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PREFACE

This volume contains the majority of papers presented at the Third Model-Oriented Data
Analysis Workshop/Conference (MODA3) in Petrodvorets, Russia at 25.-30. May 1992.
The previous two MODA workshops were held in Eisenach, East Germany in 1987 and in
St.Kyrik, Bulgaria in 1990. These conferences, including the present one, cover theoretical
and applied statistics with a heavy emphasis on experimental design. Under these broad
headings other specialised topics can be mentioned, particularly quality improvement and
optimization. The decision to hold MODA3 in St.Petersburg achieved an unanimous vote
at the MODA2 Workshop as it was considered that it would provide an opportunity for
scientists from the former Soviet Union to attend more easily. As history has evolved it was
fortuitous that the opening-up of opportunities in the East more than fulfilled the ambitions
of the organizing committee. In the event, there was a strong participation both from the
East and West. Excellent on-the-ground organisation produced a pleasant environment for
debate. An additional contributing ~actor was the fine location close to the summer palace
at Petrodvorets.

Acknowledgement should be made to the Institute of Applied Systems Analysis in Lax­
enburg, Austria for providing support for the publication of these proceedings and to the
initiator of this series of events Professor Valery Fedorov. The Department of Statistics of
St.Petersburg University provided the chairman, Professor Sergei Ermakov, and the organiz­
ing committee. The conference also received the constant support of the Dean of Mathematics
Professor GelU\ady Leonov. The participants and organisers of the conference gratefully ac­
knowledge the financial support of The Procter and Gamble Company. This support was
facilitated by the attendance at the conference of Dr. Michael Meredith.

This proceedings volume consists of three main parts:

I I Optimal Design, II Statistical Applications, III Stochastic Optimization I
A constant theme at MODA conferences is the subject of optimal experimental design.

This was well-represented at MODA3 and readers will find important contributions. In recent
years the m~dels investigated under this heading have become progressively more complex
and adaptive.

Several papers deal with the problem of designing experiments involving nonlinear models.
A description of these methods including a number of applications to biological experiments
stressing sequential procedures is given by C.Kitsos. A detailed consideration of sequential
techniques is presented by L.Pronzato, E.Walter and C.Kulcsar. They provide a comparison
of the efficiencies of different approaches in classical examples. The paper by A.C. Ponce
de Leon and A.C. Atkinson investigates the design properties of generalized linear models
when the link function is to be estimated simultaneously with the unknown parameters ofthe
predictor. illustrations are given of locally optimal and Bayesian designs. Particular cases,
when the design problem in generalized linear models can be reduced to the classical situation,
are described by B.Torsney and A.K.Musrati. A two stage sequential design procedure for
the nonlinear Behrens-Fischer problem is proposed by R.Schwabe.

The following papers in this section are to be considered as contributions to the classical
theory of optimal design for regression experiments. Ch. Miiller gives asymptotical results
for models with contaminated errors. V.P. Kozlov completes results on optimal designs for
polynomial abel inversion accomplished by numerical examples. J .Lopez-Fidalgo presents and
investigates a new design criterion, which extends the classical maximum variance criterion.



VI

One of the major computational problems in constructing mixture designs is due to the
nonorthogonality of the regression functions, which R.D. Hilgers resolves for some special
cases. An orthogonality condition for nonproportional row column designs is considered from
different sides including the randomization theory viewpoint in the paper of J.Kunert. Some
new approaches for planning simulation experiments in queueing theory are discussed by
V.Melas.

The second section of the proceedings contains a broad collection of statistical appli­
cations ranging from econometrics to biometrics. S.M. Ermakov and J.N. Kashtanov con­
sider the Monte-Carlo estimation of functionals of stationary distributions of Markov chains.
V.Fedorov , P.Hackl and W.G.Miiller demonstrate empirically the advantages of choosing the
weight function in a nonparametric regression according to a specified criterion at hand of
a forecasting task. A similar problem is considered by A.V.Makshanov, who uses adaptive
polynomial smoothing for time series data. Spectral estimation is applied by V.N.Fomin for
extrapolation of stationary time series. A main part of so-called statistical safety theory
is the detection of change points of particular random processes which is discussed in the
paper by A.E. Kraskovsky. Examples of solutions of inverse problems arising in biological
data analysis are given by A.G. Bart, N.P. Clochkova and V.M. Kozhanov. Important tools
in applied statistical analysis are nonparametric sign and variance component techniques.
The former is considered by G.I.Simonova and Yu.N.Tyurin whilst J.Volaufova concludes the
section by surveying the latter emphasizing linear approaches.

There exist strong connections between the philosophies and methodologies in experi­
mental design and stochastic optimization. Therefore many of the contributions in the third
section are devoted to illuminating this interference. An introduction to a new branch of
search techniques based on the study of ergodic processes is presented in the paper by
H.P.Wynn and A.Zhigljavsky. Optimization algorithms for some simulation experiments are
considered in the following two papers. G.Yin, H.M.Yan and S.X.C. Lou improve stochastic
approximation for some manufacturing models by using ideas from perturbation analysis. An
extension of ordinary perturbation analysis technique to a more general class of problems is
given by N.Krivulin.

Markov chain optimization algorithms are discussed in a pair of contributions. R.Zielinski
studies the simulated annealing algorithm with the help of Borel-Cantelli arguments. Advan­
ced results on a particular global random search algorithm are obtained by A.S. Tikhomirov.
Environmental applications of genetic optimization algorithms including discussions on ef­
ficiency are provided by J.Kettunen and M.Jalava. M.V. Chekmasov and M.V. Kondra­
tovich prove that stratified sampling dominates independent sampling in global random
search algorithms. An attempt to apply the Bellman approach for average optimization
of one-dimensional local search algorithms is described by L.Pronzato and A.Zhigljavsky.
The concluding paper by T.Kulakovskaja and A. Shamon studies some features of n-person
cooperative market games for nonbalanced models of economy.

The editors acknowledge the help of numerous persons in the publication of these pro­
ceedings. Our special thank goes to Maxim Chekmasov, E.P. Andreeva, Christine Beiglbock
and all the referees.

Vienna, April 1993 W.G.Miiller, H.P.Wynn,A.A.Zhigljavsky
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PART 1. OPTIMAL DESIGN





Adopting Sequential Procedures for Biological Experiments

Christos P. Kitsos

1 Introduction

The main target of this paper is to construct designs which estimate the desirable unknown
parameter as well as possible. The ingredients are:

(i) The underlying model which links the covariates u and the parameter 8 with the
reponse y, and is supposed nonlinear in 8. As the model comes from the biological field of
applications the parameter can be either:

- the "velocity of reaction", or

the lOOp percentile, Lp , say.

(ii) The optimality criterion, <p say, used to choose the experimental procedure.

We shall face models from biochemistry and experimental carginogens adopting the se­
quential procedure to estimate the different types of parameters mentioned above.

2 Background

It is usually assumed that the response y going with the covariate u E U <:;; Rio is linked with
the parameter of interest 8 E 0 <:;; RP through a deterministic part f( u, 8) and a stochastic
part e, known as error, which gives the regression form

with

y = f(u, 8) + e

TJ = E(ylu) = f(u,8)

(2.1 )

The function f( u, 8) is in general non-linear and in this paper only nonlinear cases will
be considered. In case of a binary response y = 0 or 1 then the link with the covariate u is
through a probability model T( u; 8)

P(y = 1) = T( u; 8) = 1 - P(y = 0) (2.2)

If I( 8, u) is the Fisher information matrix and ~ the design measure, from a family of design
measures 2, Silvey (1980), then the average per observation information matrix M = M(8,O
can be defined, Kitsos (1989). In principle the nonlinear problem is distinguished from the
linear one on the fact that the matrix M suffers on this 8 - dependence, while in the linear
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case M = M(O, see e.g Chaloner (1986), Rash (1988) and the survey paper Walter and
Pronzato (1990). Now:

Let Mat(s,p) 1 ::; s ::; p be the set of s x p matrices and NMat (s,p) be the set of s x p
nonnegative definite matrices. If Q E NMat(s,p) interest might focus on estimating a linear
transformation Q(). Then the following operator JQ can be considered on M = M((),O

(2.3)

with M- a generalized inverse of M and QT E Mat (p, s). Choose <p to be a convex
decreasing function on N Mat (s,s). Then the design measure C is called <p - optimal iff

(2.4)

= +00, when QM-QT is singular

Traditional definitions of <p and Q might lead to well known optimality criteria (D(O),
A(()), E(()), among others with the notation () to emphasize this () - dependence in the non­
linear case). With () taking its true value, following Pukelsheim and Titterington (1983), the
general local optimum experimental design can be stated as:

minimize: <p 0 JQ

subject to: ~ E 3, M( (), 0 E NMat(p, p)

(2.5)

see Kitsos (1986) for details.

Obtaining the minimum, especially in a local non-linear problem, is not feasible in practice
via direct calculation.

Sequential procedures have been adopted both in the linear (Fedorov (1972), Wu and
Wynn (1978)) and nonlinear (Kitsos (1986, 1989, 1992a)) cases.

The general dichotomous convergence theorem for the sequence of design measures ~n is
not easily to be extended to the non-linear case. In nonlinear problems, interest is focussed
rather on the sequence of estimates, On at stage n, the target being to converge to 0 a.s as
n -> 00 when the sequence of matrices Mn = M(On,O converges a.s to M = M((),~). See
Wu (1985 b).

Although, under strong conditions, the sequence Dn = det M((), ~n) converges to D =
det M((), C) it is rather difficult to obtain results for the sequence Dn,n = det M( On, ~n) with
det(.) or log det(.) being a particular case of a criterion function <po

With 4' being the Frechet directional derivative, when rp is differentiable, the appropriate
sequential approach for Biological Based Experiments would be the following (Wu, 1985b)
At stage i choose that Ui which minimizes

(2.6)
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This sequential procedure is a generalization of a typical D-algorithm; Fedorov (1972,p101),
Wu and Wynn (1978). The sequential procedure (2.6) is reduced to a fully-sequential one
when the batch size b is b = dimll at each stage. As it has been discussed (Kitsos (1989))
stochastic approximation schemes are fully sequential procedures which lead to D-optimal
design applying "steepest ascent", in a parallel way of scheme (2.6). The virtue of stochastic
approximation is that it is Markovian in the sense that the choice of the next run depends
only on the current situation. The martingale structure, Lai and Robbins (1979), of the
stochastic approximation which leads to certain limiting theorems, is destroyed when the
sequence is truncated in a predefined interval in the way that the obtained values outside
that interval are truncated to the bounds of the interval, see Kitsos (1989) for the dilution
series assessment.

We comment here that in this truncated stochastic approximation scheme the bounded
martingale structure is reduced to an amart, ie asymptotic martingale, Edgar and Sucheston
(1976), and therefore, this fully sequential procedure, can be written, technically, as a sum of
a martingale and a vanishing (in L1 ) amart. Therefore the stochastic approximation scheme,
even truncated, can provide limiting results within the class of nonlinear sequential designs.
The construction of the sequential design will be discussed on models from Biological Based
Experiments for cases (2.1) in paragraph 3 and for case (2.2) in paragraph 4. D-optimality
as a 'P criterion, appears an aesthetic appeal in these biological applications, as it will be
discussed in what follows.

3 Application on enzyme - kinetic models

From biochemistry and especially in enzyme-kinetic studies two models

(i) The first order growth (decay) curve with

(3.1 )

(ii) Saturation of an enzyme by its substrate, following the Michaelis - Menten equation

with:

1I0u

1] = 111 +u'

u the concentration of substrate

1] the initial velocity of reaction

110 the maximum initial velocity

111 Michaelis constant

(3.2)
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00 corresponds to the velocity attained when enzyme has been "saturated" by an infinite
concentration of substrate, while OJ is numerically equal to the concentration of substrate
for half-maximal initial velocity. In biological bibliography °= (Oo,Od is often denoted by
(V,K) or (Vrnax,Km) or (V,Kn ) while the covariate U is denoted by C, or c n or S.

Both models are linear with respect to 00 and therefore their design should depend only
on OJ, Kitsos (1986). Moreover even the design for Mithscherish equation of diminishing
returns, TJ = O2 + Ooexp(Oju), will depend only on OJ. Indeed it has been proved early by
Box and Lucas (1959) that for the first order curve under D-optimality the support points
are T2 - 1/0j ,T2 if OJ > 0 and Tj, Tj - 1/0j when OJ < 0, with weight 1/2 at both points.

The sequential design for the first order growth law has been discussed by Kitsos (1989).
The initial design was built up on the optimum design points, functions of the unknown
parameters. Different batch sizes were examined among which a fully sequential design was
obtained when one observation is added at each stage for each re-estimated optimum point
with stopping rule as usually, 10n+j - On I < e.

A simulation study was performed for 1000 runs with the true, OT, vector of parameters to
be OjT = 10 and 02T = 1,2,3,4. As starting values, "far" from the true were given 02T ±2 > o.
The fully sequential design provided smaller estimated mean square errors than the static
design, Kitsos (1989). What is also of interest is the evaluation of coverage probabilities for
constructed approximated confidence intervals for both OJ and O2 and OJ, O2 individually. The
confidence intervals were constructed by "pretending" that the average information matrix,
related asymptotically to the variance - covariance matrix C = C(O) as

(3.3)

We assume that C (0) is obtained through independent observations, with On being the
estimate at the final stage. Table 1 summarizes the results providing also the evaluation
of lndet M(On,e), with On evaluated at the final stage ie when n = 40. The corresponding
values for the static design, i.e. the design which allocates at one stage half of observations
at the optimal design points, are also presented, proving that the fully sequential procedure
provided satisfactory results. Michaelis - Menten equation was considered by Dowd and Riggs
(1965) for different values of the parameters, while Duggleby (1979) faced the experimental
design problem and compared different design applying Box and Lucas argument. Endrenyi
and Chan (1981) obtained a D-optimal design, allocating half observations at the optimal
design points,

(3.4)

That is the optimal design allocates half of observation at the highest practically attain­
able concentration, C2 , yielding the maximum velocity, TJ(max). The other half of observations
should yield a velocity of magnitude TJ(max)/2 which is obtained at concentration U2 as above.

Duggleby (1981) obtained different results on the model, while Bates and Watts (1981)
applied their design criterion based on curvature effects.

Currie (1982) obtained D-optimal designs for n design points of the geometrical form
Ui = ari -

j
, with different values of a and r. These design points only by accident can be

optimal points and therefore this design is neither static or sequential, nor optimal.
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What we propose is to construct a sequential design for the Michaelis - Menten biological
based experiments. That is:

- Devote a proportion, Po, say, of the observations to the first stage, allocating nPo/2
observations at the optimal design points (3.4).

Get an estimate 81 .

- Redesign at the new optimal through (3.4) design points, with batch size b = (l-:;'o)n

at each design point, with k + 1 the total number of stages.

Now, if k = 1 a quasi - sequential design has been obtained Kitsos (1992a). When b = 2
a fully sequential procedure has been constructed.

4 Carcinogenic experiments

Carcinogenic risk assessment may be based on experimental data. The experimental dose­
response relationship wherever a saturation mechanism is assumed can be described by the
Michaelis- Menton function discussed above. Different models for estimating low risk dose
have been discussed by Hartley and Sielken (1977). The so called Multi-stage model in
experimental carcinogenesis is of the form

Ie

T(u;O) = 1- exp{- LOiUi}, u E [D1,D2]

i=O

(4.1)

with u presenting the "dose" and T( u; 0) the predicted response as in (2.2). As the number
of experimental points is generally very low, Zapponi et al (1989) model (4.1) is reduced to
the so called "one-hit" of the form

T(u;O) = 1- exp{-(Oo +01U)} (4.2)

The low dose effect is of interest and therefore the lOOp percentile, Lp say, has to be
estimated. We are adopting a fully sequential procedure converging in mean square to Lp ,

namely a stochastic approximation scheme. It is easy to see that for model (4.2) the lOOp
percentile is

-1
Lp = -(00 +In(l - p))

01

The first derivative of T(.) at Lp is

Devoting no observations at the first stage it would be T'(Lp •lc ) ~ 81 ,1e

(1 - p) for k 2: no and therefore the iterative scheme

(4.3)

(4.4)

n=nO,nO+1··· (4.5)
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is a typical stochastic approximation scheme, Robbins and Monro (1951), of the form
:l:n +l = :l: n - an(Yn - p) with Yn as in (2.2), the appropriate sequence an, an, an = ;;: with
optimal choice of c, Cop = (T'(Lp))-l leading to D-optimal design, Kitsos (1989).

Therefore Lp,n+l converges in mean square to Lp ie

(4.6)

Notice that the term ()o is not included in the iteration ie the design does not depend on
()o as it is partially nonlinear for ()o.

Table 1. First order growth law. 95 % Coverages probabilities (CP): for ()l and ()2, for
()2i()IT = 10.0,n = 40,v(o) =.,.2 = 1. (1): Static Design, (2); Fully Sequential.

starting C.P. For ()l, and ()2

O2

C.P. For ()2 lndet M(O, 1/2)

(1) (2) (1) (2) (1) (2)

1.0 1.0 .943 .944 .954 .953 5.470 5.471
3.0 .954 .954 .953 .955 5.096 5.463

2.0 2.0 .942 .936 .954 .935 6.606 6.605
4.0 .945 .946 .946 .951 6.437 6.601

3.0 1.0 .947 .946 .958 .946 7.201 7.973
3.0 .961 .956 .954 .950 7.991 7.990
5.0 .943 .946 .941 .946 7.895 7.987

4.0 2.0 .957 .957 .967 .945 9.211 9.468
4.0 .947 .941 .940 .940 9.478 9.478
6.0 .953 .958 .954 .971 9.415 9.476

5 Discussion

We tackled different Biological Based models usually used in biochemistry and experimental
carcinogens under the sequential principle of design. In biochemical models we assumed
constant variance. In pharmacokinetic models it is sometimes assumed that Var (yd = .,.2/Wi
with Wi = Wi( u, ()), when the standard deviation is desirable to be proportional to its mean
Wi = f( Ul, 0)-2. In this case too, D-optimality criterion, is of use.

Fully sequential procedures as stochastic approximation schemes provide satisfactory lim­
iting results both theoretically and practically as the limit is "approached" with not too
many iterations. The fully sequential procedure scheme was suggested for the Michaelis ­
Menten model. A converging stochastic approximation scheme is suggested for experimental
carcinogens to prove that fully sequential procedure can be applied to different Biological
Models.
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A Dynamical-System Approach to Sequential Design

L. Pronzato, E. Walter and C. Kulcsar

"It has been suggested, with some irony, that the best time to design an ezperiment is
after the ezperiment has been completed because one has then more knowledge on the process
under study . .. By designing an ezperiment sequentially, we can, in a sense, approzimate
this happy (but impossible) situation . .. n

D. Steinberg and W. Hunter 38

1 Introduction

Sequential experimental design is a natural approach to face the dependence of the optimal
experiment on the parameters to be estimated in the nonlinear case (see e.g. 17,41). It aims
at taking the information contained in previous observations into account when choosing new
experimental conditions, Le. new support points for the design. Classically, two phases are
alternated: estimation, during which the data collected so far are used to obtain parameter
estimates, and design, during which these estimates are used to select the best experimental
conditions given the final purpose of the experiment (e.g. parameter estimation, hypothesis
testing or model discrimination, response optimization, screening, search 32). Many intuitive
schemes can be used, depending on the type of purpose considered (see the survey papers
13, 39). Here, we shall restrict our attention to parameter estimation (with some words on
response optimization), but the methodologies and classification to be presented could be
used in other contexts.

Section 2 is devoted to a tentative classification of sequential and nonsequential schemes.
Connection with optimal stochastic control for dynamical systems is evidenced. Closed-loop,
open-loop feedback and open-loop optimal strategies are considered. Section 3 deals with
the most widely used batch sequential approach, based on a heuristic certainty equivalence
principle. Convergence is studied, using the Ordinary Differential Equation method 26, in a
situation where the experiments are sequentially applied to different physical systems (or in­
dividuals) in a population. The policy is shown to correspond to a Robbins-Monro stochastic
approximation procedure. FUlly sequential design is considered in Section 4. It corresponds
to the case where a single support point is chosen after each new observation (see e.g. 17).
Note the difference with the definition used in 22. An open-loop feedback policy is described
in Section 5, also in the case where a population of physical systems is studied.

2 Classification of sequential-design policies

In this attempt to classify design policies we shall not distinguish batch-sequential from fully
sequential approaches and exact from approximate designs. Most of this section is based on
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3. The design to be chosen at step k (i.e. before the kth estimation stage) will be denoted by
e( k), with an admissible domain 3(k). Let er: denote the set of all designs chosen from step k
to step N, with 3r: the corresponding admissible domain. The choice of the design criterion
will not be discussed in this paper, and J(e, w) will denote any criterion to be minimized with
respect to e, with w some characteristics of the process, wtknown at this step (e.g. the value
of the model parameters in a nonlinear regression problem). J may for instance be a scalar
(convex or concave) function of the information matrix. Note that we shall call information
matrix the matrix calculated as in a nonsequential procedure, although this is abusive due
to the sequential nature of the design (see 19, 42). We consider the case where the total
nwnber N of design steps is fixed in advance. The Closed-Loop Optimal (CLO) solution is
then obtained by solving the stochastic dynamical programming problem (see 4, 15)

min
{(l)ES(1)

E...{ min E... { ... E... { min E... {J(ef,w) I I(N - I)} II(N - 2)}
{(2)ES(2) {(N)ES(N)

···1 I(I)} I I(O)} , (1)

where (I( k) h, corresponds to an increasing sequence of o--algebra and I( k) denotes all in­
formation concerning the system available at step k (i.e. prior knowledge I(O), observations
y(I), ... ,y(k) and experimental conditions e(I), ... ,e(k)). Once e(l) has been applied, the
problem is considered again, starting at e(2) with prior information I(I).

Example 1: Consider the regression model

y(x) = aexp(-8x) + i(X), a> 0, (2)

where a is asswned to be known and 8 is a scalar parameter to be estimated. The measure­
ment errors i(X) are independently normally distributed ./11(0,0-2),0- = 0.1. The informa­
tion I(O) about 8 corresponds to a discrete uniform prior 11'°(8) over 0 = {I, 1.02, 1.04, ... ,
1.96,1.98,2}. We consider exact ELD-optimal design (see e.g. 41), Le.

XELD = arg min E9 { -In det M(8, x)},
"EX

with M( 8, x) =~ exp( - 28x) the information matrix for one measurement (here a scalar).
Although a single measurement would suffice to estimate 8, we shall asswne throughout this
example that two measurements are allowed. With N = 2 and the feasible domains for the
two measurements given by X( 1) = [0,1]' X (2) = [Xl, 1] (let us say that x is time and that
the second measurement cannot take place before the first one) we obtain for the CLO policy

where E9 {. I I(I)} is evaluated using the posterior distribution 11'1(8) (after one observation
y( 1)). As y( 1) is wtknown at this stage, an expectation EII(l){. I I( O)} is performed, using
the prior distribution 11'0 and the distribution of measurement errors. Note that 11'1 remains
discrete, which is of special importance from a computational point of view (the weight a?

of the ith support point 8; for 11'0 is simply updated into a; = L?~:~~!~~;I~)' A nwnerical
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optimization (using two nested golden-search procedures and a numerical integration for the
evaluation of Ey ( 1){. I I( O)}) yields

zl~fg = 0.6443.

The value of z2~fg cannot be determined a priori, since it depends on the particular real­
ization of y( 1).

<>

Even if the nonlinear programming problem associated with CLO design can theoretically
be solved backward or forward in time 2, this is an extremely difficult task. To the best of
our knowledge, within the experimental design context, the CLO approach has only been
used in very simple situations. Zacks 45 considers a two-stage approach (i.e. N = 2). Bayard
and Schurnitzky 3 illustrate the feasibility of the forward-in-time approach by determining a
classical D-optimal experiment for a nonlinear regression model (all expectations in (1) then
disappear). A first suboptimal policy corresponds to Open-Loop Feedback (OLF) control
15,40. The k-design step e(k) is then chosen so as to minimize E",{J(ef,w) I I(k - I)}, the
designs in e~-l being fixed. This policy is open-loop in the sense that the knowledge of the
fact that the next design points will also be chosen sequentially is not taken into account
(each design step is thus considered as the last one). It nevertheless contains feedback since
the information I( k) is updated after new observations have been collected.

Example 1 (continued): Two support points are chosen sequentially according to an
OLF policy. We obtain

OLF . a2z~
zlELD = arg mm E8{ -In(-2- exp( -28zd)} ,z, E[O,I] (7

where the expectation E8 is calculated with the prior distribution 71'0. A numerical calculation
gives

zl~g = 0.6667.

The value of z2~fb depends on the particular realization of y(I), used to calculate 71'1. Note
that zl~fb > zl~fg, which could be expected since the OLF policy does not take advantage
of the fact that a second measurement will be performed, with the constraint Z2 2: Zl'

<>

An OLF policy will be considered in Section 5, in the context of population studies.
Removing feedback in OLF control, one obtains an OL policy, which is nonsequential by
nature,

eOL~ = arg min E8{J(e{",W) I I(O)}.
e{'E3f'

This has been widely considered in the literature under the name of optimal design in the
average sense or Bayesian design (see e.g. 12 and the survey paper 41).
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Example 1 (continued): The nonsequential exact ELD-optimal design with two mea­
surements is given by

OL OL a2z~ a2z~
zlELD, Z2ELD = arg min Es{ -In(-2- exp( -29zd + -2- exp( -29z2))}.

ZI E[O,l],z, E[ZI ,1] 0' 0'

A numerical calculation gives replicated measurements at

Zl~tD = Z2~tD = 0.6667.

o

Finally, the most widely used sequential procedures correspond to a Heuristic Certainty
Equivalence (HCE) control using feedback. At the kth design step, ~(k) is chosen so as
to minimize J(~;,w(k - 1)), where w(k - 1) is a value of w estimated from I(k - 1) (e.g.
w( k - 1) = E {w II( k - I)}), the designs in ~~-l being fixed. Applying this policy to Example
1, one obtains a sequential D-optimal design. This will be considered in Sections 3 and 4.
Implementing it in open-loop without feedback, one gets classical D-optimal design.

In the context of parameter estimation for nonlinear regression models, OLF policies are
almost as simple as HCE policies to implement. The main difficulty is to evaluate posterior
densities for the unknown parameters (see 12). Simplifications can be achieved by considering
either normal distributions and a linearization of the model response (as for instance in the
Box and Hill approach to experimental design for model discrimination 9), or a discrete
distribution for 9.

Contrary to the HCE or OLF policies, CLO design possesses the well known dual effect
(see e.g. 16, 40): early support points may provide little gain in terms of precision on the
parameter estimates, but may yield important knowledge about how to choose the next
points. It is fully optimal, in the sense that all information about the past (from the prior
distribution and previous measurements) and future (the fact that next support points will
be chosen sequentially on the basis of the information to be collected now) is taken into
account. The difficulty lies in the nested minimization and expectation steps. The procedure
of iteration in policy space, suggested in 1, 2, 3, permits to reduce this complexity greatly
by considering a CLO policy over a small number of steps (say m « N) and an open-loop
policy for further steps. This is similar to ideas developed in the field of predictive control
(see e.g. 6). For instance, the kth design ~(k) (with m < N - k - 1) can be chosen so as to
minimize

{ min ... Ew{ min Ew{ min Ew{J(~f,w)
e(k+l)E2(k+ l ) e(k+m )E2(k+m) ef+m+l E2f+m+l

II(k +mn I I(k +m - In .. · II(kn·

The larger m is, the closer this policy gets to CLO design, which provides a trade-off be­
tween performances and computational complexity. It seems that the gain in performances
progressively decreases while m increases. Choosing m = 1 or m = 2 should thus already
yield the major part of what can be gained on the way from open-loop to closed-loop.

Remark 1 In the context of bounded measurement errors with no infonnation about the
distribution of the errors between their bounds, mathematical expectations cannot be used.
Average optimal design should then be replaced by worst-case optimal design (E{f(w) I I}
being replaced by maxw[f(w) I I]). An open-loop policy is suggested in 24, 35, while the use
of feedback is considered in 36.
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CLO strategies are fully optimal given the number N of design steps to be performed,
and thus do not require any convergence study. On the opposite, convergence considerations
are important for open-loop policies, for which N is not prespecified.

3 Convergence properties of classical sequential design

We consider the general situation where blocks of experiments may be sequentially performed
on different physical systems (e.g. individuals in pharmacokinetics) that belong to a same
population (in the sense that they can be described by models with the same structure but
different parameter values). A classical procedure, corresponding to HCE design, consists for
the next block in performing an optimal experiment for the empirical mean of the parameters
estimated from each of the previous blocks.

Let Oi denote the parameters of the ith individual to be considered. The observations
y~, performed according to the exact design X = {Z1> Z2, .•. , zn}, are given by

with
Y'( Zj) = 1](0', Zj) + f( Oi, Zj) ,

where 1](0, z) is the model response of an individual with parameters 0 (0 E 8, open set ofRP),
for the design point z. We assume for simplicity that the same number n of observations is
performed on each individual, n 2: p = dimO. The measurement errors f(Oi,Zj),j = 1, ... ,n,
are assumed to be uncorrelated, with a (diagonal) covariance matrix Wx(O'). We assume
that the underlying distribution is individual free, i.e. f(0', Zj) = w( Oi, Zj, w;), where w is a
deterministic function and the w; 's are i.i.d. random variables. For instance, the w; 's can be

normally distributed N(O, 1), with f( 0', Zj) = (al1](Oi, Zj) Ib +c)w; and a, b, c given positive
numbers. The design X is chosen on the basis of previous observations, i.e. using feedback.

In the context of pharmacokinetical experiments, where 1](0, z) is a nonlinear function of
0, D'Argenio 14 suggests to use

where Xn(O) is an exact D-optimal design for the parameters 0 with n points of support,
and where Om(k) is given by

k

Om(k) = ~ LO',
1=1

(3)

with Oi O(Y~;) the value of 0 estimated from the observations performed on the ith in­
dividual (e.g. using least-squares). X n is obtained using the information matrix for normal
errors,

where
T(O) = (81](0,Z1) 81](0,Zn))

Sx 80'···' 80 '

as
Xi = argmaxdet Mx(Om(i - 1)),

XEX
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Figure 1: D-optimal design in a sequential population study.

with X the admissible experimental domain. The procedure is summarized by Figure 1.

Assume that the 8i 's are i.i.d. random variables with distribution 11'. Define

and let px(O I 9) denote the exact distribution of the estimates O(Yx) when the model
parameters take their true value 0. Using the Ordinary Differential Equation (ODE) method
developed by Ljung 26, we can show that under some simple hypotheses (not detailed here
for the sake of brevity, see 26) Jl( i) asymptotically follows the trajectory of the deterministic
differential equation defined by

(4)

where

(5)

In most situations f(J1) is finite for J1 in some set TJ. (however, the possibility that f(jl) does
not exist will be illustrated by Example 2). The sequential policy described in Figure 1 thus
corresponds to a Robbins-Monro stochastic approximation procedure for the determination
of jl satisfying f(J1) = O. It can converge only to stable stationary solutions of(4), and when
these stable points are isolated the procedure cannot infinitely oscillate between them 26.

Remark 2 An analytical expression for an approximation of px(O I 0), more accurate than
the classical normal approximation, is given e.g. in the survey paper 3./. In some cases it
even coincides with the exact distribution.

The right-hand side of (5) can be written as
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where the bias bx (0) = M0- 0) px (0 I 0) dO can be approximated by 10

b (O)::e - ~M-1(0)&1)I(I}) W- 1z(0)
x 2 x &0 18 x '

with
- -1 - &21)( 0, x;) )

Zi(0) = trace( Mx (0) &O&OT 16
'

and 1)I(O) = (1)(O,X1),". ,1)(O,xn )).

An exhaustive study of the behaviour of (4) would be beyond the scope of this paper,
and we shall simply present an illustrative example.

Example 2: Consider the one-dimensional regression model defined by (2) and assume
first that the measurement errors «x) are Li.d. N(0,0'2). The individual parameters Oi are
generated according to the normal distribution N( 0°, O'i). Exact D-optimal design of size 1
is considered,

. 1
Xb = Xv{J.l(i -1)) = -(-.-)'

J.l ~ - 1

(which is D-optimal e.g. for X = [0, oo[ and J.l(i - 1) > 0). When y~ < 0, which occurs with
a probability P > 0, 'IX E X, the value of the least-squares estimate O(y~) is infinite. This
yields an infinite bias, so that (5) is not defined. In order to avoid this unrealistic situation,
where negative observations can be obtained while the model response is always strictly
positive, we shall assume now that the measurement errors are independently uniformly
distributed in [-a1)(0, x), a1)(0, x)), with 0 :::; a < 1. The least-squares estimator, given by
O(Yx) = ~ In II: ' is then always finite, provided that x f- o. (Note that it does not coincide

with the maximum likelihood estimator, given by OML(yX) = ~ In pt;la). Simple algebraic
calculations give

where

_ ° 1 p(a) _
f(J.l) = 0 + x(jl) + x(ji.) - J.l, (6)

1
p(a) = 2a ((1 - a)In(1 - a) - (1 +a)In(1 +a)) ,

and where x(ji.) defines the design policy used. For instance, x(ji.) = i yields f(ji.) = 0° +
p(a)ji.. The differential equation (4) is then globally stable since p(a) is negative, a E [0,00[.
From 26, the procedure converges with probability 1 to the unique stable stationary solution
given by J.l' = -~. Note that it depends on the distribution of the Oi's only through its

mean 0°. The evolution of - ~ is given in Figure 2. One always has J.l' :2: 0° ,a E [0,00[.
The sequence Om(k) converges to 0° only when a tends to 0 (i.e. when there is no measurement
noise). From (6), when a f- 0 no design policy x(jl) permits to converge to 0°.

o

The sequential-design procedure described in Figure 1 generally does not converge to the
optimal experiment for the mean value of the parameters in the population. The design should
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Figure 2: Convergence of 9m (k) in .Example 2, with 0° = 1.

thus not be based on the empirical mean of the parameters in the population (3). Another
estimation of this mean (Wlbiased if possible) should be used, possibly together with some
other characteristics of the distribution (see e.g. 37 for the estimation of such characteristics).
A sequential approach based on an OLF control, with satisfying convergence properties, will
be considered in Section 5.

Remark 3 If all experiments were performed on the same individual with parameters 0°
(which corresponds to classical batch sequential design), then convergence of the design could
be studied within the same setting. The procedure would then correspond to a stochastic
approximation scheme for estimating ji. satisfying f(ji.) = 0, with 7l"(9) = 5(6 - 8°) in (5). In
the case of Example 2, the conclusions drawn from Figure 2 would remain the same.

4 Fully sequential design

In this section, we restrict our attention to linear models, i.e.

The experiments are performed on a single process with parameters 8, to be estimated using
Wlweighted least-squares. The additive measurement are assumed i.i.d. Our aim is to give
a summary of the convergence results available so far in this simple context and to point
at some open problems. The information matrix at step k + 1 is given by M(k + 1) =
M(k) +x(k +l)xT (k +1), and, denoting the average information matrix per sample by R(k),
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we have

{
R(k +1)
O(k +1)

R(k) + k~1 (x(k + l)xT(k + 1) - R(k)),
O(k) + k~1 R-I(k + l)x(k + l)(y(k + 1) - xT(k + I)O(k)),

(7)

with O( k) the parameter estimates at step k, and y( k) the kth observation. Note that although
R(k) does not explicitly depend on 0, it may depend on the previous values of the estimates
of 0 through the regressors. The system (7) corresponds to the well known equations for
recursive least-squares estimation. Differentw situations can be distinguished, leading to
different approaches for the study of the convergence of the least-squares estimator and of
the design.

First, x(k +1) may be a random variable independent of the past values of 0, R, x and y.
This is classical in least-squares estimation, the convergence then depends on the distribution
of the regressors (the convergence condition is one of persistency of excitation).

Second, x(k +1) may depend only on y(k), y(k - 1), ... and x( k), x( k - 1), ... as for auto­
regressive models with exogeneous inputs. The convergence issue in this case is considered
e.g. in 26, and also in 20 when x(k + 1) is chosen so as to maximize det R(k + 1).

Third, x(k + 1) may depend only on R(k). Consider for instance the situation

x(k + 1) = argmax xTR-1(k)x,
XEX

which corresponds to the classical Wynn algorithm 44 for the construction of aD-optimal
design measure. Convergence is proved several experimental design criteria e.g. in 43, 33.

Fourth, x(k + 1) may depend only on O(k). Consider for instance the linear regression
modell1(0, :r) = 00 + Ol :r +02:r2, where :r(k + 1) is chosen so as to maximize 11( O( k), :r), i.e. :r(k+
1) = - 9'((k)) (with 02(k) assumed to be negative). This corresponds to a self-tuning optimizer,

26, k

whose convergence properties are studied in 11 using the ODE method. Convergence of O(k)
towards 0 is guaranteed only when a modified control policy is used, such as :r(k + 1) =

- :J,(t2) + v(k + 1), with the v(k)'s corresponding to a sequence of independent random

variables, possibly with decreasing variance (this can again be interpreted as a condition of
persistency of excitation).

Finally, a fifth situation is when x(k + 1) depends both on R(k) and O(k). For in­
stance, one may wish to estimate s(O), a nonlinear vector function of O. Let s'(O) de­

note dS;;e). The next design point x(k + 1) can then be chosen in order to maximize

<Jl(M(k)+xxT,O(k)) = ,p[stT(O(k))(M(k) +xxT)s'(O(k))], where ,p[.] defines a scalar optimal­
ity criterion. Another choice (steepest-ascent approach), often leading to simpler calculations,
is to maximize the Frechet derivative of <Jl at M( k) and O(k) in the direction xxT , i.e. to max­
imize lim>._o+ A-I <Jl((1 - A)M(k) +AxXT,O(k)) - <Jl(M(k), O(k )). The problem is considered
in 42, but no general convergence result is obtained (except concerning the example treated
in 18). The ODE method does not apply directly here (partly due to the fact that x(k + 1)
does not depend continuously on R(k) and O(k)). Further investigations are thus required,
which could rely e.g. on the results in 23, 31, 5.

5 Open-loop feedback design in population studies

Following an OLF policy as suggested in Section 2, the design at step k will now be chosen on
the basis of an estimate i(k - 1) of the distribution of the individual parameters. The OLF
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Figure 3: ELD-optimal design in a sequential population study.

procedure with ELD-optimal design is swnmarized in Figure 3. The design Xi is defined by

(8)

The estimation of ~i can be performed using e.g. the maximum likelihood estimator for
mixtures 25. No details can be given here due to space limitation, and we can simply note
the following points.

(i) The estimation is then not recursive: all previous observations performed on all pre­
vious individuals must be used at each step. A recursive determination of the distribution
could be obtained through a parametrization, e.g. ~i could be searched within the class of
normal distributions N(Ii, nil, with a stochastic approximation method for updating the
parameters Oi, n i of the distribution (see 30).

(ii) The maximum likelihood estimator corresponds to a discrete distribution, with a
number of support points less than or equal to the number of individuals considered so far.
As a consequence, the optimal design (8) can easily be determined (without requiring the use
of numerical integration routines for the evaluation of the expectation).

(iii) The determination of the maximum likelihood distribution ~i can be performed with
algorithms closely connected to those used in the design context (approximate theory) 7,28, 8.

(iv) The problem of unicity of ~i is considered e.g. in 25, 28.

(v) Consistency of the maximum likelihood estimator is considered in 21.

Example 3: Consider again the regression model defined by (2), with a = 10, measure­
ment errors LLd. N(O, 0"2), 0" = 1. A population of 100 individuals is considered, with the
(}i,s i.i.d. N((}O, 0";), (}o = 1, 0"8 = 0.1. One measurement is performed on each individual.
In this particular case, ELD-optimal design corresponds to D-optimal design for the mean



1.04

1.02

1

0.98

xi
0.96

0.94

0.92

0.9

0.88

0.86
0 20 40 60 80 100 1

21

value of (J, i.e.

Figure 4: Evolution of zi in Example 3.

. z2 .
z' == argmax 2 exp( -2zE8{(J I 1i"-I}) ,

"EX (f

(the OLF policy thus coincides here with a HCE control). The optimal value z' for the true
distribution 1r is z· == 1 (since E8 {(J I 1r} == (J0 == 1). Figure 4 presents the evolution of zi.
The support point is seen to converge to the optimal design for the population.

Remark 4 A completely different situation would correspond to sequential design for esti­
mating the distribution 1r itself. A characterization of the precision of this estimation would
thus be required. First attempts in this direction (although in a nonsequential contezt) seem
to be 27, 29.
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Designing Optimal Experiments for the Choice of Link
Function for a Binary Data Model

Antonio C. Ponce de Leon and Antony C. Atkinson

The inclusion of an extra parameter to extend the link function in the modelling of binary
data is investigated. The extended link includes the logistic and complementary log-log as
special cases. We adress the problem of designing optimal experiments in this framework.
We discuss the advantages of the approach which allows the choice among designs to estimate
the link function parameter, the linear predictor parameters or both. Each de~ign requires a
different criterion function. Prior information is incorporated in the design criteria which
depend on the parameters being estimated. Examples of locally optimal as well as optimal
Bayesian designs are provided to illustrate the methods.

1 Introduction

Throughout this paper, the binary data models considered are a subclass of Generalized
Linear Models. Thus, we adopt the terminology and notation of McCullagh & NeIder (1989)
for modelling, but use optimal design theory notation elsewhere.

Suppose that a random sample Y1 , ... , Yn is to be observed, where Yi follows a Binomial
(mi' 11'i) distribution and that our main interest lies in the modelling of the relationship be­
tween the probability of success 1I'i and a set of covariates {Xil, ... , Zip}, i = 1, ... , n. According
to generalized linear model assumptions, this relationship is described by a vector of linear
predictors 1/-, where 1/i = I:~=1 Zij{3j(P denotes the dimension of the vector of unknown pa­
rameters (3-) and a monotonic and differentiable function g(.), called the link function, such
that 1/i = g(1I'i), i = 1, ... ,n. Then the log likelihood function for the binomial distribution is

(1.1)

where 11'; = g-I(1/i). The term that does not depend on 11'_ can be neglected.

In the modelling of binary data the choice of link function plays an important role, as
shown in the examples of Section 2. However, only three functions are widely used in most
applications. They are the logistic (logit), the inverse normal (probit) and the complementary
log-log functions.

In this paper we suppose that for each experiment the set of covariates as well as the
levels at which they are to be observed, may be chosen freely in a certain design region.
Under these assumptions, the experimenter is capable of choosing a design that optimizes a
given criterion emphasizing either the choice of link function or the estimation of the linear
predictor. However, the link function specification should come first in any list of priorities,
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for the estimation of the linear predictor parameters clearly depends on the link function.
Having said that, there might be situations in which two or more link functions might fit the
data rather well, even though the linear predictor parameter estimates differ significantly for
each link, so as making the estimation of 13- more crucial.

As far as optimal design is concerned, the problem of determining optimal experiments
to estimate the parameters 13- has been dealt with, for instance, by Chaloner & Larntz
(1989). They presented examples of optimal Bayesian designs to estimate the linear predictor
parameters 13- as well as functions of them, such as the LD50 and LD95, in the case oflogistic
models. The problem of designing experiments for discriminating between two binary data
models, more specifically models with different link functions, has been studied by Ponce de
Leon & Atkinson (1992a) and (1992b), who give further references.

In fact, for binary data models both parameter estimation and model discrimination may
be regarded as particular cases of a more generally formulated problem. In the next section
we present a generalized link function for binary data models that brings a new insight to
these two problems. The emphasis in this paper is on principles and numerical results. Full
analytical details are given in Ponce de Leon (1992).

2 Generalized link function

Suppose that the link is the generalized link function (McCullagh & NeIder, p.378)

7). = g{7I"".x) = log [{ C~ 71".r - I} / .x] ,(.x ~ 0) (2.1)

When .x = 1{2.1) reduces to the logistic link. Furthermore, it is straightforward to prove
that limA_o 7), = log{ -log{1 - 71",)}, the complementary log -log link function.

So, the value of .x restricted to the interval [0,1]' may be interpreted as a measure of
the distance between the logistic and the complementrary log -log models. Nevertheless,
there is no reason whats ever for restricting attention to models in which .x belongs to this
interval, for any non-negative value of .x is a potential candidate to provide a reasonable fit
for binary data. Negative values of .x are not considered as numerical problems may arise in
the computation of the link function inverse.

To illustrate how the maximum likelihood estimate for .x can be obtained we present two
numerical examples using real data sets. It is interesting to notice that in both examples, oX

lies outside the interval [0,1].

Example 2.1 : Toxicity of Rotenone to Macrosiphoniella sanborni. Finney (1947, Ex.l,
p.26, Table 2) gives the details. To investigate how the value of .x affects the goodness of fit
for a binary data set, the criterion adopted was the deviance. The estimation of .x and 13- was
carried out in two steps. Firstly, we may suppose that the value of .x is known and proceed
to estimate 13-. Next, we maximize the log likelihood w.r.t . .x, or equivalently minimize the
deviance. Such a procedure is analogous to the so-called nested least squares. Analytical
solutions for this problem appear to be very complicated. However, a numerical search for
the minimal deviance over a grid for .x is effective and easy to implement. The model fitted
to the rotenone data had the linear predictor 7), = 130 + 131 z" where {z,} are values of log
concentration of rotenone. For each value of .x, the parameters 130 and 131 were estimated by
iterative weighted least squares as described in McCullagh & NeIder (1989), pp. 40-43.
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Figure 2.1 - Deviance of fit as a function of A Example 2.1

Figure 2.1 shows the deviances as a function of A over a grid in the interval [O.O,S.O].
Although the change in deviance is not large, values of A in the interval (1.2S,1.S) yield
smaller deviances, the optimum lying near A = 1.3. Further analysis ought to be carried out
before regarding any particular model as suitable.

The linear predictor parameter estimates vary with the value of A. For example, when
A = 0 (complementary log-log), /30 = -3.S12 and /31 = 4.426 whereas for A = 1 (logistic),
/30 = -4.839 and /31 = 7.068. These results are used later to justify the assumption of prior
distributions for the linear predictor parameters being conditioned on the value of A. In fact,
there seems to be a trend in the behaviour of /30 and /31 that could be investigated more
carefully.

Example 2.2: Milicer & Szczotka (1966) give the number of schoolgirls having menstru­
ated as a function of age. The data are reproduced by Aranda-Ordaz (1981, Table 2). As
in the previous example the linear predictor was assumed to be simply fJ = f30 + f31 z. The
procedure described in Example 2.1, to estimate A, {30 and {31 was again applied.

The deviances are shown in Figure 2.2. The search was carried out over a grid in the
interval [0.2,6.0]. As can be seen, the value of A that provides the smallest deviance lies in
the interval (1.2S,1.7), more precisely close to 1.47S.
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In the next section we obtain Fisher's information matrix relative to the full problem, i.e.
when A is unknown. A brief discussion of optimal experimental design theory is also given.

3 Fisher's information matrix

Having analysed the results obtained in the examples presented in Section 2, we can now
address the problem of designing optimal experiments to estimate A and f3-. The main
conclusion that can be drawn from these examples is that some importance must be given
to the estimation of A, whenever (2.1) is taken as the link function. Thus, from the optimal
design theory point of view, it is sensible to focus the optimization on the estimation of A
rather than on the estimation of the linear predictor parameters f3-. Another possibility is
to find the right balance between the two purposes.

To define the criterion functions, Fisher's information matrix for (A,f3_) is required. After
a series of differentiations of the log likelihood function (1.1) w.r.t. A and f3-, we find that
Fisher's information matrix is proportional to

(3.1)

where

N "n ~ m' . ~ {ZI=L."lmi;Wi= -I' .,Pi=~,t=l,... ,n;c:.N=
~ -~, N PI

Zn }.

Pn '

d7l'i

dA

( 1)1 (' 'Ii 1) (1/'\).~;- I2" og Ae + + '\.~;+1

(Ae'l; + 1)1/,\
i = 1, ... ,nj

i = 1, ... ,nj r,s = 1, ... ,p.

The total number of observations N in the exact design (N is assumed fixed. The weights
{Pi} may be interpreted as a measure of how informative the support points {z-J are for
the estimation of the relevant parameter(s).

Exact design theory has been assumed so far. However, at this point we switch to the
approximate theory in which the discrete design (N is replaced by the design measure ( over
the design region X. The details are given by Silvey (1980, p. 13,14). The advantage is
in the properties of optimum approximate designs which, urilike discrete designs, satisfy an
equivalence theorem (Kiefer & Wolfowitz, 1960). The information matrix (3.1) in terms of
design measures becomes

where
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The integrals are taken over the design region X and all variables have the same definition
as before, but with no index. The exception is w = 1/{1l'(1 - ll')}.

In the next section we consider the choice of criterion function appropriate to the aim of
the experiment. We also determine the derivative functions that are essential for checking
optimality. Numerical examples are provided so as to illustrate the search for the optimum
design.

4 The choice of criterion function

There are several purposes of interest in a binary data experiment, such as estimating a subset
of parameters, estimating the LD50, or any other percentile, or estimating a function of the
model parameters that might be meaningful. Obviously, the choice of criterion function needs
to reflect the particular purpose. Here, we are concerned with the estimation of parameters
and particular subsets of them. To be more precise, our main interest lies in three distinct
but interrelated purposes, namely the estimation of

(i) the link function parameter ,\ ;

(ii) the vector of linear predictor parameters 13-;
(iii) both ,\ and 13-.
Due to the features of the first two problems the criterion to be adopted in (i) and (ii)

is that of D,-optimality, whereas D-optimality is suitable for the full problem (iii). For
convenience, we split the formulation of the criteria and related derivative functions into
these three cases. With matrices M, M u , M12 and M 22 defined in (3.2). The ~riterion for
each case of interest follows

(i) Estimating ,\

M azimize{E=' iJ 1(M) = log{ d~:~~~)}

or

Mazimize{E=.iJ1(M) = logdet(Mu - M12 M:i21M2d

(ii) Estimating 13-

or

Mazimize{e=.iJp(M) = logdet(M22 - M21 Mil1M12)

(iii) Estimating ,\ and 13-

M azimize{E=.iJ(M) =log det(M)

(4.1)

(4.2)

(4.3)
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The inclusion of a pair of weights to represent the relative importance of estimating A
and 13- is an alternative formulation for (iii). In such a case the criterion function would be
defined as a weighted conbination of criteria (i) and (ii). The weights could either be specified
by the experimenter, based on some subjective criterion, or could be determined through the
optimization procedure, by finding the maximum weighted combination, over a feasible set
of weights. Criteria (i) and (ii) would then be particular cases of this generalized criterion
when either purpose is allocated weight one.

As (4.1), (4.2) and (4.3) are concave functions on the set of design measures, a prop­
erty required to apply optimal design theory, a theorem similar to the General Equivalence
Theorem of Kiefer and Wolfovitz (1960) can be proven.

Optimum designs for all these criteria depend on the parameters A and 13-. If A were
known, say A = 1, the problem would reduce to designing for estimation of 13-. The resulting
design would still require knowledge of13-. The reverse problem of known 13- with Aunknown
does not make sense in practice, unless A and 13- are orthogonal. Example 2.1 shows that
this is not necessarily the case. We are thus left with the dependence of the optimal designs
on the parameter values. In order to check the optimality of any proposed design we require
the derivative function of the design criterion.

Suppose that for fixed A and 13_,M(~') and M(e,._) denote the normalized information
matrices at the optimal design ~. and at the design ~",_ , respectively, where ~",_ is the measure
assigning mass one to the point x_ EX.

It is standard in optimal design theory that the Frechet derivative of the criterion function
at M(~') in the direction of M(~",_), often called the derivative function, provides a useful
bound which is the key for checking the optimality of a given design. For the cases we regard
here the bounds are

(i) Estimating A - For all :1:_ EX,

(ii) Estimating 13- - For all :1:_ EX,

(iii) Estimating A and 13- - For all :1:_ E X,

(4.6)

In addition to providing a useful bound, the derivative function has the important feature
that the bound is achieved at all the support points of the optimal design. Hence, it provides a
straightforward checking procedure, which can be applied when searching for optimal designs.

The following are examples oflocally optimal designs, that is designs which are calculated
for a single assumed value of A and 13-. In Example 4.1, the interest lies in the estimation
of the link fun parameter A, whereas in Example 4.2 the aim is to determine optimal designs
for all three different purposes, using the same information on the parameters. In both
examples we assume that the linear predictor structure is of the kind 1] = 130 +13lX, Hence,
the dimension of the problem is three.
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Example 4.1: .x = 1.4, 130 = 0.5 and 131 = 1.0. The aim is to estimate.x. Therefore,
criterion function (4.1) is applied, yielding the following optimal design.

•/. ( ) ( *) * {-2.384 0.9266 3.335 }
'1'1 z :::; 1, Vz EX; l)il e = -5.766; e = 0.6954 0.2691 0.0355 .

To make sure that the above design is indeed optimal, Figure 4.1 shows the derivative
function (4.4) in which the upper limit, tP1(Z) = 1 is achieved only at the support points for
the optimal design.

1.00

0.80

c
.'2
~

u
c 0.60
:J

LL

QJ

.2: 0.40
~

o
>.;::

~ 020

0.00 +rr~Trr]~~TTT'~~TT"Trr]~~Trr]"'J
-6.00 -4.00 -2.00 0.00 2.00 4.00

Design Region

Figure 4.1 - Derivative function (4.4). EX&IIlple 4.1

Example 4.2 : All criteria are used. The parameter values are .x = 0.001,130 = 0.5 and
131 = 1.0. Table 4.1 shows the resulting optimal designs and respective optimal values of the
criteria.

Table 4.1 - Optimal designs for three different criteria

Purpose Upper Value of the Optimal design
limit criterion at

the optimal

Estimate .x tP1(z):::;1 -2.526
-3.6330 -0.1416 1.3760

0.2681 0.2276 0.5043

Estimate 13_ tP2(Z) :::; 2 -31.62 {-2.8410 -0.4758 1.2960 }0.4997 0.3477 0.1526

Estimate both tP(z) :::; 3 -32.77 { -2.6450 -0.1452 1.1170 }0.3333 0.3333 0.3333

In spite of using the same exact prior information about the parameters .x, 130 and 131,
we obtain significantly distinct locally optimal designs. For instance, more than 50% of the
weight is allocated to the only positive support point 1.376 in the optimal design to estimate
.x, whereas to estimate 130 and 131, nearly 50% of the weight is allocated to the most negative
support point of the design, -2.841. The unbalanced allocation of weights in both designs
suggests that the greatest part of the information about .x is concentrated in positive values
of the covariate z, as opposed to negative values of z, which appear to contain most part



of the information about f30 and f31' To reinforce this interpretation, the optimal design to
estimate all the parameters allocates equal weights to the support points as though it were a
combination between estimating A and f3-, neither being emphasized.

Another feature of the designs in Table 4.1 is that they all are supported on three points,
regardless the number of parameters they are meant to estimate. This can be explained by
the fact that the number of support points in the optimal design depends strongly on the
dimension of the problem, or the number of unknown parameters, rather than on the number
of parameters to be estimated in the criterion adopted. Figures 4.2.a, 4.2.b and 4.2.c below
show the derivative functions corresponding to the designs of Table 4.1. Note the upper limit
is equal to 1,2 and 3, respectively the number of parameters to be estimated in each criterion.
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In the next section we introduce prior distributions for the parameters A and f3-. The
criterion and derivative functions for the same purposes (i), (ii) and (iii) are presented,
together with examples.

5 Bayesian optimal designs to estimate A and/or (L

Because of the dependence of the information matrix on the unknown parameter values, the
results obtained so far yield locally optimal designs for the parameters A and/or f3-. However,
by incorporating prior distributions into the model, Bayesian designs are also obtainable.
These Bayesian designs are optimal experiments that result from the process of averaging the
criterion function over the prior distributions of the parameters.

It is straightforward to prove that criterion functions defined as expectations of criteria
(4.1), (4.2) and (4.3) are still concave functions on the set of design measures. Consequently
all results from optimal design theory continue to hold. For more details about Bayesian
designs, see Ponce de Leon & Atkinson (1991) and (1992a).

As suggested by the examples in Section 2 it is reasonable to take priors for the parameters
{f3;} conditional on the value of A. This assumption, however is purely intuitive, with further
investigation of this matter being advisable. Furthermore, the assumption of a conditional
probability distribution, f3- I A = A, is general in the sense that if values of {f3;} are indepen­
dent of A all results obtained below will still hold. Taking the priors into consideration the
criteria are defined as the expected values of criteria (4.1) to (4.3), expectations being taken
in two steps, first over f3- I A = A and then over A. Analogously, the derivative functions
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are defined as the expected values of expressions (4.4) to (4.6). We present two examples of
Bayesian optimal designs.

Example 5.1 : Suppose the interest in 'the experiment lies in estimating). and that prior
information about its value is available. We consider two cases. In the first, information about
). is relatively accurate, whereas in the second it is rather dispersed. Moreover, we suppose,
in the first case, that the distribution of {13;} IA = ). is slightly inaccurate whilst independent
of). but, in the second, it is precise although dependent on ).. Prior distributions are shown
below in Table 5.1. In both cases we assume that the linear predictor structure is simply

130+131 z.

