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FOREWORD

In cooperative game theory as well as in some domains of economic regulation by
shortages (queues or unemployment), one is confronied to the problem of evolution
of coalitions of players or economic agents. Since coalitions are subsels and cannot
be represented by vectors — exceptl if we embed subsels in the family of fuzzy sets,
which are functions — the need to adapt the theory of differential equations and
dynamical systems to govern the evolution of coalitions or subsets instead of vectors
did emerge. Evolution of subsets (regarded as shapes or images) was also motivated
by evolution equations of “tubes” in “visual servoing” on one hand, mathematical
morphology on the other.

The “power spaces” in which coalilions, tmages, shapes, elc. evolve are metric
spaces without a linear structure. However, one can extend the differential calculus
to a mutational calculus for maps from one melric space lo another, as we shall
explain in this paper. The simple idea is to replace half-lines allowing to define
difference quotients of maps and their various limils in the case of vector space by
“ransitions” with which we can also define differential quotients of a map. Their
various limils are called “mutations” of a map. Many results of differential calculus
do not really rely on the linear structure and can be adapted to the nonlinear case
of metric spaces and exploited. Furthermore, the concepl of differential equation
can be exlended 1o mutational equation governing the evolulion in melric spaces.
Basic Theorems as the Nagumo Theorem, the Cauchy-Lipschilz Theorem, the Cen-
ter Manifold Theorem and the second Lyapunov Method hold true for mutational
equations.



Evolution of Coalitions Governed by Mutational
Equations

Jean-Pierre Aubin

1 Introduction: Mutational Equations for Tubes

The topic of this paper is to build a “differential calculus” in metric spaces
in order to study and control “differential equations” in metric spaces.

This study was motivated by problems arising in “visual servoing”, where
one needs to find feedback controls feeding back on subsets (shapes) instead
of vectors (see [23,27, Doyen] for further results, applications and references).
Mathematical morphology, introduced in [44, Matheron] is also another field
of motivations (see [50, Mattioli]).

These problems first required a study of “differential equations” govern-
ing the evolution of “tubes”, which are compact-valued maps t ~» P(t) from
[0,00[ to a vector space E. We can also regard tubes as single-valued maps
P from [0, 00[ to the metric space K(E) of nonempty compact subsets of E
supplied with the Hausdorff distance. While attempting to give a meaning
to a differential equation governing the evolution of tubes, it was observed
that no specific property of the Hausdorff distance was used, and that the
theorems could be formulated and proved in any metric space.

Instead of surveying in the introduction the theorems of this paper, we
chose to present some basic ideas and some corollaries within the framework
of tubes, which will be proved later on in the framework of metric spaces.
This choice was dictated by the fact that, for the time being at least, these
are tools needed in visual servoing and mathematical morphology.

The reader who is more interested to the detailed and rigorous results
should skip this short presentation and start with the first section.

Hence, one motivational topic of this paper is to study the evolution of
tubes, which are set-valued maps P : t € [0,T]~ E, governed by a kind of
“differential equation”, called mutational equation

P(@t) > f(t,P())

governing the evolution of tubes.



When f : E — E is a single valued map or, more generally, when
F : E ~ FE is a set-valued map, the evolution of tubes have been studied
either as “viability tubes”!, or as solutions to “funnel differential equations

or inclusions” by Russian and Bielorussian mathematicians?.

But mutational equations of the form

P(t) 3 f(V(P(1))

(where V maps subsets P C E of the state space E to state vectors and
where f : E — E) do not fall in these formulations (see Steiner mutational
equations below for an example).

To give a meaning to a mutational equation, the issue of defining what
is meant by the time derivative P (t) is raised again.

The suggestion we propose in this paper is inspired by the concept of
shape derivatives of shape maps V, which are in some sense “set-defined
maps”, mapping subsets K C E to vectors V(K) € Y in a finite dimensional
vector space Y. (See [16, Céa], [19,20,21,22, Delfour & Zolésio], [24, Doyen],
[73, Zolésio, etc.). Their idea was to replace the usual differential quotients
U(z + hv) - U(z)

h
hv by differential quotients

measuring the variation of a function U on half-lines z +

V(9,(h, K)) - V(K)

where ¢ : £ — FEisa

Lipschitz map, 9, (h,z) := z(h) denoteg the value at time h of the solution
to the differential equation z’ = ¢(z) starting at z at time 0 and J,(h, K) :=
{9,(h,z)}zek the reachable set from K at time h of ¢.

In other words, the “curve” h — 9,(h, K) plays the role of the half lines
h — z 4 hv for defining differential quotients measuring the variations of
the function V along it. Since the set K(E) of nonempty compact subsets
of E is only a metric space, without linear structure, replacing half-lines by
curves to measure variations is indeed a very reasonable strategy. For this
special metric space, these “curves” ¥, which are examples of “transitions”
defined below, are in one to one correspondence with the space Lip(E, E)
of Lipschitz maps ¢. They play the role of directions when one defines

las in VIABILITY THEORY, [5, Aubin], for instance, and in [32, Frankowska]. For the
general case when F : [0,T] x £ ~ E where F depends measurably on time, see [36,
Frankowska, Plaskacz & Rzezuchowski].

%See ([37,38,39, Kurzhanski & Filippova], [40, Kurzhanski & Nikonov], [41,42, Kurzhan-
ski & Valyi],[57, Panasyuk], [69, Tolstogonov], etc.



directional derivatives of usual functions. Hence, if the limit

V(K)p = Jim V("v(h»li))— V(K)

exists, it is called the directional shape derivative of V at K in the “direction”
¢. With such a concept, an inverse function theorem allowing to inverse
locally a shape map V whenever its shape derivative Lip(E, E) — Y is sur-
jective is proved in [24, Doyen| and many applications to shape optimization
under constraints are derived in Doyen’s paper.

Since this strategy works well for shape maps, it should work as well for
set-valued maps, and indeed, it does for solving certain classes of problems.

For this purpose, we introduce the Hausdorff demi-distance 6§ : K(E) x
K(E)+— Ry defined by

VK,LeK(F), 6(K,L) := supd(z,L) = sup inf d(z,y)
z€K zeK vEL

and the associated Hausdorff distance
d(K,L) := max(6(K,L),6(L,K))

Hence, going back to tubes ¢t ~ P(t) with nonempty compact values, we
suggest to look for differential quotients of the form

d(9,(h, P()), P(t+ h))
h

which compare the variation P(t+h) and the variation 9,(h, P(t)) produced
by a transition ¥, applied to P(t).
Let B(K,¢) denote the closed ball of radius ¢ around K. If

L d@(h, P()), P+ ) _
h—04 h

0 (1.1)

or, equivalently, if there exists §(h) — 0 with h such that, for all k €]0, 1],
dy(h, P(t)) C B(P(t + h),B(h)h) & P(t + h) C B(9,(h, P(t)), B(h)h)

it is tempting to say that the transition 9, or, equivalently, that the associ-
ated Lipschitz map ¢ € Lip(E, E), plays the role of the directional derivative
of the tube P at t in the forward direction 1. o

This is what we shall do: we propose to call mutation P () of the tube
P at t the set of Lipschitz maps ¢ satisfying the property (1.1). We do have
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to coin a new name, because many concepts of derivatives of a set-valued
map — graphical derivatives®, such as contingent derivatives?, circatangent
derivatives® or adjacent derivatives®, as well as other pointwise concepts’ —
have been used extensively.

We observe that any two Lipschitz maps ¢, 9 € P (t) (or the associated
transitions) are equivalent at P(t) in the sense that

o Wk, P), 9y(h, P()) _
h—0+ h

If ¢ = vis a constant map v € E C Lip(E, E) satisfying the above prop-
erty, we find a concept of derivative implicitly involved in funnel equations.

Now, if f: [0,T] x K(E) — Lip(E,E) is a continuous map associating
with a pair (t, K') a Lipschitz map y — f(t, K;y), we can define a mutational
equation for tubes of the form

Vi>0, P(1) 3> f(t,P(t);-)
or, equivalently,

Patertepa(h PLO) € BOPC+ R), BRI
P(t + h) C B 0,y (b, P(1)), B(R)R)

(By identifying Lipschitz maps which are equivalent at P(?) in a same
equivalence class, the above mutational equation could be written in the
more familiar form P (t) = f(t, P(t);-). But, as often when we try to avoid
using factor spaces, we have the choice between potential confusion and
ponderousness).

For another approach using set-valued derivatives in the case of convex
valued tubes, see [29].

3according to a term coined by R.T. Rockafellar. See [61,62, Rockafellar], [66, Rockafel-
lar & Wets], SET-VALUED ANALYSIS, [10, Aubin & Frankowska] and VIABILITY THEORY,
[5, Aubin], among other authors for an exposition of their properties.

*introduced in [3, Aubin].

*introduced in [4, Aubin].

®introduced in [30,31,32, Frankowska).

"See [14, Banks & Jakobs], [15, De Blasi], [43, Martelli & Vignoli] among many other
authors.



