
Working Paper 
An Algorithm for Viability Kernels 
in Hijlderian Case: Approximation 

by discrete dynamical systems 

M. Quincampoix 
P. Saint- Pierre 

WP-93-57 
October 1993 

HIIASA International Institute for Applied Systems Analysis o A-2361 Laxenburg o Austria 

Telephone: +43 2236 715210 o Telex: 079 137 iiasa a o Telefax: +43 2236 71313 



An Algorithm for Viability Kernels 
in Holderian Case: Approximation 

by discrete dynamical systems 

M. Quincampoix 
P.  Saint- Pierre 

WP-93-57 
October 1993 

Working Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute or of its National Member 
Organizations. 

HIIASA International Institute for Applied Systems Analysis o 14-2361 Laxenburg Austria 

Telephone: +43 2236 715210 o Telex: 079 137 iiasa a o Telefax: +43 2236 71313 



An Algorithm for Viability Kernels 
in Holderian case: Approximation 

by discrete dynamical systems 

Marc Quincampoix* & Patrick Saint-Pierre ** 

September 22, 1993 

+ Ddpartement de Mathbmatiques ++ CEREMADE 
Universi t& Franqois Rabelais Universi tb Paris-Dauphine 

Parc de Grandmont Place de Lattre de Tassigny 
F-37200 Tours F-75775 Paris cedex 16 



An Algorithm for Viability Kernels 
in Holderian case: Approximation 

by discrete dynamical systems 

Marc Quincampoix & Patrick Saint-Pierre 

CEREMADE, UNIVERSIT~  DE PARIS-DAUPHIKE 
DCPARTEMENT DE MATH~MATIQUES, UNIVERSITC DE TOURS 



FOREWORD 

In this paper, we study two new methods for approximating the viability 
kernel of a given set for a Holderian differential inclusion. We approximate 
this kernel by viability kernels for discrete dynarnical systems. We prove a 
convergence result when the differential inclusion is replaced by a sequence 
of recursive inclusions. Furthermore, when the given set is approached by a 
sequence of suitable finite sets, we prove our second main convergence result. 
This paper is the first step to obtain numerical methods. 
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An Algorithm for Viability Kernels 
in Holderian case: Approximat ion 

by discrete dynamical systems 

Marc Quincampoix & Patrick Saint-Pierre 

1 Introduction and notat ions 
Let X be a finite dimensional vector space and K be closed subset of X. 
Consider the differential inclusion: 

(1) xl(t) E F(x(t)),  for almost all t 2 0, 

We want to study the viability kernel of K for F (denoted by VzabF(I()) 
which is the largest closed set contained in I( such that starting a t  any 
point of K there exists a t  least one viable solution (i.e. a solution such that 
V t 2 0, x(t) E K) .  This viability kernel plays a crucial role in various 
domains. In control theory, it has been introduced by Aubin in [2], studied 
by Byrnes-Isidori under the name of zero dynamics (cf [3], [14]. . . ), used for 
target problems in [17], see also [8], [4], [19] . . . 

It is well-known (see [2], [13]) that when F is a Marchaud-map1 a closed 
set is viable if and only if it satisfies the following contingent2 condition 

The viability kernel ViabF(I() is the largest closed viable subset contained 
in K. Our main aim is to  determine this set in a constructive way by using 
discrete approximation (see also [12] for another way to  approximate this 

'A set-valued map F : X -.r Y is a Marchaud map when F is upper-semicontinuous, 
with convex compact nonempty values and with linear growth . 

=The contingent cone (or Bouligand cone) TK(z) is the set of v E X such that 
liminfhdo+ d(z + hv, K)/h = 0 



set). For that purpose, for any p > 0, we associate to (I),  the following 
discrete dynarnical system 

xn+l - x" 
E F(xn),  for all n 2 1 

P 
We denote by Gp the set-valued map Gp = 1 + pF. Then the system (3) can 
be rewritten: 

(4) xn+l E Gp(xn), for all n >_ 0, 

The Viability Theory allows to study points so E K such that there exists 
a t  least one viable solution to (3) starting a.t so (i.e. a solution Z to (4) such 
that V n, xn E K). Similarly as in continuous case we can define viable 
sets and viability kernels. Let us introduce some notations for discrete and 
continuous cases. We denote by 

SF(xo) the set of solution x(.) to (1) starting at xo, 

SGp(xO) the set of solution i = (x,). to (4) starting at XO, 

ViabF(I') the viability kernel of K for (I) ,  
--4 

Viabcp (I{) the discrete viability kernel of I' for (4) 

When F is a Marchaud map, we know that one can find a sequence of 
discrete viability kernels of K under Gp which converges to a closed subset 
contained in the viability kernel of I '  for F (see [~CI]). 

