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FOREWORD 

In cooperative game t h e o y  as well as i n  some domains of economic regulation by 
shortages (queues or unemployment), one is confronted to the problem of evolution 
of coalitions of players or economic agents. Since coalitions are subsets and cannot 
be represented by vectors - ezcept i f  we embed subsets i n  the family of fuzzy sets, 
which are functions - the need t o  adapt the t h e o y  of differential equations and 
dynamical systems to govern the evolution of coalitions or subsets instead of vectors 
did emerge. Evolution of subsets (regarded as shapes or images) was also motivated 
by evolution equations of "tubes" in  "visual servoing" on one hand, mathematical 
morphology on the other. 

The "power spaces" in  which coalitions, images, shapes, etc. evolve are metric 
spaces without a linear structure. However, one can eztend the differential calculus 
to a mutational calculus for maps from one metric space to another, as we shall 
ezplain in  this paper. The simple idea is  t o  replace half-lines allowing to define 
difference quotients of maps and their various limits in the case of vector space by 
"transitions" with which we can also define differential quotients of a map. Their 
various limits are called "mutations" of a map. Many results of differential calculus 
do not really rely on the linear structure and can be adapted to the nonlinear case 
of metric spaces and ezploited. Furthermore, the concept of differential equation 
can be eztended to mutational equation governing the evolution in  metric spaces. 
Basic Theorems as the Nagumo Theorem, the Cauchy-Lipschitz Theorem, the Cen- 
ter Manifold Theorem and the second Lyapunov Method hold true for mutational 
equations. 



Evolution of Coalit ions Governed by Mutational 
Equations 

Jean-Pierre Aubin 

1 Introduction: Mutational Equations for Tubes 

The topic of this paper is to  build a Udifferential calculus" in metric spaces 
in order to  study and control Udifferential equations" in metric spaces. 

This study was motivated by problems arising in "visual servoing", where 
one needs to find feedback controls feeding back on subsets (shapes) instead 
of vectors (see [23,27, Doyen] for further results, applications and references). 
Mathematical morphology, introduced in [44, Matheron] is also another field 
of motivations (see [50, Mattioli]). 

These problems first required a study of "differential equations" govern- 
ing the evolution of "tubes", which are compact-valued maps t I* P ( t )  from 
[0, m[ to  a vector space E. We can also regard tubes as single-valued maps 
P from [O,oo[ to  the metric space K ( E )  of nonempty compact subsets of E 
supplied with the Hausdorff distance. While attempting t o  give a meaning 
to  a differential equation governing the evolution of tubes, i t  was observed 
that  no specific property of the Hausdorff distance was used, and that  the 
theorems could be formulated and proved in any metric space. 

Instead of surveying in the introduction the theorems of this paper, we 
chose to  present some basic ideas and some corollaries within the framework 
of tubes, which will be proved later on in the framework of metric spaces. 
This choice was dictated by the fact that, for the time being a t  least, these 
are tools needed in visual servoing and mathematical morphology. 

The reader who is more interested to  the detailed and rigorous results 
should skip this short presentation and start with the first section. 

Hence, one motivational topic of this paper is t o  study the evolution of 
tubes, which are set-valued maps P : t E [0, T] I* E, governed by a kind of 
Udifferential equation", called mutational equation 

governing the evolution of tubes. 



When f : E H E is a single valued map or, more generally, when 
F : E -u E is a set-valued map, the evolution of tubes have been studied 
either as 'viability tubes"', or as solutions t o  'funnel differential equations 
or inclusions" by Russian and Bielorussian mathematicians2. 

But mutational equations of the form 

(where V maps subsets P C E of the state space E to  state vectors and 
where f : E H E )  do not fall in these formulations (see Steiner mutational 
equations below for an  example). 

To give a meaning t o  a mutational equation, the issue of defining what 
0 

is meant by the time derivative p (t) is raised again. 
The suggestion we propose in this paper is inspired by the concept of 

shape derivatives of shape maps V, which are in some sense "set-defined 
maps", mapping subsets K c E to  vectors V ( K )  E Y in a finite dimensional 
vector space Y. (See [16, CCa], [19,20,21,22, Delfour & ZolCsio], [24, Doyen], 
[73, ZolCsio], etc.). Their idea was to  replace the usual differential quotients 
U(Z + hv) - U(z) 

h 
measuring the variation of a function U on half-lines z + ." 

hv by differential quotients V('L9,(h, K ) )  - V ( K )  
h 

where cp : E H E is a 

Lipschitz map, d,(h,z) := z(h)  denotes the value a t  time h of the solution 
to  the differential equation z' = cp(z) starting a t  x a t  time 0 and d,(h, K )  := 
{d,(h, z ) ) , ~ ~  the reachable set from K a t  time h of cp. 

In other words, the "curve" h H d,(h, K )  plays the role of the half lines 
h H z + hv for defining differential quotients measuring the variations of 
the function V along it.  Since the set K ( E )  of nonempty compact subsets 
of E is only a metric space, without linear structure, replacing half-lines by 
curves t o  measure variations is indeed a very reasonable strategy. For this 
special metric space, these "curves" d,, which are examples of "transitions" 

defined below, are in one t o  one correspondence with the space Lip(E, E )  
of Lipschitz maps cp. They play the role of directions when one defines 

'as in VIABILITY THEORY, [5, Aubin], for instance, and in [32, Frankowska]. For the 
general case when F : [O,q  x E -u E where F depends measurably on time, see [36, 
Frankowska, Plaskacz & Rzeiuchowski]. 

'See ([37,38,39, Kurzhanski & Filippova], [40, Kurzhanski & Nikonov], [41,42, Kurzhan- 
ski & Valyi],[57, Panasyuk], [69, Tolstogonov], etc. 



directional derivatives of usual functions. Hence, if the limit 

exists, it is called the directional shape derivative of  V at K in the "directionn 
cp. With such a concept, an inverse function theorem allowing t o  inverse 
locally a shape map V whenever its shape derivative Lip(E, E )  I+ Y is sur- 
jective is proved in [24, Doyen] and many applications t o  shape optimization 
under constraints are derived in Doyen's paper. 

Since this strategy works well for shape maps, i t  should work as well for 
set-valued maps, and indeed, it does for solving certain classes of problems. 

For this purpose, we introduce the HausdorfF demi-distance 6 : K ( E )  x 
K ( E )  I+ R+ defined by 

v K ,  L E K(E),  6(K, L) := sup d(z ,  L) = sup inf d ( z , y )  
zE K z~ K 

and the associated HausdorfF distance 

d ( K ,  L) := max(G(K, L),G(L, K ) )  

Hence, going back t o  tubes t ?.r P ( t )  with nonempty compact values, we 
suggest t o  look for differential quotients of the form 

d(d,(h, P ( t ) ) ,  P ( t  + h)) 
h 

which compare the variation P( t  t h )  and the variation zP,(h, P ( t ) )  produced 
by a transition 29, applied t o  P(t) .  

Let B(K,E)  denote the closed ball of radius E around K .  If 

or, equivalently, if there exists P(h) + 0 with h such that, for all h €]O,l], 

it is tempting to  say that  the transition 29,, or, equivalently, that the associ- 
ated Lipschitz map cp E Lip(E, E) ,  plays the role of the directional derivative 
of the tube P at  t in the forward direction 1. 

This is what we shall do: we propose to  call mutation b (t) of  the tube 
P at t the set of Lipschitz maps cp satisfying the property (1.1). We do have 



t o  coin a new name, because many concepts of derivatives of a set-valued 
map - graphical derivatives3, such as contingent derivatives4, circatangent 
derivatives5 or adjacent derivatives6, as well as other pointwise concepts7 - 
have been used extensively. 

0 

We observe that  any two Lipschitz maps cp,$ E p  (t)  (or the associated 
transitions) are equivalent at P( t )  in the sense that  

lim d ( W ,  P(t)) ,  %(h, P( t ) ) )  
h 

= 0 
h d O +  

If cp r v is a constant map v E E C Lip(E, E )  satisfying the above prop- 
erty, we find a concept of derivative implicitly involved in funnel equations. 

Now, if f : [O,T] x K ( E )  I+ Lip(E, E )  is a continuous map associating 
with a pair ( t ,  K )  a Lipschitz map y I+ f (t, K ;  y), we can define a mutational 
equation for tubes of the form 

v t 2 0, i (1) 3 f (t, P( t ) ;  -) 

or, equivalently, 

(By identifying Lipschitz maps which are equivalent a t  P ( t )  in a same 
equivalence class, the above mutational equation could be written in the 

0 

more familiar form P ( t )  = f ( t ,  P(t) ;  .). But, as often when we try t o  avoid 
using factor spaces, we have the choice between potential confusion and 
ponderousness). 