1.1 The Nagumo Theorem for Tubes

Let M C E be a closed subset of a finite dimensional vector space E. We
denote by Tp(z) its contingent cone® to M at z € M and by Npy(z) :=
(Tm(z))~ its polar cone, called the subnormal or regular normal cone.
Nagumo’s Theorem for differential equations (see [51, Nagumo], VIABIL-
ITY THEORY, [5, Aubin]) states that M is invariant under ¢ € Lip(E, E) if
and only if
VzeM, o(z)€ -Tp(z)NTu(z)

and, actually?, if and only if
VzeM, Vpe Nmy(z), (p,p(z)) = 0 (1.2)
We shall set
Lipo(M, E) := {p € Lip(E, E) | satisfying (1.2) }
When ¢ is Lipschitz, we denote by

lle(z) = p(¥)lI
llella := sup ——————
z#y ”-’C = 31”

the Lipschitz semi-norm of ¢.

We supply it with the distance ||¢; — @2|lcc := supepr|le1(2) — p2(z)||
of uniform convergence.

Let M C K(M) be a family of nonempty compact subsets of M and
dpm(K) := infresm d(K, L) denote the distance to M in the Hausdorff space
K(M). We recall the definition of contingent cone Taq(K) C Lipy(M, E)
introduced and studied in [24, Doyen] under the name of velocity cones: We
shall say that a Lipschitz map ¢ € Lipy(M, E) is contingent to M at K € M
if and only

lim inf dM(19¢(h’ I{)) -

h—0+4 h 0

8 which is the cone of directions v € E such that

lim inf d(z + hv, M) =
h—0+ h

]

®See VIABILITY THEORY, [5, Aubin], Theorem 3.2.4.



i.e., if and only if there exist sequences h, and €, converging to 0 and a
sequence of subsets K, € M such that

9o(hn, K) C Kn+enhnB & Kn C 9y(hn, K)+ €nhnB

Constrained Inverse Function Theorems, a calculus of contingent cones and
Lagrange multipliers for shape optimization under constraints, which use
such concepts of tangent cones, can be found in [24, Doyen)].

The Nagumo theorem can be adapted to characterize the evolution of
tubes under constraints.

Theorem 1.1 Let M C E be a closed subset of a finite dimensional vector
space E and f : [0,00[xK(M) — Lipo(M, E) be a continuous map, bounded
in the sense that

Vt>0, VP C M, K C M, f(t,P;K) is bounded in E

and that
VtZUv VP’ "f(t’P’)”A <ec

Assume that M C K(M) is a viability domain of f in the sense that
Vt>0, VKeM, f(t,K) € Tm(K)

Then, from any Ko € M starts a tube t — P(t), solution to the mutational
equation

V>0, P(t) > f(t,P(t);")

which is viable in M in the sense that
Vt>0, P(t) e M

This an easy corollary of Theorem 4.2 below.

1.2 The Cauchy-Lipschitz Theorem for Tubes

When f is Lipschitz, we obtain uniqueness of the solution to a differential
mutation and estimates:

Theorem 1.2 Let f : K(E) — Lip(E, E) be a Lipschitz map, bounded in
the sense that

VP, K C E, f(P;K) is bounded in F
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and that
p := max(0, sup el/ Kl _ 1) « 400
KCE

Then, from any Ko € K(FE) starts a unique solution P(-) of the Cauchy
problem to the mutational equation
Vi20, P(1) 3 J(P(1),)
If Q is a mutable tube, we set
d(a,é (8))oo := inf d(o,7)
TEQ(s)

Then

Vieo,T], d(P(),Q) <

OHINA (Ko, Q)+ [ e HIMINa(£(Q(3)),Q (5t
0

which shows the Lipschitz dependence of the solution to the mutational equa-
tion with respect to the initial data and the right-hand side.

It follows from Theorem 4.5 below.

1.3 An Example: Steiner Mutational Equation

One class of mutational equation is provided by dynamics f which depend
upon the subset P through a shape map.

Consider for instance the shape map s, : K(E) — E associating with
any K C FE its Steiner point s,(K) defined by

sn(K) = n /E ., Po(K, p)(dp)

where £"~! denotes the unit sphere in E := R", o(K,-) is the support
function of K, w is the measure on £"~! proportional to the Lebesgue
measure and satisfying w(X""1) = 1.

Since o(K,p) = o(-K,—p), it follows that s,(K) = —sn(—K)'°. The
support function being also additive with respect to K, the map s,(-) is

190 that if K is symmetric, i.e., K = —K, then s,(K) = 0.



linear:

For all compact K, L ¢ R™ andall A, o € R,
(1.3)
8,(AK + pL) = Asn(K) + psn(L)

One can prove that s, is a selection in the sense that s, (k) € to(K) and
that it is Lipschitz with respect to the Hausdorff distance (See for instance
Theorem 9.4.1 of SET-VALUED ANALYSIS, [10, Aubin & Frankowska]).

Let us consider now a continuous map ¢ : E +— Lip(E, E). Hence Steiner
mutational equations are mutational equations of the form

V20, P (1) 3 g(sa(P(1),")
In other words, the dynamics of the tube is governed by the dynamics of its
Steiner point.

In particular, consider the case when g : E — E where E is identified
with a subspace of Lip(E,E). Then we can compare the Steiner point
s, (P(t)) of a solution to the mutational equation

V120, P(t) 3 glsn(P(1))
starting from Kp and the solution to the differential equation

V20, y'(t) = g(y(t))
starting from s,(Kg). Then, it is easy to check that
V20, sh(P(B) = w(t)
Indeed, from the definition
P(t) + hg(sn(P(t))) C B(P(t + h), B(h)h)
&

P(t + ) C B(P(t) + hg(sa(P(£))), B(h)A)

of a mutation and from property (1.3), we infer that
sn(P()) + hg(sn(P(t)))xf B(sn(P(t + h)),B(h)h)
sn(P(t + B)) € B(sa(P(2)) + hg(sa(P(1))), B(h)R)

so that
PN = PO) _ g5,y < 00)
and thus, w = g(sn(P(1)))-



1.4 The invariant manifold theorem for Tubes

More generally, many problems lead to the study of the evolution of obser-
vations u(P(t)) where u : K(E) — Y, Y being a finite dimensional vector
space.

For instance, one can regard a map u as a map associating with any set
vector characteristics which are “adequate” in the sense that they “track”
the evolution of the tubes.

Let 4 € L(Y,Y) be a linear operator and g : K(F) XY — Y be given.

The problem arises to compare the evolution of u(P(t)) of the solution
to a mutational equation

Vi20, P(1) 3 f(P(),¥(t)")
starting from Ky with the solution y(t) to a differential equation
Vi2>0, y'(t) = Ay(t) + g(P(1),y(t))

starting from u(Ko), in the sense that u(P(t)) = y(¢). In other words,
this means that Graph(u) C K(F) x Y is viable (or invariant) under the
“characteristic system”: Vt > 0,

i) P(1) > f(P(t),y(t);-) *
i) y'(t) = Ay(t) + g(P(t), (1))

We define the contingent mutation D u(K) at K to be the set-valued

map from Lip(E, F) to Y defined by v €D u(K)() if and only if there exist
sequences h, — 0+, y, — u(K) and K, — K such that

d(ﬂw(hnaK)aKn) < anhy, & ||u(K)+hnv—yn” < Brhn

(1.4)

Naturally, D u(K)(¢) = {1°t (K)go} coincides with the directional shape
derivative of u at K whenever it exists.

We shall prove that the graph of u is a viability domain if and only if u
is a solution to the system of partial mutational equations

VK CE, Au(K) € D u(K)(f(K,u(K);"))- g(K,u(K))  (15)

The existence theorem of [7,8, Aubin & Da Prato] can be extended to the
case of partial mutational equations by using techniques of [11,12,13, Aubin
& Frankowska]:



Theorem 1.3 Let us assume that the maps f : K(E)x Y — Lip(E, E) and
g:K(E) XY — Y are Lipschitz and that there ezists ¢ > 0 such that

VECE,yeY, llg(K;y)ll < e(1+]lyll) & [IF(K;-)lla < €

Then for mf (42, 2) large enough, there ezists a unique bounded Lipschitz

[k II2

solution u : IC(E) — Y to the system of partial mutational equations (1.5).

This theorem follows from Theorem 5.2 below.

1.5 Mutational Calculus in Metric Spaces

The proofs of these theorems do not involve the explicit definition of the
Hausdorff distance on the space K(E) of nonempty compact subsets of a
vector space. Actually, these theorems are immediate corollaries of the anal-
ogous statements proved in any metric space. For instance, one can use other
metric subspaces of the power set P(FE), such as the space of closed convex
subsets supplied with the cosmic convergence introduced in [65,66, Rockafel-
lar & Wets], or a the o-algebra A of a probability space (2, .4, i) supplied
with the distance

Var, (K 6 L)
1+Var, (KoL)

where K 6 L := (K U L)\(K N L) is the symmetric difference of K and L
and Var,(M) the total variation of 1 on M.
One can also use the distance

dy(K, L) (/ di() dz+/ dx (z) zda:)

introduced in [27, Doyen)].

d (K, L) :=

The need to extend concepts of derivatives in metric spaces is not new.
As early as 1946, T. Wazewski introduced in [71,72, Wazewski] the concept of
allongements contingentiels supérieur et inférieur (upper and lower contingent
elongations) of a map X ~— Y!! to prove implicit function theorems in metric

""Namely,

mf(z) = limsupM & El_lf(z) = llmn;f (fd((zz), iiz))

oz d(z’, 1)
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spaces. More recently, H. Frankowska used first order and higher order
“variations” in [34,35, Frankowska] to prove sophisticated inverse function
theorems in metric spaces and L. Doyen to shape maps in [24, Doyen]. But
we follow here another track motivated by the evolution of tubes, shape
analysis and mathematical morphology.