In this paper, when the set valued-ma.p F is furthermore regular enough 
(i.e. when F is a P-H61derian3) we prove that the sequence of discrete viabil- 
ity kernels for the map rP(x) = x + pF(x) + lpPB converges to the viability 
kernel for F. 

In the last part of this paper, we consider a finite approximation Xh of 
the whole space X and we consider discrete inclusions on Xh. Then we prove 
that viability kernels of some subsets of Xh for suitable discrete inclusion 
converge to ViabF(K). 

This paper gives mathematical results for numerical methods which have 
been applied to particular examples (see [15]) for an economical example and 
[9] for the classical problem of a swimmer who tries to reach an island). 

3The map F is an ,B- Holderian map namely if there exists some ,B > 0 such that for 
any Z, Y, F ( z )  C F(Y) + l l lz - yllPB. 

2 



2 Approximation by viability kernels of dis- 
crete dynamical systems 

In this section, our goal consists in approximating ViabF(K) by d' lscrete 
viability kernel of A' for (3). First we recall some basic properties of discrete 
viability kernels (see [2], [20]). 

2.1 Viability kernels for discrete dynamical systems 

We call discrete dynamical system associated with a set-valued map G from 
X H X the following system: 

(5) xn+' E G(xn), for all n 2 0, 

We denote by K the set of all sequences 5 := (xO, ..., xn, ...) from IV to I(. 
A solution 5 to (5) is viable in K if and only if for all n > 0, xn E Ir' (i.e. 
5 E SG(X) n K. ) 

A closed set A is a discrete viability domain for G if and only if starting 
from any initial points in A there exists at least one viable solution to (5). 
Let us recall4 that A is a discrete viability domain if and only if 

4 

Then the discrete viability kernel ViabG (K)  of K for G is the largest closed 
discrete viability domain contained in K .  
Let us notice that this set can be easily built in a constructive way (cf [2]): 

Proposi t ion 2.1 Let G: X X be an upper semicontinuous set-valued 
map with closed values and K be a compact subset ofDom(G). Ifthe sequence 
(Kn), (with I(' = I() is defined as follows: 

I("+' := {x E K n  such that: G(x) n K n  # 0) 

+m 

then , VZ~G ( K )  = K n  
n=O 



Let G' : X -+ X the eztension of G defined by : 

The sequence of subsets KT*' = K,  KT", ..., KT.", ... defined by: 

~ r , n + l  .- .- {X E KT*" such that Gr(x) n KT*" # 0) 

- 
is again convergent to ViabGr (K).  Furthermore, when r decreases to 0, the 
viability kernel of K for G' converges to the viability kernel of I( for G (cf 
1201 ): 

Proposition 2.2 Let G and I( satisfy assumptions of Proposition 2.1 and 
G' be define by (7), then 

2.2 Approximation process 

Let F a Marchaud map and Fp a sequence of set-valued maps satisfying: 

(8) V E  > 0, 3p, > 0, Vp €10, p,] : Graph(Fp) C Graph(F) + EB 

where B  is the unit ball in X x X. Thus, we define an approzimation process 
of (1) by the dynamical discrete system xn+' E xn + pFp(xn). 

Let us notice that (3) is an approximation process (case Fp = F )  but 
there are many of them (see a detailed study concerning Set-valued Runge- 
Kutta process and the thickening process in [20]). 
Assumption (8) implies that the graph of F contains the graphical upper 
limit5 of F,, that is to say that Graph(F) contains the Painlev6-Kuratowski 

5The graphical upper limit is the upper limit of the sequence of Graph(Fp). 



upper limit6 of Graph(F,): 

lim sup Graph(F,) C Graph(F) 
P-0 

Let K, be a sequence of subsets of X such that K = limsup,,, K,. Possible 
+ 

K, may be constant. We set r, := 1 + pF, and consider Viab,  (I(,) the 
discrete viability kernel of K, under r,. We shall recall a result (cf [20] for 
the proof) which implies the viability property of the upper limit of discrete 

+ 

viability kernels Viabp  (K,): 

Theorem 2.3 Let F be a Marchaud map and F, be a sequence of set-valued 
maps such that F = 6 ~ i m : , ~ F , .  Then the upper limit 1imsup,~, Viabr,(I(,) 
is a viable subset under F: 

(10) lim sup Viab,  (K,) c ViabF(I() 
p-o+ 

Our main goal is to prove that it is possible to chose F, and I(, in a such 
way that the inclusion (10) is an equality. 