For another approach using set-valued derivatives in the case of convex 
valued tubes, see [29]. 

3according to a term coined by R.T. Rockafellar. See [61,62, Rockafellar], [66, Rockafel- 
lar & Wets], SET-VALUED ANALYSIS, [lo, Aubin & Frankowska] and V ~ B U I T Y  THEORY, 
[5, Aubin], among other authors for an exposition of their properties. 

'introduced in (3, Aubin]. 
'introduced in (4, Aubin]. 
'introduced in [30,31,32, Frankowska]. 
'See (14, Banks & Jakobs], [15, De Blasi], (43, Martelli & Vignoli] among many other 

authors. 
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1.1 The Nagumo Theorem for Tubes 

Let M c E be a closed subset of a finite dimensional vector space E. We 
denote by TM(z) its contingent cone8 to M at z E M and by NM(z)  := 
(TM(z))- its polar cone, called the subnormal or regular normal cone. 

Nagumo's Theorem for differential equations (see [51, Nagumo], VIABIL- 
ITY THEORY, [5, Aubin]) states that  M is invariant under cp E Lip(E, E )  if 
and only if 

V z E M, cp(z) E -TM(z) n TM(z) 

and, actually9, if and only if 

We shall set 

Lipo(M, E )  := {cp E Lip(E, E )  I satisfying (1.2) ) 

When cp is Lipschitz, we denote by 

the Lipschitz semi-norm of cp. 
We supply i t  with the distance (Icpl - cp21Ioo := S U P Z E ~  IIcpl(z) - cpz(z)ll 

of uniform convergence. 
Let M C K(M) be a family of nonempty compact subsets of M and 

d M ( K )  := infLEM d ( K ,  L) denote the distance to  M in the Hausdorff space 
K(M). We recall the definition of contingent cone TM(K) C Lipo(M, E )  
introduced and studied in [24, Doyen] under the name of velocity cones: We 
shall say that a Lipschitz map cp E Lipo(M, E )  is contingent to M at K E M 
if and only 

lim inf dM(dy(h, K ) )  
h 

= 0 
hdO+ 

'which is the cone of directions v E E such that 

lim inf d(z + hv, M )  
h 

= 0 
h-O+ 

'See VIABILITY THEORY, [5, Aubin], Theorem 3.2.4. 



i.e., if and only if there exist sequences h, and E,  converging to  0 and a 
sequence of subsets K, E M such that  

Constrained Inverse Function Theorems, a calculus of contingent cones and 
Lagrange multipliers for shape optimization under constraints, which use 
such concepts of tangent cones, can be found in [24, Doyen]. 

The  Nagumo theorem can be adapted to characterize the  evolution of 
tubes under constraints. 

Theorem 1.1 Let M C E be a closed subset of a finite dimensional vector 
space E and f : [0, oo[xK(M) H LipO(M, E )  be a continuous map, bounded 
in the sense that 

V t  2 0, VP c M ,  K c M ,  f ( t , P ; K )  isbounded in E 

and that 
v t 2 0, VP,  I l f ( t , P ; . ) l l ~  5 c 

Assume that M C K ( M )  is a viability domain off in the sense that 

V t  2 0 ,  V K  E M ,  f ( t , K )  E TM(K) 

Then, from any KO E M starts a tube t H P( t ) ,  solution to the mutational 
equation 

v t 2 0, b (1) 3 f (t ,  P ( t ) ;  -) 

which is viable in M in the sense that 

This an easy corollary of Theorem 4.2 below. 

1.2 The Cauchy-Lipschitz Theorem for Tubes 

When f is Lipschitz, we obtain uniqueness of the solution to  a differential 
mutation and estimates: 

Theorem 1.2 Let f : K ( E )  H Lip(E, E )  be a Lipschitz map, bounded in 
the sense that 

V P, K c E, f ( P ;  K )  is bounded in E 



and that 
p := max(0, sup ellf(K;.)ll~ - 1) < +m 

KCE 

Then, from any KO E K ( E )  starts a unique solution P ( - )  of the Cauchy 
problem to the mutational equation 

If Q is a mutable tube, we set 

0 

d ( a ,  Q ( s ) ) ,  := inf d ( a ,  T) 
~ E Q ( S )  

Then 

v t E [O,  TI ,  d ( P ( t ) ,  Q ( t ) )  < 

e(p+ l l f  ~ I A ) ~ ~ ( K ~ ,  ~ ( 0 ) )  + e('+ ~ l f l l ~ ) ( ~ - ~ ) d (  f ( Q ( S ) ) , ~  (s)),ds 
0 

which shows the Lipschitz dependence of the solution to the mutational equa- 
tion with wspect to the initial data and the right-hand side. 

It follows from Theorem 4.5 below. 

1.3 An Example: Steiner Mutational Equation 

One class of mutational equation is provided by dynamics f which depend 
upon the subset P through a shape map. 

Consider for instance the shape map sn : K ( E )  o E associating with 
any K c E its Steiner point s n ( K )  defined by 

where Cn-' denotes the unit sphere in E := Rn, a ( K ,  -) is the support 
function of K ,  w is the measure on En-' proportional t o  the Lebesgue 
measure and satisfying w(Cn-') = 1. 

Since a ( K , p )  = a ( - K ,  -p),  it follows that  s n ( K )  = -sn(-K)lO.  The 
support function being also additive with respect t o  K, the map sn(.) is 

loso that if K is symmetric, i.e., K = - K ,  then sn(K)  = 0. 



linear: 

For all compact K ,  L c Rn and all A, p E R, 
(1.3) 

sn(AK + pL)  = Asn(K) + psn(L) 

One can prove that  s, is a selection in the sense that s n ( K )  E s ( K )  and 
that  i t  is Lipschitz with respect to  the Hausdorff distance (See for instance 
Theorem 9.4.1 of SET-VALUED ANALYSIS, [lo, Aubin & Frankowska]). 

Let us consider now a continuous map g : E w Lip(E, E) .  Hence Steiner 
mutational equations are mutational equations of the form 

In other words, the dynamics of the tube is governed by the dynamics of its 
Steiner point. 

In particular, consider the case when g : E w E where E is identified 
with a subspace of Lip(E, E). Then we can compare the Steiner point 
s,(P(t)) of a solution to  the mutational equation 

starting from KO and the solution t o  the differential equation 

starting from sn(Ko). Then, it is easy to check that  

Indeed, from the definition 

of a mutation and from property (1.3), we infer that  

so that  
sn(p(t + h)) - 3n(P(t)) - g(sn(p(t)))l 

P(h) h 

and thus, dSn(P(t)) = g(sn(P(t))).  
dt 



1.4 The invariant manifold theorem for Tubes 

More generally, many problems lead to the study of the evolution of obser- 
vations u(P( t ) )  where u : K ( E )  H Y, Y being a finite dimensional vector 
space. 

For instance, one can regard a map u as a map associating with any set 
vector characteristics which are "adequaten in the sense that  they "trackn 
the evolution of the tubes. 

Let A E C(Y, Y) be a linear operator and g : K(E)  x Y I+ Y be given. 
The problem arises t o  compare the evolution of u(P( t ) )  of the solution 

t o  a mutational equation 

starting from KO with the solution y(t) to  a differential equation 

starting from u(Ko), in the sense that  u(P(t))  = y(t). In other words, 
this means that  Graph(u) C K ( E )  x Y is viable (or invariant) under the 
"characteristic systemn: V t 2 0, 

We define the contingent mutation D u(K)  a t  K t o  be the set-valued 

map from Lip(E, E )  to Y defined by v €5 u(K)(p)  if and only if there exist 
sequences hn -+ O+, yn -+ u(h7) and K n  -+ K such that  

Naturally, b u(K)(p)  = {P (K)p) coincides with the directional shape 
derivative of u a t  K whenever i t  exists. 