We shall adapt to the case of metric spaces the Nagumo Theorem, the
Cauchy-Lipschitz theorem and an existence theorem on invariant manifolds,
as well as the Lyapunov method by introducing epimutations on metric
spaces, the analogues of epiderivatives of functions defined on vector spaces,
for studying asymptotic properties of mutational equations.

We shall adapt in another paper the inverse function theorems of Chapter
3 of SET-VALUED ANALYSIS, [10, Aubin & Frankowska] and of {24, Doyen]
on local inversion to maps X — Y from a complete metric space X to a
normed space Y.

The main concepts of set-valued analysis shall be transferred to set-
valued maps F : X ~ Y from a metric space X to a metric space Y, by
defining contingent mutations of a set-valued map at a point of its graph and
other concepts of tangent mutations.

The main concepts of nonsmooth analysis shall also be extended to func-
tions defined on metric spaces. By using epimutations, we will adapt to
optimization of functions on metric spaces the Fermat and Ekeland rules.

2 Transitions on Metric spaces

Transitions adapt to metric spaces the concept of half line z + hv starting
from z in the direction v by replacing it by “curved” half-lines 9(h,z).
Indeed, the “linear” structure of half lines in vector spaces is not really
needed to build a differential calculus.

11



Definition 2.1 Let X be a metric space for a distanced. A map 9 : [0,1] x
X — X satisfying

(i) 9(0,z) = z

it) ||9(z)| := sup d(9(h, z), ¥(k, 7)) < 400
htk |k — k|
<
d(9(h,z),9(h,y))
141 9 = su < 4o
) 19l hG[O.l]?::;éy d(z,y)
iv) hlir51+ d(t?(t+h,z)’,lt9(h,t9(t,z))) ~ 0

is called a transition. When ||9||a < 1 in the above inequality, we say that ¥
s a nonexpansive transition.

We denote by ©(X) the vector space of all transitions on X2,

We define an equivalence relation ~, between transitions by

d(91(h,2), 92(h,2)) _
3

9 ~; Y2 tf and only if lim
h—0+

We say that (X,0(X)) is a (complete) mutational space if X is a (com-
plete) metric space and ©(X) C ©(X) is a nontrivial vector subspace of
transitions, closed in C([0,1] X X, X) supplied with the pointwise conver-
gence.

Remark — We could have introduced the factor space of equivalence
classes of transitions, by identifying at each point equivalent transitions.
But this may be too cumbersome. O

20ne may sometimes need more regular transitions: A transition is strict if

lim sup sup —d(ﬂ(h’ ¥),9(,v))

< 400
y—sz hitk [ — k|

and

liminf 300+ h.y),9(h,9(t y)))
h—04,y—z h
We shall say that 9; and 9 are strictly equivalent if

91 ~; 9, ifand only if  lim 2(9:(h,2).9:(hy)) _
h—0+4,y—z h

=0

12



One observes that the transitions J(h,-) are Lipschitz uniformly with
respect to h € [0,1] and that for every z € X, the maps 9(+,z) are Lipschitz.
The unit transition defined by 1(h,z) = z is denoted by 1.

We shall supply a space ©(X) of transitions with the distances d, of
uniform convergence!® and Lipschitz semidistance defined respectively by

do(9,7) = sup  d(I(h,z),7(h, 2))
hefo,1], zeX

and

da(9,7) = sup d(9(h, 2),7(h, 2))
hefo,1], zeX h
We shall need the following estimate on transitions:

Lemma 2.2 Consider two transitions Y and 7. Then
elldlla-1)t _ 4

TPla -1 + d(z, y)ell?lla-1)t

(2.1)

Vte(o,1], d(I(t,z),7(t,y)) < da(d,T)

and
. d(9,(h,92(h,z)),92(h, 91(h, z)))
im
h—0+4 h
Proof — Indeed, let us set ¢(t) := d(J(t,z),7(t,y)), which is a Lip-
schitz function, thus almost everywhere differentiable. Let us estimate its
derivative:

< (1+ [|91]la)dA(91,92)

( d(9(t+ h,z), 7(t+ h,y))
h

< A0+ h,2), 98, 9(0,2))) | d(h 9(4,2)), 9k, 7(1,2)

- h h

L O, 7)), 7y (09) | d(r(hy7(6,9) 7+ By )

h h

< JOCER2IOTEDD) | yo)sd o, 2),7(2,9)

iy, AT )

13We can, if needed, use weaker topologies such as the compact topology (if the transi-
tions are not bounded) or the pointwise topology with respect to z € X.
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imply that
¢'(t) < (I19]la = V(1) + da(9, )

Since ¢(0) = d(z,y), we infer that

Pt) < 9(0)+da(B, )+ (19l ~ 1) [ wls)ds

We then use the Gronwall Lemma.

Example: Transitions on Normed Spaces Let E be a finite di-
mensional vector space. We can associate with any v € E the transition
J, € O(E) defined by

dy(h,z) 1= 2+ hv

for which we have ||9,(z)|| = ||v|| and ||v]|]a = 1 (it is nonexpansive).

Therefore, we shall identify a normed space F with the mutational space
(E, E) by taking for space of transitions the space O(F) = E of vectors
regarded as “directions”.

We can enlarge the space of transitions by using the Cauchy-Lipschitz
Theorem. We associate with any Lipschitz map ¢ : X +— X the transition
9, € O(E) defined by

do(h,z) := z(h)

where z(h) is the unique solution to the differential equation z'(t) = p(z(t))
starting from z.
Indeed, we deduce from the Cauchy-Lipschitz Theorem that

lolla €18 — 1
e ————

19,)ll <
olz) Tella

lie(2)ll

and that ||9,]|a < ell“lla because
d(9y(h, ), 3y(h,y)) < elltd(z,y)

They satisfy 9,(h + t,z) = 9,(h, 9,(, 2)).
We also deduce that
ellolla — 1

dpa(9,,9,) < ——|lo — ¥]|oo
A( 7 111) ”‘P”A ” ”

14



because lellah

ell#llal — 1

———le— ¥l
llellah ®

Then the space of Lipschitz maps ¢ : E — E can be embedded in the
space O(E) of all transitions:

E c Lip(E,E) c ©(E)

d(V,(h,z),9y(h,z)) <

We observe that for any z € E, ¢ is equivalent to the vector ¢(z) at z:
@ ~z p(2).

Example: Transitions on a subset of a vector space

Let M C E be a closed subset of a finite dimensional vector space F.
We denote by Tm(z) its contingent cone and by Na(z) := (Tm(z))~ the

subnormal cone.
We recall that M is invariant under ¢ € Lip(E, F) if and only if

VIEM’ VPENM(I), (p"P(z)) =0 (2‘2)
We shall denote by
Lipo(M, E) := {p € Lip(E, E)| satisfying (2.2) }

We thus infer that
Lipo(M,E) C O(M)

is a space of transitions of the metric subset M.

Example: Transitions on Power Sets This is our main example.
Let M C E be a closed subset of a finite dimensional vector space E and
X := K(M) be the family of nonempty compact subsets K C M.

We recall that the Hausdorff demi-distance é : K(E) x K(E) — Ry is
defined by

VK,LeK(E), 8(K,L) := supd(z,L) = sup inf d(z,y)
zeK zeK V€L
and that the associated Hausdorff distance, as well as its restriction to K(M),

is defined by
d(K,L) := max(é6(K,L),6(L,K))

We can also associate with any Lipschitz map ¢ : E — F a transition
¥, € O(X) defined by
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Jo(h, K) 1= {Jy(h,2)}zek

Indeed, we deduce that
llella — 1
e
[19.(K)Il < ell¢|lAW‘|¢(K)ll

and that
[9,]la < ellella

because
d(9,(h,K),9,(h, L)) < el“lrd(k, L)

We also observe that

llella — 1
e
da(9y,9y) < WA—HSP— Ylloo

Therefore,
Lipo(M,E) C O(K(M))

is a space of transitions of K(M) and (K(M), Lipy(M, E)) is a mutational
space, the one we presented in the introduction.
Actually, there are other transitions on the metric space K(M).

Example: Morphological transitions. Indeed, more generally,
we associate with any Lipschitz set-valued map ® : X — X with compact
values the set-valued map 94 € O(FE) defined by

Je(h, .’L‘) = {x(h)}z(-)GS(z)

where z(-) range over the set S(z) of solutions to the differential inclusion
z'(t) € ®(z(t)) starting from z.