2.3 Convergence of the approximation process 

We shall prove the convergence of the approximation process under the cru- 
cial following condition concerning set-valued maps F and F,: 

For any sequence F,, let us define 

'The upper limit of a sequence of subsets D, of X is 

D I  = limsup D, := { y  E X 1 lim inf d(y, D,) = 0) 
, 4 0 3  n -m 

the lower limit is defined by 

liminf D, := { Y  E X Ilim,,,d(y, D,) = 0) 
n-03 



Theorem 2.4 Let K be a  closed set and F be a  Marchaud set-valued map. 
If maps F, satisfies (8) and (11) then 

-t - 
(12) limsup V i a k ,  ( K )  = liminf V i a k ,  (K,)  = ViabF(K)  

P+O p-.o+ 

Let us make some comments before proving the theorem: 
Remark 1 - Condition (11-i)) is fulfilled a s  soon as F is upper semi- 

continuous and K is compact 
Remark 2 - It  is possible, when Dom(K)  = Dom(F,), to write the 

condition (11-ii)) as follows: 

Remark 3 - The theorem is still valid instead of (11- i i ) )  if we assume 
the following weaker condition: 

Remark 4 - If F is a Marchaud and t?-Lipschitz map then maps 
F, := F + Y B  satisfy condition (11) and (8). 

Proof of Theorem 2.4 - Thanks to Theorem 2.3, we only have to 
prove the inclusion 

- 
ViabF(K)  C liminf V i a k ,  ( I ( ) .  

,+o+ 

Let xo E K and consider any solution x(.) E SF(xo) .  Let p given in 10, pol. 
We have x ( s )  - x ( t )  = xl(u)du E J: F(x (u ) )du  but 
z ( u )  E x ( t )  + J' F(x(u) )du  c x ( t )  + (b - t ) M B  
consequently: 

Since x ( t )  + ( a  - t ) M B  C z ( t )  + pB and thanks to ( l l ) ,  we deduce that 
x( t  + P )  E x ( t )  + pF,(x(t)). 



Then if x( .)  E S F ( x O )  then the following sequence 

(14) (n = ~ ( n p ) ,  V n  L 0 

is a solution to the discrete dynamical system associated with r, := 1 + F,: 

So, if x ( - )  is a viable solution, ((,), is also a viable solution to  (15).  It  implies 

V i a b F ( K )  C V ; ~ ,  ( K ) ,  Vp  > 0 

and then - - 
V i a b F ( K )  C lim inf V i a k ,  ( K )  c lim sup V i a k ,  (I<). I 

P+O P+O 

Corollary 2.5 Let F be a Marchaud and !-Lipschitz set-valued map and K 
a closed subset of X satisfying the boundedness condition ( l l - i ) ) .  Consider 

MI 
F, := F + -pB. 

' -  
Then lim V i a k ,  ( K )  = V i a b F ( K )  

P+O 

It  is easy to extend this result to  the H6lder case: 

Corollary 2.6 Let F be a convex compact set-valued map satisfying ( l l - i ) )  
and the following Holder condition: 

(16)  2~ > 0, 2! > 0, V ( X ,  Y ) ,  F ( Y )  c ~ ( x )  + 4 1 1 ~  - y l l P ~  

Consider F, := F + LpPB. Then - 
lim V i a k ,  ( K )  = V i a b F ( K )  
P+O 

Assumptions (8) and ( l l - i i ) )  are in some sense contradictory. The first 
one means that the approximations F, must not be too large so that their 
graph remains in a "smalln extension of the graph of F.  The second one 
means that approximations F, must be large enough so that F,(x) contains 
all images F ( y )  when y gets close to x. 