We shall prove that  the graph of u is a viability domain if and only if u 
is a solution t o  the system of partial mutational equations 

The existence theorem of [7,8, Aubin & Da Prato] can be extended to  the 
case of partial mutational equations by using techniques of [11,12,13, Aubin 
& Frankowska]: 



Theorem 1.3 Let us assume that the maps f : K ( E )  x Y I-+ Lip(E, E) and 
g : K ( E )  x Y I-+ Y are Lipschitz and that there exists c > 0 such that 

(Ax'x) large enough, there exists a unique bounded Lipschitr Then for inf - 
z # O  11412 

solution u : K ( E )  w Y to the system of partial mutational equations (1.5). 

This theorem follows from Theorem 5.2 below. 

1.5 Mutational Calculus in Metric Spaces 

The proofs of these theorems do not involve the explicit definition of the 
Hausdorff distance on the space K ( E )  of nonempty compact subsets of a 
vector space. Actually, these theorems are immediate corollaries of the anal- 
ogous statements proved in any metric space. For instance, one can use other 
metric subspaces of the power set P ( E ) ,  such as the space of closed convex 
subsets supplied with the cosmic convergence introduced in [65,66, Rockafel- 
lar & Wets], or a the a-algebra A of a probability space ( S Z ,  A, p )  supplied 
with the distance 

where K e L := ( K  U L) \ (K n L )  is the symmetric difference of K and L 
and Var,(M) the total variation of p on M .  

One can also use the distance 

introduced in [27, Doyen]. 

The need to  extend concepts of derivatives in metric spaces is not new. 
As early as 1946, T. Waiewski introduced in [71,72, Waiewski] the concept of 
allongements contingentiels supkrieur et inftirieur (upper and lower contingent 
elongations) of a map X w Y" to  prove implicit function theorems in metric 

"Namely, 



spaces. More recently, H. Frankowska used first order and higher order 
"variations" in [34,35, Frankowska] t o  prove sophisticated inverse function 
theorems in metric spaces and L. Doyen to  shape maps in [24, Doyen]. But 
we follow here another track motivated by the evolution of tubes, shape 
analysis and mathematical morphology. 

We shad adapt to  the case of metric spaces the Nagumo Theorem, the 
Cauchy-Lipschitz theorem and an existence theorem on invariant manifolds, 
as well as the Lyapunov method by introducing epimutations on metric 
spaces, the analogues of epiderivatives of functions defined on vector spaces, 
for studying asymptotic properties of mutational equations. 

We shall adapt in another paper the inverse function theorems of Chapter 
3 of SET-VALUED A N A L Y S I S ,  [lo, Aubin & Frankowska] and of [24, Doyen] 
on local inversion t o  maps X H Y from a complete metric space X t o  a 
normed space Y. 

The main concepts of set-valued analysis shall be transferred t o  set- 
valued maps F : X - Y from a metric space X t o  a metric space Y,  by 
defining contingent mutations of a set-valued map a t  a point of its graph and 
other concepts of tangent mutations. 

The main concepts of nonsmooth analysis shall also be extended t o  func- 
tions defined on metric spaces. By using epimutations, we will adapt t o  
optimization of functions on metric spaces the Fermat and Ekeland rules. 

2 Transitions on Metric spaces 

Transitions adapt t o  metric spaces the concept of half line x + hv starting 
from x in the direction v by replacing i t  by "curved" half-lines d ( h , x ) .  
Indeed, the "linear" structure of half lines in vector spaces is not really 
needed t o  build a differential calculus. 



Definition 2.1 Let X be a metric space for a distance d .  A map 19 : [ O ,  11 x 
X H X satisfying 

I ii) 11t9(z)11 := sup d ( f l ( h ,  4, d ( k ,  2 ) )  < +m 
h#k lh - kI 

1 iii) llt911a := sup d(d(h7 4, B(h, Y ) )  < +m 

h€[0,11, z#v 4 5 ,  Y) 

i v )  lim d(t9(t + h ,  2 ) ,  8 (h , f i ( t , 2 ) ) )  I h-0, h 
= 0 

is called a transition. When 1 1 1 9 ) ( ~  5 1 in  the above inequality, we say that 29 
is a nonexpansive transition. 

W e  denote by a ( X )  the vector space of all tmnsitions on XI2 .  
W e  define an equivalence relation wz between tmnsitions by 

1 9 ~  wz i f  and only if lim d ( d l ( h ,  2),192(h, 2 ) )  

h 
= 0 

h+O+ 

W e  say that ( X ,  O ( X ) )  is a (complete) mutational space if X is a (com- 
plete) metric space and O ( X )  c a ( X )  is a nontrivial vector subspace of 
tmnsitions, closed i n  C ( [ O ,  11 x X ,  X )  supplied with the pointwise conver- 
gence. 

Remark - We could have introduced the factor space of equivalence 
classes of transitions, by identifying at each point equivalent transitions. 
But this may be too cumbersome. 0 

"One may sometimes need more regular transitions: A transition is strict if 

lim sup sup 
Y-= h#k I h  - ' 1  

and 

lim inf 
d ( d ( t  + h ,  ~ ) , 9 ( h , f i ( t *  9 ) ) )  = 0 

h-O+,u-= h 

We shall say that 791 and 8 2  are strictly equivalent if 

.Y, QZ if and only if lim 
d ( & ( h r  z ) , Q z ( h ,  3 ) )  = ,, 

h-o+,u-s h  



One observes that  the transitions fi(h, .) are Lipschitz uniformly with 
respect t o  h E [O,1] and that  for every z E X ,  the maps fi(-, z )  are Lipschitz. 
The unit transition defined by l ( h ,  z )  = z is denoted by 1. 

We shall supply a space 8 ( X )  of transitions with the distances d, of 
uniform convergence13 and Lipschitz semidistance defined respectively by 

and 

We shall need the following estimate on transitions: 

L e m m a  2.2 Consider two tmnsitions 19 and r. Then 

and 

lim d(fil(h7fi2(h7z))7fi2(h7fil(h7 z))) 5 (1  + llfilllA)dA(fi,, fi2) 
h+O+ h 

Proof - Indeed, let us set p( t )  := d(fi(t, x) ,  r ( t ,  y)), which is a Lip- 
schitz function, thus almost everywhere differentiable. Let us estimate its 
derivative: 

13we can, if needed, use weaker topologies such a s  the compact topology (if the transi- 
tions are not bounded) or the pointwise topology with respect to  z E X.  



Since cp(0) = d ( z ,  y), we infer that  

We then use the Gronwall Lemma. 

Example: Transitions on Normed Spaces Let E be a finite di- 
mensional vector space. We can associate with any v E E the transition 
29, E O ( E )  defined by 

29,(h, z )  := z + hv 

for which we have 1129,(z)11 = llvll and I)vIIA = 1 (it is nonexpansive). 
Therefore, we shall identify a normed space E with the mutational space 

( E ,  E )  by taking for space of transitions the space O ( E )  = E of vectors 
regarded as Udirectionsn. 

We can enlarge the space of transitions by using the Cauchy-Lipschitz 
Theorem. We associate with any Lipschitz map cp : X tr X the transition 
29, E O ( E )  defined by 

6,(h,z) := z(h)  

where z(h)  is the unique solution t o  the differential equation zt(t)  = v(x(t))  
starting from z. 

Indeed, we deduce from the Cauchy-Lipschitz Theorem that  

and that  1129,11A -< ellwII~ because 

They satisfy 29,(h + t, x)  = 29,(h, 29,(t, z)). 
We also deduce that  



because 
e l l ~ l l ~ h  - 1 

d(',(h, '1, '+(h, '1) 5 llPllnh 119 - $llm 

Then the space of Lipschitz maps cp : E o E can be embedded in the 
space G(E)  of all transitions: 

We observe that for any z E E, cp is equivalent to  the vector cp(z) a t  z :  

cp "z cp(z)- 

Example: Transitions on a subset of a vector space 
Let M C E be a closed subset of a finite dimensional vector space E. 

We denote by TM(z) its contingent cone and by NM(z) := (TM(z))- the 
subnormal cone. 

We recall that M is invariant under cp E Lip(E, E )  if and only if 

We shall denote by 

Lipo(M, E )  := {cp E Lip(E, E )  ( satisfying (2.2) ) 

We thus infer that 
Lipo(M, E )  c g ( M )  

is a space of transitions of the metric subset M .  

Example: Transitions on Power Sets This is our main example. 
Let M C E be a closed subset of a finite dimensional vector space E and 
X := K(M) be the family of nonempty compact subsets h' C M. 