We deduce from the Filippov Theorem!4, which extends the Cauchy-
Lipschitz theorem to differential inclusions, that

lI1®lla — 1
€
19e(2)|l < e""”"w“‘l’(z)”

14See [5, Theorem 5.3.1] and [35] for instance.
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that ||9¢)|a < ell®llr because
d(de(h,z),9e(h,y)) < e“‘b"Ad(I,y)

and that
e"QIIA -1

dy(de,9y) <
alPe,0e) <

d(®,¥)

where
d(®,¥)e := supd(®(z),¥(z))
z€E

The Invariance Theorem for differential inclusions (see Theorem 5.3.4
of ViaBILITY THEORY, [5, Aubin]) states that a closed subset M C E is
invariant under @ € LIP(E, F) if and only if

Vze M, () C -Tu(z)NTy(z) (2.3)
We shall denote by
LIPo(M, E) := {® € LIP(E, E) | satisfying (2.3) }

Therefore, we can also associate with any Lipschitz set-valued map & :
E — E with compact values the morphological transition 9 € O(K(M))
defined by

19@(h,K) = {0@(’1,1)},6;\'

Indeed, we deduce that

ell®lla _
[Pe(K)|l < e"°”"—ﬂ7{;”A—II<I>(K)II
and that
|19ala < ell®lla
because

d(da(h, K),ds(h, L)) < el*rd(K, L)

We also observe that

19lla _
s, 9.,

dpy(Ve,9y) £ ———
(Fo.%0) < =15,

17



Therefore,

LIPo(M,E) C B(K(M))

is another space of transitions contained in K(M). O

Example: Morphological Dilatations They are defined by the con-
stant set-valued maps ®(z) := B where B C FE is a closed subset containing
the origin, called the structuring element in mathematical morphology (See
[45, Mattioli & Schmitt] for more details on this domain of image process-
ing).

The transitions produced by such differential inclusions are given by

do(h,K) := K + hB

and called morphological dilatations. They play the role of the transitions
z + hv in vector spaces. O
We refer to [50, Mattioli] for further details.

We thus can associate with K( M) the two mutational subspaces (X(M ), Lipy(M, E))
and (K(M),K(M)) of the mutational space (K(M),LIPo(M, E)). The mu-
tational space (K(M),Lipg(M, E)) is used in the framework of visual ser-
voing whereas the mutational space (K(M),K(M)) is used in mathematical
morphology.

3 Mutations of Smooth Single-Valued Maps

3.1 Definitions

We adapt first some classical definitions of differential calculus and notations
to single-valued maps from a metric space to another.

Definition 3.1 Consider two mutational spaces (X, 0(X)), (Y,0(Y)) and
a single-valued map f: X — Y from X to Y.

We shall say that the mutation } (z) of f at z is the set-valued map from
O(X) to O(Y) defined by

¢ - e d(f(9(h, 7)), (R, f(2))) _
T €f (z)Y if and only if hl—lvx(1)l+ 5 =0

18



We shall say that f is mutable at z in the directions 9 € O(X) ifje (z)9
is nonempty for every 9 € O(X) and that f is strictly mutable if

d(f(9(h,2")), 7(h, f(z))) _
h

T G} (z)?9 if and only if " lim

—0+4, z'—z
Proposition 3.2 Consider two metric spaces X, Y and a single-valued map

f:X - Y from X toY. If f is mutable at z, then two transitions

o -]
71 €f (2)9 and 13 €f (z)J are equivalent at f(z) : 1) ~p(z) T2
If f is Lipschitz and if ¥, ~, 9, are equivalent at z, then transitions

T e;’ ()9, and 12 e;’ (z)9, are also equivalent at f(z).

Remark — When the context allows it, we may identify the transitions

T E;' (z)Y since they are equivalent at f(z) and make the mutation } (z)
single-valued by taking the factor space of O(Y). D

Remark: Composition of transitions —
?eﬁnition 3.3 If9; € ©(X) (i =1,2), we denote by 9,09, the transition defined
’ (91 092)(h,z) := I)(h,¥2(h,z))
In the case of normed spaces, this composition boils down the addition since 9,, o

1902 = 001+02'
We observe that if ¥, is a strict transition, then

{ i) (910 92)()|| < [[9:(2)]] + [[91][all92(2)]]

i) [[1092]la < [|9:lla + [|92]la

If f is strictly mutable at z, then } (z) is an homomorphism from O(X) to
)
O(Y) in the sense that for any 7, €f (2)9; (i =1,2):

TMoTy € _; (2)(9, 0 ¥2)

We shall not use these algebraic properties in this paper. O

Consider the particular example of functions from an interval I C R to
a mutational space (X, 0(X)).
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Then its mutation z (£)(1) in the direction +1 is the set of transitions
9 € O(X) satisfying

m d(I(h,z(t)),z(t + h)) -0
h—0+ h

(which are all equivalent at z(¢)). From now on, we shall set z (t) :=2 (t)(1).
Since transitions are in particular maps ¥y : h € [0,1—1] — I(t+h,z) €
X, we observe that the condition

lim d(9(t + h,z),9(t,9(t,z))) -0
h—0+ h

states that the transition ¥ belongs to the mutation of the map h +— J(1+h, z)
att € [0,1]:

Vie[0,1], V€ X, Do ()(1) 3 9

For maps defined from a normed space E to a mutational space (Y, O(Y")),
we usually restrict the transitions to be just vectors u € E by taking

O(E) = E, so that mutations } (z) induce maps from E to O(Y) defined

by
T G} (z)u if and only if hl_i}& d(f(z+ hu’)l,T(h,f(:c))) -0

For maps defined from a mutational space (X, ©(X)) to a vector space F,
we restrict naturally the transitions to be vectors u € F by taking ©(F) = F,

so that mutations } (z) induce maps from O(X) to F defined by

5oy = i L) = 1)

h—0+ h

Remark — We can associate with a transition 9 : [0, co[x X +— X satisfying
VhI>0, 9(h+1,z) = 9(h,9(,z))

a semi-group of continuous linear operators Us (k) on the space F(X, F) (supplied
with the pointwise convergence) defined by

VfEF(X,F), Us(f)z) := f(d(h,2))
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Then the domain Dom(L¢) of its infinitesimal generator is the space of mutable
functions in the direction ¥ and its infinitesimal generator Ly € L(Dom(Lg4), F(X, F))
is defined by

V f € Dom(Ly), Lof(z) = Jim. fw(h’zi);) - f(z)

It can also be regarded as a Lie derivative of f. O

Let X and E be finite dimensional vector space s and Y := K(E). We
regard a set-valued map P : X ~ E with nonempty compact images as
a single valued map P : X — K(FE). We associate the mutational spaces
(X, X) and (K(E), Lip(E, E)).

We thus restrict the transitions 9 € ©(X) to be just vectors « € E and
the transitions 7 € @(KX(FE)) to be Lipschitz maps ¢ € Lip(E, E), so that

mutations P (z) are set-valued maps from X to Lip(F, E) defined by

7 €p (z)u if and only if hlim d(P(z + hu),I,(h, P(z))) _

-0+ h 0

In other words, the mutation P (z)(u) is a set of Lipschitz maps ¢ : E
E such that

Yo(h, P(z)) C B(P(z + hu), B(h)h) & P(z+hu) C B(9,(h, P(z)),(h)h) O
In particular, for mutable tubes ¢t ~» P(t), we shall set

d(P(t +h), 9y(h, P(1) _
h

° . . .
@ €P (t) if and only if hl-LI(I)l+

Remark — The contingent derivative of a set-valued map P: X ~ E
at a point (z,y) of its graph has no relations with the concept of mutation
of this set-valued map regarded as a single-valued map from X to the power
space Y := K(E).

In the first instance, the contingent derivative is a set-valued map D P(z, y)
from X to E depending upon a point (z,y) € Graph(P) whereas in the

second point of view, the mutation P (z) is a set-valued map from X to
Lip(E, E) depending only upon z and not on the choice of y € P(z).

This is the reason why we had to coin the word mutation instead of
derivative to avoid this confusion. O
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Let M C E be a closed subset of a finite dimensional vector space,
X := K(M) be the metric space of nonempty compact subsets of M and
Y be a normed space. We associate with them the mutational spaces
(K(M), Lipo(M, E)) and (Y,Y).

A map f:K(M)»—Y is often called a shape map, since they have been
extensively used in shape design and shape optimization (see [16, Céa], [73,
Zolésio], [19,20,21,22, Delfour & Zolésio), [24, Doyen], etc.).

Then, by restricting transitions on K(M) to Lipy(M, E) and the tran-

[+}
sitions on Y to be directions v € Y, we see that a mutation f (K) is a
set-valued map from the vector space Lipy(M, E) to Y associating with a
Lipschitz map ¢ the direction v defined by

L fOu(h,K)) = f(K)
+

v =f(K)p = lin 5

Assume that the interior §2 of M is not empty. Denote by D(2, E') the space
of indefinitely differentiable maps with compact support from 2 to Y. Let
f:K(M) — R be a shape function. If

o
¢ € D(Q, EYNLip(E,E) — f (K)y is linear and continuous
then } (K) is a vector distribution called the shape gradient of f at K C M.