3 Approximation by Finite setvalued Maps 
In this section, we want to  replace X by a discrete set Xh and we shall state 
some convergence results. 
With any h E R we associate Xh a countable subset of X ,  which is an 
approximation of X in the following sens: 

i )  Vx E X ,  3xh E Xh such that ( ) x  - xhll 5 a ( h )  

i i i)  all bounded subset of Xh is finite 

3.1 Approximation of discrete viability kernels 

Let Gh : Xh 13 Xh a finite set-valued map and a subset C Dom(Gh). We 
call finite dynamical system associated t o  Gh the following system: 

(18) xi" E Gh(x i ) ,  for all n 2 0, 

and we denote by 

K h  the set of all sequences from JV to  Kh. 

4 

xh := ( x i ,  . . . , xx, . . .) E Xh a solution to  system (18) 

&,(xi) the set of solutions Zh E Xh to  the finite differential inclusion 
(18) starting from xt .  

A solution Zh is viable if and only if Zh E gGh Oxh) n Kh.  
Let Kg = Kh, K i ,  ..., K,", ... defined recursively as in the second section: 

I(:+' := {xh  E K i  such that: Gh(xh)  n K t  # 0 )  

The viability kernel algorithm holds true for finite dynamical systems when- - 
ever the set-valued map Gh has nonempty values and we have Viabch ( K h )  = 
n:z K,". This set can be empty. Moreover, there exists p finite, such that: - 
Viabch ( K h )  =I(," = K l ,  Vn > p  



When Gh is the reduction to Kh of a set-valued map G, we cannot apply 
no longer more previous results since G(xh) may not contain any point of Xh 
and Gh(xh) be empty. 

To turnover this difficulty, we will consider greater set-valued maps G' 
which still approximate G. For choosing Gh, we have two different difficulties: 
on one hand, G' has to be large enough (such that Dom(G nXh) > Kh) and 
on the other hand, it has to be small enough in view to apply Theorem 2.4. 

Let us define some notations: 

According to definition (17) of a(h) ,  we notice that extension G,"(" sat- 
isfies the following non emptyness property: 

Then from Proposition 2.1, we can deduce the following 

Proposition 3.1 Let G a Marchaud map. Consider decreasing sequence of 
a(h) , l  finite subsets K,"'~'" = Kh, Kh , . . . , y e - .  defined by 

K;("'"+' := {x E K , " ( ~ ) ' ~  such that G;("(X) n K,"'~)'." # 0) 

Then 

Let describe a method to approximate the discrete viability kernel of K 
under G. First, we extend G such that Dom(G',) = Dom(G) n Xh (for 
doing this we choose r = o(h) then for any xh E Kh, the set G ; ( ~ ) ( X ~ )  is 

-* 

nonempty). Secondly, we shall study convergence of ViabGa(h) (Kh), when h 
h 

converges to O+. 



3.2 Discrete Viability kernel of a discrete set 

Since limhdo a ( h )  = 0, by applying Proposition 2.2, we obtain 

The following result gives a necessary and sufficient condition for - - 
ViabGach) ( K h )  to be the reduction of ViabGach) ( K )  to Xh (proof in [20] 

h 

Prop. 4.1): 

Proposition 3.2 Let G: X - X an upper semicontinuous set-valued map 
with closed values and I( a closed subset of Dom(G). Let r > 0 be such that 
for all x E Dom(G') n Xh ,  Gr(x )  n Xh  # 0:  Then - 
(20) ViabG; ( K h )  cv;bGr ( K )  n Xh 

It coincides if and only if: 

3.3 Approximat ion for Holderian maps 
In general case, we cannot apply Proposition 3.2, but we can deduce the 
following approximation result when K is a viability domain: 

Let r ( h )  = max(lcr(h)P, cr(h)) 

Proposition 3.3 Let G : X -t X be a P-Holderian set-valued map and I( 
a non empty discrete viability domain for G .  Then I{): := (I( + r B )  n Xh  is 
a finite viability domain for Grh: 

Proof - We want to prove that I(): is a viability domain for G;, namely 
G',(x) n K): # 8 for any x E K):. But 



which is nonempty as soon as r 2 a(h ) .  I 

We can now compare discrete viability kernel of K for G and finite via- 
bility kernel of K n Xh for Gh. 