We recall that the Hausdorff demi-distance 6 : K(E)  x K(E)  o R+ is 
defined by 

v K, L E K(E), 6(K, L) := sup d(z, L) = sup inf d(z, Y) 
zEK zEK y E L  

and that the associated Hausdorff distance, as well as its restriction to  K(M), 
is defined by 

d ( K ,  L) := max(b(K, L), b(L, K ) )  

We can also associate with any Lipschitz map 9 : E o E a transition 
19, E O(X) defined by 



Indeed, we deduce that  

and that  
IJfi,JJA 5 e1Iv11~ 

because 
d(fi,(h, K ) ,  fi,(h, L)) 5 e l lv l lnd(~ ,  L) 

We also observe that  

Therefore, 
Lipo(M,E) c B(K(M))  

is a space of transitions of K(M)  and (K(M), Lipo(M, E ) )  is a mutational 
space, the one we presented in the introduction. 

Actually, there are other transitions on the metric space K(M).  

Example: Morphological transitions. Indeed, more generally, 
we associate with any Lipschitz set-valued map @ : X I+ X with compact 
values the set-valued map 290 E G(E) defined by 

where x(.) range over the set S (x )  of solutions t o  the differential inclusion 
zl(t) E @(x(t)) starting from z. 

We deduce from the Filippov Theorem14, which extends the Cauchy- 
Lipschitz theorem t o  differential inclusions, tha t  

"See [5, Theorem 5.3.11 and [35] for instance. 



that [ I A  < e11@11~ because 

and that 

where 
d(@, *), := sup d(@(z), *(z)) 

zEE 

The Invariance Theorem for differential inclusions (see Theorem 5.3.4 
of VIABILITY THEORY, [5, Aubin]) states that a closed subset M c E is 
invariant under 9 E LIP(E, E )  if and only if 

We shall denote by 

LIPo(M, E )  := (9 E LIP(E, E )  I  satisfying (2.3) ) 

Therefore, we can also associate with any Lipschitz set-valued map 9 : 
E H E with compact values the morphological transition IP4 E B ( K ( M ) )  
defined by 

Indeed, we deduce that 

and that 
11  64, l l A  < ell@ll~ 

because 
d ( h ( h ,  K) ,  19@(h, L)) < ell@llnd(K, L) 

We also observe that 



Therefore, 

LIPo(M, E )  C W q M ) )  

is another space of transitions contained in K(M). 0 

Example :  Morphological  Di la ta t ions  They are defined by the con- 
stant set-valued maps @(z) := B where B C E is a closed subset containing 
the origin, called the structuring element in mathematical morphology (See 
[45, Mattioli & Schmitt] for more details on this domain of image process- 
ing). 

The transitions produced by such differential inclusions are given by 

and called morphological dilatations. They play the role of the transitions 
z + hv in vector spaces. 0 

We refer to  [50, Mattioli] for further details. 

We thus can associate with K(M)  the two mutational subspaces (K(M),  Lip,(M, E)) 
and (K(M),  K(M))  of the mutational space (K(M),  LIPo(M, E)). The mu- 
tational space (K(M),  Lipo(M, E ) )  is used in the framework of visual ser- 
voing whereas the mutational space (K(M),  K(M))  is used in mathematical 
morphology. 

3 Mutations of Smooth Single-Valued Maps 

3.1 D e f i n i t i o n s  

We adapt first some classical definitions of differential calculus and notations 
to  single-valued maps from a metric space t o  another. 

Def ini t ion 3.1 Consider two mutational spaces ( X ,  O(X)),  (Y, O(Y)) and 
a single-valued map f : X H Y from X to Y. 

0 

We shall say that the mutation f ( z )  o f f  at z is the set-valued map from 
O ( X )  to O(Y) defined by 

0 

T E f (z)d  if and only if lim d(f (d(h, z)), ~ ( h ,  f (z)))  = O 
h+O+ h 



0 

We shall say that f is mutable at z in the directions t9 E Q ( X )  i f f  (z)t9 
is nonempty for every t9 E Q ( X )  and that f is strictly mutable if 

0 

T E f (z)t9 if and only if lim d ( f  (t9(h, z ' ) ) ,  T(h, f ( z ' ) ) )  
h 

= 0 
h4O+, 2'42 

Proposition 3.2 Consider two metric spaces X ,  Y and a single-valued map 
f : X w Y from X to Y .  If f is mutable at z ,  then two transitions 

0 0 

E f (z)t9 and ~2 E f (z)t9 are equivalent at f ( z )  : T I  N , ( ~ )  ~ 2 .  
I f f  is Lipschitz and if N, d2  are equivalent at z ,  then transitions 

0 0 

TI E f ( z ) d l  and ~2 E f ( z ) d 2  are also equivalent at f ( z ) .  

R e m a r k  - When the context allows it, we may identify the transitions 
0 0 

T E f (z)t9 since they are equivalent a t  f ( z )  and make the mutation f ( z )  
single-valued by taking the factor space of O ( Y ) .  0 

R e m a r k :  C o m p o s i t i o n  of t r ans i t ions  - 

Definition 3.3 If t9i E 8 ( X )  ( i  = 1,2), we denote by d l  ot92 the transit ion defined 

BY 
(dl 0 r92)(h,z) := t91(h, t92(h, z)) 

In the case of normed spaces, this composition boils down the addition since t9,, o 
dva = dvI+va- 

We observe that if d l  is a strict transition, then 

0 

If f is strictly mutable at z ,  then f (z) is an homomorphism from 8 ( X )  to 
0 

8(Y) in the sense that for any Ti E f (z)di ( i  = 1,2): 

We shall not use these algebraic properties in this paper. 

Consider the  particular example of functions from an interval I C R t o  
a mutational space ( X ,  O ( X ) ) .  



Then i ts  mutation ( t ) ( l )  in the direction +1 is the set of transitions 
6 E O ( X )  satisfying 

lim d(d(h ,  z ( t ) ) , z ( t  + h ) )  
h  

= 0 
h+O+ 

(which are all equivalent a t  z ( t ) ) .  R o m  now on, we shall set g ( t )  :=g ( t ) ( l ) .  
Since transitions are in particular maps tPt, : h E [O,1 - t]  t+ 6(t + h, z )  E 

X ,  we observe that  the condition 

lim d($( t  + h,  4, 6( t ,  6( t ,  z ) ) )  
h  

= 0 
h+O+ 

states that the transition 19 belongs to  the mutation of the map h t+ 19(t+h, x) 
a t  t  E [ O , l [ :  

For maps defined from a normed space E t o  a mutational space ( Y ,  O ( Y ) ) ,  
we usually restrict the transitions to  be just vectors u E E by taking 

n 

O ( E )  = E ,  so that mutations f ( 2 )  induce maps from E t o  O ( Y )  defined 

by 
0 

r  E f ( z ) u  if and only if lim d ( f ( z  + hu),  r ( h ,  f ( z ) ) )  
h  

= 0 
h+O+ 

For maps defined from a mutational space ( X ,  O ( X ) )  t o  a vector space F,  
we restrict naturally the transitions to  be vectors u E F by taking O ( F )  = F ,  

0 

so that  mutations f ( 2 )  induce maps from O ( X )  to  F defined by 

0 

f (z)19 = lim f ($(h ,  2 ) )  - f (4 
h+O+ h 

Remark - We can associate with a transition d : [0, m [ x X  ++ X satisfying 

V h, 1 2 0, d(h + I ,  z) = d(h, d(1, z)) 

a semi-group of continuous linear operators Ud (h) on the space 3 ( X ,  F )  (supplied 
with the pointwise convergence) defined by 



Then the domain Dom(L6) of its infinitesimal generator is the space of mutable 
functions in the direction r9 and its infinitesimal generator Ld E C(Dom(Ld), f (X, F)) 
is defined by 

It can also be regarded as a Lie derivative of f .  

Let X and E be finite dimensional vector space s and Y := K(E).  We 
regard a set-valued map P : X .u E with nonempty compact images as 
a single valued map P : X tr K(E).  We associate the mutational spaces 
(X,  X )  and (K(E) ,  Lip(& El) .  