Remark — Let us denote by ANk the subspace of vector distributions T
satisfying
Te = 0 VpeD(NE) satisfying p(z) €Tk(z) Vz€ K
which is the subspace of vector distributions normal to K. This implies in particular
that the support of a vector distribution normal to K is contained in the boundary
OK of K.
Since f(J,(h, K)) = f(K) for any Lipschitz map ¢ € Lipy(K, E), we see that

(]
the shape gradient f (K) is a vector distribution which is normal to K, because!®

¥ ¢ € Lipy(K,E), f(K)p = 0 O

4 Mutational Equations

Let us consider a mutational space (X,0(X)) and a single-valued map f :
X x [0, 00[— ©(X) from X to its space of transitions. We say that a function

z(-) from [0,T] to X is a solution to the mutational equation 5 f(t,z) if

15See [22, Delfour & Zolésio] for more details on this issue.
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Vte[0,T], z(t) 3 f(t,z(t)) (4.1)

or, equivalently, if

viso tim UGk R)
h—0+ h

We shall adapt both the Nagumo and the Cauchy-Lipschitz Theorems
to the case of mutational equations. For the Nagumo Theorem, which states
the existence of a solution z(-) viable in a subset K C X (in the sense that
for every t > 0, z(t) € K'), we need first to adapt the concept of contingent
cone to the case of metric spaces.

4.1 Contingent Transition Sets

Definition 4.1 (Contingent Transition Sets) Let (X,0(X)) be a mu-
tational space, K C X be a subset of X and z € K belong to K. The
contingent!® transition set Tk (z) is defined by

duld(hr) )

Ti(z) := {0 € O(X) | Timjnf T

It is very convenient to have the following characterization of this tran-
sition set in terms of sequences:

¥ € Tk(z) if and only if 3 h, — 0+, &, — 0+
and 3z, € K — z such that Vn, d(J(hn,z),2n) < nhn

Naturally, if ¥; ~, J, are equivalent at z € K and if J; belongs to
Tk(z), then 9, is also a contingent transition to K at z.

Example: Normed Spaces Let E be a normed vector space. We
can associate with any v € E the transition 9, € ©(E) defined by

dy(h,z) 1= 2 + hv

16This termed has been coined by G. Bouligand in the 30’s. Since this is a concept
consistent with the concept of contingent direction as we shall see below, we adopted the
same terminology.
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Then the vector v € E' is contingent to K at z € K (in the usual sense of
contingent cones to subsets in normed spaces) if and only if the associated
transition 9, is contingent to K at z.

Let us associate with any Lipschitz map ¢ : X ~ X the transition
J, € O(E) defined by

9,(h,z) = z(h)

where z(-) is the unique solution to the differential equation z'(t) = ¢(z(t))
starting from z.

Then the associated transition is contingent to K at z if and only if the
vector ¢(z) is contingent to K at z.

Example: Contingent Transition Sets on Power Sets

Let M C FE be a closed subset of a finite dimensional vector space and
consider the mutational space (K(M),Lipg(M, E)). Let M C K(M) be the
a family of nonempty compact subsets of M.

We shall say that a Lipschitz map ¢ € Lipy(M, F) is contingent to M
at K € M if and only if the associated transition 9, is contingent to M at
K, i.e., if and only if there exist sequences h, and ¢,, converging to 0 and a
sequence of subsets K, € M such that

By(hn, K) C Kn+enhnB & Ky C 9(hn, K)+ enhnB

This contingent cone has been introduced and studied in [24, Doyen)]
under the name of velocity cone.

4.2 Nagumo’s Theorem for Mutational Equations

Theorem 4.2 Let (X,0(X)) be a mutational space, K C X be a closed
subset and f : [0,00[xK — O(X) be a uniformly continuous map bounded
in the sense that:

d(f(t,z;5h,y), f(t,2;h,2))

Vt20,Vz€K,|f(t,z)la := sup <ea
hefo,1], z#y d(y,Z)

and that

d(f(t,z; h,y), f(t, 2, k,y))
b — &] s€

Vt>0,Vze K, VyeX,|f(tz;y)|:=sup
k£h
Assume that the closed bounded balls of X are compact.
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If K is a viability domain of f in the sense that
Vt>0,Vze K, f(t,z) € Tk(z)

then, from any initial state 2o € K starts one solution to the mutational
equation z3 f(t,z) viable in K.

Proof

4.2.1 Construction of Approximate Solutions

We begin by proving that there exist approximate viable solutions to the
mutational inclusion. We set

M := max(0,cp — 1)
so that M = 0 when the mutations f(t,z) are nonexpansive, and

doo(7,Z (1)) 1= inf do(r,0)
o€z(t)

Lemma 4.3 We posit the assumptions of the Nagumo Theorem 4.2. Then,
for any ¢ > 0, the set S.(zo) of continuous functions z(-) € €(0,1;X)
satisfying z(0) = zo and

i) Vte[0,1], d(z(t),z0) < ct
i) Vte[o,1], d((t),K) < e
i) Vte[0,1], doo(f(t,2(1)),2 (1)) < €
iv) Vte[0,1], d(z(t),z(t+ h)) < ch

is notl empty.

Proof — Let us fix ¢ > 0. Since f is uniformly continuous, we can
associate 7 €]0,¢] such that
doo(f(3,4), f(ry2)) < € (4.2)
eM_1

whenever |s — r| < nand d(y,2) <7
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We denote by A.(zo) the set of pairs (Ty,z(-)) where T € [0,1] and
z(-) € €(0,T,; X) is a continuous functions satisfying z(0) = zo and
(i) Vte[0,T;], d(z(t),z0) < ct
eMT= _
‘l.l) Vte [O,Tr], d(z(Tz), K) < f}T

{ i) Vte[0,T.], d(z(2),K) < neMM‘ 1 (4.3)

iv) Vte[0,T], doo(f(t,2(1)),2 (1) < ¢
[ v) Vte[0,Tz], d(z(t),z(t+h)) < ch

The set A.(zo) is not empty: take T, = 0 and z(0) = zo.
It is an inductive set for the order relation

(Tzys21(1)) 2 (Tzps 22(4))
if and only if
Txl < T:n & 32(')|[O,T,1] = xl(')

Zorn’s Lemma implies that there exists a maximal element (T;,z(-)) €
Ac(z0). The Lemma follows from the claim that for such a maximal el-
ement, we have T, = 1.

If not, we shall extend z(-) by a solution Z(-) on an interval [T, Sz] where
Sz > T, contradicting the maximal character of (T, z(-)).

Let us take 7 € K achieving the distance between z(T:) and K:

d(z(T,),z) = d(z(T:),K)
Let us set 9 := f(t,%) € Tx(Z) and
Vi€ (T, 2(1t) = 9t - Te,2(T))
Since the transition 9 is mutable at z(7T%), there exists 3 €]0,&] such that
d(d(h,d(t - Tz, 2(T})), d(h + t — Tz, 2(T:))) < ch (4.4)

whenever h < (.
We then introduce

eM MT.

—° ) > 0
I9@)NIM - (I192)]l

a := min (ﬁ,ﬂ,fi
whenever T, < 1.
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By the definition of a contingent transition, there exists h; €]0, a] such
that R
d(9(hz,2),K) < nhs (4.5)

We then set S, :=T, + by > T.
We obtain

[ d(3(S.),K) = d(I(Sz - Ty, 2(Ty)), K)

d(¥(hs,7),%) + d(W(hz, 2(T2)), d(hs, 7))

IA

* Mh ~ Mh, €M7 -1
nhy + eV *d(z(T;),Z) < nhr+e ‘UT

IN

< eM(Ts+hs) _q 3 eMS: _ 1
SV} - "M

by (4.5) and (4.3)ii) and Lemma 2.2, since

eMh(eMT _ 1) eM(T+h) _ 1
M - M

h+

Hence Z(-) satisfies (4.3)ii) for S.
We observe that for any t € [T, S;],

d(2(t),z(Tz)) = d(I((t-Te,2(T2)),2(T2)) < (-T)IE) < e(t—Ts)

so that Z(-)(-) satisfies (4.3)i).
Also, we note that

d(z(t), K) < d(2(1),2) < d(2(t),2(Tx)) + d(2(Tz), )
< (- TIFE) + 725 < olI@)] + 0= < nt
from the very choice of a. Then Z(-) satisfies (4.3)iii).
We note next that for any t € [Ty, Sz and h small enough, Z(t + h) =
I(h+t - T,,z(T;)). Since 9 := f(T;,7) is mutable and a < 3, inequality
d(9(h,2(t)),2(t + h))
= d(9(h,9(t — Tp, 2(T2)),9(h + t — Tp, 2(T:)))) < eh
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imply that for all ¢t € [T}, S;], the constant transition J:= f(Tz,T) belongs
(-]
to the mutation Z (t). Therefore, for all ¢t € [Ty, S.],

doo(f(1,E(1)), 7 (1))
= doo(f(t,2(1)), f(TrZ)) < €

eM

since |t — T;| < @ < 7 and d(3(1),%) < n—r 1. Therefore Z(-) satisfies
(4.3)iv).