Proposition 3.4 Let G : X X be a P-Hiilden'an set-valued map with 
nonempty values satisfying the following property 

(22) vt E G ( x ) ,  3Q E G ( x )  n Xh such that - th 1 1  5 a ( h )  

Then, for all r 2 la(h)P we have: - 
Viabc ( K )  C V ; ~ ~ ;  ( K l )  + 7 8  

where K,7 = ( K  + 7 8 )  n Xh  and 7 := ( r / l )  f 

Before proving Proposition 3.4, we state the following 

Lemma 3.5 Let assumptions of Proposition 3.4 hold true. Consider r 2 
la(h)P. Then 

Proof of the Lemma - From (17), there exists some ti which belongs 
to ( ( 0 + ( i ) 1 1 a 8 ) f l ~ h .  Assume that we found a sequence (: E G ~ ( ( ; - I )  which 
satisfies (23) until p = n. 

Thanks to non emptyness property (19), and because G is a Holderian 
map, we deduce: 

Since tn+' E G(tn) ,  from (22), there exists some E G(tn)  n Xh such 
that IItn+' -(;+I l l a  5 i. Thanks to (24), C+' E Gr((p)  n Xh = Gl( (b )  and 

consequently 6 E &;(ti). By iterating this process, the proof is completed. 
I 



- 
Proof of Proposition 3.4 - Consider to E ViabG ( K )  and < E SG(t0) 

an associated solution which is viable in K .  Thanks to Lemma 3.5, there 
exist & E %(ti) satisfying (23). Hence, for any n 2 0, 

3.4 Convergence result 

Before stating our main convergence result, we shall recall an useful Lemma 
(see [20] for the proof). 

Lemma 3.6 Let D C X be closed. Consider a decreasing sequence of closed 
subsets Dp such that D = np,o Dp.  Assume that (17) holds true. Then 

(25 D = lim ( ( D p  + a ( h ) B )  n X h )  
p,h-rO 

If D is satisfies the property: Vx E D, 3xh E D n Xh : Ilx - xhll < a ( h ) ,  
then 

(26) D = h-o lim ( D  n Xh) 

Now we can state the following 

Theorem 3.7 Let F : X - X be a Holder map with convex compact 
nonempty values, I< be a closed subset of X satisfying the boundedness con- 
dition (11-ii)): Consider rp  := 1 + pF + epl+PB and assume that a(.)  and 
Xh satisfy (17). 

If a ( h )  5 epl+P then - 
(27) V i a b ~ ( K )  = lim ( V i a k ,  ( K )  + a ( h ) B )  n Xh. 

p,h-O 

Consider p such that pl+P > a(h)P and define I':y@ := (rp  + epl+PB) n Xh .  . , 
Then - 
(28) 

p,h-rO 
Y' V i a b ~ ( K )  = lim Viabr tP~+~  ( ( K  + p B )  n X h )  

pSh 



-* 

Proof - From Corollary 2.6, V i a b ~ ( K )  = lim,,~ Viak ,  (K) 
-* 

The decreasing sequence Viak ,  (K) converges to ViabF(K) when p de- 
-* 

creases to  zero. Then applying Lemma 3.6 with D, =Viak ,  (K), we obtain 

(27). 
To prove the second equality (28), we shall use Proposition 3.4 with G = 

r,. We firstly notice that condition (22) is already satisfied because lp l+p  2 
a ( h )  and thanks to  (17). Hence, thanks to  Proposition 3.4 

Consenquently thanks to  (27), we proved that 

Let us prove the opposite inclusion. 
Since r?ltP = rp + lpl+pB = 1 + pFp + 21p1+pB. Observe that 

r$ltb - 1 
Graph ( ) C Graph(F) + 2lp I+PB 

P 

Hence (8) is satisfied and thanks to  Theorem 2.3, we obtain 

This ends the proof. I 

This result allows to approximate numerically viability kernels (see ex- 
amples in [9] and [21] ). 

3.5 A numerical example 

We apply our algorithm to a very simple example of linear control problem 
in R2 which dynamic is given by 



When K = [-I, 112 it is easy to see that V i a b F ( K )  = cB(0,l) .  
Compute this viability kernel by approximating it by suitable discrete 

viability kernels (by taking h, := &). When n = 8, we can refer to the 
enclosed figure. 
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