We thus restrict the transitions 6 E O(X)  to be just vectors u E E and 
the transitions r E O(K(E)) to  be Lipschitz maps y E Lip(E,E),  so that  

mutations b (2) are set-valued maps from X to Lip(E, E )  defined by 

y ~b (z)u  if and only if lim d ( P ( z  + hu), 6,(h, P (z ) ) )  
h 

= 0 
h-O+ 

0 

In other words, the mutation P (z)(u) is a set of Lipschitz maps y : E tr 
E such that  

In particular, for mutable tubes t .u P(t) ,  we shall set 

y ~b (1) if and only if lim d ( P ( t  + h), d,(h, P(t)))  
h 

= 0 
h-O+ 

Remark- Thecontingent derivativeofaset-valued map P :  X - u  E 
at  a point (z ,  y) of its graph has no relations with the concept of mutation 
of this set-valued map regarded as a single-valued map from X t o  the power 
space Y := K(E).  

In the first instance, the contingent derivative is a set-valued map D P ( z ,  y) 
from X t o  E depending upon a point (z ,y)  E Graph(P) whereas in the 

0 

second point of view, the mutation P ( z )  is a set-valued map from X to  
Lip(E, E )  depending only upon z and not on the choice of y E P(z).  

This is the reason why we had t o  coin the word mutation instead of 
derivative to  avoid this confusion. 



Let M C E be a closed subset of a finite dimensional vector space, 
X := K ( M )  be the metric space of nonempty compact subsets of M and 
Y be a normed space. We associate with them the mutational spaces 

(K(M)* Li%(M* E l )  and (Y* Y). 
A map f : K ( M )  w Y is often called a shape map, since they have been 

extensively used in shape design and shape optimization (see [16, CCa], [73, 
ZolCsio], [19,20,21,22, Delfour & ZolCsio], [24, Doyen], etc.). 

Then, by restricting transitions on K(M)  t o  Lipo(M, E )  and the tran- 
0 

sitions on Y t o  be directions v E Y, we see that  a mutation f ( K )  is a 
set-valued map from the vector space Lipo(M, E )  t o  Y associating with a 
Lipschitz map cp the direction v defined by 

0 

v = f (K)cp := lim f (%(h, K ) )  - f ( K )  
h+O+ h 

Assume that  the interior i2 of M is not empty. Denote by V(i2, E )  the space 
of indefinitely differentiable maps with compact support from i2 t o  Y. Let 
f : K(M) w R be a shape function. If 

0 

cp E V(i2, E )  n Lip(E, E )  w f ( K ) v  is linear and continuous 
0 

then f ( K )  is a vector distribution called the shape gradient of f a t  K C M .  

Remark - Let us denote by illK the subspace of vector distributions T 
satisfying 

T(o = 0 V (o E V(R, E )  satisfying ~ ( z )  E TK (z)  V z E K 

which is the subspace of vector distributions normal t o  K .  This implies in particular 
that  the support of a vector distribution normal t o  K is contained in the boundary 
a K  of K .  

Since f(d,(h, K)) = f ( K )  for any Lipschitz map (o E Lipo(K, E ) ,  we see that  
0 

the shape gradient f ( K )  is a vector distribution which is normal t o  K ,  because15 

4 Mutational Equations 

Let us consider a mutational space (X,  O(X)) and a single-valued map f : 
X x [0, W[W O(X)  from X t o  its space of transitions. We say that  a function 
z(.) from [0, T] to  X is a solution to the mutational equation $3  f ( t ,  2) if 

15See [22, Delfour & Zol&io] for more details on this issue. 



or, equivalently, if 

We shall adapt both the Nagumo and the Cauchy-Lipschitz Theorems 
t o  the case of mutational equations. For the Nagumo Theorem, which states 
the existence of a solution z(.) viable in a subset K C X (in the sense that  
for every t 2 0, z(t)  E K ) ,  we need first t o  adapt the concept of contingent 
cone to  the case of metric spaces. 

4.1 Contingent Transition Sets 

Definition 4.1 (Contingent Transition Sets) Let (X,  O(X))  be a mu- 
tational space, K C X be a subset of X and z E K belong to K. The 
contingent16 transition set TK(z) is defined by 

I9 E O(X) I liminf 
h+O+ h 

It is very convenient t o  have the following characterization of this tran- 
sition set in terms of sequences: 

I9 E TK(z) if and only if 3 h, -, 0+, 3 E,  -, 0+ 
and 3 x, E K -, x such that V n, d(19(hn, z) ,  z,) 5 &,h, 

Naturally, if 191 N, 292 are equivalent a t  z E K and if 191 belongs to 
TK(z), then 292 is also a contingent transition to  K at  z.  

Example: Normed Spaces Let E be a normed vector space. We 
can associate with any v E E the transition 6, E B(E) defined by 

''This termed has been coined by G .  Bouligand in the 30's. Since this is a concept 
consistent with the concept of contingent direction as we shall see below, we adopted the 
same terminology. 



Then the vector v E E is contingent to  K a t  z E K (in the usual sense of 
contingent cones to subsets in normed spaces) if and only if the associated 
transition t9,  is contingent to  K at  z .  

Let us associate with any Lipschitz map cp : X t+ X the transition 
19, E a ( E )  defined by 

r9,(h7z) := z ( h )  

where z ( - )  is the unique solution t o  the differential equation z l ( t )  = cp(z(t)) 
starting from z .  

Then the associated transition is contingent t o  K at  z if and only if the 
vector cp(z) is contingent to  K at  z .  

Example: Contingent Transition Sets on Power Sets 
Let M c E be a closed subset of a finite dimensional vector space and 

consider the mutational space ( K ( M ) ,  Lipo(M7 E ) ) .  Let M c K ( M )  be the 
a family of nonempty compact subsets of M .  

We shall say that a Lipschitz map cp E Lipo(M7 E )  is contingent t o  M 
a t  K E M if and only if the associated transition 19, is contingent to  M at  
K ,  i.e., if and only if there exist sequences h, and E,  converging t o  0 and a 
sequence of subsets K ,  E M such that 

This contingent cone has been introduced and studied in [24, Doyen] 
under the name of velocity cone. 

4.2 Nagumo's Theorem for Mutational Equations 

Theorem 4.2 Let ( X ,  O ( X ) )  be a mutational space, K C X be a closed 
subset and f : [O,  oo[x K t+ O ( X )  be a uniformly continuous map bounded 
in the sense that: 

and that 

V t 2 0,  V z E K ,  V y E X ,  l l f ( t , z ;  y)ll := sup d( f ( i , . ;h ,y ) , f ( t72;  k7y)) 
Ih - kl < c 

k#h 

Assume that the closed bounded balls of X am compact. 



If K is a viability domain o f f  in the sense that 

V t 2 0,  V z E K ,  f ( t ,  z )  E T K ( z )  

then, from any initial state zo E K starts one solution to the mutational 
equation g3 f ( t ,  z )  viable in K .  

Proof 

4.2.1 Construction of Approximate Solutions 

We begin by proving that there exist approximate viable solutions to  the 
mutational inclusion. We set 

so that  M = 0 when the mutations f ( t , z )  are nonexpansive, and 

L e m m a  4.3 We posit the assumptions of the Nagumo Theorem 4.2. Then, 
for any E > 0,  the set S,(zo) of continuous functions z ( . )  E C ( 0 , l ; X )  
satisfying z ( 0 )  = zo and 

i )  V t E [ O , l ] ,  d ( z ( t ) ,  zo)  5 ct 
eM - 1 

i i )  V t E [0, I . ] ,  d ( z ( t ) ,  K )  5 E- M 
i i i )  V t E [0, I . ] ,  dm( f ( t ,  z ( t ) ) ,g  ( t ) )  5 E 

i v )  V t E [ O , l ] ,  d ( z ( t ) ,  z ( t  + h ) )  5 ch 

is not empty. 

Proof - Let us fix E > 0. Since f is uniformly continuous, we can 
associate q €10, E ]  such that  

eM - 1 
whenever 1s - rl 5 q and d ( y , z )  5 q- 

M -  



We denote by Ae(zo)  the  set of pairs (T,, z ( . ) )  where T, E [0, 11 and 
z( . )  E C(O, T,; X )  is a continuous functions satisfying z(0)  = zo and 

1 .A 

e M -  1 
iii) V t  E [O,T,], d ( z ( t ) ,  K )  j q~ (4.3) 

iv)  V t  E [ O ,  T,], d m ( j  ( t ,  ~ ( t ) ) ,  ( 2 ) )  I & 

V )  V t  E [ O ,  T,], d ( z ( t ) ,  z(t + h ) )  I ch 

T h e  set Ae(zo)  is not empty: take T, = 0 and z(0) = zo. 
It  is an  inductive set for the  order relation 

if and only if 

Trl 5 T,2 & z 2 ( ' ) l [ o , ~ s , ]  = xi( ' )  
Zorn's Lemma implies tha t  there exists a maximal element (T,,z(.)) E 
Ae(zo).  The  Lemma follows from the  claim tha t  for such a maximal el- 
ement, we have T, = l .  