Table 5.1 - Prior distributions for). and {13;} I A = ). (Two cases)

Case Lambda Prob ().) {13o,13d I). Prob [{13o,13d I).]

First 0.001 0.5 {0.5, 1.0} 0.5

{0.5, 1.5} 0.5

0.002 0.5 {0.5, 1.0} 0.5
{0.5, 1.5} 0.5

Second 0.001 0.5 {0.5, 1.0} 1.0

1.0 0.5 {0.0,2.0} 1.0

The resulting Bayesian optimal design for the first case has only three support points as
opposed to four in the second. This difference is not unexpected as the number of support
points in the Bayesian optimal design is likely to increase as the accuracy of the prior infor­
mation about). decreases. Both the designs and the derivative functions are shown in Table
5.2 and Figures 5.1.a and 5.1.b, respectively.

Table 5.2 - Optimal Bayesian designs for Example 5.1

Case Optimum value Optimal

of cri terion design

First -2.784 {-2.9850 -0.1544 1.0100 }0.2781 0.2595 0.4624

Second -4.153 { -3.3440 -0.5939 1.1270 2.1370 }0.2418 0.4247 0.2902 0.0433
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Figure 5.1.a - Derivative
function (first case)

Figure 5.1.b - Derivative
function (second case)

ExaIllple 5.2 : A rather more interesting situation arises when all three criteria are
considered using the same prior information on ,\ and {,Bi} I '\. Here, we consider prior
distributions that are quite concentrated around specific values for both ,\ and {,Bi} I A = '\.
Table 5.3 shows the priors. Again, the linear predictor assumed was T} = ,Bo + ,BIZ. The
Bayesian optimal designs are displayed in Table 5.4.

Table 5.3 - Prior distributions for'\ and {,Bo,,Bd I A = ,\

Lambda Prob( ,\) {,Bo,,Bd I ,\ Prob [{,Bo,,BI} I ,\]

0.001 0.25 {0.5, l.0} 0.5
{0.5, l.5} 0.5

0.002 0.25 {0.25, l.0} 0.3
{0.5, l.5} 0.7

0.003 0.25 {0.4, 2.0} 0.2
{0.5, l.5} 0.8

0.004 0.25 {0.8, 0.9} 0.4
{0.7,0.95} 0.6
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Table 5.4 - Optimal Bayesian designs for Example 5.2

Purpose Upper Optimum value

limit of criterion function Optimal design

Estimate A tPl (z) ::; 1

Estimate both tP( z) ::; 3

-2.849

-29.14

-30.34

{
-2.8920 -0.1S!3 0.9594 }

0.2802 0.2613 0.4585

{
-2.301 -0.4248 0.9284 }

0.499 0.3496 0.1514

{
-2.1440 -0.1685 0.7978

}0.3333 0.3333 0.3333

All Bayesian optimal designs have three support points. Similar results to those of Ex­
ample 4.2 are obtained here. Again, the greater part of the information about A is located at
the most positive value of z(45.85%), whereas the most negative value of z contains almost
50% of the information about {,B;}. The optimal design for estimating A and {,B;} has equal
weights, suggesting that there was a trade-off between the two purposes. To check optimality,
we plot the derivative functions on the design region X . The plots are shown in Figures
5.2.a, 5.2.b and 5.2.c.
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tPl (z)

Figure 5.2.b
tP2( z)

Figure 5.2.c
tP(z)

A Fortran program was used to obtain all numerical results. NAG routine E04JAF was
adopted as the optimization procedure. The computation was carried out on a PC 486
machine.

6 Conclusion

Locally and Bayesian optimal designs can be obtained for each of the three problems con­
sidered in this article. Optimal designs to estimate A, the link function parameter, are
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particularly useful, for other models than the logistic, probit and complementary log-log may
also yield good fits. Bayesian designs depend on how reliable the priors assumed are, so a
careful choice of priors is advisable in practice. Combining sequential and Bayesian methods
to find optimal designs seems to be the best approach for this kind of problem. Comparison
with designs to discriminate between models can be made for the case of designing to esti­
mate >... Results concerning bounds for the number of support points in the optimal design
remain to be found, although it is intuitive that one of the factors determining the number
is the accuracy of the priors. The lack of information about the number of support points
complicates the search for the optimum. Simulation methods might be used to evaluate how
informative the locally and Bayesian optimal designs are compared to other designs.
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On the Construction of Optimal Designs with Applications to
Binary Response and to Weighted Regression Models

B. Torsney and A.K. Musrati

1 Introduction

There are a variety of problems in the statistical arena which demand the calculation of one
or several optimising probability distributions or measures and hence are examples of the
general problems we consider. These include optimal weighted regression design problems
and binary response problems. Our interest in this contribution is to show that, for a certain
class of two parameter generalised linear and weighted linear regression models, the problem
can be reduced to a canonical form. This simplifies the underlying problem and designs
are constructed for a number of contexts with a single variable using geometric and other
arguments.

2 Weighted linear regression

The ingredients of a weighted linear regression design problem are:

(1) Model:

E(y) = a + j3z, z E Z = [a, b]

Var(y) = (T2 jw(z),

for some weight function w(z) (see below).

(2) Design:

Design points Zl, Z2, ... , z., Zi E Z with weights Pl,P2, ... ,p. where the variables Pi can
take any value between and including 0 and 1. i.e.

L: Pi = 1, 0 :::: Pi :::: 1.
'=1

(3) Matrix:

The information matrix M is of the form

M = M(p)
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(4) Criteria:

Assume Cov(~) ex M-1 . There are various criteria. We consider D-optimality which
chooses to maximise det(M).

(5) Weight Functions:

We consider three weight functions from the literature (Fedorov (1972), Karlin and Stud­
den (1966)). These and the corresponding widest possible design space Zw are now listed.

weight function w;(z) design space Z

(i) Wl(Z) = (1 - z)a+l(1 + z)l3+1 Z ~ Zw = (-1,1), a,.8 > -1

3 Binary regression

The ingredients of a binary regression design problem are:

(1) Model:

y/z ~ Bi (1,1/)

where

F(r +5z),a" :s: z:S: b"

F(~!,with!= (l,z)t,~= (r,5)t.

(2) Design: Let pz denote a design on X = [a", b"].

(3) Matrix: The Fisher information matrix is given by

(3.1)
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(4) Criteria: Local D-optimality: choose p., for fixed ~ to maximise det(M).

(5) Canonical Transformation:

Our objective is to find optimal designs for all~. We can simplify this task by transforming
to a canonical problem.

Let z 'Y +5z =~ ~.

Let t G) (~~) (~)
(3.2)

Then (i) z E X = [a', b'j ¢> z E Z = [a, b] for some a, b.

(ii) M Iz w(z) (:) (1 z)p(dz)

Ep{gl}, where g = (gl) and gl = JW(Z),g2 = Zgl.
- - g2

(iii) a design p., on X induces a design p on Z.

(iv) M(p,~)"= BM.,Bt = BE{w(~t.!.)sst}Bt

(v) det (M(p,O)) = det(M.,)det(B 2
).

Thus choosing P.. to maximise det(M(p,~)) is equivalent to choosing p to maximise det(M)
i.e. it is equivalent to a weighted linear regression design problem with weight function

wf(z) = F(zfr:~).(z)J" We consider nine choices of f(z) (see Table 1). In these cases wf(z)
and w;( z)( i = 1,2,3) share a key feature which has strong implications for D-optimal designs.
This is that the set G definded as

is a closed convex curve beginning and ending at the origin as z ranges from its lower
limit to the upper limit. For example see figures 1 to 6.

4 Determining optimal designs

An ideal approach has two steps;

(i) First identify or characterise the support points of an optimal design, that is z values
with positive weight;

(ii) Then determine these optimal weights

In the two parameter case there exists

(a) A D-optimal design with a support of two or three points (well established);

(b) Explicit solutions for the optimal weights in either case.



40

5 Determining support points

Geometric characterisation:

There is a geometrical rule concerning the set G above, which (potentially) identifies the
support points of a D-optimal design. Namely these are the points of contact between G and
the smallest ellipsoid centred on the origin containing G.

The geometry of G will clearly be crucial. We have noted that in all our examples it is a
closed convex curve anchored at the origin.

6 Explicit D-optimal weights

(1) Two design points:

Suppose that a design P assigns weights PI,P2 to two points ZI, Z2 such that g(zd, g(Z2) E
R2 are linearly independent. Then the information matrix of this design M, is given by

The determinant of M is equal to

since PI +P2 = I, which implies that (P2 = 1 - pd.

The determinant above is proportional to the simple function f(PI) PI
(1 - pI) of PI. Thus an elementary one variable optimisation technique shows that the
determinant is maximised at·PI = P2 = 1/2 (which verifies standard result).

(2) Three design points:

Suppose that a design P assigns weights PI, P2, P3 to three points ZI, Z2, Z3 such that any
two of g(zd,g(z2),g(z3) E R2 are linearly independent of each other. Then the information
matrix ~f thi;- design is given by

3

M = LPigig:'
i=l

Let Gij = (g,:gj), so that Gij is a 2 x 2 matrix, and denote its determinant by D,j
det(Gij). Then det(M) is given by

where
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To find the optimal weights we must maximise the determinant above with resspect to
the variables Pl ,P2,P3 subject to 'EPi ::: 1. First order conditions are

.'. Bcp ::: ""Pi
B
Bcp

::: 2cp,
Bpi L..J Pi

which yield three linear equations in Pl,P2,P3. Solving this linear system by the well
established elimination method gives the oiptimal value of Pi as

where

7 Results for all models (except DEXP &. DREC.)

(a) Widest possible choice

The D-optimal designs on Z", has only two support points, say Zl and Z2(Zl < Z2) for
seven choices of the distribution function F in Table 1 (excluding the double exponential
and the double reciprocal ones which will be considered in detail), and for the three weight
functions Wi(Z)( i ::: 1,2,3). See Tables 1 and 2.

(b) General Z::: [a,b].

Consider the problem of finding D-optimal designs for general Z ::: [a, b]. For the seven
choices of the distribution function F in Table (1) excluding the double exponential and the
double reciprocal distributions, and for the three weight functions wi(z)(i ::: 1,2,3). The
D-optimal designs (appear) to have two support points which are categorised by a cornmon
form of solution. In fact the conclusions of Ford, Torsney, and Wu (1992) extend to wi(z)(i :::
1,2,3,). Denote the support points of the best two point design on the widest possible choice
of Z, Le. Z"" by a" and b" and on Z by ZltZ2, where a":S b",Zl < Z2.

(1) Case b 2 b" and a :::; a" :

If the two-point design on a" and b' is D-optimal for Z", then it is D-optimal for Z ::: [a, bJ.
Otherwise, it is only guaranteed to be D-optimal among two-point designs. We conclude that
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this design is globally D-optimal for seven of the nine choices of F in Table (1), and the three
weight functions w;(z)(i = 1,2,3).

(2) Case Z = [-b,b],b S; b':

For a symmetric distribution function F, if the function w(z)z is non decreasing over
Z = [0, b], then Zj = -b and Z2 = b. The first two symmetric distributions in Table (1), and
in addition the symmetric weight functions Wj (z )[fora = 13], W3( z) satisfy this condition on
w(z).

(3) Case b S; b' :

IT the function w(z)(z -lJ)2 is non-decreasing in z over Z = [lj,b] for any lj 2: a, then
Z2 = band Zj = zb(a), where zb(a) = max{a,l(b)},l(b) being the value which maximises
w(z)(z - b)2 over Z = [a,b]. For any F such that w(z) is log concave and differentiable
over Z = [a', b'], w( z)( z - ld2 is non-decreasing over Z = [lb b'] for any lj 2: a'. Wu
(1988) shows such log concavity is respect of the logistic and skewed logistic distributions
and the complimentary log-log distribution. The property is also enjoyed by the three weight
functions w;(z)(i = 1,2,3).

(4) Case a 2: a' :

IT the function w(z)(z - U2)2 is non-increasing in z over Z = [a,u21 for any U2 S; b, then
Zj = a and Z2 = za(b), where za(b) = min{b,u(a)},u(a) being the value which maximises
w( z)( z - a)2 over Z = [a, b]. It can be shown that for the examples cited in case 3, w( z)( z - U2)2
is non-increasing over Z = [a'., U2] for any U2 S; b+.

(5) Case a 2: a', b S; b' :

IT w(z) is log-concave and differentiable over Z = [a',b'], then Zj = a and Z2 = b. This
follows from combining the results in cases (3) and (4) ab ove.

We summarise the above statements in Table (3) The values Zj, Z2 are only guaranteed
to be D-optimal among two-point designs on the appropriate Z.

8 Results for (DEXP & DREC) models

(a) Widest possible choice.

The D-optimal designs Zw = (- 00,00) for both these symmetric models prove to have
three support points, say {-z', 0, z'} with optimal weights p, 1 - 2p,p) where z' and p must
maximise the determinant of the information matrix under the symmetric design {-z, 0, z}
with weights p, 1 - 2p,p). In fact the optimal weight p can be determined explicitly for given
z' from the following equation

. 1
P = 4[1 - w(z,)]'

and z' is the optimal value of z which maximises the resultant determinant under the
above design. i.e.

det(M) = z2W(Z) .
4[1 - w(z)]
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We list the support points and the optimal weights for both models in Table (4). Also
see figures 7 to 10.

(h) General Z = [a,b] t/. O.

Consider the case when the interval Z = [a,b] does not contain zero. In this case we
believe that the D-Optimal designs have two support points at least one of which is an end
point Z(a if a> 0, b if b < 0). That is

5 (*) {{a,min}, a> 0 }
upp p = {max,b}, b < 0 '

where min min{b, b*(a)}, b*(a) being the value which maximises w(z)(z - a)2 over
Z = [a, 00) for any a > 0, and max = max{a,a*(b)},a*(b) being the value which maximises
w(z)(z - b)2 over Z = (-oo,b] for any b < o.

In particular, if Z = [0,00) then the D-optimal design is a two-point design supported on
{O, Ul} with optimal equal weights (!' !) where Ul must maximise the resultant determinant
z2w(z) over Z = [0,00). By symmetry {-Ul' O} are the support points of the D-optimal
design on Z = (-00,0].

(c) General Z = [a,b] E O.

We now consider the case when the interval Z = [a, b] contains zero, Le. a < 0 and b > o.
In this case the D-optimal designs are supported on either two points or three-points. These
designs are categorised by a general form of solution. Define the following terms

(i) Let -Ul denote the .negative support of the global D-optimal design on Z. = (-00,0].
Thus -Ul = -1.841 for the double exponential distribution and -Ul = -1.618 for the double
reciprocal distribution.

(ii) Let -U2 denote the negative support point of the global D-optimal design on the
widest possible choice of Z, i.e. Zw = (-00,00). Thus -U2 = -1.5936 for the double
exponential distribution and -U2 = -J2 for the double reciprocal distribution.

(iii) Let -U3 be the smallest value of a* such that the D-optimal design on the set {a", O}
is optimal on Z = [a", 0] but it is not optimal on Z = [a", y] for any positiv y. (We note that
-U3 is obtained by solving the equation F'(O) = 0) and the function F = H..t M-1H.. denotes
the variance function of the estimated responce surface. Thus -U3 = -1 for the double
exponentisl distribution and -U3 = -0.5 for the double reciprocal distribution.

(iv) Let -U4 denote the critical value of -k at which the D-optimal design on Zk =
[-k,k]'v'k changes from a 3-point to a 2-point design. Thus -U4 = -0.4055 for the double
exponential distribution and -U4 = -0.1974 for the double reciprocal distribution.

(v) Consider the D-optimal design on Z = (-00,0] with support points {-Ul' O} (see(i)).
Let z~(uI) be the smallest positive value of z such that F(z) = g!M-1g = 2. Thus z~(uI) =
0.3528 for the double exponential distribution and z~(uI) = 0.5062 for-the double reciprocal
distribution.

(1) Case a < -U2 and b > U2 :

The D-optimal design models in this case is that for Zw. 50 it is a threepoint design
supported on 5upp (p") = {-U2' 0, U2}. We now assume b < U2 and b::::: lal, then
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(2) Case a < -Ul :

Here the support points of the D-optimal design are classified as follows

where a* (b) is the value of a* which maximises the determinant of M, where M is the
design matrix under the design {a*, 0, b}. We note that always a* (b) > Ul as empirical results
suggest.

(3) Case -Ul < a < -U2 :

The support points of the D-optimal design in this case are either two points or three
points classified as follows

1
{a,O},

Supp(p*) = {a,O,b},
{max,O,b},

where

(i) max = max{a, a*(b)},a*(b) being the value of a* which maximises the determinant of
M, where M is as in case 2.

(ii) and z-(a) is the value of z such that F(z) = flM-1fl = 2 under the design on {a,O}.

(4) Case -U2 < a < -U3 :

The support points of the D-optimal design in this case are classified as follows

S (*) {{a,o}, b < z-(a) }
upp p = {a,O,b}, z-(a) < b < lal '

where z-(a) is as in case (3) above.

(5) Case -U3 < a < -U4 :

The support points of the D.optimal designs in this case are classified as follows

S (*) {{a,b}, b < z+(a) }
upp p = {a,O,b}, z+(a) < b < lal '

where z- (a) is the (unique) value of b such that F( 0) = glM- 19 = 2 under the D-optimal
design on the set {a, b}. - -

(6) Case a > -U4 : Finally, the D-optimal designs in this case are supported on two points.
Namely Supp(p*) = {a,b},b < 14
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Table 1; Supports ZI,Z2 of two-point D-optimal designs on Z", (-00,00). (Note 8 =
sign( z)).

Name f;(z) F;(z) Zl Z2

1) Logit e- z(1 +e- z)-2 (1 +e-z)-l -1.543 1.543

2) Probit ±e(-Z>/2) 4J( z) -1.138 1.138
h

3) Double ~e-izi ill - !e-1z1 -0.768 0.7682 2
Exponential

4) Double ~(1 + Izl)-2 (Ito) - HI + Izl)-l -0.390 0.390
Reciprocal

5) Complementary exp(z - e2 ) 1 - exp( _e2 ) -1.338 0.980
Log-Log

6-9) Skewed Logit m[F1(z)]m-l h(z) (1 + e-Z)-m - -

6) m = 1/3 · .. ... -4.409 0.552

7) m = 2/3 · "
... -2.284 1.191

8) m = 3/2 · .. ... -0.939 1.898

9) m = 3 .. . ... -0.060 2.525

Table 2; Supports Zl, Z2 of two-point D-optimal designs on Zw for the three weight functions
w;(z)(i = 1,2,3).

Weight function Support points

1) WI(Z) = (1- z)"+I(1 + z)ll+l (Il-a)(a+1l +3)±2V (a+ 2)(Il+2)(a+1l +3)
Z; = (a+Il+3)(a+IlH)

2) W2(Z) = za+le-z z;=(a+2)±J(a+2),i=I,2.

3) W3(Z) = e-z> -I 1
Zl = ~,Z2 =~
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Table 3: Supports of two-point D-optimal designs on a general Z = [a,b].

Z = [a,b] Zl Z2

1) a ~ a*, b :?: b* a* b*

I

'I 2) a = -b, b ~ b* -b b

I
3) a> -oo,b ~ b* zb(a) =max{a,l(b)} b

4) a :?: a*, b < 00 a za(b) =min{b,u(a)}

5) a :?: a*, b ~ b* a b

Table 4: Support points and optimal weights of D-optimal designs on Z", = (-00,00).

Model Support points Optimal Weights

1) Double Exponential. (-1.5936,0,1.5936) (0.2819,0.4362,0.2819)

I

2) Double Reciprocal. (-v'2,0,v'2) (0.2617,0.4 766,0.2617)
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g,

Figure (1)

Plot of the set G = {(91, 92)1
symmetric logistic distribution.

91 Z91,Z E Z", = (-oo,oo)), for the

g,
,----+---+:;~~:::-+---+----1--+--+----+----j

Figure (2)

Plot of the set G = {(9),92)1 : 91 = .jW(Z),92

symmetric double exponential distribution.
Z9), Z E Z", = (-oo,oo)}, for the
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g, r--+---+---+---+---+-;;=="-+-~o::'-----;

Figure (3)

Plot of the set G == {(91,9d : 91 == VW(Z),92
asymmetric complementary log-log distribution.

g,

."

Z91, Z E Z", (-00, oo)}, for the

Figure (4)

Plot of the set G == {(91,92)1 : 91 == VW(Z),92 == z9t.z <;;; Z", == (-I,I)),
asymmetric weight function W1(Z) == (1- z)a+1{1 + Z)Il+1 with (0: == I,t3 == 2).

for the
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Figure (5)

Plot of the set G = {(91,92)t : 91 = y'W(Z),92 = Z91,Z
asymmetric weight function W2(Z) = za+1 e-1 with (a = 2).

g,

g,

(O,oo)}, for the

-'",

Figure (6)

Plot of the set G = ({91, 92)t : 91
symmetric weight function W3(Z) = e-"

g,

(-oo,oo)}, for the
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K,

0.'

o.~ 0.4 O. S 0.7 O.B

Figure (7) K,

Combined plots of the set G = {(91, 92)1 : 91 = JWTZj,92 = z91, Z E R} and the ellipsoid

Q = {(91,92)1 : (91,92)IM*-1 ( :: ) = 2} for the double exponential distribution and the

case a < -U2 and b > U2, where M* is the global D-optimal design matrix on Zw = (-00,00),
whose support points are {-U2,0,U2}(U2 = 1.5936) and weights {O.2819, 0.4362, 0.2819}.

K,

0.'

0.'

0.5 0.6

.0.2

Figure (8)

Combined plots of the set G = {(91, 92)1 : 91 = JWTZj,92 = z91, Z E R} and the ellipsoid

Q = {(91, 92)1 : (91,92)1 M*-l ( :: ) = 2} for the double exponential distribution and the

case a < -UI, where M* is the global D-optimal design matrix on Z = (-00,0]' whose
support points are {-ul,O},b < z-(UJl(UI = 1.841).
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Figure (9) g,

Combined plots of the set G = {(9j, 92Y : 9j = .jUi"[Z),92 = Z9j, Z E R} and the ellipsoid

Q = {(9j,92)t : (9j,92)tM·-
1

( ~: ) = 2} for the double exponential distribution and the

case a < -U2 and b > U2, where M" is the global D-optimal design matrix on Zoo = (-00,00),
whose support points are {-U2' 0, U2}( U2 = ,;2) and weights {0.2617, 0.4766, 0.2617}.
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Combined plots of the set G = {(9j, 92)1 : 9j = .jUi"[Z),92 = Z9j, Z E R} and the ellipsoid

Q = {(9j,92)1 : (9j,92)tM·-
1

( ~: ) = 2} for the double exponential distribution and the

case a < -Uj, where M' is the global D-optimal design matrix on Z = (-00,0], whose
support points are {-uj,O},b < z-(ud(Uj = 1.618).
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Behaviour of Asymptotically Optimal Designs for Robust
Estimation at Finite Sample Sizes

Christine Miiller

Estimating () or a linear aspect of () of a conditionally contaminated linear model y( z) =
l(z)T(} + f(Z), where the conditional distributions given Z E X of the errors f(Z) may be
different contaminated normal distributions, an asymptotic bias will appear. Bounding the
bias by some bound b estimators can be characterized which minimize the trace 01 the asymp­
totic covariance matriz under all estimators with bias bounded by b. In Miiller {1987} it was
shown that A-optimal design measures are also optimal design measures lor these optimal
robust estimators. But these results hold only asymptotically. Here by a Monte-Carlo study
lor linear and quadratic regression it is shown that the behaviour of optimal robust estimators
at A-optimal and non A-optimal designs with finite sample size does not much differ from
the asymptotic behaviour.

1 Introduction

A general linear model

i = 1, ... ,N

is considered where YiN are the observations, ZiN E X are experimental conditions, I : X ->

IRm is a known "regression" function, () E IRm is an unknown parameter vector, fiN are error
variables. To enable asymptotic considerations the corresponding design measures ~N of the
designs ZN := (ZIN, ... , ZNN), N E IN, should satisfy

~N := 2.::
1

e"';N N..:::...."oo ~ weakly (e", denoting the Dirac measure on z).

In classical linear models it is assumed that the error variables fIN, ... ,fNN are indepen­
dent and identically distributed and often it is assumed that they are normally distributed
with mean 0 and known variance 0'2. I.e. without loss of generality it is assumed

fiN n(o,l)

(n(!"",') denoting the normal distribution with mean J.' and variance 0'2).

But if some outlying observations (gross errors) may appear the normal distribution is
not correct. Then a conditionally contaminated linear model is adequate (see Bickel (1981,
1984), Rieder (1985, 1987), Miiller (1992)). In such a model it is assumed that the fiN, ... , fNN

are independent and distributed according to a contaminated normal distribution where the
contamination may be different for different experimental conditions. I.e.
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with f-r(z)~(dz) S 1, fg(z,z)n(o,l)(dz) = 1, g(z,z) 2: 0 for all z E JR, z E X. Thereby
the markov kernel gC, z )n(O,l) models the form and -r(z) the proportion of contamination.

The set U of all sequences (QN := ®~l QiN )NEN defines a conditionally contamination
neighbourhood around the classical model (nfo,l))NEN.

For estimating a linear aspect 'P(O) = LO, L E JR'xm, of the wumown parameter vector
o a big class of estimators are the asymptotically linear (AL-) estimators. This class of
estimators includes all estimators (iPN )NEN for 'P which satisfy

,fN[iPN - 'P(O) - ~L::l t/J(YiN - !(ZiN)'O,ZiN)]N~ 0

in probability for the classical model (nfo,l))NElN where t/J is called the influence function of
the estimator and should satisfy

t/J E 'l'(€) := {t/J : JR X X -> JRI; JIt/J(z, Z Wn(o,l)(dz)~(dz) < 00,

Jt/J(z,.)n(o,l)(dz) = 0, Jt/J(z,z)!(z)'zn(o,l)(dz)~(dz) = L}.

Under some regularity conditions M-estimators ON for 0 which are defined as solutions of

L::
1

t/J(YiN - !(ZiN)'ON,ZiN) = 0

are AL-estimators with influence function t/J. Also one-step-M-estimators iPN (briefly called
OM estimators) for 'P(O) = LO which are given by

~ 1 "\;"N I~

iPN = LON + N Wi=l t/J(YiN - !(ZiN) ON,ZiN)

where BN is some initial estimator for 0 are AL-estimators with influence function t/J. See
Bickel (1975), Miiller (1992). In particular all Gauss-Markov-estimators for 'P(O) = LO (briefly
called GM-estimators) are AL-estimators with influence function t/J(z, z) = L M(O- !(z) z
where M(O := f !(z)!(z)'~(dz).

At conditionally contaminated linear models AL-estimators iPN are asymptotically normal
distributed. I.e. for all (QN)NEN E U the distribution of VN( iPN - 'P(O)) converges for
N -> 00 to a normal distribution with mean (asymptotic bias)

b(t/J,(QN)NEN):= Jt/J(zlzh(z)g(z,z)n(o,l)(dz)~(dz)

and covariance matrix

V(t/J):= Jt/J(z,z)t/J(z,z)' n(o,l)(dz)~(dz).

Thereby the maximwn asymptotic bias satisfies

sup{b(t/J,(QN)NEN); (QN)NEN E U} = II t/J 1100 (II t/J 1100= ess sup It/JI)·
n(O,1)S{

See Bickel (1984), Rieder (1985, 1987), Miiller (1987, 1992), Kurotschka and Miiller (1992).

For robust AL-estimators the maximwn asymptotic bias should be bounded, Le.
II t/J lloos b < 00 and asymptotically optimal robust AL-estimators with bias bound b are
those AL-estimators which have an influence function t/J~,{ satisfying

t/J~,{ = argmin{tr Jt/Jt/Jld(n(O,1)0~); t/J E 'l'(€) with II t/J lloos b}.



55

Characterizations of 1/Ib,( are given in Hampel (1978), Krasker (1980), Rieder (1985) for
'f'(0) = 0 and in Miiller (1987), Kurotschka and Miiller (1992) for arbitrary 'f'(0) = LO. A
special case appears for b = 00 where the Gauss-Markov-estimator is asymptotically optimal,
Le. 1/I00,«(z,z) = LMW-f(z)z.

Asymptotically optimal design measures for estimation with bias bound b are those design
measures €b satisfying (see Miiller (1987, 1991))

€b = argmin{tr / 1/Ib,( 1/1~,( d(n(O,I)®Oi €E ::::}.

A special case of this optimality criterium for design measures € is the classical A-optimality
criterium because for b = 00

But the following theorem shows that A-optimal design measures are also optimal for robust
estimation with bias bound b < 00.

Theorem 1.1 {Muller (1987, 1991))
Let:::: = {€; 'f'(0) is identifiable at 0, f X -+ JRffl is continuous, X compact and b 2:
min{111/I 1100; 1/1 E U(E3 ~W}. Then

e is A-optimal in ::::
iff

e is asymptotically optimal in :::: for robust estimation with bias bound b.

Asymptotically A-optimal designs are also optimal for robust estimation. But what hap­
pens for finite sample sizes? Therefore a Monte-Carlo study as described in Section 2 of this
paper was done for linear and quadratic regression. The results of the study are given in
Section 3 of this paper.

2 Description of the Monte-Carlo study

For estimating 0 = (00 , 01 )' of a linear regression model

the behaviour of optimal AL-estimators for 0 with 3 different bias bounds was explored at
3 different designs with sample size N = 10, 20, ... , 2000 and this was done for 3 different
contaminated error distributions and 3 different true parameter vectors. The designs were

1 ) N ..... oo 1 ( )
N ------> €A = - e-l +el
2 2

where €A is the A-optimal design measure, Le. the asymptotically optimal design measure
for estimation with some bias bound,

1 ) N ..... oo 1 3
3N ------> 6 = -e-l + -el
T 4 4
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and

Z~ := (--,.1 7~) N.:::.-.oo 6 = ~e_1 + ~el'
8 !l 8 8

The following AL-estimators for (J were regarded: The least squares estimator (LSE) 9iv and
one-step-M-estimators (OME)

- - 1 ",N ~
(IN = (Jiv + N L..i=1 t/;b,!(YiN - !(ZiN)'(JN,ZiN)

with b = 4 and b = 8 where the initial estimator 9N was the LS estimator and the score
functions t/;b,! were given by

t/;4,!A (z, z)
( ) min{lzl,4· 0.704} { (-1,1)' forz=-l,

= sgn z
(1,1)' for Z = 1,-/2 . 0.704

t/;S,!A(Z, z)
s n(z) min{lzI,8' 0.707} { (-1,1)' forz=-l,
g -/2'0.707 (1,1)' for Z = 1,

,gn(.) 1
,p"" (.,.) = ,gn(.) {

min{lzl,S.0.109} (-1 I)'
,,12·0.109 '

min{lzj,S.I.237} (1 1)'
,,12·1.237 '

for Z = -1,

for Z = 1,

for Z = -1,

for Z = 1.

These OM estimators were used because they are easy to compute. While the LS estimator
is asymptotically optimal for estimation with bias bound b = 00, i.e. without bias bound, the
OM estimators are asymptotically optimal for robust estimation with bias bound b = 4 and
b = 8, respectively, (see for the special form of t/;b,! Miiller (1987) or Kurotschka and Miiller
(1992)). The regarded contaminated distributions of fiN were

1 1

fiN ~ (1- N-')n(o,l) + N-'n(I'(Z;N),I)

where Jl. = (Jl.(-1),Jl.(1)) = (5,5), Jl. = (Jl.(-1),Jl.(1)) = (5,10), Jl. = (Jl.(-1),Jl.(1)) = (10,5)
and the regarded true parameter vectors (J = ((JO,(JI)' were (J = (1,1)', (J = (0,5)', (J = (5,0)'.

For estimating the linear aspect <p( (J) = ((JI, (J2)' of a quadratic regression model

YiN = (Jo + (JIZiN + (J2 Z;N + fiN

the behaviour of optimal AL-estimators for <p((J) with 2 different bias bounds was explored
at 2 different designs with sample size N = 10, 20, ... , 2000 and this was done for 2 different
contaminated error distributions and 2 different true parameter vectors. The designs were

(

-1A ._
ZN'- N

2't7i
where ~A is the A-optimal design measure, i.e. the asymptotically optimal design measure
for estimation with some bias bound, and

~ )
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The following AL-estimators for () were regarded: The Gauss-Markov estimator (GME) V3N
for ';'(()) and the one-step-M-estimator (OME)

V3N -= ( ~ ~ ~ ) ON + ~ 2::1 tPb.dYiN - !(ziN)'ON,ziN)

with b -= 4 where the initial estimator ON was the LS estimator for () and the score functions
tPb.t were given by

tP4,(.A (z, z) -=
{

...!....(-11)'

( )
rnin{lzl,4· 0.345} (V2 ),'

sgn z 0,-1
0.345 1 (1 I)'

~,

for Z -= -1,

for Z =0,
for z -= 1,

{

rnin{lzI,4·O.432} (-1 I)' f 1
V2.0.432 ' or z -= - ,

tP4.(.(Z,z) -= sgn(z) rnin{I~li~·~·164} (0,-1)' for z -= 0,

rnin{lcl.4·O.432} (1 I)' f 1
V2.0.432 ' or z -= .

While the GM estimator is asymptotically optimal for estimation with bias bound b -= 00, Le.
without bias bound, the OM estimator is asymptotically optimal for robust estimation with
bias bound b -= 4 (see for the special form of tPb,t Miiller (1987) or Kurotschka and Miiller
(1992)). The regarded contaminated distributions of fiN were

fiN ~ (1 - N-t)n(O,l) + N-~n(I'("'N),l)

where JI. -= (JI.(-I),JI.(O),JI.(I)) = (5,5,5), JI. = (JI.(-I),JI.(O),JI.(1)) -= (0,5,0) and the regarded
true parameter vectors () -= (()o, ()1, ()2)' were () -= (1,1,1)', () = (0,0,5)'.

For linear regression as well as for quadratic regression the errors fiN, i -= 1, ... , N, for
a sample size N were generated by the random number generator of the programming lan­
guage GAUSS. For different designs different errors were generated because the contami­
nated error distributions depend on the experimental conditions. But from the same ob­
servations which were calculated from the errors and the true parameter vector the dif­
ferent estimators were calculated. For a given sample size N this was repeated M times
where M = 500 were used for N -= 10, 20, 50, 100, 200, 500, 1000, 2000 and M = 1000
for N = 10, 20, 30, 50, 70, 100, 130, 160. To compare· the distribution of the estimator V3N
at finite sample sizes N with the asymptotic distribution of ,fN(V3N - ';'( ()) the follow­
ing values were calculated from the estimated values V3Nj in the M repetitions. Thereby
V3Nj -= (V3Jvj""'~j)' denotes the estimation for ';'(()) = (,;,1(()), ... ,,;,'(()))' in the j'th repeti­
tion, j = 1, ... , M.
Simulated bias (Bias) of ,fNV3N:

EN := I~ 2::1 ,fN(V3Nj - ';'(8))[.

Trace of the simulated covariance matrix (Tr Cov) of ,fNV3 N:

V: '-= ~I _1_~M (--a. _2-~M --a .)2
N· W a =l M _ 1 Wj=l N ';'NJ M Wj=l ';'NJ

Trace of the simulated mean squared error matrix (MSE) of ,fNV3N:

MSEN :-= ~I 2- ~M N (V3N
J
' _ ,;,a(()))

2
.

W a =l M W J =l

These values were plotted against the sample size N. All calculations were done with the
programming language GAUSS.
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3 Results

Figure 1 shows for the linear regression the trace of the simulated covariance matrix liN ofthe
LS estimator and the OMS estimator with bias bound b = 4 for the designs z~ and z~ with
sample sizes N from 10 up to 2000 (the realized sample sizes are marked at the horizontal
axis with thick tick marks). At the right hand side of the figure the asymptotic values are
marked which are

2

2.667

2.002

2.940

for the LS estimator at z~,

for the LS estimator at z~,

for the OM estimator at z~,

for the OM estimator at zj.,.

This shows that the convergence is very slow. In a repetition of the study with other
random numbers the same behaviour appeared. The same behaviour appeared also for
other contaminated error distributions, namely for contaminated error distributions with
IJ. = (1J.(-1),1J.(1)) = (5,10) and IJ. = (1J.(-1),1J.(1)) = (10,5), for other parameter vectors,
namely for () = (0,5)' and () = (5,0)' and for the design z~. The same held also for the
quadratic regression, see Figure 2. Therefore these results shows that it is very necessary to
investigate the behaviour of the regarded estimators at small sample sizes.

In particular Figure 1 shows that for the LS estimator as well as for the OM estimator
the trace of the covariance matrix at the A-optimal design z~ was smaller than at the non
A-optimal design zj.,. Therefore the asymptotic relation between the designs held also for
finite sample sizes, in particular for small sample sizes of N = 10 and N = 20. But in
opposite to the asymptotic behaviour, for z~ as well as for z~ for N :::: 30 the trace of the
covariance matrix of the OME estimator was smaller than of the LS estimator. This is due
to the fact that the variances of the error variables €iN increases very much when outliers
appears. Because the proportion of outliers decreases with ,fN, in particular for the LS
estimator the convergence to the asymptotic variance is slow.

In contrast to the trace of the simulated covariance the convergence of the simulated
bias to the asymptotic bias was quick, in particular for the LS estimator for which for the
designs z~, zj., and z~ for IJ. = (1J.(-1),1J.(1)) = (5,5) the asymptotic bias is equal to
IJt/JOO.en(6,1)(dz)~(dz)1= 5. For the OM estimator for N ~ 30 the simulated bias was less
than the bias bound b = 4. See Figure 3. The over-shoot over the bias bound b = 4 for N < 30
will be a consequence of the special choice of the initial estimator of the OM estimator which
provides that for small sample sizes the OM estimator behaves more like the LS estimator
which is the initial estimator. The special choice of the initial estimator may also provide
the well behaviour of the OM estimator concerning the trace of the covariance matrix.

From the behaviour of the simulated bias and of the trace of the simulated covariance
matrix it is clear that concerning the trace of the simulated mean squared error matrix a
difference between the designs z~ and zj., appeared and that a more important difference
between the LS estimator and the OM estimator appeared (see Fig. 4).

Similar results concerning the trace of the covariance matrix, the bias and the trace
of the mean squared error matrix were obtained for other random numbers and for other
parameter vectors. For other contaminated error distributions the behaviour of the trace of
the covariance matrix and the bias and therefore also of the trace of mean squared error matrix
changed in the following way: For contaminated error distributions with IJ. = (IJ.( -1),11(1)) =
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(5,10) and Jl = (10,5) the bias of the LS estimator converged quickly to the asymptotic

values which are in both cases equal to 5f"O ~ 7.906 while the bias of the OM estimator fell
under the bias bound b = 4 only for N 2: 100 for the A-optimal designs {~ and for N > 130
for the non A-optimal designs {~. For Jl = (5,10) the difference of z~ and z~ concerning the
trace of the covariance matrix vanished. This is due to the fact that the contaminations with
mean 5 and 10 at the experimental conditions z = -1 and z = 1 provide a greater variance
at z = 1 than at z = -1. In such situations z~ is not any more A-optimal and instead ofz~

a design performs better which puts more observations on z = 1. Therefore z~ performed
better. The opposite is true for Jl = (10,5). Then the trace of the covariance matrix at z~
is very large so that the differences between z~ and z~ are greater than for Jl = (5,5).

To compare the A-optimal design z~ with other designs one should take into account
that the minimum bias bound which is possible depends on the design. For z~ and z~ the
minimum bias bound is ..[i ~ 1.77 < 4 and 2..[i ~ 3.54 < 4, respectively. But for z~

the minimum bias bound is 4..[i ~ 7.09. See Miiller (1987), Kurotschka and Miiller (1992).
Therefore in the comparison of z~ and z~ a bias bound of b = 8 was chosen. For z~ this
bias bound was so large that for contaminations with Jl = (5,5) the OM estimator behaved
like the LS estimator. But at z~ the trace of the covariance matrix of the OM estimator
with N 2: 50 was significantly smaller than the variance of the LS estimator. Comparing the
designs for all regarded N even the trace of the covariance of the OM estimator at z~ was
significantly greater than the variance of the OM and LS estimator at z~.

For estimating ,;,(0) = (01 , O2 )' of the quadratic regression model at the A-optimal design
z~ and the non A-optimal designs z~ similar results were obtained as for estimating 0 in the
linar regression model if contamination distributions with Jl = (Jl( -1), Jl(O), Jl(l)) = (5,5,5)
were used (see Fig. 2). In particular the trace of the covariance matrix of the OM estimator
as well as of the GM estimator was at z~ smaller than at z~ and at both designs for N 2: 30
the variance of the OM estimator was smaller than the variance of the GM estimator. Only
the difference between the designs was not so great as for linear regression which is due to
the special choice of z~. Also the asymptotic values do not differ very much for z~ and z~

(see Fig. 2). For contamination distributions with Jl = (0,5,0) the difference between the
two designs was greater.

Furthermore the bias showed a different behaviour. Namely for the contamination dis­
tributions with Jl = (5,5,5) the bias of the GM estimator as well as of the OM estimator
was approximately equal to 0 which is due to the special aspect and the equality of the con­
tamination distributions. Using contamination distributions with Jl = (0,5,0) for the GM
estimator for all regarded N a bias of approximately 5 appeared where for the OM estimator
the bias was less than the bias bound b = 4 for N 2: 20.

4 Conclusion

Although in this study only two regression models were regarded the results may hold for other
linear models, in particular for linear models with qualitative factors because the regarded
designs had finite support. Therefore one can make the following conclusions.

In general concerning the trace of the covariance matrix also for small sample sizes an
A-optimal design behaves better than a non A-optimal design. In particular this effect always
appears for equal contamination distributions at the different experimental conditions. Only
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for unfavourably posed contaminations a non A-optimal design may be better than the A­
optimal design. But this effect will be obtained for the OM estimator as well as for the LS or
GM estimator. If the different proportions and forms of the contamination at the different
experimetal conditions are known special other designs should be used. But in general the
proportions and forms of the contamination is unknown so that an A-optimal design is the
best choice.

It was surprising that in general for N ~ 30 the trace of the covariance matrix of the OM
estimators was smaller than the variance of the LS or GM estimators although for very small
sample sizes and asymptotically the opposite is true. Therefore in a contaminated linear
model an OM estimator with a LS estimator as initial estimator is a very good choice.

Because OM estimators with other initial estimators may have a different behaviour in
a seperate study the behaviour of OM estimators with other initial estimators should be
investigated.
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Fig.1. Linear regression: Variance for estimating rp(1'i)=1'i

1'i=(1,1)', b=4, ,u=(5,5), M=500
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Fig.2. Quadratic regression: Variance for estimating rp(1J)=(1J1.1J2)'

1'i=(1,1,1)', b=4, ,u=(5,5,5), M=500
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Fig.3. Linear regression: Bias for estimating rp(19-)=19-

19=(1,1)'. b=4, .u=(5.5), M=1000
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D-optimal Design for Polynomial Abel Inversion

Victor P. Kozlov

The optimum set of observation positions in the problem of restoration of a radial structure
of axially symmetric object is determined explicitly under assumption that unknown radial
distribution may be described by a polynomial of even degree. The new result which specifies
the D-optimal design for polynomial regression with weight function that completes the related
result of Karlin and Studden (1966) is proved. The numerical values of D-optimal design
points are given for half-degrees of polynomial up to 15.

1 Introduction

We consider one special form of the Abel integral equation which often appears in different
applications, such as plasma diagnostics, X-ray or emission tomography. This form of Abel
equation coincides with partial case of Radon transform for circularly synunetric functions:

R

F(p) = 2jr,f(r),dr
Jr2 _ p2

p

.,jR'-v>
j fh/p2 + s2) ds

-.,jR·-p·

[Abel]

[Radon]

(1)

Here function f usually represents a radial distribution of some physical quantity (emission
or mass density) over a circle of radius R while F(p) is the value of integral along straight
line (the ray) situated at the distance p from the center of circle (the "ray-sum value").

It is well known that the equation (1) may be solved at least formally by explicit inverse
transfonn

R

f(r) = _2-~ j p, F(p) dp
1rr dr J p2 - r2. (2)

yet it is equally well known that the solution (2) is unstable due to the need of differenti­
ation , so for stable numerical solution one needs some kind of a priori information. A simple
way to introduce such information is to fix some parameter model for unknown function f.
Really a kind of polynomial expansion is mostly used [Minerbo and Levy (1969), Kosarev
(1973)].
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Here we use a slightly different approach to produce the polynomial model. Let radius
R = 1 . Suppose that unknown distribution over unit circle may be represented by the
bivariate polynomial of full degree n :

!n(;e,y) = 2: alcl;elcyl

1c+I:<;n

Then under condition of rotational invariance

(3)

! n ( r cos () , r sin ()) = ! (r ) (4)

which is necessary to apply the Abel equation we obtain the polynomial which contains
only even powers of r and may be written as

m 1
!m(r) = 2:(/1 + 2)avR~v(r)

£1=0

(5)

where m = [j ] , R~v( r) are the radial Zernike polynomials associated with zero-order
harmonic, and av 's are the unknown coefficients.

Due to Cormack (1964) it is well known that the Abel or Radon transform of the model
(4) is given by

Fm(p) =~ f avU2v(p)
1.1=0

where U2...(p) are the Chebyshev polynomials of the second kind:

U2v(p)N = sin((l + l)arccosp)

2 Model of experiment

(6)

We suppose that the unknown parameters of the model (4) are to be estimated on the base
of a set of measurements of values (5) at different p 's:

(7)

By using the standard notations and assumptions about errors ej 's :

u(p) = (uo(p), ... ,Um(p))1 , uv(p) = NU2...(p) , /I = 0, I, ... ,m

we can write the information matrix of the experiment (6) as the moment matrix of design
measure ( :



M(() = Ju(p)/u(p)((dp) supp( C [0,1]
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Here ( is the discrete probability measure on interval [0,1], which assigns some weights
Wj 's to the points Pj 's. Since the covariance matrix of the best linear unbiased estimates
(BLUE) of unknown parameters a" 's is proportional to M- 1 , all the characterizations of
the experiment accuracy are based on some functional's of information matrix M(() .

3 Optimal design

According to traditional definition, the D-optimal design C is the solution of maximizing
problem

DetM(C) = supDet M(() (8)

where supremum is taken over all probability measures on interval [0,1]. This design
minimizes the generalized variance of parameter estimates.

It is well known that the D-optimal design is invariant relative to all non-degenerate linear
transforms of unknown parameters or basis functions. Taking into account that the model
(5) contains only the even powers of p , it may be transform by substituting

t = 1 - 2p2

into the model

Fm(t) = Y1+t L Ck tk
k=O

t E [-1, +1] (9)

This model is similar but not the same as the well known polynomial model with weight
function which was studied by Karlin and Studden (1966). One of their result deals with the
model

Fm(t) = w(t)~ f Ck tk
k=O

where weight function w(t) is of the form

w(t) = (1 - t)(<>+l)(1 + t)(I~+l)

tE[-I,+1]

a > -1, (3 > -1

(10)

The D-optimal design for model (5b) is defined in terms of zeros of Jacobi polynomial

P::~'(t) . Formally our case corresponds to a = -1, {3 =°,but it should be treated anew,
because Jacobi polynomial with index a = -1 is not defined strictly.

The main result of this paper may be formulated as follows:
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THEOREM The D-optimal design for model (5) is unique. It assigns the equal weights
(m + 1)-1 to the points

Pj=)(1-tj)!2, j=O,I, ... ,m,

where tj 's are the points of unique D-optimal design for model (5a) and are the roots of
polynomial equation

where p~1.0)(t) is the Jacobi polynomial of degree m and index's a = I, f3 = 0 for interval
[-1,+1].

PROOF differs from that of Karlin and Studden (1966) only by calculation details. First
from oscillation properties of the polynomials one can state that number of observation points
is to be equal to the number of unknown parameters m+ 1 and that one of these points should
be the bound point to = 1 (Po = 0) . All the rest m points tj 's of optimal design are to be
inner for interval [-1, +I], and the polynomial

y(t) = (t - td ...(t - tm)

which have the zeros in this points satisfies the differential equation

(1 - t 2 )y" - (1 + 3t)y' + m(m + 2)y = 0

which determines the Jacobi polynomial p~.O) up to a constant factor.

Remark 3.1. By inverting the sign of t it is not difficult to see that D-optimal design
for model

Fm(t)=~Lcktk , tE[-I,+1]
1.=0

(11)

is defined by zeros of polynomial (1 + t)p~0,1)(t) (see Bateman and Erdelyi (1953)).

4 Numerical results

For calculation of Jacobi polynomials we use the standard recurrence relations [Bateman and
Erdelyi (1953)] :

n(2n +3)
, C

n = (n +2)(2n +1)"
b _ 1

, n-(n+2)(2n+l)
2n + 3

an ==--
n+2
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The coefficients in the representation

n

Pn(t) = L: Al:tl<
1<=0

were obtained recursively from the induced relations:

AI: = 0 if k > n

A~ = 1
I 1

Ao = ­
2

I 3
Al =­

2

The zeros of polynomials were calculated by using a standard software.

A set of D-optimal designs is calculated for half-degrees m = 1, .. ,40. But these calcula­
tions may be of little use if the full computation scheme remains unstable due to, for instance,
matrix inversion which is needed for BLUE calculation.

To check the stability of full computation scheme we use the statement of the Kiefer ­
Wolfowitz equivalence theorem:

max d(C,p) = m + 1
pE[O,I]

where

d((,p) = u(p)/M-I(()u(p)

Since the condition above is a need and sufficient one for D-optimality it should be true up
to calculation errors. Hence we may compute the left hand side of this equality and compare
it with m + 1. It was found that,in spite of independence of D-optimal design on partial
choice of polynomial basis, the computation stability varies significantly with this choice.For
example, the simple theoretical model like (5a) with single-term basis shows the evident
instability as half-degree m exceeds 6 even while using double precision arithmetic. On the
contrary, the model (5) with the Chebyshev's basis does not show any sign of instability up
to m = 40.

Part of D-optimal designs is presented here in the Table 1 (up to m=15).

The values Dmaz ,left hand side of D-optimality condition, are presented in the bottom
lines of each part of the table.As one can see for all designs the statement of the Kiefer­
Wolfowitz theorem is fulfilled. The values ofDet(M) also presented in the table correspond
to Chebyshev's basis (5).

5 Conclusion remarks

5.1. The D-optimal design according to Kiefer-Wolfowitz equivalence theorem is also G­
optimal ,Le. it minimizes the maximum of variance of BLUE of regression function - in
our case of ray-sum model (5).But the main interest is concentrated on "density" model (4)
for which D-optimal design is non- G- optimal.This is typical for inverse problems where a
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model of regressions of observations does not coincide with a model of unknown function to
be estimated on the base of experiment.For such experiments the search of "true" G-optimal
design is more complicated problem.

5.2. As one can see from Table 1, for high degrees of the polynomial model the D-optimal
design requires the very fine spatial resolution of the measurements, which leads in limit
to bad accuracy due to low intensity of very narrow sounding beam. So we come to the
problem of measurements of intensity distribution on the whole rather then of local values of
ray-sums (5).A certain approach based on Banach space formulation of design problem for
regression experiment developed early by the author (see Ermakov ed. (1983)) may be useful
for designing of experiment of this type.
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Table 1. POINTS OF D-OPTIMAL DESIGN FOR ABEL INVERSION

j m= 1 m= 2 m= 3 m= 4 m= 5

0 0.000000 0.000000 0.000000 0.000000 0.000000

1 0.816497 0.595862 0.460804 0.373845 0.313903

2 0.919211 0.768462 0.645298 0.551848
3 0.954679 0.850386 0.749683
4 0.971028 0.895537
5 0.979893

D-maz 2.000000 3.000000 4.000000 5.000000 6.000000

Det(M) 5.9259 10 1 3.2768 10 1 1.7601 10 1 9.3045 10 2 4.8689 10 2

j m= 6 m= 7 m= 8 m= 9 m=10

0 0.000000 0.000000 0.000000 0.000000 0.000000

1 0.270286 0.237197 0.211267 0.190415 0.173289

2 0.480381 0.424548 0.379956 0.343626 0.313511

3 0.664326 0.593822 0.535560 0.487008 0.446118
4 0.814258 0.739698 0.674398 0.617967 0.569259
5 0.922996 0.856861 0.792507 0.733505 0.680633
6 0.985233 0.940915 0.886392 0.830862 0.778049
7 0.988696 0.953245 0.907680 0.859558
8 0.991070 0.962088 0.923520
9 0.992768 0.968642

10 0.994023

D-maz 7.000000 8.000000 9.000000 10.000000 11.000000
Det(M) 2.5300 10 2 1.3079 10 2 6.7349 10 3 3.4573 10 3 1.7703 10 3

j m=l1 m=12 m=13 m=14 m=15

0 0.000000 0.000000 0.000000 0.000000 0.000000

1 0.158977 0.146840 0.136420 0.127376 0.119455
2 0.288169 0.266567 0.247943 0.231727 0.217485
3 0.411309 0.381376 0.355394 0.332652 0.312591

4 0.527064 0.490307 0.458086 0.429663 0.404437
5 0.633642 0.591945 0.554886 0.521846 0.492276
6 0.729289 0.684872 0.644636 0.608246 0.575313
7 0.812399 0.767760 0.726234 0.687941 0.652772
8 0.881566 0.839416 0.798667 0.760069 0.723918
9 0.935618 0.898804 0.861032 0.823850 0.788074

10 0.973635 0.945064 0.912551 0.878587 0.844626
11 0.994978 0.977524 0.952578 0.923686 0.893033
12 0.995721 0.980613 0.958652 0.932828
13 0.996311 0.983107 0.963632
14 0.996786 0.985149
15 0.997176

DTnaz 12.000000 13.000000 14.000000 15.000000 16.000000
Det(M) 9.0461 10 4 4.6145 10 4 2.3504 10 4 1.1956 10 4 6.0753 10 5





Minimizing the Largest of the Parameter Variances.
V(,8)-optimality

Jesus Lopez-Fidalgo

We introduce a new criterion function that directly minimizes the variances of the estima­
tors of the parameters. Covariances are ignored. Although the calculations are more laborious
than in other more manageable criteria, such as that of D-optimality, we gain in fidelity to
our objective.

1 Introduction

In this section we establish notation. For an exhaustive introduction to the optimal experi­
mental design see FEDOROV (1972), SILVEY (1980) or PAZMAN (1986).

Let X be the design space or experimental dOIDain, which is assumed to be compact.
Let y(z) be the observation carried out at point z, which will be a random variable with known
variance and unknown mean. By state, a function of the type:

8 : X ---. Rj8(z) = E{y(z)},

will be understood. The set of all states will be a linear space and it will be denoted by 0.
It is convenient to study the linear regression model with uncorrelated observations:

where ft(z) = (l1(Z), ... , fm(z)) is a continuous known vector function.

Let a design be a discrete probability measurement, ~. The support of the design will be
given by X( = {z EX: ~(z) > O}.

The information matrix associated with the design ~ is defined as :

M(~) = L f(z)l(z)CT-2(z)~(z).

"'EX

The image set of this matrix will be denoted:

M[(O] = {M(~)u : u E Rm
}.

Let g be a functional on the space e and ~ a design. We define:
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1
gtM-(Og if 9 E M[M(OJ

vareg =
00 if 9 rt M[M(O],

where g is the vector corresponding to g on the basis It, . .. ,1m of the linear space e.

The set of all the designs in the model will be denoted by =:, whereas the set of all the
information matrices will be:

M = {M(O : ~ E S} and M+ = {M(O E M det M(O f; O}.

A criterion function (see PAZMAN, 1986) will be at}: M -+ R U {+oo} function
bounded from below, such that:

vareg::; var'lg Vfunctional g ofe => t}[M(O] ::; t}[M(77)]

that satisfies the properties:

a) U~, an open set of the £(M), the linear space of symmetric matrices spanned
by the set M, exists such that M+ C U~, and t} is defined, finite and convex in
U~

b) If Mn E M+,n = 1,2, ... and liffin~oo Mn = M E M - M+ then:

A design that minimizes t}[M(OJ will be called t}-optimum.

2 Definition of the criterion and properties

Definition 1.- We define the following criterion function:

if det M(O f; 0

if det M(~) = o.

In the following propositions we demonstrate that it is truly a criterion function.

Proposition 1. (PAZMAN, 1986, page 63).- If 9 is a functional, the function '1i{M(~)} =
vare(g) is lower semicontinuous. It is continuous in M(O if det M(O f; 0 or if vare(g) = 00.

Proposition 2. The criterion function defined above is continuous.

Proof: In the open set of nonsingular information matrices this function is the maximum of
a finite family of continuous functions, and is thus continuous. If M(~o) is singular; then i
exists such that aj is not estimable, and thus vare( a;) = 00, from which it is deduced that

t}v(ll)[M(OJ = 00, and we know that the function:
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is continuous in M(~o), so that for each K that we establish there will be a neighborhood
of M(~o), U, such that if M(~) E U, then rp,{M(~)} ~ K and therefore, also:

and we have thus proved the continuity of our function.