Finally, we deduce that
d((1),2(t + k) = d(I(t - Te, 2(Tx)), 9(h + t — T, 2(T2)))
< |1Fz(Te))Ik < ch

so that Z satisfies (4.3)v).

Therefore, we have extended the maximal solution (7%, z(-)) on the in-
terval [0,S5;] and obtained the desired contradiction. Hence the proof of
Lemma 4.3 is completed. O

4.2.2 Proof of the Nagumo Theorem for Mutational Equations

Consider now a sequence of e-approximate solutions z.(+), which exist thanks
to Lemma 4.3.

Since the closed bounded balls of X are compact and since the solutions
remain in such closed balls X, we deduce that for every t € [0, 1], the images
z.(t) remain in a compact set of X.

Property (4.3)v) implies that the sequence of continuous functions z.(-))
is equicontinuous.

Therefore, Ascoli’s Theorem implies that a subsequence (again denoted
by) z.(-) converges uniformly to z(-).

This limit is obviously a solution to the mutational equation, since for
any t > 0,

doo(f(t,2(1)), 2 (1))
< doo(f(t,2e(1)), Ze (1)) + doo(f(1, 2e(1)), f(2, 2(1)))
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This limit is viable in K since for all t € [0,1] and € > 0, d(z(2),K) <
eM—-1

E

ﬁ{ance, there exists a solution to the mutational equation on the interval
[0, 1], which can then be extended to [0,00[. O

4.3 Primitives of Mutations

Solutions to the mutational equation with state-independent right-hand side
z(t) 3 9(t)

are naturally regarded as a primitive of J(¢) starting at zo. Then Gronwall’s
Lemma implies:

Proposition 4.4 Let (X,0(X)) be a mutational space. Consider two func-
tions t — 9(t) and t — 7(t) from an interval I C R to O(X) and their
primitives z(-) and y(-) starting at zo and yo respectively. Set u(t) :=

t
max (/ [|9(s)||ads — t,l)). ( u(t) = 0 whenever the transition 9 is nonez-

0
pansive and bounded by Mt where M := sup,c;(||9(t)||a — 1)). Assume that
the closed bounded balls of X are compact. Then

d(2(1),y(1)) < d(zo, 30)e*® + /0 Cenl-mo g, (9(s), r(s))ds  (4.6)

In particular, from any initial state zo starts a unique primitive of t —

9(t) € O(X).

Remark — In [28, Doyen], one can find an existence theorem of
primitives of “regulated transitions”, which are uniform limits of piecewise
constant transitions. Indeed, it is proved that if a sequence of transitions 9,
converges uniformly in ©(X) to a transition 9, then the primitives z,(-) of
¥, converge to a primitive z(-) of 9.

In particular, measurable mutational transitions with compact images
do have primitives. O

4.4 Cauchy-Lipschitz’s Theorem for Mutational Equations

For simplicity, we consider only the case when the dynamics of a mutational
equation is described by a single-valued map f from X to ©(X) indepen-
dent of time. Consider the Cauchy problem associated with the mutational
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equation :
Vtelo,T], z(t) 3 f(z(t)) (4.7)

satisfying the initial condition z(0) = z¢.

In the case when the right-hand side of the mutational equation is Lips-
chitz, existence and uniqueness of the solution can be proven, but on top of
it, estimates implying the Lipschitz dependence of the solution upon initial
conditions and right-hand sides are provided.

We recall the following notations:

. — d(f(z; h,2), f(z:k,2))
[f(z;2)] := sup h— k]

and d(f(z;h,2), f(z;h,9))
o z;h,z), f(zh,y
17@)la hG[Os,:l]?a:#y d(z,y)

Theorem 4.5 Let (X,0(X)) be a complete mutational space and f : X —
O(X) be a Lipschitz map with Lipschitz constant ||f||sn. Assume also (for
simplicity) that

sup || f(z)lla < +o0

z€X

and set M := max(0,sup,cy ||f(z)|la — 1) (If the mutations f(z) are
nonezpansive, then M = 0.) Fiz a mutable function y(-) : [0,00[— X.
Assume that the closed bounded balls of X are compact. Then there ezists
a unique solution z(-) to the Cauchy problem for the mutational equation
(4.7) satisfying the inequality

Vte [0,00[, d(z(t), y(t)) <

Mg (20 4(0)) + /Ot eMHIAA =g, (f(y(s)),¥ (s))ds

By taking for function y(-) a solution of the Cauchy problem for the

mutational equation e f(y) starting from yo, we infer from this inequality
that :
sup_d(z(t),y(t)) < eMHIINTd(zq, yo)

which shows Lipschitz dependence with respect to initial states.
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By taking for function y(-) a solution to the Cauchy problem for the

mutational equation Y3 g(y) starting from zq, we obtain

MHIAINT _ 1

”f”A dA(gv f)

sup d(z(t),y(t)) <
t€[0,T]

which shows Lipschitz dependence with respect to the right-hand sides.
Finally, we obtain

ao(t),20) < eMHflla) _ 1
» 40

S W”f(l‘o;zo)”

17.

We need the following Lemma

Lemma 4.6 Let u, v : R — R, be differentiable functions. Then

/ =415 / " p(r)er-s O = 1O
0 0

(n-1)!
f (4.8)
= [ ey 1O =20,
and, in particular,
A Hy ()00 A g
(4.9)

= eu(t)—u(O)il(E);n';QlE

171¢ follows from:

( /'e“(')_“(')‘yl(a)/. ‘b(r)el‘(‘)—“(') Mdrdg

(n-1)!

¢~ /o w(r)e I+ dr / 7'(3)%43

= /; ‘ o(r)erO=1n g (1) - = !‘r(r))" o

N\
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Proof

1. — Construction of approximate solutions

We introduce the map G : C([0,T],X) — C([0,T], X) associating with
z(+) the function G(z)(t) is the (unique) primitive of s — f(2(s)) starting
at zg.

We denote by e(+) the error defined by

e(s) = da(f(¥(s)),9 ()

We observe that

HGWW,H(0) < dlao,y@)M + [[Me(e)ds  (4.10)

by Proposition 4.4, since y(:) is the primitive of the function s 7y (s)
starting at y(0).

We introduce the sequence of approximate solutions z,(-) defined by
7, := G(y) and, for every n > 1, par Zn41 := G(Z4).

2. — Convergence of approximate solutions

We shall show that this is a Cauchy sequence in the complete metric
space C([0,T], X), which thus, is convergent.

For simplicity, we set A := || f]|a-
Indeed,

A(G(E)(D, G(ana)D) € A [ MEd(an(8), 2n-(s))ds

<A / eM=d(G(2,-1)(s), G(zn-2)(s))ds
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so that, iterating these inequalities, we obtain

( d(zp41(2),2a(2)) <

t t tn—
a [a [* MOty [ MUt d (a1 (t-1), y(tns) s
0 0 1]

.

t t tn
< A"/ dt (/ l eMt-t)gy, . / eM("'""'“)d(zo,y(O))eM"‘dtn)
0 0 0

t t tn
An / dt ( / dy ... / eM(‘"-l_‘")e(tn)dt,,)
0 0 0

nyn t niy _ n
= T (o, y)eMt + [ MeaC g,
. n. 0 n!

thanks to Lemma 2.2.

Consequently,

A(ep(0),24(1)) < T dlzana(t),za(t)

L

p-1
AR ¢ A™(t
Mt M((t-s
S,.E=q (e o d(zo,y(O))+/0 eM( )Te(s)ds)

\

which shows that this is a Cauchy sequence, which converges uniformly on
[0,T] to a function z(-).

3. — The limit is a solution

This limit is a solution to the Cauchy problem since by taking the limit,
equations Z,41(t) = G(zn(t)) imply that z(t) = G(z(t)), and thus, is a
solution to the mutational equation.

By taking ¢ = 0 in the preceding inequalities, we obtain

4

p-1 Ann

d(zp(1),3(t)) < (Z

n=0

n!

) eMtd(zo,y(0))

t [P~ yny _ n
+ (Z 2 ) eMl=De(s)ds
L n=0 :
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which imply the inequality we were looking for. O

Remark —  This theorem has been extended in [28, Doyen] to the
case of mutational inclusions with Lipschitz right-hand side by adapting the
original proof of Filippov!®, O

Example: Mutational Equations for Tubes

We have presented in the introduction the corollaries of the above the-
orem for mutational equations for tubes in the particular case when the
right-hand sides are transitions associated with Lipschitz single-valued maps.
Naturally, the same theorems hold true when the right-hand sides are tran-
sitions associated with Lipschitz set-valued maps ®.

Therefore, we can extend the theorems dealing with mutational equa-
tions for tubes to the case of mutational equations of the form

P(t) 3 F(P(1);")

where F(P;-) € LIPo(M, E).

This contains in particular the case in mathematical morphology when
F(P;z) := B(P) is a structuring element depending on P (called a struc-
turing function).

The evolution of tubes P governed by such a mutational equation is
given by

Vt>0, lim d(P(t + h), P(t) + hB(P(t)))

h—0+ h =0

For more details on mathematical morphology, see [45, Mattioli & Schmitt].
a

5 The Invariant Manifold Theorem

Let (X,0(X)) be a mutational space and Y a finite dimensional vector
space, where we take ©(Y) = Y. We supply the product X x Y with the
space of transitions O(X) x Y.