If not, we shall extend z(.) by a solution Z(.)  on an  interval. [T,, S,] where 
S, > T,, contradicting the  maximal character of (T,, z ( . ) ) .  

Let us take 2̂  E K achieving the  distance between z(T,) and K: 

Let us set G := j  ( t ,  Z )  E TK(Z)  and 

Since the  transition $ is mutable a t  z(T,), there exists P € ] O , & ]  such tha t  

whenever h 5 p. 
We then introduce 

whenever T, < 1. 



By the definition of a contingent transition, there exists h, €10, a ]  such 
that  

d(a(h,,a), K )  I qh, (4.5) 

We then set S, := T, + h, > T,. 
We obtain 

I 5 d(a(h,, Z), Z) + d(a(h,, z ( ~ z ) ) , a ( h ~ , 2 ^ ) )  

,MTx - 1 
< qh, + eMhsd(z(TZ), f )  5 qh, + eMhsq - M 

by (4.5) and (4.3)ii) and Lemma 2.2, since 

Hence 2(.) satisfies (4.3)ii) for S,. 
We observe that  for any t E [T,, S,], 

so that  f (-)(-) satisfies (4.3)i). 
Also, we note that  

from the very choice of a. Then f (.) satisfies (4.3)iii). 
We note next that  for any t E [T,, S,[ and h small enough, Z(t + h) = 

A 

a ( h  + t - T,, z(T,)). Since t9 := f(T,, Z) is mutable and a 5 /?, inequality 



imply that  for all t E [T,, S,], the constant transition $ := f(T,,z^) belongs 
0 

t o  the mutation z  ̂ (t). Therefore, for all t E [T,, S,], 

eM - 1 
since ( t  - T,I 5 a 5 q and d(z^(t),Z) 5 q- 

M 
. Therefore z^(-) satisfies 

(4.3)iv). 
Finally, we deduce that  

so that  2 satisfies (4 .3 )~) .  
Therefore, we have extended the maximal solution (T,, z( .))  on the in- 

terval [O,S,] and obtained the desired contradiction. Hence the proof of 
Lemma 4.3 is completed. 

4.2.2 P r o o f  o f  t h e  N a g u m o  T h e o r e m  f o r  M u t a t i o n a l  E q u a t i o n s  

Consider now a sequence of &-approximate solutions zc(.), which exist thanks 
t o  Lemma 4.3. 

Since the closed bounded balls of X are compact and since the solutions 
remain in such closed balls X ,  we deduce that  for every t E [0, 11, the images 
zc( t )  remain in a compact set of X. 

Property ( 4 . 3 ) ~ )  implies that  the sequence of continuous functions z,(.)) 
is equicontinuous. 

Therefore, Ascoli's Theorem implies that  a subsequence (again denoted 
by) zc(.) converges uniformly t o  z(-) .  

This limit is obviously a solution to  the mutational equation, since for 
any t 2 0, 



This limit is viable in K since for all t E [0, I.] and E > 0, d(z(t), K )  5 
eM - 1 

'xi, there exists a solution to the mutational equation on the interval 
[O, 11, which can then be extended to [0, oo[. 

4.3 Primitives of Mutations 

Solutions to  the mutational equation with state-independent right-hand side 

(t) 3 29(t) 

are naturally regarded as a primitive of 29(t) starting at xo. Then Gronwall's 
Lemma implies: 

Proposition 4.4 Let (X, O(X)) be a mutational space. Consider two func- 
tions t w 6(t) and t w ~ ( t )  from an interval I c R to O(X) and their 
primitives z(.) and y(-) starting at zo and yo respectively. Set p(t) := 

max (l Ild(s)llads - t, 0). ( p(t) = 0 whenever the tmnsition 29 is nonez- 

pansiue and bounded by Mt  where M := ~ ~ p ~ ~ ~ ( ( 1 2 9 ( t ) 1 1 ~  - 1)). Assume that 
the closed bounded balls of X are compact. Then 

In particular, from any initial state zo starts a unique primitive of t t, 
6(t) E 8 ( X ) .  

Remark - In [28, Doyen], one can find an existence theorem of 
primitives of "regulated transitions", which are uniform limits of piecewise 
constant transitions. Indeed, it is proved that if a sequence of transitions 29, 
converges uniformly in O(X) to a transition 29, then the primitives z,(-) of 
6, converge to a primitive z(.) of 29. 

In particular, measurable mutational transitions with compact images 
do have primitives. O 

4.4 Cauchy-Lipschitz's Theorem for Mutational Equations 

For simplicity, we consider only the case when the dynamics of a mutational 
equation is described by a single-valued map f from X to  O(X) indepen- 
dent of time. Consider the Cauchy problem associated with the mutational 



equation : 

v t E [O,Tl, ( t )  3 f ( z ( t ) )  (4.7) 

satisfying the initial condition z ( 0 )  = zo. 

In the case when the right-hand side of the mutational equation is Lips- 
chitz, existence and uniqueness of the solution can be proven, but on top of 
it,  estimates implying the Lipschitz dependence of the solution upon initial 
conditions and right-hand sides are provided. 

We recall the following notations: 

and 

l l f ( z ) l l ~  := SUP 
d ( f ( z ;  h , z ) ,  f ( z ;  h ,Y) )  

h€[O,lI, z#y d ( z ,  Y 

Theorem 4.5 Let ( X ,  O ( X ) )  be a complete mutational space and f : X H 

O ( X )  be a Lipschitz map with Lipschitz constant 1 1  f I l l \ .  Assume also (for 
simplicity) that 

and set M := max(0, supzEx 1 1  f (z)l lA - 1 )  (If the mutations f ( z )  are 
nonezpansive, then M = 0.) Fix a mutable function y(.) : [ O , W [ H  X .  
Assume that the closed bounded balls of X are compact. Then there ezists 
a unique solution z ( - )  to the Cauchy problem for the mutational equation 
(4.7) satisfying the inequality 

By taking for function y ( - )  a solution of the Cauchy problem for the . . 
0 

mutational equation Y 3 f ( y )  starting from yo, we infer from this inequality 
that : 

which shows Lipschitz dependence with respect to initial states. 



By taking for function y(.)  a solution to the Cauchy problem for the 

mutational equation i3 g ( y )  starting fmm 20, we obtain 

which shows Lipschitz dependence with espect to the right-hand sides. 
Finally, we obtain 

e(M+llfll~)t - 1 
d(.(t), 20) I + l l f  1 1 ~  I l f  (20; zo)ll 

We need the following Lemma17: 

Lemma 4.6 Let p, 7 : R I+ R+ be diflerentiable functions. Then 

and, in particular, 

"It follows from: 



Proof 

1. - Construction of approximate solutions 

We introduce the map G : C([O, T ] , X )  w C([O, T ] , X )  associating with 
z(.) the  function G(z)(t) is the (unique) primitive of s r-. f(z(s))  starting 
a t  zo. 

We denote by e(.) the error defined by 

We observe that  

0 

by Proposition 4.4, since y(.) is the primitive of the function s ++Y (s)  
starting a t  y(0). 

We introduce the sequence of approximate solutions zn( - )  defined by 
21 := G(y) and, for every n >_ 1, par zn+l := G(zn). 

2. - Convergence of approximate solutions 

We shall show that this is a Cauchy sequence in the complete metric 
space C([O, TI, X) ,  which thus, is convergent. 

For simplicity, we set X := 11 f l l A .  
Indeed, 



so that ,  iterating these inequalities, we obtain 

( ( 1  ( n i 

thanks t o  Lemma 2.2. 
Consequently, 

which shows that  this is a Cauchy sequence, which converges uniformly on 
[0, TI t o  a function z(-) .  

3. - The limit is a solution 

This limit is a solution t o  the Cauchy problem since by taking the limit, 
equations zn+l(t)  = G(zn(t)) imply that  z( t )  = G(z(t)), and thus, is a 
solution t o  the mutational equation. 

By taking q = 0 in the preceding inequalities, we obtain 



which imply the inequality we were looking for. 

Remark - This theorem has been extended in [28, Doyen] to  the 
case of mutational inclusions with Lipschitz right-hand side by adapting the 
original proof of Filippov18. 