Proposition 3. The iliv(jl) function is convex in the set of infonnation matrices, and strictly
convex in the set of nonsingular matrices.

Proof: This function is the maximum of a finite family of convex functions and therefore
convex (see PAZMAN, 1986, pp 62). Moreover, the convexity will be strict in the set of
nonsingular matrices.

3 Differentiability of the V(t3)-optimality criterion function

Proposition 4. The function !P, is differentiable in the set of nonsingular matrices.

Proof: We denote by E,j the matrix whose elements are all null except the one situated in
row i, column j, which equals one. Thus, we have:

{M(O+<E'ihl Mu e
= lim det{M(el+<E,;} - detM e

e-O e.

Mu({)+<M~{(O Mu e
= lim d.tM(e)+<M'i{e} - d.tM e

e-O f

= lim MIoIo(~)det M(O + eM1t(O det M(~) - MIoIo(O det M(~) - eMi;(~)MIoIo(~)
<~o edetM(~){detM(~)+eMij(~)}

= lim e{M1i(O det M(O - Mij(~)MIoIo(~)} = M1i(O det M(() - Mij(OMIoIo(O
<~o edetM(O{detM(~)+eMij(O} detM(~)2

where Mij(~) is the cofactor in M(~) of component i,j. Also M1i(~) is the determinant
of the matrix which results from the elimination of rows i and k, and columns j and k,
multiplied by the factor (-1 )i+j if i, j < k or i, j > k, or multiplied by the factor (-I)i+j+l
otherwise. Therefore the gradient takes the form:

{M1t(~) det M(~) - Mij(OMIoIo(~\.
det M(()2 '3·

However, this does not assure the differentiability of our criterion function for nonsingular
matrices. We shall, then, use the following definition:
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Definition 2: For each k = 1,2, ... , m the sets:

Hk = {M{~) E M/maxvare(a;) = vare{ak)}
•

are defined, where we denote the symmetric group of order m by Sm and the sets:

mnH:rk) - n H;(k),T E Sm, s = 1,2, ... ,m
k=1 k=o+1

form a partition of M+ and the h,T for T E Sm, S = 1,2, ... , m are the topological closure
of these sets in M. In accordance with the notation used up to now we denote:

l;,T = {M E lo.J : Mis nonsingular}.

We can then establish the following result:

Proposition 5. The sets lO,T for T E Sm, S = 1,2, ... , m are compact.

Proof: Since they are closed sets contained in a compact M, it is necessary to demonstrate
that the interior of the sets:

mnH:rk) - n H:rk),T E Sm,s = 1,2, ... ,m
k=1 k=o+1

coincides with the interior of sets h,T for T E S - m, S = 1,2, ... ,m, which is demonstrated
by the following lemma of basic topology:

Lemma 1: Let A be a convex subset of a convex set M contained in the metric linear space
E. Then:

a) AO and A are also convex in M.

Proposition 6. IT the sets h,T are locally convex and connected, then the function of
definition 1 will be differentiable in the interior of each of the sets:

mnH:(k) - n H:(k)'CT E Sm,k = 1,2, ... ,m
k=1 k=o+1

and its gradient is given by:
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where

Mtt(~) = max Mii(~)',

Proof: In order to calculate the gradient, we will work in the neighborhood opened in £(JO,T)
of each one of the t;'T defined in the form:

UO,T = {M E £(JO,T) : M is nonsingular},

and we shall refer to the gradient in that sense. The proof will be carried out in the
interior of the set:

° mnHt - n Ht,
10=1 10=0+1

which does not entail a loss of generality. We shall then calculate:

and now if we asswne that:

then:

a~V(p)[M(~)l = lim {[M(~)+eEijt 1hI - {M-1(~)}11

aMij <_0 e

M"W+<M::W Mil e
--'----'------":=.!...:...-----"'-'-----=-...:..:.c:-'-'-'-= lim dot M(eh<M.;(e) - dot M e

,,_0 t

However, the previous maximwn will be reached at Ie = t when:

MttW +eM:fW > MlI(~) +eMi/W
det M(~) +eMijW - det M(~) +eMij(~)'

is satisfied, that is, when:

1= 1,2, ... ,m

and when e is made sufficiently small, this maximwn will be reached when Mtt(~)

maxMii(~), so that t does not depend on i,i.
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Once this is defined, we can continue with the calculation of the gradient:

8<li v Ul){M(€)} _
8Mij -

_ lim Mtt (€) det M(€) + eM;!(€) det M(~) - Mtt (€) det M(O - eMij(OMtt(€)
- <-0 e det M(~){detM(€) + eMij(€)}

= lim e{M:f(€) det M(€) - Mij(€)Mtt(€)} = M;!(~) det M(O - Mij(€)Mtt(O
<_0 edetM(€){detM(-+O+ eMij(€)} detM(€)2

4 Computation of error

We adapt two results of the general theory of experimental optimal design for the calculation
of the error conunitted on taking a design as optimal using V(,B)-optimality.

Proposition 7. Let us assume that <liV(l3) [M(Il)] < 00 and let 5 > 0, thus satisfying
8<li v Ul)[M(Il) , M] ;:: -5, ME M then the bound:

is satisfied

Proof: It is automatically transferred from proposition IV.28, PAZMAN (1986).

Proposition 8. -If M(Il) E ltT and 5> 0 so that:

then the bound:

<liv[M(Il)] - inf{<liv[M(~)lIM(€) E l"T} :s: 5

is verified.

Proof: It is automatically transferred by changing M for l"T in the proposition V.2, PAZ­
MAN (1986).

Observation.- The disadvantage of the latter proposition with respect to the former is that
it calculates the error in each of the l"T and not globally. However, it is undoubtedly of
interest since it works with the gradient and not with the directional derivative.
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5 Calculation of the gradient of the V(,B)-optimality crite­
rion function in the biparametric case

The problem which now arises is as follows:

O(z) = af(z) + t3g(z), z EX,

where we can assume that q(z) = 1 just by redefining the problem taking f- (z) =
q-l(z)f(z). So that the information matrix will have the form:

(

E ~(z)f(z)2
",EX

MCO =
E ~(z)f(z)g(z)

"'EX

For simplicity of notation we shall call:

E ~(z)f(z)g(z) 1
"'EX

E ~(Z)g(Z)2
"'EX

a = L ~(z)f(z)2,
",eX

b = L ~(z)f(z)g(z),
",EX

C = L ~(z)g(z)2,
",EX

so that the inverse matrix of the information matrix, whenever it exists, will be:

M-1CO = (a b) -1 = _1 (c -b) =
b c ac - b2 -b a

(

E ~(z)g(z)2
1 ",EX

= detM(~) _ E ~(z)f(z)g(z)
",EX

and the criterion function is then:

- E ~(z)f(z)g(z) )
"'EX

,
E ~(z)f(z)2

"'EX

and since the information matrix is always positive semidefinite, and we are assuming this
one to be nonsingular, then ac - b2 > o. Therefore:

H l {M(O nonsingular: c ~ a} U {al is not estimable for 0
= {MCO non singular: L ~(z){g(z)2 - f(z)2} ~ O} U {al is not estimable for 0

zEX

H2 {M(O nonsingular: c::; a} U {a2 is not estimable for 0
{MCO nonsingular: L ~(z){g(z)2 - f(z)2} ::; O} U {a2 is not estimable for O.

"'EX

Let us now calculate the gradient in:
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J~ = HI - H 2° = {M(~) nonsingular : c > a}.

We will have:

~ ~(z)g(z)2

cf>Y(I3){M(€)} = "'E~et M(€)

so that the gradient will be:

c
= ac - b2 '

but:

1 (c -b)
{M(€) +eEll}-1 = (a+e)c-b2 -b a+e'

and taking a sufficiently small e, the determinant continues to be positive and:

c
cf>Y(I3){M(€) +eE l1 } = (a +e)c _ b2 '

.and the gradient is:

c _ c 2
_ . (o+<)c-1>2 ac=i)2" _ -c

[Vcf>Y(I3){M(€)}]l1 - lim+ - ( b2)2
e--+O e ac -

Analogously:

etc _ c 2

[ ]
. o(c+<)-b' oc-b' -b

Vcf>Y(I3){M(~)}22 = lim = ( b2 )2'
<--->0+ e ac -

Therefore in HI - H 2° the gradient of the criterion function is:

In the same way the gradient in:

12 = H2 - H l o = {M(O non singular:c < a}
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will be:

On the other hand:

6 Discussion

The interest in this criterion is found in the fact that it only concerns the minimization of
the largest parameter variances, which is its main objective. Thus, it does not care about
covariances. It is useful to remark that while E-optimality criterion function is the maximum
of the variances on the unitary functionals, VOJ)-optimality is constrained to the functionals
of the canonical basis. In other words, while E- optimality minimizes the inverse eigenvalues
of the information matrix, V{,B)-optimality minimizes the largest diagonal element of the
inverse of the information matrix.

We find two disadvantages connected with this criterion:

1. It depends upon the scaling of the points of the space X. In fact, with some suitable
scaling the criterion is equivalent to other known criteria.

2. The sequential algorithm for constructing V(,B)-optimal designs is complicated. For
example, when using algorithms involving the gradient it is necessary to seek on the different
sets }.,T with the corresponding gradient on each one. This procedure is done in a similar
way as that of ATKINSON and FEDOROV (1975) for discriminating between three or more
models.
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Some Two-Stage Procedures for Treating the Behrens-Fisher
Problem

Rainer Schwabe

For designing an experiment some knowledge about the underlying model is crucial. In
particular, usually a known variance-covariance structure is assumed. If however, the vari­
ances might vary from level to level of some controlled factores the situation becomes more
complicated. One attempt to attack this problem is to use a two-stage procedure: On the first
stage a fixed number of experiments is made and the variances are estimated; on the second
stage the number of additional experiments at each level combination is determined according
to these estimates. We will illustmte this procedure by treating the situation of comparing the
means of two groups with possibly different variances which is known as the Behrens-Fisher
problem.

1 Introduction

One of the oldest still not completely solved problems in statistics is the comparison of
the means of two populations with possibly different variances. This problem dates back at
least to some work of Behrens in 1929 and has become more popular by the work of Fisher
in 1935 who exhibited his fiducial arguments in this setting. Due to these roots the following
situation has been coined the Behrens-Fisher problem (for further references see e.g. Stuart
and Ord(1991)):

Let X I, ... , X n1 and YI , ... , Yn , be independent observations from two populations nor­
mally distributed with means III and 112 and variances O'~ and O'~ respectively. We are
interested in the magnitude of the difference III - 112 of the means or, in particular, wether
the means are equal (i.e. III -1l2 = 0) or not.

An obvious statistic for the difference~ 112 is the difference X(n,) - yen,) of the
arithmetic means X(n,) = ..!... "'~-'-I Xi and yen,) = ..!... L~21 Xi respectively. X(n,) - yen,) is

"1 LJ,,_ "1 ... -

known to be normally distributed with mean III -1l2 and variance ~O'~+r!,0'~ or equivalently

(1)

is standard normal.

We note that the variance of this difference is minimized subject to a fixed total amoWlt
n = nl + n2 of observations if the ratio nI/n2 is approximately equal to 0'I/0'2 . In this case
~O'~ + ;!;-O'~ ::::: ~(O'I +0'2)2 which for Wlequal Wlderlying variances O'~ of- O'~ is reasonably

smaller than the value ~(O': + O'~) for both: equal sample sizes nl = n2 and sample sizes
proportional to the variances nI/n2 ::::: 0':1 O'~ (for further readings in the theory of optimum
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design (optimum allocation), we refer for example to the monographs of Fedorov(1972),
Bandemer e. a.(1977), Silvey(1980), and pazman(1986)).

If, however, as in the present case the variances u? and u~ are unknown neither the
distribution of X(n,) - yIn,) can be totally specified nor a good choice of nl and n2 can be
given in general. Only for the very special and in most situations unrealistic case that the
ratio of the variances u = uUu~ is known the difference X(n,) - yIn,) can be studentized
appropriately such that

has a t-distribution with nl +n2 - 2 degrees offreedom, where iT? = nl~l E7~1 (Xl - x(n d )2

and iT~ = n,~l E?~I(Yi - y(n,»)2 are the usual estimates for the variances u~ and u~ respec­
tively. Also ndn2 approximately equal to ,jU will be optimum as can easily be checked.

In general we are only able to insert the estimates iT~ and iT~ for the unknown variances
in (1) and arrive at the Behrens-Fisher statistic

(2)

As the distribution of the Behrens-Fisher statistic cannot be derived explicitly we will give
bounds in the next section (see Mickey and Brown(1966) and Scheffe(1970)).

In the following sections we will mainly be concerned with the design problem of choosing
sample sizes such that either J1.1 - J1.2 can be estimated with a prescribed variance or a
confidence interval for J1.1 - J1.2 of bounded length can be obtained. The latter procedure
also yields a test for equality of the means with prescribed power by the usual interplay
between tests and confidence regions. Because even in the one-sample situation estimates of
prescribed accuracy cannot be obtained by a fixed sample size if the variance is unknown we
introduce Stein's(1945) two-stage procedure for that case in section 3 (for more details we
refer to Chatterjee(1991) and Stuart and Ord(1991)).

Section 4 is dedicated to direct applications of Stein's two-stage procedures by Chap­
man(1950) and Ghosh(1975) to the present situation of the Behrens-Fisher problem and a
modified, more reasonable procedure is introduced. In section 5 the two-stage procedure is
combined with a pretended optimum allocation rule (Banerjee(1967)) which will be compared
to the procedures of section 4. In section 6 we end up with some remarks on a fixed total
sample size and further applications.

2 The special d-solution

Let Tv denote a t-distributed random variable with v degrees of freedom and tv; a
the a-quantile of that distribution. According to the results of Mickey and Brown(1966)
we notice that the Behrens-Fisher statistic (2) is less dispersed than a t-distribution with
v = minenl - 1, n2 - 1) degrees of freedom:
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Theorem 1

For all t:

o

For a proof of Theorem 1 see Mickey and Brown(1966). Scheffe's(1970) special d-solution
is a direct consequence of this result:

Corollary 1

The interval given by the bounds x(nt} - y(n.) ± tV ;1-0l/2Vt.u? + ~ui is a confidence
interval for III - 112 with confidence level 1 - Q.

3 Stein's two-stage procedures

In his pioneering paper Stein(1945) introduced two two-stage procedures for estimating
the mean Il of a normal distribution with given accuracy:

Let (Xi)iEH be iid normally distributed with mean Il and variance 0"2. On the first stage
we observe a preliminary sample (X11 ••. , X "o ) of size no and estimate the unknown variance

0"2 by u5 = "0
1
_1 L:~l(Xi - X("O))2. After that we determine the total sample size N 2: no

depending on the estimated variance U5 and take N - no additional observations at the second
stage if N > no.

For any given z > 0 (the actual value of which will be determined later) we can describe
Stein's(1945) procedures as follows:

Stein's first procedure:

Choose N = max([u5/z] + 1,no + 1), where [a] denotes the largest integer less or equal
to a. Then there exist random variables Ao and A1 such that

noAo +(N - no)A1

noA~ + (N - no)A~

1
z 1

U5 N .

Define X(N) := AoL:~1 Xi + A 1 L:f:
"O

+1 Xi. Then X(~-I' has a t-distribution with no - 1

degrees of freedom. Hence E(X(N)) = III for no 2: 3, Var(X(N)) = z:::=; for no 2: 4, and

P(!X(N) -Ill :S t) = P(ITn.-d :S ';').

Stein's second procedure:

2 -(-) 1 N ITrXA"1'Choose N = max([uo/z] + 1,no). Let XN = NL:i=lXi. Then vN has".distribution with no - 1 degress offreedom. Hence E(X(N)) = Il for no 2: 3,

a t-
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for no 2': 4, and

P(IX(N) - III ~ t) P (IJN\i:f'1 ~ t~)

2': P (IJNX~t'l ~ *)
P(ITno-11 ~ *).

Now for both procedures an estimate of Il of prescribed accuracy Var(X(N)) = c resp.

Var(X(N)) ~ c is given if the constant z is chosen according to z = ~::::~c. Similarly z =
rfl/t~o_I;I_0</2 yields a cofindence interval for Il with bounds X(N)±d resp. X(N) ±dVuU(N z)
of bounded length 2d with confidence level 1 - a.

Although for Stein's procedures the distribution is given exactly only for the first one the
second exhibits a lot of advantages: first the sample size is smaller in case uUz < no, the
estimate X(N) is more accurate, the confidence interval will be shorter, and - what is more
important - the statistic X(N) = k L~I Xi is more appealing and easier to calculate.

Furthermore Var(X(N)) ~ Var(X(no)) and hence Var(X(N)) will tend to zero for no

tending to infinity, whereas Var(X(N)) will stay bounded from below by c. A similar result
is valid for the length of the confidence interval.

4 Straightforward applications to the Behrens-Fisher prob­
lem

In this section we present two procedures proposed by Chapman(I950) and Ghosh(I975)
and supplement them with a reasonable modification of the latter one.

Let (Xi)iElV and (Yi)iElV be iid normally distributed with means Ill, 112 and variances uL
u~ respectively. All procedures considered here start with preliminary samples (Xi, . .. ,Xno )
and (Yi, ... , Yno) of equal sample size no. The variances uf and u~ will be estimated by

the usual estimates based on the preliminary samples uf;o = nol-l L~I (Xi - X(no))2 and
u2 = _1_ ",~o (y:. _ y(no))2

2jO no-l L...o,=l • .

Chapman(I950) determines the sample sizes by Ni = max([ul;o/z] +1, no +1) and calcu­

lates X(N1) and y(N,) individually according to Stein's first procedure. Then the distribution

of X(N,) - y(N,) - (Ill - 1l2) is that of the difference of two independent t-distributed ran­

dom variables with no - 1 degrees of freedom each. Hence E(X(NI) - y(N.)) = III - 112 and

Var(X(NI) - y(N.)) = 2z~::::~. Letting z = ~:::::::~c we obtain an estimate with prescribed

accuracy Var(X(NI) - y(N. l) = c. Similarly z = rfl/T2 yields a confidence interval for III - 112

with bounds X(NI) - y(N.) ± d of bounded length 2d with confidence level 1 - a when T is
the (1 - a/2)-quantile of the above mentioned distribution (for a table of these quantiles see
Chapman(I950)).

Alternatively Ghosh(I975) considered matched pairs of observations. This procedure
makes special use of the obvious fact that (Xi - y;)iElV are iid normally distributed with mean
III - 112 and variance u~ + u~. Based on the first stage of no observations
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iT5 = nol-I l:~I(Xi - y; - (x(no) - y(no)))2 is an estimate of the variance af + ai of the

matched observations Xi - Y;. Now choose equal sample sizes N I = N2 = max( [a5/ z] +1, no).
The results concerning Stein's second procedure can be applied directly and we obtain
E(X(N,) - y(N.)) = III - 112 for no ~ 3, Var(X(N,) - y(N.)) S z~::~ for no ~ 4, and

By letting z = ~::~c and z = d2/t~_I;I_a/2 we get again an estimate of III - 112 of prescribed

accuracy Var(X(N,) - y(N.)) S c or a confidence interval for III - 112 with bounds X(N,) ­

y(N.) ± dJ iT5/(Nz) of bounded length 2d with confidence level 1 - ex respectively.

Ghosh(1975) compared these two procedures with respect to the task of generating a
bounded length confidence interval with given confidence level and proposed the advantage
of his procedure in many but not all situations. In particular Chapman's(1950) procedure
suffers from the same drawbacks as Stein's first procedure compared to the second.

We will show, however, that the expected total sample sizes N I + N2 needed to generate
an estimate for III - 112 of prescribed accuracy are approximately the same for both methods.
Just to give ideas we make crude approximations neglecting the influence of the size of the
first stage. Then for Chapman's procedure we obtain

and the same result for Ghosh's procedure

Since N I = N 2 in Ghosh's and NJ/N2 approximately equal to aUai in Chapman's pro­
cedure this result looks natural in view of the considerations following formula (1). However,
a more careful investigation will probably show that Ghosh's procedure will be slightly more
advantageous.

Unfortunately Ghosh's procedure has the unpleasant property that the estimate iT5 of
a~ + ai, and hence the sample size, heavily depends on the ordering of the observations.
In particular, two different randomizations of the observations in the first stage may yield
two totally different total sample sizes - a property which is very undesirable in practical
applications (see Scheffe's(1970) comment on "An Impmctical Solution").

We now modify Ghosh's procedure in such a way that it is independent of any ordering of
the observations. So if we choose N I = N 2 = max([(iTf;o + iTi;o)/z] + 1,no), then E(X(N,)­

y(N.)) = III - 112 for no ~ 3, and we obtain as in Theorem 1 that the Behrens-Fisher statistic
is less dispersed than a t-distribution with no -1 degrees of freedom (in particular, this means
that the Behrens-Fisher statistic is less dispersed for the modified than for Ghosh's orginal
procedure):

Theorem 2

With N I = N 2 chosen according to the modified rule we have for all t:

o
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Theorem 2 can be derived from the result of Mickey and Brown(1966) because ~(X(N.)­

y(N2 ) - (ILl - 1L2))/JO'~ + O'i is standard normal and independent of U;;O, i = 1,2, and the

present Behrens-Fisher statistic is of their form V..,. with"( = O'f!( O'~ +O'n. By Theorem 2 we
obtain

for no ~ 4, and

such that the procedure performs at least as good as that of Ghosh( 1975). In particular the
same values of z = :::::::~ c resp. z = d2/t;"I;I_a/2 will give an estimate of prescribed accuracy
and a confidence interval of bounded length.

If we calculate the expected total sample size for generating an estimate of prescribed
accuracy with the help of the present modified procedure approximately we obtain the same
value as before:

but the variance

is reasonably smaller in the present
the variance for Ghosh's procedure.
procedure.

case than 4 I Var(u2) = 8 .,...!!lI..::1,(0'2 + 0'2)2 which is7 0 ~ (no-3)' I 2
This indicates additional advantages of the modified

5 "Optimum" allocation

The considerations on optimum allocation made in section 1 suggest that the sample sizes
N I and N 2 should be chosen in such a way that their ratio NI!N2 is close to ve = 0'I!0'2.
Such a procedure has been proposed by Banerjee(1967):

Choose N; = max([u;;o(uI;o +U2;0)/Z] + l,no), where u;;o = jiif; is the estimate of 0';

based on the observations (Xl"", X no ) and (YI , ... , Yno) resp. of the first stage (i = 1,2).
The methods used to show the results of Theorems 1 and 2 do not carryover directly to the
present situation. However, with a refinement of the arguments used, Banerjee(1967) could
obtain an upper bound for the dispersion probabilities:

Theorem 3

With N I , N2 chosen according to the rule of Banerjee we have for all t:

P(IX(N,) - y(N2 ) - (ILl - 1L2)! ~ t)

:S 2P (ITno-11 ~ ~) - P (ITnol ~ / non~ 1 . ~) .
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For a proof we refer to the results of Banerjee(1967). By symmetry E(X(N.) - y(N,») =
1'1 - 1'2 for no 2 3, and (since J. q~;o + J, q~;o ::; z) :

Var(X(N.) - y(N,») 1000 P(((X(N.) - y(N,») - (1'1 -1'2))2 2 s)ds

< 21000
P(T~_l 2 ~)ds - 1000

P(T~o 2 ':~l ~)ds

2zVar(Tno _l ) - zn~lVar(Tno)

z(2 nQ -
l _ !!lI..=.! . --!!lL-)

no-3 no no-2

(no-I)'

for no 2 4. Letting z = (nO(:~~7)2-3)c we can obtain an estimate for 1'1 - 1'2 of prescribed

accuracy Var(X(N.) - y(N,») ::; c. With the same crude approximations as in the previous
section we get

In Figure 1 we exhibit the approximate expected total sample size E(NI +N 2 ) compared
to that of the modified procedure of the previous section ~:::: :::i (0': + O'n in dependence on
the ratio vu = 0'1/0'2 of the standard deviations.

As equal sample sizes are preferable in case of equal variances, it is not astonishing that
Figure 1 exhibits a better performance of the modified procedure of section 4 with respect
to the 'expected total sample size for U = O'UO'~ close to 1, whereas for considerably differing
variances the present procedure manages with smaller sample sizes.

The same behaviour can be observed when generating confidence intervals of bOlUlded
length. Denote by bno;a the "critical value" such that

Then by setting z = d2 / b-:";a we obtain

TABLE 1: Critical values bno;a for Banerjee's procedure (0< =0.01,0.05,0.10)

no 2 3 4 5 6 7 8 9 10
0< = 0.01 126.93 13.78 7.17 5.33 4.52 4.07 3.78 3.59 3.45

bnOiQ 0< _ 0.05 25.05 5.88 3.87 3.20 2.87 2.68 2.55 2.46 2.40
0< - 0.10 12.30 3.95 2.85 2.45 2.25 2.13 2.04 1.99 1.94

no 15 20 25 30 35 40 45 50 00

0< _ 0.01 3.09 2.94 2.86 2.80 2.77 2.74 2.72 2.71 2.58
bnOiQ 0< _ 0.05 2.23 2.15 2.11 2.08 2.06 2.05 2.04 2.03 1.96

0< = 0.10 1.83 1.78 1.75 1.73 1.72 1.71 1.70 1.69 1.65
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and hence a confidence interval of bounded length 2d. Some values of bno :Q are given in Table
1.

In Table 2 we present the approximated bounds fl' of the regions of preference with
respect to the expected total sample sizes for the modified resp. Ghosh's procedure of section
4 on one hand side and Banerjee's present procedure on the other hand side, i.e. Banerjee's
procedure is preferable if l1Ul1i > fl" or l1Ul1i < 1/ fl'·

6 Concluding remarks

As has been discussed exhaustively in he previous section neither Banerjee's procedure
with adjusted sample sizes NdN2 "" 'ih/lh nor the modified procedure of section 4 having
equal sample sizes can be considered to be more preferable uniformly in fl = l1~ / l1~ •

.,,-------------------------,
(

'~ 8 "',;
"

1/
, I II

c, '-_~ ~ ----J

10

FIGURE 1: Ratio of the approximate expected sample ailea
of Banerjee's procedure and the modified procedure of section 4

TABLE 2: Bounds r/ of the region of preference for the modified procedure:
(1) estimate of prescribed accuracy;

(2) bounded length confidence intervals with confidence level 1 - (l (0 = 0.01,0.05,0.10)

no 2 3 4 5 10 20 30 40 50 100
(1) - - 23.90 10.40 3.64 2.31 1.94 1.77 1.66 1.42

o = 0.01 00 1728.78 25.15 10.92 3.69 2.31 1.94 1.77 1.66 1.43
(2) 0-0.05 00 467.57 21.06 10.00 3.63 2.31 1.94 1.76 1.66 1.42

0=0.10 00 300.90 19.79 9.76 3.62 2.31 1.95 1.77 1.67 1.43

However, if there is no indication that the variances are far from equality the modified pro­
cedure of section 4 shows some advantages and, in particular, it only involves the known
quantiles of the t-distribution. To perform a more detailed comparison more thorough inves­
tigations have to be made.

A further topic which will only be touched here is the question how to distribute the
observations among the two groups for a given fixed sample size N. Again crude approxima­
tions show that for N I / N2 "" &1 :0/&2:0 the variance of X(N,) - y(N,) is approximately equal to
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k( u~ +u~ +2UIU2r(~)r( ~ - 1)/r( no2-1 )2) which in most cases is substantially smaller than
the variance 1l(u~ + u~) obtained for equal sample sizes. This indicates that experimental
design and sequential approach both considered as tools for improving the performance of an
experiment can and should be successfully combined.
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A Useful Set of Multiple Orthogonal Polynomials
on the q-Simplex and its Application to D-optimal

Designs

Ralf-Dieter Hilgers

"[Wenn] wir au. vie! hundert Stooen

Durch MilChung . denn au! MilChung kommt .. an ­

Den [Stoo] gemtichlich komponieren,[. ..]

So i.t do. Werk im .tillen abgetan." Goethe, Fau.t II.

D-optimality of a design can be proven by the equivalence to G-optimality. In this context
the calculation of the maximal variance of the prediction can be simplified by transfoNTling
the set of regression functions to a set of orthogonal regression functions with respect to a
design. Given regression functions of a general type, an orthogonal regression function set
is calculated. The properties of this set is investigated and applied to construct D-optimal
designs on the q-simplex.

1 Introduction

In a standard (linear) regression model TJ(x) == ~:':1 ~rfr(x), the f},···, fm are continuous,
real valued, linear independent regression functions on a compact set X and ~1,' .. ,~m are
m unknown parameters. The outcome TJ(x) of an experiment x E X is considered as a
realization of the random variable Y with mean ~;."=1 ~rfr(x) and variance 0'2 independent
of x. Here the observations in different experimental points are assumed to be uncorrelated.
To estimate the coefficient vector {} == (~1"" I ~m)t observations at various values of the
experimental point x are taken. The generalization of the proportions of observations in
the pairwise different experimental points to probabilities leads to the (discrete) probability
measures t on X called designs.
Designs t are classified by concave functions of the information matrix M(f; t) == Jfftdt. In
particular maximizing the determinant subject to the design is called D-optimality. It is well
known from Kiefer and Wolfowitz (1960) that D-optimality is equivalent to G-optimality,
i.e. minimizing the maximum variance of the prediction. Moreover a design C is G-optimal
iffor all x E X

(1)

is satisfied. Notice, that C can have points of support only where d(x,C) == m.

Often the calculation of d(x, C) is an unpleasant problem. However, the generalized variance
is invariant unaer regular transformation, c.f. Fedorov (1972).
Assume the design C to investigate has minimal support. This means the number of support­
ing points is equal to the number of parameters in the regression. Then a transformation of
the original regression functions f by a regular matrix A can be found, such that for g == Af,

M(g;C) == Jgg'dC == ~Im.
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With these transferred regression functions gt(x) = (gdx), ... ,gm(X)) (1) becomes

(2)

The regression functions gl,"" gm are called orthogonal with respect to the support
supp(C) = {ZI, ... , zm} of C, because they fulfill

;(Z.)={I, fori=j,
9 J 0, else.

It is well known, that a D-optimal design with minimal support is equal weighting.
In the following regression models with and without intercept are considered separately. Look
at the model

l'/(x) = L L 19. I · ...1 h.1 ·...I(z.1 , ... , z'l)
1=11:'0'1 <"'<'I:'Oq

(3)

defined on the factor space X C mq
. This model will be called generalized multiple II-tic

polynomial. Extending the regression model (3) by an intercept term the eztended generalized
multiple II-tic polynomial

v

l'/(x) = 190 +L L 19.I ·...1 h.I .. ·'I(z'I'···, Z'l)
1=11:'0'1 <"'<'I:'Oq

defined on the factor space X C mq is obtained.

(4)

If the design to examine has minimal support and the regression functions h'I''''1 satisfy
some moderate restrictions a general set of orthogonal regression functions can be found.
In section 2.1 the generalized multiple II-tic polynomial (3) is investigated while in section
2.2 the model (4) with intercept is treated. Properties of the obtained orthogonal regression
functions are discussed under more specific assumptions. Further on some applications are
given to derive results in section 3 followed by some new applications for D-optimal designs
on the q-dimensional simplex.

2 Orthogonal regression functions

2.1 Regression model without intercept

2.1.1 Supporting points

First let us assume that the points of support to estimate the coefficients of a regression
model without intercept (3) are of the following structure:
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Given II :::; q non vanishing, real munbers ZI,"" z". Then the support
consists of the points

A = {Z/e~ e". ,1:::; UI < ... < U/e :::; q ,1 :::; k:::; II} . (5)

Here e. denotes the r-th unitvector of ill.q, so that e: = (1,0, ... ,0); e~ =
(0,1,0, ... ,0) and so on.

A point Z/e = Z/e 2::=1 e". is called a generalized barycenter of depth k.

Example: Choosing Z/e = 1/k then A is the set of all barycenters up to depth II of the unit
q-simplex. The uniform weighting design with this support is called simplez centroid design
(of depth II), c.f. Scheffe (1963).

2.1.2 A set of orthogonal regression functions without inter­
cept

Let us start consideration with some normalization conditions of the regression functions
h.I ....((x) of model (3). Assume, that

(6a) each regression function h.I ((x) contains no parameters,

(6b) each regression function h.I ((x) is only a function of the component
Z'I toz.(ofx=(zl, ... ,Zq)t,

(6c) each regression function h.I ....((x) becomes zero whenever one of its
variables-c.f. (6b )-is zero,

(6d) each regression function vanishes on a generalized barycenter Z/e E A if
one of its variables is zero (c.f. 6c) or h.

I
....( becomes .

Remarks:
i) A regression function h. I ....( of t components is called a regression junction of order t. If
the regression model includes all regression functions up to order II < q then it will be called
saturated while it is called fully saturated, if it contains all regression functions up to order
q.
ii) Condition (6a) is a natural assumption in linear models and like (6b) not very restrictive.
iii) From (6c) it follows, that h' l ....((Zk) = 0 if the order t of the function is higher than the
depth k of the generalized barycenter (for all Z/e E A, where Z/e is a generalized barycenter
of depth k < l). The function also vanishes if its index set is not contained in the index set



94

defining the generalized barycenter, i.e. {Sl,"" st} g {Ul,' .. , U/o:}.

iv) If, e.g., the regression function h.
l

...•
i
(x) describes a kind of interaction between the

variables Z'l to z'i it might be justified to accept (6c). The most restrictive condition seems
to be the symmetry condition (6d). This means, that a regression function of the components
Z'l to z'i of order l becomes a non vanishing constant ci(k) at all generalized barycenters
of depth k with indices {Ul,"" u/o:} 2 {Sl' ... , st}. Let us look for example at the choices

Then (6a,b) are satisfied by all these regression functions. The first regression function
in addition fulfills (6c) and (6d). However, the second regression function h.l ....

i
(X) =

max{z'l'""z'i} is zero only if the largest component is zero. So in general (6c) is not
valid. On the other hand, the third regression function fulfills (6c). But (6d) holds only,
if l = II = 1 and Zl = 1 or if t l = ... = t q. Taking tl = '" = t q = W = 1, the resulting
regression model is the tic polynomial of Scheffe (1963).

Theorem 1: Let the set of linear independent regression functions be given by

{h.l ...•i (X) , 1 ~ Sl < ... < Si ~ q ,1 ~ l ~ II}

defined on a compact set X C IRq, satisfying (6a) to (6d). Let the supporting points of
interest be given by A eX. Then the set of regression functions

where
v-i

g.l· ...i(x) = aO,i [h' l .. ·.i(X) +~) -1)"a.,i L h'l .. ·.i,tl ...t.(X)]
,.=1 t11"",t,.E[C

l:5 tl <···<t.:5q

(7a)

(7b)

(7c)

with I C= {I, ... ,q} \ {Sl,'" ,st}, 1 ~Sl < ... < si~q and 1 ~l~1I is orthogonal on A. In
(7b) the coefficients are given by *

{

Ci(il ' ifr=O,I~l~lI,
( 1).-1 .-1
c.~i('+ll [~i(r + l) + ,,"'fl a",t{ -1)"(:)cl+,,(r + l)]

ifrE{I, ... ,II-l}, l~l~II-I.

Proof: To show the orthogonality on A consider for a given index set {Ul,"" U/o:} ~

{I, ... , q} with k ~ II the point

/0:

Zll = Z/o: L e". EA.
,.=1

* The summation over no entries like I:~=1 ... is defined as zero.
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If at least one of the components x' l to x'l vanishes, then g.I ...•/x) = O. So g.I ...•1(Zk) = 0,
if the generalized barycenter Zk is of depth k less than i, or the set of indices {51, ,sd is
not included in {Ul,"" Uk}. Furthermore, if k = i and the sets of indices-{51, ,5d =
{ul, ... ,ud-are equal, then the second sum in (7b) is zero by (6c), so that g.I ...•/Zk) =
aO,lcl(i) = 1 by (7c). If k > land {SI,' .. ,sd is included in {Ul' ... ,Uk}, then (k;l) of the
regression functions of order (i + r), 1 ::; r ::; k - i, in the second sum become Cl+ r (k). So

~(-lrar'l tl'''~EIC h·l .. ·•1,tl .. tr(Zk) = ~(-lrar'le ~i)cl+r(k),
l:;tl <. <tr:;q

and by (7c) it holds

•

With a special choice of the constants it follows:

LelllIUa 1: Let in the theorem 1 the regression functions fulfill (6d) with

a) Then the coefficients (7c) are given by

{
il

a - ,
r,l- r-I(i+r),

ifr=O,I::;i::;v,
if 1 ::; r ::; v - i, 1 ::; i ::; v-I ,

(8)

and the orthogonal regression functions sum to

., q

L L g·I· ..·l(x) = L hr(x).
l=IIS'I <"'<'lSq r=I

b) If 4::; v < q and there exists a barycenter Z.,H of depth (v + 1) so that

q(v+l)= (_I_)l, l:S;i::;v,
v+l

then the following inequality holds true

L L g~I· .../z.,+d > 1.
l=I IS'I <"'<'lSq

(9)

(10)
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Proof: To prove the form of the coefficients in part a) of the lenuna notice that from (7c) it
follows aO,i = cthJ = li. Further assume ar,i is correct, then from (7c)

ar+l,i =
(_l)r [ r (r+1) u ]( l) ci(r+1+l)+ L (-1) au,i cl+u(r+1+l)

Cr+l+i r + 1 + u=1 U

= (-1)" [(r + 1 + l)"+l + t (r : 1) (-l)"lu-1 (l + u){r + 1 + l)"+I-U]

= (-1)" [(r + 1 + l)"+l + t (r: 1) (-l)"l"(r + 1 + l)"+I-u

+t (r: 1) (-l)"ulU-I(r + 1 + l)"+l-u]

= (-1)" [(r + 1)r+1 + (-1)"r+1 - (r + 1)"+1 + (-lnr + 1)l"]

= l"(r + 1 +l).

To prove equation (9), note that each g'I''''i(x) is a linear combination of the regression
functions of order greater or equal to l having indices SI to Si. So on the left side of (9) each
of the regression functions of the same order is added equally frequently. Rearranging the
sum subject to the type of regression functions leads to

L L g'l "'i(x) = L B i L h'I"'i(x)
i=1 IS;'I <'''<'is;q i=1 IS;'I <'''<'is;q

where for 1 $ l $ II

i-I (l)
B i = aO,i + L r (-l)"aO,i-r ar,i-r'

r=l

Obviously B I = aO,1 = 1. For l > 1

because the expression in brackets is the loth difference of the function f( z) = zi-I in the
points O,l, ... ,l.
To show (10) use the formulas derived for a barycenter of depth k 2: l in the proof of theorem
1. It follows with r + l = II + 1 in (7c) and then using (8)

1 ,,+I-i (1I+1-l)
g'I''''i(z,,+d = ci(l) [Ci(1I + 1) + ~ (-l)"au,i u Cl+ u(1I + 1)]

= Ci~l) (-l)"-ic,,+dll + 1) a"+l-i,i

= (_l)"-i (_l)".
11+1
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As outlined by Atwood (1969), then the following inequality holds true

> 1 .

•

ReIIUlrk:
Notice that, using the equivalence theorem in the special form (2), equation (10) can be used
to disprove D-optimality.

In the discussion above the regression model consists of all regression functions up to order v,
so the set of supporting points does. Generalizations according to the non saturated case­
not all the regression functions of order l are included in the model-can be constructed
similarly, but need a more complex computation.

2.2 Regression model with intercept

2.2.1 Supporting points

To extend the concept introduced so far to regression models with intercept (4) let us assume
now that the support is of the form:

Given the set A as defined by (5). Then the support consists of the points

~ == Au {O}. (11)

Examples: Choosing Zk == 1/k then ~ is the set of all barycenters up to depth v of the q­
simplex. The uniform weighting design with this support is called extended simplex centroid
design (of depth v), c.f. Hilgers (1991), Hilgers and Bauer (1992).
Obviously choosing Zk == 1 for all k, and v == q, then A o is the set of all vertices of the cube
{x E rn.q

: 0 ::; Zr ::; 1,1 ::; r ::; q}.

2.2.2 A set of orthogonal regression functions with intercept

As in section 2.1.2 let the regression functions h.
1

...•
l

fulfill the normalization conditions (6a)
to (6d).

ReIIUlrk:
Notice that in section 2.1.2 the model equation has L:~=l (~) parameters while in (4) it has

1 + L:~=l (~) parameters.

Theorem 2: Let the set of linear independent regression functions be given by
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defined on a compact set X C IRq, satisfying (6a) to (6d). Let the supporting points of
interest be given by .Ao eX. Then the set of regression functions

{1- t L g.l···.l(x);
l=l 1 ~'1 < "'<'l~q

g.l .. ·.l(x),I:Ssl < ... < Sl:SQ,I:Sl:SlI}

with g.l ....l defined in (7b) and (7c) is orthogonal on .Ao.

Proof: Notice that .Ao = Au {O} and g'l ....l are orthogonal to A as shown in theorem 1.
Obviously g.l ....l(z) = 0 by (6c), if z = O. Otherwise the first regression function in (12)
vanishes, if z E A. On the other hand, if z = 0 the first regression function in (12) becomes

1. •

With a special choice of the constants it follows:

Lemma 2: Let in the theorem 2 the regression functions fulfill (6d) with

Cl( k) = Gr, II 2: k 2: l .

If 4 :S II < q and there exists a barycenter z,,+ 1 of depth (II + 1) so that

then

q q 2

L L g~l .•/z,,+d - 2 L hr(z,,+d + (L hr(z,,+d) > 0 . (13)
l=l 1~'1 <"'<'l~q r=! r=l

Proof: It is easy to see that (8) and (9) hold true for the regression functions g'l ....l(x).
Adding a positive term to the left side of (10) and then applying (9) it follows (13)

1 < L L g~l""l(z,,+d
l=l 1~'1 <"'<'l~q

:SL L g~l ..../z,,+d+(I-t L g.1 ....l(Zv+d)2 (14)
l=l 1~'1 <"'<'l~q l=l 1~'1 <"'<'l~q

q q 2

=L L g~l ..../Zv+d + 1 - 2 L hr(z,,+d +(L hr(z,,+d)
l=l 1~'1 <"'<'l~q r=l r=!

•

Remark:
Like in the case of the regression model without intercept (13) can be used to disprove
D-optimality by the equivalence theorem 2 as can be seen by (14).
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3 Applications

3.1 v-tic polynomials

Scheffe (1963) introduced the regression model

v

7)(x) = L L 1?'1· ·'lz'l ... z'l
l=II~'1 <···<'l~q

defined on the (q-l) simplexUq = {xEIRq:O:S;zr-:S;I, l:S;r:S;q, L~=1 Zr = I} to describe
mixture experiments. As an appropriate design he suggested the uniform weighted simplez
centroid design (of depth v). The support of this design results by taking Z/c = t, 1 :s; k :s; v,
in (5) above. Further for h.I ...•l(x) = z'I",z'l,1 :s; 51 < ... < Sl:S; q,1 :s; l:S; v,
(6a,b,c) hold true and with constants cl(k) = (l/k)l in (6d) the assumptions of lemma 1
are satisfied. Hence the set of orthogonal regression functions is given by {g.I ...•1(x)' 1:S;
51 < ... < Sl:S; q, 1:S; l:S; v} with (7b) and (8). This form is found by Atwood (1969). He
disproved D-optimality for 4 :s; v < q-c.f. lemma I-and proved D-optimality for v = q by
other arguments. For v = 2 Kiefer (1961) and v = 3 Uranisi (1964) proved the D-optimality
by using the orthogonal regression functions.
If the regression model is extended by an intercept and defined on the q simplex Sq = { x E
IRq: O:S; Zr :s; 1, 1:S; r:S; q, L~=1 Zr :s; I}, Hilgers and Bauer (1992) found the extended simplex
centroid design (of depth v) to be D-optimal. This approach seems to be appropriate to
describe mixture amount experiments, where the response does not only depend on the
proportions but also on the total amount of the components.

3.2 Other examples

Becker (1968) introduced special regression models on Uq . Hilgers (1991) extended these
models to the mixture amount factor space Sq. Call the model

v

7)(x)=1?o+L L 1?I .. ··l min {Z.I'···,z·l}
l=II$'j <···<'l~q

the minimum model (of order v) and

v

7)(x) = 1?o + L L 1?'j. ·'l{/z'j ",z'l
l=II~'1<···<'l~q

(15)

(16)

the root model (of order v) defined on Sq. An appropriate design may be given again by the
extended simplex centroid design. Obviously the regression functions fulfill (6a,b,c) and (6d)
with Cl( k) = 1/k. Then by using theorem 2 to get the orthogonal polynomials D-optimality
can be proved for model (15) with v = q and non D-optimality can be proved for 2 :s; v < q
for models (15) and (16), c.f. Hilgers (1991). Analogous results hold true for the models
without intercept on Uq , c.r. Hilgers (1991). Further results are not known up to now, but
research is going on to get more general conditions for D-optimality.
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3.3 Quasi linear regression on Sq

In the following section models perhaps not of particular interest are treated. The results
may help to understand more about behaviour of D-optimality by changing the regression
functions.
If the dose variable in the linear relationship is transferred by a power transformation, the
extended quasi linear regression model (of power W r , 1 ::; r ::; q)

q

17(X) = 190 +L I9r x,;r
r=l

(17)

defined on Sq results as an extension of Hilgers and Bauer (1992). Other transformations
like taking logarithms of the doses are quite common in dose response relationships. In
the following restrictions of the power W r are established to guarantee D-optimality of the
(extended) simplex centroid design, applying the results of section 2.

Theorem 3: Let the regression be of the form (17) defined on Sq. If W r 2: 1 for alII::; r::; q,
then the extended simplex centroid design is the unique D-optimal design to estimate the
coefficients by their BLUE.

Proof: Here II = I, Ao = {O, el, ... , eq } and Ct( k) = 1 so the orthogonal regression functions

are given by {I - 2::=1 x,;r; x~r, 1 ::; r ::; q} applying theorem 2. Now with (2) D­

optimality is equivalent to

12 (1 -~ x,;rr+~ x;w
r

= 1 + (~x,;r) 2 _ ~ x,;r +~ x;wr _ ~ x,;r .

This inequality holds true, because W r 2 1, so that 0 ::; x~r ::; X r ::; 1 and

q q

::; L x,;r ::; L X r ::; 1 .
r=l r=l •

For the model without intercept a similar result holds true:

Theorem 4: Let the regression be of the form

q

17(X) = L I9rx,;r
r=l

defined on Sq. Ifwr 2 1/2 for alII::; r ::; q, then the simplex centroid design (of depth 1) is
the unique D-optimal design to estimate the coefficients by their BLUE.

Proof: Like in the theorem above, D-optimality is equivalent to

q

1 2 L x;wr
, x E Sq ,

r=l



which holds true, if W r 2 1/2 for all 1 :::: r :::: q.
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•

Remarks:
i) Theorem 4 holds true even if the factor space is changed to Uq .

ii) Whereas the D-optimality result for regression fWlctions of the form ..;z;. holds true in
theorem 4, it does not in theorem 3. This can be seen by inserting a barycenter of depth 2
(el + e2)/2 in the right side of (2) calculated in the proof of theorem 3.

(~..;z;.r +~zr-2~..;z;.= (2~r +2~-2(~+~)
= 3 - 2.;2 > o.

iii) Results for other values of W r in theorem 3 and 4 are not known up to now.
iv) The regression fWlctions ..;z;. were used to model an extreme change in the response
behaviour as the value of one or more components tends to a bOWldary of the simplex
region, c.f. Draper and John (1977).
v) Hilgers (1991) considered the extended factor space

S~") = {XErn.q:O::::Z I ,oo.,Zq::::1, O::::tZ~::::1} c rn.q
r=l

and formulated analogous results. However, the condition for D-optimality in theorem 3
has to be modified to W r 2 /\, > 0 whereas in theorem 4 one has to choose W r 2 /\,/2 > 0
for all r. Let, e.g., /\, = 2, then this factor space is the "positive subspace" of the W1it ball
Bq = {x Ern.q, l::~=1 z~ :::: 1}. So some D-optimality results on Sq respectively S~2) and B q
can be obtained. But these results may be of interest only from the theoretical point of view.

3.4 Quasi tic regression on Sq

A first approach of extending the results of the previous section to higher degree of quasi
multiple polynomials is given by the following theorem:

Theorem 5: Let the regression be of the form

q

7)(x) = L 'l9rz~ + L 'I9..z~z:,
r=1 I$r<.$q

defined on Sq. Then the simplex centroid design (of depth 2) is D-optimal to estimate the
coefficients by their BLUE if W 2 1/2.

Proof: With v = 2,A = {el,oo.,eq,(er + e.)/2,1:::: r < s:::: q} and (6a to d, 7a to c) the
orthogonal polynomials are given by
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So with (3) the D-optimality is equivalent to

q q

12:24w L [ZrZa]2w+Lz~W[1-2WLz~r
l~r<'$q r=l :~r

q

= L z~w + (24w
-

1 + 22W
) L z~wz~w

r=1 l$rta$q

- 2
U1 L (Z~Z~UI + z~Wz~) + 22w L X~UlX:'Z~

l$rta$q l$rtatt$q
q

= LZ~w + (2 2W
- 2) L z~z:

r=1 l$rta$q

L z~z: [2 2W
- 2 - (24w

-
1 + 22W)z~z:

l$rta$q

+ 2W(z~ + z:) - 22wz~ L z;U]
ttr,a

Assume now without loss of generality, that Zr > 0 for all r. Then it holds* :

Furthermore it holds by arithmetic-geometric mean inequality

and (zrza)W :S 2- 2w for x E Sq. With z~+z: -4z~z: 2: (z~+z:)2 -4z~z: 2: (z~ _z:)2 2: 0
the expression in brackets gives:

22w
_ 2 - (2 4W - 1 + 22W)z~z: + 2W(z~ + z:) - 22wZ~ L z~

t:j:.r ••

= 22w _ 2 _ 24w-lzwzw + 2W(zW + ZW _ 4zWzW) + 2w +2 z w z w _ 22w z w ~ ZWr, r, r, r, rD t

ttr

o.

*

•
In the inequality the following identity is used, expanding the sum on the right side for

k1 = m and k 1 + k2 = m, c.f. Bronstein (1985, p. 106 formula 2.6).

,Zr 1- 0,0 :S kr :S m, 1 :S r :S q
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RelIlarks:
i) Clearly the result of theorem 5 holds true if the factor space is reduced to Uq .

ii) In Hilgers (1991) the same model is considered on the extended simplex S~,,). Two
interesting points arise. First one has to modify the assumption concerning the w. On
S~,,) the condition has to be of the form w :::: 1\.. The proof is more algebraically than
the one outlined above. Secondly from D-optimality it follows w :::: 1\./2 which can be
proved by inserting a corresponding barycenter of depth 3. Further let us consider the
support of the corresponding design. Here one chooses Zl = 1 and Z2 = 1/ V!2 so that
A = {el,oo.,eq,(er +e.)/V!2,l:::; r < s:::; q} and by theorem 1 with ci(k) = 1 the
corresponding orthogonal regression functions are given by

(z~ [1 - t (Vl2z.r] ,1 :::; r :::; qi (VI2zr Vl2z.r ,1:::; r < s :::; q) .
''7'r
.=1

Unfortunately computational difficulties increase, so that D-optimality considerations are
restricted to the described cases. No results for the model with intercept respectively for the
model with different exponents are available up to now.

4 Concluding remarks

The presented results of section 2 are shown to be useful to prove D-optimality in some cases.
Although the considerations of the application in section 3 are restricted to the simplex, there
may be other applications as mentioned by some comments.

Important points of practical interest follow from the results of section 3. Once the researcher
has chosen the appropriate model, the D-optimal design is fixed in advance. After performing
the trials he only can estimate the coefficients of the regression model fixed in advance without
loss in the efficiency of the design. The results of section 3, however, suggest, that he can
choose between a class of regression models of the same kind and select the model with
the best fit. These result may give a further justification to use D-optimal designs and are
investigated further on.
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On Designs with aNon-Orthogonal
Row-Column-Structure

Joachim Kunert

When searching for optimal row-column designs, it is a good strategy to try to find a
design which is a balanced incomplete block design when columns are considered as blocks,
and for which the treatments are orthogonal to rows. In the usual setting where each row
intersects with each colunm exactly once, the treatments are orthogonal to rows if and only
if they are proportional, i.e. each treatment appears in each row equally often. In that case
the orthogonality condition does not depend on how the treatments are distributed over the
columns, see also Kurotschka (1978).
Recently, there has been considerable interest in a non-orthogonal row column setting, where
not each row intersects with each column. It was observed by Steward and Bradley (1991)
and others that then the orthogonality condition can be fulfilled by designs which are not
proportional. We treat this orthogonality condition in detail and show that it can be fulfilled
by designs which are clearly non-optimal in the model without column effects.
We also show that the usual two way block model for non-orthogonal row and column struc­
tures in general cannot be justified with the help of randomization arguments.

1 Introduction
Recently, there has been considerable interest in optimal design for a non-orthogonal row­
colwnn setting, where, for instance certain combinations of rows and colwnns are not possi­
ble, see Saharay (1986), Mukhopadhyay and Saharay (1988), Shah and Sinha (1990), Steward
and Bradley (1991), Jacroux and Saha Ray (1991), Baksalary and Pukelsheim (1992) and
Kunert (1990).
We assume that we have a fixed arrangement of n experimental units into p rows and u
colwnns. Not all combinations of rows and colunms need to have a unit. Assume the unit
which is in row i and colwnn j receives treatment r. Then we assume for the measurement
Yij on this unit that

Yij == T. +ai + {3j +eij (1)

where T. is the effect of treatment r, ai the effect of row i and {3j the effect of column j.
The errors eij are assumed to be uncorrelated with constant variance 0'2 and expectation O.
Let P and U be the design matrices for rows and colwnns, respectively. Then each unit is
exactly in one row and one colwnn and hence PIp == U1 u == In, where 1.. is the x-vector of
ones.
We assume the row and colwnn structure to be fixed, i.e. P and U are fixed. The exper­
imenter can only choose which of the t treatments he applies to which unit. A rule which
determines which treatment is applied to which unit is called a design. The set of all de­
signs with t treatments and the given P and U is called !1tpu. Each design d determines a
treatment design matrix Td , where Td 1t == In.
For a matrix M, define M+ as the Moore-Penrose pseudoinverse, pr(M) == M(M' M)+ M'
and pr.l(M) == In - pr(M). We are interested in the estimation of the vector with entries
T. - E T, / t. It is well-known that the covariance matrix of the best linear unbiased estimate
for this vector in model (1) equals O'2Ct, where
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A design d* for which there is a real nwnber z, such that C d* = z(It - t1t1~) and for which
tr Cd* is maximal over ntPU is universally optimal. See Kiefer (1975) for a definition and
details.
It follows from the results of Kunert (1983) that

say,
with equality holding if and only if

Obviously, this is equivalent to

T~P =0 T~V(V'V)+V' P. (2)

Note that V' V is a u X u diagonal-matrix. The i - th diagonal-element equals the number Ci

of units in column i. If all columns have the same number of units c, say, then (2) transforms
to

T~P = ~T~V V'p.
C

We call T~P the treatment X row incidence matrix, T~P the treatment x column and pI V
the row x column incidence matrix. It is well-known, see e.g. Kunert (1983), that a design
d* for which

and

trCd* = max irCd
dEO,pu

T~ * P = T~ * V(V'V)+V'P

(3i)

(3ii)

(3iii)

is universally optimal in model (1). If there is a design f E ntPU which is a balanced block
design with columns as blocks, then this design fulfills conditions (3i) and (3ii). Kunert
(1990) has shown that in a model with non-orthogonal row-column structure, there are such
designs which additionally fulfill (3iii) but are not balanced block designs with rows as blocks.

