15)
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indicating that a good choice of optimal solution is one

that minimizes the left hand side of (15). Now the object­

ive function of (13) is

r (1 - ITa.)x. + ITs
j EN J J

or
r x. - ( r (ITa.) x. - ITs)

j EN J j EN J J

For all optimal solutions, the quantity (16) is constant

hence the minimizing of the left hand side of (15) is

equivalent to minimizing r x ..
j EN J

This criterion orders the optimal solutions given with (v)

and (vi) as the best and (i) as the worst.

Criterion 2

the value of

The optimal solution (x*, s*) which minimizes

max {x~, s~} should be selected.
i,j J J

Reasoning Criterion 1 was developed by an averaging of the

constraints but it has been observed from hand computations

that if one variable has a high value it is likely to cause

infeasibility in (14) even though (15) is satisfied. Hence

criterion 2 suggests an aver~ging out of the values of the
variables. This criterion would give (iv) as the best and

(i) and (v) as the worst of the optimal solutions to choose.

There is evidently some disagreement between the

criteria as solution (v) appears as the best and the worst

in two lists. A suggested combination criterion is the

minimization amongst the opt~mal values of
* * *r x. + ~ max {x., s.}

j EN J i,j J 1
(17)

This gives a final ordering of the selected optimal solu­

tions of (vi), (iv), (iii), (vii), (v), (ii), (i).
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(vi) s2 = 1, s3 = 2 is a feasible correction giving an

optimal value of 5 with solution

2 (D + 2 (D
*Solutions for which r x. = 0 are particularly simple to

j e:N J

check since it is not necessary to calculate any elements

of the equivalence classes.

(iv) Xg = 1

The activities of this section, which may be found by

dynamic programming as indicated in section 2 are

1, 2, 1

2, 3, 0

6, 1, 0

0, 1, 2

0, 4, 0

g, 0, 0

4, 2, 0

2, 0, 2

5, 0, 1

3, 1, 1

of which only the first two will make the correction

Xg = 1 feasible. This fact raises an important procedural

point. It has already been noted in Theorem 4 that certain

problems may be made easier by including activities in the

L.P. basis which are strictly dominated by other activities.

Here, neither of the two feasible correction activities are

maximal, they are dominated by (2, 2, 1) and (2, 4, 0)

respectively.
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(iii) x4 = 2

The activities here are

0, 2, 0

4, 0, 0

1, 0, 1

2, 1, 0

and although none of these activities on their own provide a

feasible correction the activity (0, 2, 0) used once

together with either (1, 0, 1) or (2, 1, 0) is feasible.

In summary, solution (vii) has a feasible solution

whereas none of (v), (ii), (i) have. The calculation here

would, of course, have stopped with (vi), the other solu­

tions were examined for the purposes of the example only.

Note that the bound from (13) was exact, as in fact none

of the equivalence classes were empty.

This example has shown the importance of testing all
the alternative optimal solutions to the group problem and
thus of making good ranking decisions amongst them.
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