18Gee also the extension of Filippov Theorem to operational differential inclusions in
[33, Frankowska].
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Let us consider a system of mutational-differential equations
-]
z (1) 3 f(=(1),9(2))

y'(t) = Ay(t) + g(=(t),y(1))

where f : X XY —» O(X)and g : X XY — Y are Lipschitz maps and
A € L(Y,Y) is a linear operator.

We look for single-valued maps u : X — Y whose (closed) graphs are
invariant under this system.

Such a map u tracks the solutions z(-) to the mutational equation in the
sense that if z(+) is a solution to

z (1) 3 f(=(t),u(2(1)))
starting from zo, then y(t) := u(z(t)) is a solution to
y'(t) = Ay(®) + 9(2(1),4(1)

starting from u(zp).
One then can characterize such maps u : X — Y whose graphs are
invariant under this system thanks to the Nagumo Theorem:

Va € X, (f(z,u2)), -Auz) + 9(2,u(=))) € Tgraphe)(@u(@)) (5-1)

We shall say that the contingent set to the graph of a single-valued map
u at (z,u(z)) is the graph of the contingent mutation D u(z) at z. This is

the set-valued map from ©(X) to Y defined by v €D u(z)(d) if and only if
there exist sequences h, — 0+, y,, — u(z) and z, — z such that

d('l’(hn,il:), I,—.) .<_ anhn & ”‘u(.’t) + hnv - yn” S ﬂnhn
Naturally, D u(z)(9) =% (z)? coincides with the usual mutation when-
ever u is mutable at z. It has nonempty values when u is Lipschitz.
Therefore, the graph of u is a viability domain if and only if
VzeX, Auz) € Du(z)(f(z,uz))) - g(z,u()) (5.2)

since it amounts to rewriting condition (5.1).
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5.1 The Decomposable Case

We begin by proving the existence and uniqueness in the decomposable case
when the real number A defined by

A= infM
=#0 [z

is large enough. (We recall that V y € Y, "e"“y" < e |y|)).

Consider twomaps ¢ : X — O(X) and ¢ : X — Y and the system

Au(z) € D u(z)(p(z)) - ¥(z) (5.3)
We set
lulloo := sup [u(@)l] € [0,00] & [lulla := sup IEEL =D ¢ o )
reX z#y |z — yl|

When ¢ is Lipschitz, we denote by S,(z,-) the unique solution to the mu-
tational equation

[
z(t) 3 #(z(t)
starting from z at the initial time 0. We assume that ¢ is bounded in the

sense that
M := max(0,sup|lp(z)lla —1) < +oo
T

Theorem 5.1 Suppose that the mutational space (X, @(X)) is complete and
that ¢ and v are Lipschitz and bounded. If A > 0, then the single-valued
map u := I'(p, ) defined by
VzeX, u(z) = - / e~ Ap(Sy(z,t))dt
()

is the unique solution to

Au(z) € D u(z)(p(z)) — ¥(z) (5.4)
It is Lipschitz, bounded and salisfies
%]l [|%lla
Ul € ———— & VA > M, ||lulla € ———— (5.5
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The single-valued map (p,¥) = T(p, ) is continuous from C(X,0(X)) x
C(X,Y) to C(X,Y) :

1¥1 = P2lleo |1¥21la
doo I‘ b ? I‘ b S + dw 9
( (?1 ¢l) (¢2 'J)Z)) A /\(A - M- ”¢2”A) (¢l ¢2)
Proof
1. —  We prove first that u is a solution to (5.4), by computing its

contingent mutation: we have to check that there exist sequences h,, — 0+,
z, — z such that

d("sﬂ(hﬂax)vxn) S anhn
lu(z) + ha(Au(z) + $(2)) - w(zn)l| < Bnhn

Denote by z(-) = S,(z,-) the solution to the mutational equation z (1) >
(z(t)) starting from z. We know that z(-) being a solution to the muta-

tional equation z (t) 3 (z(t)),
d(3y(hns 2), 2(hn) < Qnhn
Setting z2(t) := 9(z(t)), we can write
u(z) = - /Ooo e 4t2(1)dt
We check that for every h, > 0
- /0 Z e At 4 hp)dt = u(z(hn))

Observing that
i/ e~ (2(1) — 2(t + hy)) dt
hn 0
Ahn
hn

eAhn _ 1

= _———/ e=Atz(t)dt + &
hn 0

hn
/ e~ At 2(t)dt
0
we deduce that

u(z) + hn (— 5L [0 e A 2(t)dt + S [3n e A 2(t)dt)
= u(z(hn))
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hy
We then remark that hi/ z(t)dt converges to ¥(z) and thus, that
n JO

eAhn _ 1 Ahn

* _at
- e tz(t)dt +
hn 0

€

hn
/ e~ 4tz(t)dt
0

converges to Au(z) + v¥(z), so that, by the very definition of a contingent
mutation, we obtain

n

Au(z) + ¥(z) € D u(z)(¢(z))

2. — Estimate

@) < [ lploe™ = 1=

is obvious.

Let v: X ~ Y be a bounded solution to (5.4).

We know that for every z € X, there exists a solution (z(-), y(-)) to the
system of mutational-differential equations

i) Z(t) 3 e(2(t)

i) y'(t) - Ay(t) = ¥(z(t))

starting from (z,v(z)) such that y(¢) = v(z(t)) for every t > 0. We set
z(t) := ¥(z(t)), which is bounded.

Therefore, if A > 0, the function e~4fz(t) is integrable. On the other
hand, by integrating by parts e~4ty(z(t)) := e Aty'(t) — e At Ay(t), we
obtain

ATYT) ~o(z) = [ M pla(0)i
0
which implies

o(z) = — /0°° At y(z(t))dt

by letting T — oco. We have thus proved that v(z) = u(z).

3. — Wenow fix a pair of elements z; and z, and weset fori =1, 2
u(z;) = — [3° e~ Atz (t)dt, where

zi() = Sp(zi,) & z(1) = $(z(1))
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Since ¢ is Lipschitz, Theorem 4.5 implies, setting a := M + ||¢||4, that
Vt>0, d(zi(t),z2(t)) < e*d(z1,22)
and thus,
V>0, la(t) - 2|l < Igllad(z1(2), 22(1)) < [[¥llae*d(z1,2)

Consequently, if A > a, then u(z2) = — [5° e~ Atz,(1)dt satisfies
0

lu(a) - u(ell < [ Igllae™ (e 200t < PR Az,

Let us consider now two pairs (¢1,%1) and (¢2,%2) and the solutions
VeeX, u(s) i= - [ e Mu(Sale )t (i=1,2)
0
Set z;(t) := ¥i(zi(t)) Since the functions are Lipschitz, Theorem 4.5 with
e(s) := d(Z1 (t), pa(z1(t))) implies that

Hwalla+M) _
lp2lla + M

Vit > 0, d(ml(t), z?(t)) < doo(9°la992)
Hence
Vt>0, |lz21(t) — 2200)[| < (|91 — ¥2lloo + [[¥2llad(21(2), z2(2))

etll(walla+M) _ 1
llp2lla + M

< 1Y = Y2lloo + [[¥2]lad (01, 92)

Therefore,
([ ui(z) —wa(2)]] <

oo gtlliwalla+M) _ 1

Xt
e~ "tdt
lle2]la + M

J [T e - el + lladention, o2) |

ll¥1 = ¥2lleo ||%2]|a
<
| = > 30—

)doo(‘Pl,9°2) o
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5.2 The General Case
Let us consider now the system of first order partial mutational equations

(5.2).

Theorem 5.2 Suppose that the mutational space (X,0(X)) is complete,
that the maps f : X XY — O(X) and g: X xY — Y are Lipschitz, that f
is bounded and that

Yz,y, l9(z,y)]| < c(1+ [lyl])

Then for A large enough, there exists a unique bounded Lipschitz solution to
the system of mutational equations (5.2).