2 An evaluation of the orthogonality condition
We want to consider one special instance in detail. We explore the same experimental
situation as the one considered in Kunert (1990). For some numbers of rows, columns and
treatments, we will determine the set of all designs to fulfill conditions (3i), (3ii) and (3ill).
Before we do that, we make sure that the case of a non-orthogonal row-column structure
is really different from the usual setting of an orthogonal structure: in the orthogonal case
conditions (3i), (3ii) and (3iii) can only be fulfilled by designs where each treatment appears
in each row equally often.
The row-column structure is orthogonal if each combination of rows and columns receives
exactly 1 unit. It follows that V'p = 1u 1~ . Hence, the right hand side of condition (3ill)
can be written as
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1, I 1 I , 1 [ ]' I-TdU 1"lp = -Td l n l p = - Tdl' ... , Tdt I p ,
P P P

where Tdi is the number of appearances of treatment i in the design, 1 :S i :S t. As the
(i,j) - th entry of T~P gives the number of appearances of treatment i in row j, it follows
that (3iii) is fulfilled if and only if treatment i appears Tdi/p times in each row.
As was pointed out by Kunert (1990) this needs not be the case in a non-orthogonal setting.
In what follows we consider one special instance of such a setting. Assume, we have trows
and kt columns, kEN. However, each column has only t -1 units, such that there is no unit
in row j of column it + j, 0 :S i :S k - 1,1 :S j :S t. Then U' P = 1J, 0 (I t l: - It), where '0'
denotes the Kronecker-product of matrices. The matrix U' U equals (t -1 )I". If d E nwp for
this setting is a balanced incomplete block design with columns as blocks then in each block
there must be exactly t - 1 treatments, i.e. one is missing. Additionally, each treatment
must be missing in the same number of blocks, namely in k blocks. This means, however,
that there must be a kt X kt permutation matrix lId, such that T~U = {1~ 0 (I t l: - It}}lId.
Consequently, the right-hand side of (3iii) can be written as

Since lk 0 It is permutation-invariant, this equals

k k

(1~ 0 It}lId(lk 0 It) = L L lI~~) = Qd,
i=1 j=1

say.
The matrix Qd has constant row- and column-sums k and its elements are nonnegative
integers. Condition (3iii) thus reads

(4)

Condition (4) can only be fulfilled if the elements of the right hand side are integers. Obvi­
ously, t':l k(t - 2)l t l: can have integral entries only if k is divisible by t - 1. So a necessary
condition for the existence of designs in our setting which fulfill conditions (3i), (3ii) and
(3iii) is that either k is divisible by t - 1 or that Qd has only nonzero entries. The smallest k
for which Qd can have only nonzero entries, is k = t, when Qd = I t l: is possible. However,
ifQd = I t l:, then (4) reads as

This is not very interesting as it means that every treatment appears in every row equally
often.
Kunert (1990) considered the case k = a(t - 1), a E N, where for all a ~ 2 and all t ~ 3
there are designs fulfilling (3i), (3ii) and (3iii), which are not balanced block designs with
rows as blocks. One example is
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423
412

2 3
4

1
3 1

423
413

2 4
2

1
3 1

1 1
223

3 4
2

3
4 4

1

with t = 4 and k = 6. For a general construction, see KWlert (1990).
We now examine the case t = 3 for small k.
Case 1: k = 1.
Then, except for a permutation ofrows and columns Qd = l a. Hence, ~(k lal~ +Qd) cannot
have only integral entries.
Case 2: k = 2.
Then, except for a permutation of rows and columns, there are only three possibilities for
Qd, namely,

Q, " [~ : ~] "QF [: : n"Q," [~ : :]

Only t(k lal~+Qd has integral entries. An example with Qd = Ql and T~P = t(2 lal~+Qd). .
is

d= [2 1 ~ 3 3 ~],
3 3 2 1

which is a member of the class considered by KWlert (1990). It is, however, not very inter­
esting as it is a balanced block design with rows as blocks.
Case 3: k = 3.
As said before, in the case k = t there is only one Qd for which ~(k lal~ + Qd) has only

inte
g
:: en[:ie~, nr:

y ~d ~ 1:1~2 A~]examPle with this Qd which fulfills (3iii) is

3 3 2 2 1 1
for which each treatment appears twice in each row.
Case 4: k = 4.
Here are three different matrices Qd for which the matrices ~(k lal~ +Qd) have only integral

entri~: :h[e~e1e

~] or Q2 = [~ ~ ~] or Qa = [~ ~ ~].
004 022 022

For f = 1,2 and 3 there is a design d(f) with Qd(J) = Q! fulfilling (3iii). These are

[

1 1 3 2 1 1 3 2]
d( 1) = 2 2 3 1 2 2 3 1,

3 3 2 1 3 3 2 1

d(2) " [; : ; ; : : ; : ; : : q
and

d(3) = [2 1 ~ 3 1 ~ 3 2 ~ 3 2 ~].
3 3 2 3 2 1 2 1

Here, d(l) is a member of the series constructed by KWlert (1990) and not a balanced block
design with rows as blocks, while d(2) is a balanced block design with rows as blocks. The
design d(3) is the most interesting as for d(3) the design matrix in the simple block model
with rows as blocks is not even of the form c(fa - ~lal~).
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3 On the non-validity of the usual row-colunm model under a
randomization-theory viewpoint
In the case of a non-orthogonal row-colwnn struchue there is very little freedom for ran­
domization. This creates the suspicion that model (1) may not be justifyable with the usual
randomization argument. We will show for an example that indeed it cannot. Hence, it
might be appropriate to consider different, more complicated models to analyse designs with
a non-orthogonal row-colwnn struchue.
The example considered is the simple case that u = p = 4 and t = 3. Assume that each
row has only 3 units, the unit in row i and colwnn i is missing, 1 :::; i :::; 4. It is easily seen
that each design for which each treatment appears exactly once in each row and colwnn,
is universally optimal in model (1) for this situation. Except for permutation of treatment
labels, there are only fom different such designs. These are

d, = [: ; : :], d, = [i ; : :], d, = [~ ; : :]

Md ~ = [: ; : :]

Hence, if we want to run such an experiment, then the only randomization left to do is to
select one of designs d1 , d2 , da and d4 according to some prespecified probability measme
and then to randomize treatment labels. We want to show that this cannot lead to validity
of model (1). The technical device used is very similar to the one used in Bailey, Kunert and
Martin (1991).
A necessary condition for the validity of model (1) is that in absence of treatment effects the
expected mean square for treatments should be the same as the expected mean square for
error. Now assume that the errors in model (1) are not uncorrelated, but have an unknown
correlation structme :E. Then, in general for one fixed design d, the expected mean squares
will not be the same. A valid randomization, however, will create a probability distribution
on a set of designs, such that the average over this distribution of the expected mean squares
for error will equal the average expected mean square for treatments. Since the covariance
structme is unknown, we have to find a distribution having this property for every positive
definite matrix :E. Such a distribution can indeed be found for model (1) in the case of an
orthogonal row-colwnn structme. In that case we start with any row-column design d. We
consider the set of all designs which can be created from d by a permutation of rows and
a permutation of colwnns. The probability distribution gives equal probability to each of
those designs.
Assume we want to create such a distribution over the set V = {d1 , d2 , da, d4 }. Note that
the error mean square and the treatment mean square are not changed by permutation of
treatment labels. Hence, this set V is the largest possible set over which the randomization
can be extended, if we restrict attention to designs for which treatments are orthogonal to
rows and colwnns in model (1).
For a fixed design d, E V the treatment mean squares, SST" equals

It is easy to see that for all d, we have
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and

We also have

p'U = 141~ - 14.

Denote the measurement on the unit in row i and column j by Yij . Remember that Yii is
not defined as there aren't such units. Further, let Yi, and Y j denote the marginal sums,
while l:lrj Yij is the sum of all measurements on units receiving treatment r. Then

3

SSTf = ~{L)L Yij)2 - ~y'2}.
r=1 [r)

Note that the units receiving treatment r are determined by the design d f . Similarly, we
have for the error sum of squares, SSEf , that

SSEf =Y'prl.([P, U, Tat])Y =Y'prl.([P, U])Y - SSTf
, 3, , 3, , 1, , 1, I

= Y Y - - Y P P Y - - Y UU Y - - Y UP Y + -Y 112 112Y - S STf8 8 4 6

44 3 4 3 4 1 4 1= '" "'}':.. _ - "'(}':.. )2 __ "'(Y .)2 __ '" }':.,Y,. + _y 2 - SSTf .
LJ LJ') 8 LJ' 8 LJ) 4 LJ • • 6"
i=1 j=1 i=1 j=1 i=1

We calculate the expected sum of squares of treatments and of error for three special covari­
ance matrices.
Assume "E 1 is such that var Yij = (72 for all i and j. Further, let Cov (Y14 , Y23 ) = p while all
other covariances are assumed zero. Then

1 1
E(SSTf ) = -{(12(72 + 2:1:fP) - -(12(72 +2p)}

4 3

= 2(72 + (:l:f/2 - 1/6)p,

where E indicates the expectation and:l: f E {O, 1 } indicates whether design df applies the
same treatment to units (1,4) and (2,3). We also have

3 3 1 1
E(SSEf) = 12(72 - -12 (72 - -12 (72 - -0 + -(12(72 +2p) - E(SSTf )

8 8 4 6
2 1

=3(7 +(2-:l:f/2)P.

There are 3 degrees of freedom for error in model (1) and 2 degrees of freedom for treatments.
Hence, the expected treatment mean square equals the expected error mean square if and
only if

(72 + (:l:f/4 - 1/12)p = (72 + (1/6 - :l:f/6)p.

This can only be true for all (72 and p if

:l:f = 3/5.
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There is no d f such that zf = 3/5. For a valid randomization, however, the mean of zf
over the randomization distribution must be 3/5. Since Z f equals 0 for d1 and 1 for d 2 , d3

and d4 , a randomization can only be valid if it has probability 2/5 of selecting d1 and 3/5 of
selecting one of d2, d3 or d4.
Now consider a second covariance structure I:2 , where var Y ij = 0'2 for all i and i, but Cov
(Y12 , Y42 ) = p and all other covariances are zero. Then

where zf E {O, 1 } indicates whether units (1,3) and (4,2) receive the same treatment. We
also have that

3 3 1 1
E(SSEf ) = 12 0'2 - -120'2 - -12 0'2 - -0 + -(120'2 + 2p) - E(SSTf)

8 846
= 30'2 + (1/2 - Zf/2)P.

Hence, for a valid randomization we also need a randomization mean for zf of 3/5. Since zf
equals 0 for d3 and 1 for d1 , d2 and d4 the valid randomization must have a probability of
2/3 of selecting d3 as well.
Finally, we consider I:3 such that var Yij = 0'2 for all i and i and C OV(Y13 , Y24 ) = p while
all other covariances are zero. Again

where uf E {O, 1 } indicates whether units (1,3) and (2,4) receive the same treatment. Like
before, we get

This implies that for a valid randomization the average of uf must be 3/5. Since uf = 0 for
d4 and 1 for d1 , d2 and d3 , a valid randomization must have a probability of 2/5 of selecting
d4 , as well.
Altogether, we have shown that it is impossible to find a randomization such that the ex­
pected mean squares for treatments equals the expected mean squares for error for all covari­
ance matrices. This shows that model (1) cannot be justified by randomization arguments.
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Optimal Simulation Design by Branching Technique

V.B. Melas

The paper is devoted to a theory of branching simulation technique for general Markov
chains. A representation for variance of linear functional estimators is obtained. It allows to
receive optimal designs interpreted as functions determining branching numbers. The opti­
mality criterion is multiplication of the variance by summing length of simulated trajectories.
For the important partical case of random walk simulation as well as for the case of finite
Markov chains the theory is applied and optimal designs are obtained. The efficiency of the
designs is investigated and seems rather substantial.

1 Introduction

Simulation experiment is interpreted here as construction of random process trajectories by
computer to obtain parameters of interest estimators. The random process can describe
dynamic behaviour of a real system or of an ideal object. Let {Ztl be a family of random
values defined on a measurable space {X, A} where X is a set (state space) and A is a q-field
of its subsets. In many applications X is a finite or countable space or an interval and A is
introduced by the standard way, t can be from an interval or a discrete set.

Consider behaviour of a queueing system with a single service device denoted by GI/G /1/00
in the Kendall classification. It can be desribed by the following way. Demands come in mo­
ments t l , t2, ... and need sevice times UI, U2, . " respectively. Demands are servied in the
order of coming. Let random values Xi = Ui - Vi where Vi = tj+1 - tj be independent and
identically distributed with a distribution density f. Let WI, W 2 , ••. be the time spending
in the queue by first, second, ... demand. Suppose that in the initial moment t = to = °the
system is free of demands. Then

WI = 0, W n+1 = max(O, Wn + X n ), n = 1,2, ...

Consider the process

SI = 0, Sn+1 = S" + X n, n = 1,2, ...

and define

Mn = max{SI,"" Sn}, n = 1,2, ...

The process {Sn = n 2 I} is the random walk process connected with the waiting process
{Wn; n 2 I}. It is known (see I,Ch.XII) that W n and Mn have the same distribution and
Wn -> W, Mn -> M in distribution where Wand M are random values if it is supposed that
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EXl < O. Denote () = P{W:::: v} = P{M:::: v}. This quantity is the probability ofexiding a
given value (v) by the time spending in the queue by a demand in the stationary limit. The
closed analytical expression for () is generally unknown and the problem is to estimate () by
simulation {Wn;n:::: I} or {Sn;n:::: I}. This problem has many important interpretations.
We mention only the problem of sequential test power estimation (see 2).

The considered problem is only one of a great variaty of system simulation examples
(see 3, 4). The simulation method is greatly universal but can require tremendous computer
time. So simulation design is needed. For this purpose can be used general optimal design
methods since different trajectories can be considered as independent ones (see 5). But for
optimization of a single trajectory performance special methods are desirable. Such methods
are usually called variance reduction techniques. There are a number of classical methods
to be found in known monographies or review papers 3, 4, 6, 7. They are: importance
sampling, conditional Monte Carlo method, control variates, random cubatura formulas,
antithetic variate and others. But almost all this methods require rather substantial prior
information on the system under consideration. Such information is often absent and we need
a more universal method.

Such method can be developed on the base of von Neumann idea of splitting and Rus­
sian roulette 8. This idea consists in parallel simulation of independent trajectories while
each trajectory can be dublicated or vanished depending on its importance for estimation
exactness. There are a number of papers considering partical problems 8-11 but they do
not contain enough developed theory. Such theory is developed in author's papers 12, 13 for
finite Markov chains and in 14, 15 for random walks. Here we generalise the approach of this
papers to general Markov chains. It allows to improve previous results. Note that many of
system simulation problems can be reduced to enclosed Markov chain simulation (see, f.e.,
7). Therefore the developed theory seems rather universal.

2 Formulation of the problem

Consider the problem of a linear functional estimation of a general Markov chain. Let us
introduce necessary notations and definitions. Theirs full exposition can be found in 16. Let
random values Xl, X 2 , ••• are defined on a probability space (X, A, P) and form a homoge­
neous Markov chain with transition function P(z,dy) = P{XI E dylXo = z} measurable in
the first argument and such that Jx P(z,dY) = 1. Further J will be placed for Jx' Suppose
that u-field A is countable generated. Define the function

h'B(z) = P{Xn E B infinitely often IXo = z}

where "Xn E B infinitely often" means n;;;,=o U;:"=m {Xn E B} l' 0, 0 is the empty set.

Let us say that a Markov chain is Harris recurrent if there exists a measure J1. on (X,A)
such that J1.(X) > 0 and

h'B(z):= 1 for z E X,B E {B E A;J1.(B) > O}.

It is known that for Harris recurrent Markov chains there exist a nontrivial u-finite mea­
sure 7l" such that
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1r(dy) =JP(z,dY)1r(dz).

If1r(X) < 00 then the chain will be called positively recurrent. In this case put 1r(X) = l.
Such measure is probability measure and is called stationary one. Arbitrary Harris recurrent
Markov chain is irredusable and there exist a function s(z) and a probability measure v such
that fBs(z)l-l(dz) > 0 if I-l(B) > 0 and

pmo(z, B) ~ s(z)v(B) (1)

for every z EX, B E A.

Markov chain will be called Harris positively recurrent if it is positively recurrent and
Harris recurrent as well. The Markov chain will be called ergodic if it is Harris positive
recurrent and aperiodic. It is known that if {Xn ; n ~ O} is ergodic then for arbitrary function
h integrable in measure 1r and any probability measure v on (X, A)

with n --> 00.

Denote J = (1r, h) and consider the problem of its estimation by simulation of {Xn ; n ~ I}
trajectories.

Suppose that h(z) is a measurable on (X,A) function, h(z) = h(z) - J and

{

1"(B) }JIh(z)IE Eh(Xn)IXo = z 1r(dz) < 00

for any B E A where T(B) = min{n; Xn E B}. Suppose that mo
simplicity (general case can be considered similarily).

3 Parameter estimators

(2)

1 for the sake

Consider two estimators of J: the direct estimator and the regeneration method estimator.
The direct estimator can be determined merely as the sum of the function h(z) values along
the trajectory:

N

IN = 'Lh(X;)/N
_=0

where {Xn ; n ~ P} is a Markov chain with arbitrary initial distribution. The following
result is proved in 16,theorem 7.6.
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Theorem 1

Let {Xn ; n 2: O} be an ergodic Markov chain satisfying the condition (1) with mo = 1, h( z)
be measurable function on (X,A) satisfying the condition (2). Then the distribution of the
random value VN( iN - J) tends to normal one with zero expectation and the variance 0'2

where

tj; is iterative solution of the equation

tj; = (P - s @ I/)tj; +h

For determination and investigation of the regeneration method estimator it is usefull the
following construction (see, also, I6,Ch.4). Let Zn(n = 0, 1, ... ) takes values one or zero and
Zn = 1 with the probability S(Xn ) and Zn = 0 with the probability 1 - S(Xn ). Let the
random value X o distribution is v(dz), 00 = 0,01 = minin 2: 0, Zn = I}, 02 = minin >
O),Zn = I}, ... It is known that 0i,i = 1,2, ... are random values and the distribution of
X oti coinsides with I/(dz),i = 1,2, ... Therefore pairs (Y(k),b(k)),k = 1,2, ... where

0'.-1

Y(k) = l: h(X;),ble = Ole - 01e_1

\=0'.-1

are independent and have the same distribution. The values collection {Xa ._1 , ••• ,

Xa.-d is called k-th circle or tour. Note that Eb(I) is the expected length of one tour.
Consider the estimator

Ie Ie

lie = (Ijk)l:Y(i)j(l:b(i)jk).
i=l i=l

Such estimators were introduced in 17. They were considered in a number of papers (see
8). Nevertheless the following result is seemingly new. Besides the approach introducing for
its prove is applicable for branching technique as well.

Theorem 2

Let the conditions of theorem 1 are fulfilled. Then lie tends to J with probability one
and the distribution of the random value /k( lie - J) tends to the normal one (k -+ 00) with
zero expectation and the variance 0';' Besides Eb(I) = Ij Js( Z )1l'( dz) and the magnitude
Eb(I) . O'~ equals

(1l',2tj;h - h2) = (2DY(I) - 2JCov(Y(I), b(I) + J2 Db(I))j Eb(I).

Proofs of this and the following theorems are to be found in Appendix.

Remark 1

Note that the quantity Eb(I)O'~ can be considered as the asymptotic efficiency of the
estimator lie. The corresponding value for the estimator 1N is 0'2. So we see that the
asymptotic efficiency of the direct estimator and the regeneration one coincide and do not
depend on the choose of 1/ and s in the condition (1).
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Both estimators can be improved by branching technique to which the remainder of the
paper is devoted.

4 Branching technique

Let at an n-th step TJn copies of the chain {Xn, Zn} are simulated; {X~'Y), Z~'Y);; E 1 : TJn}'
The procedure regulating numbers of the copies can be introduced in the following way.

Definition. Arbitrary measurable on (X, A) function ,L3(z) such that

inf,L3(z) > O,L3(z) = 1 for such z that s(z) f- 0

will be called branching simulation design (BSD). Determine TJo as the random value;

(3)

TJo = { ~,L3(z)J with probability (1- ,L3(z))
l,L3(z)J with probability ,L3(z)

if zo = 1,
if zo = 0, X o = z
if zo = 0, X o = z

where l,L3(z)J is the integer part of ,L3(z)',L3(z) = ,L3(z) - l,L3(z)J. If X~'Y) = z and X~jl =
y(n = 0,1,2, ... ;; = 1,2, ... ,TJn) add r('Y)(z,y) - 1 chains beginning at Xn+l = X~jl if
r('Y)(z,y) ~ 1 where

r('Y)(z,y) = { ~,L3(Y)/,L3(Z)J with probability 1 - (,L3(y)/,L3(z))

l,L3(y)/,L3(z)J + 1 with probability ,L3(y)/,L3(z)

if z~'Y) = 1

if z~'Y) = 0

if z~'Y) = 0

If r('Y)(z,y) < 1 and z~'Y) = 0 then simulation of the copy is abrubt with probability
1 - (,L3(y)/,L3( z)) and is continued with probability ,L3(y)/,L3( z). After simulation of the current
step of all TJn copies newly arising and remaining copies are numerated over again. All copies
are simulated up to hit in X @ {I}.

The collection of values {X~'Y);; E 1 ; TJn} obtained in the above procedure will be
called circle. Each circle abrubts with probability one since below theorem 2 shows that

E 2::::"=1 TJn < 00.
Consider results of k circles simulation. Denote them by

Determine the estimator

where
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00 ')n(i)

Y/l(i) 2: 2: h(X~")(i»/j3(X~")(i)),
n=O .,=1

00 ')n(i)

b/l(i) 2: 2: 1/j3(X~")(i», i = 1,2, _
n=O .,=1

Set

h 00

T/l,h =2: 2: 7/n(i)
i=l n=O

This magnitude equals the summing number of steps of all simulated in k circles trajec­
tories. Denote

Q(z,dy) = P(z,dy) - s(z)v(dy),

DQ<P(z) = D[~(X2)IXd = j <j>2(y)Q(z,dy) - (j <p(y)Q(z,dy»2,

rQ<P(z) = j[<p(y)j3(z)/j3(yW[j3(y)/j3(z) - (j3(y)/j3(z»2]Q(z,dy),

Dv<p = j <p2(y)v(dy),

rv = j[<p(y)/j3(yW[f3(y) - (j3(y))2]v(dy)

where <p is defined in theorem 1.

Let

(4)

Theorem 3

Let the conditions of theorem 1 are satisfied. Then for arbitrary BSD j3( z) the limits in
(4) exist and are finite, j/l,h ---t J (k ---t 00) with probability one and the distribution of the
random value Vk( i/l,h - J) tends to the normal one with zero expectation and the variance

IT~/l and

T/lIT~/l j j3(z)1l"(dz) x {j j3-I(z)1l"(dz)[DQ <P(z) + rQ(z)] + j s(z)1l"(dz)[Dv<p + rv]}

00

[E 2: 7/n/(Eb/l(I»2] x [EYJ(I) - 2JE(Y/l(I),b/l(I» + J2 Eb~(1)].
n=O

Remark 2

It is obvious that taking 81 (z), Sl( z) = 1 if 8(Z) = 1,81 (z) = 0 if s(z) < 1 and QI (z,dy) =
P(z,dy) - sl(z)v(dy) instead of s(z) and Q(z,dy) we can only reduce the quantity T/lIT~/l
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since the value will be the same and it arise more freedom in choosing ,8(z). So we assume
further that s(z) = l,z E Sand s(z) = 0, z E X \ S and get

Note that the last expression does not depend on the choose of (s, v) in (1). It can be
proved by a direct calculation.

Remark 3

Note that the magnitudes rQ( z) and r" depend on ,8(z). They connected with randomness
of branching numbers. But they can be ignored in typical situations. Particularly they can
be substantially reduced by simulation N circles simultaneously if we will use the rotation
sampling method (see, f.e.18) for chosing branching numbers. It can be realysed in the
following way. Let X = U~lXi, Xiii Xi = 0, i oF- i, ,8(z) = Ci for z E Xi. Suppose that
at n-th step k copies transit from z E ~ to Y E Xi' Then the branching number for copy
R(R = 1,2, ... , k) can be determined by the formula

lCi/Cd + [al/m]

where a is a random value with the uniform distribution on [0,1]. Remarks 2 and 3 allow to
define the following optimality criterion

-> min
(3

BSD minimising the left side will be called quasy optimal. Such designs can be obtained
by Schwarz inequality.

Theorem 4

Let the conditions of theorem 1 are satisfied and s( z) = 0, z E X \ S. Then quasy optimal
BSD (.8*(z)) is unique and

,8*(z) = VDQtp(z)/D"tp, z EX \ S.

Note that the magnitudes DQtp(z) and D"tp can be estimated in the simulation exper­
iments by the standard way. Thus quasy optimal designs can be fOWld in the sequential
approach style.

Remark also that the branching analog of the direct estimator can be investigated in the
similar way.

5 Random walks simulation

For the problem formulated in the introduction we can obtain additional results. Assume
that EXl < O. It is straightforward that the pair (s, v):

s(z) = l,z = O,s(z) = O,z > 0,
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lI(dz) = af(z)dz,z > O,a = 1/(1- F(O)), 1- F(O) = 10
00

f(t)dt

satisfies the condition (1) with rno = 1. For 11"( dz) = P{W E dz} it is known that
I,Ch.Xn 1I"(dz) = M'(z)dz,z > O,P{W = O} = M(O) where M(z) = P{M < z}. The
function

h(z) = 0, z < v, h(z) = 1, z ~ v

fulfills the conditions of theorem 1.

The explicit form of the asymptotically (v --+ 00) quasy optimal BSD and its asymptotic
efficiency are given by the following theorem.

Theorem 5

If EX j < 0 and for a positive value 'xo

then for arbitrary BSD f3( z) and for v --+ 00 we have B --+ 0 and

where C is a constant.

Asymptotically quasy optimal BSD f30(t) is

and for BSD f3(t) =exp(('xo + ~)t),t < v,f3(t) =f3(v),t ~ v it holds

where C j is a constant and C :S C j :S K~~i4C,

Note that the asymptotic efficiency of the regeneration estimator is O(Bln(I/B)) and of
the importance sampling estimator 2 is O(B2 ln(I/B)). So the efficiency of the branching
technique estimator is very close to that of the importance sampling one. However branching
technique is more universal than importance sampling. This result is an improvement of the
main result in 15 .

•



121

6 Finite Markov chains

Let {Xn ; n 2 O} be a homogeneous positively recurrent aperiodic Markov chain with the
finite state space {O, 1, , m} and a transition matrix P = (Pij)ij=o' Functions 3io = 1,3i =
O,i =I io with io = O,I, ,m play the role of 3(Z). Take io = O. Then obviously v(dz)
becomes {Vi}~o, Vi = POi, i = 0,1, ... , m, Q(z, dy) becomes Q = (Pij)i,j=o where Pij = Pij if
i =I 0 and POi = O(i = O,I, ... ,m). Let cP = (cpo, ... ,CPm)T be the unique solution of the
equation

where hi = hi - J, h = (ho, ... , hm ) is arbitrary vector with real components, J
Li'=o hi'lri, ('lrO, ... , 'lrn ) is the stationary distribution.

Results of §4 take the following f/?rm.

Theorem 6

For the above described Markov chain theorems 3 and 4 hold and

n n n n n

Ttl(T~tl = L 'lri,l3i X L::>i,l3i- 1HL PijCP; - (I>ijCPj)2] +L(cpA/,I3j)2[(,13;/,I3j) - [(,13;/,I3j W]Pij}
i=O i=O j=l j=l j=l

where ,130 = 1. Quasy optimal BSD is

Investigation of different BSD closed to optimal in the sense of magnitude Ttl(T~tl and
another criterion for a special type of finite Markov chains can be found in the author's
paper 13.

7 Appendix

Proof of theorem 2

The approach of the proof base on the study of two dual equations.

Define the random functions

where al = min{k 2 0, Zk = I}, nl = min{n, aI}.

According to the condition (1) expectations of~(z) and ~n)(z) exist and finite. Denote
<p(z) = E~(z), <p(nl(z). Since E{Li',;o Ih(Zi)/ IXo = z} is finite by (1) the limit <Pn(z)
(n --+ 00) exist and equal to <p(z). Obviously ~(O)(z) = h(z) and
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with probability Q(z,dy)
with probability s( z )v(dy)

(5)

Calculating the expectation in (6) receive

By limit transition with n -; 00 we obtain

'f'(z) = JQ(z,dy)'f'(y) + h(z).

Consider the dual equation

t/;(dz) = JQ(y,dz)t/;(dy) + v(dz)

where t/;(dz) is a measure on (X,A). This equation has the explicit solution

t/;(dy) = 1r(dy) / Js(z)1r(dz)

(6)

(7)

(8)

(9)

where 1r(dy) is the stationary distribution of the chain {Xn;n 2: O}. Solutions of equations
(7) and (8) are connected by the following result. Set

t/;(O)(dz) = v(dz),t/;(n+l)(dz) = JQ(y,dz)t/;(n)(dy) + v(dz), n = 0,1,... (10)

Lemma 1

Let P( z, dy) is the transition function of an ergodic Markov chain satisfying the condition
(1) with mo = 1, Q(z,dy) = P(z,dy) - s(z)v(dy). The following assertions hold

(i) there exist the limit

for arbitrary BE A and t/;(dy) is determined by the formula (10);

(ii) if h(z) is a measurable function on (X,A) fulfilling conditions (2) then

limJ'f'(n)(z)v(dz) = J1r(dz)h(z)/J1r(dz)s(z).

Proof of the lemma 1 is straightforward.

Thus we have using lemma 1

EY(I) = J'f'(z)v(dz) = Jt/;(dz)h(z) = J1r(dz)h(Z)/J1r(dz)s(z).
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Taking h(z) == 1 receive

Eb(l) = J1r(dZ)/J7I"(dz)s(z) = 1/J1r(dz)s(z).

By the strong law of large numbers

Note that since the condition 1 hold 0'2 in theorem 1 is finite. Calculating the expectation
of ("ip(n+l l(z))2 with the help of relation (6) and using the limit transition with n -+ 00 we
receive

Eip2(Z) = JEip2(y)Q(z,dy) + 2h(z)rp(z) - h2(z),

Ey2(1) =JErp2(z)lI(dz) =J,p(dz){2h(z)rp(z) - h2(z)} = (7I",2hrp - h2)/(7I",s).

Set Y(I) = Y(I) - Jb(I). Then

Besides

where h(z) = h(z) - J, rp is the iterative solution of the equation

rp = Qrp + h.

Since by the strong law of large numbers

k

Lb(l:)/k -+ Eb(l) = (7I",s) (k -+ 00)
i=l

we have

DY(I)/(Eb(I))l =

(71", 2rph - h2 )/(s, 71").

The distribution of the random value ,Jk(Kk - J) tends to the normal one by the central
limit theorem.

Proof of theorem 3

The proof is similar to the preceding one.
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Define the random functions

where n1 =min{n,a}, a =min{k;k 2 0,'7k+1 = O}. Obviously

_(0)( ) _ h( ) _(n+1)( ) _ { 2:~:;i <p~)(y) +h(z)
fIJ{3 z - z ,flJz ,{3 Z - h(z)

with probability Q(z, dy)
with probability ,,(z )v(dy)

(11)

n = 0,1, ...

Calculating the expectation ofrelation (12) both sides and using the known Wald's lemma
and the limit transition (n ~ 00) receive

fIJ{3(z) = / ;~~~Q(z,dY)fIJ{3(Y) +h(z)/{3(z)

and

where fIJ{3(z) = limn...."" E<p~J(z).

Using the dual equation (9) and lemma 1 we obtain

/ v(dz){3(z)fIJ{3(z) = / t/!(dz)h(z) =

/ 1I'(dz)h(z)/(1I',,,) = EY(I)

and similarly

Denote <P{3(z) = {3(z)~{3(z). Then E<p{3(z) = fIJ(z) and calculating the expectation of
squares of relation (12) both sides we receive by limit transition

E(<p{3(Z))2 / ;~:~Q(z,dY)E<P~(Y)

+ / Q(z,dY)flJ2(Y){I- ;i:~ + ;:i:~[{3(y)/{3(z) - [f3(y)/{3(z)]2]}

+ 2h(z)fIJ(z) - h2(z)
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Since

where ~1')(z) are independent realisations ofip~(z) we receive by the Wald's lemma

where

u(z) = 1 - ,B-1(Z) + ,B-2(z)(,B(z) - ,B(z)\

Placing Y~(I) = Y,iJ(I) - Jb~(I) instead Y,iJ(I) we receive similarly to the proof of theorem
2 that

and the estimator j~,1c is strongly consistent and asymptotically normal. Note that T,iJ,l =
Y~(I) if we take h(z) = ,B(z) and ET~,l = (,B,7r)/(7r,s). Now applying lemma 1 obtain

DY,iJ(I) = EYJ(I) / lI(dz)"o2(z) + 7'"

+ / ,B-1 (z)7r(dz)[DQ"o(z) + 7'Q(z)]/(s,7r).

Since T~ = ET,iJ,l the formula for T,iJC1i~ can be obtained by multiplication of the expres­

sions for DY,iJ(I)/(Eb,iJ(I))2 and ET~,l'

Proof of theorem 4

The result follows from the Schwarz inequality in the following form

Proof of theorem 5

Let h.,(t) = 1, t 2 z, h.,(t) = 0, t < z where z is a fixed value. Denote the functions
"o,iJ(t) and 't'(t) corresponding to h(t) = h.,(t) by "o.",iJ(t) and 't'.,(t), respectively. Using (13)
we get that the function 't'l(t) = D"o.,,~(t) satisfies the equation

't'l(t) = 10'''' 't'l(u)(,B(t)/,B(u))f(u - t)du + h1(t)

where

h1(t) = FJ't'(t) +7'(t),

DJ't'(t) = D('t'.,(W2)(W1 - t) = 10
00

't';(u)f(u - t)du - (1000

't'.,(u)f(u _ t)du) 2,
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r(t) = 10"0 (<p,,(u),B(t)/,B(u))2-Yu,d(u - t)du,

-Yu,t = ,B(u)/,B(t) - (,B(U)/,B(t))2.

In the paper 15 it is shown that

<p,,(t) ~
t < z, t,z -> 00

t ~ z, Z -> 00

where Cl and C2 are constants,

Therefore

t < z, Z -> 00

t ~ z, Z -> 00

t < z, Z -> 00

t ~ z, Z -> 00

Now the results of theorem 5 can be got by immediate calculations.

Proof of theorem 6

The proof is very similar to that of theorem 3.
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PART II. STATISTICAL APPLICATIONS





Estimates with Branching for a Functional of Stationary
Distribution of Markov Chain

S.M.Ermakov and J.N.Kashtanov

In this paper some approaches to minimization of estimates variance in Monte-Carlo
calculations of a functional of stationary distribution of Markov chain are developed. A
computational example /rom the queueing theory, illustrating an application of the theoretical
results, is presented.

1

The problem of calculation of a functional J = (1r, h) where 1r is the stationary distribution
of some Markov chain with transition probabilities p(x, dy) often meets in queueing theory,
statistical physics; some problems of calculation eigenvalues and functionals of eigenfunctions
of some intergral and differential operators can be reduced to it [5].

As a rule the analitical solution of problems pointed above is possible only in the simplest
cases, therefore functional J is often calculated by Monte-Carlo method with estimate JN =
it Z=~l h(~i) where ~i - is a simulated Markov chain with transition probabilities p(x,dy).
In the cases when J is small the estimate JN becomes not effective and it's necessary to use
some methods of reduction of estimate variance. As it was shown in [1,2] the straight use of
importance sampling leads to inconsistant estimates and some method of improvement the
efficiency was suggested. The essence of the method is that the main chain with transition
probabilities p( x, dy) is simulated and auxiliary chains with, generally speaking, arbitrary
transition probabilities r(x, dy) are branching from the main chain at some deterministic
moments. On the paths of these auxiliary chains estimates of some functional are constructed
and transition probabilities r(z, dy) are chosen in some special way in order to decrease the
variance. This method was generalized in [3], where, in particular, the estimate with zero
variance was constructed. In [4] another approach to variance reduction for estimating J was
developed. The essence of this method is that we must know or at least can simulate the
distribution of the chain at some moments (for example at the moment of achieving some set).
Starting from this distribution we can simulate the chain, generally speaking, with arbitrary
transition probabilities until the next moment when we know the chain distribution.

In present work the results of [3,4] are generalized to the case of nonlinear functionals.



132

2

Let p(z, dy) be transition probabilities in space (X, B) with stationary distribution 1I"(dz).
We assume that the condition Ip(i)(z, B) - 1I"(B)1 ~ canst 5i is valid, where B E B, p(i) is
the i-th power of p, canst is suffuciently large constant, 5 < 1. Let a measurable bounded
function h: X -> Rn and function u : Rn -> R, u E C 2 be given and J = (11", h). We consider
estimates for u( J) with minimal variance.

Let {ri(z,dy)} be substochastic transition probabilities, mi(z) = ri(z,X), 9i(Z) = 1 ­
m;(z),

X= U Xi, To(x)=i,i!xEXi ,
l~i~<Xl

R", be probabilities in X generated by ri(z,dy), P", - those generated by p(z,dy). Mathe­
matical expectation according the measure R", we assign as M"" that, according the measure
P"', - by E", and consider transition probabilities in X:

R(x,') = / p(zo,dyo)RYo (-), Zo = x(O).

X

Transition probabilities R(x,') have a stationary disribution IIO = J1I"(dz)R",(·).
X

Let Pi = X(i<T )(x) Ii P(tH':"'i~, Ah(x) = L:i<T Pi(X)wi(x)ai(z;)h(z;).
o 3'=1 ", %,-1, %, 0

Lemma 1. Let the following conditions be valid:

<Xl

1. ai 2 0, L: ai(z) = 1,
i=O

2. E",(XBaih(Z;)) :f. O:::} R",(B) > 0, Be {i < TO}'

3. M",(WiIBi) = 1,

4. L: IPi(X)Wi(x)ai(zi)h(z;)1 E L2(R",o),
i<TO

then J II(dz)Ah(x) = J.
X

It should be noted that an estimate, satisfying condition 3, is ~alled in Monte-Carlo
method a "unite class" estimate, an estimate with Wi(X) = 5i,TD-I!9To(Zi), is called an esimate
"by absorptions" and an one with Wi(X) = 1 is called an estimate "by collisions".

It follows from Lemma 1 that as an estimate for u(J) one can take U(JN), where

1 N
IN= NLA(h+c)(xk)-c,

k=!

cERn, Xk is a Markov chain with transition probabilities R(x, .).

Let v(z) = (u'(J),h(z) +c), 1= (u'(J),J + c), cp(z) = M",Av, 1/I(z) = M",(Av)2.

Lemma 2. If in neighbourhood of J 182u/8Yi8Yjl ~ canst, then

1 /' -.'Prob(lu(JN) - u(J)1 < s/.fN) ----> ~ eTddt,
v211"d -,
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oc
where Prob is the measure in the universal probabilistic space, d = 2: R(lkl), R(k)

k=-oc

J1I'(dz)(<p(z) - 1)(P;<p - 1), R(O) = J1I'(dz)tfi(z) - 12•
X X

One can note that only R(O) depends on {Td. Thus the problem of variance reduction
for the estimate J N is reduced to that of minimization of D = J 11'(dz )tfi(z).

x
We assume that vector c is chosen so that v( z) 2: vo > O. The next theorems can be

proved in the same way as in [2].

Theorem 1. Let ai = 6i,lt then for the estimate "by absorptions" the minimum of D is
achieving when Ti(Z,dy) = X(i9)p(z,dy)P;-iv/P~-i+IV.

Theorem 2. Let ai = X(i$I)/(1 + 1), then for the estimate "by collisions" the minimum
of D is achieving when

l-i l-i

Ti(Z,dy) = X(i9l p(z,dy) L. ptv / L. p1+ l v.
j=O j=O

Theorem 3. Let 0 < -y < 1, ai = -yi(1 - -y), then for the estimate "by absorptions" the
minimum of D is achieving when Ti(Z,dy) = -yp(z,dy)<p(y)/<p(z).

Theorem 4. Let 0 < -y < 1, ai = -yi(1 - -y), -y2 < c ::; 1, then for the estimate
"by collisions" the minimum of D at condition mi(z) ::; c is achieving when Ti(Z,dy) =
cp( z, dy )b(y) / P",b, where b is the nonnegative solution of the equation

Up to this we considered minimisation of d only by choise of Ti but we can also choose

ai in some special way in order to minimize d. Let us define u(z) = f P;(v - 1) + s and
,,=0

suppose that sand c are chosen so that v( z) 2: 0'( z) > O.

Theorem 5. Let al = u/v, ao = 1 - aI, ai = 0, j 2: 2, then for the estimate "by
absorptions" d = O.

3

Now we shall consider another approach to constructing the estimates for J.

Let T be some Markov moment, O'x(t) = x( s + t), Tl = T, Ti = Ti-I +T(O"';-' (x)), P ",(T >
i) ::; const 6i . Let Markov chain X(Tn ) have the stationary distribution 'If ... (dz). We shall
assign H = 2: PiWih(z;), Ho = 2: PiWi, M - a sign of mathematical expectation according

i<r i<r

the measure R(dx) = J 1I'... (dzo)R"'o(dz), E - that according the measure J 1I' ... (dzo)P"'o(dz).
X X

Lemma 3. Under conditions stated above J = MH/MHo.
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N N
So if we assume IN = L: H(xle)/ L: Ho(xle), where Xle are independent realizations with

;=1 ;=1
values in X and distribution R(dx) then one can take U(JN) as an estimate for u(J). Let
I(z) = (u/(J),h(z) - J), ';?(z) = E", L: I(zi) then

i<,

1 /. -.'Prob(lu(JN) - u(J)\ < s/.JN) ----> ~ eT.ldt,
V 27rd -,

where d = (ET)-2M( L: Piwi!(Zi))2.
i<T'

Let C be a subset of X and T be the first value of i > 0 with Xi E C, k(z,dy) =
p(z, dy)xx\C(y).

Theorem 6. For the estimate "by absorptions" the minimum of d is achieving when
r(z,dy) =X(<p(",)IO)k(z,dy)tp(y)!tP(z), where tp(z) =E",L: I/(z;)l.

.<.,.
Theorem 7. Let 62 < Co ::; c(z) ::; 1 then the minimum of d for the estimate "by colli­

sions" under condition m(z) ::; c(z) is achieving when r(z, dy) = X(K.bIO)c(z )k(z, dy)b(y)/ K",b,
where b is the nOIUlegative solution of the equation

4

The following example is taken from [1].

The Poisson flow of bids with sununary rate equal to 7 is uniformly distributed between
entries (1-8). Every bid chooses with equal probability one of four directions (I-IV) and oc­
cupies the corresponding chaIUlel (1-12). The attended time has the exponential distribution
with mean equal to 1. If a chaIUlel is already occupied then the bid, requesting for this
chaIUlel can not be served and leaves the system. One needs to calculate the probability p of
the event that more than 8 chaIUlels are occupied.

Let us introduce the next assignments: z is a state of the system, I(z) is a number of bids
in system in the state z, h1 (z) = l/(I(z) + 7), h2(z) = X(I("'»8)(Z)/(/(z) + 7), h = (h1>h2 ),

7r is the stationary distribution, J = L:",7r(z)h(z), thenp = u(J) = J2 /J1 .

In order to calculate approximate values of Qi let us integrate the states. We shall define
an integrated state as a level set of function I(z) and introduce the transition matrix Pm,1e

in the same way as in [2]. We can easily find oi[k], b[k] for Pm,1e and then assume Qi(Z) =
o;[l(z)], b(z) = b[l(z)].

The results of simulations are given below.

Average Spread of 95% confidence interval
straight sumulation 4.63 . 10 3 2.42. 10 3

estimate of theorem 5 5.50. 10 -3 2.98· 10 -~

estimate of theorem 7 5.67.10 -3 1.56.10 -3
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Optimized Moving Local Regression:
Another Approach to Forecasting

Valery V. Fedorov, Peter Hackl and Werner G. Miiller

This paper empirically demonstmtes the relative merits of the optimal choice of the weight
function in a moving local regression as suggested by Fedorov et al. (1993) over tmditional
weight functions which ignore the form of the local model. The discussion is based on a task
that is imbedded into the smoothing methodology, namely the forecasting of business time
series data with the help of a one-sided moving local regression model.

1 Introduction

In the moving local regression approach parameters are estimated by weighting down the
observations so that the weights reflect the "distance" of the observations from the forecast
point. This gives the flexibility to parametrize the model depending on local conditions.
Given that the true model is locally approximated and a certain form of the approximation
error (such as the remainder term of a local series expansion) is suspected to be relevant at
times, it is possible to choose the weights such that optimal forecasting power is achieved.
Such models are particularly useful for describing or forecasting time series that are generated
by time-varying processes.

In the literature several suggestions for the choice of the weight function in moving local
regression models can be found [e.g. McLain (1971), Cleveland (1979)]. A common feature of
these weighting schemes is that they are chosen taking no regard of the model specification.
The approach presented here aims at maximizing the forecast accuracy and takes a possible
model misspecification into account.

In Section 2 the model and the estimation method are introduced. Section 3 presents
three weight functions that are to be compared in Section 4. This comparison is based on a
time series from bank business that is a typical candidate for nonparametric analysis.

2 The method

Let {z), ... , ZT} be a given set of supporting points, i.e., points where observations {y), ... , YT}

are available, and let cit == ZT+1 - Zt, t == 1, ... ,T, be the "distances" from the point of
interest ZT+1' Then

(2.1 )

will be called a one-sided regression model. It consists of a main term (JT f(dt ) describing
the model, that locally approximates the true model, a "nuisance term" 6T '1'(cit) describing
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the approximation error, and an error term ~t following the usual assumptions E[~t] = 0 and
E[~t~t'] = u; if t = t' and 0 otherwise. The number of components of the parameter vector 9
is determined by the structure of the approximating model. For IfJ, an appropriate function
has to be specified; the "nuisance parameter" 5 is unknown.

Setting t = T + 1 in (2.1) allows us to calculate a forecast for YT+l' If we make the
reasonable

Assumption: h(d) == 1, fj(d) ..... 0 for d ..... 0 and j 2 2, and all components of
IfJ( d) also vanish [usually faster than fj( d)] for d ..... 0,

the forecast

YT+l =B1

is the first component of the (weighted least squares) estimator

B= M- 1y,

with M = 'L,;=1 >..(dt)f(de)fT(cit) and Y = 'L,;=1 >..(de)f(de)Yt.

The mean squared error matrix of the estimator Bis

(2.2)

R = E{(B - 9)(B - 9f} = M- 1M1255TM'{;M- 1+ u2M- 1MM- 1, (2.3)

where M12 = 'L,;=1 >"(de)f(dtllfJT(de) and M = 'L,;=1 >..2(de)f(de)fT(dtl. The choice of the
weight function >"( de) which reflects the reliability of the local approximation is discussed in
the subsequent section.

Bis generally biased:
E{B} = 9 + M- 1 M125 , (2.4)

A detailed treatment of the estimation properties is given in the nonparametric regression
literature such as Cleveland & Devlin (1988) or Buja et al. (1989).

Models of type (2.1) used in local fitting are particularly helpful for time series whose
characteristics change over time. For cases where higher order terms reflected by 5T IfJ(dt)
are suspected to have some effect, Fedorov et al. (1993) suggest choosing the weight function
>..( cit) so that a suitably chosen scalar function of the m.s.e. matrix R is minimized. Adapted
to the forecasting problem, this means direct minimization of the mean square error of the
forecast B1• It is performed under the restriction >"( de) 2 0 for all cit and 'L,t >..(de) = 1. The
weight function depends on the nuisance parameter 5 and the location of observations (i.e.
lit, t = 1, ... ,T). Therefore, in its derivation in a particular situation, 5 has to be estimated
in a preliminary step. The weight function is entirely determined by the model specification
and the data.

In a forecasting context this method will be sequentially applied, i.e., forecasts are calcu­
lated for time points T + 1, T + 2, ... , each estimate being based on the currently available
amount of information. This implies that the weight function is derived in each forecast
point anew. This generalization of the estimation process is straightforward and so we do
not record the corresponding formulae.

Example 1 As an illustration, the optimal weight function is derived for the model Yt =
9 + 54 + ~t, i.e. the moving average specification with a quadratic "nuisance" term. We
consider a collection of T equally spaced points in the interval [-1, ¥ 1and derive the value
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of the weight function for point 1. For the average quadratic distance lP and its variance we
obtain 2T(T+3~~2T+1) and 4T'(2T+l)(T4~~.(8T2+3T-ll) respectively. The optimal weights are:

1 ~[d~ - J'ljlP
A(dt} = T - 1 ~ T~ var(4) ,

".
c.f Fedorov et al. (1993). Note that they are linear in d~.

(2.5)

The form of the weight function and the nwnber of supporting observations that have
nonzero weights (the "window width"), and consequently the degree of smoothing crucially
affects the estimate 9. A weight function that is too concentrated around the forecast point
results in undue variation as it allows reaction to local time series characteristics; a too fiat
weight function smoothes out local tendencies.

The use of moving averages, Le., application of the model from Example 1, is suitable
for the description of the long wave changes in a time series but smoothes away short term
effects. Using a linear moving regression that includes the term 8d allows us to identify
changes which occur within the period covered by the weight function.

3 Comparison of weight functions

When applying moving regression to a set of time series that differ considerably with respect
to its characteristics, the smoothing interval has to be long enough to cover the longest period
of changes in these characteristics.

In the literature several recommendations for the choice of the weight function are given.
Out of practical considerations McLain (1971) suggested

(3.1 )

where dn is the average distance between neighbouring data points and the constant p =
lOan - 1 prevents numerical accuracy problems. A computationally simpler function, the
so-called tricube,

(3.2)

with dq being the distance of the q.n nearest point to :1:, is used by Cleveland (1979). This
function smoothly decreases from 1 to 0 with increasing Ildll. The weight functions (3.1)
and (3.2) have in common that they are chosen without regard of the local model, and the
possibility of a nuisance term is neglected.

Following the recommendations by Fedorov et al. (1993) the weight function can be cho­
sen such that the mean squared error matrix R [see (2.3)] is minimized in a certain sense.
In general, thi~ approach should be clearly superior to techniques that are based on weight
functions such as (3.1) or (3.2). A demonstration of the relative capabilities in applications
will be given in the following section by means of an example in which a forecast of bank
account data is required.
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Figure 1: Optimal weights for forecasting at z = 0 (solid), z = 0.5 (dashed) and z = 1 (short
dashed).

Example 2 Let Y1, ... ,YT be observations from locations -1 :::: Z1 < ... < 0 < .,. < ZT :::: 1
symmetrically arranged around O. The aim is to get a prediction fJ at the forecast point z.
If a linear model with a quadratic nuisance term (cf. next section) is assumed, the optimal
weights A' for T = 10 and Z == 0, Z == 5 and Z == 1 are shown in Figure 1.

4 A case study

For comparing various weight functions the model

Yt == (}1 + (}2dt + 5d~ + ~t , t = 1, ... , T (4.1 )

was chosen. It implies that linearity is considered as a suitable description of the local
behaviour, and that a possible effect of a quadratic term is allowed to be corrected via the
weights of the local regression.

The comparison is based on a time series from the bank business, which is given in Table 1.
The data analyzed in the example are the fractions, to which the creclitline of a typical small
Austrian enterprise is used, observed weekly over a period of 14 months, a 100% exhausted



1 1.092860 46 1.136138 91 1.173454 136 0.881794 181 0.709575

2 1.113694 47 1.146138 92 1.173454 137 1.131522 182 0.801418

3 1.092860 48 1.146138 93 1.173454 138 1.131522 183 0.859931

4 1.092860 49 1.146138 94 1.190121 139 1.131522 184 0.859931

5 1.092860 50 1.146192 95 1.200121 140 1.131522 185 0.826418

6 1.092860 51 1.149839 96 1.200121 141 1.131522 186 0.801418

7 0.821910 52 1.149839 97 1.172621 142 1.131522 187 0.801418

8 1.251459 53 1.149839 98 1.172621 143 1.131522 188 0.837006

9 0.914887 54 1.149839 99 1.171991 144 1.131522 189 0.921416

10 0.948220 55 1.174839 100 1.171991 145 1.168189 190 0.834855

11 0.914887 56 1.149839 101 1.171991 146 1.168189 191 0.836679

12 0.914887 57 1.174839 102 1.297045 147 1.168189 192 0.836679

13 0.914887 58 1.312339 103 1.172045 148 1.131522 193 0.837929

14 0.914887 59 1.174947 104 1.072271 149 1.133346 194 0.837929

15 0.914887 60 1.174947 105 1.172153 150 0.885651 195 0.837929

16 0.914887 61 1.174947 106 1.173977 151 1.133346 196 0.837929

17 0.935720 62 1.174947 107 1.173977 152 1.133346 197 0.837929

18 0.935720 63 1.205920 108 1.173977 153 1.133346 198 0.895419

19 1.131808 64 1.205920 109 1.173977 154 0.805013 199 0.883762

20 1.131808 65 1.205920 110 1.173977 155 0.805013 200 0.837929

21 1.131808 66 1.241076 111 1.173977 156 0.805013 201 0.754596

22 1.131808 67 1.207743 112 1.173977 157 0.805013 202 0.754596

23 1.256808 68 1.207743 113 1.270315 158 0.843346 203 0.754596

24 1.131808 69 1.207743 114 1.174031 159 0.805013 204 0.754596

25 1.131808 70 1.207410 115 1.174031 160 0.841679 205 0.775429

26 1.131808 71 1.207410 116 1.174031 161 0.841679 206 0.754596

27 1.131808 72 1.207410 117 1.174031 162 0.841679 207 0.754596

28 1.131808 73 1.207410 118 1.174031 163 0.805013 208 0.754596

29 1.131808 74 1.207410 119 1.260698 164 0.905013 209 0.754596

30 1.131808 75 1.207410 120 1.210698 165 0.805013 210 0.754596

31 1.131808 76 1.234076 121 1.210698 166 0.805013 211 0.789596

32 1.131808 77 1.234076 122 1.199281 167 0.805013 212 0.756419

33 1.131808 78 1.234076 123 1.174031 168 0.805013 213 0.847993

34 1.131808 79 1.171576 124 1.325726 169 0.805013 214 0.768086

35 1.131808 80 1.17i576 125 1.212815 170 0.805013 215 0.756419

36 1.152641 81 1.197622 126 1.212815 171 0.806836 216 0.824753

37 1.055290 82 1.171631 127 1.214639 172 0.806836 217 0.824753

38 1.177804 83 1.171631 128 1.214639 173 0.806836 218 0.758086

39 1.136138 84 1.171631 129 1.131306 174 0.806836 219 0.758086

40 1.136138 85 1.171631 130 1.131468 175 0.806836 220 0.658086

41 1.136138 86 1.173454 131 1.131468 176 0.870484 221 0.685583

42 1.136138 87 1.173454 132 1.131468 177 0.806836 222 0.699753

43 1.136138 88 1.200121 133 1.131468 178 0.862669 223 0.711774

44 1.136138 89 1.173454 134 1.131522 179 0.834751 224 0.658086

45 1.261138 90 1.173454 135 1.131522 180 0.834751 225 0.658086

Table 1: Fractions Yt to which a creditline is used at time t.

141
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226 0.658086 239 0.659909 252 0.686790 265 0.415400 278 0.419733
227 0.658086 240 0.659909 253 0.688613 266 0.415400 279 0.466630
228 0.658086 241 0.659909 254 0.688613 267 0.415400 280 0.468936
229 0.658086 242 0.659909 255 0.688613 268 0.415983 281 0.481679
230 0.658086 243 0.659909 256 0.688613 269 0.445566 282 0.481679
231 0.658086 244 0.659909 257 0.688613 270 0.445566 283 0.481679
232 0.741419 245 0.659909 258 0.563613 271 0.435733 284 0.511262
233 0.658086 246 0.659909 259 0.563613 272 0.414900 285 0.444596
234 0.659909 247 0.659909 260 -0.06570 273 0.414900 286 0.444596
235 0.659909 248 0.660623 261 0.416113 274 0.417909 287 0.444596
236 0.659909 249 0.661669 262 0.415400 275 0.419733 288 0.444596
237 0.659909 250 0.661669 263 0.415400 276 0.419733 289 0.450180
238 0.659909 251 0.686790 264 0.415400 277 0.419733 290 0.450180

291 0.450180

Table 2: Fractions Yl to which a creditline is used at time t, continued.

creditline gives a value of 1 in the corresponding series. The bank utilizes these fractions to
decide whether the credit should be prolonged or not.

As a first step moving averages were constructed for all possible window lengths (from
5 to 290 days) and all past time points. They can be interpreted as the simplest one step
ahead forecasts. The forecasts with the lowest average squared forecast error, corresponding
to a window length of 65 days, were used as a reference point for the comparison, as well as
for the preestirnation of the residual variance iT;, which gave 0.0172.

Next, minimal average squared forecast errors were found for weight functions (3.1) and
(3.2). In applying the numerical algorithm for weight optimization from Fedorov et al. (1993),
for simplification of the calculation process we firstly assumed that 5 is constant over time.
The estimate gobtained in a preliminary analysis turned out to be 5.8 X 10-4• For compari­
son of the results from the three weighting regimes one has to define a common measure of
smoothness. Simple to calculate is the sum of squared second differences as an estimate of
the local curvature, which is commonly used for penalizing in spline regression.

The data and optimal forecasts are displayed in Figure 4. Figure 2 presents the average
squared forecast error for the alternative weighting procedures.

The proposed method with the "optimal" weight function is clearly superior to alterna­
tive weighting schemes. The average squared forecast error over all time points lies uniformly
below the respective errors for the forecasts using weight functions (3.1) or (3.2) for com­
parable smoothness levels greater than 0.15. Moreover, its minimum value is 0.0151, which
is considerably below (around 6%) the minimum values of 0.0160 and 0.0165 for (3.1) and
(3.2), respectively.