Example: Mutational Equations for Tubes 
We have presented in the introduction the corollaries of the above the- 

orem for mutational equations for tubes in the particular case when the 
right-hand sides are transitions associated with Lipschitz single-valued maps. 
Naturally, the same theorems hold true when the right-hand sides are tran- 
sitions associated with Lipschitz set-valued maps a. 

Therefore, we can extend the theorems dealing with mutational equa- 
tions for tubes t o  the case of mutational equations of the form 

where F ( P ;  -) E LIPo(M, E ) .  
This contains in particular the case in mathematical morphology when 

F ( P ; z )  := B ( P )  is a structuring element depending on P  (called a struc- 
turing function). 

The evolution of tubes P governed by such a mutational equation is 
given by 

V t  2 0, lim d ( P ( t  + h ) ,  P ( t )  + h B ( P ( t ) ) )  
h  

= 0 
h+O+ 

For more details on mathematical morphology, see [45, Mattioli & Schmitt]. 

5 The Invariant Manifold Theorem 

Let ( X , O ( X ) )  be a mutational space and Y  a finite dimensional vector 
space, where we take O ( Y )  = Y .  We supply the product X  x Y  with the 
space of transitions O ( X )  x Y .  

"See also the extension of Filippov Theorem t o  operational differential inclusions in 
[33, Frankowska]. 



Let us consider a system of mutational-differential equations 

where f : X  x Y  w Q ( X )  and g : X  x Y  w Y  are Lipschitz maps and 
A E L(Y,  Y )  is a linear operator. 

We look for single-valued maps u : X  w Y  whose (closed) graphs are 
invariant under this system. 

Such a map u tracks the solutions z( . )  t o  the mutational equation in the 
sense that  if z( .)  is a solution to  

starting from zo, then y(t) := u ( z ( t ) )  is a solution to 

starting from u(zo).  
One then can characterize such maps u  : X  w Y  whose graphs are 

invariant under this system thanks to  the Nagumo Theorem: 

We shall say that  the contingent set to  the graph of a single-valued map 
0 

u  a t  ( 2 ,  u ( x ) )  is the graph of the contingent mutation D u ( z )  a t  z .  This is 

the set-valued map from O ( X )  t o  Y  defined by v €6 u ( z ) ( d )  if and only if 
there exist sequences h, + 0+, y, + u ( z )  and z ,  + z  such that  

Naturally, b u(z)(rP) =: ( z )d  coincides with the usual mutation when- 
ever u  is mutable a t  z .  It has nonempty values when u  is Lipschitz. 

Therefore, the graph of u  is a viability domain if and only if 

since it amounts t o  rewriting condition (5.1). 



5.1 The Decomposable Case 

We begin by proving the existence and uniqueness in the decomposable case 
when the real number X defined by 

(Az, 2)  X := inf - 
4 0  lIz1l2 

is large enough. (We recall that  V y E Y, I l e - ~ ' ~  ( < e-"Ilyll). 

Consider two maps cp : X w O ( X )  and 11, : X w Y and the  system 

A+) E 5 u(x)(cp(x)) - +(XI 

We set 

When cp is Lipschitz, we denote by S,(x, .) the unique solution t o  the mu- 
tational equation 

( t )  3 Y ( x ( ~ ) )  

starting from x a t  the initial time 0. We assume that  cp is bounded in the 
sense that  

M := m u ( 0 , s u p  llcp(x)llA - 1) < +m 
Z 

Theorem 5 . 1  Suppose that the mutational space (X,  O(X))  is complete and 
that y and + are Lipschitz and bounded. If X > 0, then the single-valued 
map u := I'(cp, +) defined by 

is the unique solution to 

Au(z) E 5 u(x)(cp(x)) - +(XI (5.4) 

It is Lipschitz, bounded and satisfies 



The single-valued map (cp, +) H I'(cp, +) is continuous from C ( X ,  O ( X ) )  x 
C ( X ,  Y )  to C ( X ,  Y )  : 

Proof 
1. - We prove first that  u is a solution t o  (5.4), by computing its 

contingent mutation: we have t o  check that  there exist sequences hn + 0+,  
zn + z such that  

Denote by x ( - )  = S v ( z , - )  the solution t o  the mutational equation ( 1 )  3 
y(x(2))  starting from x.  We know that  x( . )  being a solution t o  the muta- 
tional equation ( 2 )  3 cp(z(t)) ,  

d (dv(hn ,  x ) ,  ~ ( h n ) )  < anhn 

Setting z ( t )  := + ( z ( t ) ) ,  we can write 

We check that  for every hn > 0 

Observing that  

we deduce that  

~ ( z )  + hn (- $om e-"l z(t)dt  + ~2 e-"'z(t)dt) 



We then remark that - e(t)dt  converges to  + ( z )  and thus, that Lhn h n 

converges to  Au(z)  + +(z), so that, by the very definition of a contingent 
mutation, we obtain 

2. - Estimate 

is obvious. 
Let v  : X - Y be a bounded solution to  (5.4). 
We know that for every z E X, there exists a solution ( z ( - ) ,  y( . ) )  to  the 

system of mutational-differential equations 

'I, i i )  y t ( t )  - ~ y ( t )  = + ( z ( t ) )  

starting from ( 2 ,  v ( z ) )  such that y(t)  = v ( z ( t ) )  for every t  2 0. We set 
e ( t )  := + ( z ( t ) ) ,  which is bounded. 

Therefore, if X > 0, the function e-Atz ( t )  is integrable. On the other 
hand, by integrating by parts e -A t+ ( z ( t ) )  := e-Aty'( t )  - e - A t ~ y ( t ) ,  we 
obtain 

T 
e - A T y ( ~ )  - ~ ( z )  = e-At+(z ( t ) )d t  

which implies 

~ ( 2 )  = - Lm e- l t+ ( z ( t ) ) d t  

by letting T + oo. We have thus proved that v ( z )  = u ( z ) .  

3. - We now fix a pair of elements zl and 2 2  and we set for i  = 1, 2 : 
u ( z ; )  = - SOm e-Atei( t )dt ,  where 



Since cp is Lipschitz, Theorem 4.5 implies, setting a := M + IlcplI~, that  

v t 2 0, d(Zl(t), z2(t)) I eafd(zl ,  22) 

and thus, 

V t 2 0, Ilzl(t) - z2(t)ll < I ld l l~d(zl ( t ) ,  ~ 2 ( t ) )  I IIdll~e"~d(z1,  22) 

Consequently, if X > a, then u(z2) = - Jr e-Atz2(t)dt satisfies 

Let us consider now two pairs (cpl, $i) and (cp2, d2)  and the solutions 

V z E X, u;(z) := 
- I" e-At+;(~,,(z, t))dt (i  = 1,2) 

Set z;(t) := +;(z;(t)) Since the functions are Lipschitz, Theorem 4.5 with 
e(s) := d ( e l  (t), cp2(zl(t))) implies that  

Hence 

Therefore, 



5.2 The General Case 

Let us consider now the system of first order partial mutational equations 
( 5 . 2 ) .  

Theorem 5.2 Suppose that the mutational space ( X , O ( X ) )  is complete, 
that the maps f  : X x Y H O ( X )  and g : X x Y H Y are Lipschitz, that f  
is  bounded and that 

Then for X large enough, there exists a unique bounded Lipschitz solution to 
the system of mutational equations (5.2). 

Proof - We introduce the map H  defined by 

u  := H ( v )  is the solution to  A u ( x )  €6 u ( r )  f ( z ,  v ( r ) )  - g ( x ,  v ( z ) )  

We observe that  the functions ~ ( x )  := f ( x , v ( z ) )  and dJ(2) := g ( z , v ( z ) )  
satisfy 

l l ~ l l h  5 I l f  l lh(l  + llvllh), I I ~ J I I A  I l g l l ~ ( l  + l l v l l ~ )  
and 

Theorem 5.1  implies the inequalities 

We observe first that  when X > c ,  

When X > 411 f  l l A  I l g l l ~ ,  we denote by 

a root p ( X )  of the equation 



We observe that  for X large enough, 

Therefore, for > 411 f 1 1 ~  11g11~ + M ,  

We denote by B the subset defined by 

When X > max(c,4ll fllAllgllA + M),  the preceding inequalities imply that  
H maps the closed subset B t o  itself. On the other hand, the preceding 
Proposition implies that H is Lipschitz : 

Therefore, by taking X satisfying 

which is possible because limA4+, Xp(X) = 11g1IA. 
Then the single-valued map H is a strict contraction, so that  there exists 

a unique fixed point u = H(u)  of H ,  which is a solution t o  (5.2). 