Proof — We introduce the map H defined by
u := H(v) is the solution to Au(z) €D u(z)f(z,v(z)) — g(z,v(z))

We observe that the functions ¢(z) := f(z,v(z)) and ¥(z) := g(z,v(z))
satisfy

llella < AL+ [lvlla), 9lla < llglla(t +[v]la)
and

(1 + [[olloc)
e < SEE o)

Theorem 5.1 implies the inequalities

llglla(l + l[v]la)
AIA(L + [lv]la) — M

IH @)l < 0 +1vle) & IH @A < 3=

We observe first that when A > ¢,

c c
< — <
Vidheo < 3=, 1@ < 7

When A > 4|[f||a ||g]la, we denote by

A = [I£1la = llglla =v/* = 2M([fTla + Tlglla) + (1£1la ~ Tlglla)® _
2| £l

p(A) =
a root p(A) of the equation
A = |Ifllap® + (Iflla + liglia)e + llglla
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We observe that for A large enough,
Jm Ap(A) = lglla
Therefore, for A > 4| f||a |lg]la + M,

Vivlla < p(A = M), [[H)|x < p(A- M)

We denote by B the subset defined by

B = {uectnY) | ule < x5 & Il < p(A- )}

When A > max(c,4||f|lallglla + M), the preceding inequalities imply that
H maps the closed subset B to itself. On the other hand, the preceding
Proposition implies that H is Lipschitz :

liglla + p(A = M)|I 1A
A-M

dw(”(vl)’H(v2)) < doo(vlav2)

Therefore, by taking A satisfying

llglia + (A= M)||flla < A-M

which is possible because limy_. 400 Ap(A) = ||g][A-
Then the single-valued map H is a strict contraction, so that there exists
a unique fixed point u = H(u) of H, which is a solution to (5.2). O

6 Lyapunov Functions

6.1 Lower-Semicontinuous Lyapunov Functions

Let (X,0(X)) be a mutational space. Consider a mutational equation

Z(t) 3 f(=(1) (6.1)

a function V : X — R4 U {+0c} and a real-valued function w(:).
The function V is said to enjoy the Lyapunov property if and only if from
any initial state zo starts a solution to the mutational equation satisfying

Vi>0, V(z(t)) < w(t), w(0)=V(z(0)) (6.2)
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Such inequalities imply many properties on the asymptotic behavior of
V along the solutions to the mutational equation (in numerous instances,
w(t) goes to 0 when t — +o00, so that V(z(t)) converges also to 0).

Recall that the epigraph of V is defined by

Ep(V) = {(z,A) € X xR | V(z) < A}

We see right away that when w(-) is a solution to a differential equation
w' = —p(w), we have actually a viability problem in the epigraph of V
because the Lyapunov property can be written: For any initial state zg,
there exists a solution to the mutational equation satisfying

V>0, (z(t),w(t)) € Ep(V)

This function ¢ is used as a parameter in what follows. (The main instance
of such a function ¢ is the affine function ¢(w) := aw — b, the solutions of
which are w(t) = (w(0) - 2)e~t 4 &).

So that we can apply the Nagumo theorem whenever the epigraph of V
is closed, i.e., whenever V is lower semicontinuous: V enjoys the Lyapunov
property if and only if its epigraph is a viability domain of the map (z,w) ~
1(2) x {-(w)}.

Therefore, our first task is to study the contingent transition set to the
epigraph of an extended function V at some point (z,V(z)): it is the epi-

graph of a function denoted ﬁ] V(z) and called the contingent epimutation

of V at z. Let V : X — R U {400} be a nontrivial extended function and
z belong to its domain. Then, for any transition ¥ € O(X),

° Viy)- V(=)
Dy V(z)(9) := su M C VA )
I ( )( ) 5)8 hE]O'E]'yGB(ﬂ(hvl‘)th) h’
is called the contingent epimutation of V at z in the direction 9 € O(X).
The function V is said to be contingently epimutable at z if its contingent
epimutation never takes the value —oo.
If V is Lipschitz around z, this is a “Dini directional mutation” in the

sense that
V(I(h,z)) - V(z)
h

It is an extension of the concept of directional mutation: If V is mutable at
z, then

D1 V(z)(9) := 1}362{

V9 e0(X), Dy V(z)¥) =V (z)(9)
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We shall prove that
A > Dy V(2)(¥) if and only if (9,1) € Tenv)(z,V(z))

Proposition 8.1 LetV : X — RU{too} be a nontrivial eztended function
and z belong to its domain. For all w > V(z),

Tgp(v)(:t, w) C TDom(V)(‘r) xR

For w = V(z), we have

Teov)(2, V(2)) = Ep(Dy V(2))

and for all w > V(z),
Dom(D; V(2)) X R C Teyv(2, w)

Proof

1. — Fix w > V(z). Let us assume that (J,)) belongs to
Tepvy(z,w). We infer that there exist sequences z,, w, > V(z.) and
h, > 0 converging to z, w and 0 such that

i) d(I(hn,z),2,) < anhn
(6.3)
i1) |w+ hod—wn| < Brhn

Since V(z,) are finite, we thus deduce that ¥ belongs to the contin-
gent transition set to the domain of V' at z, and thus, that Teyyy(z,w) C

TDom(V)('t) x R.
When w = V(z), this implies that

A > sup V() -V(z)
e>0 h€)0,e), yEB(9(h,z),ch) h

i.e., that
(9,) € Ep(V (2))

2. — Letd € O(X) belong to the domain of the contingent epimuta-
tion of V at z. Then A¢ =1°)T V(z)(9) is finite, so that there exist sequences
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of elements h, > 0, z, and w, > V(z,) converging to 0, z and V(z) respec-
tively such that

i) d(9(hn,2),2s) < anha
(6.4)
ii) |V(2‘) + hn’\O - wnl S ﬂnhn

If w > V(z) and if A is any real number, we see that (9, A) belongs to
Tep(v)(z, w) because we can write

(Znyw+ hod) = (Zn,wn) + (0,w — Wy + haA)

Since w — wp + hpA is strictly positive when h, is small enough, we infer
that (zn,w + h,A) belongs to the epigraph of V, i.e., that (9, A) belongs to
the transition set Tg,v)(z,w). O

6.2 The Characterization Theorem

Let (X,0(X)) be a mutational space and f : X — O(X) describe the

dynamics of a mutational equation z> f(z) We consider a time-dependent
function w(-) defined as a solution to the mutational equation

w'(t) = —p(w(1)) (6.5)

where ¢ : Ry — R is a given continuous function with linear growth.
Our problem is to characterize functions enjoying the Lyapunov property.

Definition 6.2 (Lyapunov Functions) Let (X,0(X)) be a mutational
space and f : X — O(X). We shall say that a nonnegative contingently
epimutable extended function V is a Lyapunov function of f associated with
a function ¢(-) : Ry — R if and only if V

¥z € Dom(V), D; V(z)(f(z))+¢(V(z)) < 0 (6.6)

Theorem 6.3 Let (X, 0(X)) be a mutational space. Assume that the closed
bounded balls of X are compact. LetV be a nonnegative contingently epimutable
lower semicontinuous ezxtended function and f : X ~ O(z) be a continuous
and bounded map. ThenV is a Lyapunov function of f assoctated with ¢(-)

if and only if for any initial state zo € Dom(V), there exist solutions z(-)
to the mutational equation 235 f(z) and w(-) to (6.5) satisfying differential
inequality (6.2).
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Proof — We set G(z,w) := (f(z), —¢(w)). Obviously, the system (6.1),
(6.5) has a solution satisfying (6.2) if and only if the system of mutational
equations

(Z (1), w'(1)) 3 G(a(t),w(t)) (6.7)
has a solution starting at (zg, V(zo)) viable in K := £p(V'). We first observe
that K is a viability domain for G if and only if V is a Lyapunov function for
f with respect to ¢: If K is a viability domain of G, by taking z = (z,V(z)),
we infer that

(f(z), —e(V(2))) € T(2, V(2)) = £p(Dy V(2))
hence (6.6).
Conversely, (6.6) implies that the pair
(f(z),—¢(V(Z))) € T€p(V)(sz($))

In particular, f(z) belongs to the domain of lo); V(z), so that Proposition 6.1
implies that (f(z), ~¢(w)) € Tx(z,w) whenever w > V(z).

6.3 Attractors
Using distance functions as Lyapunov functions, we can study attractors:

Definition 6.4 We shall say that a closed subset K is an attractor of order
a > 0 if and only if for any zo € Dom(f), there ezxists at least one solution
z(-) to mutational equation (6.1) such that

V>0, dr(z(t)) < di(zo)e™

We can recognize attractors by checking whether the distance function
to K is a Lyapunov function:
We define the directional Dini mutation
dk(9(h,z)) - dk(z)
h
(We observe that when z € K, a transition 9 is contingent to K at z if and
only if Didk(z)(9) < 0.)

Corollary 6.5 Let X be a metric space whose closed balls are compact and
f:X ~ O(z) be a continuous and bounded map.

Then a closed subset K C Dom(f) is an attractor if and only if the
function dk(-) is a solution to the contingent inequalities:

VzeX, Dydx(z)(f(z))+ adk(z) < 0

Did(2)(9) = liminf
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6.4 Dissipative Systems

Let X be a finite dimensional vector space and f : X — X be a C! map.
A differential equation z’ = f(z) is said to be dissipative if the measure
V(94(t, K)) of 94(t, K')) decreases along the reachable sets. These reachable

[
.sets are solutions to the mutational equation K () 5 f with constant right-

hand side. Therefore, a system is dissipative if the shape map V defined
by

V(K) = /K dz

is a Lyapunov function for this mutational equation. More generally, shape
functions W defined by

W(K) = [ h(e)d
(K) = [ hz)de
where h is C! are shape differentiable and thus, epimutable:

W = [ divih(z)f(@)ds

Such a function is thus a Lyapunov function of f if and only if
vV K € K(X), / div(h(z)f(z)) + / h(z)dz < 0
K K

i.e., if and only if div(h(z)f(z))+ ah(z) < 0 for every z € X. If this is the
case, then

VK €K(X), ¥ >0, /0 h(z)ds < e /K h(z)dz

1(t.K)
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