Alternatively, to avoid the assumption of constancy in 5,we applied a two step procedure.
In the first step a moving quadratic regression was performed to preestimate 5 for each
forecast point. Using those estimates in the weight optimizing procedure result in an average
squared forecast error of 0.01440, another improvement of around 5%.
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Figure 2: Fractions Yt to which a creditline was used (solid) and optimal forecasts fit by time
t (in days).

5 Conclusions

The comparison of forecast errors obtained by the optimized moving local regression approach
and two traditional weighting schemes indicates a clear superiority of the former technique.
This superiority strongly supports the choice of this technique in this and similar applications.
Of course it has to be noted that for cases where the assumed model does not hold the different
weighting schemes compete on the same level and one might then perform accidentally better
than another.

In addition to the forecasts a lot of valuable information can be gained from the estimators.
A continuously performed discriminant analysis for instance allows various enterprises to be
distinguished by their economic status. A related example utilizing such an approach is
presented by Miiller (1992).
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Sliding Window Polynomial Smoothing of Correlated Data

A.V.Makshanov

New algorithm of adaptive polynomial smoothing of the regular component of time series
with on-line identification of local noise spectrum is proposed.

1 Fixed-point fixed-memory filtering

Assume that given empirical dependence locally, on the segment [T -I, T+ lj, satisfies a model
relation:

y(s) = Pm(s) + ~(s),s = T -I,T -I + 1, ... ,T + I,

Pm (s) being a polynomial of degree m :

Pm(s) = Lajtj,t = s - T,
j=O

~(s) being a stationary ergodic discrete random process that satisfies autoregressive model of
given order p << I :

~(s) = PI~(S - 1) + ... + pp~(s - p) + 1](s),

1](s) E WN(O,O' 2
)

Coefficients ao, ... , am, autoregressive parameters PI, ... , Pp and intensity of income white noise
0'2 are unknown but constant parameters to be estimated. Further on we are to be interested
not with the parameters themselves but with the value of smoothing polynomial Pm(t) at
some inner point of the segment [T - I, T + I], as a rule - at its centre s =T(t =0)

Assume that autoregressive process ~(t) satisfies stability condition: all the roots of the
polynomial Q(z) = 1 - PIZ - '" - PpzP are outside unit circle, so spectral density of ~(t) is of
the form

(1)

For estimating unknown parameters ao, ... , am, PI, ... ,pp metod of Mann and Wald [1,2] is
available. We transform:

1](t) = ~(t) - PI«t - 1) - ... - Pp«t - 1) =

y(t) - Pm(t) - pdy(t - 1) - Pm(t - 1)]- ...
p

- pp[y(t - p) - Pm(t - 1)] = LP;y(t - i) - L Ijt j
.

;=1 j=o

(2)
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Now coefficients Plo ..., Pp, 70, ... , 7m may be found by least-squares algorithm applied to linear
model

Y = A0 +H

where

y = (yeT -/),y(T -I +1), ... ,y(/))T;

H = (77(T -/),77(T - 1+1), ···,77(T + IW;

A = (A1 ,A2 f;

Al = y(k - i), T - 1 <= k < = T +1,1 <= i < = p;

A2 =k;,T-I<=k<=T+I,O<=j<=m. (3)

The least-squares estimate e = (Pl, ... ,pp,fo, ... ,7;,..f = (AT At 1 AT y is asymptotically­
normal with mean 0 and covariance matrix 0'2E,

(4)

The estimation of intensity 0'2 may be easily found as follows:

I

;2=(2/+1-m_p)-1 L ~2(T+k),

Ic=-l

P Tn

77{t) = y(t) - L Piy(t - i) - L f;t;.
i=1 ;=0

(5)

Now it is easy to see that parameters 70, ... ,7m are connected with parameters ao, ... ,am
by the following system of equations:

m-.
7. = a.50 + L(-1)Ic+lC:+1c 51c,s = O, ... ,m,

1c=1

(6)

where 50 = 1 - PI - .. , - Pp; 5; = PI + 2; P2 + ... +piPp, 0 < j < = m.

The estimate ii of the vector a = (aD, ... , am) is to be found from the system of equations
that may be obtained from (6) by replacing 7i, 5; with their estimates 'ii, i; based on estimates
PI, pp. The matrix of such a system coincides with the matrix B that is to be defined below.

2 Covariance matrix estimation

Let's introduce vectors P = (PI, ... , ppf, 7 = (-Yo, ... , 7mf, a = (aD, ... , amf, 5 = (5o, ... , 5m )T

and their estimates p/r,ii,5. Regarding matrices F = f,(P);B = ~(5) = (b.;)':J=o;C =
i(ii) = (C.Ic)~Ic=o' we can see that
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[ -1
-1 -1

1;F = .~.
2 p

2m pm

b.. = 50;

'oj ~ {

(-1)i-.+1Cj5i_. if j >= s + 1

0 ifj<s

C,o = ci,;

{ (-1)'''C;,.ao+' ifl-:;k-:;m-s
e.k = (7)

0 ifk>m-s

In these notations we obtain from (6) that

di = CFd/J + BdiJ.,

so

The latter relation supplies an expressionfor estimate of the covariance matrix of the
vector a, see (4),(5):

(8)

3 Sliding memory recurrent least squares

Assume that least squares estimate 0(n,n + r) in the model (3) is found on the basis of
observations y(n + 1), ... ,y(n + r) using rows of A from (n + 1) up to (n + r). Denoting
corresponding arrays as Y(n,n + r),A(n,n + r) and regarding the matrix ~(n,n + r) =
[AT(n,n + r)A(n,n +r)r\ we have

0(n,n + r) = ~(n, n + r)AT(n, n + r)Y(n, n + r) (9)

It's well known how to bring this estimate to recurrent form by organazing the new observation
introducing operator:

0(n, n + r + 1) = 0(n, n + r) + K(1)(n, n + r )[y(n + r +1) - aT(n +r + 1)0(n, n + r )), (10)
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aT(n + r + 1) being the row number (n + r + 1) of A, K(1) the transition coefficient to be
calculated as follows:

K(1)(n,n +r) = I:(n,n +r)a(n +r + 1)[1 +aT(n + r + l)I:(n,n + r)a(n +r + l)fl. (11)

where

I:(n,n + r +1) = I:(n,n + r) - K(1)(n,n + r)aT(n + r + l)I:(n,n + r) =

[I - K(1)(n, n + r)aT(n + r + l)]I:(n, n + r). (12)

Using similar demonstrations we may organize for the estimate (9) the old observation
rejecting operator:

0(n+ 1,n+r+l) = 0(n, n+r+l)-K(2)(n, n+r+ 1)[y(n+l)-aT(n+l)0(n, n+r+l)], (13)

where

K(2)(n, n + r +1) = I:(n, n +r + l)a(n + 1)[1 - a~+l I:(n, n + r + l)a(n + l)fl. (14)

Such estimates may be now transformed to sliding-window form by using the formula:

I:(n + 1, n + r + 1) = I:(n, n +r + 1) + K(2)(n, n + r + l)aT(n + l)I:(n, n + r + 1) =

[I + K(2)(n,n + r + l)aT(n + l)]I:(n,n + r +1), (15)

that makes possible repeating the cycles of introducing new observations and rejecting (dis­
counting) old observations as many times as is necessary. Similar procedures are regarded,
for example, in [3].
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The Extrapolation Problem of Stationary Time Series
Correlation

V.N.Fomin

1 Introduction

The restoration of stochastic process characteristics with help of a finite process realization
is an important problem of the mathematica.! statistics. To be more precise, let us formulate
such a problem in the following manner: some lag values of the correlation function of the time
series stationary component are known and we need to estimate the corresponding spectra.!
density. Like this we have so called problem of spectrum estimation [1]. This problem usua.lly
may be solved in different ways, and every decision one may interpreted as some correlation
function extrapolation.

To formulate problem statement we make some following assumptions about time series
under consideration are made.

2 Assumption about time series

Let y = {Yt : t E Z, Yt E R} be stochastic time series with the following structure

Y= II-t + TJI. t E Z, TJt E MYt.

Here II- = {II-t, t E Z} is the process drift (it is a deterministic time series), TJ = {TJt, t E Z}
is the stationary component ofy : MTJt "" 0, MTJtTJt, = u 2 R(t - t'), R(.) is the normalized
(R(O) = 1) covariance (or correlation) function of the time series y stationary component TJ.
We'll suppose that R(.) is square summable function:

+00

2:= [R(t)]2 < 00.

t=-oo

It a.llows us to introduce the function

+00
G(A) = 2:= At R(t)

t=-oo

which is known as the spectra.! density (of the time series y stationary component TJ).

(1)
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3 The problem statement

Let R(.) = {R(t), t E Z, R(s) = R(s), lsi ~ T} be admissible correlation function (it means
that lag values R(s), lsi ~ T, are known, R(t) = R( -t), t E Z, and R(t) is a positive function).
A function

+00
G(oX) = q2 L oXt R(t)

t=-oo

(2)

with an admissible correlation function R(.) will be called the admissible spectral density.

The problem under consideration now may be formulated in the following manner: What
an admissible spectral density is acceptable?

4 Variational principles

One may pick out the function from the set of admissible spectral densities that satisfies some
additional properties. For example, such function may be picked from an extremal condition.
Consider such a case.

Introduce the following functionals,J1 , 12 , defined on admissible spectral densities:

1 f - doXJ1 = -. In{G(oX)}"
211"1 '"

IAI=l

(3)

(4)1 f - doXJ2 = -.In{ G(oX)}"
211"1 '"

IAI=l

where ~AI=l !if denotes the oriented circular integral. Ii (G) is known as the entropy asso­

ciated with G [1], J2 ( G) may be called the negentropy. Evidently, J 1( G) ~ J2 ( G) (if these
values exist). Let

G(l) -opt - (5)

be extremal densities defined by these funetionals.

Lemma. The relations (5), (6) may be written as

(1) _ q2
Gopt(oX) - a(oX)a(oX- 1 )'

T

G~1=q2 L oXtR(t)
t=-T

where

(6)

(7)

(8)

(9)
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is the polynomial with real coefficients ak, k = 1, ... ,T, defined from the linear system

T

LR(p-k+1)ak=-R(p), p=I, ... ,T.
10=1

(10)

System (10) may be solved with the help of Levinson's method.

Remarks. Let the stationary time series ii = {iit, t E Z} be determined by the equation

(11)

where ak - the above coefficients (see (9)) and e = {et, t E Z}, - a standard white noise
(M et = 0, M etet, = Dtt,). Then the relations

R(s) = Miitiit-. = MT/tT/t-. = R(s), lsi :S T, (12)

are justified. (Here T/ is the stationary component of time series y.) It means that G~ is AR
(Auto Regressive)- approximation of the spectral density G = G(oX) [3].

Formula (8) corresponds to a periodogram approach. Indeed, let the stable polynomial
b(oX) (b(oX) i: 0, loXl i 1) be defined by factoring

G~~(oX) = b(oX) b(oX- 1
)

and e = {et> t E Z} be a standard white noise. For time series ii = {17t, t E Z}, 17t =
u{et + het-1 + ... + bTet-T}, the relations (11) are fulfilled. It means that G~~(oX) is MA
(Moving Average)-approximation of the spectral density G(oX).

5 The general case

To consider the general case, we introduce for any natural L, L :S T, a quasi-polynomial

(13)

with real coefficients q/ which are determined from the following linear system of 2L equations:

T

L R(k - t)qt = 0, T - L + 1 :S Ikl :S T.
t=l

p(Ml(oX), M = T - L, be the quasi-polynomial,

L

p(Ml(oX) = oX-MP-M +... + oX PM, Pk = L R(k - t)qt, Ikl :S M.
t==-L

It is easy to see that the following relation is fulfilled

(14)
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Definition. The rational function lI"(L,M)(A),

(15)

is called (L, M)-order Pade approximation of the quasi-polypolynomial G(I). This definition
is similar to Pade approximation of power series [4].

Remarks. It is evidently that lI"(T,O)(A) coincides with AR-approximation and 1I"(O,T)(A)
coincides with AR-approximation. To design lI"(L,M)(A) , L + M = T, it is necessary to know
R(s) for allls\ ::; L +T.

Theorem. Let us suppose that the spectral density G(A) expansion (1) absolutely and
uniformly converges in the disk D p = P : p-I < IAI < p} for some real p > 1 (it means in
particular that G(A) is analytic function in Dp ).

Then the following assertions are satisfied:

1. The Pade approximation (14) of G(A) is symmetric, q-t = qt> P-t = Pt.

2. IT G(A) > 0 on the unit circle IAI = 1 then q(L)(A) > 0, p(M)(A) > 0 for all such A and
for sufficiently large T = L + M.

. p~M»)(A)3. lim L = G(A) for all A E Dp .
L+M_oo q (A)

4. IT G(A) is a rational function,

G(A) = ptA)
q(A) ,

where ptA), q(A) are quasi-polynomials of some degrees I, m, then

G(A) = p(M)(A)
q(L)(A)

for all L > 21, M > 1+ m.

6 ARMA-approximation

(16)

(17)

Let ap), b(A) be the result of spectral factoring of positive quasi-polynomials q(L)(A),p(M)(A),

la(A)1 + Ib(A)j f. 0 for alllAI ::; 1, and let ii = {ii, t E Z} be the stationary time series defined
by equation

iit + aliit-l + ... + aLiit-L = u(boet + ... + bMft-M). (18)

Then the relations (11) are justified. It means that lI"(L,M)(A) may be regarded as ARMA
(Auto Regressive-Moving Average)-approximation of the spectral density G(A).

Looking over L, M, L + M = T, one may pick out the best Pade approximation ( in
different sense).
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Appendix

Proof of the lemma. From (3) due to (2) we have

__1 [-T-l 00] f >..t5 {R(t)} d>"
- 211"i L: + L: G(>..) >.. .

t=-oo t=T+l 1,\1=1

The equality 5J1(G) = 0 for arbitrary variation 5{R(t)}, It I > T, leads to relations for optimal

G(l) .opt .
1 f >..t d>"

211"i G(>..) T = 0, It I > T.
1,\1=1

It means that [GoptP)t 1 is a quasi-polynomial,

T

[G(>..)t1 = L: >..t qt
t=-T

where
1 f >..t d>"

qt = 211"i 6 (>") T' ItI ~ T.
1,\1=1 opt

Because of positivity, the admissible density GoptP) = G~~P) may be factorized, Le.,

(A.l)

(A.2)

(A.3)

(AA)

where a(>..) is a stable real polynomial (see (9)) with real coefficients. Let e be a standard
white noise and ii = {iit, t E Z} be the stationary time series defined by the equation (11).
Due to polynomial a(>..) stability we have from (11) the following relation

R(p) +a1R(p - 1) + ..,+aTR(p - T) = 0

p = t - 1, ... , t - T, (A.S)

and due to the condition R(k) = R(k), k = 1,2, ... , T, the linear system (10) coincides with
(A.5). Because of spectral density (A A) positivity the system (A.S) is nondegenerate, 80 it
exists the unique solution of this system. Relations (7)-(9) are established.

Formula (8) is almost evident. Indeed, with help of formulae (4), (2) we have

2: 2~. J >..t!!f5R(t)
5J (6) = Itl>T 1,\1=1 _ = O.

2 .)...., .c G(>..)d'\
2",. J' T

1,\1=1
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Because of the correlation function R(.) admissibility it means R(t) = 0 for all It I > T and
from (2) we have (8). Lemma is proved.

A brief proof of the theorem. The first assertion follows from symmetry of a correlation
function and the definition of Pade approximation. The second assertion follows from the
third one. To ground last assertion let us use Caushy formula

(A.6)

that is just for all the analytical function

(A.7)

1p-' = {,\ : 1,\1 = p-l },p > 1. Using then in (A.9) expansions

we have

(A.8)

Introduce a quasi-polynomial

of degree (L +M). Then

But in accordance with the definition of Pade approximation we have

-L-M-l 00

G(,\)q(Ll(,\) = b(MJ(,\) + L qt,\t + L qt,\t
t=-oo !=L+M

(A.9)

(A.IO)
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where
1 f (L) d>"qt = -. >..-tG(>..)q (>..)-.

2n >..
'11

From (A.9) and (A.I0) it follows that

F(L+M)(>..) = -L~-l qt>..t + 2:i f f(IJ.) f (~) Ie dIJ.
t=-oo 'Yp Ie=L+M+l IJ. IJ.

J!. f(IJ.) f (J!.)1e dIJ.] .
>.. Ie=L+M >.. IJ.

(A.ll)

The bracket function may have nonzero Fourier coefficients only for It I > L + M. As
F(L+M)(>..) is a quasi-polynomial of degree (L + M), the relation (A.ll) means that

for all >.. E D p and from (A.9) we have

p(M)(>.. 1 f 00 (>..)Ie dIJ.
G(>") = (L)(>.. + 211'i f(IJ.) L -;; ~

q 'Yp Ie=L+M+l'- ,-

1 f IJ. 00 (IJ.)ledlJ.-- -f(IJ.) L - -.
211'i >.. 1e=L+M >.. IJ.

'Yp-l

Now the third assertion of the theorem is evident. Let G(>..) be rational,

G(>..) = p(>..)
q(>..)

(A.12)

(A.13)

where p, q are quasi-polynomials of some degrees m and 1. From (A.12),(A.13) we have

1 f 00 (>")ledlJ.= q(>..)-. f(IJ.) L --
2n'YP Ie=L+M+l IJ. IJ.

+q(>")-2
1

. f J!. f(IJ.) f (J!.)1e dIJ..
n >.. Ie=L+M >.. IJ.

"'p-l

If M > 1+m and L > 21 then the functions in the right part of this relation have zero Fourier
coefficients for It I ::; max(L +m, M +1), but in the left part we have a quasi-polynomial of
degree max(L + m, M + 1). It means that this quasi-polynomial identically is equal to zero.
So .

p(>") p(M)(>..)
G(>..) = q(>..) = q(L)(>..)

and the last assertion of the theorem is proved.
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Statistical Safety Theory and Railway Applications

A.E. Kraskovsky

1 Introduction

The purpose of the work is the development of the methods and software for the statistical
analysis including prognosis of the accidents in a technological process. The major application
concern the safety increase in the railway transport.

The statistical safety theory deals with the following problems: (i) statistical analysis of
accident data and search for the significant factors that mainly determine the accidents; (ii)
the prognisis of possible accidents; (iii) on-line emergency indication; and (iv) mathematical
modelling of the stochastic dynamic systems for safety control.

The time series theory is the ground of the statistical safety theory. Also, the factor,
correlation and regression analysis are used in (i), the reliability theory is used in (ii), the
parameter estimation and the change-point detection methodologies are key items of (iii),
and the stochastic differential equations determine (iv).

The article presents the current state of art in the field, several particular mathematical
models for the safety control in the railway transport and numerical results obtained with
the help of statistical software and statistical simulation.

We shall mainly consider problems (ii) and (iii).

2 Patterns of the emergency and the accidents arising

There are several patterns ofthe accidents (Fig.1). The following situations may be considered
as an example for these patterns. Pattern 1 is a sudden fault of the system that leads to an
accident, for instance: faults of the equipment, wrong actions of a person, sudden influences
of environment.

There is another situation for the pattern 2. There is emergency for the time interval
TO < t < TI, there is still not an accident. Examples of these situations are the following.

(i) The rail breaking by the train absence

(ii) The change of regime of fly-engine that may lead to the accident

(iii) The decrease of the isolation resistor of the electrical line that may lead to the fire.

Examples of situations for patterns 3 ... 5 are the following.

(i) The accumulation of injures within the construction elements

(ii) The increase of temperature by friction of construiction elements

(iii) The fatigue accumulation of a man.
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For solving problems of current transport system indication parameters and diagnosing
emergency mathematical methods of statistical estimators and making decisions about change
values of observational data are used. High requirements to measurement accuracy and time
reaction which produced systems of emergency indication make for to use some optimal or
close to them observations processing algorithms. To synthesize such algorithms it is possible
on the base of the theory detections of time series change-point.

3 Methods of the change-point detection of random pro­
cesses

3.1

Let us give a definition of the change-point problem. The change -point is an abrupt (some­
times smooth) one of properties at a random process Yt, for instance, the probability distri­
bution at the unknown moment of time, one or several parameters of the distribution.

Solving the change-point problem is testing two hypotheses Ho and HI where the hypoth­
esis Ho is that the change-point is absent and the alternative hypothesis HI is the change
happens. If we reject hypothesis Ho in favour of alternative then we can state the estimation
problem of the change-point T.

Hypotheses for the stationary process are the following.

Ho: random values Yl, Y2," . have the dirtibution F" where a parameter () = ()o E 0 0 ,

HI: there is T ? 1, that random values Yl, Y2, ... ,Y.,.-1 have a distribution F" () = ()o and
Y.,., Y"'+1 have the distribution F" () = ()1 E 0 1 ,

Sets of parameters 0 0 and 0 1 are subsets of R m , m? 1, 0 0 and 0 1 have no intersections.
There are abrupt and smooth, singular and multiply, with the limited and unlimited time
change. We are largely interested in singular abrupt changes.

3.2

Consider the likelihood ratio test. This test for a posteriori change-point detection is in the
following:

max max max L Ho /H' ~' h,
'oEElo "EEl, 1:<;.,.:<;N H

o

where h is the threshold, L Ho /H, = LN(Y{", ()o, T, ()d is the likelihood ratio which is expressed
by formula

L - lIN p,,(YtIYt-l,oo.)
Ho/H, - (I )t=.,. P'o Yt Yt-l, ...

Here P'o(I)(Ytl ... ) is a conditional density of corresponding distributions p'o(I)(Ytl ... )
Equivalent test for likelihood ratio one is in the following

N - ~ H
m:x LN(YI I ()o(T), ()1(T)) ~ h,

Ho

where ~(T), ~(T) are estimators of maximal likelihood parameters ~ and 0;, obtained pro­
vided that hypothesis Ho is rejected if T is fixed.
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2.3. Consider algorithm of cumulative sums (CUSUM). In case of independent observa­
tions and known (}o and (}l this algorithm can be regarded as a recurrent form of the likelihood
ratio test. IT k is the current observation number in the recurrent algorithm then we have

Ie

S:(Yt,(}) =lnLHdHo = Lln(P8,(Yt)/P8o(Yc)),
t=i

where st(Yt, (}) is the value of the cumulative sum at the step k.

The algorithm (1) is often represented as CUSUM with the reflecting screen

where go = 0, a+ = max{O, a}.

We can find the estimator f by the maximal likelihood ratio method:

f = argmax LN(Yf", (}o, T, (}I) = argmax S~ (Yt, ())
l<T<N l<T<N

3.3

We can use the following statistics for the change-point testing

(i) Girshic-Rubin statistic

(ii) Exponential smoothing statistic

(iii) Shyuhart's carts

1 n

Gn = k L Yi
i=n-le+l

(1)

(2)

The last two algorithms are nonparametric. In the case of the small urlknown change
CUSUM is optimal since it takes minimal time for the change-point detection if probability
of the error is fixed. In the case of great change the exponential smoothing algorithm is
more effective than CUSUM. For independent observations and known parameters of the
random process before and after change-point CUSUM is optimal in sense of Neyman-Pearson
criterion but CUSUM is not robust if there are anomal observation in the sample.

The likelihood ratio test often gives optimal or close to optimal approaches.
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Figure 1: Patterns of the emergency and the accidents arising
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3.4

There is a particular case which is important because of many practical problems reducing
to the similar case. Consider the likelihood ratio change-point test for limited time. This
problem often occurs in tasks of detection of emergency and signals with random appearance
moment.

In this case a model is represented such that

Yl = r.p(t - T) + ~l'

where r.p(t) is the function determining the form of the signal with known duration T, t =
1,2, ... , N : T is an unknown appearance moment; ~l is a random process with mean zero
and variance (12.

We can reduce the time limited change-point detection problem to testing hypotheses Ho
and HI for the mean EYI on [0, N]. In this case the hypotheses are in the following.

Ho : EYI = 1Jr.p(t), IJ = 1J0 =°
HI : 3T, 0::; T ::; NT : EYI = 1Jr.p(t - T), IJ = 1J1 = 1

The likelihood ratio test for these hypotheses is as follows

L(Y(T",T"+TJIIJ = IJI) H, h
maxInLH,/Ho = maxIn L( IIJ _ IJ) <: 0,

T" T" Y(T",T"+T) - 0 Ho

where L(Y(T",T"+T)IIJ = IJ;) is a joint distribution density Yl for t E (T, T +T) providing that
IJ = IJ;, i = 0, 1.

In case of discrete time we have

InL
~ In MYI - r.p(t - T))

H,/~ = ~ f( )
1=T"+1 I Yl

(3)

where Il(z) is the distribution density of ~l at the moment t.

In a most interesting case when the density It is normal with a zero mean and variance
(12 we have

To apply the change-point detection methods in practice it needs creating the mathe­
matical sample model, selecting the change -point detection test and optimizing the test
parameters by one of the criterion. For instance, to optimize a test we must choose the
detection threshold if the probability of the error detection is given.

The decisive statistic for the change-point detection can be usually described by the
random process. The change-point is detected when a random process reaches a boundary.

The second problem (ii) is the estimation and prognosis of the system reliability by the
injure accumulation. The system fault interprets as the first crossing of the random process
to a boundary too. Therefore the mathematical problem arising is the investigation of the
first crossing probability for particular boundaries and random processes.
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4 Calculating methods of the boundaries crossing probabil­
ity by random processes

4.1

The general statement of the problem is in the following. Let ~(t) be a random process given
on the segment [0, T], 0 < T ::; 00 For t = 0 the value of~(O) equal to z is fixed, h(t) is a
continuous function, h(t) may be a direct linear, piece-wise linear or nonlinear function. The
probability of the boundary crossing for random process is equal to:

Pe(T, hlzo) = P {~(t) ~ h(t) if only for one t E [0, T]I~(O) = zo} (4)

If the value of Zo = ~(O) is not fixed but its distribution density is given then the proba­
bility of boundary crossing is equal to

(5)

If T is a random value and its probability density p(T) is known the probability Pe(h) of
the boundary crossing is equal to

Pe(h) = Io'JO Pe(T,h)p(T)dT (6)

(7)

The porobabilities (4) and (5) are defined by densities of the time of first boundary crossing
h by a process ~(t) : ge(t, h\zo) and ge(t, h). They are relatively equal to

d d
ge(t,hlzo) = dtPe(t,h1zo); ge(t,h) = dtPe(t,h)

and the probabilities (4) and (5) may be defined by the density (7). In this case the solution
of the problem of boundary crossing via density or probability are equal.

For the class of processes with independent increments a useful result was obtained. If
~(t) is the process with independent increments then for h(t) = h > 0, Zo < h we have:

h - Zo
ge(t, hlzo) =-t-P [~(t) = h - zol~(O) = zol

where P [~(t) = al~(O) = zo] is the probability density of the transition process from point Zo
to a point a during the time t.

For a more general class of random Markov processes there are some difficulties to obtain
exact equations (4) and (5). The method based on the solution of the so-called Siegert
regeneration equation fordirect boundary is proved to be effective. It is in the following

P [~(T) = zl~(O) = zo] = faT ge(h, tlzo)p(~(T) =zlW) = h)dt (8)

where Zo < h < z, p[~(t) = ZI~(T) = z] is the process transition probability density ~(t)

from a point z to a point z during the time from T to t. The Eq. (8) means that before the
transition to a point ~(T) = z > h the process first crosses the boundary h at some moment
of time t E [0, T] and during the rest of time from t to T it will go from a point h to a point
z.
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4.2

Let us take as an example a standard Wiener process. For this process the regeneration Eq.
(8) is readily solved and the time density of the first approach to the boundary h is equal to

h - :1:0 [ 2]q..,(t, hl:l:O) == ..;2irt exp -(h - :1:0) 1(2t)

Integrating the expression (9) in accordance with (7) we have

P..,(T, hlO) == 2~ (- ;q) ,

(9)

where ~ is the probability integral. The occasion of a linear boundary h( t) == at + b is im­
portant. E.g., it occurs for Wiener processes when Ew(t) # o. They may serve as models for
a damage accumulation process in mechanical systems. The direct boundary is transformed
into the linearboundary in transition from the occasion Ew(t) # 0 to Ew(t) == o.

For linear boundary there are two results [5]

(i) p..,(oo,at + blO) == e- 2ab ,
(ii) P {w(t) 2: at + b if only for t E [tl, t2J1W(t1 ) = :l:l,W(t2) == :l:2} ==

== exp {- t,:t, (atl + b - :l:l)(at2 +b - :l:2)}

where t2 > t1 , :1:1 :::: at1 + b; :1:2:::: at2 +b

If a time interval [0, T] occurs and w( t = 0) == 0 then the probability of the linear boundary
at +b crossing by the standard Wiener process w(t) if possible may be obtained by means of
the result (ii):

(
bt + a) 2ab (bt - a)P..,(T, a + btlO) == 1 - ~ ..;T + e- ~ ..;T (10)

(11)

If w(t == 0) is a random value :1:0 and the probability density pO(:l:o) is given then the
probability of crossing this boundary is equal to

P..,(T, a + bt) == i~ P..,(T, a + btl:l:o)Po(:l:o)d:l:o,

where the probability P..,(T, a + btl:l:o) == P..,(T, a + :1:0 + btlO) is defined by formula (10).

The crossing of boundary h may occur at the time t == 0 as well. Taking this fact into
account we may find the total boundary crossing probability at least once during a given
period of time M == T ITo, where To is a unit of time

P..,(M,a+bT,h) == P..,(M,a+bT)+ loo PO(:l:o)d:l:O, (12)

where probability P..,( M, a + bT) is calculated with the help of formula (11); T == t ITo. After
a number of transformations for the Exp. (12) for M == 1 we will have

Ph(M == 1) = 1 - ~2(h) + ~he-~~(h) + ~e-h'
y21l" y21l"

For M > 1 there is an approximate formula [2]
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~vo strategies for the safety provision:

1. fail-safety 2. fault-tolerance
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Figure 2: Applications of methods considered for the safety provision. States of system
(process): norm (n) - emergency (e) - defense state (ds); accident (a).
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where A = ~(h) + i(9~2(h) - 16(he-h'/2~(h)/V21r +e- h' 1(211")))1/2

Calculating probabilities of the crossing piece-wise linear boundaries the monograph [2]
is considered and the nonlinear boundaries case were studied in [8].

The mathematical methods considered may be used for the emergency diagnosis as well
as for accidents prognosis. In Fig.2 one shows the role of methods discussed in realization of
two safety provision strategy: 'fail-safety' and 'fault-tolerance'.

Therefore we have demonstrated some models and so mathematical results for estimation
and prognosis of accidents occur on technological processes, in particular, on the railway
transport.
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The Universal Scheme of Regulations in Biosystems for the
Analysis of Neuron Junctions as an Example

A.G. Bart, N.P. Clochkova and V.M. Kozhanov

1 Introduction. Reflections principle

Any real statistical problem covers many different aspects each having its own influence on
the result. The heterogeneity of their contributions determines a mathematical structure of
observations. For example, in the standard most simple scheme' = 1/ + E the independent
(changeable) component E (technical noise) is separated from the basis (steady) component
1/ (signal). As a rule this latter component reflects the quality nature of the phenomenon
under consideration.

In biological systems this quality aspects usualy are connected with the self-regulation
mechanism. The symmetry of reflections underlies such a mechanism in a sense that ensures
the stability of its work. Being guided by our long standing experience of studing different real
biological systems [1,2,3], we have formulated the following principle, giving the mathematical
formalization of the mentioned symmetry of reflections:

In the strictly self-regulating system the realisations of two processes one of the action on
the system and the second of its counteraction are the interinverse functions.

The operation of function inversing is to be understanded in the generalized sense, so that
one can take into account the function peculiarities such as inmonotony, discontinuity and so
on.

It makes us introduce a sufficiently wide class of partly inverse functions. Such functions
are investigated in the next section, where, in particular, it is shown why the realizations of
stochastic processes are the natural domain of the function inversing operation. In the central
third section the shift and scale modifications of the generalized binomial distributions are
determined by the means of parametric representation of the set of partly inverse functions
for Bernoulli scheme realizations. They are important for the description of biosystems
regulation. The essential special case of scale modification is connected with Fibonacci series.

Finally we illustrate the application of the reflections principle by the example from neu­
rophyziology. This section has an independent interest, since using the language of ampli­
tude distributions of post-synaptic potentials the logical explanation of impulse transmission
mechanizm is given here.

2 Partly inverse functions

Consider an into mapping f : X ---+ Y-. An into mapping f- : Y- ---+ X is a generalized
inverse mapping for f if for every y E Y = f(X) and every z E X- = ,-(Y-) one of the



168

following relations is valid

Ol:ff-(Y)=Y 03:rf(z)=z
O2 : f- ff-(y) = f-(y) °4 : ff- f(z) = f(z).

Let ft = flx- and f.- = fly. We denote the conditions of injection of functions f.+ and 1.­
by M+ and M- respectively, and the conditions of their sUIjection by e+ and e-.

STATEMENT

The unconditional (an arrow) and conditional (an arrow with a letter) relations between
0 1 - 0 4 can be expressed by the following scheme

M-

°l - O2~

e+ H H e-

0 4 - 0 3~

M+

Indeed, the unconditional relations are evident, since ff-(y) C Y- and f- f(z) c X
respectively, the same takes place with M+ and M-. The relations O2 =} 0 3 and 0 4 =} 0 1

we get by substitutions of z = f-(y) into O2 and y = f(z) into 0 4 ,respectively. The
existence of suitable z and y is unsUIed by the conditions e- and e+ .•

DEFINITION

Suppose that fm is a restriction of mapping f to some domain of its injection, and f;;' is
a generalized inverse for fm. If for fm and f;;. all the relations 0 1 - 0 4 are equivalent (i.e.
the fulfilment of any of them leads to the fulfilment of all other), then f;;' is called as a patly
inverse mapping for f.

A class of partly inverse mappings is wider a rule than the class of generalized inverse
mappings. The analogy with the classes of partial and general recUIsive functions from
mathematical logic is quite appropriate here. FUIther we shall consider only functions, defined
on a set X C RI . For single-valued construction of partly inverse functions it is necessary to
point a method of choosing the injection domains in the set X and the principle of definition
of f- on Y- \ y. The conditions of the 01 - 0 4 equvalence are necessary for the domain of
the restriction fm to be equal to injection domain of f.

The general parametrical method of description of partly inverse functions for a measUI­
able function f : RI

-+ RI is pointed out in [1]. It will be used in the next section for the
Bernoulli scheme realizations. Now we shall dwell upon the important particular case of the
function inversing operation.

For every y we define the oriented pre-images: left Xy = {z E X;y ::::: f(z)}, right Xy =
{z E X; y 2: f( z)} and real Xy = {z E X; Y = f( z)} . We shall give the operation of extreme
inversions by the means of matrix notation of its possible versions

ff"
f[

I = [ a fa
l ofl

Here the horizontal pointers show the space orientation of preimages and the vertical ones
show that of extremums (let's call it temporal). In designation ;lj the right and left indexes
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(i,i = 0,1) correspond to these orientations. For example

The left (fo) and right (fl-) inverse functions are defined with extremums along the rows of
matrix If. Minus one and plus one powers of the extreme inverse operation are set by

The notation 1I is considered as a unified simbol of the extreme inverse function. Index
of power (±1) shows the orientation. The symbol of negation <l) can be treated from the
semantic point of view here.

THEOREM 1

In the matrix If:

1) the elements of main diagonal do not decrease, those of secondary diagonal do not
increase;

2) the elements of odd columns are continuons from the left, those of even columns are
continuons from the right;

3) the left and the right extreme inverse functions preserve the monotony.

PROOF

1) The first assertion is evident: for every 5 > 0, XyHCXy and XyCXYH .

2) We shall show,for example, continuity from the left for 010 , We fix Y and suppose for
every 5 > 0

Z5 = olo(Y - 5), Zo = lim z5·
5-0

From the monotony of olo(Y) it follows, that Z5 ~ Zo ~ olo(y).

Let Zo < olo(Y) then by the equality Xy-5= X y +{y - 5 ~ I(z) < y} we have Z6 = inf

Xy-6= min {o 10 (y); inf {y > I(z) ? Y- 5} } = inf {y > I(z) ? Y- 5} E {y ? I(z) ? Y- 5} .-If 5 tends to zero, then zo E Xy (X is the closure of X). Hence Zo ? inf X y ? inf X y= 010(y)
that contradicts the assumption.

3) We shall show that for fixed Y and i Ij-(Y) = j/T(Y) if I does not decrease in a

neighbourhood of point Ij-(Y) (j == OJ 1) and

Ij-(Y) = dj-(Y), if; i if I does not increase.

At the point Y Ij is determined simultaneously with two functions ;IT«i = 0, 1). Only
these points yare under consideration.

Let I for example be non-descreasing in a neighbourhood of 10(y) and Zo = 010(y) <-Zl = do(y). Then z f; inf X and there exist such 51 ? 0 and 50 > 0 that Zl - 50 ~Xy

(otherwise Zl f; inf Xy) and ZI + 51 E~ . So 10(Y) = zl = inf Xy and I(ZI - 50) > Y?
I(ZI +5d, that contradicts non-decreasing property of I .•

It follows from the theorem, that, firstly, the continuity orientation in discontinuity points
is determined by the operation itself, and consequently, the restoration of initial function I
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in these points by the repeated inversion cannot be guaranteed. This is of no importance in
probability schemes (moments of up-crossing in stochastic processes, fiducial distributions,
etc), for the null sets can be usually ignored there.

Secondly, it follows from the theorem, that the operation repetition leads to a sharp
increase of possible variants of inverse functions, but most of them degenerate into constants.
Only two kinds of functions keep shape: either in a trivial case of singularities absence, where
all inverse functions variants are equal, or such functions, which posesses but singularities.

We exemplificate it by a repeated inversions of a monotone function. The singularities
possible for it are either discontinities of the first kind or intervals of constancy, turning one
to other while inversing.

Suppose that f is (for example) non-descreasing. Then

I = II = [ ~~

where constants SupX and InfX are appointed with the degenerate upper I;; and lower
IN extreme inversions. The operation repetition leads to tensor multiplication of operator
matrices: 12 = I ® I (operator matrix elements multiplication is understanded as a result
of their consequent use). The result of theorem 1 for 1" = I ® ... ® I remains with evident
changes. That is why only the diagonal elements of 11 (of principal one, I being non­
decreasing and of secondary one, I being non-increasing) will be nondegenerate.

We see the repeated inversions result to depend on the sequence of repetitions. We define
the r-th power ofrepeated inversion operation by a repetition of Irlleft inverses, when r < 0,
and r right ones, when r > o. For the double inversion operator we choose a symbol of double

• 2.

negation 11 I = 1I·
At last we consider functions, which structure is determined by the type of singularities

under consideration (discontinuities and constantness intervals).

Suppose X be the set of integers and I( z) = z. The domain of inverse functions we expand
+1 -1

to y- = Rl. Then 1z = lz J is entire of z (the left entier), 1z = rz1the nearest integer to
z from the right (the right entier). The repeated inversion turns them into each other:

+l -1

1rHz) = lzJ, II Hz) = rzl

+r -r
Suppose, that r ~ 0, then ~ l J(z) = lz + rJ - r, ~ r Hz) rz - rl + r. It is usefull to
consider all notions introduced in the section on this example.

3 The generalized binomial distribution

Let's consider the number of successes (k) in Bernoulli scheme as a function of the number
of trials (n), elementary event (w) being fixed: k = {(nlw) = {(n). Following [1] we describe
the partly inverse functions parametrically, by considering the convex of extreme inverses:
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{';(k) = La{l(k) + (1 - a){o(k)J, 0 ~ a ~ 1. We define {';(O) := La{l(O)J and (~'(n) :=
-1

1 {';(n). In a probability space of elementary events the equality (in law)

{';(k) = {';(O) + {o(k),

is evidently true and the constructions mentioned determine the generalized binomial distri­
butions (exactly, their shift modifications) .1

THEOREM 2.

In the Bernoulli scheme:

1. the distribution of results of repeated inversions doesn't depend on their order;

2. the following equalities are valid in law:

(r ~ -n)

•
]{';(k) = {.;(k + r) - r (r ~ -k)

3. ,B~(nll,p,a):= P{{';(O) = n} = qfn/al _ qf(n+l)/al.

PROOF.

Firstly we remark, that by the equality (*) P{{';(k) = n}
n-k

= L PU.;(O) = t} P{{o(k) = n - t} and thus the first propositions are necessary to be
1=0

proved only for extreme inverses. Then, as {o (k) and {I (k) are equal to the minimal and
maximal expectation times of the k-th success, so {I (k) = {o (k +1) - 1.

+0 +1-1
1. By the definition, 11 {(n) = 1 1{(n) =max{k : {o(k) ~ n}.

+0
P{ 11 {(n) = k} = P{{o(k) ~ n;{o(k + 1) ~ n + I} =

f: ,B_(tlk,p)PUo(l) ~ n - t + I} = pkqn-k f: C;~11 = ,B+(kln,p).
~k ~1

-0 -1+1 -0
On the other hand] {(n) = 1 1{(n) = min{k : {l(k) ~ n} and P{] {(n) = k}

= P{{l(k) ~ n; {l(k - 1) ~ n - I} = P{{o(k) ~ n; {o(k + 1) ~ n + I}
= ,B+(kln,p).

2. Let us use the induction wiht respect to r. The case r = 0 is already checked up.
r r+l r

Suppose that 1Wn) = {(n + r) - r, then ] {(n) = max{kmax{n : ]{(n) ~ k} :S n} =
o

max{k;max{n +r;{(n + r) ~ k + r} ~ n +r} = ]{(k + r + 1) - (r + 1).

3. PHa{l(O)J = n} = P{~ +1:S {l(O) :S ~ + I} = qf~l - qf~l, since ,B~(zll,p) =
fz l-l

P{{l(O) < z} = L pqt-l = 1 _ qfzl-1.•
1=1

Another (scale), modifications, marked by asterisk, ,B:j.(kln,p,a) and ,B~(nlk,p,a) are.
defined as the distributions of random variables: {.;(I:) = {';(O) + ... +{';(O) - the sum of I:

• -1 III

independent terms, and {.t(n) = 1{.;(n).

I Further a vertical line divides argumen t of a function from parameters. The probabili ties of usual binomial
distributions (positive and negative) are denited by .B+(kln,p) and .B_(nlk,p).
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The type of these distributions essentially depends on the structure of partiality parameter.
a. Thus a = s/m being rational, ~';(k) describes a time of expectation of k-successes in a
scheme, where the trials are aggregated into homogeneous groups of size m, each group is
divided into s heterogeneous parts. As a result we have division of time n = ts + i into
homogeneous outer t and inner i (i = 0, ..., s - 1) and thus we deal with the problem of
coordinating rhythms. That is why a is interpreted in biosystems as a measure of tolerance
of contradicting processes in a system. These considerations lie in the bases of notions of
threshold and scale of inununity to invasion (see [1 ]'[2]). The inner time mainly determines the
kind of distribution. We shall illustrate it by generalized binomial distribution .8.:. (n!l,p, a)
as an example. At first, we introduce the disignations, which allows to present it in a form
analogous to a usual geometric distribution.

Suppose an = in/al, qn = q"n+J-"n and pn = 1- qn, then qo = q"',q"n+J = q"nqn =
qOql ...qn and .8':'(nI1,p,a) = Pnq"n. If a = s/m, where m :=: sr + I and n = t8 + i; I,i =
0, ...8 - 1, then an+1 - an = ai+1 - ai, and qn = qi, i.e. the kind of distribution is mainly
determined by the inner time: .8.:.(t8 + i!l,p, rf:t:l) :::: (qm)tq";pi' In particular, when 8 ::::

1, .8':'(nlk,p,l/m) = .8_(nlk, 1 - qm) that means no heterogeneity and scale modifications
turn into usual binomial distributions,

The most simple heterogenity corresponds to 8 = 2 (a = 2h~I)' In [8] the description of
distribution .8:t(kln,p, a) is given in this case in terms of random walk. We shall show this
distribution to be connected with Fibonacci series.

It can be show, that its generating function is of a kind hn(lI) :::: qodn + qId,,-I, where
Ln/2J. 2"

d,,:=: E C~_iHo- 1 H; and
i=O

Hi = {
(qi-qi+I)II,
(qi - qi+I)1I + qi+l,

i < 8 - 1, }
i = 8 - 1,

When II :::: 1 we obtain an expansion

In/2J L(n-I}/2J
1 = L C~_iP~-2iq~ +ql L C~_i_IP~-2iq~.

,=0 &=0

If we choose PI = ~_ :::: 0.618...- the golden section, then ql = 1 - PI = 1/~~ = ~: and
the identity is ~+ = /{In + ~-/{In-lI where /{In is Fibonacci series (1,1,2,3,5,8,13,21,34,55... ).
Thus, when s = 2, .8:t(kln,p, 2h~l) can be called a distribution of Fibonacci type.

Finally we remark the explicit form of the generalized binomial distributions to be rather
complicated. The recurrent relations, used in practice, are indicated in [4]. If a :::: 1, then all
generalized distributions turn into usual ones.

4 The analysis of postsynaptic potentials (PSP) amplitudes
distributions

A part of scheme of morfological reconstruction of the interneuron junctions for two neurons
(A and B) in an experiment on the isolated spinal hord of a frog ([5],p.40 pic.1) is shown
at pic.I. The electrical impulse of cell A irritation passes to the cell B. A potential is being
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registrated by an electrode introduced into the cell B. The amplitude TJ of this potential is
the basis characteristics to be investigated. The black points on the scheme marks the places
of effective neuron contacts (synapses). The problem is to make clear the logical nature of
impulse transmission mechanizm in the interneuron junctions.

In accordance with the well-known quantum theory of neuron impulse transmission [6] our
observation has a form' = QTJ + e, where e ~ N(O, u) is the normal instrument noise and Q
is the quantum size. The noise-taking-away techique is discribed in [7]. We are interested in
the structure of main signal TJ. That makes us have a more detail look at a separate synapse.
A result of a signale synapse activity can be realy observed, for example, in a neuromuscular
junction. A principle scheme of the chemical transmission in synapse is shown at pic.2. A
mediator quantum is released from the presynaptic membrane. While mediator is in the
contact with the post-synaptic membrane, the chanals of the latter are open for the passage
of ions Na+ and K+ , which concentrations are different inside and outside of the cell. The
redistribution of these ions generates a membrane potential.

The synaps activity in this scheme is determined by two independent Poisson processes:
the inner one (edt)) of mediator accumulation in pre-synaptic region and preporation for its
release (being controlled by ion Mg2+), and the outer one (e2(t)) of mediator spontaneous
release (being controlled by Ca2+). Let Al and A2 be Poisson parameters.

The nerve impulse absent, the first process dominate over the second one in a sense
that in pre-synaptic region the mediator will be ever enough for its spontaneous release. So
n = el(t) + e2(t) can be considered as fixed. In this case the distribution TJ corresponds to a
positive binom, where p = Ar!(>.1 + A2) is the mediator quantum release probability
p+q=l:

Nerve impulse forthcoming to synaps, a mass mediator release occures and the second process
begins to dominate sharply over the first one. The self-regulation takes place between the
mediator accumulation (n) and its release (k). If this regulation is discribed in terms of
mentioned reflections principle, we conserve of binomial law (or that of its Poisson limit) with
possible appearance of it modifications discribed. Indeed, after r reflections the number of

•
realized mediator portions TJ = 11 e(t) has by theorem 2 a distribution ,B+(k+rln+r,p), and the.
number of portions ready to be released TJ- = ~ e;;(k) has a negative binomial ,B_(n+rlk+r,p)
distribution. We note, that the observed mediator release by homogeneous groups is explained
by the scale modification ,B+(kln,p, a) of distribution TJ, where a = 11m (s = 1, m - is the
group size).

The applications of the generalized binom distributions to the discription of neuron junc­
tions appears to be more important. In that case, as it is seen in pic.I, the registrated total
PSP is a sum of heterogeneous contributions from different synaptic groups. This leads to the
additional (generation) noises in observations, which the binomial distributions modifications
take into account.

Some results in data processing and the morphology observations in the experiment dis­
cribed in [8] (including data from pic.1) are shown at the Table 1 for illustration. The general
conclusion is that the data concordance with ,B+(kln,p, aim) is better, than it is with usual
binom and not worse, than with more general scheme of binomial laws mixture, the latter
being bad in interpretation. And which is more important, we see that the estimate of a
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is close to number of synapses groups observed, that corresponds to the parameter the a
structUIe considered above.

Table 1

Binomial parameters of elementary PSP and
the interneuron junction morphological characteristics

N Binom Convolution of two binoms
n p P nI PI n2 P2 P

1 20 0.73 0.00 27 0.18 10 0.98 0.37
2 18 0.65 0.00 35 0.12 8 0.95 0.25
3 9 0.51 0.00 21 0.08 4 0.76 0.01
4 16 0.63 0.23 20 0.25 5 0.99 0.95
5 6 0.54 0.02 12 0.13 2 0.84 0.38
6 14 0.55 0.10 30 0.12 4 0.96 0.17
7 7 0.43 0.21 9 0.24 1 0.87 0.26
8 8 0.59 0.02 54 0.08 5 0.79 0.11
9 16 0.65 0.71 I 1 0.39 15 0.66 0.45

10 6 0.66 0.11 2 0.46 4 0.75 0.00

N Generalized binom Morphology

n a P
groups of

/ synapsesP r
synapses

1 23 0.39 -8 24/28< 0.38 23/72
2 32 0.16 -7 9/39< 0.19 9/18
3 12 0.15 -2 10/16M 0.04 11/16
4 24 0.25 -5 12/13< 0.92 11/40
5 7 0.28 -1 4/5M 0.53 4/6
6 21 0.04 -4 5/40M 0.18 5/19
7 9 0.16 -1 10/16M 0.25 11/20
8 8 0.15 -3 14/36M 0.08 14/43
9 16 0.65 +5 15/60< 0.03 15/42

10 6 0.39 -2 9/21< 0.02 8/26

Note. c-shiftal, M-scalous modification of a generalized

binom, P- significance of X 2 - test.
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Figure 2: Scheme of the chemical transmission in synapse (o,.-mediator)
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Sign Statistical Methods Software

G.I.Simonova and Yu.N.Tyurin

Theoretical sign statistical results derived by Yu. N. Tyurin are given. New statistical
software "SIGN" is based on such results. Problems that can be solved by such software are
proposed. Numerical illustrations and comparisons between sign and minimum least squares
methods for contaminated samples with outliers are given.

1 Introduction

New statistical sign methods for the solution of the various applied problems are proposed
by Yu.N.Tyurin [1]. The assumptions about the statistical properties of the samples are
modest. The disturbance terms are restricted only to have independence and zero median.
To the contrary classical methods based on a number assumptions whose failure to apply to
the data. Sign methods are especially of use to applied statistical data analysis with outliers
because they are robust methods. We developed a useful way of computing such methods and
set it to software "SIGN". "SIGN" is unique PC software including widespread statistical
problems that are solved by the advanced sign statistical methods. Using software "SIGN"
you can solve the following statistical problems:

1. Estimate parameters in the linear model.

2. Test any hypothesis in the regression model.

3. Examinate a few samples for gomogeneous.

4. Estimate parameters in one- and two-factor analysis.

Software is based on the algorithms that can be used to the problems when classical meth­
ods, such as minimum least squares method, are crucial. These algorithms are obtained by
minimizing the some functional wich includes not residuals themselves (as in minimum least
squares method) but them signs only. Some simulation results and comparisons between sign
and minimum least squares methods for various statistical problems are made. Software is
organized as a integrating environment. "SIGN" provides access to graphics from statisti­
cal procedures such as estimation of parameters in linear regression, one- and two- factor
analysis, testing linear hypotheses. Software is intended for use in a broad range of data pro­
cessing. Software works with the computer IBM PC with EGA or VGA. The language used
is TURBO C. The purpose of this study is to develop a useful way of computing sign statis­
tical procedures such as hypotheses testing and parameters estimating and to demonstrate
it by simulation. The paper is organized as follows. Section 2 considers some sign statistical
results proposed by Tyurin. The problems to wich such mathematical results applied and
their numerical illustrations are given in Section 3. Conclusions are drawn in Section 4.
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2 Sign statistical methods

In paper of Yu.N.Tyurin [1] linear model is considered. It can be written in the form

•
Zi = L Cij(}j + Ei

j=1
(1)

where Cij(i = 1, ... , n; j = 1, ... , r) - are fixed known constants that form design matrix
C = IICijll, e = ((}I,(}2,oo,,(},) - is vector of the wumown regression coefficients. Error

terms Ei are independent identically distributed random variables with distribution fWlction
F(z) that is assumed to be continuous in zero, to have zero median F(O) = 0.5, to have first
and second derivatives such that F'(O) > 0, F"(O) = 0 . Such assumptions are performed
e.g. for symmetric disributions. Results can be generalized for not identically distributed
errors with distribution fWlctions that satisfy the mentioned assumptions. H a number of
such assumptions are made the problems of deriving statistic for zero hypothesis testing { Ho
: (} = 0 } contrary to alternatives { HI : (} of- 0 } are discussed. Optimal local Wlbiased sign
test is derived. The power fWlction of such test has zero derivative in zero (local Wlbased
test) and has maximum average curvature in zero amongst all local Wlbiased tests. Optimal
local Wlbiased test given by {T(X) > const} where

• n

T(X) = L(Lcijsign Zi)2
i=1 i=1

(2)

Under zero hypothesis Ho and above-mentioned regular assumptions distribution of this
statistic T(X) is free from distribution law of random errors. It is WJiversal and can be
derived for each matrix C. Therefore zero hypothesis test that based on statistic T(X) is
nonparametric. This general result gives methods of parameter estimation in model (1).
Confidence set for unknown vector e given by

• n •

{ (}: LlL Cij sign (Zi - L Cik(}kW < ql-e}
j=1 i=1 k=1

where ql_< - is quantil of level 1 - E for random variable

n

q(O = L(L Cij€i)2
j=1 i=1

and €i is the sequence of mutual independent identically distributed random variables with
Bernoulli probability law that is 1 or -I with equal probability. Point estimate of vector
parameter (} is solution of the following extremal problem

r n r

(} = argmin LlL Cij sign (Zi - L Cik(}kW

j=1 i=1 k=1
(3)

3 Problems that can be solved by means of software "SIGN"
and numerical examples

We consider the following linear problems: estimation of unknown regression parameters in
model (1), hypothesis testing about that expectation of the observation vector lies in the
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given subspace, parameter estimation in one- and two-factor analysis. Sign method for so­
lution such problems is used. Feature of this method is that expressions for statistics and
minimiziring functions include not residuals of observations from model expectations them­
selves but them signs only. Therefore we have step functions of vector variables. We used
iteration procedures for solving extremal problems. For zero hypothesis testing in not large
samples we used Monte-Karlo method. In large samples we used another form of test statistic
that has asymptotically X -squared distribution.

Problem 1. Estimation of unknown regression coefficients in the linear model. We can
solve extremal problem: find values OJ (0 = 1, ... , n) wich are solution (3). We proposed the
following algoritlun using the iterations.
1. Start with an feasible parameter vector 9(0) = (0 1(0),02 (0), ... ,0.(0)).
2. k-iteration step consist in calculating vector 9(k) by means of values in k-l step 9(k - 1)
with following expression:
9(k) - M d { "'i- 2:;", Cil 8,(k-i) j - I~ . - 1 }

- e Cii ,Pl - L=l lei;1 ' t - "") n

for j = 1, ... ,r .
3. Exit iteration process if values Ol) are stable or statistic (3) equals zero.
Here symbol Med{ Ui, Pi, i = 1, ... , n} denote median of distribution probabilities pi, ... ,pn
which is concentrated in the points of the real line Ui, ... ,Un accordingly. This definition can
be made more precisely.
Let be F( z) = 2:i:Ui <'" Pi , z E R - distribution function of above-mentioned probability law.
Median is solution of equation F( z) = 0.5 . If a number of values (semiinterval) satisfies to
equation F(z) = 0.5 we shall choose center of such semiinterval as median.

Example.
Regression model (1) with the known design matrix is created by simulation. It given by
Yi = 00 + OlZi + 02sin(~) + ej with Zi = 0.8i,i = 0, ... ,64 (size of sample equals 65).
Errors ei are independent identically distributed random variables with distribution function
F(z) = (l- 5)Fo(z) +5 H(z) where Fo is standard normal distribution and H is distribution
with heavy tails. It is sample with outliers (5 = 0.2) besides the disribution of outliers is not
symmetrical. We compare two methods of estimation - sign and minimum least squares ones.
The following table gives model and estimated parameters.

Parameter Model Minimum Least Squares SIGN-method
00 2.50 439.72 2.47
()i -5.00 -10.78 -5.01
O2 100.00 -164.62 99.78

Minimum least squares method is crucial in such example but sign method gives suitable
parameter estimates. We considered examples when the data have outliers. But if we have
sample with unknown error's distribution such that the data do not meet the classical assump­
tions we recommend to make use of sign method which is nonparametric one and can be used
for anywhere distribution. It is especially true if we want to estimate the confidence intervals.