6 Lyapunov Functions 

6.1 Lower-Semicontinuous Lyapunov Functions 

Let (X,  O(X)) be a mutational space. Consider a mutational equation 

a function V : X w R+ U {+oo) and a real-valued function w(.). 
The function V is said to enjoy the Lyapunov property if and only if from 

any initial state zo starts a solution to  the mutational equation satisfying 



Such inequalities imply many properties on the asymptotic behavior of 
V along the solutions t o  the mutational equation (in numerous instances, 
w(t) goes t o  0 when t -, + m ,  so that  V(z(t)) converges also t o  0). 

Recall that  the epigrnph of V is defined by 

We see right away that when w(.) is a solution to  a differential equation 
w' = -cp(w), we have actually a viability problem in the epigraph of V 
because the Lyapunov property can be written: For any initial state zo, 
there exists a solution t o  the mutational equation satisfying 

This function y is used as a parameter in what follows. (The main instance 
of such a function cp is the affine function cp(w) := aw - b, the solutions of 
which are w(t) = (w(0) - :)e-~' + 8 ) .  

So that  we can apply the Nagumo theorem whenever the epigraph of V 
is closed, i.e., whenever V is lower semicontinuous: V enjoys the Lyapunov 
property if and only if its epigraph is a viability domain of the map (z ,  w) -u 

f ( z )  x {-cp(w)). 
Therefore, our first task is t o  study the contingent transition set t o  the 

epigraph of an extended function V a t  some point ( z ,  V(z)): i t  is the epi- . . 
0 

graph of a function denoted Dl V(z) and called the contingent epimutation 
of V a t  z. Let V : X H R U {+m) be a nontrivial extended function and 
z belong t o  its domain. Then, for any transition 29 E O(X), 

0 

DT V(z)(I9) := sup inf V(Y) - V(z) 
c>0 hE]O,c], y € B ( d ( h , z ) , c h )  h 

is called the contingent epirnutation of V at  z in the direction I9 E O(X). 
The function V is said to  be contingently epirnutable a t  z if its contingent 

epimutation never takes the value -m.  
If V is Lipschitz around z ,  this is a UDini directional mutationn in the 

sense that  

bT V(z)(rP) := lim inf V ( V ,  2))  - V(z) 
h+O+ h 

It is an extension of the concept of directional mutation: If V is mutable a t  
z ,  then 

v B E o(x), bt v ( ~ ) ( B )  = S ( z ) ( ~ )  



We shall prove that  

A t 61 v ( z ) ( s )  if and only if ( 1 9 ,  A )  E T E ~ ( v ) ( z ,  V ( Z ) )  

Proposition 6.1 Let V  : X  I+ R u { ~  m) be a nontrivial eztended function 
and z  belong to its domain. For all w 2 V ( z ) ,  

For w  = V ( z ) ,  we have 

and for all w  > V ( z ) ,  

Proof 
1. - Fix w  > V ( z ) .  Let us assume that  (d ,X)  belongs t o  

TEp(V)(z ,  w) .  We infer that  there exist sequences z n ,  wn 2 V ( z n )  and 
hn > 0 converging to  z ,  w  and 0 such that 

Since V ( z n )  are finite, we thus deduce that  r9 belongs to  the contin- 
gent transition set to  the domain of V  a t  z ,  and thus, tha t  T E , ( ~ ) ( Z ,  w )  c 
T ~ o m ( v ) ( z )  R. 

When w  = V ( z ) ,  this implies that  

X 1 sup inf V ( Y )  - V ( z )  
C > O  h€lO,c], v € B ( d ( h , ~ ) , c h )  h 

i.e., that  

( d ,  E E P ( ~  ( 2 ) )  

2. - Let r9 E O ( X )  belong to  the domain of the contingent epimuta- 

tion of V  a t  z .  Then X o  =ir V(z)(r9) is finite, so that  there exist sequences 



of elements h, > 0,  z ,  and w, 2 V(z , )  converging t o  0, z and V ( z )  respec- 
tively such that  

I f  w > V ( z )  and if X is any real number, we see that  ( d ,  A )  belongs t o  
T E p ( V ) ( ~ ,  W )  because we can write 

Since w - w, + h,X is strictly positive when h,  is small enough, we infer 
that  (z,, w + h,X) belongs t o  the epigraph of V ,  i.e., that  ( d ,  A )  belongs t o  
the transition set T E P ( q ( z ,  w) .  

6.2 The Characterization Theorem 

Let ( X , O ( X ) )  be a mutational space and f : X H O ( X )  describe the 
dynamics of a mutational equation g3 f ( z )  We consider a time-dependent 
function w ( - )  defined as a solution t o  the mutational equation 

where cp : R+ -+ R is a given continuous function with linear growth. 
Our problem is t o  characterize functions enjoying the Lyapunov property. 

Definition 6.2 (Lyapunov  Functions) Let ( X ,  O ( X ) )  be a mutational 
space and f : X H O ( X ) .  We shall say that a nonnegative contingently 
epimutable eztended function V is a Lyapunov function o f f  associated with 
a function c p ( - )  : R+ H R if and only if V 

T h e o r e m  6.3 Let ( X ,  O ( X ) )  be a mutational space. Assume that the closed 
bounded balls of X are compact. Let V be a nonnegative contingently epimutable 
lower semicontinuous eztended function and f : X - O ( z )  be a continuous 
and bounded map. Then V is a Lyapunov function o f f  associated with c p ( - )  
if and only if for any initial state zo E Dom(V), there exist solutions z ( . )  
to the mutational equation $3 f ( z )  and w(.) to (6:5) satisfying diferential 
inequality (6.2). 



Proof - We set G(z,  w) := (f (z), -cp(w)). Obviously, the system (6.1), 
(6.5) has a solution satisfying (6.2) if and only if the system of mutational 
equations 

(g (t), w'(t)) 3 G(z(t), w(t)) (6.7) 
has a solution starting a t  (so,  V(zo)) viable in K := &p(V). We first observe 
that  K is a viability domain for G if and only if V is a Lyapunov function for 
f with respect to  cp: If K is a viability domain of G, by taking z = ( z ,  V(z)), 
we infer that 

( f (z ) .  -cp(v(z))) E T K ( ~ , v ( ~ ) )  = ~ ~ 6 1  ~ ( z ) )  

hence (6.6). 
Conversely, (6.6) implies that the pair 

In particular, f ( z )  belongs t o  the domain of b1 V(z), so that  Proposition 6.1 
implies that ( f (z) ,  -cp(w)) E TK(z, w) whenever w > V(z). 

6.3 Attractors 

Using distance functions as Lyapunov functions, we can study attractors: 

Definition 6.4 We shall say that a closed subset K is an  attractor of order 
a >_ 0 if and only if for any zo E Dom(f), there ezists a t  least one solution 
z(.) to mutational equation (6.1) such that 

We can recognize attractors by checking whether the distance function 
t o  K is a Lyapunov function: 

We define the directional Dini mutation 

D1dK(z)(6) := lim inf dK(v(h, 2))  - dK(z)  
h+O+ h 

(We observe that  when z E K ,  a transition 6 is contingent t o  K at  z if and 
only if DtdK(z) (6 )  < 0.) 

Corollary 6.5 Let X be a metric space whose closed balls are compact and 
f : X -4 0 ( z )  be a continuous and bounded map. 

Then a closed subset K c Dom(f) is an  attmctor if and only if the 
function dK(-) is a solution to the contingent inequalities: 



6.4 Dissipative Systems 

Let X be a finite dimensional vector space and f : X w X be a C1 map. 
A differential equation z' = f ( z )  is said t o  be dissipative if the measure 
V(6 (t,  K ) )  of 6 (t,  K ) )  decreases along the reachable sets. These reachable 

0 

sets are solutions t o  the mutational equation K ( t)  3 j with constant right- 
hand side. Therefore, a system is dissipative if the shape map V defined 
by r 

is a Lyapunov function for this mutational equation. More generally, shape 
functions W defined by 

where h is C1 are shape differentiable and thus, epimutable: 

Such a function is thus a Lyapunov function of j if and only if 

i.e., if and only if div(h(z) f (z ) )  + ah(z) 5 0 for every z E X. If this is the 
case, then 
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