Problem 2. Linear hypotheses testing.
Let linear model (1) is given. We test zero hypothesis about some regression coefficients OJ
equals zero. Such problem appears e.g. in estimating of useful signal in model (1) if the re­
searcher can represent nonrandom part of signal by means of known basis function as follows
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from physical sense. Question is to choose significal with statistical point of view number of
basis functions. If we rename coefficients in model (1) vector °= (01 , ..• ,0,) can be offered
by the two subvectors 0' = (0'1,' .. ,O'a) and T = (TI,' " ,11», a+ b = r, and matrix C = "e,jll
( i = 1, ... , n; j = 1, ... , r) subdivided in (1) into two submatrixes A and B with orthogonal
colunms. Therefore model (1) is

z, = E1=1 aijO'j + El=1 b,/<Tk + ei, i = 1, ... ,no
Zero hypothesis Ho now is expressed as { Ho : 0' = 0 }. Algorithm for testing such hypothesis
is:
Step 1. Implying that 0' = 0 we define estimate T by sign method (problem 1);
Step 2. Let define residuals Zi = Zi - El=1 bi/<T/<.
Step 3. For random values Zi (i = 1, ... , n) we apply sign test for zero hypothesis { H o
0' = 0 } : test (2) where we must replace coefficients Cij by aij and Zi by Zi.

Problem 3. Estimation in one factor analysis.
1. Data. We have m independent samples of sizes nl,"" nm accordingly. Values in ith

sample are Zli, Z2"'" ,znii , i = 1, , m .

2.Model is Zij = 0i + eij , i = 1, , m; j = 1, ... , ni where °1 , ... , Om are the unknown
parameters and eij are mutual independent identically distributed random values.
3. Test for homogeneous.
In order to employ sign analysis to such problem we can introduce another parametric system
0i = 11 + ad..;n; , i = 1 ... ,m with with constraint

Lai =0
i=l

(4)

Hypothesis { H : al = a2 = ... , am = O} is linear. It is equivalent to hypothesis
{Ol = O2 = .. , = Om}. For zero hypothesis testing we used sign method. We can perform
1) Consider that H is true we can estimate parameter 11. Its sign estimate is (L = med( Zij, i =
1, ... ,m;j = 1, ... ,n;).
2) Make up the residuals Zij = Zij - (L.
3) Make up the statistic

n, m ni

T 2 = L(ni l L signzij)2 - m-I(L nil(L sign Zij)2

i=1 j=1 '=1 j=1

(5)

4) Compare sampling statistic T2 with quantil tL-y of level 1 - '"'( for random variable

t 2 = E~I(nil Ej~1 S'j)2 - m-I(E~I nil Ej~1 Sij)2

where S,j (i = 1, ... , m; j = 1, ... , ni) are mutual independent identically distributed random
variables whose values are 1 or -1 with probabilities 0.5.
4. Estimation 11 and a (i = 1, ... , m). Estimation follows from the test statistic T 2 • We can
solve extremal problem
(11, a;) = argmin T2 under constraint (4) where Zij in (5) replaced by
Z,j - 11 - ad ..;n;.

Problem 4. Estimation in the two factor analysis.
We consider this problem in the assumption that the sizes of variables are equal. Problem
can be generalized into case of unequal sizes of variables.
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1. Data are N == rtm independent values. They are recieved when two factors say A and
B have unequal values. Factor A have r levels AI, A 2 •••• , Ar and factor B have t levels
BI ,B2 , ••• ,Bt. For each combination AiBj (where i == 1, ... ,r;j = 1, ... ,t) m repeated
observations are made. They are Zijk, k = 1, ... , m. Often one of the factors (say B) is
general. It is called the treatment. Second factor A can be considered as interfered. Its
influence divide all observations into blocks.
2. Model is additive for the factors and given by Zijk = Oij +Eijk, i = 1, ... ,r; j = 1, ... , t; k =
1, ... , m where Oll, ... Ort are unknown parameters, Eijk are mutual independent identically
distributed random errors. The errors are assumed to have P( Eijk > 0) = P(Eijk < 0) = 0.5
. Parameters Oij can be represented in the form Oij = II. + ai +{3j where II. is general level
(population mean) from which residuals by A and B factor's actions are made;
ai is influence of the block Ai , i = 1, ... ,r .
{3j is influence of the treatment Bj , j = 1, ... , t.
Therefore two factor model can be written in the form Zijk = II. + ai + {3j + Eijk for i =
1, ... ,r; j = 1, ... ,t; k =1, ... ,m wi~h constraints 2:i=l ai = 0, 2:j=l{3j = O.
3. In order to estimate parameters in the two factor model we can used sign test for the
following hypothesis testing { H : p. = 0,a1 = a2 = ... = a r = 0,{31 == {32 = ... = {3t = 0 }.
Statistic of the optimal local unbiased sign test is S2 = 2:i=l 2:j=I(Zi. + Z.j - Z .. )2 where

Zij = "* 2:~1 sign Zijk , Zi. == t 2:j=1 Zij, Z.j = ~ 2:i=1 Zij , Z .. == ~ 2:i=1 2:j=l Zij
. Therefore sign estimates are solition of the following extremal problem min T(p., a, {3) =
min 2:i=l 2:j=1 (.ii. + i. j - .i,y under constraints 2:i=1 ai = 0, 2:j=l{3j = 0 where iij ="* 2:~1 sign( Zijk - P. - ai -{3j) and ii. and i. j are the average values of Zij through j and i

accordingly and i .. is the average value of iij through i and j. Estimate of vector parameter
o= (p., a,{3) is argmin of the function T(p., a,{3). Such function can be written in the fonn

T(p., a,{3) = t 2:i=1 i1 +r 2:j=1 .i.; - rti.. . Parameter estimates are given by the following
iteration algorithm
1. Let fixed {3 and find parameters p. and a as (p., a) = argmin 2:i=1 i1 under constraint

2:i=1 ai = 0 .
2. Let place such a-values into functions i~ and find estimates as (p., {3) = argmin 2:j=l i~

under constraint 2:j=1 {3j = O.
3. If distance in Euclidean norm between estimates in the two neighbouring iterations greater
then little number eps that go to step 1 otherwise iteration process is stopped.

Example for estimating parameters in the two factor analysis and comparison between
sign and minimum least squares methods in the contaminating samples are given. In the
following table values of the simulated parameters and their estimates derived by sign and
mininnun least squares methods are given.
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Number of values Parameters Model MLS SIGN
84 0:1 0.5000 1.5042 0.4559
84 0:2 2.0000 2.2441 2.2118
84 0:3 7.8000 4.1048 7.3907
84 0:4 -5.3000 -5.6409 -5.2891
84 0:5 -5.0000 -2.2122 -4.7693
60 /31 -6.4000 -4.0641 -6.2083
60 /32 7.3000 4.3219 7.0507
60 /33 13.5000 11.7733 13.6179
60 /34 0.0000 5.9295 0.1074
60 /35 5.4000 -0.1857 5.0072
60 /36 -2.6000 -0.6527 -2.3961
60 /37 -17.2000 -17.1224 -17.1788

/I. 1.0000 6.4765 1.1970

Table shows that sign estimates near to the true parameters than minimum least squares
estimates.

4 Conclusions

In this paper we presented some problems for hypotheses testing and parameters estimating
which was included in software "SIGN". We used new methods and algorithms for such
problems. That are sign methods. Software "SIGN" based on such algorithms. Our sampling
experiments show that sign method performs better than minimum least squares method if
distribution of error terms is unknown or the sample have the outliers.
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A Brief Survey on the Linear Methods in Variance-Covariance
Components Models

JUlia Volaufova

1 Introduction

The well known form of a linear variance-covariance components model is often given as

Y=X,B+E, (1)

where Y is an n-dimensional vector, ,B E Rh is a k-dimensional vector of fixed unknown
parameters. The n X k-matrix X is known. The assumptions on the random vector of errors
are as follows

p

E(e) = a E(ee') = LfiiVi.
i=l

The matrices Vi, i = 1, ... ,p are given, and the vector fi = (fi l , ... ,fip )' E (3 is considered
as unknown parameter. The parameter space is the product Rh X 0 and 0 ~ RP contains a
nonempty open set.

Moreover we assume that there exist finite third and fourth moments of the vector e and
the matrices of them are denoted as

E(e I8i ee') = ~ E(ee'l8i ee') = '¥.

There are many authors interested in the problems of estimating a linear function of the
parameter fi, say f' fi. The basis of their consderations is to construct a quadratic function of
the vector Y, say Y'AY, which fulfils the required assumptions of optimality. The problem
is then restricted to finding the proper matrix A which satisfies the conditions which are
connected with e.g. unbiasedness, invariance, etc .. Let us mention some of them: Rao 5, 6,
Kleffe 1, 2, Kubacek 3, 4, and many others.

The present contribution is based on the ideas presented by e.g. Seely 9, 10, Verdooren
in 11, 12, who suggested to transform the original model to the form of the linear model,
where the unknown parameter fi represents the vector-parameter of the expectation. This
approach enables to use the methods of linear models for estimation of the function f'fi as it
was done by Volaufova and Witkovsky in 14, and for special structures by Volaufova in 13.

2 Preliminaries to the linear approach

Consider the model (1). For the expectation of the vector Y I8i Y (= vec YY') the following
equality holds

E(vec YY') =X,B I8i X,B +Qfi,
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where the matrix Q = (vec VI,"" vec Vp ). "0" denotes the Kronecker product of matrices,
"vec A" denotes the column-vector formed by the columns of the matrix A.

In general the covariance matrix of the vector vec YY' depends on first four moments of
Y and we shall use the notation var,,(vec YY') = ~(19).

If we have to estimate the parameter function /'19 it is natural to take into account
estimators which do not depend on the translation in the mean.

Definition 1 The statistic T(Y) is invariant under the group of translations in the mean in
model (1) ifT(Y) = T(Y - Xu) for all u ERic.

It can be shown that the maximal invariant in model (1) under the group of translations in
the mean is the statistic U = MY, where M is the orthogonal projection onto the orthogonal
complement to the column space of the matrix X, M = I - X X+. The symbol "+,, is used
for the Moore-Penrose inverse of the matrix.

In the next we shall consider a more general situation, the estimation of a linear function
of the type p'/3 + /'19. Consider the vector (Y', (vec UU')')'.

LemlIla 1 The expectation and covariance matrix of the vector (Y', (vec UU')')' is expressed
as follows

Y
vec UU' ),

where the matrix QI = (vec MViM, ... , vec MVpM), <Ill = (M 0 M)<Il, and the covariance
matrix ~I (19) of the vec UU' is in general given by

~d19) = (M 0 M)lJ!(M 0 M) - (vec MV(19)M)(vec MV(19)M)'.

PROOF. The proof is straightforward by using the explicite form of the covariance matrix
~(19) of the vector vec YY'

~(19) = lJ! - vec V(19)(vec V(19))' + (X/3 0 <Il')(1 + F",,)

+(1 + F",,)(/3'X' 0 <Il) + (1 + F",,)(X/3/3'X' 0 V(19))(1 + F",,),

where the matrix F"" is uniquely given by the relation F"" vec A = vec A' for each nx n-matrix
A. See also 8. 0

3 Linear models in parameters f3 and ,,')

It is easy to see from Lemma 1 that both the expectation and the covariance matrix of the
vector (Y', (vec UU')') depend on unknown vector parameter 19.

In special case under the normality of the vector Y it may be possible to consider maximum
likelihood estimators of /3 and 19 as well, what can lead to complicated nonlinear system of
equations.

Another possible approach to the estimating problem is to create a linear model in all
unknown parameters of the model and to use a commonly known linear methods.
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For that let 1?0 be an arbitrary but fixed vector from the parameter space 0. Let <)0 and
'lio be suitable fixed matrices of the third and fourth moments. Let's consider the covariance
matrix of the vector (Y', (vec UU')') at 1?0, <)0, and 'lio. It is obvious now that the covariance
matrix does not depend on the parameters of expectation. We get the linear model

(( Y ) (X 0) ( (3) (Y(1?o) <)10' ))
vecUU' , 0 Q1 1?' <)10 ~1O(1?0) .

(2)

As it will be shown later it is more convenient to fix the parameter 1?0 in the original
covariance matrix of the vector Y. Let Yo denotes the matrix Y (1?0). Let us denote T =
Yo + X X'. There exists a matrix T+l/ 2 for which the equality T+ = T+l/ 2'T+l/ 2 is valid,
and moreover the matrix T+l/2 is of full rank. The transformed model by the matrix T+l/2
is as follows

(3)

The maximal invariant under the group of translations in the mean in model (3) is the
statistic Z = MoT+1/2y, where Mo = 1- T+1/2 X(X'T+ X)- X'T+ 1/2'. For the vector
(Y', (vec ZZ')') the following lemma is valid.

Lemllla 2 The ezpectation and covariance matriz of the vector (Y', (vec Z Z')') is ezpressed
as follows

( Y ) _(X 0) ( f3 ) (Y) _(Y(1?) <)2')
E vec ZZ' - 0 Q2 1?' cov vec ZZ' - <)2 ~2(1?) ,

where Q2 = (vec M oT+l/2Y 1T+l/2' Mo, . .. , vec MoT+l/2YpT+l/2' Mo) . The matriz <)2

(MoT+l/2 I8i MoT+l/2) <) and the covariance matriz ~2(1?) of the vec Z Z' is in general given

by

(MoT+ 1/2 18i MoT+l/2) 'Ii (MoT+l/2 18i MoT+1/ 2)'

- (vec MoT+l/ 2y( 1?)T+1/ 2' Mo) (vec M oT+l/ 2y(1?)T+l/2'M o)'.

The previous lemma implies the next linear model at fixed 1?0, <)0, and 'lio.

(4)

4 Unbiased and invariant estimability

The previous section and the linear theory implie directly the next two theorems.

Theorem 1 The linear function p'f3 + f'1? is unbiasedly and invariantly estimable



188

1. in the model (2) ifJ the vectors p E n(X'X) and I E n(Q~Qd, where the matrix Q~Q1
is given by its entries {Q~Qdi,j = tr(MV;M10),

2. in the model mifJp E n(X'X) and I E n(Q~Q2), with {Q~Q2};.j =
=tr(MVoM)+V;(MVoM)+Vj.

Note that due to the inclusion n(X) ~ n(T) and to the equality T+l/2' MoT+ 1/ 2 = T+ ­

T+ X(X'T+ X)- X'T+ the equality T+l/2' MoT+l/2 = (MVoM)+ holds.

Remark 1 The necessary and sufficient condition of the estimability stated in Theorem 1
1. coincides with the well known unbiased estimability of the function p'f3 and unbiased and
invariant estimability of the function I'.,'}, see e.g. 8. The 2. states the unbiased and invariant
estimability of the function f'.,'} which coincides with so called MINQE(U,I) -estimability. It
is obvious that the MINQE(U,I)-estimability implies the unbiased invariant estimability.

5 Locally best estimators

Theorem 2 Let us consider the models (2) and 0), respectively. The locally best linear
unbiased estimator at the point .,'}o E 0, c)o, and 1Jt 0 (LEL UE) 01 estimable function p'f3 + f'.,'}
is given

1. in model (2) as

p'f3+f'.,'} (p',/') [(~' ;~) (~o c);1
0'r (~ ;1)r

( X' 0 ) (T c)10') - ( Y )
X 0 Q~ c)10 T1 vee UU' ,

where c)10 = (M ® M)c)o, T = Va +XX', and T1 = 1;10(.,'}0) +Q1QL

2. and in model (4) as

]lf3+I'.,'} = (p',/') [(~' ;;) (:0 ~~' r(~ ;2)]
( X' 0) (T c).,) - ( Y )

X 0 Q; c)o T~ vecZZ"

(5)

(6)

where T2 = 1;20(.,'}0) +Q2Q; = (MoT+l/2 ® MoT+l/2) T1 (MoT+l/2 ® MoT+l/ 2)'.

Remark 2 The words "linear estimator" in the Theorem 2 means linear in the vector
(Y',(vecUU')') in the model (2) and in the vector (Y',(vecZZ')') in the model (4), re­
spectively. In fact the estimators are linear plus quadratic in the original vector Y.

Remark 3 In case that the distribution of the vector E is symmetric around zero the locally
best linear estimators of the estimable function p'f3 in both models coincide and have the well
known form of .,'}o·LBLUE

]113 = p'(X'r- X)- X'r-y. (7)

Under the same condition of symmetry the LBLUE of estimable f'.,'} does not depend on
linear term and it results to a quadratic form in the vector Y. For comparison see 1 and 4.
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5.1 Normality of the vector Y

Under the normality condition the covariance matrix of the vector vec YY' is

I:(l?) = (I + Fnn)(V(l?) ® V(l?)) + (I + Fnn )(X{3{3'X' ® V(l?))(1 + Fnn ),

(see 8 ) what means that it depends only on the parameter l? Consequently the matrices
I:1(l?) and I:2(l?) are of the form

I:1(l?) = (M ® M)(1 + Fnn)(V(l?)M ® V(l?)M)

I: 2 ( l?) = (MoT+1/2 ® MoT+1/2) (I + Fnn ) (V( l?)T+ 1
/
2' Mo ® V( l?)T+ 1

/
2'Mo) .

From that we get the theorem

Theorem 3 The locally best linear unbiased estimator of estimable function p'{3 + f'l? is
under normality of Y given

1. in model (2) as

p'{3+f'l?

2. in model (.1) as

p'{3 + f'l?

p'(X'T- X)- X'r-y + f'(Q~TI-Ql)-Q~Tl-vec UU'; (8)

p'{3+f'l? = p'{3 + f'l?

p'(X'r- X)- X'T-Y + f'(Q;Q2)-Q;vec ZZ'
p

p'{3 +L >.;q;, (9)
i=l

where q; = Y'(MVoM)+V;(MVoM)+Y and the vector>. is the solution of the system

(Q;Q2». = f·

PROOF. According to the normality condition the estimator (5) directly turns to the form
(8).

The estimator (6) can be expressed as

The second term occurs to be the locally best "linear" estimator of the fllrlction f'l? in the
model

(10)

We show that the model (10) fulfils the necessary and sufficient condition for the ordinary
least squares estimator to be the locally best linear llrlbiased estimator, i. e. R(I:20(l?O)Q2) ~
R(Q2). It is enough to show that

I:20 (l?o) (vec MoT+l/2V;T+l/2' Mo) E R(Q2).
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I:20 (t?O) (vec MoT+l/2V;T+l/2'Mo) =

(MoT+l/ 2 ® MoT+l/2) (I + Fnn ) (vec Vo(MTM)+V;(MT M)+Vo) =
2 (vec MoT+l/ 2T(MT M)+V;( MT M)+TT+l/2' Mo) =

2 (vec MoT+l/2V;T+l/2'Mo) .

From that

Finally we show that Q; vec Z Z' = q, where q = (ql,"" qp)' and qi are given in the
statement of the theorem.

qi ({Q2}.;)'vecZZ' = (vecMoT+l/2V;T+l/2'Mo)' vecZZ'

tr(MTM)+V;(MTM)+YY' = Y'(MVoM)+Vi(MVoM)+Y,

what completes the proof. o

Remark 4 It is necessary to mention that both the estimator (8) and (9) of the function
p'f3 + I't? are the locally best unbiased linear - (invariant) quadratic in Y, and that implies
that they coincide for f E R(Q;Q2) (MINQE(U,I) - estimability). That is the reason that
we shall concentrate in the next to the model (4).

Remark 5 From the equality M X = 0 we can equivalently calculate qi as

qi = Y'(MTM)+V;(MTM)+Y for i = 1, ... ,po (ll)

More generally, the matrix (MTM)+ can be replaced by T- MT in (ll) where MT = 1- PT,
and PT = X(X'T- X)- X'T-. For that it is enough to consider the transformation MoT-l/2y
instead of MoT+ 1/ 2y in the model (4), where the matrix T- 1/ 2 is defined by the relation

T- = T- 1/ 2'T- 1/ 2 for arbitrary but fixed g-inverse of the matrix T. That follows that the

estimator f't? is based on the residual vector MTY = Y - Xf3. For more details see 8 page
96.

6 MINQE(U,I) of the /'19

In this section we concentrate on the functions of the form I't?, i.e. p == O. The well known
method of estimating functions of that type is the MINQE-theory based by Rao (see e.g.6,
7, and 8). However, the MINQE principle is based on the idea to find a quadratic form, say
Y' AY, where A is symmetric and minimizes a suitable Euclidean norm, we restrict ourselves,
moreover, on the forms which are unbiased and invariant estimators of I't? (I.e. MINQE(U,I)).
In that case the Euclidean norm of the matrix A is of the form tr AGAG, for a suitably chosen
matrix G. In case of normality of the vector Y the variance of the statistic Y'AY which is
invariant under the group of translations (Y'AY = (Y - X a)'A(Y - X a) for all a E Ric) at a
given point t?o is 2tr AVoAVo. One of the reasons why to choose the matrix Vo for G is given
e.g. in 8. Nevertheless, we propose a modified definition of the MINQE(U,I).
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Definition 2 The MINQE(U,I) of the estimable function f'{} is the linear-quadratic statistic
T(Y) of the form T(Y) = Y'AY +b'Y +d which is unbiased for f'{} I invariant under the group
of translations Y >-> Y + X 13 and minimizes the variance var "0 T(Y) under the normality of
the vector Y.

The direct consequence of the Theorem 3 and the Definition 2 is the following proposition.

Proposition 1 The ordinary least squares estimator in the model (4) is the MINQE(U,I) of
the estimable function f' {}.

Corollary 1 The MINQE(U,I) of the estimable function f'{} is f'{} given in (9).

1 Linear restrictions on parameters {3 and {)

Let us consider the model, where linear restrictions on the parameters 13 and {} are given, say
in the form

Hj3 = h R{} = c, (12)

where the rl X k-matrix H and the r2 xp-matrix R are given full-rank matrices, i.e. r(H) = rl
and r( R) = r2. We use the linear methods to derive the locally best estimators of the function
p'j3 + f'{} in model (4) with linear restrictions (12). The linear model is of the form

(Y,Xj3IHj3 = h, V({}) IR{} = c) (13)

The restrictions on 13 As the first step we shall consider only the linear restrictions on
the parameter 13, i.e. the model

(Y,Xj3IHj3 = h, V({}))

This model can be reformulated as follows

((~ ),(i )13, (V~{}) ~)).

We shall proceed analogously as in the section 3. Let us denote by

(14)

(15)

(
V: 0)where vv.. = • .

• 0 0 ' (16)

(17)T = (V({}o) 0) (X)(X'H')=(V({}o)+XX' XH')
• 0 0 + H' H'X H'H

being an (n + rI) X (n + rd-matrix. As before we transform the model (14) by the matrix

T.+
1

/
2

• The maximal invariant in the transformed model under the group of translations is

then Z. = M.T: 1
/

2 (y', h')' with an (n + rI) X (n + rI)-matrix

M. = 1- T.+l/
2

' ( i ) ((X', H')T:; ( i ))-(X', H')T.+
1

/
2

•



192

The linear model in f3, {} is then

in which

I ( +1/2 +1/2 ' +1/2 +1/2') {}E(vec Z.Z.) = Q.{} = vee M.T. WIT. M., ... ,vee M.T. WpT. M. ;

the covariance matrix of vec Z.Z~ at {}o and 'lio is

1:.o({}o) = (M.T.+ 1
/
2 I8i M.T.+ 1

/
2) 'Ii.o (M.T.+ 1

/
2 ® M.T;-I/2)'

- (vec M.T.+ 1
/
2W({})T.+l/ 2'M.) (vec M.T.+l/2W({})T.+ 1

/
2'M.) I

where 'Ii.o= (~o ~) is the (n+rIJ2 X (n+rIJ2-matrix and the (n+rl)2 X (n+rl)-matrix

~.o is ~.o = (M.T.+
1

/
2

®M.T.+
1

/
2
) (~o ~).

The following assertions are the direct consequense of this set up.

Theorem 4 The linear function pif3 + f'{} is unbiasedly estimable in model

P E R(X'X + H'H), and f E R(Q~Q.). (19)

Theorem 5 The locally best linear estimator at {}o, ~o, and 'lio of the estimable function
p'f3 + f'{} in the model (18) is in general

plf3+fl{} =

H' 0 ) ( H~'
o Q~ ""

~·o

(
'HI ) ( T XH'

X X 0, HX' HH'
o 0 Q. ~.o 0

where T = Vo + XX' and T. 1 = 1:.o({}o) + Q.Q~.

XH' ~'Ol) -(X 0)] -
HH' 0 H 0

o T' 1 0 Q.

~.o' ) - ( y )

:'1 vec ~.Z~ ,
(20)

Remark 6 Under the condition of symmetry the estimator plf3+f'{} = p'f3 + f'{}. It is easy
to verify that under the additional condition R(H') ~ R(X') the following holds.
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Theorem 6 The MINQE(U,I) of the estimable function f'{} in the model (14) is

/'{} == ~Aiq'i == ~Ai ((YI,h')(MHWoMH)+Wi(MHWoMH)+ ( ~ )), (21)

where MH == 1- ( ~ ) (X'X + H'Ht(X' , H') and vector A is the solution 0/ the system

(Q~Q.)A == /.

PROOF. According to the Definition 2 it is enough to show that the estimator (21) is
invariant {}o-LBLUE of the function f'{} under the normality of the vector Y. Due to the
Remark 6 and the fact p == 0 the LBLUE of the function f'{} from the Theorem 5 is

/'{} == /' (Q~T.lQ.)- Q~T'lvec Z.Z~,

under the normality the matrix I:. o({}o) has the form

I:.o({}o) ==

( +1/2 +1/2) ( )() (+1/2
1

r+1/2
/

)M.T. ® M.T. 1+ F(n+.,)(n+'d Wo ® Wo T. M. ®. M..

By the analogous argumentation as in the Theorem 3 it is possible to show that I:.o({}o)Q. ==
2Q. (Le. R(I:.o({}o)Q.) <:;: R(Q.)). From that

f' (Q~Q.)- Q>ecZ.Z~ == !' (Q~T.lQ.rQ~T.lvecZ.Z~.

To end the pro ofit is enough to denote the vector /' (Q~Q.) - by A and the vector Q ~ vec Z. Z~
~~. 0

Remark 7 As a matter of fact, the MINQE(U,I) of a function f'{} in model with linear
restrictions on the parameter f3 is not a purely quadratic form. If we denote a block-matrix
(MHWoMH)+ as follows

(MHWoMH)+ == (~~ ~:)
then the MINQE(U,I) may be expressed as

/'{} == Y'CI (~AiV';) CIY + 2h'C; (~AiV';) CIY + h'C; (~AiV';) C2 h.

If R(H') <:;; R(X') the explicite form for CI , C2 , and C3 can be found in e.g. 8.

The restrictions on f3 and {} simultaneously In this paragraph we consider the most
general case presented in the model (13). The linear model only with restrictions on {}
was investigated in 14. We establish our considerations on the model (18) with additional
restrictions on the vector {}, i.e. R{} == c. LF'rom that we get the model

(22)

Simple conclusions are the sequel results.
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Theorem 7 The linear function p'{3 + f'{} is unbiasedly estimable in model (!!!!) if and only
if

P E 'R.(X'X + H'H) and f E 'R.(Q~Q. + R'R). (23)

Theorem 8 The locally best linear estimator at {}o, 'l1o, and ~o of the estimable function
p'{3 + f' {} in the model (!!!!) is in general

p'{3 + f'{} =

(".1+ ~' o ) ( H~'
XH' 'l1.o'

Q~R'n~
0

)]H' 0 HH' 0 0
0 Q~ R' 'l1.o 0 T.! Q.

0 0 RQ~ RR' 0 R

~, )(
T XH' 'l1.o'

Q~R' ) - ( "'~.z: ),( X' H' 0 HX' HH' 0
(24)

X 0 0 Q~ 'l1.o 0 T.!
0 0 RQ~ RR' c

where T = Vo +XX' and T.! = ~.o({}o) + Q.Q~.

Corollary 2 Under the condition of symmetry of the distribution of the vector t and fur­
ther under 'R.(H') <;; 'R.(X') and'R.(R') <;; 'R.(Q~) the locally best unbiased linear-quadratic
estimator at {}o and ~o of the estimable function p'{3 + f'{} has the form

p'{3+f'{} = p'{3+f'{}=p'{3-p'(X'T-X)- H'(H(X'r-X)- H'r! (H,8-h)

+/'{} - f' (Q~T.~Q.r R' (R (Q~T.~Q.r R'f! (R{) - c) . (25)

The estimator p'{3 is defined by (7) and the f'{} is the locally best estimator of f'{} in model
(18), see also Remark 6.

Theorem 9 The MINQE(U,I) of the estimable function f'{} in the model (13) is

p

f'{} = L Kiqi' ,
1'=1

where the vector

<> = (Q' R') (I +Q.Q~ Q.R')- ( vecZ.Z~ )
q - ., RQ~ RR' c

and K is the solution of the system

(26)

PROOF. Let us consider the locally best linear estimator (24) of the function p'{3+ f'{} in the
model (22). In our casep == O. Under the normality ofY 'l1. = 0 and ~.o({}o)Q. = 2Q. what
implies that the estimator (24) of f'{} turns to (26). Due to the Definition 2 it is MINQE(U,I)
of f'{} what completes the proof. 0
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ReIll8.rk 8 Another possible way to get MINQE(U,I) of the estimable function f'{} in the
model (13) is to realize that the MINQE(U,I) is f'lJ, where lJ is the solution of the system

Q~Q.{}+ R'v q.

Rv c,

where q. = (q'l"" ,q.p)', q.; = ((y',h')(MHWoMH)+W;(MHWoMH)+ ( ~ )), and v is

the vector of Lagrangian multipliers.

Corollary 3 Under the condition 'R.(R') ~ 'R.(Q~) the MINQE(U,I) of f'{} is given by

Under the normality of Y the variance of MINQE(U,I) at {}o is

For more details the reader is referred to 15.
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PART III. STOCHASTIC OPTIMIZATION





Chaotic Behaviour of Search Algorithms: Introduction

Henry P. Wynn and Anatoly A. Zhigljavsky

1 Introduction

Certain search and optimization algorithms exhibit chaotic local behavior which is often
masked by the simple requirement of convergence. If the algorithm is considered as a dy­
namic system in its original form convergence means that there is a single attractor and the
behaviour might seem uninteresting. The device used in this paper is to rescale, or renormal­
ize, the search region at each iteration and to observe the behaviour of the (unknown) target
in this renormalized region. Thus the original dynamic process is converted into a new one in
which the starting point is the target itself and the trajectory is the trajectory of the target
in the normalized region (rather than the trajectory of the trial values).

This is most simply seen in the case of elementary bifurcation search. Thus let the base-2
expansion of a real number z· E [0,1] be

(where ai = 0,1 )

Bifurcation search lays down at the n-th iteration the interval

and tests whether

or

This is clearly equivalent to exhibiting the value of an +! as 0 or 1. Rescaling the interval
[z~ , z~] back to [0,1] induces the transformation

... z* - z~
z -+ +

Zn - Zn

And z~ is computed as
00

z~ = 2
n
L~'
1=n

Taking z~ = z· we can investigate the behaviour of the sequence z~ in [0,1]. (Of course, this
is a well known and classical problem.)
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Consider first the transformation

It can be written as

h(u)=f
2U

12u - 1

if 0 ::; u::; ~

if ~ < u::; 1

This mapping is the simple Bernoulli shift, see Figure 1.

Z~+l

1 ------------)-----------J

o 1
"2 1

Figure 1. Bernoulli shift.

Considered as a dynamic process the iterative scheme

has the invariant measure that is uniform in [0,1]. The Ljapunov exponent of the scheme is
log 2 :: 0.693 > 0 and the sequence z~ can be described as chaotic. Another issue is to
count the proportion of D's and 1's in the sequence an' Classical results are that the set of
numbers (normal numbers) z· for which the proportion is ~ has the Lebesgue measure 1 and
the set of numbers for which the proportion is a -:f:. ~ has the Hausdorff dimension

1
--I-(a log a + (1 - a)log(1- a)).

og 2

If the original scheme is considered as a search procedure, for example arising from finding
the root z· of a monotonic function j(z) on [0,1]' the procedure is well-known to be minimax
in the following sense. Let [z;; , z~) now be a general interval in which z' is known to lie,
test whether
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or

and create the new interval as

[z,:;-,z,:;- - f)
[Z':;--f,Z;:-)

accordingly. Then
min max (z~ - z;:)
{td~ z·

is achieved for fi = ~. That is, the constant rate algorithm with rate 4is the best.

The paper is an introduction to the consequences of the renormalization idea. Our start­
ing point for a more detailed investigation revealing many of the main ideas in the classical
Golden Section algorithm for searching for the maximum of a unimodal function.

2 The Golden Section algorithm

We shall consider the problem of finding the minimum of a uni-extremal function f( z) on
an interval [a, b]. The golden section algorithm is "second order" in the sense that two points
z' and z" with function values f( z') and f( z") are used at each iteration to eliminate a part
of the interval, see Kiefer (1953,1957). It belongs to a family which may be called symmetric
optimiZation algorithms. Let [a, b] be the current interval. At each iteration points z' and z"
are symmetrically placed between a and b:

If

a::; z' < z" ::; b, z' + z" = a + b (1)

f(z') < f(z")

then [a,b] is reduced to [z',b] because there is no minimizer in [a,z'] and conversly if

f(z') 2: f(z")

then [a,b] is reduced to [a,z"], see Figure 2. (For a moment we ignore the complications
arising in the case f( z') = f( z"). Where we can delete either or both ends from the interval
[a, b], we shall delete the right one.)

VI/il//lll I

a

a

z,

z'

z"

Yi/li//l/il
z"

b

b

Figure 2. The deletion in the symmetric algorithms.
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The golden section algorithm selects z', Zll so that the ratio of the length of the whole
interval [a, b] to the bigger subinterval [a, Zll] is the same as the length ratio of the bigger
to the smaller subintervals:

b - a Zll - a

Zll - a Zl - a

This together with the syrrunetry condition (1) easily leads to

Zll - a b - Zll V5 - 1
-- =-- = >. =-- ~ 0.61804 ... ,
b - a b - Zl 2

z' - a b - Zll
-b- = -b-- =1- >. ~ 0.38196 ...

-a -a

Here>. is derived as the positive root of the equation >.2 + >. - 1 = 0 and is known as the
Golden Section. ( The number 1 + >. sometimes also has the same name.)

The above formulae give a constant rate of reduction of the size of the interval (the
analogue of ~ for the bifurcation algorithm). After n iterations the initial interval is reduced
by a ratio >,"-1, noting that the algorithm starts with the initial points.

We now produce an iterative scheme under renormalization for the golden section algo­
rithm. Suppose that z· in [0,1] is the (unknown) IniniInizer of f(z). Assume also that f(z)
is uniextremal and syrrunetric about Z·. Thus for any 5 > 0 such that 0 < z. - 5 < z· +5 ::: 1
we suppose that

f(z* - 5) = f(z' +5)

and
f(z') > f(ZIl)

f(z') < f(ZIl)

if z·::: z' < Zll ::: 1

if 0::: z' < Z" ::: z·

Let [a", b"J be the undeleted interval after the n-th iteration. Renormalize [a", bnl back
to [0,1]' using the transformation

z - an
z -t ---

b" - an
Then define

.. z* - an
zn = b" - an

as the location of the unknown miniInizer in the renormalized interval. This defines an
iterative scheme

(2)

where

i
u( 1 +>.) if u ::: ~

h(u) = (3)
u( 1 + >.) - >. if u > ~

The constant rate>. and the syrrunetry of f implies that h(.) does not depend otherwise on

f.
Figure 3 shows this transformation
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Z·
n11-~1

2"

,
-----+-----,,,, ,

--+-----+--, ,, ,, ,, , ,
-----+----- -----+--------, ,, ,, ,,

o

l-~
-2-

1
2"

1- ~

1

Figure 3. The golden section iteration.

The sequence (2) is ergodic. The Ljapunov exponent of the mapping h(.) is l.og( A + 1) ::=
0.4812 > 0, thus the behaviour of the sequence (2) can be described as chaotic. Particularly,
it has an invariant measure, say v, such that

1 k t
k~~ k ~g(z;) = Jo g(z)v(dz)

for any continuous function 9 on [0,1] and v-almost all starting points Zo E [0,1]. The
invariant measure v will be computed below in Theorem 1. First, we shall discuss which
initial points Zo generate cycles in the sequence {zn}

If Zk = A or 1- A for some k then the points Zn for n 2: k perform a cycle in the two-point
set {A,1 - A}, see Figure 4. This case happens when at some moment k the trial point (i.e.
the point where we evaluate the objective function) coincides with the minimizer Z·. It is
easy to understand that this occurs if and only if for some k 2: 0 the minimizer z· can be
represented as

k

z· = L:aiAi,
i=l

ai = 0,1. (4)

Another case, mentioned above, is when

(5)

for some k, that is to say the function f is symmetric about z· = (ak + bk)/2. We have two
choices: (i) delete both ends of the interval and restart the algorithm with two additional
points and continue like this, (ii) use some convention to delete the left or rigth side of the
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interval; for example always delete the right side. Defining the mapping (3) we have used the
second choice with the convention to delete the right side of the intervals in the case (5).

This phenomena happens for the countable set of points z· in [0,1] with the expansion

ai = 0,1, (6)

for some k. It is easy to see that the points (6) force the sequence {zn} to cycle on the three­
point set {!' ! - ~' ~} for n > k. Note that if we change the convention in (ii) above always
deleting the left sides of the intervals in cases (5) we obtain the three point set {~'! +~'1- ~}
as the attractor of the sequence {zn}.

As is usual, all the points of any n-point attraetor set can be obtained as the solutions
of the equation z = hn(z) where hn(.) is the n-th iterate of the mapping h. The expressions
for the starting points leading to these attractors can be derived analogously with (4) and
(6). It is worth noting that only a countable ntUllber of starting points lead to cycling in the
sequence {z~}.

Figure 4. Cyclic attractor for Golden Section.

It is clear from observing the behavior outside the interval D = [1;'\!..:PJ that the
sequence {zn} attracts to this interval rather than [0, 1J and that therefore the invariant
measure can not be supported outside D. The following theorem presents the explicit form
of the invariant measure of the chaotic sequence (2).

Theorem 1. The normalized invariant measure v of the Golden section renormallzed
iterative scheme (2) has the density (with respect to the Lebesgue measure on [0,1] ) p(z)
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given by
0 if 0 ::; z < 1~'\

,\ if 1~'\ ::; z < i,3-4'\

p(Z) = 1 iq::;z<l-i (7)
3-4'\

,\
if 1 - i ::; z < I.¥3-4'\

0 ifI.¥::;z::;l

Proof. The uniqueness of the normalized invariant measure II of the sequence Zn abo
solutely continuous with respect to the Lebesgue measure Jl follows from standard ergodic
theory and the fact that the mapping h(.) is measure preserving with respect to Jl in the
domain of attraction D. The condition for invariance is that

for any measurable set A ~ D with Jl(A) > o.
Let

h-1(y) = {z; I h(z;) = y}

(8)

which in this case has cardinality 1 or 2. Then the invariance condition (8) can be rewritten
as the following condition with respect to the density p(.) of the measure II:

pry) = L
z,E,,-I(y)

This leads to the functional equations

o

>..p(>..y+ 1- >..)

p(z;)
-d"--'
;I; IZ='Zi

if 0 < y < (1 - >")/2,

if(l- >..)/2 < y < >../2,

pry) = >..(p(>..y) +p(>..y +1 - >..)) if >"/2 < y < 1 - >"/2,

>..p(>..y)

o

if 1 - >../2 < y < b(l + >"),

if (1 + >..) /2 < y < 1

which have the solution (7). 0

Figure 5 gives the graph of the invariant density.
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1
3-4>'

o 1->'
-2- l-i!.¥- 1

Figure 5. The graph of the invariant density (2).

3 A Bayesian interpretation

It is pleasing to give the invariant measure a Bayesian interpretation. Assume, then that z~

is exactly distributed according to p(z). The information gained from the new observation
in [an, bn]is of the form

• an +bn
z <---- 2

if the right subinterval is deleted and

• an +bn
z >---- 2

if the left one is. We are assuming the information that f(z) is symmetric with respect to
z' is used. This information (after renormalization) is conveyed to z~+l in the form of the
conditional distribution which is defined as follows

o if 0 s: Z~+l < i

Similarly

2
3-4>'

o if 1..B. < z' < 12 - n+1-
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:r

p(:z:~ I :z:~ > t)

1-,\
~

mixing

renormalizing
of the intervals

/ conditioning~

~
3_

1

., j
.\

J-<4>-

'-------L->-:"---'--'--'---iiL-"---'----+-_

1-,\ ,\ I
~ 2 "2

o 1-,\ ~
2 2

1- ~ !B
2 2

Figure 6. Bayes interpretation.
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Note also that

( • 1) (. 1) 1
Pr zn ::; 2" = Pr zn > 2" = 2"

Now p(z) is invariant in the sense that the marginal distribution for z~+l under this
updating rule is the same as for z~ namely p( z) itself:

Figure 6 demonstrates the Bayesian interpretation.

4 The Golden Section algorithm for nonsymmetric functions

The situation for nonsyrnmetric functions is more complex. In general we loose the de­
pendence of the iteration function h(.) only on the location of the minimum within the
renormalized interval, namely z~. One example in which this dependence is preserved is a
function of the form

j(z) z'-c(z-z') O::;z<z'
z· +d( z - z·) z·::; z ::; 1

where c, d > o. In this case the iteration is

where

\

u(l + A)
h(u) =

u(l + A) - A

and
d

b= --.
c+d

The algorithm is non degenerate when

ifO<u<b

ifb<z<l

1 - A ::; b ::; A.

The Lyapunov exponent is again log(A +1) and the conditions for the invariant measure are

o

Ap(AY +1 - A)

if 0 < y < b( 1 + A) - A,

if b( 1 + A) - A < Y < b( A+ 2) - 1,

p(y) = A(p(AY) +p(AY + 1 - A)) if b(A + 2) - 1 < Y < b(A + 2) - A,

Ap( AY)

o

if b(A+ 2) - A < Y < b( 1 + A),

if b(l + A) < Y < 1
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which has the solution

o if 0 < y < b( 1 +A) - A,

3-\>' if b( 1 + A) - A < Y < b(A + 2) - l,

p(y) == 3-\>' if b(A + 2) - 1 < y < b(A + 2) - A,

3-\>' if b(A +2) - A < Y < b(1 +A),

o if b(l + A) < y < 1

Figures 7 and 8 give the function h and the invariant density respectively.

1b 1 - ~>.
2

,
,,

--+--------,,,, ,
- - - - - .. - - - - - - - -1- - - + - - - - - - --

, ", ,,,

o

>.
2

1
2

1+>'
-2-

1->'
-2-

1

l-~

Figure 7. The Golden section iteration in the nonsymmetric case.

p(x)
I

3-4>'

o b(l + A) - A b(l +A) 1
x

Figure 8. Invariant density for the Golden section algorithm in the nonsymmetric case.
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Again we have the {A,l - >'} cycle and the point b plays the same role as ~ in the
symmetric case.

Analogously to the symmetric case we exclude :1:* for which

k
ai

:1:* =L >.i
i=l

k

=L
i=l

ai b-+-­>.i >'7+1

A Bayesian interpretation is also possible in this case.

In a sense the symmetric and nonsymmetric examples above are canonical cases. It is
possible to show that if /( z) is Illlimodal, differentiable and

that the approximate symmetry:

/(:1: - :1:*)::::: /(:1:*)+ I :I: -:1:* 1/,(:1:*)

forces an invariant measure on the sequence :I:~ except regarding the h function will change
also with n

For differential nonsymmetric functions which are Illlimodal and possess a Illliform quadratic
approximation around :1:* it is possible to show that the invariant measure is indentical to
the measure which appears in the symmetric case. The proof, which is omitted here, follows
using standard generalizations of the ergodic theorems. There is also an interesting "self­
correcting" property in this case. For the nonsymmetric case when :I:~ is close to (an + bn )!2
the sequence departs from the behaviour for the symmetric case however (i) it returns to the
symmetric behaviour (ii) the departure from the symmetric case happens for an asymptoti­
cally negligible number of cases.

5 General class of algorithms

Let:l:~ and:l:~ be the two observation points at iteration n in the normalized interval
[0,1], :I:~ < :I:~. Let /(:1:) be unimodal and locally symmetric and we delete [O,:I:~) or (z~,l]

in the usual way. Let :I:~ be the location of the minimum in the renormalized interval. Define
a general algorithm by

1
~ if:l:n < zn
z:~

*:l: n +1 ==
:I:;-:r:.
1-:1::. if :l:n > zn
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- z~+z::where Zn = 2 and

'"" = {

,,' if Zn < zn=no
z~

z~-z~ if Zn > znl-z:'

Z~+I = min{ en+l, zn+d,

z~+l = max{ en+l, Zn+l}

Here en+! , 0 < en+1 < 1 represents the placement of a new point in the next renormalized
interval.

This general class of algorithms includes the major part of interesting one-dimensional
algorithms. Let us define certain more narrow classes.
1. Synunetric algorithms: z~ = 1 - z~ for all n.
2. Fixed algorithms: z~ = z' and z~ = ZII for all n.
3. Semi-fixed algorithms: en = e for all n.
4. Fixed width algorithms: W n = z~ - z~ is a constant for all n

There is a rich theory for these classes of algorithms which the authors will present in a
longer work (Wynn and Zhigljavsky (1992) ). One of the most intriguing developments is that
there are examples of algorithms in the classes (3) and (4) which have a faster asymptotic rate
of convergence than the Golden Section algorithm despite the fact that the convergence rate
for the latter is constant at oX. (In particular, the average asymptotic rate for (3) above with
en = 0.5 and (4) above with W n = 0.125 are approximately 0.6023 and 0.5713 respectively
complilJ'ed with the larger value of 0.6180 ... for the Golden Section algorithm.) The seeming
contradiction is resolved because the Golden Section algorithm concentrates essentially on
the worst case which form only a countable number of cases (as explained). These other
algorithms which beat the Golden Section pay attention to the set of Z· which generate the
invariant measure and which has the Lebesgue measure lover [0,1]. The authors believe
that this qualitative conclusion may have important implications for the algorithmic theory
in continuous spaces.
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On a Class of Stochastic Optimization Algorithms with

Applications to Manufacturing Models

G. Yin, H.M. Yan and S.X.C. Lou

A class of stochastic optimization algorithms is developed in this work. The algorithms
have recursive form, and use averaging in the updating. By virtue of the weak convergence
methods, it is shown that a sequence of continuous time interpolation converges to a process
which satisfies an ordinary differential equation. Order of magnitude estimates on the error
is derived and a suitably scaled sequence is then shown to converge to a solution of stochastic
differential equation. The scaling together with the asymptotic covariance can be used as a
measure of rate of convergence. Applications to manufacturing models are also considered.

1 Introduction

Let X, € E m:, bC) be an R" -valued function, and e > 0, Te > O. Consider the following

stochastic optimization algorithm:

or

1 I nT,+T,
X n+ 1 = X n +e- b(Xn,€(t))dt

Te nT,

1 nT,+T,-1

X n+1 = X n + er L b(Xn,€j),
e j=:nT,

(1.1)

(1.2)

where e is known as a constant step size or a gain parameter and Te is chosen in such a way

that Te --> 00 as e --> O. In (1.2), Te is understood to be an integer. Our goal is to develop

various asymptotic properties of the above algorithms.

Algorithms of the form (1.1) and (1. 2) arise from various stochastic optimization problems,

in which one wishes to minimize a functional 1(-). In order to carry out the indicated task,

gradient estimates of 1(·) are needed, and simulations are conducted. Suppose that €(-) is a

strictly stationary process satisfying certain regularity conditions. For each z, the gradient

estimate of 1(-) is of the form

liT~lr(z) = -- b(z,€(t))dt
T 0

if the simulation can be done at continuous time, or
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if the simulation is conducted at discrete time. To approximate the optimal vector z', i.e.,

J(z') = minz J(z), a stochastic approximation type of algorithm is employed. This algorithm

takes the form (1.1) or (1.2) in accordance with the ways that the gradient estimates are

obtained.

Here we are mainly interested in the asymptotic properties of the above stochastic pro­

cedures and applications to data analysis of stochastic manufacturing models. (1.1) and/or

(1.2) are not standard stochastic approximation algorithms owing to the fact averaging is

used in the scheme. Sampling controlled stochastic approximation algorithms with averaging

of observations was also considered in 4. The entire past was incorporated in the averaging

in 4, whereas the averages are taken when z is fixed in our approach. Moreover, another

class of averaging algorithms were also proposed by 12 and developed further in 14. In these

papers, the main concerns are the asymptotic optimality and related matters. In contrast to

the aforementioned references, continuous time random processes are also dealt with here.

It seems that the algorithms considered here can also be used in conjunction with parallel

processing methods (cr. 13 and the references therein.)

The remainder of the paper is arranged as follows. Convergence of the algorithms is

considered in the next section. Section 3 presents applications of using the algorithms solving

problems in manufacturing systems. Section 4 deals with bounds of the estimation errors. A

local limit theorem is obtained via a suitably scaled sequence.

To proceed, a word about the notations is in order. K will be used to denote a generic

positive constant; z' will denote the transpose of z; tz(') will stand for the z-derivative of

tc)·

2 Convergence

This section is devoted to investigating the convergence of the proposed algorithms. We

shall mainly work with the algorithm (1.1). (1.2) can be handled similarly. To proceed, the

following assumptions are needed.

(AI) {(.) is stationary. There is a continuous function b(z) such that for each z

~ loT b(z,{(t))dt....!:...b(z) in probability.

(A2) For each T < 00, t E [O,T],

lim E sup Ib(z, W)) - b(y, W))I = o.
6~O IZ-lIl<6

(A3) For each N < 00, the set

{ sup Ib(z,{(t))I} is uniformly integrable.
IzlSN
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Remark: These assumptions are motivated by the particular applications of manufac­

turing models (cf. Section 3). (AI) is an ergodic condition in the sense of convergence in

probability. It is a basic averaging condition. If ~(.) is a ¢-mixing process with EI~(t)1 < 00

then it is a strongly ergodic process and hence (AI) holds. In fact, in this case, the conver­

gence is in the sense of with probability one (w.p.I.)

(A2) indicates that the function b(·,O may not be continuous, but its expectation is

continuous such as the case that b(·, 0 is an indicator function or combination of indicator

functions.

In various applications, the function b(z,O is often bounded. In such a case, (A3) is

verified. Nevertheless, (A3) can deal with more complex situation, for example, if

where ho(z) is a continuous function, Elgi(OIJ+a < 00 for some Q > 0, the condition (A3) is

also satisfied.

For Algorithm (1.2) (the case of discrete time averaging), the averaging in (AI) will be

replaced by:
1 T-I _

- L b(z,~j) ---> b(z) in probability as T ---> 00.

T j=O

(2.1 )

To proceed, we work with continuous time interpolated processes. Let z·(·) be defined

by z· (t) = Xn for t E [ne, ne +e). Under the framework of weak convergence (cf. 7), it will

be shown that the following limit theorem holds.

TheoreIn 2.1. Suppose that (Al)-(A3) are satisfied and the differential equation

i: = b( z) (2.2)

has a unique solution for each initial condition. If z'(O) =? z(O) then {z'(tH is tight in

nr[o, 00). Every convergent subsequence has limit z(·) which satisfies the differential equation

(2.2).

Remark: nr[O, 00) denotes the space of R r -valued functions which are right continuous

and have left-hand limits, endowed with the Skorohod topology. For various notations and

terms in weak convergence theory such as Skorohod topology, Skorohod representation etc.

and many others, see 5, and the references therein.

Proof: To avoid the problem with possible unboundedness, a truncation device will be

used (cf. 7 Chapter 3). For each N < 00, let z·,N(.) be the N-truncation ofz'(') such that

z·,N(t) = z'(t) up until the first exit from the N-sphere SN = {z; Izi S N}.

Owing to the definition of the interpolation, (without loss of generality, asswne that tie
and (t + 1J)le are integers), and choosing a sequence of integers {m.} such that m. ---> 00 as
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~ ~ 0 and ~m< = ~< ~ 0, we have

where

1 1 jiT'+T' N
W(t) = - L - b(zj' ,~(u))du on t E [l~ .. l~< + ~<).

m< I < '<I T< iT,ffl'_J_ m,+m,-l

(2.3)

(2.4)

It follows from (2.3) that z<,N(t) = B«t).

Due to the fact that z<,N(O) ==> zN(O), {z<,N(O)} is tight. By virtue of the Markov

inequality, for any T/ > 0, I > 0, there exists a fj = 1T/ such that for some i E [t, t +s]'

p (sup \z<,N(t +s) - z<,N(t)l2:: I)
1_1<6

::; ~E s~p Jz<,N(t +s) - z<,N(t)1
I 1.1<6

~E su-p (IB«i)llsl)
I [_1<6
1 -

::; -Kfj::; KT/
I

for some K > o. Then by virtue of 3 Theorem 8.2, {z<,N (.)} is tight and the limit of any

convergent subsequence has continuous paths with probability one (w.p.I.)

Pick out an arbitrary convergent subsequence and denote the limit by zN(.). By Sko­

rokhod imbedding and without changing notations, we assume that z<,N(.) ~ zN(.) w.p.l

and the convergence is uniform on any finite time interval.

Define

(2.5)

If we can show that M N (t) is a continuous martingale, the limit theorem will hold for the

truncated process. Since MN(O) = 0 and MN(t) is Lipschitz continuous if it is a martingale

it must be MN(t) == o. Therefore, only the martingale property needs to be verified.

To this end, let g(.) be any bounded and continuous function, II be any positive integer,

t; < t < t + s for i ::; II. In view of the weak convergence and Skorokhod imbedding,

li;nEg(z<,N(t;),i::; II) (z<,N(t + s) - z<,N(t))

= Eg(zN(t;),i::; II) (zN(t +s) - zN(t)).
(2.6)
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On the other hand,

The last equality above follows from the weak convergence, the Skorokhod imbedding,

assumption (A2) and Ej --> T for 1m. :s; j :s; 1m. +m. as E --> O.

Using a basic result of analysis, for any 1/ > 0, there exists a function :z:'l(-) that takes

only finitely many values (say :Z:1, "', :Z:q), such that

I:Z:(T) - :z:'l(T)1 < 1/.

Consequently, by applying (A2), the limit in (2.7) is the same as that of

Since

and 1/ > 0 is arbitrary, we have

1 1 jjT,+T, _- 2: - b(:Z:'l(T),e(u»)du~b(:z:N(T)) in probability.
m. I . I T. jT,

mit ~J:~; me +m.t -1

Substituting this into (2.7),

li:nEg(:z:·,N(t;),i:S; v) (:z:.,N(t + s) - :z:.,N(t))

Eg(:z:N(t;),i:S; v) (:z:N(t + s) - :z:N(t) -[+. b(T)dT) .

Combining (2.6) and (2.8), we arrive at

Hence MN(t) is a martingale.

(2.8)
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Finally, use the idea of 7, Theorem 2.2 (and the corollary) to finish the proof. Let P.,(O)(·)

(the subscript z(o) signifies the dependence on the initial data) and p N (.) be the meaSUIes

induced by zO and zN('), respectively, on 13, where 13 denote the u-algebra of Borel subsets

of n'[O, 00). pZ(O)O is unique since there is a unique solution to the ordinary differential

equation for the initial condition value z(O). Thus, for each T < 00,

for each A E 13 such that z(t) takes values in SN (the N-sphere). As a result,

lim P.,(O) (sup jz(tll :::; N) = 1.
N_oo I:::;T

This together with the weak convergence of z"N(.) implies that z'O ~ z(·). Since the

limit is unique, it does not depend on the chosen subsequence. The proof of the theorem is

completed. 0

Consider Algorithm (1.2). Suppose that the conditions of Theorem 2.1 are satisfied with

(AI) replaced by (2.1). Define z«·) as in the previous theorem. Then the result of Theorem

2.1 still holds. The proof is similar to that of Theorem 2.1.

Theorem 2.1 is similar to the law of large numbers. It gives information on the location

and/or distribution ofz<(-) for small £ and for large but bounded t. It can be seen that there

is a natUIal connection between the recursive procedure and the corresponding ordinary

differential equation. The optimal threshold value we are seeking for in fact, is a stable point

of the differential equation (2.2).

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold, and (i) the ODE (2.2) has

a unique asymptotically stable point z' (in the sense of Liapunov stability). (ii) The set

{Xn ; n < 00,£ > O} (2.9)

is bounded in probability, i.e., for each Tf > 0, there is a "" > °such that for all £ > 0, and

all n, P(IXnl 2: ",,) :::; Tf. Let t, -+ 00 as £ -+ 0. Then z'(t, +.) is tight in n'[o, 00) and any

weak limit is equal to z·. 0

(2.9) can be established by using a perturbed Liapunov function methods (cr. 9 and 11).

The proof of this Theorem can be obtained analogously as in 9 Theorem 5.1.

3 Applications to manufacturing models

Applications of the stochastic optimization algorithms to manufacturing models are dealt

with in this section. Data analysis and numerical methods for manufactUIing models under

threshold controls policies are considered.

In various applications, threshold controls are widely utilized since the idea is very appeal­

ing and the principle is easy to apply. Once a threshold value is determined, a controller or an
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operator can ignore detailed variations and concentrate only on adjusting controls according

to the threshold criteria.

Apparently, first and foremost important task is to locate the optimal threshold values.

For one machine models, an explicit solution was found by means of stochastic optimal

control techniques in 1 for a discounted cost function, and in 2 for an average cost per unit

time problem.

It should be pointed out that the solutions (the explicit form of the threshold expression)

in 1 and 2 have complicated forms. In addition, for multi-machine models, the problems

become very hard to handle. Although some attempt has been made and optimal solutions

were shown to be of threshold type 10, no 'closed' form solution has been found up to date.

It is thus sensible to look at possible alternatives-numerical solutions.

Multi-machine manufacturing models will be considered. In lieu of solving the dynamic

programing equation as in 2, stochastic optimization methods are applied to the problem and

recursive algorithms are developed.

Zi(t) will denote the inventory levels of machine i, and Ui(t) stand for production rate

(the control) of machine i. Since we are not solving the dynamic programing equations,

the demand processes can be quite general. They do not have to be constants although a

constant demand model is used for simplicity. In the sequel, formulation for surplus (defined

as the difference between accumulative production and accumulated demand) control model

is given. Then approximation procedures will be developed and some numerical'results will

be presented.

3.1 Surplus control model

The two machines are in a cascade form and given by

Zl(t) = UI(t) - U2(t),
Z2(t) = U2(t) - d,
Zl(t) 2: O.

Let the machine operation states be defined by Ii(t), i =1,2 with

Ii(t) = {I, machin.e i is working,
0, otherWIse.

We then have

(3.1)

0::; Ui(t)::; Uimax, i = 1,2.

where Uimax > d. Assume that Ul max > U2max' This scenario is depicted in the following

Figure 1.

Surplus at 'machine i is defined as the difference between accumulative production and

accumulated demand, Le., it is the inventory level (or work in progress) at machine i plus the

inventory level of all down stream machines. Let Bi(t) be the surplus for machine i, i = 1,2.
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Figure 1: A two-machine system

Notice that the surplus can be positive or negative. If a surplus is negative, a backlog for

the production at i is accumulated. With these notations, the system dynamics can also be

written as:
Sl(t) =Ul(t) - d,
S2(t) =U2(t) - d, (3.2)
Sl(t) ~ S2(t),

Comparing (3.2) with the one-machine model in the work 1 and 2, the surplus control is more

or less like having two machines operating independently.

Let Zi denote the surplus threshold levels of machine i. The control policy is given by:

{

{

Ulmax, if Sl(t) < Zl, I1(t) = 1,
udt) =' d, if sdt) = Zl, Idt) =' 1,

0, otherwise; (

{

U2max, if S2(t) < Z2, sdt) - S2(t) > 0 and h(t) = 1, 3.3)
U2(t) = d, if S2(t) = Z2, sdt) - S2(t) > 0 and 12(t) = 1,

0, otherwise.

The interpretation of the control policies is similar to that of the one machine case. The

problem to be investigated is to find the optimal threshold value Z· = (zi, zi) such that the

cost functional

(3.4)

is minimized.

3.2 Approximation procedures

The framework and procedures will be presented for the surplus control problems below.

Let W) =' (z(t),I(t))', where z(t) =' (Zl(t),Z2(t))' and I(t) =' (I1(t),I2(t))'. As in 2,

we shall assume that there is an invariant measure PZ(.) for the process €( t) throughout the

paper. With this assumption, the cost function can be rewritten as

(3.5)

By using perturbation analysis methods 6, the sample gradient estimates can be con­

structed. Let

VJT(Z) = (VJ}(z), VJf(z))'
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be the gradient estimate of V' J(z).

VJj.(z) = ~ iIoT[CI + (ct - CdI{",,(tl?O,pl(tl=l} - (C2 - Cd I{",,(t l$O,Pl(t l=I}]dt)
(3.6)

VJf(z) = ~ Io
T

[(Ct - cdI{",,(tl?O,P2(tl=l} - (c2 - cdI{",,(t l$O,P1(tl=I}]dt) ,

where PI(t) and P2(t) are auxiliary processes. PI(t) = 1 during perturbation propagation on

Machine 2 due to the perturbation on the parameter Zl; PI (t) is set to zero, otherwise. P2( t) =
1 during perturbation generation on Machine 2 due to perturbation on control parameter Z2;

P2(t) is equal to zero, otherwise. For further use, denote the quantities in the integrands by

h(z,W)). Then,

VJT(Z) = ...!:. rT
h(z,~(t))dt.

T Jo
Theorem 3.1. Assuming the existence of PC(.), suppose that the process ~(.) is weakly

ergodic in the sense for each z and each bounded and measurable function 1l'(z,O,

...!:. rT
1l'(z,~(t))dtT~;r(z) in probability,

T Jo

where ;r(z) denotes the average of1l'(z,') with respect to the invariant measure PC(.). Then,

the gradient estimate is consistent in that VJT(Z)~V'J(z) in probability as T -+ 00.

Utilizing the above gradient estimates, a recursive algorithm is then developed to approx­

imate the optimal threshold values. The algorithm is of the form

Zn+1 = Zn - e (gradient estimate) .

The essence is that the approximating sequence {Zn} is generated recursively. For each n,

with threshold value Zn, a time interval [0, T<l is taken. Following the path of the process

involved, a simulation run is performed to get a gradient estimate VJ(Zn). The iteration is

given by (1.1) with X n replaced by Zn.

Assume that the conditionsofTheorem 3.1 are satisfied, and the differential equation

.i = h(z) = -V'J(z)

has a unique solution for each initial condition z(O). Let z«·) be defined by

z«t) = Zn, for t E [ne,ne +e),

(3.7)

i.e., z«·) is a piecewise constant interpolation of Zn with interpolation interval e. Suppose

that Zo ~ z(O). Then {z«·)} is tight in D2[0,00) and any weakly convergent subsequence

has limit z(·) which is a solution of the ODE with initial condition z(O).

In addition to the above conditions, assume that the conditions of Theorem 2.2 are satis­

fied for {Zn}. Let t< -+ 00 as e -+ o. Then z'(t, + .) is tight in D2[0, 00) and any weak limit

is equal to the optimal threshold value Z·.
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Figure 2: Convergence of the iterates

3.3 Numerical experiments

First, consider the one machine problem 2. The analytical result is given by:

* 1 In umax>'(c++c-)
z = I!d A_

d
c+(umax _ d)(>. + p)'

u-1. RI&X-

J( *) c d + c+ In Umax>'(c+ + c-)
z = >. + p J - um.:-d c+(Umax - d)(>. + p)"

Choose 1/>. = 0.1, 1/p = 0.125, d = 1.0, c+ = 2.0, c- = 10.0 and Umax = 2.0. Then the

optimal values are found to be z* = 66.96 and J(z*) = 142.89 by using the above formulae.

Now, using our algorithm with! = 0.5 and T. = 10,000,100 replications were obtained. With

initial value Zo = 100, by taking averages of the replications, the approximated values are

found to be z* = 70.04 (with a 95% confidence interval [69.42,70.06]), and J(z*) = 145.35.

Similarly, with Zo = 20, zi = 67.23 (with a 95% confidence interval [66.64,67.80]), and

J(z*) = 139.34 were obtained.

Next, Figure 2 demonstrates the convergence of the algorithm for two machine case. By

generating contour curves via simulation for each set of threshold values, the approximation

obtained in our algorithm is seen to belong to the region of optimality. It seems that the

initial condition does not affect the algorithm significantly. Thus the algorithm is robust with

respect to the initial data.
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4 Further asymptotic results

In this section, further results of Algorithm (1.1) will be obtained. First, order of magni­

tude error bound is derived and then a local limit theorem is established under additional

conditions. The consideration in this section falls into the category of rates of convergence.

4.1 Error estimates

Theorem 4.1. Assume that the conditions of Theorem 2.1 are satisfied and there is a

twice continuously differentiable Liapunov function V(.) such that V(z) ~ 0, V(z) ~ 00 as

Izi ~ 00, V~(z)b(z) ::; -AV(z) for some A > 0 and V.,.,{-) is bounded, where V., and V.,.,

denote the first and the second derivatives ofV(.), respectively. Suppose that for each z,

1

00 1 f iT
•
tT

• IfEr"T. iT, (b(z,W))-b(z))::;K (4.1)

for some K > 0, where Er" denotes the conditional expectation with respect to the u-algebra

Fn = u{~(tl),tl::; nT. +T.}. Assume that

Then

lim sup V(Xn ) = O(e).
n

Notice that (4.1) can be written as

(4.2)

(4.3)

It is readily seen that if ~ (.) is a ¢>-mixing process with mixing rate ljJ(.) such that 1000 ljJ( t) <
00. The mixing inequality (cf. 7 pp. 82) implies that

Notice that the condition is slightly weaker than that of 9. Due to the fact that averaging

is used in the iterates, differentiability of b(., .) need not be assumed.

Proof: We shall use a technique known as perturbed Liapunov function method (8, 11).

By virtue of a Taylor expansion, direct calculation leads to

(4.4)
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Define

It is easily seen that

1V'(n)\ :S I:K(1 +V(X n ))

In addition,

Consequently, owing to the asswnption of this theorem,

(4.6) then yields that

By choosing I: small enough, we get

(4.5)

(4.6)

Iterating on the above inequality, taking expectation, and letting n --+ 00, the desired result

follows. 0

4.2 A local limit theorem

If the Liapunov function is locally (near x') quadratic, then it can be shown that there

is an N. such that {Un = (Xn - x')I..fi; n 2: N.} is tight. Define u'(t) = Un for t E

[(n - N.)I:, (n - N. + 1)). In order to obtain a local limit result for the scaled sequence

{u'Cn, in addition to the conditions of Section 2, asswne that b,,( x', 0 exists and

b(x,O = b(x',O +b,,(x',O(x - x') +o(lx - x'l);

2.. rT
b,,(x,~(t)) --+ b,,(x) in probability as T --+ 00 for each x;

T Jo
n 1 riT,+T,

Wn = ..;e L - J; b(x',((t))dt,
i=N, T. iT,

w'(t) = Wn for t E [I:(n - N.),I:(n - N. + 1));
w' (-) =} w(·) a Brownian motion process.

Suppose that the following stochastic differential equation

du = b,,(x )udt + dw (4.7)



225

has a unique solution for each initial condition. The uniqueness is in the sense of in distribu­

tion.

Remark: The above conditions require that b(z,O be differentiable at z·. It essentially

allows us to make a 'linearization' around z·. Many processes (for instance mixing processes

with certain mixing rates) satisfying the above weak convergence assumption. Clearly Wn

can also be defined by
1 jIT'/<+T'

Wn = .,fe- b(z"~(t))dt.
T< N,T,

(4.8)

Under the above conditions, it can be proved that {u<(-)} is tight in Dr[O, 00), and any

weakly convergent subsequence has a limit u(·) which is a solution of the stochastic differential

equation (4.7).
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An Analysis of Gradient Estimates in Stochastic Network
Optimization Problems

Nikolai Krivulin

Two classes of stochastic networks and their performance measures are considered. These
performance measures are defined as the expected value of some random variables and can­
not normally be obtained analytically as functions of network parameters. We give similar
representations for the random variables to provide a useful way of analytical study of these
functions and their gradients. The representations are used to obtain sufficient conditions
for the gradient estimates to be unbiased. The conditions are rather general and usually met
in simulation of the stochastic networks. Applications of the results are discussed and some
practical algorithms of calculating unbiased estimates of the gradients are also presented.

1 Introduction

Stochastic network models are widely used in modern engineering, management, biology etc
to investigate real systems. These models are usually so complicated that can hardly be
studied with the help of the analytical methods only. A more fruitful way is to use computer
simulation to analyze the networks [1,2,3]. By performing simulation experiments one may
get a great amount of information about the network behaviour.

Usually, the main aim of the analysis is to improve a network performance. In order to
optimize a performance criterion with respect to network parameters one needs to evaluate
it. Simulation provides estimating the criterion as well as its sensitivity (or its gradient, when
the parameters are continuous) in a simple way. It is not difficult to obtain estimates pro­
vided there exists a simulation model, however each simulation experiment may be very time
consumming. Therefore, it is of great importance to develop efficient methods of simulation
and estimation.

There are many stochastic optimization procedures which use the data obtained by sim­
ulation (see [1] and also a short survey in [4]). In many cases, the procedures that exploit
gradient are prefered to those using estimates of the objective function only. The stochastic
algorithms which apply unbiased estimates of gradient are often highly efficient. As an ex­
ample, one can compare the Robbins-Monro procedure with the Kiefer-Wolfowitz one. It is
well known [4] that the first procedure based on the unbiased estimates of gradient converges
to the solution faster than the second one which approximates the gradient by the finite
differences.

In this paper we analyse the problem of unbiased estimation of the gradient of stochastic
network performance measures. The paper is based on the results of [5,6]. In Section 1 we
describe two classes of stochastic networks and give some examples. We show that the sample
performance functions of the networks of both classes may be represented in a similar way. In
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fact, these functions are expressed through given ones by using the operations of maxinnun,
mininnun and addition.

Section 2 includes a technical result which provides a general representation for the sample
performance functions of the networks.

In Section 3 we briefly discuss three methods of estimating gradients, based on simulation
data.

The main results are presented in Section 4. Firstly, we introduce a set of functions
for which one may obtain unbiased estimates of their gradients. We prove some technical
lemmae to state properties of the set. In conclusion, we give the conditions that provide the
gradient estimates to be unbiased. These conditions are rather general and usually fulfilled
in simulation studies of the stochastic networks.

In Section 5 we show how the results may be applied in practice. Some algoritms of
calculating the gradient estimates are described.

2 Stochastic networks and related optimization problems

In this section we present two classes of stochastic networks and discuss optimization problems
related to the networks. The performance criterion of the network is normally defined as the
expected value of a random variable, f(lJ,w) , ie

F(IJ) = E..,[t(IJ,w)] = E[t(IJ,w)],

where IJ E 0 C Rn is a set of decision parameters and w is a random vector representing the
randomness of network behaviour. As a function of the parameters, f(B,w) is often called
sample performance function.

The problem is to optimize the performance measure F(IJ) with respect to B E 0. In
practical problems it is very hard to evaluate the expectation analytically in closed form, even
if there is an analytical formula available for f( IJ, w). However, it is not difficult to obtain the
value of f( IJ, w) for any fixed IJ E 0 and any realization of w by using simulation. In that
case, one normally use the Monte Carlo approach to estimate the objective function F(B) or
its gradient.

The main purpose of this section is to show that for many optimization problems, f( B, w)
may be represented in similar algebraic forms. In other words, f(B,w) is expressed in terms
of some given random variables by means of the operations max, min and +. This repre­
sentation offers the potential for analytical study of the estimates of performance measure
gradient. It also provides a theoretical background for efficient algorithms of calculating the
estimates.

Activity network. We begin with stochastic activity network models widely used in
corporate management in the scheduling of large projects. Consider a project consisting of
some activities (or jobs) which must be done to complete it. Each activity is preswned to
require a random amount of time for performing it. It is not permitted to begin each activity
until some others ones preliminary to it have been completed. One is normally interested in
reducing the expected completion time of the whole project.

In order to describe the project as a network, we define an oriented graph (N, A), where
N is the set of nodes and A is the set of arcs. Each node i E N represents the corresponding
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activity of the project. For some i, j EN, the arc (i, j) belongs to A if and only if the ith
activity must precede the jth one directly.

To simplify further formulae we define the set of the father nodes as NF(i) == {j E
NIU,i) E A}, and the set of the daughter nodes as ND(i) == {j E NI(i,j) E A} for every
i EN. In addition, we introduce the set of starting nodes Ns == {i E NINF(i) == 0} and the
set of the end nodes NE == {i E NIND(i) == 0} of the graph.

Now we have to define the duration of the activities, so that the network would be
described completely. Denote the duration of the ith activity by Ti,i E N. We asswne Ti
to be a positive random variable, such that Ti == Ti(/I,W), where /I E El is a set of decision
parameters and w is a random vector which represents the random effects involved in realizing
the project. The set T == {Tili E N} is preswned to be given.

The sample completion time of the ith activity may be expressed in the form

.(/1 ) _ { maxjENp(i) tj(/I,w) + Ti(/I,W) if i rf- Ns
t. ,w - (/I ) ·f· NTi ,w 1 t E s

(1)

For the sample completion time of the whole project, we have t(/I,w) == max;EN
B

t;(/I,w).

In that case, the expected completion time is T(/I) == E[t(/I,w)], and we wish to minimize
T(/I) with respect to /lEEl.

It is easy to see from (1) that one can represent t as a function of T E T by using the
operations max and +. To illustrate, consider the simple network depicted in Figure 1.

Figure 1. An activity network

For this network, applying (1) successively, we may write the sample completion time as

t == Tl + max{max{T2, T3} + T4, T3 + To} + Ta·

We will exploit the possibility of t being expressed in such a form in the discussion below.

We conclude this example with the remark about the main difficulty of the activity net­
work optimization problem. It is easy to understand that in the case of general random
variables T E T it is usually very difficult or even impossible to obtain the expected com­
pletion time analitically, even if the network is as simple as that in Figure 1. To apply an
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optimization procedure in this situation one normally estimate this function or its gradient
by using the Monte Carlo approach. Notice, however, that the simulation models of such
networks are generally rather simple.

Reliability network. Another class of stochastic network models arises from the re­
liability investigation of complex interconnected systems in engineering, millitary research,
biology etc. Consider a system of elements having bounded random lifetimes. Each element
keeps in order until either this element has failed or all those supplying it directly have lost
their working conditions. The whole system is preswned to be in order if at least one of the
main elements that are supplied by some others but do not supply any element keeps working.
An important problem in analyzing this system is to maximize its expected lifetime.

Let (N, A) be the directed graph discribing the relations between the system elements.
In the graph the set of nodes N corresponds to the set of system elements. If for some
i,j EN, the ith element supplies the jth one directly, then (i,j) E A. For the graph we
retain the notations NF(i),Nn(i),N s and NE introduced above.

For every element i EN, we define the lifetime as the random variable Ti( 11, w) which
depends on the set of decision parameters 11 E 0. Asswne the set T = {Ti} to be given.
Now, we may represent the time for the ith element to be in order as

-(II ) = { min{maxjENp(i) tj(l1,w),Ti(l1,w)} if i g Ns
t, ,w (11 ) of· NT; ,w 1 Z E s

The sample and expected lifetimes of the whole system may be written as

t(l1,w) = max ti(l1,w) and T(I1) = E[t(l1,w)],
iENE

(2)

respectively.

To illustrate this realibility network model consider that depicted in Figure 2 (Ermakov,
[1]).

Figure 2. A reliability network

For the sample lifetime of the system, we have from (2)
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We can see that the sample lifetime of such a network has one important property: it
may be represented as a function of all T E T by using only the operations maz and min.
Note that the difficulties in solving the problem of expected lifetime maximization are the
same as in activity network optimization.

3 An algebraic representation lemma

We have seen that the functions of network performance possesses some algebraic properties.
The point is that they may be expressed as a function of given random variables by means of
the operations maz, min and +. For the networks, one can obtain such representations from
recursive equations (1) and (2). In this section we present a general form of the representa­
tions, which provides a common way of examining analytical properties of the performance
functions in both networks.

In order to simplify futher formulae we introduce the notations V for maxinmm and /I

for minimum. In addition, we will use the sign V (/\) to represent an iterated maximum
(mininmm), ie

n

VZ; = Zl V ... V Zn

i=l

n

(/\ Z; = Zl /I ... /lZn)

i=l

Let X be a set supplied with the operations +, V and /I. Without loss of generality we
may consider X to be a set of real numbers. It is easy to extend the result of this section to
various sets of real-valued functions and random variables. We assume that the traditional
algebraic axioms are fulfilled in X. In particular, we will use the following axioms.

Axiom 1. Distributivity of maximum over minimum.

Vz, y, Z E X, (z /I y) V Z = (z V z) /I (y V z).

Axiom 2. Distributivity of minimum over maximum.

VZ, y, z EX, (z V y) /I Z = (z /I z) V (y /I z).

Axiom 3. Distributivity of sum over maximum and minimum.

Vz,y, z EX, (z V y) + z = (z + z) V (y + z), (z /I y) + z = (z +z) /I (y + z).

The general form of the representation is determined in the next technical lemma.

Lemma 1. Let rp( Zl, ... , zp) be a function of the variables Zl, ... , zp taking their values
in X, rp is defined as a composition of the operations V, /I and +. Then rp can be
represented as

p

rp(ZI,""Zp) = V /\ L: a7j Zk'
;EI jEJ; k:1

where I and Jj for all i E I are finite sets of indices, and all a7j are integers.

Proof. Without loss of generality we suppose that there is no more than one entry of
each variable Zl,"" zp into the expression. If some variable has two or more entries, we
introduce additional ones so that the above presupposition would be fulfilled. Let us prove
the lemma by induction on the number of variables.
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For p = 1, the statement of the lenuna is obvious. H p = 2, there are three possibilities

and it is clear that the statement is also true.

Assume that the statement of the lenuna is true up to some value p - 1. Consider an
expression !.p of p variables. Clearly, there is an operation in the expression that should be
performed after the other ones. Denote this operation by the asterisk *. In this case, we have
!.p = !.pi * !.p2, where !.pi and !.p2 are expressions such that each of them cannot include all the
variables Zi," _ ,zp. By the assumption, the statement of the lenuna holds for both !.pi and
!.p2- Now, we have three possibilities for the operation *.

1. V. This is obvious.

2. /\. It is sufficient to apply Axiom 1.

3. +. To obtain the representation in this case, one has to apply successively Axioms 1,
2 and 3.

Consequently, the statement of the lenuna is true for !.p = !.pi * !.p2. 0

4 Estimates of gradient

To optimize the network performance measure F( 0) = E[J(0, w)] one often needs information
about the gradients of(O)/oO. In the absence of analytical formulae for the gradient, Monte
Carlo experiments may be performed to estimate its values. There are three general methods
of estimating of(O)/oO based on data obtained by simulation [1,3,7J. In the first two methods
the gradient is approximated by the finite differences and then estimated by using the Monte
Carlo approach. To illustrate these two methods, assume 0 to be a scalar and consider the
following estimates:

The crude Monte Carlo (CMC) estimate:

1 N
CCMC = N/:::,.O "2.)/(0 + M,w;) - I(O,WN+;))

1=1

The conunon random number (CRN) estimate:

1 N
CCRN = N M 2)/(0 +M,w;) - I(O,Wi))

1=1

where Wi, i 1,. _., 2N are independent realizations of the random vector w. The second
estimate differs from the first in one respect: in the CRN estimate the random variables
Wi are the same for both 0 + /:::,.0 and 0, whereas in the CMC estimate they are different.
Note that each of them requires 2 x N simulation runs (N at the original value 0 and
N at 0 + /:::,.0). Clearly, in the case of the vector 0 E R", one must perform (n + 1) x N
simulati(;m experiments to get each estimate. In [1, pp. 153-1541 Ermakov has shown that
the finite difference estimates have the mean square error (MSE) which is of order O(N- i / 3 )

for CCRN and O(N- 1
/ 2 ) for CeRN.
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We may somewhat improve the MSE properties of the estimate by using more sophisti­
cated difference formulae, however, the estimates become very expensive in terms of computer
time because they require a large number of additional simulation experiments. For example,
the following symmetric difference estimate

N
SD 1"GCRN =~ LJ(f(O + M,w;) - /(0 - M,w;))

2Nu .=1

requires 2 x N simulation runs (2 X n X N, when 0 E Rn ).

An estimate of the third method can be written in the form

1 N 8
G = Ii ?= 80/(0,w;),

..=1

(3 )

provided that the gradient of the satrlple performance function (sample gradient) exists. It
should be noted that, although we may obtain values of the sample performance function by
simulation, it can be rather difficult to evaluate its gradient.

Recently, a new technique, called infinitesimal perturbation analysis (IPA), has been
developed (Ho et ai. [2]) as an efficient method of obtaining gradient information. The
IPA method yields the exact values of the sample gradient 8/(0,w)/80 by performing one
simulation run. The method is based on the analysis of the dynamics of the network and
closely connected with the simulation technique. Therefore, one can easily combine an IPA
procedure for calculating the sample gradient with a suitable algorithm of network simulation.
Such a procedure provides all the partial derivatives of the sample gradient simultaneously
during. one simulation run. Furthermore, it needs an additional computation cost which is
usually very small compared with that required for the simulation run alone.

The key question concerning the IPA method is whether it produces an unbiased estimate
of the performance measure gradient. It can easily be shown that if 8/(0,w)/80 is an
unbiased estimator of 8F(0)/80 then estimate (3) has MSE which is of order O(N- 1 ). In
short, in the case of unbiasedness, this is a very efficient estimate, that provides considerable
savings in computation.

In the next section, using the algebraic representation of Section 3, we will examine
properties of the network performance functions so as to derive the conditions for estimate
(3) of the performance measure gradient to be unbiased.

5 A theoretical background of unbiased estimation

A sufficient condition for the estimate (3) of 8E[f(0,w)]/80 at some 0 E 0 to be unbiased
is

8 8
80 E [/(0,w)] = E[m/(O,w)]. (4 )

Cao in [7] showed that (4) holds in the case of /(0, w) being uniformly differentiable at 8
w.p.!. Note that such a differentiability property is not easy to verify and hard to interpret
for practical systems. A useful way to prove the interchange in (4) is to apply the Lebesgue
dominated convergence theorem (Loeve [8]). We use this theorem in the following form.
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Theorem 2. Let (n,F,p) be a probability space, 0 C Rn and f : 0 X n -----+ R be a
F -measurable function for any 0 E 0 and such that the following conditions hold:

(i) for every 0 E 0, there exists 8f(O,w)/80 at 0 w.p.1,

(ii) for all 01 , O2 E 0, there is a random variable ,\(w) defined on the same probability
space, with E,\ < 00 and such that

(5)

Then equation (4) holds on 0.

As an important consequence, we may state that the function F(O) = E[f(8,w)] is a
Lipschitz one with a constant L = E,\ and continuously differentiable on 0, provided f
satisfies the theorem conditions.

Definition 1. A function f(O,w) defined on the probability space (n,F,p) at every
o E 0 belongs to the set Ve,n (or simply V) if and only if it satisfies the conditions of
Theorem 2.

Example 1. Random variables which arise from simulation study of networks, can be
treated as members of a family of random variables [1]. There are few families one usually
applies, namely the Exponential family, the Gaussian family etc. Various random variables
of a family may be obtained from the standard variable by using a suitable transformation.
An ordinary way to transform random variables is based on changing location and scale
parameters.

Let ~(w) be the standard random variable of a family. Define

where 0 = (0 1 , ( 2 ) T E 0 C R 2
. Let us check whether it holds that f E V. Obviously, the

partial derivatives of f with respect to 01 and O2 exist for almost all wand equal

8
80

1
f(O,w) = ~(w) and

8
80/(O,w) = 1.

In addition, it is easy to verify that f satisfies Condition (ii) of Theorem 2 with ,\ = I~I + 1.
If EI~I < 00, as is usually the case, then the conditions of Theorem 2 are fulfilled for f and
we have f E V.

The next technicallemmae give the sufficient conditions for the arithmetic operations and
the operation maz and min not to break the main properties of the functions from V.

Lemma 3. Let /,g E V and let'\l and '\2 be the random variables that provide Condition
(ii) of Theorem 2 for f and g, respectively. Let Jl.J, Jl.2 and v be positive random variables.
Then the following are satisfied.

(i) f+gEV.

(ii) If 0 is a bounded random variable, then of E V.

(iii) If IfI ::; III and 191::; 112 hold w.p.1 for any () E 0 and E['\1Jl.2 + '\2Jl.d < 00, then
f9 E V.

(iv) If If I ::; Jl.I and Igi .2: v hold w.p.1 for any () E 0 and E[~ + ~] < 00, then
LEV9 •



235

Proof. Clearly, f +g, af, fg and f!9 are measurable functoins of w and differentiable
ones on e w.p.I. Since for all of these functions the proofs of inequality (5) are quite similar,
we verify it for one of them only. For instance, we examine h = fg.

For all B1 , B2 E e we have

Ih(BI,w) - h(B2,w)1 = If(B1,w)g(B1,w) - f(B2,w)g(B2,w)1 =
If(B1,w)g(B1,w) - f(B 2,w)g(B1,w) + f(B2,w)g(B1,w) - f(B 2,w)g(B2,w)1 0:;

Ig(B1,w)llf(B1,w) - f(B 2,w)1 + If(B2,w)llg(B1>w) - g(B2,w)! 0:;

(.\1 (W)1l2(W) + A2(w)1l1(w))IIB1 - B211 w.p.I.

In short, Ih(BI,w) - h(B2.w)1 ::; A(w)/IBI - B2 11 w.p.I, where A = AI1l2 + A21l1, EA =
E[AlIl2 + A21ld < 00. By Theorem 2, we conclude fg E 'D. 0

Notice, from Lemma 3 (i) and (ii) it follows that being closed for the operations of addition
and multiplication by bounded random variables, 'D is a linear space of functions with these
two operations.

Lemma 4. Let f, 9 E 'D. Suppose that for any Bo E B, there exists a neighbourhood
U",(Bo) of Bo w.p.1 such that one and only one of the following conditions

(i) f(B,w) = g(B,w),

(ii) f(B,w) < g(B,w),

(iii) f(B,w) > g(B,w)
is satisfied for all BE U",(Bo). Then f V 9 E 'D and f II 9 E 'D.

Proof. Consider h(B,w) = f( B, w) V g(B, w). It is clear that h is measurable with respect
to w. In order to prove differentiability of h w.p.I on e, we examine an arbitrary BEe.
There are only two possibility for h not to be differentiable. Firstly, it is possible that the
derivative of h at B does not exist if at least one of the derivatives 8f(B,w)/8BI,=,. and
8g(B,w)/8BI,=,o does not. In addition, h may not be differentiable at B if the maximum
of the functions f and 9 changes over from f to 9 at this point or vice versa. The last
case is equivalent to that there exists wEn such that all the neighbourhoods U",(Bo) C e
contain both points at which f(B,w) = g(B,w) and f(B,w) I- g(B,w). By the assumption of
the lemma, both of these cases may occur only with zero probability. Therefore, there exists
8h(B,w)/8BI,=,o at all BEe w.p.I.

For the function h, the proof will be completed if we show that h satisfies Condition (ii)
of Theorem 2. Since f,g E 'D, there are random variables AI and A2 with EAl < 00 and
EA2 < 00 such that the inequalities

/f(BI,w) - f(B 2,w)1 ::; Al(W)IIB1 - B211 w.p.I

Ig(B1,w) - g(B2,w)1 ::; A2(W)I/BI - B211 w.p.I

hold for all BI , B2 E e. Let w be an arbitrary element of n at which both these inequalities
hold. Devide e into two subsets:

x'" = {B E elf(B,w);:: g(B,w)},

Y", = {B E elf(B,w) < g(B,w)}.

Obviously, it holds
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Ih(lIj,w) - h(1I2,w)1 = 1/(lIj,w) - g(1I2,w)1 < 1/(lIj,w) - 1(1I2,w)1 ::; ~j(W)lllIj -11211.

Similarly, if h(lI j ,w) < h( 112,w), we have Ih( IIj,w) - h(1I2 , w)1 ::; ~2(w)lllIj -11211. It follows that
Ih(lIj,w) - h(1I2,w)1 ::; ~(w)lIl1j -11211, ~(w) = ~j(w) V ~2(W), for all II j ,1I2 E 0. Since this
inequality holds for almost all wEn, we conclude that

and E~ = E[~j V ~2] ::; E~j + E~2 < 00.

In other words, h satisfies the conditions of Theorem 2. Consequently, I V 9 E V. The
proof of the statement I II 9 E V, is analogous. 0

It should be noted that the condition of Lemma 4 is not necessary, as the next example
shows.

Example 2. Let 0 = [-1,1], (n,F,p) be a probability space, where n =[0,1], F is
the u-field of Borel sets of n and P is the Lebesgue measure on n. Consider the following
functions:

1(II,w) = _113 +w, g(lI,w) = 112 +w

and

{
_113 +w

h(lI,w) = 1(II,w) V g(lI,w) = 112 +w
if -1::;11::;0
if 0<11::;1

One can easily verify that for any neighbourhood of II = 0, there exist both points with
I> 9 and 1< 9 w.p.I. The conditions of Lemma 4 are therefore violated. Nevertheless, h
is differentiable at 0 for all wEn. In addition, it holds that h E V.

Corollary 5. Let I, 9 E V. II lor every 0 E 0 it holds that I f:. 9 w.p.!, then I V 9 E 1)

and I II 9 E V.

Proof. Clearly, the condition of the corollary implies that either 1- 9 > 0 or 1- 9 < 0
holds at every 0 E 0 w.p.I. Since I,g E V, these two functions are continuous ones of II
w.p.l as well as I-g. Because of continuity, 1- 9 > 0 (f - 9 < 0) holds w.p.l not only at
0, but also at every points of a neighbourhood of O. It remains to apply Lemma 4. 0

Using Corollary 5 we give the following general conditions for V to provide closeness with
respect to the operations V and II.

Lemma 6. Let I, 9 E V. II lor any 0 E 0 it holds that the random variables 1(0, w)
and g(O,w)

(i) are independent, and

(ii) at least one 01 them is continuous
then I V 9 E V and I II 9 E V.

To prove the lemma it is sufficient to see that its conditions lead to that of Corollary 5.

The next two examples show that both conditions of Lemma 6 are essential.
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Example 3. Let (n,:F, P) and 0 be defined as in Example 2. Also define

I(O,w) = -0 +w and g(O,w) = °+ w.

Let us consider the function

h(O,w) == I(O,w) V g(O,w) = { -0 +w
O+w

if -1::;0::;0
if 0<0::;1

It is clear that I,g E "D and for every °E 0, the random variables I(O,w) and g(O,w) are
continuous. Although inequality (5) holds with A == 1 for h, this function is not differentiable
at °= 0 for all wEn. Therefore, h It "D.

Example 4. Let 0 = [0,1]' n1 == n2 == [0,1] and P be the Lebesgue measure on
n == n1 X n2. Denote w == (Wl,W2)T and consider the following functions:

{

10
I(O,w) = 2

1
if WI::; t
if WI > "2

{
02 if

g(O,w) == 1 if

and

h(O w) == 1(0 w) V (0 w) = {maxg O,02} if WI.::; ~ and W2::; ~
, ,g , 1 otherwise

One can see that I,g E"D and for every 8 E 0, the random variables 1(8,w) and g(8,w)
are independent. In addition, the condition (ii) of Theorem 2 holds for h with A == 2.
Nevertheless, h == maxH8,82 } with probability 1, that is not a differentiable function at°== ~. In that case, h It "D.

Lemma 7. Let M be a set 01 functions from "D such that lor all I, gEM I the conditions
01 Lemma 4 are fulfilled. Then M is closed lor the operations max and min.

Proof. Let I,g E M and let us define h = I V g. Note that h E "D by Lemma 4. We
have to prove the conditions of Lemma 4 to be satisfied for h and any u E M.

If u is either I or g, say u ;: I, we may write

, {g-Ih-u==/vg-l== 0
if 1< 9

if I?- 9

Since I, gEM, for any point of 0, there is a neighbourhood on which only one of the
conditions 1- 9 < 0, I - 9 == 0 or 1- 9 > 0 holds w.p.I. From the above identity this also
holds for h - u on the neighbourhood. Consequently, in this case the conditions of Lemma 4
are fulfilled.

Now we assume u E M \ {f,g}. We have

{
lif/<g

h-u==/vg-u== ~=u if I?-g

Let us examine any 8 E 0. Suppose that 1< 9 w.p.l at 8. Since I,g and u belong to
M, there are neighborhoods Uw(O) and V w(O) where the conditions of Lemma 4 are fulfilled
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for each pairs of funetons (I, g) and (g, u), respectively. It follows from the expression of h
that the neighborhood U", UV",(9) is that Lenuna 4 requires for h and u. If it holds that
I 2: 9 or I = 9 at 9, the reasoning is the same.

In short, we have shown that the conditions of Lenuna 4 are satisfied for h and any
u EM, and therefore, h = I VgEM. In the case of minimum the proof is analogous. 0

Corollary 8. II Ii EM lor every j = 1, ... , N, then it holds

V /\ Ii E M,
iEI jEJ;

where I is a finite set 01 indices and Ji C {I, ... , N} lor every i E I.

This is an inunediate consequence of the previous lenuna.

The next example is of importance to the main result of the section.

Example 5. Let Ij E V for all j = 1, ... , N. Suppose that at every 9 E e, all
the random variables Ij( 0, w) are continuous and independent. Define £:- to be a set of
linear combinations EiEI adi with integer coefficients ai, i E I C {I, ... , N}. Obviously,
£:- is stable for addition. For all functions u = EiEI adi and v = EjEJ bjf; we have
u - v = EkEK cklk. It is clear that for every 0 E e, u - v is a continuous random variable
because of the properties of I (except for the case of all Ck = 0 which is obvious). Therefore,
it holds that u - v f 0 w.p.l at every 0 E e. Similarly as in Corollary 5, one can deduce
that u and v satisfy the conditions of Lenuna 4. From this we conclude that £:- may be
treated as an example of M.

One can easily see that the condition of continuity is essential to this reasoning. To
illustrate the important role of independence, consider the following functions

I(O,w) = -20 +2w, g(O,w) = 0 - w and u(O,w) = 0 +w

under the same assumption as in Example 3. It is easy to verify that the conditions of
Lemma 4 are fulfilled for any two functions of them. Nevertheless, the functions u and
v = 1+ 9 do not satisfy them, as Example 3 has shown.

Now, we may formulate the main result of the section. We first introduce some definitions.
Let A be the algebra of all functions I : ex fl -----+ R being defined on the probability space
(fl, F, P) at every 0 E e with the operations V, 1\ and +. In other words, this is a closed
system of the functions for these operations.

Definition 2. Let T be a finite subset of functions of A. We define [T1A to be the
set generated by T in A, that is the set of all functions being obtained from ones of T by
means of the operations V, 1\ and +.

Theorem 9. Let T E V. Suppose that lor all T E T, T(O,W) are continuous and
independent random variables at any 0 E e. Then it holds [T]A C V.

Proof. It results from Lenuna 1 that every I E [T]A can be represented as

I = V /\ L: aijT,
iEI jEJ; 1"ET
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where all aij are integers. It has been shown in Example 5 that the functions of the family
{2=~ET arT h=l ,2,... satisfy the conditions of Lemma 4. Applying Corollary 8, we conclude
that the statement of the theorem is true. 0

It is important to note that the conditions of Theorem 9 are rather general and usually
fulfilled in the network simulation. In particular, in contrast with the traditional approaches
(cp, for example, existing results on the unbiased.ness of IPA estimates in [2,3]), we may not
restrict ourself to the exponential distribution.

In short, to satisfy the theorem only the following are required for the functions of the
set T:

(i) for any () E e, all T E T are continuous and independent random variables;

(ii) each T ETas a function of () is differentiable w.p.1 and Lipschitz one with an
integrable random variable as a Lipschitz constant.

In the next section we will show how these results can be applied to some problems to
verify the unbiased.ness of gradient estimates.

6 Applications

Now we discuss the applications of the previous results to optimizing the networks. In
particular, we describe algorithms of obtaining sample gradients, based on the algebraic
representation of the networks. In this section we keep using the notations (n, F, P) and e
for the underlying probability space and the parameter space, respectively.

We begin with the stochastic activity network. Let the duration of the jth activity be
represented by the function Tj( (), w). Denote the set of all such functions of the network by
T. As we have seen, a sample completion time of the network t((},w) may be expressed by
functions of T by using only the operations max and +. This implies t E [T].A.

Suppose that T E V and all T E T are continuous, and they are independent random
variables at every () E e. For the mean completion time T((}) = E[t((},w)], it follows from
Theorem 2 that -k 2:~1 8t((},Wi)/8(}, where Wi E n, is an unbiased estimate of the gradient
8T((})/8(}.

As an example, suppose T((},W) = -(}In(1 - w), where () E R and the random variable
w is uniformly distrubuted on [0,1]. It is well known [1] that -In(1- w) has an exponential
distribution with mean 1. Similarly as in Example 1, we have T E V. In addition, durations
of the activities are normally considered as independent in the probabilistic sense. Our result
is, therefore, applicatable in this case.

Now, suppose that there is a simulation procedure for the activity network with L nodes
to provide a simulation experiment for any fixed () E e and a realization of w. One can
easily combine it with the following algorithm.

Algorithm 1.

Step (i). At the initial time, fix values of () and w; set gj = 0 for j = 1, ... , L, and set
c = o.

Step (ii). At the completion of any activity i, add the value of 8Ti((},w)/8(} to gi and
add 1 to Ci

if c = L, then save gi as the value of 8t((},w)/8(} and stop; otherwise go to Step (iii).
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Step (iii). Determine the set Nv(i). For every j E ND(i), if all activities of the set
NF(i) have been completed, then set gj = gi.

To verify the correctness of Algorithm 1 it sufficies to see that it is simply based on
recursive equation (1). Note that Algorithm 1 is similar to those based on the IPA method
in [3].

For a reliability network, one can apply Theorem 2 in a similar way. As in Section 2,
denote the sample lifetime of a system by t(0, w). It is not difficult to construct the next
algorithm that calculates the sample gradient 8t(0, w)/80.

Algorithm 2.

Step (i). At the initial time, fix values of °and w.

Step (ii). At the failure of element i, exclude all nodes representing the elements that are
now not able to keep working from the set N as well as the corresponding arcs from the set
A.

Step (iii). If for the reduced set N it holds N n NE = 0, then save 8Ti(O,w)/80 as the
value of 8t(O,w)/80 and stop; otherwise go to Step (ii).

In conclusion, note that both algorithms are rather simple. In fact, they only require
calculating gradients of given functions and performing some trivial operations to produce
values of the sample gradients. Using these values, one can easily estimate the gradients of
the system performance measures so as to apply efficient optimization procedures.
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Records of Simulated Annealing

Ryszard Zielinski

A sufficient condition is given for the simulated annealing (SA) process not to leave a
basin of a local minimum if the basin is deep enough. An improvement of the SA process is
suggested and some results of test computations are reported.

1 Introduction

Given a real-valued function f on a set X, let X = (xn,n :::: 1) be a simulated annealing
(SA) process (see e.g. AJMMS 1988 or a very short and clear presentation of the method in
Schoen 1991). When looking for a global minimum of f on X what we are really interested
in is the process Y = (Yn, n :::: 1) of records of the process X defined as

{
xn,

Y" = Yn-l,

if f(x n) < f(Xn-l),
otherwise.

The process X can be accepted as satisfactory if the process Y almost surely converges
to a global minimum of f.

Given a sequence (T",n 2: 1) of positive reals, the general structure of X (without
stopping rule) is as follows (without loss of generality we assume that f > 0 on X):

1. let Xl be a point in X;

2. let ~n be a random neighbour of X n ;

3. if f(~n)::; f(x n) then put Xn = ~n,n = n + 1, and go to 2;

4. if f(~n) > f(x n) then

a. let Rn be a uniform random number in (0,1);

b. if R,,<exp[-(f(~n)-f(xn»/Tn],then put x,,=~n; otherwise

leave x" without change. Put n = n + 1 then go to 2.

Let Tn = U(Xl, X2, ... , X,,). Define the following sequence of random events

and let A = {An. i.o.}, where i.o. as usually denotes "infinitely often". It is obvious that
if P( A) = 0 then the process X will not leave a basin of a local minimum if the basin is deep
enough.
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2 Results

The following theorem gives us an insight into the structure of SA processes from the point
of view of the convergence of their records to a global minimum. As a matter of fact the
theorem presents a simple applications of the following version of the Borel-Cantelli lenuna:
if(Fn , n ?: 1) is an increasing sequence of O'-fields and (Bn , n ?: 1) is a sequence of random
events such that B n E F n, then the events {Bn , i.o.} and n:::::"=l P( Bn+llFn) =oo} are almost
sure equal (see e.g. Hall and Heyde (1980), p. 32).

Let (Rn,n ?: 1) be a sequence of random variables uniformly distributed on (0,1).
Throughout the paper we assume that given F n the random elements ~n, n = 1,2, ... and
Rn, n = 1,2, ... are (conditionally) independent.

THEOREM .If for an a > 1

L P{f(2: n ) < f(~n) < f(2: n ) + oTnlog nlFn } < 00
n=2

almost surely, then P(A) = O.

Proof. For the random event An we have

where

A(1) = A n {T. < f(~n) - f(2: n )}
n n n - ologn '

A(2) = A n {T. > f(~n) - f(2: n )}
n n n ologn .

Now

P (A~l)IFn) :s P{Rn < exp[-ologn]} = n1a

and hence I:::"=1 P (A~l)IFn) < 00.

The probability of A~2) may be estimated as

(1)
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3 Comments

It is clearly seen from the theorem that Y can converge to a global minimum of 1 only when
the probabilities

are large enough; if Pn tend to zero they should tend not faster than n-"Y for some 'Y > 1
or faster than (log n )-1. This however heavily depends on the function 1 which typically is
out of our control, and on the sequence Tn and the probability laws of the sample points ~n

which we are able to manipulate.

If Tnlog n tends to zero then the random event

is asymptotically empty; if Tnlogn = O(n-"Y) for some 'Y > 1 then the condition (1) is
satisfied even for the linear function I( z) = I( zn) + c· (z - zn) and ~n uniformly distributed
over the ball B(zn,P), P > 0 [E.g. for 1 : n 2 --+ n l

, if I(z) = I(zn) + c· (z - zn)
and ~n is uniformly distributed over the ball B(zn,P), then P{f(Zn) < I(~n) < I(zn) +
oTnlognlFn} = P{zn < ~n < Zn + oTnlogn/cIFn} < oTnlognp/c.]

If, as in Bochaczevsky et al. (1986) and Brooks and Verdini (1988), Tn = oX· f(~n) for a
oX > 0, then

which is asymptotically an almost sure event. It follows that then the performance of

as n tends to infinity is crucial.

4 An improvement

To ensure the almost sure convergence of records it may be enough to design the sequence
(~n, n 2: 1) in such a way that for infinitely many n's the support of the probability distribution
of ~n is the whole X, which gives us a result analogous to that for random search for global
minima in the Theorem 3.3 in Zielinski and Neumann (1983). To see how the application of
the idea from that theorem can improve the SA procedure consider the following example.

5 Example

Suppose the problem is to find a global minimum of the following function

I(z,y) = sin(3.14z)· sin(3.14y) + 0.1(z +y), O:S Z :s 1, O:S Y:S 1.
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There exists exactly one local (and global) minimum at the point (0,0). Suppose that
the SA process with Tn = 1/ln(n) starts from the point (1,1) where the function has its
local maximum. The problem is that to achieve the global minimum the SA process has to
go around the maximum of the function in the center of the unit square. The contour map
of the function on the unit square is presented in Fig. 1. Suppose that the candidate en is
distributed uniformly over the rectangular (;l:n - >"/2,;l:n + >"/2) n ([0,1] x [0,1]) with some
>.. E (0,1). In our numerical experiment we have chosen>" = 0.1; then the area of the support
of the random candidate is equal to a number between 0.0025 and 0.01 which is rather large
if one takes into account that the ratio of the volume of the unit ball in n k and the volume
of the "unit" interval [-I,I]k is equal to, e.g., 0.00249 for k = 10 and 2.5 . 10-8 for k = 20.

Parallel we considered the modification of the SA process consisting in that every s = 10
steps the candidate has the uniform distribution over the whole domain [0,1]2. Typical result
after n = 1000 steps is shown in Fig. 2 where the classical SA process is presented in the
upper part and the modified process in the bottom part of the picture. In the left-hand-side
part of Fig. 2 the trajectories of processes X and in the right-hand-side those of the process
Yare presented (the origin is situated in the northwest vertex).

In the Table 1 the number of steps needed in the two processes to achieve the e-neighbor­
hood of the point of global minimum with e = 0.1 in ten experiments (with the same random
numbers in every pair of experiments) are given. The mean number of steps in 100 exper­
iments for the original SA process was equal 2,815.85 and that for the modified one 158.26
(in lout of 100 experiments the original process terminated earlier then the modified one).

Table 1 Table 2

4605
1362

680
3324

748
1008

820
10354

1584
6032

442
209
122

86
55

103
30

192
229
40

5022
3769
9564

712
1468

29757
12286
11953
11255
9249

790
223

6942
1762

542
10107
13534
11650

4833
1910

As a second example consider the function

The function has a rather fiat local minimum at the point (0,0.031) with /(0,0.031) =
0.969 and a deep global minimum at the point (0,1) with /(0,1) = 0.9. The function is
presented in Fig. 3. When starting the search process from the origin the superiority of the
modified procedure is not so apparent because there exist a short direct passage from the
starting point to the point of global minimum, easy to follow by standard SA process. Table
2 for this function is constructed in full analogy to the Table 1 for the function /(;l:, y). The
mean number of steps in 100 experiments for the original SA process was equal to 10,049.11
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Las r----========----------------,

Figure 1

and that for the modified one 3,734.37 (in 28 out of 100 experiments the original SA process
terminated earlier then the modified one).

In my opinion neither version of SA can beat the well known multistart method with a
good algorithm for descending to local minimum. A statistical analysis of that method is
presented in ZielIDski (1981).
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Figure 2

Figure 3
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Markov Sequences as Optimization Algorithms

A.S. Tikhomirov

The matter of the article is further investigation of random search methods presented
in [1]. An upper bound on the number of steps of search methods guaranteeing the attainment
of the accuracy f with the reliability "f is considered.

1 Introduction. Statem.ent of the problem and preliminary
results.

As it was shown in [1], there exists such a homogeneous Markov random search sequence
(m.r.s.s.) that it takes in average only O(In' f) computations of objective function f : X --+ R
to determine Zo = arg max f with given accuracy f. Here the next portion of features of such
m.r.s.s. is proposed.

First of all we give the upper bound on the number of steps of our m.r.s.s., guaranteeing
the attainment of the accuracy f with the reliability "f. The other part of the work is devoted
to the .minimization of the constant, multiplying In2

f in the estimates obtained. Here we
show, how the a priori information on the objective function f gives us the opportunity to
diminish the complexity of random search method.

For the purpose of convenience we begin with some definitions and preliminary results
borrowed from [1]. Proofs of some assertions are omitted for the sake of brevity.

Let (X, p) be a compact metric space equipped with Borel u-algebra Bx. We suppose
that there exists such a measure Jlo : Bx --+ [0,1] that the following conditions are fulfilled:

ext. IT D.(z) = {y EX: p(z,y) < f} then 0 < Jlo(D.(z» ~ 1 for all z E X and f > o.

eX2. IT S.(z) = {y EX: p(z,y) ~ f} then 0 < Jlo(S.(z» = Jlo(S.(z» for all z,z E X and
f > O.

Thus <p: [0,1] --+ [0,1] defined by <per) = Jlo(Sr(z» does not depend on z and is a cadlag
nondecreasing function.

eX3. For every z E X and f ~ 0 8S.(z) = {y: p(z,y) = r}.

We suppose that diam X = Jlo(X) = 1. In addition we require that

eX4. <p E C([O, 1]).

eX5. There exists such a function b: [0,00) --+ (0,1] that for any a ~ 1 and r ~ 0 with
o ~ ar ~ 1

(1)

One can easily deduce from (1) that for all r

(2)
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with some positive constants A and B.

Let f : (X, Bx) ~ (R, BR) be some measurable bounded function satisfying the following
conditions:

CF1. The function f achieves its maximum value at the unique point
Zo = argmaxf(z) EX.

CF2. Function f is continuous at the point zo.

CF3. For each r > 0 sup{f(z);z E 5~(zo)} < f(zo).

Let (n,T,p) be some probability space. A sequence of random elements {~i};?:Ol ~i

(n,T) ~ (X,Bx) will be further called as a random search sequence (r.s.s.) acting in
(X,Bx). If this sequence is a Markov one with respect to the filtration Tn = (T(~01'" ,~n) it
will be named a Markov random search sequence, if for each i> 0 f(~i) ~ f(~i-1) P-a.s.
it will be called a monotone one.

Further, denoting B,(z) = {y EX: f(y) ~ f(z)} we consider the homogeneous Markov
family ({~i}~o, P", z E X) with the transition function

R(z,.) = 5,,(.)P(z, BJ(z» + P(z,. n B,(z». (3)

Here P(z,.) is a probability measure for each z E X and P(.,A) is Bx-measurable for each
A E Bx. Surely P,,(~o = z) = 1. For the sake of brevity we shall write 56 instead of 56(ZO)'

Let us define the aim of our random search method as a determination of the point zo
with a given accuracy € > O. Thus we are interested in the fact that ~i hits a set 5. on some
step i. As in [1] we introduce a family of sets

Mf = M6 = {y E 56 : f(y) > f(z) for every z E 5a·

It is easy to see that M61 :J M6 2 for 51 > 52 and f( z) > f(y) for z E M6 and y rt M6. As
we suppose our r.s.s. to be monotone one it remains in M6 once hitting it. Thus we are
interested in events {~i EM.} and not in {~i E 5.}.

Further we shall often be concerned with a function

F may be considered as a characteristics of the objective function f. As in [1], we shall
suppose that

CF4. inf{F(r),O < r :S I} = F > O.

One can easily demonstrate the following proposition:

Lemma 1.1 . Let X E Rd, Zo E intX ¥ 0, f E C 2 (56(ZO» for some 5 > 0 and the
matrix of second derivatives of f is non-degenerate at the point zo. Then CF4 takes place
and

F(r)~Fo=

d

IT ~max

~.
i=l '

as r ...... 0 ,

where ~i are eigen-values of the matrix 8 2 f( zo) and ~max = max ~i < O.
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Let r. = min{n : ~n EM.}. Surely r. is a nice characteristics of the r.s.s. Main results
of the work may be described as follows: there exists such a homogeneous m.r.s.s. that for
every 0 E R 1 and some positive constants C1 (X, F) and C2 (X, F) the inequality

lim sup sup P,,(r. > C1(X, F)ln2
t +0VC2(X, F) Iln3

t I ) ::; 1 - 4'(0)
dO "EX

takes place, where 4' is N(O, 1) distribution function. The transition function R is chosen to
minimize C1 •

2 Asymptotic behaviour of T(

Given 1 ::; n < 00 let {ri}i=o be some sequence of real numbers such that ro = 1 ,
ri-1 > ri, rn = t. Let Mo = X, Mi = M'i' N n = M n , Ni = Mi\Mi+1, mi = P(Mi) and
ri = min{k : ~k E Mil. First of all we shall demonstrate several preliminary results.

LemIIla 2.1 . Let the sequence of numbers {u(i,k)}, 0::; i::; k, 1::; k::; n satisfy the
following conditions: u(i,k)::; inf(P(y, Mk),y EN;), 0::; i < k, 1::; k::; n and u(k,k) = 1.
Then the inequality

k

P,,(~l E Mk )::; ~)u(i,k) - u(i -1,k))P,,(~1_1E Mt)
i=l

(4)

takes place for all I 2: 1.

Proof. As we suppose our r.s.s. to be monotone one it remains in Mi once hitting it.
Therefore we have

n k-1
P,,(~, E Mk) =LP"(~I E Mk,~I-l E Ni) = LP"(~1 E Mk,~I-l EN;)::;

i=O i=O

k-1 k-1
:":: L(1- inf P(y,Mk))P"(~1-1E N;)::; L(I- u(i,k))p"a'-1 E Mi\Mi+1) =

i=O N. i=O

k-1
=L(I- u(i,k))(P"(~1_1E Mt+l) - P"(~l-l E Mt)) + (1- u(0,k))P,,(~1_1 EMf) =

i=l

k-1
= (1 - u(k -1,k))P,,(~I_l E Mk) + L(u(i,k) - u(i -1,k))P"(~I-l E Mt).

i=l

The proof is complete.

Let {0}i=2 and {O}i=l be two sequences of independent random variables such that
P(Oi = 0) = qi, P(Oi = 1) = 1- qi, P(Oi = k) = ui(l- Ui)k, k = 0,1,2, ... , where
qi, Ui E (0,1).

Let t1 = 1 + 01, ti = oi(1 +0;) and Tk = ~7=1 ti.

Theorem 2.1. Let qi = mi/m;-l for all 2 ::; i::; n and inf(P(y,Mk);y EN;) 2:
Ui+lmk/mi+1 for all 0 ::; i < k ::; n. Then inequalities

(5)
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take place for all k ::0: 1, I ::0: o.
Proof. In the case of I = 0 (5) is evident. We shall concern the case 1 ::0: 1. As the

inequality (4) takes place for P", (Tie > I) all we need is to demonstrate the following relation:

Ie
P(TIe > I) = 2)u(i,k) - u(i -1,k))P(Ti > 1-1)

i=l

(6)

with u( i, k) = Ui+1 mle/mi+1 . If k = 1 then (6) can be easily demonstrated. We shall concern
the case k ::0: 2. Surely (6) reduces to (7):

Ie-I
P(TIe = I) = Lu(i,k)P(Ti ::; 1-1, Ti+1 > l-l)+u(O,k)P(TI > 1-1). (7)

1:=1

We shall concern the cases of I = 1 and I > 1 separately. If I = 1 then (7) reduces to
P(TIe = 1) = u(O,k) that is easy to verify:

Ie Ie

P(TIe = 1) = P(Lti = 1) = UI II m;jmi_1 = ulmle/ml = u(O,k).
i=1 1:=2

Let I > 1. With the help of simple computations one may obtain that

Ie-I
L u(i, k)P(Ti ::; 1- 1, Ti+1 > 1- 1) +u(O, k)P(TI > 1- 1) =
i=1

Ie-I

= L P(TIe =I, ti+1 'I 0, ti+2 = 0, ... ,tie =0) + P(TIe = I, t2 = 0, ... ,tie = 0).
i=1

Let Ai = {Tie = l,tHI 'I O,ti+2 = O,oo.,tle = O} for alII::; i::; k -1, Ale = {Tie = l,t2 =
0, ... ,tie = 0) and A = U7=1 Ai. It is easy to see that A = {Tie = I} and Ai n Aj = 0 for all
i 'I j. Therefore P(TIe = I) = L:7=1 P(A;). The proof is complete.

As it may be easily seen

Ie

ETIe = l/ul +L(1 - q;)/Ui
i=2

Ie

and DTIe = l/u~ + L(1 - ql)/u;- ETIe ·
i=2

Let us discuss some properties of m : (0,1] --t [0,1] which is defined by m(r) = J.l( Mr ).

Lenuna 2.2. m is a right continuous nondecreasing function such that
0< m(r) ::; <p(r).

Proof. As CFI-CF3 take place we need to show only right continuous feature of m.
Let M r +o = n::1 Mr +l / n • We are going to prove that Mr = M r +o. Surely M. C Mr +o.
Let us prove the opposite insertion. Let z E M r +o, then z E M r +l / n for all n, there­
fore p(z, zo) ::; r + l/n and f(z) > f(z) for all z E S;+I/n with all n. So we have

p(z,zo) ::; r and fez) > fez) for all z E U:=I S;+I/n' As U:=I S;+I/n = S~ then z E Mr. So
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mer) = Jl(M.) = Jl(M.+o) = Jl(n:=l M'+l/n ) = liIIln~oo Jl(M'+l/n ) = liIIln_oo mer + lin).
The proof is complete.

Lemma 2.3. Let f be a continuous function and Jl(f-1(c)) = 0 for all c E R. Then
m is continuous at (0,1].

Proof. Let M._ o = {z E D.: fez) > fez) for all z E D~}. By the compactness
of D~ we have M._o = {z E D. : fez) > max {fey); y E D~}}. It is easy to see
that M.-o = U~k M.- 1/ n , where k = [l/r] + 1. As f and cP are continuous we have
Jl(M.\M.-o) =Jl({z E D.: fez) = max {fey); y E D~} and fez) > fez) for all z E S~}):S

Jl({z E D. : fez) =max{f(y); y E D~} }). The proof is complete.

Now let us consider P(z, .). We suppose here that there exists the Radon-Nikodym
derivative p(y, z) = P(z, dy)/ Jl( dy) such that p(y, z) = 1I'(p(y, z)) where 11' : [0,1] -+ (0,00) is
nonincreasing strictly positive function.

We put here r1 = 1/2. Let us estimate P(z, Mk) for zEN; and i < k. We have
P(z,Mk) 2: Jl(Mk)inf{1I'(p(z,y)); Z E S.;, y E S'k} 2: mk1l'(r; + rk) 2: mk1l'(2r; - 0).

Let g: [0,1/2] -+ (0,00) be defined by

( ) {1I'(0), r = 0
9 r = 1I'(2r _ 0), r E (0,1/2].

1 1/2

As p is a density we have 1 =J1I'(p(z,Y))Jl(dy) =J1I'(r)dcp(r) = Jg(r)dcp(2r).
x 0 0

Let the sequences {r;(n) }i=o be such that ro = 1, r1 = 1/2, r;-l > r;, rn = f
and max2<;<n (r;_l(n) - r;(n)) -+ 0 as n -+ 00. Let {t;(n)}, {T;(n)} be defined by
Theorem 2.1 ;'ith u1(n) = m(r1)g(rd and u;(n) = m(r;(n))g(r;_l(n)).

Let finally
1 J 1 1I(m,g,f) = ( ) ( ) + -()d(--(-)) ,m r1 9 r1 9 r m r

(•.1/2J

1 J 1 1
D(m,g,f) = (m(r1)g(r1))2 + g2(r)d(- m2(r)) - I(m,g,f).

(•.1/2J

Surely ETn -+ I(m,g,f) , DTn -+ D(m,g,f) as n -+ 00 .

One can easily deduce from Theorem 2.1 the following assertion:

Theorem 2.2.

E.,T. :S I(m,g,f).

We are going to discuss the behavour of T. while f tends to zero.

(9)

Lemma 2.4. Let the sequences {r;}i=o, {t;}i=l' {T;}i=ol satisfy mentioned conditions,
and n = n(f) tends to infinity as f tends to zero. Let {r;(n)} be chosen in such a manner
that with some 0 < q < 1 the inequalities r;(n) 2: qr;_l(n) take place. Let CF4 be valid,
v(n) =maxl:;::;:;::n u;(n), wen) =min1:;::i:;::n ui(n) and v(n)/(w(n) IlnCP(f) I) -+ 0 as f -+ O.
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Then the central limit theorem is valid for Tn.

Proof.As t; are independent random elements all we need is to show that Lyapounoff
condition is fulfilled (see[2]). The proof is simple and therefore is omitted.

Theorem 2.3. Let CF4 be valid and P(z,.) has a density p(y,z) = 7r(p(z,y)), where

with 0< A:S; c(r) :s; B < 00 for some constants A and B.

Then the inequality

lim sup sup P",(T, > I(m,g,f) +aVD(m,g,f)):S; 1 - 4'(a)
dO "'EX

takes place, where 4' is the N(O, 1) distribution function and

I(m,g,f):S; C1(X,F)ln2f,

D(m, g, f) :s; C2(X, F) Iln3 fl.

(10)

(11)

(12)

The proof of (10) is seen immediately from lemma 2.4. The proof of inequalities (11) and
(12) is mainly the same as in [1] and therefore is omitted.

3 Optimization of I(m, 9, f)

Now we are interested in the estimator of E",T, given by Theorem 2.2.

Let M be the set of all nonincreasing left continuous strictly positive functions 9 satisfying

the condition J~/2 g(r)d<p(2r) = 1, and MA,B be a subset of M such that A ::; 9 :s; B. Our
aim is to find gEM that minimize I( m, g, f) for given m and L We propose m to be
continuous.

It is evident that inf{I(m,g,f); gEM} E [0,00).

Lemma 3.1. Let gEM and

q(z)
p( z) - , where

- 1/2

J q( z )d<p(2z)
o

( ) _ { g( f - 0), z E [0, f]
q Z - g(z), z E (f, 1/2].

(13)

Then the following three assertions are fulfilled: 1) p E M; 2) I(m,p,f) :s; I(m,g,f)i 3) if
there exists such z E (O,f] that p(z) i g(z) then I{m,p,f) < I(m,g,f).

Proof. The first relation is evident. As I{m,p,f) = I{m,g,f) J~/2q{z)d<p(2z) the proof
of two other relations is complete.

Lemma 3.2. Let A =m{f)/m(I/2), B =<p-l{2f) and 9 E M\MA,B. Then there exists
suchp E MA,B that I(m,p,f) < I{m,g,f).
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Proof. As A ::; 1 < B we may choose either p == lor p defined by (13). The rest is triviaL

Theorem 3.1. Let A and B be taken from lemma 3.2. Then there exists such p E MA,B

that I(m,p,f) == inf{I(m,g, f); gEM}.

The proof may be done with the help of the first Helly Theorem and Lebesgue Theorem
on majorized convergence (see[3]).

One can easily deduce from the second Helly Theorem (see[3]) that min{I(m,g, f); 9 E
M} possesses a stability property with respect to small perturbations of m and 'P. Therefore
we propose m and 'P to be smooth functions.

Let N be the set of all nonincreasing left continuous strictly positive densities on [0,1].
Making the change of variables z == 'P(2y) and using the notation n(z) == m('P- I(z)/2),
p(z) == g('P- I (z)/2), h(z) == Jn l (z)/n 2(z) and 5 == 'P(2f) we have PEN and

I

1 / h
2
(z)

I(m,g,f) == n(l)p(l) + p(z) dz.
{,

For the sake of brevity we shall write I(p) instead of I(m,g,f).

Theorem 3.2. There exists such pEN that the following propositions are fulfilled:
I(p) == min{I(g);g E N} ,p E C([O, 1]) and p == q/). where q == 1 or

{

h(bo), z E lao, bol
q(z) == h(aj), z E [aj,b j ], j E J

h(z), otherwise.

Here ao == 0, 5::; bo < 1, J C N == {I, 2, ...}, (aj, bj ) n (ai, b;) == 0 for all i :j:. j,

bo

h2 (bo) == ~ / h2(z)dz,
{,

for bj < 1

for bj == 1.and

I

h2(aj) == _1_(/ h2(z)dz + _(1))
1 - aj Bj n 1

The proof is rather long and therefore is omitted.

The following simplest example will conclude the matter. Let X == [0, l)d be equipped
with such a metrics: if z, y E X, z == (Ull' .. ,Ud), y == (ZI, ... , Zd) then p(z, y) == 2 maxl<i<n
min(1 Ui - Zi I, 1- I Ui - Zi I). Evidently diamX == 1. - -

Let Jl. be the Lebesgue measure on Borel subsets of X. We have 'P( r) == Jl.( 5r (z)) == rd for
each 0 ::; r::; 1.

Let /I(Z) == -L:f=lar(Ui -1/2)2 where z == (Ul, ... ,Ud) and {ail is some sequence of
strictly positive real numbers. We consider the family of functions 10 with 5 E [{Y2f, 1]
such that t.(z) == max { h(z), sup Ul(Y); y E 56 } }. Evidently Zo == argmaxt.(z) ==
(1/2, ... I 1/2). It is easy to see that

F() F() F{I, UE[0.5]
/{, U == {, U == (5/u)d, U E (5,1]
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with F = Cd2-d rrf=1 Umi,n/ eli, where Cd is the Euclidean volume of the unit ball in R d,

Umin = min ai·

The density minimizing the estimator of E.,T. given by Theorem 2.2 will be further called
as optimal density. One can easily deduce from Theorem 3.2 the following assertion:

Statement. Let P6(Y,Z) = 71"6(P(Z,y)) and

O:Su:Saf
af<u::;R(5)
R(5) < u::;1,

where a = 2\Y2", R(5) = 2min{5,a- l } and b(5) = .jRd(5) - R2d(5).

Thenp6 is the optimal density for 16 and E.,T.:S I(m,96,f) = 2d d2(llnf I +8(5))2, where
8(5) = In(R(5)/a) + (1 + b(5)R-d (5))/d, 96 is defined by (8) and m6 = F6 'P.

We see that the optimal density doesnot depend on {a;}, but 5 must be known in ad­
vance. When the a priori information is absent, we may use PI that is an optimal den­
sity for all f with FI == canst. To compare PI with optimal density P6 we put C( f, 5) =
I(m6,91,f)/I(m6,Y6,f). It is easy to see that C(f,5) -> d/2 Ilnf I V(f) as 5 -> \Y2"f, where
v( f) -> 1 as f -> O. As C( f, 5) is large for small 5, we conclude that optimal density may be
much better then the standard one.
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Simple Genetic Algorithms for Environmental Modelling

Juhani Kettunen and Mika Jalava

A category of methods devised in the field of artificial intelligence known as genetic al­
gorithms (GAs) is suggested for use in nonlinear estimation and ezperimental design. The
performance of a set of GAs is analysed using test problems. Elitist selection with the single
point crossover strategy is considered as the most promising combination of the genetic op­
erators for nonlinear applications. The mutation operator is not studied systematically, but
according to empirical results, the alg~rithms do not work without it. The results indicate that
GAs are promising tools for solving nonlinear optimization problems, even when the objective
function is discrete, multimodal or flat in shape. An advantage of GAs is that they facilitate
heuristic sensitivity analysis simultaneously with a search for the optimum. Furthermore,
they are simple and straightforward to apply.

1 Introduction

Environmental modelling is often subject to badly behaving estimation and experimental de­
sign problems. This is, especially, the case when nonlinear, mechanistic, numerically solved
(partial) differential equations form the computational basis for the modelling. High pa­
rameter correlation and structural multicollinearity make the models poorly identifiable.
Physically-based parameterization leads to the loss functions of estimation that are demand­
ing, frequently discrete and nonquadratic. The problems are often ill-posed and even the
necessary conditions of optimality are non-existent.

Nonlinear, mechanistic modelling is, however, one of the dominant trends in environmental
management. It is therefore important to seek out feasible techniques for facilitating model­
oriented data design and analysis also in these troublesome cases.

From engineering point of view, experimental design and parameter estimation contribute
nonlinear programming problems that are featured by multimodal, fiat and discrete goal func­
tions and complex constraints, all characteristics that make it unreliable to apply traditional
search or programming procedures. Thus, there is a practical need to develop new optimiza­
tion techniques for environmental applications.

The goal of this study was to seek simple and feasible algorithms for solving the opti­
mization problems involved in nonlinear, mechanistic modelling. Because of the encouraging
results obtained in engineering, e.g. in robotics (Davidor, 1991), a genetics based approach
was chosen as a starting point for this study. A set of simple algorithms was constructed and
compared using test problems. The main aim was to find a feasible combination of genetic
operators for the environmental management.
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2 Genetic algorithms and operators

Genetic algorithms (GAs) are search techniques imitating the mechanics of natural selection
and genetics. The motivation for research into GAs has been the robustness of evolutionary
processes. Genetic algorithms differ from calculus-based search procedures in four ways
(Goldberg 1989):

• They work with a coding of parameter sets, not the parameters themselves

• GAs search from a population of points, not a single point

• GAs make only use of information about objective function, not derivatives or other
auxiliary knowledge.

• GAs use probabilistic transition rules

Among the basic elements of GAs are strings coding the information about the phenotype,
i.e. the parameter or decision vector. In this study, the decision vector was treated as a table
of n positive integers consisting of 32-bit positions in sequence. Each of the integers coded
one element of the vector, but in the genetic operations the table was treated like a binary
string of length n . 32 bits.

Genetic optimization proceeded in steps. After initialization, three successive genetic
operators selection, crossover and mutation were activated repeatedly. The sequence of the
operators was as follows.

Initialization. GAs were initialized by generating a starting population of size m. In the
test runs, the starting population consisted of m decision vectors with n elements chosen
randomly among the points Zi of the feasible region. Before the operations, the elements
were transformed into the binary space.

Selection. Two different selection strategies were considered. They are referred to in
the following as elitist (EL) and roulette wheel (RO) selection. The operation of elitist
selection was straightforward. The fitness of candidate-solutions was computed, candidates
were ranked, and a fixed proportion of the best solutions (e.g. 10%) was selected as the
genetic parents for the following generations. The roulette wheel strategy differed from the
elitist model in that the parents were selected randomly by weighting their relative fitnesses.
The fitness in this context meant the value of the goal function.

Crossover. A new generation, the offspring population of size m, was reproduced by
mixing the binary information of the parents. Two different operators were considered. The
model that is referred to below as the single point (SPO) crossover strategy operated as
follows. The integer tables of parent pairs - mothers and fathers - were cut at a randomly
chosen position and two offsprings were reproduced from each parent pair. The first of them
inherited the first part of the mother's and the second part of the father's binary information,
and the second the second part of the mother's and the first part of the father's code. Because
the coding system, only one element of the binary string was completely rebuilt up of a
mixture of the parents' information. The rest of the elements were present in the previous
generation either in father's or mother's binary string.

The alternative crossover strategy considered here is referred as random crossover (RAN).
It worked like the single point strategy but each bit of each element of the integer table given
to the offspring could originate from either the mother or the father depending on the result



259

of the lottery. Thus, the RAN strategy introduced more diversity into the offspring than did
the SPO strategy.

Mutations completed the GAs. These were motivated by the desire to increase genetic
diversity, and with the aim of improving the global nature of the search. In the study mutation
played a minor role. Random mutations were introduced, but their probability was kept as
low as 10- 3 • Technically, the mutations were treated like the crossover, introducing them
piecewise into the code for each of the parameters.

3 Tests problems and tests

Four simple GAs consisting of different selection and crossover operators (TABLE 1) were
compared, the aim being to find feasible guidelines for nonlinear modelling and programming.
The test problems were selected to represent typical characteristics of the nonlinear experi­
mental design and estimation for mechanistic modelling, namely the effects of discreteness,
muitimodality and flatness of the loss function. Criteria for the choice of problems were
also uniqueness and ease of inference. This was obtained by choosing problems with known
behaviour and extrema.

TABLE 1 The combinations of genetic operators being compared

Reproductive plan
ROSPO
RORAN
ELSPO
ELRAN

Selection strategy
Roulette wheel
Roulette wheel
Elitist
Elitist

Crossover strategy
Single point crossover
Random crossover
Single point crossover
Random crossover

The following four test problems were used to compare the algorithms:

F1: fI(z;) = Min 2::~1 z;
F2: h(z;) = Min100(zl - Z2)2 + (1 - zd2

F3: h(z;) = Min 2:::=1 Int(z;)
F4: 14(z) = Max(10 - 5000z)/esooz

-5.12 ~ Zi ~ 5.12
2.048 ~ Zi ~ 2.048
-5.12 ~ Zi ~ 5.12
0.0 ~ z ~ 1

Of these, F1, F2 and F3 were adopted from De Jong (1975, see also Goldberg, 1989)
and F4 was chosen to represent a programming problem in which the optimum is located
within an extremely narrow interval. F1 is a wellposed quadratic objective function, and
was considered as the reference for the comparison. F2, which is the well-known Rosenbrock
(1960) function, featured an optimization problem with the flat objective function. Problem
F3 was included in the study because of its discreteness.

Two types of tests were performed.They are referred to in the following as test 1 and
2. Test 1 was chosen to analyse the rel~tions between the number of generations and the
population size and to study the effect of the population size on the rate of convergence.
The test problems were solved by repeating each search 100 times with a starting population
consisting of m randomly chosen decision vectors. Ten different population sizes (m ranging
from 100 to 1000) were studied. Number of decision variables in test problem F1 was 3.
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The sequence of the genetic operations was repeated until a termination rule was en­
countered. In this study four types of termination criteria were considered. The run was
terminated, if any of the following termination rules was activated:

• No progress had taken place during the last five generations

• 10% of the fittest solutions were equal bit-for-bit

• 10% of the solutions resulted in the same value of the objective function

• When the deviation from the known true solution did not exceed a given level

Test 2 was performed to analyse the dependence of number of generations on the dimension
n of the decision vector. The comparison was made only using test problem Fl. The munber
of decision variables ranged from 3 to 15. The search was repeated 30 times with each size
of the decision vector and runs were terminated when the sum of squared terms z~ was less
than predetermined constant: z~ < 0.01.

4 Results

Test 1: Test problem Fl appeared to be an easy task for any of the operator combinations.
If the average population size exceeded 500, all of the algorithms reached the optimwn in
fewer than 15 generations (Fig l(a». Both algorithms comprising the elitist selection strategy
performed clearly better than the roulette wheel selectors. Elitist selection using the single­
point crossover strategy (ELSPO) found the optimwn rather easily, on average within two
generations, when the population size exceeded 200 (Fig 1(a». Also the standard error of
the mean of the number of generations (Fig l(b» was, undoubtedly, lowest when the ELSPO
strategy was applied, while the rest of the algorithms accomplished the task equally well in
terms of this measure.

Similar results to those obtained in test Fl were also obtained in test F3. When the
population size was more than 500-600 in this 5-dimensional search, the algorithms discovered
the optimum after a reasonable nwnber of generations.

The superior performance of elitist selection with single-point crossover, however, was even
clearer in test F3 than in problem Fl. Any other ranking of the algorithms was impossible
in test F3. This is easily seen in Figs. 1(c) and 1(d).

Problems F2 and F4 exhibited slightly different behaviour from the problems Fl and F3.
Because of the large fiat domains in the objective functions, the termination criteria were
barely reachable with small population sizes, and the diversity of the genetic information
disappeared in such cases before acceptable discrepancies between obtained and true solutions
were achieved. An increase in population, however, solved the problem. In particular, both
elitist models performed extremely well when the population size reached 600 (Fig. 2). Elitist
selection with single-point crossover was also unquestionably the best combination of genetic
operators in these tests. Elitist selection with random crossover was equally clearly second in
all tests that facilitated ranking. Roulette wheel selection did not perform very well in any
of the test runs.

Test 2: The ranking ofthe algorithms in test 2 reminded that of test 1 (Fig 3). The elistist
models performed better than the roulette selectors and the larger the dimension grew the
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Figure 1: Mean number of generations as a function of population size and the corresponding
standard error of the mean. Test problems Fl and F3.
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Figure 3: Mean number of generations as a function of decision vector size and the corre­
sponding variance of the mean. Test problem Flo

clearer was the ranking. When the dimension of decision vector, however, exceeded 10 also
the variation increased remarkably with roulette wheel algorithms whereas the elitist models
were very stable throughout the study.The crossover strategy played minor role in the system
performance.

Mutation was not studied at length, but empirical observations during the tests indicated
that minor mutations close the optimum were more beneficial than any other types of muta­
tion. It was also clear throughout the tests that the mutation operator was a necessary part
of the system. If it was not applied, the termination criteria (1) and (2) became active at the
very start of the search, which thus collapsed. This was the case especially with the elitist
algorithms.

5 Discussion and conclusions

According to the results, the elitist selection strategy was the most competitive element in
simple GAs. This result was clear in all the tests. Intuitively, it is understandable and
expectable, but it might equally well reft.ect the fact that all the test functions, whether they
were multimodal, discrete or ft.at, were deterministic by nature. Thus, the more randomly
oriented operators, especially random crossover strategies, may have suffered from the biased
choice of objective functions. From the experimental design point of view the result is not
discouraging, because the designs are normally bound to deterministic formulations.

Computationally, the outcome in favour of elistist selection, is appealing because it is a
much more economical selection operator than the roulette wheel strategy. For example the
number or sorting it requires is only a fraction required by the RO strategy.

The ft.atness of goal functions should be allowed for by choosing a population size that is
large enough to conserve diversity. This result, too, is intuitively clear. The proper allocation
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of resources between the population size and the computer capasity required by successive
generations, however, requires laborious tuning of the algorithm. As a matter of fact, even
our small test exercise could have been excessive without powerful main frame facilities.

From a practical experimental design point of view the capability of simple GAs to deal
with flat and discrete objective functions is the most promising result of the exercise. With
nonlinear designs it is almost impossible to avoid virtually unidentifiable design problems,
and thus the ability to deal with flatness combined with the fact that genetic algorithms
operate on the population basis facilitate two things. Firstly, the computation is not sensitive
to singularities as are traditional search algorithms. Secondly, the population basis quite
probably reveals the domain of structural unidentifiability.

According to the intuitive experience of the study, the mutations are necessary operators
of the simple genetic algorithms. The result might partly explain why conservative strategies
as elitist selection is preferred in the tests. Possibly, in our tests, the mutations introduce the
necessary diversity in the solutions rather than the crossover.

We treated the binary information of the decision vector as the binary string consisting of
n successive integers, 32 bits in lenght. The system can also be made more flexible. Because
of the fact that goal function evaluation and genetic operations are carried out in different
spaces, the real and the binary, transformations are necessary between them. Thus, integer
table may code more than n decision variables and each integer more than one element, if
desired. In addition to this, the binary code of elements may be variable in length.

Computationally GAs are easily and compactly programmable. The downside of this
is that the amount of computational effort tends to increase rapidly. This increase can be
prevented by combining GAs with more tradional approaches, as shown by De Souza et al
(1991).
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Covering Based on a Stratified Sample

Maxim V. Chekmasov and Marina V. Kondratovich

Zhigljavsky [4] stated the problem of improving the upper estimates for the densities
of coverings of the space. He proposed to use different kinds of dependent samples which
generate coverings by the standard rule, that use the independent sample, described by
Rogers (1]. In this paper we demonstrate, that the use of stratified sample is preferable to
the independent one. Therefore, we confirm that this is a promising subject for study.

Many algorithms of global random search consist of a series of iterations. At any iteration
the random points are generated according to some distribution. The common way to obtain
the random points is independent random choice of them. This is the same as to use the
independent sample. The classical method to decrease the variance of the Monte-Carlo
estimations for integrals is the use of the stratified sample. The gist of stratified sample is
a division of a region into some number of disjoint subsets and independent generation of
random points in each of them.

In paper (3] it is proved that the stratified sample dominate independent one according
to a number of criteria natural for global random search. In paper [2] it is shown that the
stratified sample is admissible in the set of continuous functions. It is shown in this paper
that stratified sample-based covering is more economical than independent sample-based one.
The reader can also consult [4] for the full explanation of these results.

Let K be a bounded set of positive measure Il(K) and T be the numerable system {K +ai}
of traslations of K by vectors ai, a2,'" Generally, system T does not form covering for the
whole space. Let us clear what part of the space is covered by the elements of T. According
to (3], the relative measure of the part of space uncovered by the elements of T is defined as
follows.

For each cube C with sides parallel to the axes and oflength s(C) define

1
O"+(T,C) == Il(C/Il(K +ail, where K +ai n C i- 0;

1
O"_(T,C) == Il(C) 'f.1l(K +ail, where K +ai a subset of C;

iJ(T,C)==l-p( ,u (K+ai)nC)/Il(C).
1==1

Here iJ(T, C) is the relative measure of the part of the cube uncovered by the sets of T.
Further,

lim
.(eRoo
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lim <li(T,G)
.(c)_+oo

Small values of <li+(T) signify that the sets of T cover the most part of the space.

Let G be the cube defined by the inequalities 0 :s Zi :s s(G), i = 1, ... ,n. Let CT be
a positive real number, p.( K) Ip.(G) = CT IN, where N is an integer. Let bl , b2• ... is grid of
points with coordinates being integer multiple of s(G), ZI, Z2, ... , Z N is system of N points
lying in G. Then according to [1] (theorem 1.5) for the system T = T(ZI,Z2, ... ,ZN) =
{K+Zi+bj} (i=1,2, ... ,N, i=1,2, ... )wehaveCT+(T)=CT_(T)=CT.

The system of points ZI, Z2, ... , ZN can be chosen in various manners. In [1] the points
ZI, Z2, ... , ZN form the independent sample, i.e. Zi are independent realizations of the random
variable uniformly distributed in the cube G. In [3] it is shown that for the independent sample

<litd = E<li+(T(ZI,Z2, ... ,ZN)) = (1- CTIN)N.

N
Let the points ZI, Z2, ... , ZN form the stratified sample, i.e. G = U Gi where J-L(G;) =

i=l

liN, P.(Gi n Gj ) = 0, i I- i, Zi (i = 1, ... , N) the realizations of the uniform random vector
in Gi: Pi(A) = N P(An Gi). Denote

<li~r = E<li+(T(ZI,Z2, ... ,ZN)).

Theorem. For all bounded sets K and positive real number CT ol'1r :s <litd and there
exist the sets K and real positive number CT for which <li1r < <li~d.

Proof. Let T( z) be the indicator function of K. Let K be a subset of a cube of the side
of length s(G). Let us suppose (without loss of of generallity) s(G) > 2s(K) then the sets
K + Zi + bj and K + Zi + blc with i I- k have no common points and the indicator function

of the set .u (K + Zi + bj ) is equal to I:~I T(Z - Zi - bj ).
]=1

Therefore the indicator function of the set E, composed by the points not belonging to
any set of system T, is equal to

N

CT(Z) = II(1- LT(z - Zi - bj )).
i=l

Then for all cubes G with sides parallel to the coordinate axes, we have

CT(T, G) = J-LtG) I CT( Z )dz.

Because the integrated function is periodic for all coordinates with period s(G), we have

- 1 JCT+(T(ZI, ... ,ZN)) = limCT+(T,G) = J-L(G) CT(z)dz.
G

Let us find the value CT+(T( ZI, ... , ZN)) averaged on every possible stratified sample ZI, ... , ZN.

<li~' = ECT+(T(zl, ... ,ZN)) = Jp.~/ZI'" Jp.~)CT+(T(ZI> ... ,ZN))dZN
C, CN
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N
Let us find the maximal value of expression n (1 - NI'(1(~);)) under the condition that

i=l J.J

Using Lagrange factor's method, it is easy to prove that the maximal value is reached at

and equals to
N

II{1- Nu/N 2
) = (1- u/N)N

i=1

Thus, it is proved that 4i~r :s: (l-u/N)N = 4i~d. We have J1.(K)/J1.(C) = u/N, J1.(Ci)/J1.(C) =
I/N, i.e. J1.(K)/J1.(Ci) = u.

The value of function 4i~r is determined by the set K, and number u - relative measure
of the set K and the partition. Evidently, there exist such sets K that only I < N values of
J1.(K n Ci) are nonzero, i.e. 4i~r < 4i~d. This ends the proof.

The advantage of using the stratified sample is greater when possible number of intersec­
tions between the set K and sets Ci decreases.

Let us consider the case of covering the plane (n = 2) by sets K - circles; the sets Ci
are squares of measure J1.( Ci) = 1/N. Then, for average value of relative measure 4i~r , the
following cases are possible: (i) 0 < u :s: 1r, i.e. the circle radius is less than square's C i side.
Only four values are non-zero: J1.(KnCi)/J1.(Ci) = (~u/N)/(I/N). Therefore 4i~r = (l-u/4)4

(ii) 1r < U :s: 21r, i.e. the circle radius is greater than square Ci side but less than
its diagonal. In this case 12 values of J1.(K n Ci)/J1.(Ci) are non-zero. After corresponding
calculations the following value can be obtained:

(iii) If u > 21r, there exist such i that J1.(K n C;) = J1.(Ci) and then 4i~r = O.
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There are cited below the results of computer experiment for estimating relative measure
of uncovering plane (n = 2) by sets of K circles.

0- N stratified independent
0.2 16 0.800 0.816

64 0.806 0.821
0.6 25 0.486 0.563

64 0.497 0.569
2 16 0.051 0.135

64 0.060 0.173

Similarly, it is possible to obtain an expression for ~~. in the case n > 2 and K is sphere.
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On Average-Optimal Quasi-Symmetrical Univariate

Optimization Algorithms

Luc Pronzato and Anatoly A. Zhigljavsky

1 Introduction

This paper deals with the problem of minimizing the length of an interval containing the
scalar argument Z· at which a function 1 E F reaches its minimum value. The class F
considered corresponds to inverse-unimodal functions over a given initial interval 10 , i.e.

I: 10 --> n
:Jz' E 10 I 1 strictly decreasing for z ~ z· and strictly increasing for z > z· ,

or else strictly decreasing for z < z· and strictly increasing for z 2: z· .

The restriction to functions symmetrical at z· will be used in Section 3, but no further
assumption on 1 (such as regularity) will be considered. Our aim is to determine an interval
IN, after N evaluations of 1 in 10 , which is guaranteed to contain z· = argminzElo I(z)
and which is of minimal length. We assume that the evaluations of 1 are performed without
errors. The result of an evaluation will be called an observation. Let Ile denote the information
obtained after k evaluations of 1 at the points ZI,Z2, ... ,ZIe, Le. Ile = {a,b,zl,Z2, ... ,ZIe,
l(zr),/(Z2),'" ,/(zle)}, with I o = {a,b} (10 = [a,b]). The information Ile is used to define
lle+l which is guaranteed to contain z', according to the rule

This is done by removing from 10 the parts that are not consistent with the observations, Le.
where we are sure that z· cannot lie (see e.g. 4 for a precise definition of consistency in search
problems). We consider nonrandomized sequential procedures, i.e. procedures for which the
points where 1 is evaluated are chosen sequentially on the basis of the information collected
so far, what we denote by

Zle+l = glc+l (IIe) ,

with g/c+l a deterministic function. Note that the rule for constructing lie is independent of
k, contrary to that for constructing Zle+l. The total number N of evaluations that is allowed
is fixed in advance. A strategy SN is thus defined by

SN = {l,u,gle,k = 1, ... ,N}.

SN will denote the set of all nonrandomized strategies SN that possess the consistency prop­
erty z· E IN.

We are interested in the determination of the best strategy, in some sense connected with
the length LN of the final interval. The paper will show that classical approaches (based on
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worst-case performances) are not optimal on average (which may be more reasonable from a
practical point of view, as suggested in 5). Although the problem considered here is mainly
theoretical (golden search and parabolic approximation are the approaches classically used
in practice to solve univariate optimization problems). it provides an interesting test-case for
average-optimal procedures. Minimax optimality is considered in Section 2. Restricting the
class :F to functions symmetrical at z·, and introducing a noninformative prior distribution
on the location of z·. we consider an average-optimal approach in Section 3. Worst-case and
average performances are compared in Section 4.

2 Minimax optimality

A strategy SN will be said f-minimax if it satisfies

The problem of existence of SN is solved in 2, 3, and we shall only give here a summary of
the results. This will be useful for the definition of an average-optimal procedure in Section
3.

Two evaluations of f inside h are required in order to eliminate any part of the interval, as
illustrated by Figure 1. For that reason the procedure is called of second order, in opposition
to first-order searchs (such as the determination of the root of a monotonous function over
an interval, see 3).

f----------+---------~sssssssssi

Figure 1: Two evaluations inside lie are needed to eliminate a part of it.
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Let V/o;, W/o; denote the two points in the interior of h == [a/o;, b/o;] where I is evaluated, with
V/o; < W/o;. The rules I, u of the strategy are defined by

(1)

Since one observation does not permit to eliminate anything, we have L 1 == Lo. Note that
either V/o; or W/o; still belongs to htl, so that a single new observation is required at each step
to shorten the interval.

The determination of S'N can be considered as a dynamic programming problem 1, with
terminal cost sup IE:F LN(f, S). The forward-in-time (i.e. forward-in-k) problem then corre­
sponds to choosing the sequence of points Zl, Z2, ... ,ZN. As usual, the optimal solution is
obtained with a backward-in-time approach. Given 1N-l == [aN-l,bN-d (i.e. once N - 1
evaluations of I in 10 have been performed), the optimal location of the last two points is

Z'N_l == ~(aN-l + bN-d, z'N == ZN-l + f, which gives SUP/E:FLN == ~LN-l + f. Note that
f must be chosen as small as possible, with the constraint z'N # Z'N_l' It is therefore only
related to the precision of the calculations, and we shall asswne f == °in what follows. Define
new normalized coordinates Z/o; as

ZIo: - alo:
Z/o; == b/o; - a/o; ,

where ZIo: belongs to the k-th interval h == [a/o;, blo:], so that Z/o; E [0,1], Vk. The minimax:
strategy S; for N == 2 is thus defined by zj == ~, z; == t. Moving backward-in-time, one can
show that the minimax: optimization procedure consists in successively splitting the remaining
interval into equal parts. One thus has, in an obvious manner,

(2)

and
L' -L' L"

Zk_l == /0;-1 Io:tl == _10:_ k> 1
Lk_l

Lk_l
'-

(see 2 for a detailed proof of the minimax optimality of this procedure). Let - denote the
backward-ordering operator, i.e.

where k corresponds to the nwnber of function evaluations still allowed (iN and Zl then

respectively correspond to the first and the last one). One has zk = ~f-'t', k 2 2, with
N-.+l

zj == zi == t. Using the recurrence equation (2), one can calculate L'N_/o;, k == 2, ... , N - 1,
and z'N gives the location of the initial evaluation. The successive locations of the evaluations
are then given by the zk's. They correspond to a symmetrical algorithm, i.e. each new point is
chosen symmetrical of the point already present in the interval with respect to the midpoint
of the interval. This gives zLl == (1 - zk)!zk if zk E It, 1], and zk_l == 1 - zk/(1 - zk)
otherwise. Taking zk in [~, 1], one has: L'N_l == 2Liv, Liv_2 = 3L'N, Liv_3 == 5L'N, Liv_4
8Liv,···,zi = z2 = ~,Z3 = ~,z; = ~)Z5 = ~)'"

RelIUlrk 1

(i) This procedure is often called Fibonacci algorithm, due to the lact that L'N -/0; =
U/o;t2 Liv , with (U/o;h the sequence 01 Fibonacci numbers, Uo == 0, Ul == 1, U/o; == U/o;_l +
U/O;-2, k 2 2.
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(ii) Although we do not want to discuss the admissibility problem here, note that the
procedure is inadmissible, since it can be improved by a reduction of f or by using the fact
that whenever the two smallest values of the function in the interval are equal, z· must lie in
the interval defined by the two arguments 2, 3. However, the second improvement corresponds
to a very unlikely situation, while the first one is almost negligible.

3 Average optimality

The class :F is now restricted to functions symmetrical at z', and we give a noninformative
uniform prior distribution 11"0 to z· over 10 • The shape of the distribution is not modified when
parts of 10 are eliminated, so that the distribution of z· remains uniform. If the symmetry
assumption about f is completely taken into account when propagating the distribution 1I"k

of z', 1f'k does not spread over the whole interval h, k > o. However, bearing in mind the
minimax case, in what follows we consider 1I"k as uniform over h. A strategy Sj; will then
be said average-optimal if it satisfies

The class SN of the strategies considered will be further restricted to quasi-symmetrical
procedures.

Using average performances as a criterion for choosing the procedure requires being able
to evaluate the expected length of an interval. This can be done easily using previous as­
sumptions. Consider for example an interior point z of l k = [ak, bkl. From the symmetry
assumption about f, one has

• z + ak
Prob{J(z) > f(ak)} = Prob{z < --},

2

which gives, from the uniform distribution of z',

(3)

The determination of Sj; is considered again as a dynamical prograuuning problem to
be solved with the Bellman optimality principle. Moving backward in time, we first consider
the last step, i.e. the situation where IN-I = [aN-I,bN _1 ] is given, with an evaluation of f
already performed at some zj E]aN-I,bN-d,j ~ N - 1. Using (3) and (1), we can evaluate
E",. {LN} as a function of zj and zN. Minimizing it with respect to z N, we obtain z N as a
function of zj, as illustrated by Figure 2. Using normalized coordinates, one gets

{

! - Zl.
2 J

zN = zj
~ - zj

if 0 ~ zj ~ ~,
if! < Zl < ;!

4 - J - 4'
if;! < Zl. < 1.

4 - J-

E",. {L N} can then be calculated as a function of z N -I, which gives

E {L} L (
ZN_I-aN_I)

",. N = N-I PN-I b '
N-l - aN_I
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ZN

1~-----,------~---------.-------,-----------,

1
2

3
4

1
4 I

0o:-------.L.-------'-------~-----Ji Zj

Figure 2: Choice of the last point (ZN in normalized coordinates) as a function of that already
present in the interval (zj in normalized coordinates).

with

(4)
{

?-z ifO<z<l
8 - -~'

PN_I(Z) = 2z 2 - 2z +1 if l.:s: z :::; 4'
z - k if 4 :::; z .:s: 1.

When N = 2, this obviously gives zj" = z;" = ~ for the optimal strategy (see Figure 4 for a
plot of PN-I(Z)).

Remark 2 A practical implementation of these ideas would require the introduction of a
value ( i' °in order to obtain :r;" = :rio +( i' xi", so that, as in the minimax case, the
notion of (-optimality might be considered here.

Suppose now that three observations are to be performed. E",. {L3 } can be calculated as a
function of:rl and :r2 when :r3 is chosen as indicated by Figure 2. A contour plot is given
in Figure 3. The function is symmetrical with respect to the diagonal :r2 = :rl. Symmetrical
procedures are obtained along the line X2 = 1- XI. The optimal choice for (XI,X2) is given
by (0.6325,0.3675) or its symmetrical (0.3675,0.6325). These point are indicated by stars on
the figure. They satisfy x;" = 1 - xi". Following the optimal choice indicated by Figure 2,
x;" is equal to x;".

The expression of E",. {L3 } could theoretically be used to express the optimal value of X2

as a function of XI, leading one step backward to the case where four observations are to be
performed. However, analytical expressions then become intractable, and in what follows we



274

o
o

1
2

1
X2

1
2

1

Xl

Figure 3: Contour plot of E",.{L3 } as a function of ZI and Z2 (Z3 is chosen according to
Figure 2 and 10 = II = [0,1]).

shall restrict our attention to suboptimal symmetrical algorithms (quasi-symmetrical, to be
more precise, since the last point ZN is chosen according to Figure 2). One can then easily
prove by induction that

with

Pk(Z)={zPk+le~Z) if~~z~l,
(l-z)Pk+I(l~Z) ifO~z~!,

and PN-I defined by (4). Figure 4 presents the functions PN-I,PN-2,'" ,PN-6.

Consider now the determination of the minima z'N-k = arg min.E[t. l ] PN _k(Z), k = 1, ....
This will ultimately define the average-optimal quasi-symmetrical strategy as follows. We
use again the backward ordering operator ., so that ii.' = z'N-k+I and Pk(Z) = PN-k+I(Z),
with k the nwnber of evaluations allowed. The optimal initial point for these evaluations is
then given by ii.', and the successive points are chosen symmetrically with respect to the
midpoint of the interval, except for the last one.

The functions Pk (z) have several local minima in [!' 1] (see Figure 4), and we are interested
in the global ones ij,*, k ;::: 3. One can easily show by induction that in the neighborhood of
ik* the function Pk( z) can be written as
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1,--------,------------,----,-------,------_
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0.1

PN-dz)

PN-2( z)

PN-4(Z)

I
PN-iz)

I
PN-6( Z)

00'----------'--------'----.L...---~--~1 Z
Q2 Q4 Q6 Q8

Figure 4: Expected final length E",. {Lk} as a function of the location of the initial point
(E",.{Lk} = LOPN-HIl.

Similarly, one gets around zZ+l

( l-z)2 f3 l-z_ Ok -z- + k-z-+"Yk
Pk+l(Z)=Z l-z ,k23,

Ok-z- + (k

which defines a recurrence equation for Ok = (Ok,f3k, "Yk, Ok, €kf,

(

1 -1
-2 1

Ok+! = 1 0
o 0
o 0

1 0
o 0

o 0
o -1
o 1

(5)

One can also prove by induction that zZ- is given by

Table 1 gives the successive values of Ok and zt, k = 1, ... , 10.

(6)
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k Ok 13k 'Yk 5k fk ii:' = zN-k+l
1 0.5
2 0.5
3 5 -6 2 1 0 0.6325

4 13 -16 5 -1 1 0.6078
5 34 -42 13 2 -1 0.6213
6 89 -110 34 -3 2 0.6167
7 233 -288 89 5 -3 0.6185
8 610 -734 233 -8 5 0.6178
9 1597 -1974 610 13 -8 0.6181

10 4181 -5168 1597 -21 13 0.6180

TABLE 1: Initial point ii.' for Si:' when k evaluations are allowed.

Remark 3

(i) One can easily check that limk~cx> i;;' = a = ~(vIs -1) = 0.6180 ... , which corresponds
to the Golden-Section algorithm suggested in 2, 3. The term -fk/5k in (6) corresponds to
the sequence of the minimax-optimal algorithm, i.e. more precisely -fk/5k = zi._3' and one
has again limk~cx> ii. = a. The eigenvalues of the matrix defining the recurrence equation (5)
are given by -1, 2 +a, 1 - a, - 1 - a, a, which provides another indication that the number a
plays here a special role.

(ii) Contmry to what occurs for minimax optimality, the values of i k corresponding to the
use of the symmetrical algorithm initialized in zN do not coincide with the ii.' 'so

(iii) This procedure is not optimal for N > 3 if the restriction to symmetrical procedures is
removed. Consider e.g. the case N = 4, f o = [0,1], with i';" = 0.6078. Take 2: 3 symmetrically,
so that i 3 = (1- i:')/i:' = 0.6454. Three evaluations have to be performed in [O,i:'], with
2:3 already fixed (or equivalently in [0,1] with i 3 already fixed). One can easily check that the
optimal choice for i 2 (with i l obtained from i2 according to Figure 2) does not coincide with
(1- ii')/ii'.

(iv) Remark 1 (ii) about admissibility applies again here: the second improvement sug­
gested could be implemented (although it would be useful only in very unlikely situations).

4 Comparison between minimax and average optimality

One can compare on the same plot the function PN -k (which gives the expected final length
for the quasi-symmetrical average-optimal procedure) with the final length for the minimax
procedure, both expressed as functions of the initial point where f is evaluated (see Figure
5). The new procedure is seen to perform slightly better than the minimax procedure in the
average sense (it is the least one could ask for!).

The expected length Ex· {L N} can be calculated analytically. Assume Lo = 1 and start

f -". b (6) Th - 1 -" ~ fN_1 ~ d - -,,-rom ZN given y . en ZN-i = - ZN = -.------ - 8 =, an ZN-2 = ZN - ZN-l'
N 0N-l NVON

It can be shown by induction that
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Figure 5: Comparison between the expected final length for the quasi-synunetrical average­
optimal procedure and the final length for the minimax procedure, both as functions of the
location of the initial point (f is evaluated 5 times, Lo = 1).

hich . ld - v'2 d - I v'2 < Thi' - - - I +W Yle s Z3 - v?iN an Z4 - ~ + bNv?iNUN-I' s gIves Z2 = Z4 - Z3 = ~
.;;J:,; 6;:;, , and E z • {L N } is known as function ofi 2 . From (4) one gets Ez • {LN} = 2:EV:E3 ­

2:E z + :E 3 , and the length in the worst case is maxjEr LN = :E 2 .

Figure 6 presents the relative decrease in expected length (Liv - Ez.{LN})/Liv, when
the average-optimal procedure (quasi-symmetrical algorithm) is used instead of the minimax
one (Fibonacci algorithm). As could be expected from Figure 5, the gain in performances is
only marginal. Also indicated on Figure 6 is the relative increase in maximal length (i.e. in
the worst case concerning the location of z·) (maXjEr LN - Liv)/ Liv, which is quite larger.

The price paid for a slight improvement in the average sense is thus an important de­
terioration in minimax performances. However, worst-case performances could correspond
to a rather poor criterion in practice if, as suggested in 5, they are obtained for atypical
values of z· that belong to a subset of f o with zero measure. Moreover, the use of a sym­
metrical procedure certainly puts a curb on the performances in the average sense, and other
non-synunetrical procedures are under investigation.
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Figure 6: Relative decrease in expected length and increase in maximal length when Sj; is
used instead of Sr..
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The Game-Theoretical Model of an Economy

Tatiana Kulakovskaja and Adnan Shamon

This paper deals with generalized n-person cooperative market games derived from nonbal­
anced pure exchange economies. The economic motivation for such investigation is a problem
of fair sharing rules in situation of deficit on the market of commodities.

1 The formal model

Consider a market with a set I = {I, 2, ,n} of economical agents (countries, firms, indi-
viduals and so on) and a set K= {1,2, , m} of commodities. Let R+ be the commodities
space. The agent i E I has a supply-vector ai = (aI, ... I ai) E R+ and a demand-vector
bi = (bI, br ... ,bi) E R+. For simplicity suppose a7b7 = 0, k = 1, ... , m, so if a7 #- 0 then
the agent i is a seller of a commodity k, and if b7 #- 0 then he is a buyer of this commodity.
We suppose, that utility function of an agent is additive and homogenues with respect to
commodities and so we can restrict ourseU by definition of the utilities for unit quantities of
commodities. Let the player i has utility-vector Ui = (uI I ur ... , ui) E R+ as a seller, and
utility. vector Wi = (wI I W[ . .. ,wi) E R+ as a buyer. We can interpret u7 as a minimal
price for selling of a commodity k (for example, it's production cost) by the agent i, and,
analoqous w7 - as a maximal price of a commodity k for buying. As in our model every agent
has only one role (seller or buyer) we put u7 = 0 if a7 = 0 and w7 > maxj:al >0 wt if b7 = O.

Denote the market

M = ({ai}iEl, {bi},El' {Ui},El, {Wi}iEl, {Ci}iEl),

where Ci E R~ is the initial capital of the agent i.

Propose that u7,w: and Ci, i E I, k E K are expressed in the same monetary units.

2 The properties of the cooperative game generated by the
market

Associate the cooperative game with this market.

Let ~i = W, .. ·,~;), ~t :s a7, k = 1, ... ,m, 17i = (17;, ... ,17;),17: :s bt, k =
1, ... , m, i E I , i: ~7 = i: 17:, k = 1, ... , m, where ~7 is the quantity of a commodity

i=l 1=1

k given by the player i to another ones, and 17: is the quantity of commodity k received by
player i.

The collection {(~i,' .. ,~n); (17i, .. . I 17n)} is named the distribution and is denoted (~, 17).
The set of all distributions is denoted D(I).
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The subsets of I are called coalitions in cooperative game theory. Let SCI be the
coalition and denote

D(S) = {(~, 1)) E D(I)1~7 = ~7 = a, k = 1, ... , m, i ~ S}.

If the distribution (~,1)) E D(S), we name it S-distribution and denote (~s,1)s). In
accordance with distribution (~, 1)) the coalition S has the total profit

m m

v(S,~, 1)) = L I>7 w7 - L L~7u:
k=l iES k=l iES

Denote v(S) = max v(S,~,1)). Put v(Ql) = 0
(e,7J)ED(S)

Then there is the cooperative game r(M) =< I,v >. If a: = b: = 0 for i E I, k # ko,
then we name this game one-producted and denote r ko . We will mark all notions for r ko by
the letter ko (DkO(I), DkO(S),vkO(S) and so on)

So far as the distribution of every commodity can be choose independently from others it
is easy to verify the folloving.

Proposition I.

v(S) = L vk(S)
k=l

Let us research one-product game in detail. We will omit the marker ko in this part of the
paper.

Let N1 C N is a set of a sellers, and N2 C N is a set of a buyers of the product, and
N\uN2 =N.

For simplicity, we suppose that

N 1 = {1, ... ,no},N2 = {no+ 1, ... ,n}, 1 < no < n,

Utili tes Uk, k > no, and Wk, k < no are not considered.

o :s: ~i :::; ai

a :::; 1)j :::; bj
no n

z= ~i = z= 1)j
i=l j=.... +l

D(S) = D(I) n {x E R"lxi =a i ~ S}

v(S,~,1)) = L 1)jWj - L ~iUi
jESnN, iESnN,

v(S) = max v(S,~,1))
(e,7J)ED(S)

If Sn N1 = Ql or SnN2 = Ql then D(S) = {(a, ... ,a)}, and v(S) = a. Thus v({i}) = a.
The coalition S is named active, if v( S) # o.
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The game r is called

(a) the game with deficit,
no n

if 2: ai < 2: bj
i::::l j=no+l

no n
(b) the balanced game, if 2: ai = 2: bj

i=1 j=no+1

no n

(c) the game with surplus, if 2: ai > 2: bj
i=1 j=no+l

3 The trivial S-distribution

For every active coalition S ~ J we will describe now the algorithm of calculating a S­
distribution ([5, ijS), that we will naJ;lle a trivial S-distribution (Bondareva 1989)

Step 1. Let iI, jl are such that

Ui, = .min Ui, Wj, = max Wj
.ESnN, jESnN,

if Ui, ::; Wj,

otherwise

in the case (a)

in the case (b) ,( c)

Step 2. If Zid, = 0 then "stop"

If Zid, = ai, then S =;> S \ {id, bj, = bi , - aj,

If Zid, =bj, then S =;> S \ {jd, ai, =ai, - bj ,

Step 3. If S n N I = 0 or S n N 2 = 0 then "stop"

else goto step 1 with the new S, ai" bit

Let I be a number of iteration on that the process stops. It will occur in one of the three
cases:
(a) Zi,j, = 0 and Ui, > Wi,

(b) SnN1 = 0;
(c)SnN2 =0.

We put

i(S) = i
'
- ll j(S) = j'-I

i(S) = it. j(S) = j,

SI = {i E sn Ndi::; i(S)}

S2 = {j E S n N21j ~ j(S)}

The pair (i(S),j(S)) is named S-marginal.
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(d) ~i(S) = ailS) or Tij(S) = bj ( S) but
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~; = TiJ = 0 for other i,i E N

It is obvious that (t, Tis) is S-distribution and we call it trivial.

Proposition 2. The trivial S-distribution has the following properties:
-s

(a) ~i = ai, i E SI, i i- i(S)

(b) Tif = bj , i E S2, i i- i(S)

(c) E ~;= E Tif=min(Eai,Ebj)
iESnNl jESnN, iESl jES,

both equalities are true only if E a; = E bj
iESl jES,

-S S
(e) v(S,~ ,Ti ) = max V(S,~,71) = v(S)

({,7))ED(S)

Proof. Properties (a)-(d) obviously followes from algorithm. Let consider (e). Denote
zS = Ilzijlli,jES the plan of exchanges between the members of coalition S, where Zij is
a quantity of product tranfered from agent i to agent i. If i rt. S n N I , i rt. S n N 2 • or Ui > Wj

then Zij = O.

It is clear, that

e = LZij, 71f = L Zij
j 1

v(S,~,71) = L 71jWj - L ~fUi = L Zij(Wj - Ui)

jESnN, iESnN, i,jES

We have an optimization problem:

max L Zij(Wj - u;)
i,jES

L Zij S; ai, i E S n NI

j

Zij~O, i,iES

Zij = 0, if i E S \ NI , or i E S \ N2, or Ui > Wj

Let the plan zS be a solution of this problem. ~; = E Zij; TiJ = E Zij. It is easy to show.
j i

that (~;, Tif) is the trivial S-distribution. In such form our problem is the sort of transport
one, and zS is so-called North-West plan for it. This plan is optimal in our case, although
that is not so for arbitrary transport problem. Q.E.D.
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Remark, that if all positive Cij := Wj - Ui are different then trivial S-distribution is unique
solution of the corresponding optimization problem, and so we have a rather strict way of
achievement of maximal total profit for coalition.

For the market with m commodities the trivial I-distribution (~, 77) is a collection of

similier distributions for every commodities, that is a,77) := Ht, rt'nJ:'=l' and it is unique
optimal distribution for whole market.

4 Balanced distribution and balanced prices

Now consider the market with the fixed price-vector p := (pl, ... ,pm). The prices with the
distribution define allocation Z := (Zl, ... , zn) of the total profit, where

m

Zi:= zi(P,~,77):= E~7(pk - u7) +E 777(w7 _ pk)
k=l k=l

H(r) := {Z(P.~,77); (~,77) E D(In is the set of allocations.

For one-product game we have

Zi(p,~,77) := ~i(p - Ui), i E N l

Zj(P,~,77):= 77j(Wj - p), j E N 2

We call the allocation vector Z balanced if

E Zi ~ v(S), for all SCI, S '" I
iES

The corresponding distribution (C .77*) and the price-vector p* also are named balanced.

Theorem 1. (Bondareva 1990)

The trivial I-distribution (~, 77) is balanced one. The balanced price-vector p* can be
choosen arbitrary from the set

It is desirable to connect the balanced prices and the balanced distribution with compet­
itive equilibrhun in the perfect market with transferable utilities and money.

Put

Ui(~,77) := f [u7(a7 - ~t) +W7777 +pk~t -l77t]
k=l

B(p,c):= {(~'77) E D(I)IE(pk 77t _pk~t)::::; Ci, i:= 1, ... ,n}
k=l

B(p, c) is named a budget set.

Theorem 2. A vector C* exists such that for Ci ~ C:, i := 1, ... , n the trivial distribution
(~, 77) and corresponding balanced price-vector p* form a competitive equlibrilUD in the market
M with utility functions Ui(~,77), i:= 1, ... , n and budget set B(p, c).
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5 Computer experiments and concluding remarks

The trivial distribution is accessible only for perfect market, and the problem remains to look
for another suitable distributions, for example another balanced distributions.

Let us consider the following optimization problem

extr f( €, 71, p)

2: of (€t(l- ut) + 71t(wt - pk)) ~ v(S) for SCI, S "I- I
iES k=l

(€,71) E D(I); l ~ 0, k = 1, ... ,m

This problem is rather difficult because we deal with the large system of nonlinear in­
equalities. Our purpose of the optimization would be one of the followings:

(a) maxv(I,€,71); (b) minv(I,€,71); (c) rclnakpk; and so on.
k=l

We know the answer in the case (a) - trivial distribution and corresponding prices. In
other cases we have the results of computer experiments. The problem becomes linear if we
consider vector p as a parameter-vector. But the method of linear programming is effective
only for a small n. The another way is one of the methods of random search. But the
calculating difficulties become hopeless already for a market with 15-20 agents.

The next idea is the introduction of a coalitional structure. The existence of such structure
could be explained by communicational restictions or unperfect unformation for real market.

Our computer system includes the complex of procedures which allow for given market
M and determinated coalitional structure to construct trivial distribution and the set of
corresponding balanced prices, to calculate v( S) for all possible coalitions, to build another
balanced distributions, to solve in dialoque would the given price-vector p be balanced for
any distribution and to answer another questions about given market M.
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